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Abstract

We derive the Schrödinger-Newton equation as the non-relativistic limit of the Einstein-
Dirac equations. Our analysis relaxes the assumption of spherical symmetry, made in
earlier work in the literature, while deriving this limit. Since the spin of the Dirac field cou-
ples naturally to torsion, we generalize our analysis to the Einstein-Cartan-Dirac (ECD)
equations, again recovering the Schrödinger-Newton equation. We then consider the ECD
equations with a new length scale that unifies Compton wavelength and Schwarzschild
radius, and find a Poisson equation with a modified coupling constant, in the small mass
limit.
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1 Introduction

The Schrödinger-Newton equation has been proposed in the literature as a model for inves-

tigating the effect of self-gravity on the motion of a non-relativistic quantum particle [1, 2, 3, 4].

Assuming that the self-gravitational potential φ is classical, and described by the semi-classical

Poisson equation

∇2φ = 4πGm|ψ|2 (1)

its substitution in the Schrödinger equation

i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t) +mφ ψ(r, t) (2)

gives rise to the Schrödinger-Newton [SN] equation

i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t)−Gm2

∫ |ψ(r′, t)|2
|r− r′| d

3r′ψ(r, t) (3)

The SN equation has been studied in the context of localization of wave-packets for macroscopic

objects, notably in [5], where it was shown to provide a gravitationally induced inhibition of

quantum dispersion. The authors also showed how the SN equation can be obtained as the

non-relativistic limit of the Einstein-Klein-Gordon equation and of the Einstein-Dirac equation

[6]. In their work, they assumed the space-time to be spherically symmetric. In our present

paper, we relax the assumption of spherical symmetry, and obtain the SN equation as the

non-relativistic limit of the Einstein-Dirac equations. Since the spin of the Dirac field couples

naturally to torsion, we derive the SN equation also as a limiting case of the Einstein-Cartan-

Dirac equations. These equations are a special case of the Einstein-Cartan-Sciama-Kibble

theory [7, 9, 10, 8, 14, 12, 11, 13], which we will refer to hereon as the Einstein-Cartan theory.

Lastly, we consider the Einstein-Cartan-Dirac equations with a new length scale, and investigate

their non-relativistic limit.
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2 Preliminaries: The Einstein-Cartan-Dirac equations

Torsion is a third-rank tensor, defined as the antisymmetric part of the affine connection:

Q µ
αβ = Γ µ

[αβ] =
1

2
(Γ µ

αβ − Γ µ
βα ) (4)

In terms of the usual Christoffel symbols, it takes the form

Γ µ
αβ =

{

µ

αβ

}

−K µ
αβ (5)

where K µ
αβ is given by K µ

αβ = −Q µ
αβ −Qµ

αβ +Q µ
β α and is called the contorsion tensor.

When a matter field ψ is minimally coupled with gravity and torsion, its action is given as

follows [8]:

S =

∫

d4x
√
−g
[

Lm(ψ,∇ψ, g)−
1

2k
R(g, ∂g,Q)

]

(6)

Here k = 8πG/c4 and Lm denotes the matter Lagrangian density. The second term represents

the Lagrangian density for the gravitational field. There are three fields in this Lagrangian viz.

ψ (matter field), gµν (metric) and Kαβµ (Contorsion). Varying the action with respect to them

yields three field equations as follows:

δ(
√−gLm)

δψ
= 0 (7)

δ(
√−gR)
δgµν

= 2k
δ(
√−gLm)

δgµν
(8)

δ(
√−gR)
δKαβµ

= 2k
δ(
√−gLm)

δKαβµ
(9)

Eqn. (7) yields the matter field equations on a curved space-time with torsion. The right hand

side of Eqn. (8) is associated with
√−gkTµν by the definition of the metric energy-momentum

tensor Tµν . Similarly, the right hand side of Eqn. (9) is associated with 2
√−gkSµβα where

Sµβα is the spin density tensor. These two yield the Einstein-Cartan field equations

Gµν = k Σµν (10)

T µβα = k τµβα (11)

In Eqn. (10) the Gµν on the left hand side is the asymmetric Einstein tensor built from

the asymmetric connection. The Σµν on the right hand side is the asymmetric canonical

total energy momentum tensor, which is made from the symmetric metric energy-momentum

tensor, and from the spin density tensor. In Eqn. (11), the so-called modified torsion T µβα

is the traceless part of the torsion tensor, and it is algebraically related to the Sµβα on the

right. If torsion is set to zero, we recover general relativity: Eqn. (11) is no longer there,

and (10) reduces to Einstein equations coupling the symmetric Einstein tensor to the metric

energy-momentum tensor.
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Next, we assume that the matter field is the spinorial Dirac field ψ, for which the Lagrangian

is:

Lm =
i~c

2
(ψγµ∇µψ −∇µψγ

µψ)−mc2ψψ (12)

We denote a Riemannian space-time by V4 and a space-time with torsion by U4, The theory

generated by minimal coupling of Dirac field on U4 is called Einstein-Cartan-Dirac (ECD)

theory. We use the tetrad formalism to define spinors on curved space-time (both V4 and U4).

Transformation properties of spinors are defined in a flat Minkowski space; locally tangent to

the U4 manifold. We know that, at each point, we have a coordinate basis vector field êµ = ∂µ.

This coordinate basis field is covariant under general coordinate transformations. However,

a spinor (as defined on flat Minkowski space-time) is associated with the basis vectors which

are covariant under local Lorentz transformations. To this aim, we define at each point of our

manifold, a set of four orthonormal basis fields (called tetrad fields), given by êi(x). These

are four vectors (one for each µ) at every point. This tetrad field is governed by a relation

êi(x) = eiµ(x)ê
µ where the transformation matrix eiµ is such that,

e(i)µ e
(k)
ν η(i)(k) = gµν (13)

The trasformation matrix e
(i)
µ allows us to convert the components of any world tensor

(tensor which transforms according to general coordinate transformation) to the corresponding

components in local Minkowskian space (These latter components being covariant under local

Lorentz transformation). Greek indices are raised or lowered using the metric gµν , while the

Latin indices are raised or lowered using η(i)(k). Parenthesis around indices is a matter of

convention.

We adopt the following conventions for the remainder of the paper:

• Greek indices, e.g. α, ζ, δ refer to world components, which transform according to general

coordinate transformations and are raised or lowered using the metric gµν .

• Latin indices within parenthesis e.g. (a) or (i) are the tetrad indices, which transform

according to local Lorentz transformations in the flat tangent space, and are raised or

lowered using η(i)(k).

• Latin indices (without parenthesis) e.g. i, j, b, c indicate objects in Minkowski space,

which transform according to global Lorentz transformations).

• In general, 0, 1, 2, 3 refer to world indices while (0), (1), (2), (3) refer to tetrad indices.

• The total covariant derivative is denoted by ∇ and {} denotes the Christoffel connection.

Correspondingly, ∇{} represents a covariant derivative with respect to the Christofell

connections.

• Commas (, ) indicate partial derivatives while semicolons (; ) indicate the Riemannian

covariant derivative. Thus, for tensors, ; and ∇{} are same, while for spinors, (; ) involves
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both partial derivatives and the Riemannian part of the spin connection, γ, as defined in

the following.

Just as we define affine connection Γ to facilitate parallel transport of geometrical objects

with world (Greek) indices, we define spin connection ω for anholonomic objects (those having

Latin index). Just as affine connection Γ has two parts - Riemannian ({}) part coming from

Levi-Civita connection and torsional part (made up of contorsion tensor K), similarly, the spin

connection ω also has two parts - Riemannian (denoted by γ) and torsional part (again made

up of contorsion tensor K). γ, γo and K are related by following equations:

γ (i)(k)
µ = γo (i)(k)

µ −K (k)(i)
µ (14)

Here, γ
o (i)(k)
µ is Riemannian part and K

(k)(i)
µ is the contorsion (torsional part). The relation

between spin connection and affine connection is as follows:

γ (i)(k)
µ = e(i)α e

ν(k)Γ α
µν − eν(k)∂µe

(i)
ν

= e(i)α e
ν(k)

{

α

µν

}

−K (k)(i)
µ − eν(k)∂µe

(i)
ν

(15)

From the above two equations, one can obtain the following crucial equation for Riemannian

part of spin connection, entirely in terms of Christoffel symbols and tetrads [13]
{

α

µν

}

= eα(i)eν(k)γ
o (k)(i)
µ + eα(i)∂µe

(i)
ν (16)

Using the above results, we define covariant derivative (CD) for Spinors on V4 and U4

ψ;µ = ∂µψ +
1

4
γoµ(b)(c)γ

[(b)γ(c)]ψ −−−−−−−−−−−−−−−−CD on [V4] (17)

∇µψ = ∂µψ +
1

4
γoµ(c)(b)γ

[(b)γ(c)]ψ − 1

4
Kµ(c)(b)γ

[(b)γ(c)]ψ −−−−−−− CD on [U4] (18)

Substituting this into eqn (12), we obtain the explicit form of Lagrangian density; which

we vary with respect to ψ as in Eqn. (7) to obtain Dirac equation on V4 and U4.

iγµψ;µ −
mc

~
ψ = 0−−−−−−Dirac Eqn on [V4] (19)

iγµψ;µ +
i

4
K(a)(b)(c)γ

[(a)γ(b)γ(c)]ψ − mc

~
ψ = 0−−−−−−Dirac Eqn on [U4] (20)

We next obtain gravitational field equations on both V4 and U4 using Eqn. (8) and Lagan-

gian density defined in Eqn. (12)

Gµν({}) =
8πG

c4
Tµν −−−−−−−−−−−−−−−Gravitation Eqn on [V4] (21)

Gµν({}) =
8πG

c4
Tµν −

1

2

(

8πG

c4

)2

gµνS
αβλSαβλ −−−−Gravitation Eqn on [U4] (22)

Here, T µν is the metric energy-momentum tensor which is symmetric and has the form:

Tµν = Σ(µν)({}) =
i~c

4

[

ψ̄γµψ;ν + ψ̄γνψ;µ − ψ̄;µγνψ − ψ̄;νγµψ
]

(23)
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Equations (19) and (21) together constitute the Einstein-Dirac theory.

To write the field equations of Einstein-Cartan-Dirac theory, we first define spin density

tensor using Lagrangian density defined in Eqn. (12)

Sµνα =
−i~c
4

ψ̄γ[µγνγα]ψ (24)

Using equations (24) and (9), Eqn. (20) can be simplified to give us the Hehl-Datta equation [8],

[10]. This, along with equation (22) and the equation which couples modified torsion tensor

and spin density tensor together define the field equations of Einstein-Cartan-Dirac (ECD)

theory; as summarized below

iγµψ;µ = +
3

8
L2
P lψγ

5γ(a)ψγ
5γ(a)ψ +

mc

~
ψ (25)

Gµν({}) =
8πG

c4
Tµν −

1

2

(

8πG

c4

)2

gµνS
αβλSαβλ (26)

T µνα = −Kµνα =
8πG

c4
Sµνα (27)

The Lorentz signature used in this paper is diag(+, -, -, -). We use Dirac basis to represent

the gamma matrices. These are basically matrix representation of clifford algebra Cl1,3[R]

γ0 = β =

(

I2 0

0 −I2

)

, γi =

(

0 σi

−σi 0

)

, γ5 =
i

4!
ǫijklγ

iγjγkγl =

(

0 I2

I2 0

)

, αi = βγi =

(

0 σi

σi 0

)

(28)

3 Non-relativistic limit of the Einstein-Dirac equations

3.1 Ansatz for the spinor and the metric

Ansatz for Dirac spinor: We need to choose an appropriate expansion ansatz for the spinor

so as to obtain the non-relativistic limit. We expand ψ(x, t) as ψ(x, t) = eiS(x,t)~ (which can

be done for any complex function of x and t). We can either expand S as a perturbative

power series in the parameter
√
~ or (1/c) and obtain the semi-classical or non-relativistic

limit respectively, at various orders. The scheme for non-relativistic limit has been employed

by Kiefer and Singh [15]. Giulini and Grossardt in their work [6], combine both these schemes

and construct a new ansatz using the parameter
√
~/c as follows:

ψ(r, t) = e
ic2

~
S(r,t)

∞
∑

n=0

(
√
~

c

)n

an(r, t) (29)

where S(r, t) is a scalar function and an(r, t) is a spinor field. We use this ansatz in our

calculations, and by taking the limit c→ ∞ arrive at the non-relativistic limit.
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Ansatz for metric: We first express the generic form of the metric in a power series with

same parameter as that used to expand the spinor viz.
√
~/c

gµν(r, t) = ηµν +
∞
∑

n=1

(
√
~

c

)n

g[n]µν (r, t) (30)

where g
[n]
µν (x) are infinitely many metric functions indexed by n. In the non-relativistic scheme,

gravitational potentials cannot produce velocities comparable to c - they are weak potentials.

Therefore we assume that the leading function g
[0]
µν(x) = ηµν . With this, we get the following

generic power series for tetrads and spin coefficients and Einstein tensor

eµ(i) = δµ(i) +
∞
∑

n=1

(
√
~

c

)n

e
µ[n]
(i) γ(a)(b)(c) =

∞
∑

n=1

(
√
~

c

)n

γ
[n]
(a)(b)(c) (31)

e(i)µ = δ(i)µ +

∞
∑

n=1

(
√
~

c

)n

e(i)[n]µ Gµν =

∞
∑

n=1

(
√
~

c

)n

G[n]
µν (32)

where e
µ(n)
(i) [g

[n]
µν ], e

(i)[n]
µ [g

[n]
µν ], γ

[n]
(a)(b)(c)[g

[n]
µν ] and G

[n]
µν are infinitely many tetrad, spin coefficient

and Einstein tensor functions indexed by n. They are functions of metric functions g
[n]
µν and

their various derivatives.

3.2 Analyzing Dirac equation with above ansatz

We will now expand the Dirac equation on V4 as given in eqn (19) with the above ansatz.

We also note that γ(a)ψ;(a) = e
(a)
µ eν(a)γ

µψ;ν = δµν γ
µψ;ν = γµψ;µ.

iγµψ;µ −
mc

~
ψ = 0 (33)

⇒ iγ0∂0ψ +
i

4
γ(0)γo(0)(b)(c)γ

[(b)γ(c)]ψ + iγα∂αψ +
i

4
γ(j)γo(j)(b)(c)γ

[(b)γ(c)]ψ − mc

~
ψ = 0 (34)

We separate spatial and temporal parts. Substituting appropriate expansions from (31), (32)

into above equations and multiplying by γ(0)c on both sides yields:

⇒
[

1 +

∞
∑

n=1

(
√
~

c

)n

e
0[n]
(0)

]

i∂tψ +
ic

4

[ ∞
∑

n=1

(
√
~

c

)n

γ
o[n]
(0)(b)(c)

]

γ[(b)γ(c)]ψ+

[

1 +
∞
∑

n=1

(
√
~

c

)n

e
α[n]
(a)

]

icα.∇ψ +
ic

4
α(j)

[ ∞
∑

n=1

(
√
~

c

)n

γ
o[n]
(j)(b)(c)

]

γ[(b)γ(c)]ψ − βmc2

~
ψ = 0

(35)
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Dividing both sides by

[

1 +
∑∞

n=1

(√
~

c

)n

e
0[n]
(0)

]

, we obtain

i∂tψ = −ic
4

[

∑∞
n=1

(√
~

c

)n

γ
o[n]
(0)(b)(c)

]

[

1 +
∑∞

n=1

(√
~

c

)n

e
0[n]
(0)

]γ[(b)γ(c)]ψ −

[

1 +
∑∞

n=1

(√
~

c

)n

e
α[n]
(a)

]

[

1 +
∑∞

n=1

(√
~

c

)n

e
0[n]
(0)

] icα.∇ψ−

ic

4
α(j)

[

∑∞
n=1

(√
~

c

)n

γ
o[n]
(j)(b)(c)

]

[

1 +
∑∞

n=1

(√
~

c

)n

e
0[n]
(0)

]γ[(b)γ(c)]ψ +
1

[

1 +
∑∞

n=1

(√
~

c

)n

e
0[n]
(0)

]

βmc2

~
ψ

(36)

We consider the terms of order c2, c, 1 and neglect the terms having order of O
(

1
cn

)

; n ≥1.

This is sufficient to get the behaviour of the functions in the spinor ansatz. It will turn out

later that this is also sufficient to get the equation which is followed by leading order spinor

term a0. We obtain the following equations:

i∂tψ +
i
√
~

4
γ
o[1]
(0)(b)(c)γ

[(b)γ(c)]ψ + icα.∇ψ +
i
√
~

4
α(j)γ

o[1]
(j)(b)(c)γ

[(b)γ(c)]ψ

−βmc
2

~
ψ + β

mc√
~
e
0[1]
(0) ψ − βm

[(

e
0[1]
(0)

)2

− e
0[2]
(0)

]

ψ = 0

(37)

Substituting the spinor ansatz i.e. eqn (29) in equation (37), the various terms are evaluated

as follows:

Term 1

i∂tψ = i∂t

[

e
ic2S
~

∞
∑

n=0

(
√
~

c

)n

an

]

= ie
ic2S
~

c2

~

∞
∑

n=0

(
√
~

c

)n
[

ȧn−2 + iṠan

]

= e
ic2S
~

c3

~3/2

∞
∑

n=0

(
√
~

c

)n
[

− Ṡan−1 + iȧn−3

]

(38)

Term 2

+
i
√
~

4
γ
o[1]
(0)(b)(c)γ

[(b)γ(c)]ψ = +
i
√
~

4
γ
o[1]
(0)(b)(c)γ

[(b)γ(c)]
[

e
ic2S
~

∞
∑

n=0

(
√
~

c

)n

an

]

(39)

= e
ic2S
~

c3

~3/2

∞
∑

n=0

(
√
~

c

)n
[

i
√
~γ

o[1]
(0)(b)(c)γ

[(b)γ(c)]an−3

]

(40)

Term 3

icαj∂jψ = ic−→α · −→∇
[

e
ic2S
~

∞
∑

n=0

(
√
~

c

)n

an

]

= ic−→α ·
[

e
ic2S
~

c2

~

∞
∑

n=0

(
√
~

c

)n
(

i
−→∇San +

−→∇an−2

)]

= e
ic2S
~

c3

~3/2

∞
∑

n=0

(
√
~

c

)n
[

−
√
~
−→α · −→∇San + i

√
~
−→α · −→∇an−2

]

(41)
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Term 4

+
i
√
~

4
α(j)γ

o[1]
(j)(b)(c)γ

[(b)γ(c)]ψ = +
i
√
~

4
α(j)γ

o[1]
(j)(b)(c)γ

[(b)γ(c)]
[

e
ic2S
~

∞
∑

n=0

(
√
~

c

)n

an

]

(42)

= e
ic2S
~

c3

~3/2

∞
∑

n=0

(
√
~

c

)n
[

i
√
~α(j)γ

o[1]
(j)(b)(c)γ

[(b)γ(c)]an−3

]

(43)

Term 5

−βmc
2

~
ψ = −βmc

2

~
e

ic2S
~

∞
∑

n=0

(
√
~

c

)n

an

= e
ic2S
~

c3

~3/2

∞
∑

n=0

(
√
~

c

)n

(−βman−1) (44)

Term 6

+β
mc√
~
e
0[1]
(0) ψ = +β

mc√
~
e
0[1]
(0)

[

e
ic2S
~

∞
∑

n=0

(
√
~

c

)n

an

]

(45)

= e
ic2S
~

c3

~3/2

∞
∑

n=0

(
√
~

c

)n
[

βm e
0[1]
(0) an−2

]

(46)

Term 7

−βm
[(

e
0[1]
(0)

)2

− e
0[2]
(0)

]

ψ = −βm
[(

e
0[1]
(0)

)2

− e
0[2]
(0)

]

[

e
ic2S
~

∞
∑

n=0

(
√
~

c

)n

an

]

(47)

= −e ic2S
~

c3

~3/2

∞
∑

n=0

(
√
~

c

)n
[

βm

(

(

e
0[1]
(0)

)2 − e
0[2]
(0)

)]

an−3 (48)

After substituting equations (38), (39), (41), (42), (44), (45) and (47) into (37) and sorting by

powers of n we get,

e
ic2S
~

c3

~3/2

∞
∑

n=0

(
√
~

c

)n
[

(

−
√
~
−→α · −→∇S

)

an −
(

Ṡ + βm
)

an−1 +
(

i
√
~
−→α · −→∇ + βm e

0[1]
(0)

)

an−2

+iȧn−3 +

(

i
√
~γ

o[1]
(0)(b)(c)γ

[(b)γ(c)] + i
√
~α(j)γ

o[1]
(j)(b)(c)γ

[(b)γ(c)] − βm
(

(

e
0[1]
(0)

)2 − e
0[2]
(0)

)

)

an−3

]

= 0

(49)

At order n = 0 the equation reduces to,

∇S = 0 (50)

which implies the scalar ‘S’ is a function of time only i.e., S = S(t). Dirac spinor is a

4-component spinor an = (an,1, an,2, an,3, an,4). We split it into two two-component spinors

a>n = (an,1, an,2) and a
<
n = (an,3, an,4). For order n = 1, the equation is

(

Ṡ + βm
)

= 0; which

can be written as following two equations:

(m+ Ṡ)a>0 = 0 (51a)

(m− Ṡ)a<0 = 0 (51b)

9



This implies that either S = −mt and a<0 = 0 or S = +mt and a>0 = 0. The wave function at

this order is ψ = e
±imc2t

~ . It represents the particles of positive energy (lower sign) and negative

energy (upper sign) at rest. We will restrict to the former case i.e. S = −mt and a<0 = 0,

which represents positive energy (lower sign) solutions. It has been implicitly assumed that 2

cases (of positive and negative energies) can be treated separately. We digress at this point

and analyze the metric energy-momentum tensor now with the results obtained in equation

(50) and the fact that a<0 = 0.

3.3 Analyzing the Energy momentum tensor Tµν with above ansatz

The dynamical Energy momentum tensor given in equation (23). Lets consider the ”kT00”

component.

Analyzing kT00 (after raising the index on gamma matrices):

kT00 =
4iπG~

c4

[

ψ̄γ0
(

∂tψ +
c

4
[γo0(i)(j)γ

[(i)γ(j)]]ψ
)

−
(

∂tψ̄ +
c

4
[γo0(i)(j)γ

[(i)γ(j)]]ψ̄
)

γ0ψ

]

(52)

⇒ kT00 =
4iπG~

c4

(

1 +
∞
∑

n=1

(

√
~

c

)n
e
0[n]
(0)

)

[

ψ̄γ(0)
(

∂tψ +
c

4
[γo0(i)(j)γ

[(i)γ(j)]]ψ
)

−
(

∂tψ̄ +
c

4
[γo0(i)(j)γ

[(i)γ(j)]]ψ̄
)

γ(0)ψ

] (53)

After putting spinor anstaz eqn (29) in eqn (52), we obtain following power series for kT00. We

have given expression for the leading order only.

kT00 =
4iπG

c2

{( ∞
∑

n=0

(
√
~

c

)n

a†n

)( ∞
∑

m=0

(
√
~

c

)m
[

iṠam + ȧm−2

]

)

+

( ∞
∑

n=0

(
√
~

c

)n
[

iṠa†n − ȧ†n−2

]

)( ∞
∑

n=0

(
√
~

c

)m

am

)}

+
∞
∑

n=3

O
( 1

cn

)

(54)

Explicit expression for leading order is obtained by considering (n +m = 0) as follows:

kT00 =
4πGi

c2

{

i(−m)a>†
0 a>0 + i(−m)a>†

0 a>0

}

+
∞
∑

n=3

O
( 1

cn

)

(55)

kT00 =
8πGm |a>0 |2

c2
+

∞
∑

n=3

O
( 1

cn

)

(56)

Analyzing kT0µ:

kT0µ =
2iπG~

c4

[

cψ̄γ0

(

∂µψ +
1

4
[γoµ(i)(j)γ

[(i)γ(j)]ψ]
)

+ cψ̄γµ

(

∂0ψ +
1

4
[γo0(i)(j)γ

[(i)γ(j)]ψ]
)

− c
(

∂µψ̄ +
1

4
[γoµ(i)(j)γ

[(i)γ(j)]ψ̄]
)

γ0ψ − c
(

∂0ψ̄ +
1

4
[γo0(i)(j)γ

[(i)γ(j)]ψ̄]
)

γµψ

] (57)

10



We will first find the coefficient of the term of order 1
c2

which is the leading order of T00.

Now, all the terms containing spin coefficients γµ(i)(j) have leading order of 1
c3
. So it will not

contribute at the order 1
c2
. So what we get is (here, index on gamma matrices is raised):

kT0µ =
2iπG~

c4

[

cψ̄γ0∂µψ − cψ̄γµ∂0ψ − c∂µψ̄γ
0ψ + c∂0ψ̄γ

µψ

]

(58)

=
−2iπG~

c3

(

1 +
∞
∑

n=1

(
√
~

c

)n

e
0[n]
(0)

)

[

ψ̄γ(0)∂µψ − ∂µψ̄γ
(0)ψ

]

(59)

+
2iπG~

c4

(

1 +
∞
∑

n=1

(
√
~

c

)n

e
µ[n]
(a)

)

[

∂tψ̄γ
(a)ψ − ψ̄γ(a)∂tψ

]

There are two types of terms in equation above. One having coefficient 2iπG~

c3
and other with co-

efficient 2iπG~

c4
. We call them term 1 and 2 respectively. We analyze both of them independently.

Term 1 gives

(term 1) =
2iπG~

c3

∞
∑

n=0

(
√
~

c

)n
(

a†n1
∂µan2

− ∂µa
†
n1
an2

)

; n = n1 + n2

=
∞
∑

n=3

O
( 1

cn

)

(60)

(term 2) =
2iπG

c2

{( ∞
∑

n=0

(
√
~

c

)n

a†n

)

α(a)

( ∞
∑

m=0

(
√
~

c

)m
[

iṠam + ȧm−2

]

)

+

( ∞
∑

n=0

(
√
~

c

)n
[

iṠa†n − ȧ†n−2

]

)

α(a)

( ∞
∑

n=0

(
√
~

c

)m

am

)}

+

∞
∑

n=3

O
( 1

cn

)

=
4πGm

c2
(a†0α

(a)a0) +

∞
∑

n=3

O
( 1

cn

)

=
4πGm

c2

[

(

a>0 0
)†
(

0 σ(a)

σ(a) 0

)(

a>0

0

)

]

+

∞
∑

n=3

O
( 1

cn

)

=

∞
∑

n=3

O
( 1

cn

)

(61)

So we find, in both term 1 and 2, terms of the O
(

1
c2

)

are zero. Hence

kT0µ =
∞
∑

n=3

O
( 1

cn

)

(62)

Analyzing kTµν

kTµν =
2iπG~

c3

[

+ ψ̄γµ

(

∂νψ +
1

4
[γoν(i)(j)γ

[(i)γ(j)]ψ]
)

+ ψ̄γν

(

∂µψ +
1

4
[γoµ(i)(j)γ

[(i)γ(j)]ψ]
)

−
(

∂νψ̄ +
1

4
[γoν(i)(j)γ

[(i)γ(j)]ψ̄]
)

γµψ −
(

∂µψ̄ +
1

4
[γoµ(i)(j)γ

[(i)γ(j)]ψ̄]
)

γνψ

] (63)
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Here also, we will first find the coefficient of the term of order 1
c2

which is the leading order of

kT00. All the terms containing spin coefficients γµ(i)(j) have leading order of 1
c3
. So it will not

contribute at the order 1
c2
. So what we get is (here, index on gamma matrices is raised):

kTµν =
2iπG~

c3

[

− ψ̄γµ∂νψ − ψ̄γν∂µψ + ∂νψ̄γ
µψ + ∂µψ̄γ

νψ

]

=
2iπG~

c3

(

1 +
∞
∑

n=1

(
√
~

c

)n

e
µ[n]
(a)

)

[

ψ†α(a)∂νψ − ∂νψ
†α(a)ψ

]

+
2iπG~

c3

(

1 +
∞
∑

n=1

(
√
~

c

)n

e
ν[n]
(b)

)

[

∂µψ
†α(b)ψ − ψ†α(b)∂µψ

]

=
2iπG~

c3

∞
∑

n=0

(
√
~

c

)n
(

eµ(a)a
†
n1
α(a)∂νan2

− eµ(a)∂νa
†
n1
α(a) + eν(b)a

†
n1
α(b)∂µan2

− eν(b)∂µa
†
n1
α(b)an2

)

(64)

kTµν =

∞
∑

n=3

O
( 1

cn

)

(65)

From order analysis of components of the metric energy-momentum tensor, summarized in

equations (56) , (62) and (65), we have proved a crucial result viz.

|T00|
|T0i|

≪ 1,
|T00|
|Tij |

≪ 1, k|T00| ∼ O
( 1

c2

)

; i, j ∈ (1, 2, 3) (66)

Owing to Einstein’s equations, the same relation then exists amongst the components of Ein-

stein tensor as well viz.

|G00|
|G0i|

≪ 1,
|G00|
|Gij|

≪ 1, |G00| ∼ O
( 1

c2

)

; i, j ∈ (1, 2, 3) (67)

3.4 Constraints imposed on metric as an implication of above anal-

ysis

We proved an important fact in the previous two sections viz. |G00| ∼ O
(

1
c2

)

and all other

components of G are of higher order. For a generic metric ansatz, Gµν has been explicitly

calculated in appendix [6.1]. At this point, we make an important assumption – the metric

field is asymptotically flat. This fact suggests the following important constraints on metric

components [proved in appendix (6.2)]

1) G
[1]
µν = 0 (∀µ, ν) and non-allowance of solutions which don’t respect asymptotic flatness of

metric gives following result for metric and other quantities :

g[1]µν = 0, e
µ[1]
(i) = 0, e(i)[1]µ = 0, γ

[1]
(i)(j)(k) = 0 ∀ ij, k, µ, ν ∈ (0, 1, 2, 3) (68)

This is proved in appendix (6.2.1)

2) We also have G
[2]
µν = 0 (except for µ = 0 and ν = 0). This imposes different kind of

12



restrictions on g
[2]
µν . We see that the form which g

[2]
µν can take is g

[2]
µν = F (r, t)δµν for some field

F (r, t). This is proved in appendix (6.2.2). The full metric is then given by:

gµν(r, t) =













1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1













+

(

~

c2

)













F 0 0 0

0 F 0 0

0 0 F 0

0 0 0 F













(r, t)+

∞
∑

n=3

(
√
~

c

)n













g
[n]
00 g

[n]
01 g

[n]
02 g

[n]
03

g
[n]
10 g

[n]
11 g

[n]
12 g

[n]
13

g
[n]
20 g

[n]
21 g

[n]
22 g

[n]
23

g
[n]
30 g

[n]
31 g

[n]
32 g

[n]
33













(r, t)

(69)

where g
[2]
00 = g

[2]
11 = g

[2]
22 = g

[2]
33 = F (r, t)

With this form of metric, all the other objects (tetrads, spin coefficients etc.) have been

calculated in Appendix sections [6.3], [6.5], [6.4] and [6.6]. We have used these results in the

next section.

3.5 Non-Relativistic (NR) limit of Einstein-Dirac equations

Dirac equation: Equation (49) becomes the following

e
ic2S
~

c3

~3/2

∞
∑

n=0

(
√
~

c

)n
[

m an−1 + iȧn−3 + i
√
~
−→α · −→∇an−2 − βman−1 − β

mF (r, t)

2
an−3

]

= 0

(70)

We have already used the results from analysis of this equation for n = 0 and n = 1. We now

analyze it for n = 2 and n = 3. At order n = 2 the equation (49) results in

(

Ṡ + m 0

0 Ṡ - m

)(

a>1

a<1

)

− i
√
~

(

0 −→σ · −→∇
−→σ · −→∇ 0

)(

a>0

a<0

)

= 0 (71)

The first of these is trivially satisfied. The second one yields an expression for a<1 in terms of

a>0

a<1 =
−i

√
~
−→σ · −→∇

2m
a>0 (72)

At order n = 3,

(

Ṡ + m 0

0 Ṡ - m

)(

a>2

a<2

)

− i
√
~

(

0 −→σ · −→∇
−→σ · −→∇ 0

)(

a>1

a<1

)

−
(

i∂t − mF (r,t)
2

0

0 i∂t +
mF (r,t)

2

)(

a>0

a<0

)

= 0 (73)

Upon using equation (72), the first branch of (73) yields,

i~
∂a>0
∂t

= − ~
2

2m
∇2a>0 +

m~F (r, t)

2
a>0 (74)
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Einstein’s equations: Next, we go to Einstein’s equations. G00 is evaluated in Appendix

[6.6]. We equate it with kT00 and obtain:

~∇2F (r, t)

c2
+

∞
∑

n=3

O
( 1

cn

)

=
8πGm |a>0 |2

c2
+

∞
∑

n=3

O
( 1

cn

)

(75)

Equating the functions at order 1
c2
, we obtain:

∇2F (r, t) =
8πGm |a>0 |2

~
(76)

If we recognize the quantity ~F (r,t)
2

as the Newtonian potential φ, then we get Schrödinger-

Newton system of equations with mφ as the gravitational potential energy and m |a>0 |2 as mass

density ρ(r, t). The physical picture, which this system of equations suggests, has been given

in the introduction.

i~
∂a>0
∂t

= − ~
2

2m
∇2a>0 +mφ(r, t)a>0 (77)

∇2φ(r, t) = 4πGm |a>0 |2 = 4πGρ(r, t) (78)

i~
∂a>0
∂t

= − ~
2

2m
∇2a>0 −Gm2

∫ |a>0 (r′, t)|2
|r− r′| d3r′a>0 (79)

This completes the derivation of the Schrödinger-Newton equation from the Einstein-Dirac

equations, in the non-relativistic limit.

4 Non-relativistic limit of Einstein-Cartan-Dirac equa-

tions

Dirac equation on U4 (which is also known as the Hehl-Datta equation) is given by equation

(25)

iγµψ;µ −
3

8
L2
P lψγ

5γ(a)ψγ
5γ(a)ψ − mc

~
ψ = 0 (80)

We have already evaluated first and the last term after putting ansatz for spinor (29) and

metric (69). The second term (arising because of torsion) induces non-linearity into the Dirac

equation. We now evaluate this term by following similar procedure as we did for the other

two terms. First we multiply the mid-term by γ0c as done while getting equation (35) from

(34) and get the following:

γ(0)
3c

8
L2
P lψγ

5γ(a)ψγ
5γ(a)ψ = −3c

8
l2P le

ic2S
~

( ∞
∑

n=0

(
√
~

c

)n

a†n

)

γ(a)

( ∞
∑

l=0

(
√
~

c

)l

al

)

γ5γ
(a)

( ∞
∑

m=0

(
√
~

c

)l

am

)

(81)

Next, we divide it by

[

1 +
∑∞

n=1

(√
~

c

)n

e
0[n]
(0)

]

as done while getting equation (36) from (35).

This is equivalent to dividing by
[

1 − ~F (r,t)
2c2

+
∑∞

n=3O
(

1
cn

)]

or equivalently multiplying by
[

1 + ~F (r,t)
2c2

+
∑∞

n=3O
(

1
cn

)]

as given in (6.4). We get the following:
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The non-linear term:

e
ic2S
~

c3

~3/2

[

1 +
~F (r, t)

2c2
+

∞
∑

n=3

O
( 1

cn

)

]

3G

8

( ∞
∑

n1,n2,n3=0

(
√
~

c

)n

a†n1−iγaan2−jγ
5γaan3−k

)

(82)

where n = n1 + n2 + n3. This term modifies Equation (70) as follows

e
ic2S
~

c3

~3/2

∞
∑

n=0

(
√
~

c

)n
[

m an−1 + iȧn−3 + i
√
~
−→α · −→∇an−2 − βman−1 − β

mF (r, t)

2
an−3

+
3G

8

(

∞
∑

n1,n2,n3=0

(
√
~

c

)n

a†n1−iγaan2−jγ
5γaan3−k

)

]

= 0

(83)

where n = n1 + n2 + n3, i + j + k = 5 and, whatever value of i, j, k, n1, n2, n3 is chosen from

(0,1,2,3,4,5) the fact that i ≤ n1, j ≤ n2 and k ≤ n3 is to be respected. We find from the above

expression that the non-linear term with starts contributing finitely from n = 5 onwards. So,

the analysis for n = 0, 1, 2, 3 as given in Appendix remains as it is and we obtain Schrödinger

equation for a>0 viz. i~
∂a>

0

∂t
= − ~

2

2m
∇2a>0 + m~F (r,t)

2
a>0 .

Next, we go to Einstein’s equations (gravitation equation of ECD theory). The equations

of interest here are as given by eqn (26) as Gµν({}) = kTµν − 1
2
k2gµνS

αβλSαβλ. The tensors

Gµν and Tµν are already analyzed in above section. We will analyze the second term on the

right hand side, which is (−1
2
k2gµνS

αβλSαβλ). It contains the products of spin density tensor

which is given by eqn (24). We consider only first term in the expansion of metric because

other terms combined with the coupling constant are already higher orders.

−1

2
k2g00S

αβλSαβλ = −g00
2π2G2

~
2

c6

∞
∑

N=0

(

∞
∑

k=0

∞
∑

l=0

a†kγ
0γ[cγaγb]

)(

∞
∑

m=0

∞
∑

n=0

a†mγ
0γ[cγaγb]nm

)

=
∞
∑

n=6

O
( 1

cn

)

(84)

We find that this addition doesn’t contribute at the order 1/c2 on the RHS of equation (26).

Hence we get back Poisson equation. Recognizing the quantity ~F (r,t)
2

as the potential φ, at

leading order, we find that ECD theory also yields Schrödinger-Newton equation. Torsion does

not contribute at leading non-relativistic order.

5 Non-relativistic limit of ECD field equations with new

length scale Lcs

The motivation for introducing a new length scale [16] in the ECD theory is as follows. Given

a relativistic particle of mass m, it could satisfy either the flat space-time Dirac equation, or

the Einstein equations for a point mass, or the ECD equations which couple the Dirac field

to its self-gravity and torsion. How are we to know which of these three equations does the

dynamics satisfy? There is no mass scale in the equations to determine this. To resolve this
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problem, we introduced a new length scale LCS in the ECD equations, with the following

properties: for m≫ mP l, LCS = 2Gm/c2; for m≪ mP l = ~/2mc; for m = mP l/2, LCS = 2LP l.

In other words, for large masses the length scale in the problem is Schwarzschild radius, and

for small masses the length scale is half of the Compton wavelength [17, 18, 19]. An example

of a function which can satisfy these properties is

LCS

2Lpl
:=

1

2

(

2m

mP l
+
mP l

2m

)

:= cosh z (85)

where z = ln 2m/mP l. We desire that the field equations with this LCS should reduce to

Einstein equations for large masses, and to the Hehl-Datta equation for small masses. An

action which yields such equations is

L2
P l

~
S =

∫

d4x
√
−g
[

1

8π
R − 1

2
LCS ψψ + L2

CS

{

i

2
ψγµ ∇µψ − i

2
(∇µψ)γ

µψ

} ]

(86)

The ECD field equations following from this action, with Lcs incorporated in them, are the

following:

γµψ;µ = +
3

8
L2
csψγ

5γ(a)ψγ
5γ(a)ψ +

1

2LCS
ψ (87)

Gµν({}) = 8πL2
CS

~c
T µν − 1

2

(8πL2
CS

~c

)2

gµνS
αβλSαβλ (88)

T µνα = −Kµνα =
8πL2

CS

~c
Sµνα (89)

Here we analyze the non-relativistic limit of these equations.

5.1 Analysis for lower mass limit of Lcs

Lower mass limit of Lcs is
λC

2
= ~

2mc
. The Dirac equation in the Riemann-Cartan spacetime

with new length scale LCS in its lower mass limit is given by (87):

iγµψ;µ =
3~2

32m2c2
ψγ5γ(a)ψγ

5γ(a)ψ +
1

2LCS
ψ (90)

We have already evaluated first and the last term after putting ansatz for spinor (29) and

metric (69). The second term (arising because of torsion) induces non-linearity into the Dirac

equation. We now evaluate this term by following similar procedure as we did for the other

two terms. First we multiply the middle term by γ0c as done while getting equation (35) from

(34) and get the following:

γ(0)
3c

32
λ2Cψγ

5γ(a)ψγ
5γ(a)ψ =

3c

32
λ2Ce

ic2S
~

( ∞
∑

n=0

(
√
~

c

)n

a†n

)

γ(a)

( ∞
∑

l=0

(
√
~

c

)l

al

)

γ5γ
(a)

( ∞
∑

m=0

(
√
~

c

)l

am

)

(91)

Next, we divide it by

[

1 +
∑∞

n=1

(√
~

c

)n

e
0[n]
(0)

]

as done while getting equation (36) from (35).

This is equivalent to dividing by 1− ~F (r,t)
2c2

+
∑∞

n=3O
(

1
cn

)

as given in (6.4) or multiplying by
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1 + ~F (r,t)
2c2

+
∑∞

n=3O
(

1
cn

)

. We get:

e
ic2S
~

c3

~3/2

[

1 +
~F (r, t)

2c2
+

∞
∑

n=3

O
( 1

cn

)

]

3~3/2

32m2

( ∞
∑

n1,n2,n3=0

(
√
~

c

)n

a†n1−iγaan2−jγ
5γaan3−k

)

(92)

where n = n1 + n2 + n3, i + j + k = 4 and, whatever value of i, j, k, n1, n2, n3 is chosen from

(0,1,2,3,4) the fact that i ≤ n1, j ≤ n2 and k ≤ n3 is to be respected. We find from the above

expression that the non-linear term with LCS starts contributing finitely from n = 4 onwards.

So, the analysis for n = 0, 1, 2, 3 as given iearlier remains as it is and we obtain Schrödinger

equation for a>0 viz. i~
∂a>

0

∂t
= − ~

2

2m
∇2a>0 + m~F (r,t)

2
a>0 .

Now, the gravitational equation of ECD with Lcs in its lower mas limit is given by (88). We

will consider terms only up till second order in (1/c). So we stick to equation for 00 component.

We neglect the 2nd term om the right hand side of (88) because it is of higher order. The

equation for 00 component is:

G00 =
( 2π~

m2c3

)(i~c

4

)

[

2ψ̄γ0ψ;0 − 2ψ̄;0γ0ψ

]

(93)

G00 = e0(0)

( iπ~2

m2c3

)

[

ψ†(∂tψ)− (∂tψ
†)ψ

]

(94)

After substituting spinor ansatz (29), we obtain following equation for the right hand side:

G00 =
( iπ~

m2c

)

[( ∞
∑

m=0

(
√
~

c

)m

a†m

)( ∞
∑

n=0

(
√
~

c

)n

[ȧn−2 + iṠan]

)

(95)

−
( ∞
∑

m=0

(
√
~

c

)m

[ȧ†m−2 − iṠa†m]

)( ∞
∑

n=0

(
√
~

c

)n

an

)]

This implies that

~∇2F

c2
+

∞
∑

n=3

O
( 1

cn

)

=
1

c

(

2π~

m
|a>0 |2

)

+
1

c2

(

2π~3/2

m

[

a>†
1 a>0 + a>†

0 a>1

]

)

+

∞
∑

n=3

O
( 1

cn

)

(96)

This leads us to conclude that a>0 = 0 and hence

∇2F = 0 =⇒ ∇2φ = 0 (97)

With this new length scale, there is no contribution to gravity in the small mass limit, at

the leading order. This makes the theory different from the standard ECD theory. Another

possible interpretation of the modified Poisson equation (96) might be to write it at order 1/c2

as

∇2φ =
4πGm

α

(

|a>0 |2 + ~
1/2
[

a>†
1 a>0 + a>†

0 a>1

]

)

(98)

where α ≡ 4Gm2/~c is the dimensionless gravitational fine structure parameter. Further

implications of this equation are at present under investigation.
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5.2 Analysis for higher mass limit of Lcs

The high mass limit of Lcs is 2Gm/c2. We have shown elsewhere that in the large mass

limit these equations reduce to Einstein equations for a point mass. The non-relativistic limit

will then inevitably be the Poisson equation for a point mass.

This can also be seen as follows. The Einstein equation in the Riemann-Cartan spacetime

with new length scale LCS is given by (88). We neglect terms higher order in LCS because it is

easy to deduce from the fact that L2
CS in higher mass limit is already fourth order in (1/c). So

only first term of right hand side is significant. We consider the ”00” component of the above

equation

G00 =
8πL2

CS

~c
T00 (99)

The stress tensor is given by (23). Its ”00” component is given by [we neglect orders greater

than 1/c2].

T00 =
i~c

4

[

2ψ̄γ0ψ;0 − 2ψ̄;0γ
0ψ

]

(100)

The Dirac equation with Lcs in its higher mass limit is given by (87). Now, for large masses

(m ≫ mP l), amplitude of state ψ is negligible (except in a very narrow region where mass

m gets localized). This is possible if we assume the localization process. In such a case, the

kinetic energy term can be neglected and we obtain the following equations

ψ;0 = −3

8
iγ0L2

CSψ̄γ
5γaψγ

5γaψ − iγ0

2LCS
ψ

ψ†
;0 =

3

8
iL2

CS(γ
0ψ̄γ5γaψγ

5γaψ)† +
i

2LCS
ψ†γ0

(101)

Substituting above equation (101) in eqn (100) and neglecting higher order terms in LCS we

get,
8πL2

CS

~c
T00 = 4πLCS(ψ

†γ0ψ) (102)

Substituting for LCS in the large mass limit in eqn (102) ,

8πL2
CST00
~c

= 4πLCS(ψ
†γ0ψ) =

8πGmψ̄ψ

c2
(103)

In the localization process we replace ψ̄ψ with a spatial Dirac delta function [18]. Substi-

tuting equation (103) and G00 from Appendix [153] in equation (99) and equating at order 1
c2
,

we get the Poisson equation as the non-relativistic weak field limit of the modified Einstein

equation in the large mass limit,

∇2F (r, t) =
8πGm

~
δ(r) (104)

As earlier, we recognize ~F
2

as Newtonian potential φ and hence, we get

∇2φ = 4πGmδ(r) (105)

The large mass non-relativistic limit with this new length scale is not the Schrödinger-Newton

equation, but the Poisson equation for a classical point mass.

18



5.3 Some comments on analysis for intermediate mass

For an intermediate mass, Lcs is given by equation (85). With this, the ECD equations

become:

iγµψ;µ =
3

8

(2Gm

c2
+

~

2mc

)2

ψγ5γ(a)ψγ
5γ(a)ψ +

1
(

4Gm
c2

+ ~

mc

)ψ (106)

Gµν({}) =
8π

~c

(2Gm

c2
+

~

2mc

)2

Tµν −
32π2

~2c2

(2Gm

c2
+

~

2mc

)4

gµνS
αβλSαβλ (107)

First we will analyze HD equation. The three non-linear terms appear in this equation with

coefficients 3G2m2

2c4
,

3L2

pl

4
and 3~2

32m2c2
. We have already done the order analysis of all these terms

and shown to be higher order; not contributing to the equation at leading order. So we neglect

them. What we get is:

iγµψ;µ =
1

(

4Gm
c2

+ ~

mc

)ψ =
mcψ

~

(

1

1 + 4m2

m2

pl

)

(108)

=⇒
[

1 +
4m2

m2
pl

]

iγµψ;µ =
mcψ

~
(109)

This is a very interesting equation. If mass m is too small compared to mpl, we can neglect

the second term on left hand side and this basically gives Schrödinger’s equation. On the

other hand, if mass is too large, we neglect the first term on the left hand side, and then the

equation becomes such that we can safely assume the localization process. [basically it justifies

eq. (101)]. We plan to investigate the intermediate mass case more rigorously in the future.

6 APPENDIX

6.1 Form of Einstein’s tensor evaluated from the generic metric

upto second order

We have used the ansatz for metric [defined in equation (30)]

gµν(x) = ηµν +
∞
∑

n=1

(
√
~

c

)n

g[n]µν (x)

The metric and its inverse, up to second order, can be written as following:

gµν = ηµν +
(

√
~

c

)

g[1]µν +
(

~

c2

)

g[2]µν +

∞
∑

n=3

O
( 1

cn

)

(110)

gµν = ηµν −
(

√
~

c

)

gµν[1] −
(

~

c2

)

[g
µ[1]
β gβν[1] + gµν[2]] +

∞
∑

n=3

O
( 1

cn

)

(111)
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We evaluate Christoffel symbols, Riemann curvature tensor, Ricci tensor and scalar curvature

up to second order using above 2 equations and obtain Einstein tensor at the end. Einstein’s

tensor Gµν is then given by

Gµν =
(

√
~

c

)

G[1]
µν +

(

~

c2

)

G[2]
µν (112)

Where

G[1]
µν = −1

2
�g[1]µν ; where g

[1]
ij = g[1]µν −

1

2
ηµνg

[1]; g[1] = (ηµνg[1]µν) (113)

G[2]
µν = −1

2
�g(2)µν + f(g[1]µν) where g

[2]
ij = g[2]µν −

1

2
ηµνg

[2]; g[2] = (ηµνg[2]µν) (114)

f is a function of g
[1]
µν and is given by following equation:

f(g[1]µν) = −1

4

[

2∂λg[1]∂νg
[1]
λµ − 2∂λg[1]∂λg

[1]
µν − ∂ρg

λ[1]
ν ∂µg

ρ[1]
λ − ∂ρg

λ[1]
ν ∂λg

ρ[1]
µ +

∂ρg
λ[1]
ν ∂ρg

[1]
λµ + ∂νg

λ[1]
ρ ∂µg

ρ[1]
λ + ∂νg

λ[1]
ρ ∂λg

ρ[1]
µ − ∂νg

λ[1]
ρ ∂ρg

[1]
λµ

]

−1

8

[

2∂λg[1]∂νg
[1]
λµ − 2ηµν∂

λg[1]∂λg
[1] − ∂ρg

λ[1]
ν ∂µg

ρ[1]
λ − ∂ρg

λ[1]
µ ∂λg

ρ[1]
ν

+∂ρg
λ[1]
µ ∂ρg

[1]
λν + ∂µg

λ[1]
ρ ∂νg

ρ[1]
λ + ∂µg

λ[1]
ρ ∂λg

ρ[1]
ν − ∂νg

λ[1]
ρ ∂ρgλµ[1]

]

6.2 Constraints imposed on metric due to asymptotic flatness con-

dition

6.2.1 Constraint on g
[1]
µν

First we analyze the off-diagonal form of g
[1]
µν . Off-diagonal components of G

[1]
µν is zero.

This implies (for off-diagonal components alone), from equation (113), �g[1]µν = �g
[1]
µν = 0.

Non-trivial solution to this equation (which is a gravitational wave solution) doesn’t respect

asymptotic flatness. So the only solution allowed is trivial solution viz. g
[1]
µν = 0. Now, for

diagonal components, we assume the metric form to be the most generic:

g[1]µν =













f
[1]
1 0 0 0

0 f
[1]
2 0 0

0 0 f
[1]
3 0

0 0 0 f
[1]
4













(115)
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ḡ
[1]
00 =

f
[1]
1 + f

[1]
2 + f

[1]
3 + f

[1]
4

2
(116)

ḡ
[1]
11 =

f
[1]
1 + f

[1]
2 − f

[1]
3 − f

[1]
4

2
(117)

ḡ
[1]
22 =

f
[1]
1 + f

[1]
3 − f

[1]
2 − f

[1]
4

2
(118)

ḡ
[1]
33 =

f
[1]
1 + f

[1]
4 − f

[1]
2 − f

[1]
3

2
(119)

And the fact that Einstein’s tensor is zero for all the components implies,

�ḡ
[1]
00 = �

f
[1]
1 + f

[1]
2 + f

[1]
3 + f

[1]
4

2
= 0 =⇒ �f

[1]
1 +�f

[1]
2 +�f

[1]
3 +�f

[1]
4 = 0 (120)

�ḡ
[1]
11 = �

f
[1]
1 + f

[1]
2 − f

[1]
3 − f

[1]
4

2
= 0 =⇒ �f

[1]
1 +�f

[1]
2 = �f

[1]
3 +�f

[1]
4 (121)

�ḡ
[1]
22 = �

f
[1]
1 + f

[1]
3 − f

[1]
2 − f

[1]
4

2
= 0 =⇒ �f

[1]
1 +�f

[1]
3 = �f

[1]
2 +�f

[1]
4 (122)

�ḡ
[1]
33 = �

f
[1]
1 + f

[1]
4 − f

[1]
2 − f

[1]
3

2
= 0 =⇒ �f

[1]
1 +�f

[1]
4 = �f

[1]
2 +�f

[1]
3 (123)

One should note that individually, �f
[1]
i = 0 only implies f

[1]
i = 0 (no wave solution allowed)

Even f
[1]
i = constant is NOT allowed as constant solution also contradicts asymptotic flatness.

Equations (121), (122) and (123) imply that

�f
[1]
2 = �f

[1]
1 =⇒ f

[1]
2 = f

[1]
1 + c1 (124)

�f
[1]
3 = �f

[1]
1 =⇒ f

[1]
3 = f

[1]
1 + c2 (125)

�f
[1]
4 = �f

[1]
1 =⇒ f

[1]
4 = f

[1]
1 + c3 (126)

However, all the constants c1, c2, c3 should be zero [As constant + asymptotic flat function can’t

give overall asymptotic flat function]. Now, equation (120) implies, 4�f
[1]
1 = 0 =⇒ f

[1]
1 = 0.

Hence all the functions f
[1]
i = 0 ∀ i. HENCE

g[1]µν = 0 ∀ µ, ν (127)

6.2.2 Constraint on g
[2]
µν

Here also, first we analyze the off-diagonal form of g
[2]
µν . Off-diagonal components of G

[2]
µν

is zero. This implies, from equation (114), �g[2]µν = �g
[2]
µν = 0. Non-trivial solution to this

equation (which is a gravitational wave solution) doesn’t respect asymptotic flatness. So the

only solution allowed is trivial solution viz. g
[2]
µν = 0. Now, for diagonal components, we again

assume the metric form to be the most generic:

g[2]µν =













f
[2]
1 0 0 0

0 f
[2]
2 0 0

0 0 f
[2]
3 0

0 0 0 f
[2]
4













(128)
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ḡ
[2]
00 =

f
[2]
1 + f

[2]
2 + f

[2]
3 + f

[2]
4

2
(129)

ḡ
[2]
11 =

f
[2]
1 + f

[2]
2 − f

[2]
3 − f

[2]
4

2
(130)

ḡ
[2]
22 =

f
[2]
1 + f

[2]
3 − f

[2]
2 − f

[2]
4

2
(131)

ḡ
[2]
33 =

f
[2]
1 + f

[2]
4 − f

[2]
2 − f

[2]
3

2
(132)

And the fact that Einstein’s tensor is zero for all the components except ‘00’ component implies,

�ḡ
[2]
00 = �

f
[2]
1 + f

[2]
2 + f

[2]
3 + f

[2]
4

2
=⇒ �f

[2]
1 +�f

[2]
2 +�f

[2]
3 +�f

[2]
4 6= 0 (133)

�ḡ
[2]
11 = �

f
[2]
1 + f

[2]
2 − f

[2]
3 − f

[2]
4

2
=⇒ �f

[2]
1 +�f

[2]
2 = �f

[2]
3 +�f

[2]
4 (134)

�ḡ
[2]
22 = �

f
[2]
1 + f

[2]
3 − f

[2]
2 − f

[2]
4

2
=⇒ �f

[2]
1 +�f

[2]
3 = �f

[2]
2 +�f

[2]
4 (135)

�ḡ
[2]
33 = �

f
[2]
1 + f

[2]
4 − f

[2]
2 − f

[2]
3

2
=⇒ �f

[2]
1 +�f

[2]
4 = �f

[2]
2 +�f

[2]
3 (136)

Equations (134), (135) and (136) imply that

�f
[2]
2 = �f

[2]
1 =⇒ f

[2]
2 = f

[2]
1 (137)

�f
[2]
3 = �f

[2]
1 =⇒ f

[2]
3 = f

[2]
1 (138)

�f
[2]
4 = �f

[2]
1 =⇒ f

[2]
4 = f

[2]
1 (139)

[we have already seen why addition of constant to above solution contradicts our claim of

asymptotic flatness.] With equations (137), (138) and (139), we find that f
[2]
1 = f

[2]
2 = f

[2]
3 =

f
[2]
4 = F (r, t).

g[2]µν =













F (r, t) 0 0 0

0 F (r, t) 0 0

0 0 F (r, t) 0

0 0 0 F (r, t)













(140)

6.3 Metric and Christoffel symbol components

The form of metric defined in equation (69) is as follows:
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gµν =













1 + ~F (r,t)
c2

0 0 0

0 −1 + ~F (r,t)
c2

0 0

0 0 −1 + ~F (r,t)
c2

0

0 0 0 −1 + ~F (r,t)
c2













+
∞
∑

n=3

O
( 1

cn

)

(141)

gµν =













1− ~F (r,t)
c2

0 0 0

0 −1− ~F (r,t)
c2

0 0

0 0 −1− ~F (r,t)
c2

0

0 0 0 −1− ~F (r,t)
c2













+
∞
∑

n=3

O
( 1

cn

)

(142)

Christoffel Connection:

The non-zero Christoffel connection components (the first term; which is second order in 1/c)

corresponding to metric gµν defined above are as follows:

Γ0
0µ =

~∂µF (r, t)

2c2
+

∞
∑

n=3

O
( 1

cn

)

Γµ
00 =

~∂µF (r, t)

2c2
+

∞
∑

n=3

O
( 1

cn

)

Γµ
µµ =

−~∂µF (r, t)

2c2
+

∞
∑

n=3

O
( 1

cn

)

(143)

[Here µ = 1, 2, 3 i.e., it refers to the spatial coordinates.]

Other non zero Christoffel connection components have all orders of terms from order 3 viz.
∑∞

n=3O
(

1
cn

)

6.4 Tetrad components

Tetrads are introduced in the section “Preliminaries: Einstein-Cartan-Dirac equations”.

The metric and corresponding tetrad field on the whole manifold is defined below:

dS2 =

[

1 +
~F (r, t)

c2

]

c2dt2 −
[

1− ~F (r, t)

c2

]

dr2 (144)

ê(0) =
1

c

(

1 +
~F

c2

)
1

2

∂t, ê(1) =

(

1− ~F

c2

)
1

2

∂x, ê(2) =

(

1− ~F

c2

)
1

2

∂y, ê(3) =

(

1− ~F

c2

)
1

2

∂z

(145)

With this, the transformation matrix which relates the world components with anholonomic

components (defined in equation 13)
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e(i)µ =













1 + ~F (r,t)
2c2

0 0 0

0 1− ~F (r,t)
2c2

0 0

0 0 1− ~F (r,t)
2c2

0

0 0 0 1− ~F (r,t)
2c2













+
∞
∑

n=3

O
( 1

cn

)

(146)

eµ(i) =













1− ~F (r,t)
2c2

0 0 0

0 1 + ~F (r,t)
2c2

0 0

0 0 1 + ~F (r,t)
2c2

0

0 0 0 1 + ~F (r,t)
2c2













+

∞
∑

n=3

O
( 1

cn

)

(147)

eν(k) =













1 + ~F (r,t)
2c2

0 0 0

0 −1 + ~F (r,t)
2c2

0 0

0 0 −1 + ~F (r,t)
2c2

0

0 0 0 −1 + ~F (r,t)
2c2













+

∞
∑

n=3

O
( 1

cn

)

(148)

eν(k) =













1− ~F (r,t)
2c2

0 0 0

0 −1− ~F (r,t)
2c2

0 0

0 0 −1− ~F (r,t)
2c2

0

0 0 0 −1− ~F (r,t)
2c2













+
∞
∑

n=3

O
( 1

cn

)

(149)

6.5 Components of the Riemann part of Spin Connection γo(a)(b)(c)

The form of spin connections are defined in equations (14), (15). We use the relation

between Christoffel connection and tetrad transformation matrix (defined in Eqn. (16)) to

calculate γo(a)(b)(c) as follows:

γo(0)(0)(0) =
−~∂0F

2c2

(

1 + ~F
2c2

)

(

1− ~F
2c2

) +
∞
∑

n=3

O
( 1

cn

)

γo(i)(0)(0) =
(−~∂iF

2c2

)

~F/2c2
(

1 + ~F
2c2

) +
∞
∑

n=5

O
( 1

cn

)

γo(0)(i)(0) =
−~∂iF

2c2

(

1 + ~F
2c2

)

(

1− ~F
2c2

) +
∞
∑

n=3

O
( 1

cn

)

γo(0)(0)(i) =
~∂iF

2c2
1

(

1 + ~F
2c2

)

γo(i)(i)(i) =
~∂iF

2c2
~F/2c2
(

1 + ~F
2c2

) +

∞
∑

n=5

O
( 1

cn

)

γo(i)(i)(0) = γo(i)(0)(i) = +

∞
∑

n=3

O
( 1

cn

)

γo(0)(i)(i) =
−~∂0F

2c2
+

∞
∑

n=3

O
( 1

cn

)

γo(0)(i)(j) = γoi0j = γoij0 = +
∞
∑

n=3

O
( 1

cn

)

γo(i)(j)(j) =
−~∂0F

2c2

(

1− ~F
2c2

)

(

1 + ~F
2c2

) +
∞
∑

n=3

O
( 1

cn

)

γo(i)(j)(k) = γo(i)(j)(i) = γo(j)(j)(i) = +
∞
∑

n=3

O
( 1

cn

)

(150)
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The contorsion spin coefficients (which when gets added to Riemann spin coefficient, gives

total spin connection) gets manifested as a non-linear term in Hehl-Datta equation. It is

completely expressible in terms of Dirac spinor. So it can be calculated with spinor ansatz.

We have done this while calculating the Non-relativistic limit of ECD system of equations.

6.6 Components for Einstein’s tensor

In this appendix, we aim to calculate the components of Einstein’s tensor. G
[1]
µν has been

proved to be zero. G
[2]
µν has been defined in Eqn. (114). We found the form of g

[2]
µν in appendix

section (6.2.2). Since g
[1]
µν is zero, f[g

[1]
µν ] defined in Eqn. (114) is also zero. With this, we

compute G
[2]
µν :

G[2]
µν = −1

2
�g[2]µν ;where g[2]µν = g[2]µν −

1

2
ηµν(η

αβhαβ) (151)

ηµνhµν =













1 0 0 0

0 -1 0 0

0 0 -1 0

0 0 0 -1

























~F (r,t)
c2

0 0 0

0 ~F (r,t)
c2

0 0

0 0 ~F (r,t)
c2

0

0 0 0 ~F (r,t)
c2













=
−2~F (r, t)

c2
(152)

It can easily be seen that Gµν for µ 6= ν is equal to 0.

We now calculate the diagonal components,

G00 = −1

2
�g

[2]
00 = − ~

c2
�F (r, t) =

[

− ~∂2t F (r, t)

c4
+

~∇2F (r, t)

c2

]

(153)

Gαα = 0; because g[2]αα = 0; α ∈ (1, 2, 3) (154)

Thus,

Gµν =
~

c2













∇2F (r, t) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0













+

∞
∑

n=3

O
( 1

cn

)

(155)

6.7 Generic components of Tµν

Tµν has been defined in equation Eqn. (23). With the spin coefficients in above sections,

we get the following metric energy-momentum tensor, whose components are given on the next

page.
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Tµν =
i~c

4







































































































2ψ̄γ0(∂0ψ

+
1

4
[γ00αγ

0γα + γ0α0γ
αγ0]ψ)

−(∂0ψ̄ +
1

4
[γ00αγ

0γα

+γ0α0γ
αγ0]ψ̄)2γ0ψ

ψ̄γ0∂1ψ + ψ̄γ1(∂0ψ

+
1

4
[γ00αγ

0γα + γ0α0γ
αγ0]ψ)

−∂1ψ̄γ0ψ − (∂0ψ̄ +
1

4
[γ00αγ

0γα

+γ0α0γ
αγ0]ψ̄)γ1ψ)

ψ̄γ0∂2ψ + ψ̄γ2(∂0ψ

+
1

4
[γ00αγ

0γα + γ0α0γ
αγ0]ψ)

−∂2ψ̄γ0ψ − (∂0ψ̄ +
1

4
[γ00αγ

0γα

+γ0α0γ
αγ0]ψ̄)γ2ψ)

ψ̄γ0∂3ψ + ψ̄γ3(∂0ψ

+
1

4
[γ00αγ

0γα + γ0α0γ
αγ0]ψ)

−∂3ψ̄γ0ψ − (∂0ψ̄ +
1

4
[γ00αγ

0γα

+γ0α0γ
αγ0]ψ̄)γ3ψ)

ψ̄γ1(∂0ψ

+
1

4
[γ00αγ

0γα + γ0α0γ
αγ0]ψ)

+ψ̄γ0∂1ψ − (∂0ψ̄ +
1

4
[γ00αγ

0γi

+γ0α0γ
iγ0]ψ̄)γ1ψ − ∂1ψ̄γ0ψ

2(ψ̄γ1∂1ψ − ∂1 ¯ψγ1ψ)
ψ̄γ1∂2ψ + ψ̄γ2∂1ψ

−∂2ψ̄γ1ψ − ∂1ψ̄γ2ψ

ψ̄γ1∂3ψ + ψ̄γ3∂1ψ

−∂3ψ̄γ1ψ − ∂1ψ̄γ3ψ

ψ̄γ2(∂0ψ

+
1

4
[γ00αγ

0γα + γ0α0γ
αγ0]ψ)

+ψ̄γ0∂2ψ − (∂0ψ̄ +
1

4
[γ00αγ

0γi

+γ0α0γ
iγ0]ψ̄)γ2ψ − ∂2ψ̄γ0ψ

ψ̄γ2∂1ψ + ψ̄γ1∂2ψ

−∂1ψ̄γ2ψ − ∂2ψ̄γ1ψ
2(ψ̄γ2∂2ψ − ∂2 ¯ψγ2ψ)

ψ̄γ2∂3ψ + ψ̄γ3∂2ψ

−∂3ψ̄γ2ψ − ∂2ψ̄γ3ψ

ψ̄γ3(∂0ψ

+
1

4
[γ00αγ

0γα + γ0α0γ
αγ0]ψ)

+ψ̄γ0∂3ψ − (∂0ψ̄ +
1

4
[γ00αγ

0γi

+γ0α0γ
iγ0]ψ̄)γ3ψ − ∂3ψ̄γ0ψ

ψ̄γ3∂1ψ + ψ̄γ1∂3ψ

−∂1ψ̄γ3ψ − ∂3ψ̄γ1ψ

ψ̄γ3∂2ψ + ψ̄γ2∂3ψ

−∂2ψ̄γ3ψ − ∂3ψ̄γ2ψ
2(ψ̄γ3∂3ψ − ∂3 ¯ψγ3ψ)






































































































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