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Abstract

According to Yang & Mills (1954), a conserved current and a re-
lated rigid (‘global’) symmetry lie at the foundations of gauge theory.
When the rigid symmetry is extended to a local one, a so-called gauge
symmetry, a new interaction emerges as gauge potential A; its field
strength is F ∼ curlA. In gravity, the conservation of the energy-
momentum current of matter and the rigid translation symmetry in
the Minkowski space of special relativity lie at the foundations of a
gravitational gauge theory. If the translation invariance is made lo-
cal, a gravitational potential ϑ arises together with its field strength
T ∼ curlϑ. Thereby the Minkowski space deforms into a Weitzenböck
space with nonvanishing torsion T but vanishing curvature. The cor-
responding theory is reviewed and its equivalence to general relativ-
ity pointed out. Since translations form a subgroup of the Poincaré
group, the group of motion of special relativity, one ought to straight-
forwardly extend the gauging of the translations to the gauging of
full Poincaré group thereby also including the conservation law of the
angular momentum current. The emerging Poincaré gauge (theory
of) gravity, starting from the viable Einstein-Cartan theory of 1961,
will be shortly reviewed and its prospects for further developments
assessed.
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4.6 Einstein-Cartan theory . . . . . . . . . . . . . . . . . . . . . . 26
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1 Yang-Mills theory, gauge theory

In the 1920s and 1930s it became clear that the atomic nuclei consist of pro-
tons (p) and neutrons (n) which interact with each other via a strong nuclear
force. The masses of proton and neutron are nearly equal. The proton car-
ries a positive elementary electric charge whereas the neutron is electrically
neutral (but still caries a magnetic moment). Otherwise, in particular with
respect to their nuclear interaction, they behave very similar. This charge
independence of the nuclear interaction of p-p, n-p, and n-n was an important
experimental result.

Heisenberg (1932) was led to the hypothesis that there exists a new parti-
cle called nucleon that has two different states, a positively charged one, the
proton, and a neutral one, the neutron. These two different states were put
in analogy to an electron which can have a state with spin up and one with
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spin down. Accordingly, Heisenberg attributed to the nucleon the new quan-
tum number I of isospin, which is conserved in nuclear interactions. And the
isospin up, I3 = +1

2
, represents the proton and the one down I3 = −1

2
, the

neutron.
After Yukawa (1936) had introduced the pion π as mediator of the strong

nuclear force, it eventually turned out that the pion exists in three differently
charged states, namely as π+, π−, and as π0. Thus, one had to attribute to
it the isospin I = 1. With the help of this insight, one got a consistent and
experimentally verified framework for the nuclear force. At the same time,
the new quantum number isospin found its way from nuclear physics into the
systematics of elementary particle physics, as proposed by Kemmer (1939).

Considering the nucleon together with the pion, it became clear that the
invariance group of the strong nuclear interaction at the level of the nucleon
is the unitary Lie group SU(2) and the charge independence of the nuclear
interaction translates into the requirement that no direction in the isospin
space is distinguished. In other words, the corresponding action is invariant
under rigid SU(2) transformations and we have an associated conservation
of the isospin I.

Here Yang & Mills (1954) set in, proposing “Conservation of Isotopic
Spin and Isotopic Gauge Invariance” as the foundation for establishing a
hypothetical SU(2) gauge theory of strong interaction [1]. The conserved
isospin current, via the reciprocal of the Noether theorem [2], yields a rigid
(‘global’) SU(2)-invariance. Insisting, as Yang and Mills did, that a rigid
symmetry is inconsistent with field-theoretical ideas, the SU(2)-invariance
is postulated to be valid locally. This enforces to introduce a compensating
(or gauge) field A, the gauge potential,1 which upholds the SU(2)-invariance
even under these generalized local transformations. Then the curl of A turns
out to be the field strength of the emerging gauge field. The prototypical
procedure for the conserved electric current of the Dirac Lagrangian and its
U(1) gauge invariance had already been executed by Weyl [3] and Fock [4]
in 1929, see also [5]. Accordingly, we can define a gauge theory as follows:

A gauge theory is a heuristic scheme within the Lagrange formalism in
the Minkowski space of special relativity for the purpose of deriving a new
interaction from a conserved current and the attached rigid symmetry group.
This new ‘gauge’ interaction is induced by demanding that the rigid symmetry
should be extended to a locally valid symmetry.

Explicitly, the Yang-Mills type gauging works as follows, see O’Raifertaigh
[6], Mack [7], or Chaichian & Nelipa [8], e.g.. Let I =

∫

d4xL be an action for
the matter field ψA with the Lagrangian density L = L(ψA, ∂iψ

A). Suppose

1Yang & Mills denoted it with B in their original paper [1].
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the action does not change, δI = 0, when the matter field is transformed

ψA −→ ψ′A = ψA + δψA, δψA = εI(tI)
A
B ψ

B, (1)

under the rigid action of an N -parameter internal symmetry group G with
the generators tI , I = 1, . . . , N , and ∂iε

I = 0. We assume G to be a Lie
group, and the generators tI ∈ G form the basis of the corresponding Lie
algebra with the commutator

[tI , tJ ] = fKIJ tK . (2)

The structure constants fKIJ = − fKJI satisfy the Jacobi identity

fNILf
L
JK + fNJLf

L
KI + fNKLf

L
IJ ≡ 0. (3)

The Noether theorem tells us that, provided the matter variables satisfies
the field equations, the invariance of the action under (1) yields a conservation
law

δI = 0 =⇒ ∂iJ
i
I = 0 (4)

of the canonical Noether current

J iI := (tI)
A
B ψ

B ∂L

∂∂iψA
. (5)

As a result, for an N -parameter symmetry group there exist N conserved
charges

QI =

∫

d3x J0
I , I = 1, . . . , N, (6)

where integral is taken over the spatial 3-surface t = const.
When the symmetry is localized, ∂iε

I 6= 0, the action with the matter
Lagrangian L(ψA, ∂iψ

A) is no longer invariant. One needs a gauge (compen-
sating) field Ai

I to be introduced via the minimal coupling recipe

L(ψA, ∂iψ
A) −→ L(ψA, Diψ

A), (7)

with the partial derivative replaced ∂i → Di by the covariant one:

Diψ
A = ∂iψ

A + Ai
I (tI)

A
B ψ

B. (8)

Then the invariance of the modified action I =
∫

d4xL(ψA, Diψ
A) is recov-

ered because the crucial covariance property

δ(Diψ
A) = εI(x) (tI)

A
BDiψ

B (9)
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is guaranteed by the inhomogeneous transformation law of the gauge field:

δAi
I = −Diε

I = − (∂iε
I + Ai

Kf IKJε
J). (10)

This completes the kinematics of the gauge theory. The gauge field Ai
I ,

becomes a true dynamical variable by adding a suitable kinetic term, V, to
the minimally coupled matter Lagrangian: L→ L+V. This supplementary
term has to be gauge invariant, such that the gauge invariance of the total
action is kept. The gauge invariance of V is obtained by constructing it in
terms of the gauge field strength:

Fij
I = ∂iAj

I − ∂jAiI + f IJKAi
JAj

K . (11)

Using (10) and (3) we straightforwardly verify the transformation law δFij
I =

εK(x) f IKJFij
J . The important property of the gauge field strength is the

Bianchi identity
D[kFij]

I = 0, (12)

which can be naturally interpreted as the homogeneous field equation.
Since the gauge field Lagrangian V should be also invariant under the

local symmetry group, it should be a function of Fij
I . The (inhomogeneous)

Yang–Mills field equation is derived from the total action

Itot =

∫

d4x
{

L(ψA, Diψ
A) + V(Fij

I)
}

. (13)

Variation with respect to the gauge field potential yields explicitly

DjH
ij
I = J iI . (14)

Quite remarkably, the matter source of the gauge field turns out to be a
covariant Noether current (5). However, in the locally gauge invariant theory,
the original conservation law (4) is replaced by the covariant one

DiJ
i
I = 0. (15)

By recasting (14) into

∂jH
ij
I =

A

J
i
I ,

A

J
i
I = J iI + Aj

KfJKIH
ij
J , (16)

we can derive the modified conservation law

∂i
A

J
i
I = 0, (17)
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Figure 1: The structure of a gauge theory à la Yang–Mills is depicted in
this diagram, which is adapted from Mills [10].

which reflects the fact that the gauge field couples not only to matter, but
also to itself. In other words, the gauge field carries an own charge.

As we see, the formal structure of a general gauge field theory (15), (12),
and (14) appears as a generalization of the Maxwell theory [9]. The final
“building block” of this generalization is the constitutive relation H = H(F )
between the gauge field strength and the excitation

H ij
I := − 2

∂V

∂FijI
. (18)

In the original Yang-Mills theory [1], the Lagrangian was constructed as a
quadratic Maxwell type invariant of the gauge field strength, and the result-
ing constitutive law is linear: H ij

I = F ij
I . Later, Mills [11] also discussed a

nonlinear, Born–Infeld type “constitutive” relation between H and F . But
this didn’t prove to be useful.

Schematically, we represented the gauge procedure in Figure 1.

Let us stress our main points: A gauge theory is based on a conserved
current and the symmetry connected with it. The symmetry is first rigid—
and there is no interaction—then, subsequently, made local, and the gauge

potential A and the gauge field strength F ∼
A

D A emerge in this procedure.
Incidentally, here we confine our attention only to classical field theory

and we do not investigate quantum field theoretical consequences [12]. How-
ever, a consistent particle picture does arise in the quasiclassical approxi-
mation. A point particle with the 4-velocity ui carries internal degrees of
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freedom in the form of a “color charge” qI . It couples with the gauge field
via the interaction Lagrangian qIu

iAi
I, see Wong [13]. Accordingly, particle’s

motion is affected by the generalized Lorentz force

fi = qIFij
Iuj. (19)

2 Newton-Einstein gravity

Turning now to gravity, the fundamental question is: What is the conserved
current and what is the gauge group of gravity? Our starting point will be,
of course, Newtonian gravity. There mass is the source of gravity or rather
the mass density ρ(r, t) in its quasi field-theoretical formulation as Poisson
equation for the gravitational potential φ(r, t):

∆φ(r, t) = 4πGρ(r, t) . (20)

Here ∆ is the Laplace operator and G Newton’s gravitational constant. In
Newtonian mechanics, the motion of a material continuum with the mass
density ρ is described by the velocity vector field v. The mass inside the
volume Ω(t) is given by the integral

m(t) =

∫

Ω(t)

ρ(r, t) d3x . (21)

The change is straightforwardly evaluated

dm(t)

dt
=

∫

Ω(t)

{

∂ρ

∂t
+ div(ρv)

}

d3x . (22)

Mass is a conserved quantity, dm(t)
dt

= 0, that is, we have a continuity equation
for ρ:

∂ρ

∂t
+ div(ρv) = 0 . (23)

Lavoisier (1789) checked this conservation law of mass successfully in exper-
iments.

At the beginning of the 20th century, Newtonian mechanics was sup-
planted by the special relativity theory (SR) with its 4d Minkowski space. Ac-
cordingly, also a gravitational gauge theory has to take the special-relativistic
framework as a starting point. This procedure is reminiscent of Einstein’s
heuristic derivation of general relativity theory (GR). He started in flat
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Minkowski space, went over to accelerated frames, and applied subsequently
the equivalence principle. Hereby he had to relax the rigidity of the Minkowski
space ending up with the Riemannian space of GR. Einstein [14] worked out
this procedure in considerable detail in his Princeton lectures of 1921.

Let us stress a point that is often misunderstood. In heuristically de-
riving a gauge theory of gravity, the physical system under consideration is
embedded in a Minkowski space with its rigid 4-parameter translation group
T (4) and its rigid 6-parameter Lorentz group SO(1, 3). The relaxation of the
rigidity of the Minkowski space is achieved by the postulate of local (instead
of rigid) translational and, at a later stage, of Lorentz invariance. The appro-
priate geometrical framework of spacetime is induced by the gauge principle
alone.

We should recall that the Minkowski geometry of SR and the correspond-
ing group of motion, the semidirect product of the translation and the Lorentz
groups, the Poincaré group P (1, 3) = T (4) ⋊ SO(1, 3), is supported by all
high-energy experiments with great accuracy. Moreover, Wigner (1939) has
shown that all elementary quantum mechanical objects obey a mass-spin
classification [15]; massless particles are classified according to mass-helicity.
The particle attributes mass m and spin s correspond in field theory to
the energy-momentum current T and the spin (angular-momentum) cur-
rent S. Accordingly, the mass density of Newton’s theory translates field-
theoretically into the energy-momentum current of matter: m → T. Thus,
in SR the energy-momentum current of matter must be the source of gravity.
Later, in Sec. 4 we will see that additionally also the spin current may play
a role: s → S. Jointly with the substitution m → T, the mass conserva-
tion theorem (23) is dissolved and the conservation of the energy-momentum
current replaces it:

∂jTi
j = 0 . (24)

The nuclear explosion of Alamogordo (1945) is an unmistakable proof of the
violation of the mass conservation law.

By Noether’s theorem, energy-momentum conservation is induced by
translational invariance of the Lagrangian of an isolated system. Hence with-
out further ado, we can now rephrase the title of the Yang-Mills paper for
gravity as follows: Conservation of the energy-momentum current and trans-
lational gauge invariance. In this way we recognize that the translation group
T (4) is the gauge group of ordinary gravity. This point was already made in
the beginning of 1960s by many well-known physicists:

• Sakurai (1960): “...there exists a deep connection between energy con-
servation and the very existence of the gravitational coupling. The
gravitational field, being the dynamical manifestation of energy, is to
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be coupled to energy-momentum density....hence the gravitational field
can interact with itself in the same way as the T = 1 Yang-Mills B

(T )
µ

field (which is the dynamical manifestation of isospin) can interact with
itself.” [16]

• Glashow & Gell-Mann (1961): “...if we set up the Einstein theory by
gauge methods then the conclusions are slightly different. Instead of
an isotopic rotation, we perform a 4-dimensional translation at each
point of space...” [17]

• Feynman (1962): “The equations of physics are invariant when we make
coordinate displacements [by] any constant amount aµ...it is possible
to investigate how we might make the equations of physics invariant
when we allow space dependent variable displacements...” [18]

Isn’t this clear enough? We propose to consider those three statements as
support for our point of view.

The energy-momentum current in exterior and in tensor calculus

The canonical energy-momentum tensor density Tα
β of tensor calculus and

the canonical energy-momentum current 3-form of exterior calculus Σα are
equivalent. We have

Σα = Tα
βǫβ , Tα

β = ⋄(ϑβ ∧ Σα) , (25)

with ǫβ = 1
3!
ǫβµνρϑ

µ ∧ ϑν ∧ ϑρ and ǫβµνρ as the totally antisymmetric Levi-
Civita symbol with values (0,±1). The different components carry the fol-
lowing physical interpretations:

Tα
β =

(

T0
0∼ energy density T0

b∼ energy flux density
Ta

0∼ momentum density Ta
b∼ momentum flux density = stress

)

,

(26)
see Rezzolla and Zanotti [19] or [9], e.g..

In the hydrodynamic approximation of a relativistic continuum, the non-
interacting (dust) matter elements carry momentum density pα, and the
energy-momentum tensor reads Tα

β = pαu
β, with the 4-velocity vector

field uβ. We immediately recognize a direct analogy between the energy-
momentum Tα

β = pαu
β and the Yang-Mills current J iI = uiqI :

(electric charge)←→ (color charge)←→ (momentum). (27)
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Later Sciama [20] developed “The analogy between charge and spin in gen-
eral relativity” (the title of his paper) even further within a gauge approach
to gravity. There the natural material source of the gravitational field is a
continuum of non-interacting elements with momentum pα and internal an-
gular momentum (spin) sαβ = − sβα. The corresponding Poincaré matter
current encompasses the energy-momentum and the spin tensor densities

{

Tα
β = pαu

β, Sαβ
γ = sαβ u

γ
}

. (28)

In exterior language, the motion of a relativistic continuum is described by
the flow 3-form u = uαǫα, and the Poincaré currents for the spinning dust
matter read

{Σα = pα u, ταβ = sαβ u } . (29)

A priori, Σα and Tα
β have 16 independent components. If a metric gαβ

is available—and this is always the case for a Minkowski space we started
with—we can lower the second index and define a tensor of type (0,2):

Tαβ := gβγ Tα
γ . (30)

It can be decomposed into symmetric and antisymmetric pieces according to
16 = 10 ⊕ 6: Tαβ = T(αβ) + T[αβ]. Furthermore, the trace can be extracted

from the symmetric piece Ťαβ := T(αβ)− 1
4
gαβTγ

γ, with Ť[αβ] = 0 and Ťγ
γ =

0. Thus, we arrive at the following decomposition of the canonical energy-
momentum tensor:

Tαβ = Ťαβ + T[αβ] +
1

4
gαβTγ

γ , 16 = 9⊕ 6⊕ 1 . (31)

In his deduction of GR, Einstein considered as a model for ‘matter’ the
classical Euler fluid and the electromagnetic field in vacuum; in the former
case T(αβ) is sufficient, in the latter one Ťαβ. Accordingly, in GR matter is
described by the symmetric energy-momentum tensor T(αβ). If matter with
spin is involved, the canonical tensor Tα

β is indispensable. We will come
back to the material currents in Sec. 4.3.

3 Translational gauge theory (TG)

As we saw in the last section, at the beginning of the 1960s it was already
clear to Sakurai, Glashow & Gell-Mann, and to Feynman that a gravita-
tional gauge theory should be based on translation (or displacement) invari-
ance. Accordingly, the task was to investigate the conservation of the ma-
terial energy-momentum current and the related invariance under rigid and,
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subsequently, under local translations. The localization of the translational
invariance should create the gravitational field!

Soon thereafter, in the 1970s, a translational gauge theory (TG) was set
up. It turned out to be a teleparallelism theory [21, 22]. We delineated the
historical development and an up-to-date formalism already in Blagojević &
Hehl [23].2

The paper of Cho [24], see also [25], may be taken as a concise description
of a translational gauge theory of gravity. Its structure is revisited from a
modern geometrical point of view in the more recent papers of Obukhov and
Pereira [26, 27], see also [28]. We abstain from publishing once more this
well-known formalism of TG, but refer to the literature [29] instead.

Let us recall that rigid translational invariance is made local at the price
of introducing 4 translational gauge potentials—the coframe ϑα = ei

αdxi—
which compensate the violation of the rigid invariance:

rigid transl. inv.
heur. princ.−→ local transl. inv. −→ coframe ϑα compensates.

(32)
The curl of ϑα, the torsion, arises as the gravitational field strength,

T α := Dϑα = dϑα + Γβ
α ∧ ϑβ , (33)

with Γα
β as the Lorentz connection. The corresponding curvature vanishes:

Rα
β := dΓα

β − Γα
γ ∧ Γγ

β = 0 . (34)

This signifies that a vector, for instance, can be parallelly transported around
in an integrable way. We have a distant parallelism, a teleparallelism. It takes
place in a so-called Weitzenböck geometry [30, 31], see also [32, 33, 34].

Analogously to the Yang-Mills case, T α 6= 0 is the criterion for the emerg-
ing of a new non-trivial gravitational/translational gauge field. It can be
shown that the teleparallelism theory, for a suitable Lagrangian quadratic in
the torsion, is equivalent to general relativity of 1916, provided a symmetric
energy-momentum tensor is chosen, see [35]. This is, in our opinion, a ma-
jor achievement which demonstrates that translational gauging leads, via a
Weitzenböck spacetime, directly to general relativity and with its Rieman-
nian spacetime. In the subsequent Sec. 4, it will turn out that TG is a special
case of a Poincaré gauge theory of gravity (PG) that we will discuss in quite
some detail.

In order to get a bird’s eye of view on TG, we would like to display the
structure of the Lagrange-Noether formalism of TG in a Tonti-diagram [37],

2See in particular the pages 195, 236, and 241 to 249.
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Figure 2: Patterned after Tonti [36], pages 402 and 315. We denoted here the
torsion 2-form with F β in order to underline its function as a translational
gauge field strength; for full notation detail see [22]. ⋆Also known as
translation gauge theory of gravity

see Fig. 2. The left column is built up from the configuration variables: The
coordinates xi (four 0-forms), the coframe ϑα (four 1-forms), the torsion T β

(four 2-forms, in the figure called F β), and eventually DT β
∗
= dT β (four

3-forms). In the right column which depicts source variables, we start with
the 4-forms, the volume force fα (four 4-forms), continue with the material
energy-momentum mΣα (four 3-forms) and end up with the translational ex-
citation Hα (four 2-forms). The corresponding four 1-forms should be the
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potential of the excitation, but we don’t know much about such a quantity;
compare, however, with Rund [38]. The constitutive relation links the config-
uration variable 2-form in a linear way to the source variable 2-form, much
like in electrodynamics F = (E,B) is related linearly to H = (D,H).

It is remarkable that the configuration variables are exclusively premetric
concepts, that is, whereas the existence of a linear connection Γα

β is neces-
sary, a metric does not enter anywhere.3 The analogous is true for the source
variables. In the constitutive laws, however, in which the field strength 2-
forms as configuration variables are related to the excitation 2-forms as source
variables, a metric tensor is indispensable. This is a lesson which one can
take over from the premetric version of electrodynamics, see Post [39].

Note that the motion of a point particle in TG is described by the telepar-
allel analog of the Lorentz force in the Yang-Mills theory (19)

fi = paFij
αuj. (35)

One can prove that the corresponding equation of motion turns out to be
the usual geodesic curve [40].

We know that the Minkowski space of SR is an affine space, see Kopczyński
& Trautman [41], that is, “a vector space which has lost its origin.” A trans-
lation is an affine concept unrelated to a metric. Consequently, the gauging of
translations happens in an affine space with the canonical energy-momentum
3-form (m)Σα (16 independent components) as source. No metric is involved
at all in this. However, this teleparallelism scheme cannot be directly com-
pared with nature.

In gravity, as we have discussed above, we start with a Minkowski space
and apply the gauge procedure with this background. Minkowski space is
indispensable as a starting point for treating gravity, as Einstein [14] has
taught us. For defining a symmetric energy-momentum tensor we need a
metric, as we saw already in (30). Hence the premetric teleparallelism scheme
does not qualify as a bona fide physical theory. However, since we started
from SR, we have a metric available and we can use it for formulating the
constitutive law of a teleparallelism theory. Then TG becomes the teleparallel
equivalent of general relativity GR||, as we discussed above.

Why did Einstein arrive in 1915/16 at a Riemann and not at a
Weitzenböck space? An afterthought

• Einstein (1916) gauged the direction of a vector.

3Enzo Tonti disagrees on this point since in his way of setting up the basic definitions
of his configuration and source variables, the existence of a Euclidean metric is assumed
a priori. We, however, believe that a suitable premetric generalization should be possible.
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• Weyl (1918) gauged the magnitude (modulus) of a vector; however,
instead of coupling it to the dilation current (as we know today), he
coupled it to the unrelated electric current [42].

• E.Cartan (1923) recognized that Einstein took the flat Minkowski space
as a vector space instead of an affine space. A Minkowski space has
no preferred point. But Einstein took in his construction a preferred
point in order to gauge the direction. In order to get rid of this preferred
point, Cartan rolled without gliding a Minkowski space along a contour
of the contorted and curved space under consideration (Cartan circuit,
see Kröner [43], Sharpe [44], and Sternberg [45]). This is the meaning
of this procedure which provides more insight, in our opinion, than
all those theories using fiber bundles. Fiber bundles were successfully
applied for internal symmetries, like U(1), SU(2), andSU(3), but for
external, i.e. spacetime symmetries, they did not provide any further in-
sight. Unfortunately, no bundle theorist has essentially contributed to
the understanding of torsion and/or constructively developed telepar-
allelism (with a possible exception of Schücking [46]), as far as we can
see.

4 Poincaré gauge gravity (PG)

In the next step we will discuss now the gauging of the Poincaré group
P (1, 3) = T (4) ⋊ SO(1, 3). Before we do so, we would like to look at a
prototypical experiment by Colella, Overhauser, and Werner (COW) on the
‘behavior’ of a neutron beam in a gravitational field. In our understanding of
gravity, Newton’s apple should nowadays be substituted by a neutron beam
as it is used in the COW experiment as quantum system with mass m and
spin s = ~

2
. As J. L. Synge formulated it so beautifully: “Newton successfully

wrote apple = moon, but you cannot write apple = neutron.”

4.1 Colella-Overhauser-Werner (COW) experiment her-
alds a new era in gravitational physics: the Kibble

laboratory

The quantum mechanical properties of a neutron wave/particle in interac-
tion with the ordinary Newtonian gravitational field were first observed in
the Colella-Overhauser-Werner neutron interferometer4 in 1975 [47], see also

4The interferometer, built from a silicon monocrystal, had a linear size of about 10 cm.
In the energy range covered by the COW experiment, the neutron can be considered to
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Figure 3: COW experiment schematically: A neutron beam is split into two
beams which travel in different gravitational potentials. Eventually the two
beams are reunited and an interferometric picture is observed due to their
relative phase shift.

Rauch & Werner [48] for a corresponding textbook presentation. The scheme
of the experiment is sketched in Fig. 3. Later more accurate measurements
with atomic beams were performed by Kasevich & Chu [49], see also the
most recent developments by Asenbaum et al. [50] and Overstreet et al. [51].
Unfortunately, in most textbooks on GR, these important experiments are
not even mentioned and the old Einstein procedure of using Newton’s apple
for a heuristic derivation of GR is simply copied.

To predict the result of the COW experiment was not complicated: pro-
vided the neutron spin is not polarized, one couples the Schrödinger equation
for a neutron to the Newtonian gravitational potential. The quantum phase
shift predicted, and experimentally confirmed by COW and Kasevich & Chu,
was mass dependent. Then it was soon argued that this would violate the
equivalence principle. However, this interpretation turned out to be incor-
rect, see Audretsch et al. [52]. It was necessary to take the wave function
of the neutron—in generalization of the Newtonian point particle—as a new
basic ingredient for the discussion of the equivalence principle: the neutron
wave/particle of the COW-experiment supplanted the Newtonian point par-
ticle moving in a gravitational field.5

Einstein [14] heuristically derived GR from SR by considering mass points
and electromagnetic fields in an accelerating and thus in a noninertial frame
of reference. In the Einstein laboratory, in which he executed his thought
experiments, the acceleration was described by using curvilinear coordinates
xi, with i = 0, 1, 2, 3. The inertial forces, which emerge in an accelerated
reference system, were locally equivalent to the corresponding gravitational
forces; for a detailed discussion see, for instance, Audretsch et al. [52] or

be elementary, that is, its quark structure can be neglected.
5For a very down-to-earth and highly interesting discussion of the interaction between

a quantum system and a classical gravitational field, one should compare Nesvizhevsky &
Voronin [53].
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Blagojević et al. [23], in particular Fig. 4.1 therein, and our Table 1.
In short, we can characterize the Einstein lab(oratory) as follows: Speci-

fied are

{E1} a neutral point particle with mass m;

{E2} an inertial frame K span by Cartesian coordinates;

{E3} an accelerated (i.e., non-inertial) frame K ′ span by curvilinear coordi-
nates;

{E4} a homogeneous gravitational field described by gij referring to the
curvilinear coordinates; and

{E5} light rays.

Einstein’s procedure, by means of which he deduced GR, could have a
broader domain of application than that encompassed by the tools and con-
structs employed in setting up the theory. Still, it is hard for us to believe
that Einstein’s discussion would also cover the COW experiment. After all,
the neutron has quantum mechanical properties, it is a fermion, and it has
spin s = ~

2
.

Accordingly, we consider the Kibble laboratory, in which a fermion is de-
scribed by a Dirac wave function with respect to a local reference (co)frame
(vierbein) ei

α, where α = 0, 1, 2, 3 numbers the frame vectors, see Kibble
[54]. As soon as the reference frames are accelerated, they are no longer
aligned and pick up a non-vanishing curl of these frames, the so-called ob-
ject of anholonomity. In a non-relativistic approximation and neglecting its
spin, the neutron obeys the stationary Schrödinger equation in the external
homogeneous Newtonian gravitational field. If one solves this equation, the
experimentally observed gravitational phase shift is described successfully.

The rationale of all of this is that we should simply study, in Minkowski
space, a Dirac field in a Kibble lab, that is, in an accelerated frame of refer-
ence ei

α(x) with ∂[iej]
α 6= 0, and read off its inertial forces. This is what we

did, see [55] and the literature quoted there. Subsequently, we executed a
Foldy-Wouthuysen transformation in order to determine the non-relativistic
limit of the Dirac equation. If one neglects the spin, one recovers the COW
term thereby certifying the correctness of this procedure; if the spin is kept,
one recovers additionally a spin-rotation-gravitation coupling predicted ear-
lier by Mashhoon [56, 57].

Thus, the Kibble lab(oratory) can be described as follows: it contains

{K1} an unquantized Dirac spinor (fermionic field with mass m and spin
s = ~

2
);
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Table 1: Einstein’s approach to GR versus the gauge approach to
gravity. Used are a mass point m or a Dirac matter field Ψ (referred to a
local frame), respectively. IF means inertial frame, NIF non-inertial frame.
The table refers to special relativity up to the second boldface horizontal line.
Below, gravity will be switched on. Note that for the Dirac spinor already
the force-free motion in an inertial frame does depend on mass parameter m.

Einstein’s approach: Gauge approach:

Einstein laboratory Kibble laboratory

Elementary object in mass point m Dirac spinor Ψ(x) of mass m
Special Relativity (SR) with velocity ui (with four components)

Inertial Cartesian coord. system xi holonomic orth. frame

frame (IF) ds2
∗

= oij dx
idxj eα = δiα ∂i, eα · eβ = oαβ

Force-free motion in IF u̇i ∗

= 0 (iγi∂i −m)Ψ
∗

= 0

Non-inertial arbitrary curvilinear anholonomic orth. frame eα= eiα∂i
frame (NIF) coord. system xi′ or coframe ϑα = ei

αdxi

Force-free u̇i + ujukΓ̃jk
i = 0

[

iγαeiα(∂i + Γi)−m
]

Ψ = 0
motion in NIF Γi :=

1

2
Γi

βγρβγ Lorentz

Non-inertial Γ̃jk
i ϑα, Γαβ = −Γβα

geometrical objects 40 16 + 24

Constraints R̃αβ(∂Γ̃, Γ̃) = 0 Tα(∂e, e,Γ)=0, Rαβ(∂Γ,Γ)=0
in SR 20 24 + 36

Global IF gij
∗

= oij , Γ̃jk
i ∗

= 0
(

ei
α, Γi

αβ
)

∗

= (δαi , 0)

Archetypal experiment Apple in grav. field (Newton) Neutron in grav. field (COW)

Switch on R̃αβ 6= 0 Tα 6= 0, Rαβ 6= 0
gravity Riemann spacetime Riemann-Cartan spacetime

Local IF (‘Einstein elevator’) gij |P ∗

= oij , Γ̃jk
i|P ∗

= 0 (ei
α, Γi

αβ)|P ∗

= (δαi , 0)

Gravitational R̃ic− 1

2
tr(R̃ic) ∼ mass Ric− 1

2
tr(Ric) ∼ mass

field Tor + 2 tr(Tor) ∼ spin
equations GR EC
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{K2} an inertial frame, ϑα = δαi dx
i span by Cartesian coordinates;

{K3} a translationally and rotationally accelerated frame, ϑα
′

span by an
arbitrary orthonormal frame;

{K4} homogeneous gravitational fields described by (ei
α,Γi

αβ); and

{K5} light rays.

If we compare the different labs, we recognize that (i) objects considered
are different, (ii) the notions of inertial systems are different, and (iii) the
rotational acceleration plays an additional role (iii) in the Kibble lab. The
rest, in particular the application of the equivalence principle, is similar.
Because we consider spinors in the Kibble lab, we get, by using Einstein’s
original ideas, a modified outcome.

Conventionally, the equivalence principle is only discussed in the Einstein
laboratory. The Kibble laboratory, which is really based on Élie Cartan’s
moving (co)frames (repères mobiles), is, in our opinion, a necessity if Dirac
particles are considered. This amounts to a generalization of the equivalence
principle to a more local neighborhood [58]—the curvilinear coordinates xi

are generalized to arbitrary orthonormal coframes ϑα = ei
αdxi.

According to the equivalence principle, the Riemann-Cartan (RC) space-
time looks Minkowskian from a local point of view. In a RC-spacetime, at any

fixed point with coordinates
◦
x k it is possible to trivialize the gravitational

gauge potentials [58]:

ei
α

xk=
◦

x k

∗
= δαi

Γi
αβ

xk=
◦

x k

∗
= 0











. (36)

This is important to recognize: In spite of the presence of torsion in a RC-
spacetime, at any fixed point, the local connection Γi

αβ can be transformed to
zero [59, 60, 61]. What in an Einstein lab is the geodesic coordinate system
becomes the trivialized reference frame (36) in a Kibble lab, it is a point,
which is widely underestimated. The frame (36) in RC-space supersedes the
geodesic coordinate system in a Riemannian space.

4.2 Poincaré gauge gravity kinematics

The standard model of particle physics is based on gauge theories for the in-
ternal symmetries U(1), SU(2), SU(3), see O’Raifeartaigh [6]. Accordingly,
apart from GR, the gauge idea seems to underlie all physical theories. How-
ever, already fairly early also gravity was understood as a gauge theory. It
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was Utiyama [62] who paved the way in this direction by using the Lorentz
group SO(1, 3) as a gauge group for gravity. It turned out to be unsuccessful,
though, since the current coupling to the Lorentz group is the angular mo-
mentum current. However, as we know from Newton’s theory of gravity, it is
the mass density or—according to SR—the energy-momentum current that
gravity has as its source. And energy-momentum couples to the translation
group T (4).

Flat gravity-free Minkowski space has the Poincaré group T (4)⋊SO(1, 3),
the semi-direct product of the four-parameter translations group6 T (4) and
the six-parameter Lorentz group SO(1, 3), as its group of motions. Accord-
ingly, Minkowski space is invariant under rigid (‘global’) Poincaré transfor-
mations. Consequently, as found by Wigner [15], a quantum mechanical sys-
tem in a Minkowski space can be classified according to mass and spin. The
corresponding field-theoretical currents are the material energy-momentum
and spin angular momentum currents Σα and ταβ = − τβα, respectively.

Thus, if we want to apply Einstein’s recipe for setting up a gravitational
theory based on the equivalence principle, we have to introduce accelerated
frames in Minkowski space. Due to the involvement of a quantum mechanical
system, see the COW neutrons or the Kasevich & Chu atoms mentioned
above, we have to turn to Kibble’s laboratory and to introduce coframes as
reference systems. This yields, as was shown by Sciama [20] and Kibble [54],
via local Poincaré invariance to a Riemann-Cartan spacetime with torsion
Tαβ

γ and curvature Rαβ
γδ. The rigid Lie algebra of the Poincaré group is

extended to a so-called deformed, soft, or local “Lie algebra” (Dα and ραβ =
− ρβα generate translations and Lorentz transformations, respectively):

[Dα, Dβ] = −TαβγDγ +Rαβ
γδρδγ

[ραβ , Dγ] = − gγαDβ + gγβDα

[ραβ , ρµν ] = − gαµρβν + gανρβµ + gβµραν − gβνραµ











. (37)

The rigid Lie algebra of Minkowski space is recovered for Tαβ
γ = 0 and

Rαβ
γδ = 0; then, in Cartesian coordinates, Dα → ∂a, for details see [35].7

Thus the Riemannian spacetime of GR is generalized to the Riemann-Cartan
spacetime of the Poincaré gauge theory. And the underlying reason for this
generalization is evident: It is the application of the Einstein procedure to
a quantum mechanical system instead of to a classical point particle. The
method remains the same, the objects to which it is applied to were general-

6A highly original contribution to the understanding of translation gauge invariance
was provided by Tresguerres [63].

7This local Lie algebra structure has also been found in the gauge theory of the de
Sitter group SO(2, 3), see Stelle & West [64].
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ized. Instead of an Einstein laboratory with curvilinear coordinates, we use
a Kibble lab with frames in order to encompass also fermionic fields.

Up-to-date reviews of the Poincaré gauge theory of gravity can be found
in [65, 66], and for more historic and technical details readers may refer to
[23, 67, 68, 35, 69]. Here we briefly outline the most essential notions and
constructions.

Following the general Yang-Mills-Utiyama-Sciama-Kibble gauge-theoretic
scheme, the 10-parameter Poincaré group T4⋊SO(1, 3) gives rise to the 10-plet
of the gauge potentials which are consistently identified with the coefficients
ei
α of the orthonormal coframe ϑα = ei

αdxi (4 potentials corresponding to
the translation subgroup T4) and the components Γi

αβ = −Γi
βα of the local

connection Γαβ = Γi
αβdxi (6 potentials for the Lorentz subgroup SO(1, 3)).

The corresponding covariant curls, the field strengths of translations and
Lorentz rotations,

Tij
α = ∂iej

α − ∂jeiα + Γiβ
αej

β − Γjβ
αei

β , (38)

Rij
αβ = ∂iΓj

αβ − ∂jΓiαβ + Γiγ
βΓj

αγ − Γjγ
βΓi

αγ , (39)

are the torsion Tij
α and the curvature Rij

αβ, both antisymmetric in i and j.
This naturally introduces the Riemann-Cartan geometry [70, 71, 72, 73] on
the spacetime manifold.

Obviously, both gravitational field potentials transform covariantly as
covectors

ei′
α =

∂xj

∂xi′
ej
α, Γi′

αβ =
∂xj

∂xi′
Γj

αβ , (40)

under arbitrary local coordinate transformations (diffeomorphisms)

xi −→ xi
′

= xi
′

(xj). (41)

As a result, the gauge gravitational field strengths (38) and (39) transform
covariantly

Ti′j′
α =

∂xk

∂xi′
∂xl

∂xj′
Tkl

α, Ri′j′
αβ =

∂xk

∂xi′
∂xl

∂xj′
Rkl

αβ, (42)

as second rank skew-symmetric tensors under the change of coordinates (41).
The action of the local Lorentz group is nontrivial. The Lorentz trans-

formation, by definition, leaves the metric invariant:

Λ(x)α
µΛ(x)β

νgµν = gαβ, (43)

which means that the Lorentz transformed (“rotated”) translational potential

e′i
µ = Λ(x)α

µei
α, (44)
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remains orthonormal under (43). The corresponding transformation law for
the local Lorentz connection is inhomogeneous:

Γ′
iα
β = Λ(x)ν

βΓiµ
νΛ−1(x)α

µ + Λ(x)µ
β∂iΛ

−1(x)α
µ. (45)

Accordingly, for the torsion and the curvature we find

T ′
ij
µ = Λ(x)α

µTij
α, R′

ij
αβ = Λ(x)µ

αΛ(x)ν
βRij

µν . (46)

An infinitesimal Lorentz transformation

Λ(x)α
µ = δµα + ε(x)α

µ (47)

is described by the parameters ε(x)α
µ which, in view of (43), satisfy

εαβ + εβα = 0. (48)

Noting that Λ−1(x)α
µ = δµα − ε(x)α

µ, we derive the infinitesimal form of
transformation laws for the coframe (44) and the connection as (45):

δei
α = εβ

αei
β, (49)

δΓi
αβ = − ∂iεαβ − Γiγ

αεγβ − Γiγ
βεαγ. (50)

On account of the explicit generators (ρµν)αβ = δµαgνβ − δµβgνα for the vector
representation of the Lorentz group, we can recast (49) into

δei
µ = − 1

2
εαβ(ρµν)αβ ei

ν . (51)

This can directly be extended to the infinitesimal transformation of any field
ψA which belongs to an arbitrary representation of the Lorentz group with
the generators (ρAB)αβ :

δψA = − 1

2
εαβ(ρAB)αβ ψ

B. (52)

In accordance with the transformation laws (52) and (50), the covariant
derivative of an arbitrary field is defined by

Diψ
A = ∂iψ

A − 1

2
Γi
αβ(ρAB)αβ ψ

B. (53)

We conclude this section by noticing that the gravitational Poincaré gauge
field strengths satisfy the two Bianchi identities:

D[iTjk]
α = R[ijk]

α, (54)

D[iRjk]
αβ = 0. (55)
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Here Rijk
α = Rijβ

αek
β, and the covariant derivative Di is defined by (53).

Although the tensor language is, so to say, a mother-tongue for relativists,
the use of the modern coordinate free formalism of exterior forms proves to
be extremely convenient in the gauge gravity theory. Accordingly, we switch
here to exterior forms. Then the first (54) and the second (55) Bianchi
identities read, respectively, DT α = Rγ

α ∧ ϑγ and DRαβ = 0.

4.3 Matter Lagrangian: Currents and conservation laws

Before we discuss the dynamics, we need to revisit the cornerstones of a
gauge theory, i.e. the conservation laws.

For the sake of generality, we will assume a matter field ψA to be a p-
form that transforms according to an arbitrary representation of the Lorentz
group, cf. (52). Let us consider a general matter Lagrangian 4-form

L = L(ϑα , dϑα ,Γαβ , dΓαβ , ψA, dψA) = L(ψA, DψA, ϑα, T α, Rαβ) . (56)

Note that we take into account a possibility of the nonminimal coupling
between matter and the gravitational field by allowing the dependence of
L on the Poincaré gauge field strengths. In the minimal coupling scheme,
L = L(ψA, DψA, ϑα), so that the matter interacts with the gravity only
via the Poincaré gauge field potentials (ϑα ,Γαβ) which contribute to the
Lagrangian either directly or via the covariant derivatives DψA = dψA −
1
2
Γαβ ∧ (ρAB)αβψ

B.
Independent variations of the matter and gravitational arguments ψA, ϑα,

Γαβ yield for the matter Lagrangian

δL = − δϑα ∧ Σα −
1

2
δΓαβ ∧ ταβ + δψA ∧ δL

δψA
(57)

+ d

[

δϑα ∧ ∂L

∂T α
+ δΓαβ ∧ ∂L

∂Rαβ
+ δψA ∧ ∂L

∂DψA

]

.

Here, for a gauge–invariant Lagrangian L, the expression

δL

δψA
=

∂L

∂ψA
− (−1)pD

∂L

∂(DψA)
(58)

is the covariant variational derivative of L with respect to the matter p–form
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ψA. The matter currents in (57) are introduced by

Σα :=− δL

δϑα
= − ∂L

∂ϑα
−D ∂L

∂T α
, (59)

ταβ :=− 2
δL

δΓαβ
= (ρAB)αβψ

B ∧ ∂L

∂(DψA)

− ϑα ∧
∂L

∂T β
+ ϑβ ∧

∂L

∂T α
− 2D

∂L

∂Rα
β
. (60)

These are the energy-momentum current and the spin angular momentum
current of matter, respectively. Using the master formula (57), we can derive
the conservation laws for them.

The local translations, or general coordinate transformations (diffeomor-
phisms), are generated by the Lie derivatives along arbitrary vector fields
ξ = ξαeα on the spacetime manifold. When the Lagrangian L is invariant
under the local diffeomorphisms, the master formula (57) gives rise to the
two identities8. One consequence of the diffeomorphism invariance is the first
Noether identity

DΣα ≡ (eα⌋T β) ∧ Σβ +
1

2
(eα⌋Rβγ) ∧ τβγ + Wα, (61)

where the generalized force is Wα := − (eα⌋DψA) ∧ δL
δψA − (−1)p(eα⌋ψA) ∧

D δL
δψA . As another consequence of the translational invariance one finds the

explicit form of the canonical energy–momentum current:

Σα = (eα⌋DψA) ∧ ∂L

∂DψA
+ (eα⌋ψA) ∧ ∂L

∂ψA
− eα⌋L

− D
∂L

∂T α
+ (eα⌋T β) ∧ ∂L

∂T β
+ (eα⌋Rβγ) ∧ ∂L

∂Rβγ
. (62)

Note that the second lines in (60) and (62) describe the nonminimal cou-
pling contributions to the spin angular momentum current and the canonical
energy-momentum current of matter, respectively.

The identity (61) is given in the strong form, without using the field
equations. The generalized force Wα = 0 vanishes when the ψA satisfy the
Euler-Lagrange equations δL

δψA = 0. Then the Noether identity (61) reduces to
the conservation law of energy-momentum in the framework of the Poincaré
gauge theory:

DΣα
∼= (eα⌋T β) ∧ Σβ +

1

2
(eα⌋Rβγ) ∧ τβγ . (63)

8Hint: one obtains two identities because both, ξα and dξα, are point-wise arbitrary.
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In the right-hand side of the identity (61) and of the conservation law (63)
for the canonical energy-momentum current, we find the typical Lorentz-type
force terms. They have the general structure field strength × current.

We assume that the Lagrangian L is invariant under a local Lorentz
transformations δϑα = εβ

α ϑβ , δΓαβ = −Dεαβ, δψA = − 1
2
εαβ (ρAB)αβ ψ

B

—recall (49), (50) and (52). Then, from the master formula (57), we find the
second Noether identity

Dταβ + ϑα ∧ Σβ − ϑβ ∧ Σα ≡Wαβ . (64)

The generalized torque is defined here as Wαβ := − (ρAB)αβψ
B ∧ δL

δψA . The

latter vanishes when the matter field equation δL
δψA = 0 is satisfied, and then

(64) reduces to the weak conservation law of the total angular momentum

Dταβ + ϑα ∧ Σβ − ϑβ ∧ Σα
∼= 0. (65)

4.4 Gravitational Lagrangian: Noether identities

We assume that the gravitational Lagrangian 4-form

V = V (ϑα, T α, Rα
β) (66)

is an arbitrary function of the gravitational field variables. Its variation can
be computed with the help of the master formula (57), and we recast the
result into

δV = δϑα ∧ Eα + δΓαβ ∧ Cαβ + d
[

δϑα ∧Hα + δΓαβ ∧Hαβ

]

(67)

by writing the variational derivatives with respect to the Poincaré gauge
gravitational potentials as

Eα :=
δV

δϑα
= DHα −Eα, (68)

Cαβ :=
δV

δΓαβ
= DHαβ − Eαβ . (69)

Here we introduced the gauge field momenta 2-forms

Hα :=
∂V

∂T α
, Hαβ :=

∂V

∂Rαβ
, (70)

and defined the 3–forms of the canonical energy–momentum and the canon-
ical spin for the gravitational gauge fields:

Eα := − ∂V

∂ϑα
, Eαβ := − ∂V

∂Γαβ
= −ϑ[α ∧Hβ] , (71)
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Diffeomorphism invariance of V yields the Noether identities

Eα ≡ − eα⌋V + (eα⌋T β) ∧Hβ + (eα⌋Rβγ) ∧Hβγ, (72)

D Eα ≡ (eα⌋T β) ∧ Eβ + (eα⌋Rβγ) ∧ Cβγ , (73)

whereas the local Lorentz invariance results in the Noether identity

2DCαβ + ϑα ∧ Eβ − ϑβ ∧ Eα ≡ 0 . (74)

These relations are easily derived from (62), (61), and (64) by replacing L
with V and dropping the dependence on ψA. All the relations (72)-(74) are
strong identities, they are valid always independently of the field equations.

4.5 The general field equations of Poincaré gauge grav-
ity

The field equations for the system of interacting matter and gravitational
fields are derived from the total Lagrangian

V (ϑα, T α, Rαβ) + L(ψA, DψA, ϑα, T α, Rαβ). (75)

Independent variations of the total Lagrangian with respect to the coframe
ϑα, the local Lorentz connection Γαβ, and the matter field ψA yield the system
[74, 75, 76, 69]

DHα − Eα = Σα , (76)

DHαβ − Eαβ =
1

2
ταβ , (77)

∂L

∂ψA
− (−1)pD

∂L

∂(DψA)
= 0 . (78)

From the dimension of the action we conclude that the Lagrangian 4-form has
the same dimension [L] = [~], and one can easily find the dimension of the
currents. Taking into account that [ϑα] = [ℓ] and [Γαβ] = [1] (dimensionless),
using the definitions (59) and (60) we derive the dimensions: [Σα] = [~

ℓ
] =

[momentum], and [ταβ ] = [~] = [spin].
By expanding the matter currents with respect to the basis of the 3-forms,

we find the energy-momentum and the spin tensors, respectively, as

Σα = Tαµ ηµ, ταβ = Sαβµ ηµ, (79)

with ηµ =
√−g ǫµ. Since [ηµ] = [ℓ3], we have the dimensions: [Tαµ] = [ ~

ℓ4
] =

[momentum/volume], and [Sαβµ] = [ ~

ℓ3
] = [spin/volume].
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4.6 Einstein-Cartan theory

The simplest Poincaré gauge theory is the Einstein-Cartan theory of grav-
ity (EC), which results from choosing the curvature scalar of the Riemann-
Cartan space as gravitational Hilbert-Einstein Lagrangian

VHE =
1

2κ
ηαβ ∧ Rαβ. (80)

Here κ = 8πG
c3

is Einstein’s gravitational constant with the dimension of
[κ] =s kg−1. G = 6.67×10−11 m3 kg−1 s−2 is Newton’s gravitational constant.
The speed of light c = 2.9 × 108 m/s. Consistency check for the dimension:
[ 1
κ
] =kg/s = [m

t
]. Since [Rαβ ] = 1 and [ηαβ ] = ℓ2, we have [ 1

2κ
ηαβ ∧ Rαβ] =

[mℓ
2

t
] = [~].
For the Lagrangian (80) we find from (70), (71) and (72):

Hα = 0, Hαβ =
1

2κ
ηαβ, Eα = − 1

2κ
ηαβγ ∧ Rβγ, Eαβ = 0. (81)

As a result,

Eα =
1

2κ
ηαβγ ∧Rβγ , Cαβ =

1

2κ
ηαβγ ∧ T γ, (82)

and hence the Einstein-Cartan gravitational field equations read

1

2
ηαβγ ∧ Rβγ = κΣα, ηαβγ ∧ T γ = κ ταβ. (83)

Substituting Rαβ = 1
2
Rµν

αβ ϑµ ∧ ϑν and T α = 1
2
Tµν

α ϑµ ∧ ϑν into the left-
hand side of (83) and using (79), we find the Einstein-Cartan field equations
in components

Ricα
β − 1

2
δβα Ricγ

γ = κ Tαβ , (84)

Tαβ
γ − δγαTµβµ + δγβTµα

µ = κSαβγ. (85)

From the curvature 2-form we derive the Ricci 1-form Ricα = eβ⌋Rα
β =

Riciαdx
i, components of which constitute the Ricci tensor Riciα = ejβRjiα

β.

The curvature scalar is defined as usual by R = eα⌋Ricα = eα⌋eβ⌋Rαβ =
eiβe

j
αRij

αβ .
One can “minimally” extend the EC theory by modifying the Hilbert-

Einstein Lagrangian (80) with a simplest possible parity-odd term. Such a
generalization was proposed by Hojman, Mukku & Sayed [77] (and is known
as the Holst Lagrangian [78] in some literature) as

VHMS =
1

2κ
(ηαβ + a0ϑα ∧ ϑβ) ∧Rαβ . (86)
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Here a0 = 1
ξ
, and the dimensionless constant ξ is often called a Barbero-

Immirzi parameter.
For the Lagrangian (86)—due to (70), (71), and (72)—we find Hα = 0

and Eαβ = 0 as in (81); however, now

Hαβ =
1

2κ
(ηαβ + a0ϑα ∧ ϑβ) , Eα = − 1

2κ

(

ηαβγ ∧Rβγ + 2a0Rαβ ∧ ϑβ
)

.

(87)
As a result, Eα = −Eα, and

Cαβ = DHαβ =
1

2κ
[ηαβγ ∧ T γ + a0 (Tα ∧ ϑβ − Tβ ∧ ϑα)] . (88)

The Einstein-Cartan field equations (83) are then replaced by

1

2
ηαβγ ∧ Rβγ + a0Rαβ ∧ ϑβ = κΣα, (89)

ηαβγ ∧ T γ + a0 (Tα ∧ ϑβ − Tβ ∧ ϑα) = κ ταβ . (90)

The Einstein-Cartan theory is a viable gravitational theory that deviates
from GR only at very high matter density, see [79] and the references given
there. For the matter without spin Sαβγ = 0, the torsion vanishes because
of second field equation (85) and the Einstein-Cartan theory coincides with
GR. The same applies to the parity-odd HMS model (86).

4.7 Quadratic Poincaré gauge gravity models

It is a unique feature of the gauge approach to gravity that the field equations
(84) and (85) are algebraic in the field strength rather than first order partial
differential equations as in any other gauge theory of an internal group U(1),
SU(2), SU(3),... . This is due to the fact that, because of the existence of the
metric gαβ of spacetime and of the frame ei

α, with ei
α eiβ = δαβ , the Lorentz

field strength Rαβ
γδ = eiαe

j
β Rij

γδ can be contracted to a scalar, namely to
the curvature scalar.

This is impossible in Yang-Mills theories since the internal group indices
cannot be related to the spacetime indices. Thus, the simplest Lagrangian
in Yang-Mills theory is quadratic in the field strength yielding first-order dif-
ferential equations as field equations. Accordingly, the gauge doctrine would
suggest for the gauge theory of the Poincaré group a general Lagrangian 4-
form that contains all possible quadratic invariants of the torsion and the
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curvature:

V =
1

2κ

{(

a0ηαβ + a0ϑα ∧ ϑβ
)

∧Rαβ − 2λ0η

− T α ∧
3

∑

I=1

[

aI
∗((I)Tα) + aI

(I)Tα
]

}

− 1

2ρ
Rαβ ∧

6
∑

I=1

[

bI
∗((I)Rαβ) + bI

(I)Rαβ

]

. (91)

The irreducible parts of the torsion and the curvature are defined in Ap-
pendix 2. The Lagrangian (91) has a clear structure: the first line is linear
in the curvature, the second line collects the terms quadratic in the torsion,
whereas the third line contains the invariants quadratic in the curvature. Fur-
thermore, each line is composed of a parity even piece (first term on each
line), and a parity odd part (last term on each line). A special case a0 = 0
and a0 = 0 describes the purely quadratic model without the Hilbert-Einstein
linear term in the Lagrangian. To recover the Einstein-Cartan model, one
puts a0 = 1 and a0 = 0.

Besides that, the general PG model contains a set of the coupling con-
stants which determine the structure of quadratic part of the Lagrangian:
ρ, a1, a2, a3 and a1, a2, a3, b1, · · · , b6 and b1, · · · , b6. The overbar denotes the
constants responsible for the parity odd interaction. We have the dimension
[1
ρ
] = [~], whereas aI , aI , bI and bI are dimensionless. Moreover, not all

of these constants are independent: we take a2 = a3, b2 = b4 and b3 = b6
because some of terms in (91) are the same,

T α ∧ (2)Tα = T α ∧ (3)Tα = (2)T α ∧ (3)Tα, (92)

Rαβ ∧ (2)Rαβ = Rαβ ∧ (4)Rαβ = (2)Rαβ ∧ (4)Rαβ , (93)

Rαβ ∧ (3)Rαβ = Rαβ ∧ (6)Rαβ = (3)Rαβ ∧ (6)Rαβ . (94)

For the Lagrangian (91), by means of (70)-(71), we can derive the gravi-
tational field momenta

Hα = − 1

κ
hα , Hαβ =

1

2κ
(a0 ηαβ + a0ϑα ∧ ϑβ)− 1

ρ
hαβ, (95)

and, furthermore, the canonical energy-momentum and spin currents of the
gravitational field as

Eα = − 1

κ

(a0
2
ηαβγ ∧ Rβγ + a0Rαβ ∧ ϑβ − λ0ηα + q(T )α

)

− 1

ρ
q(R)α , (96)

Eαβ =
1

2
(Hα ∧ ϑβ −Hβ ∧ ϑα) . (97)
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For convenience, we introduced here the 2-forms which are linear functions
of the torsion and the curvature, respectively, by

hα =

3
∑

I=1

[

aI
∗((I)Tα) + aI

(I)Tα
]

, hαβ =

6
∑

I=1

[

bI
∗((I)Rαβ) + bI

(I)Rαβ

]

,

(98)
and 3-forms quadratic in the torsion and in the curvature, respectively:

q(T )α =
1

2

[

(eα⌋T β) ∧ hβ − T β ∧ eα⌋hβ
]

, (99)

q(R)α =
1

2

[

(eα⌋Rβγ) ∧ hβγ −Rβγ ∧ eα⌋hβγ
]

. (100)

By construction, the first 2-form in (98) has the dimension of a length, [hα] =
[ℓ], whereas the second one is obviously dimensionless, [hαβ ] = 1. Similarly,

we find for (99) the dimension of length [q
(T )
α ] = [ℓ], and the dimension of the

inverse length, [q
(R)
α ] = [1/ℓ] for (100).

The resulting Poincaré gravity field equations (68) and (69) then read:

a0
2
ηαβγ ∧ Rβγ + a0Rαβ ∧ ϑβ − λ0ηα

+ q(T )α + ℓ2ρ q
(R)
α −Dhα = κΣα, (101)

a0 ηαβγ ∧ T γ + a0 (Tα ∧ ϑβ − Tβ ∧ ϑα)

+ hα ∧ ϑβ − hβ ∧ ϑα − 2ℓ2ρDhαβ = κ ταβ . (102)

The contribution of the curvature square terms in the Lagrangian (91) to the
gravitational field dynamics in the equations (101) and (102) is characterized
by the new coupling parameter with the dimension of the area (recall that
[1
ρ
] = [~]):

ℓ2ρ =
κ

ρ
. (103)

The parity-odd sector in PG gravity has been recently analysed in [80, 81,
82, 83, 84, 85], with a particular attention to the cosmological issues. A
major progress was made in this domain with the computation of the particle
spectrum of general quadratic PG models by Karananas [86] and Blagojević
and Cvetković [87].

4.8 Tonti-diagram of quadratic Poincaré gauge gravity

The structure of Poincaré gauge gravity can be visualized by means of the
Tonti diagram in Fig. 4. It is constructed as a direct generalization of the
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✎
✍

☞
✌

✎
✍

☞
✌ϑα,Γαβ

✎
✍

☞
✌Tα,Rαβ

✎
✍

☞
✌0

✎
✍

☞
✌fα,mαβ

✎
✍

☞
✌Σα, ταβ

✎
✍

☞
✌Hα,Hαβ

✎
✍

☞
✌

Tα “ Dϑα

Rαβ „ DΓαβ

DTα “ Rβ
α^ ϑβ

DRαβ “ 0

DΣα “ fα
Dταβ “ mαβ

DHα ´ Eα “ Σα
DHαβ ´ Eαβ “ ταβ

constitutive equations

Hα „ ‹Tα
Hαβ „ ‹pϑα ^ ϑβq ` ‹Rαβ

✲

❄

❄

❄

✻

✻

✻

1 r„T ˆ Ps

3 r„T ˆ Ls

3 r„T ˆ Ss

1 r„I ˆ Ps

3 r„I ˆ Ls

3 r„I ˆ Ss

1 r„I ˆ Vs

1 rI ˆ Vs

3 rI ˆ Ss

3 rI ˆ Ls

1 rT ˆ „
V s

3 rT ˆ „
S s

3 rT ˆ „
L s

1 rT ˆ „
P s

0-forms

1-forms coframe and Lorentz connection

2-forms

torsion and curvature

3-forms

4-forms grav. vol. force and torque

3-forms e-m and spin of matter

2-forms transl. and Lorentz excit.

1-forms

Poincaré gauge theory of gravity (PG)

configuration variables source variables

grav. volume force fα :“ peαuT
βq ^ Σβ ` peαuR

βγq ^ τβγ

grav. volume torque mαβ :“ ´ϑrα ^ Σβs

grav. energy-momentum Eα :“ eαuV ` peαuT
βq^ Hβ ` peαuR

βγq^ Hβγ

grav. spin ang. momentum Eαβ :“ ´ϑrα ^ Hβs

Einstein-Cartan theory (EC) emerges from the constitutive equations

Hα “ 0 , Hαβ “ 1
2κ

‹pϑα ^ ϑβq ; for ταβ “ 0, one recovers general relativity (GR)

Teleparallelism (TG) emerges from Hα „ ‹Tα , Hαβ “ 0 , and ταβ “ 0

Figure 4: Tonti diagram for Poincaré gauge gravity theory.

30



Tonti diagram for TG in Fig. 2. In TG we started with 4 translation po-
tentials ϑα, in PG we start instead with 4 translation and 6 Lorentz 1-form
potentials as configuration variables: {ϑα,Γαβ = −Γβα}. Besides the trans-
lation group T (4), now the Lorentz group SO(1, 3) is gauged, too. On the
side of the source variables, besides the energy-momentum current Σα, we
have the spin current ταβ = −τβα.

Since the Lorentz group depends on the metric, the present Tonti diagram
does not contain premetric structures. However, if we generalize the Lorentz
connection Γαβ to a linear one, Γα

β , that is, if we substitute the SO(1, 3)
by the linear group GL(4, R), then the configuration and source variables
are all premetric again, similar as in the Tonti diagram for TG. Note that
Γαβ := gαγ Γγ

β. The affine generalization of PG has been discussed as metric-
affine gravity in detail in [69], for example.

As we recognize from the Tonti diagram for PG, the linear constitutive
equations correspond to quadratic Lagrangians, and the Einstein-Cartan the-
ory and Einstein’s general relativity are simple subcases of this scheme.

5 Discussion and outlook

A gauge theory is a heuristic scheme within the Lagrange formalism in the
Minkowski space of special relativity for the purpose of deriving a new in-
teraction from a conserved current and the attached rigid symmetry group.
This new ‘gauge’ interaction is induced by demanding that the rigid symme-
try should be extended to a locally valid symmetry. We demonstrate that,
when applied to gravity theory, this heuristic approach should be based on
the conserved energy-momentum current and the associated translational
symmetry, consistently supplemented by the local Lorentz symmetry.

We postpone a detailed review of the physical contents of the Poincaré
gauge gravity theory to a different publication. Earlier, this subject was
intensively studied and the relevant results can be found in [74, 75, 76, 88].

At present time, we are again witnessing a considerable growth of the
interest to the gauge gravitational issues. Among other directions of research,
the search and analysis of exact solutions of the field equations is essential
for improvement of understanding of the nature of gravitational interaction;
see [89, 90, 91, 92] for relevant discussions. Also the topological invariants
related to torsion have been reinvestigated [93, 94].

It is important to recall Einstein’s view [95] that “...the question whether
this continuum has a Euclidean, Riemannian, or any other structure is a
question of physics proper which must be answered by experience, and not
a question of a convention to be chosen on grounds of mere expediency.”
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Accordingly, when aiming at an experimental probing of the geometrical
structure of spacetime (in particular, searching for possible deviations be-
yond the Riemannian geometry), one should study how do test particles
move under the influence of the gravitational field in the framework of the
gauge gravity theory. Remarkably, the propagation equations should not be
postulated in an ad hoc way; they are the consequence of the conservation
laws. Importantly, the analysis of the equations of motion, reveals that the
torsion, in the context of PG, couples only to the elementary particle spin and
under no circumstances to the orbital angular momentum of test particles
[96, 97, 98, 99].

The recent advances in the cosmological science have seriously warmed up
the interest in the thorough revision of universe’s evolution in the framework
of the Poincaré gauge gravity. In this sense, the early results of Trautman
[100], and Minkevich [101, 102], which predict possible avertion of singularity
in the early universe and possible modifications of the late stage of cosmolog-
ical evolution [103, 104, 105] are currently revisited and extended in the most
recent works of Barrow et al. [106, 107] and of Nikiforova, Randjbar-Daemi,
Rubakov and Damour [108, 109, 110, 111].

Last but not least we should mention the progress in the study of the
Hamiltonian approach to PG by Struckmeier et al. [112, 113, 114] and, most
remarkably, by Blagojević and Cvetković [115, 116]. Toller [117] has pro-
posed a highly interesting generalization of the PG framework by taking the
symplectic group Sp(4, R) as gauge group, which is locally isomorphic to the
anti-de Sitter group SO(2, 3).

Finally, let us have a look back at the Tonti diagram for TG, see Fig. 2.
The constitutive equation is conventionally assumed to be a linear relation.
Only then we can recover GR by taking a suitable ansatz. Mashhoon, already
since the early 1990s, followed up the idea that the locality principle in special
relativity—the clock hypothesis is one particular example—is washed out at
extremely high translational and rotational accelerations. This is expected to
happen long before quantum effects set in. A detailed discussion can be found
in Mashhoon’s book [118]. This nonlocality should also have consequences
for gravitational theory. The linear constitutive equation in Fig. 2 should
then become a nonlocal relation, as was proposed by Mashhoon and one of us
[119, 120] and has been discussed in detail in [118]. A certain simplification of
the nonlocal ansatz has been proposed by Puetzfeld et al. [121] The nonlocal
idea, as applied to TG, has even be generalized to the complete quadratic PG
framework, see [122, Appendix]. But a detailed discussion is still missing.
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Appendix 1

Our basic notation and conventions are consistent with [9, 69]. In particular,
Greek indices α, β, · · · = 0, . . . , 3, denote the anholonomic components (for
example, of a coframe ϑα), while the Latin indices i, j, · · · = 0, . . . , 3, label
the holonomic components (e.g., dxi). Spatial components are numbered
by Latin indices from the beginning of the alphabet a, b, · · · = 1, 2, 3. The
anholonomic vector frame basis eα is dual to the coframe basis in the sense
that eα⌋ϑβ = δβα, where ⌋ denotes the interior product. The volume 4-form
is denoted by η, and the η-basis in the space of exterior forms is constructed
with the help of the interior products as ηα1...αp

:= eαp
⌋ . . . eα1

⌋η, p = 1, . . . , 4.
They are related to the ϑ-basis via the Hodge dual operator ∗, for example,
ηαβ = ∗(ϑα ∧ ϑβ). The Minkowski metric is gαβ = diag(c2,−1,−1,−1). All
the objects related to the parity-odd sector (coupling constants, irreducible
pieces of the curvature, etc.) are marked by an overline, to distinguish them
from the corresponding parity-even objects.

Appendix 2

The torsion 2-form can be decomposed into the three irreducible pieces, T α =
(1)T α + (2)T α + (3)T α, where

(2)T α =
1

3
ϑα ∧ T, (3)T α =

1

3
eα⌋∗T , (104)

(1)T α = T α − (2)T α − (3)T α. (105)

Here the 1-forms of the torsion trace and axial trace are introduced:

T := eν⌋T ν , T := ∗(T ν ∧ ϑν). (106)

For the irreducible pieces of the dual torsion ∗T α = (1)(∗T α) + (2)(∗T α) +
(3)(∗T α), we have the properties

(1)(∗T α) = ∗((1)T α), (2)(∗T α) = ∗((3)T α), (3)(∗T α) = ∗((2)T α). (107)

The Riemann-Cartan curvature 2-form is decomposed Rαβ =
∑6

I=1
(I)Rαβ

into the 6 irreducible parts

(2)Rαβ = − ∗(ϑ[α ∧Ψβ]), (4)Rαβ = −ϑ[α ∧Ψβ], (108)
(3)Rαβ = − 1

12
X ∗(ϑα ∧ ϑβ), (6)Rαβ = − 1

12
X ϑα ∧ ϑβ , (109)

(5)Rαβ = − 1
2
ϑ[α ∧ eβ]⌋(ϑγ ∧Xγ), (110)

(1)Rαβ = Rαβ −
6
∑

I=2

(I)Rαβ, (111)
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where

Xα := eβ⌋Rαβ, X := eα⌋Xα, Xα := ∗(Rβα ∧ ϑβ), X := eα⌋Xα, (112)

and

Ψα := Xα − 1
4
ϑαX − 1

2
eα⌋(ϑβ ∧Xβ), (113)

Ψα := Xα − 1
4
ϑαX − 1

2
eα⌋(ϑβ ∧Xβ). (114)

The 1-forms Xα and Xα are not completely independent: ϑα ∧Xα = ∗(ϑα ∧
Xα).
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[10] R. Mills, Gauge fields. Am. J. Phys. 57, 493-507 (1989)

[11] R. Mills, Model of confinement for gauge theories. Phys. Rev. Lett. 43,
549-551 (1979)

[12] C. Kiefer, Quantum Gravity, 3rd ed. (Oxford University Press, Oxford,
UK, 2012)

[13] S. K. Wong, Field and particle equations for the classical Yang-Mills
field and particles with isotopic spin. Nuovo Cim. A 65, 689-694 (1970)

[14] A. Einstein, The Meaning of Relativity, Princeton Lectures of May 1921,
5th ed. (Princeton Univ. Press, Princeton, NJ, 1955)

[15] E. P. Wigner, On unitary representations of the inhomogeneous Lorentz
group, Annals Math. 40, 149-204 (1939)

[16] J. J Sakurai, Theory of strong interactions. Ann. Phys. (USA) 11, 1-48
(1960)

[17] S. L. Glashow, M. Gell-Mann, Gauge theories of vector particles. Ann.
Phys. (USA) 15, 296-297 (1961)

[18] R. Feynman, F. B. Morinigo, W. G. Wagner, Feynman Lectures on Grav-
itation, Lectures given 1962/63, B. Hatfield, ed. (Addison-Wesley, Read-
ing, MA, 1995)

[19] L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics (Oxford Univer-
sity Press, Oxford, 2013), p.140

[20] D. W. Sciama, The analogy between charge and spin in general relativity.
In: Recent Developments in General Relativity, Festschrift for Infeld
(Pergamon Press, Oxford; PWN, Warsaw, 1962) 415–439

[21] Y. Itin, Energy momentum current for coframe gravity, Class. Quantum
Grav. 19, 173 (2002), arXiv:gr-qc/0111036

35

http://arxiv.org/abs/gr-qc/0111036


[22] F. W. Hehl, Y. Itin, Yu. N. Obukhov, On Kottler’s path: origin and
evolution of the premetric program in gravity and in electrodynamics,
Int. J. Mod. Phys. D 25, 1640016 (2016), arXiv:1607.06159

[23] M. Blagojević, F. W. Hehl (eds.), Gauge Theories of Gravitation: A
Reader with Commentaries (Imperial College Press, London, 2013)

[24] Y. M. Cho, Einstein Lagrangian as the translational Yang-Mills La-
grangian, Phys. Rev. D 14, 2521–2525 (1976)

[25] J. Nitsch, F. W. Hehl, Translational gauge theory of gravity: Postnew-
tonian approximation and spin precession. Phys. Lett. B 90, 98 (1980)

[26] Yu. N. Obukhov, J. G. Pereira, Metric affine approach to teleparallel
gravity. Phys. Rev. D 67, 044016 (2003)

[27] J. G. Pereira, Yu. N. Obukhov, Gauge structure of teleparallel gravity.
Universe 5, no. 6, 139 (2019)

[28] T. Koivisto, M. Hohmann, T. Z lośnik, The general linear Cartan
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