Test of equivalence principle for particles with spin

Asher Peres

Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel (Received 29 April 1977)

We consider a simple modification of the Dirac equation, such that spin-1/2 particles violate the equivalence principle, but the latter is restored by averaging over spins. An experiment is suggested to test the existence of such an effect.

It is well known^{1,2} that, although the usual Eötvös experiment tests only the weak equivalence principle,³ it could become a test for the strong equivalence principle if performed with polarized bodies (such as test bodies with aligned spins). The purpose of this paper is twofold: First we devise a theoretical model whereby spinning particles violate the equivalence principle, but the latter is restored by averaging over spins. This model involves a dimensionless coupling constant. Then we suggest an experiment which could set an upper limit on its value.

Let \bar{g} denote the local acceleration of gravity $(g = 980 \text{ cm/sec}^2)$. The simplest modification of the Dirac Lagrangian involving \bar{g} is to add a term proportional to $\bar{\psi}\gamma^{\mu}g_{\mu}\psi$. However, in a static gravitational field, $g_0 = 0$ and \bar{g} is a gradient, therefore, such a term can be transformed away (it is similar to adding a gradient to A_{μ}).⁴

The simplest nontrivial modification of the Dirac Lagrangian is a term proportional to $i\overline{\psi}\gamma_5\gamma^{\mu}g_{\mu}\psi$. The Dirac equation then becomes

$$i\hbar \frac{\partial \psi}{\partial t} = (c\vec{\alpha}\cdot\vec{p} + \beta mc^2 + ik\hbar c^{-1}\gamma_5\vec{\alpha}\cdot\vec{g})\psi.$$

In the last term, which conserves CP but not Cand P separately, the factor $\hbar c^{-1}$ has been introduced so that the "coupling constant" k is dimensionless. In the nonrelativistic limit, the additional term in the Hamiltonian is simply $\pm k\hbar c^{-1}\overline{o} \cdot \overline{g}$, with opposite signs for particles and antiparticles.

Such a term would mean that a spin- $\frac{1}{2}$ particle carries a gravitational dipole moment $k\hbar c^{-1}\sigma$. In classical language, its center of mass and center of gravity are separated by a distance $k\hbar/mc$. It is therefore unlikely that k is a large number.⁵

Let us examine the consequences of our hypothesis. First, we note that a degenerate energy level would be resolved into two close ones separated by $2k\hbar c^{-1}g$. As $2\hbar c^{-1}g = 4.30 \times 10^{-23}$ eV, such a splitting would be considerably smaller than the present limit on a possible violation of the equivalence principle by weak interactions.⁶ Moreover, the spin of a particle would precess around the vertical axis with a frequency $2kc^{-1}g$. Note that $c^{-1}g = 1.03$ rad/yr. For k = 1, this precession is much too slow to be observable in neutron interference experiments.⁷ Yet it is more than a million times faster than the one predicted by general relativity due to the dragging of inertial frames by the rotation of the earth.⁸ However, it affects only spin, not angular momentum in general. Indeed, averaging over spins cancels the $\overline{\sigma} \cdot \overline{g}$ term and the equivalence principle is restored on a macroscopic scale.

Consider now a *polarized* macroscopic body such as a permanent magnet. It would have an additional energy $\pm 2kc^{-1}\overline{S} \cdot \overline{g}$ where $\overline{S} = (\hbar/2)\sum_{i} \overline{\sigma}$ is the total spin. This induces a *torque*⁹ $\pm 2kc^{-1}\overline{S} \times \overline{g}$, which could be observed in the following way:

Let the permanent magnet, thoroughly shielded from external magnetic fields, hang freely in such a way that in its equilibrium position \hat{S} is approximately horizontal. Then, if the magnetization is destroyed by heating it above the Curie point, the equilibrium position will be shifted by an angle θ such that $MgH\theta = 2kc^{-1}Sg$, where M is the mass of the magnet and H the height of the point of suspension above its center of gravity. Thus,

 $\theta = 2kc^{-1}S/MH = k\hbar c^{-1}/mH,$

where *m* is the mass of an atom (more generally, the mass associated with spin $\hbar/2$).¹⁰ For iron, we get $\theta = k(3.8 \times 10^{-16} \text{ cm/H})$.

Unless k is very large, the main difficulties in such an experiment, apart from observing such a small angle, would be the following:

(a) External magnetic fields must be completely shielded away. Even a single quantum of magnetic flux $\pi\hbar/e$, spread over an area A so that $B = \pi\hbar/eA$, would introduce in the Hamiltonian a term similar to the one we are considering, but with a coefficient $e\hbar B/2m_e = \pi\hbar^2/2m_eA$ instead of $k\hbar c^{-1}g$. We would thus need

2739

to be able to neglect such a term.

(b) The demagnetization process may upset the mechanical equilibrium of the test body because of the Einstein-de Haas effect 11 and because of

¹T. A. Morgan and A. Peres, Phys. Rev. Lett. <u>9</u>, 79 (1962).

²W. T. Ni, Phys. Rev. Lett. 38, 301 (1977).

³The strong equivalence principle asserts that in a freely falling, nonrotating laboratory, not only do all free particles move with constant velocities—this is the weak equivalence principle—but *all* the laws of physics are the same in that laboratory, independent of its position in space and time.

⁴In this paper, we made the simple assumption that the gravitational field is the gradient of a scalar field. It is well known that no scalar theory of gravitation can account for the experimental facts. However, mixed scalar-tensor theories [C. H. Brans and R. H. Dicke, Phys. Rev. <u>124</u>, 925 (1961)] or bimetric theories [N. Rosen, Ann. Phys. (N.Y.) <u>84</u>, 455 (1974)] cannot be experimentally ruled out. In such theories, in the quasistatic case, it is not difficult to construct scalars analogous to Newton's potential.

⁵The experimental limit on the electric dipole moment

magnetostriction.11

(1977).

It seems that the proposed experiment, although very difficult, could be feasible in the near future. *Note added in proof.* For an alternative approach to this problem, see N. D. Hari Dass, Ann. Phys. (N.Y.) 107, 337 (1977); Gen. Relativ. Gravit. 8, 89

of neutrons [W. B. Dress et al., Phys. Rev. D <u>15</u>, 9 (1977)] implies that for neutrons, k < 14 000. For

electrons, the experimental limit on k is much higher. ⁶M. P. Haugan and C. M. Will, Phys. Rev. Lett. <u>37</u>, 1 (1976).

⁷R. Colella, A. W. Overhauser, and S. A. Werner, Phys. Rev. Lett. 34, 1472 (1975).

Rev. Lett. <u>34</u>, 1472 (1975). ⁸L. I. Schiff, Phys. Rev. Lett. <u>4</u>, 215 (1960). The frequency of the Schiff precession is about $(g/c)(R\omega/c)$ where *R* is the earth radius and $\omega = 2\pi/day$.

⁹Besides this torque, there is also a net *force* due to the gradient of $(\vec{s} \cdot \vec{g})$. This is, however, a much smaller effect.

¹⁰This exactly corresponds to a horizontal shift of the center of gravity by $k\bar{h}/mc$. We see how the principle of equivalence is violated in the present theory: A magnet suspended in an accelerated laboratory, instead of a gravitational field, would *not* tilt.

¹¹L. D. Landau and E. M. Lifshitz, *Electrodynamics of Continuous Media* (Pergamon, Oxford, 1960).