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Abstract

We give a complete formulation of Poincaré gauge theory, starting from the fibre bundle

formulation to the resultant Riemann-Cartan spacetime. We also introduce several diverse

gravity theories descendent from the Poincaré gauge theory. Especially, the cosmological

effect of the simple scalar-torsion (0+) mode in Poincaré gauge theory of gravity is studied.

In the theory, we treat the geometric effect of torsion as an effective quantity, which

behaves like dark energy, and study the effective equation of state (EoS) of the model.

We concentrate on the two cases of the constant curvature solution and positive kinetic

energy. In the former, we find that the torsion EoS has different values corresponding

to the stages of the universe. For example, it behaves like the radiation (matter) EoS

of wr = 1/3 (wm = 0) in the radiation (matter) dominant epoch, while in the late

time the torsion density is supportive for the accelerating universe. In the latter case of

positive kinetic energy, we find the (affine) curvature is not constant in general and hence

requires numerical solution. Our numerical analysis shows that the EoS in general has an

asymptotic behavior in the high redshift regime, while it could cross the phantom divide

line in the low redshift regime. By further analysis of the Laurent series expansion, we find

that the early evolution of the torsion density ρT has a radiation-like asymptotic behavior

of O(a−4) where a(t) denotes the scale factor, along with a stable point of the torsion

pressure (PT ) and a density ratio PT/ρT → 1/3 in the high redshift regime (z � 0), this

is different from the previous result in the literature. Some numerical illustrations are also

demonstrated.

We construct the extra dimension theory of teleparallel gravity by using differential

forms. In particular, we discuss the Kaluza-Klein and braneworld scenarios by direct

dimensional reduction and specifying the shape of fibre. The FLRW cosmological scenario

of the braneworld theory in teleparallel gravity demonstrates its equivalence to general

relativity (GR) in the field equations, namely they possess the same Friedmann equation.
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2 Poincaré Gauge Gravity Theory 5

2.1 Preliminaries and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Geometric construction of PGT . . . . . . . . . . . . . . . . . . . . 5
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1

Introduction

The recent cosmological observations, such as those from type Ia supernovae [1, 2], cosmic

microwave background radiation [3, 4], large scale structure [5, 6] and weak lensing [7],

reveal that our universe is subject to a period of accelerated expansion.

Although general relativity (GR) developed in the last century has been successful

in many ways of explaining various experimental results in gravity, the nature of the

accelerating universe now rises as a small cloud shrouding it. We thereby look for a more

general theory that comprises GR yet being able to explain the accelerating problem

referred to as dark energy [8].

In general, there are two ways to resolve the phenomenon of the late-time accelerated

universe [8] either by modified gravity or by modified matter theories. Modified gravity

asserts that considering alternative geometry may be responsible for forces that we

are not able to explain, usually by modifying geometric Lagrangians or changing the

geometric framework of spacetime. Modified matter theories include some negative

pressure matter that could result in the expanding effect. In this thesis, we adopt the

viewpoint of an alternative gravity theory by considering the so-called Poincaré gauge

theory (PGT) [9, 10, 11], which integrates the gauge covariant idea into spacetime.

PGT starts with the consideration of gauging the Poincaré group P = R1,3 o

SO(1, 3), where R1,3 denotes the Minkowski spacetime (R4, 〈·, ·〉R1,3) and 〈eµ, eν〉R1,3 =

diag(−1,+1,+1,+1), into gravity and ends up in effect as a Riemann-Cartan space-

time (M, g,∇), where M is the spacetime manifold, g is a metric and ∇ is a general

metric-compatible connection on M . Such a general connection can be decomposed into

∇ = ∇−K such that ∇ is the Riemannian one and K is the contortion tensor related

1



2 1. INTRODUCTION

to torsion tensor T of ∇. As a result, PGT is in general a gravitational theory with

torsion [9, 10] that couples to the spin of the matter field. Gauge theory with the Poincaré

group can be considered as a natural extension of GR, in the sense that it contains GR as

a degenerate case. In fact, it comprises a large class including GR, the Einstein-Cartan

theory [12], teleparallel gravity, and quadratic Poincaré gauge theory.

Historically, Einstein effectively assumed vanishing torsion ad hoc in 1915, later in

1928 he attempted to utilize the teleparallel (purely torsional) theory to unify gravitation

and electromagnetism [13]. Around the same time, Élie Cartan, as a mathematician who

constructed the idea of torsion in 1922, communicated with Einstein about his work. In

their sequence of communications [14], they set up a large portion of the foundation for

the teleparallel gravity theory of nowadays.

The birth of gauge theory was innovated in the hand of Hermann Weyl in 1918 [15],

while in 1929 he achieved the concept of U(1)-gauge theory [16] we know nowadays and

introduced the vierbein (orthonormal basis, tetrad) into general relativity. The success of

local gauge theory in 1950s brought new life into the gravity with torsion. Utiyama gave a

first attempt in gauging SO(1, 3) into spacetime without success [17], mainly due to the

Riemannian connection used. On this track, Sciama then introduced torsion and related

it to spin [18], and later Kibble showed how to describe gravity with torsion as a local

gauge theory of the Poincaré group [19]. Later in 1976 Hehl et al formulated a complete

gravitation theory that demonstrates Poincaré gauge invariance and eventually results in

gravity with torsion [9]. The great success of gauge theory in fundamental physics leads us

to believe that gravity should also belong to the roll of gauge theories, since all the other

fundamental interactions like the electroweak and the strong are beautifully formulated by

such rules. In this sense, this provides a best guiding principle to follow in searching for

an alternative gravity theory.

The framework of PGT is based on the gauge principles of Yang-Mill’s theory of

non-Abelian group. Through the use of principal fibre bundles in mathematics, one derives

a more clear vision of gauge structures and its essence which is eventually beneficial for

the transition between different Lie groups.

We set out from the formulation of PGT in fibre bundle language [20],[21] (Chapter

2) which is also general for all gauge theories, and try to address the story of PGT as

complete as possible in a united and compact way with the minimal offering of bundle
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materials for essential study. Such construction will then provide an integrated and clear

view for the Poincaré gauge gravity and Riemann-Cartan spacetime, which in the end

leads to several diverse alternative gravity theories, such as the Einstein-Cartan theory,

GR, teleparallel gravity, and quadratic PGT.

In particular, we shall investigate a specific quadratic theory of the scalar-torsion mode

in PGT [22],[23],[23](Chapter 3), that possesses dynamical torsion field. This particular

mode is also called simple 0+ mode or SNY-model,[25], which is one of the six modes:

0±, 1± and 2± labeled by spin and parity, based on the linearlized theory of PGT [26, 27]. In

the theory, the 0+ mode is known to have no interaction with any fundamental source [28]

and thus it could have a significant magnitude without being much noticed within the

current universe. In particular, it has been studied by Shie, Nester and Yo (SNY) that the

spin-0+ mode is divided into two classes: one with negative energy density but exhibiting

late time de-Sitter universe served as dark energy; the other with normal positive energy

condition that is also responsible for the late-time acceleration but demonstrates the early

oscillation in various physical quantities. In this thesis, we concentrate on these two

classes and present the numerical solutions of the late-time acceleration behavior and their

corresponding equation of state (EoS), defined by w = p/ρ, where ρ and p are the energy

density and pressure of the relevant component of the universe respectively. This type of

cosmology provides some realistic and interesting features so that it has been explored in

numerous discussions [29, 30, 31, 32, 33, 34, 35, 36, 37]. Consequently, this mode naturally

becomes a subject to study [38].

In PGT, there is another interesting degenerate case called teleparallelism (in contrast

to GR of zero torsion), where curvature vanishes identically on the spacetime and torsion is

the only responsiblility for the gravitational force. The name is so dubbed simply because

without curvature every vector field is parallel. Such construction is possible if we adopt

the so-called Weitzenböck connection ∇W on a Riemann-Cartan space. As indicated early,

such a spacetime was considered by Einstein [13], who had unified theory concerns, and

later it was developed into a type called teleparallel equivalent to general relativity (TEGR).

The Lagrangian is in a special form such that it is almost equivalent to GR in every aspect.

TEGR is equivalent to GR in the field equations and the matter evolution so that they

cannot be told from the dynamics. One distinction between TEGR and GR is the local

Lorentz violation at the Lagrangian level [39], i.e, TEGR does not respect local Lorentz
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transformation. However such local Lorentz violation terms appear in the form of an

exact differential such that it can be regarded as a boundary term were we in a closed

manifold. In any case this term does not affect the field equations such that it gives the

same action as GR, which is what we meant by “almost equivalent”. We also give an

account from bundle formalism why such violation occurs. In Chapter 4, we shall provide

more discussions.

As is known, there exists another type of modified gravity theory called extra dimension

theory that consists of a higher dimensional spacetime (called bulk, generally higher than

four) and a 4-dimensional submanifold as our living space(-time). The five dimension

gravity generally induces gravity on the four-dimensional spacetime along with a type of

force. First extra dimension theory that unifies electromagnetism and gravitation was

initiated by Nordström [40] around 1914 as well as Kaluza [41] and Klein [42], known as the

KK theory. In KK theory, electromagnetic field is from the projection of five-dimensional

spacetime whose fibre is a small circle S1 ∼= U(1). It is usually used to explain the hierarchy

problems with the effective Planck scale in 4-dimension by dimensional reduction. There

is another type of extra dimension theory called large extra dimension or ADD model,

proposed by Arkani-Hamed, Dimopoulos and Dvali [43] in 1998. It was proposed to explain

why gravity is so weak compared to other forces. The ADD theory assumes that the fields

of the Standard Model are confined on the 4-dimensional membrane, with only gravity

being able to propagate through the large extra dimension that is spatial. Thus it is also

referred to as the braneworld theory.

We construct the extra dimension theory for TEGR gravity [44],[45]. In order to

build such theory, it is necessary to search for the torsion relations between the brane

and the bulk mimicking the Gauss-Codacci equation. In general, such relations could be

complicated in component form. Thus we adopt differential forms to reduce the large

amount of computation and to serve as a rigorous tool. In the construction, we keep

our geometric setting as general as possible to contain branworld theory and KK theory

under the same geometric framework. Some of the aspects have been explored in the

literature [46, 47, 48, 49, 50], which can be compared with our results. In the end, we

utilize our extra dimension theory for TEGR for FLRW cosmology as an application and

derive a result consistent with GR.
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Poincaré Gauge Gravity Theory

. . . It is possible that ECT will prove to be a better classical limit of a future

quantum theory of gravitation than the theory without torsion.

– A. Trautman

Poincaré Gauge Theory for gravity (PGT) is a theory that incorporates gravity as a

gauge theory of the Poincaré group P = R1,3 o SO(1, 3). To develop such a theory, one

needs to find an ambient space where both theories cooperate.

Recall that to describe (local) gauge symmetry, one requires gauge invariance of an

internal group G, that is a Lie group, and the covariant transition induced by an external

group of diffeomorphisms Diff(M) between two observers of spacetime, and hence such

a theory must be based on a 4-dimensional Lorentzian manifold. For a gauge theory

modelled on a spacetime, a principal fibre bundle is then a natural candidate. For example,

electromagnetism of U(1) symmetry can be formulated on a U(1)-principal bundle.

Therefore one finds that the best suited mathematical theory that depicts PGT is the

principal fibre bundle theory. Below we mainly follow the treatment of [21], [51], [52],

[53], [54], and [55] in principal fibre bundle theory to provide essential bundle material to

clearly address PGT.

2.1 Preliminaries and Notations

2.1.1 Geometric construction of PGT

Definition 1. (Principal G-bundle)

5



6 2. POINCARÉ GAUGE GRAVITY THEORY

Let G be a Lie group. A principal G-bundle consists of a pair of differentiable manifolds

P called the total space and M called base manifold with a differentiable (surjective)

projection π : P →M and an action of G on P such that

1. For every g ∈ G, there exists a diffeomorphism Rg : P → P such that Rg1g2(p) =

Rg2 ◦ Rg1(p) for all g1, g2 ∈ G and p ∈ P . And if e ∈ G is the identity element,

then Re(p) = p for all p ∈ P . We also require the group action of G acts freely on

P , (p, g) ∈ P ×G 7→ Rg(P ) ∈ P such that Rg(p) 6= p for all g 6= e. We also write

Rg(p) = pg.

The action of G on P then defines an equivalence relation. Define p ∼ q for p, q ∈ P

⇔ if there exists g ∈ G such that p = qg.

2. M is the quotient space of the equivalence relation ∼ induced by G, M = P/G.

Hence π−1(π(p)) = {pg|g ∈ G} (the orbit of G through p). If x ∈M , then π−1(x) is

called the fibre above x.

3. P is locally trivial. For each x ∈ M , there exists an open set U containing x and

a diffeomorphism TU : π−1(U)→ U ×G such that TU(p) = (π(p), ψU(p)) satisfying

ψ(pg) = ψ(p)g for all g ∈ G. The map TU is called a a local trivialization or a

choice of gauge (in physics language).

In practice the base manifold M corresponds to the 4-dimensional spacetime in consid-

eration, while for all p ∈ π−1(x) there exists a map G → π−1(x) by g 7→ pg, which is a

diffeomorphism depending on p. Thus all fibres π−1(x) for x ∈ M are isomorphic to G

called the internal (symmetry) group or gauge group.

A principal G-bundle provides a space for phase factors, see [56], while a connection

on P yields a gauge potential in physics language, which we denote

Definition 2. Let g be the Lie algebra of G. A connection is a g-valued 1-form ω on P ,

denoted by Λ1(P ; g) := Λ1(P )⊗ g, such that

1. Let A ∈ g, define the fundamental vector field corresponding to A on P by

A∗p :=
d

dt
(p exp(tA))

∣∣∣∣
t=0

(2.1)

then we require ωp(A
∗
p) = A.
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2. For g ∈ G, let adg : g→ g be the associated adjoint map1. We require ωpg(Rg∗Xp) =

adg−1ωp(Xp) for all g ∈ G, p ∈ P and X ∈ TP a vector field on P . i.e, R∗gω = adg−1ω

On a principal fibre bundle P , the notion of vertical is already distinguished by the

projection π : P →M , specifically if w ∈ TpP , a vector on P , is vertical if π∗(w) = 0. In

contrast, for the notion of horizontal we need extra structure to specify it. A connection

ω on P essentially tells us what vector is horizontal, defined by ω(v) = 0 if v ∈ TpP .

Therefore given a connection 1-form ω on (P, π,M,G), we may decompose a vector field

w ∈ TpP as w = wV + wH such that wV is vertical π∗(w
V ) = 0 and wH is horizontal

ω(wH) = 0.

With the technical definitions above, we can then describe gravitational gauge theories.

We recall that Einstein’s general relativity can be reformulated on the following principal

bundle whose structure group is SO(1, 3),

Definition 3. (Linear frame bundle)

Let M be a 4-dim Lorentz manifold (spacetime). Define a generalized frame (a

generalized observer) at x ∈ M to be a linear isomorphism u : R1,3 → TxM , and

thus {u(e0), . . . , u(e3)} ∈ TxM is a basis for TxM (not necessarily orthonormal), where

e0, . . . , e3 is the canonical basis of the Minkowski spacetime R1,3. Let Lx(M) := {ux :

R1,3 → TxM a isomorphism} be the set of all generalized observers at x ∈M . Define the

set

L(M) :=
⋃
x∈M

Lx(M) (2.2)

with π(ux) := x for ux ∈ Lx(M),, and the action of GL(R1,3) on L(M) by RA : L(M)→

L(M) with RA(ux) := ux ◦ A for A ∈ GL(R1,3). Equipped with a suitable differentiable

structure on L(M), one verifies that (L(M), π,M,GL(R1,3) is a principal fibre bundle

called the linear frame bundle.

One sees that if ux is an observer at x, then the right action RA, A ∈ GL(R1,3), brings

it from one frame to another. Furthermore, on a semi-Riemannian2 spacetime (M, g) we

1The associated adjoint map adg : g→ g is defined as the differential map of Adg : G→ G at e ∈ G,

where Adg(h) := ghg−1. Specifically, let a ∈ g find a local curve t 7→ c(t) on G such that c(0) = e,

c′(0) = a, then define adg(a) = d
dt

(
g c(t)g−1

)∣∣∣
t=0

2The Semi-Riemannian geometry denotes a differentiable manifold M and a Lorentz metric g that has

one negative signature.
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can consider an orthonormal frame (or tetrad) ux ∈ Lx(M) at x ∈ M such that the

g(ux(v), ux(w)) = 〈v, w〉R1,3 for all v, w ∈ R1,3. An orthonormal frame then corresponds to

an observer in the usual physical sense. We can further define an orthonormal frame

bundle.

Definition 4. (Orthonormal frame bundle)

Let Fx(M) := {ux ∈ Lx(M) | g ◦ ux = 〈·, ·〉R1,3} be the set of all orthonormal frames.

Define the set

F (M) :=
⋃
x∈M

Fx(M) (2.3)

with π : F (M) → M by π(ux) = x for ux ∈ Fx(M), and the right action of G = O(1, 3)

by RA(ux) = ux ◦ A for A ∈ O(1, 3). With the differential structure induced from L(M),

one can verify that F (M) is also a principal fibre bundle called the orthonormal frame

bundle.

Since we know that the hyper-rotation group

O(1, 3) := {A ∈ GL(R1,3) | 〈Av,Aw〉R1,3 = 〈v, w〉R1,3}

where 〈·, ·〉R1,3 is the Lorentzian inner product of Minkowski spacetime, has 4 components:

L↑+ := {B ∈ O(1, 3) | detB = 1, B0
0 ≥ 1},

L↑− := {B ∈ O(1, 3) | detB = −1, B0
0 ≥ 1}

L↓+ := {B ∈ O(1, 3) | detB = 1, B0
0 ≤ −1},

L↓− := {B ∈ O(1, 3) | detB = −1, B0
0 ≤ −1}

(2.4)

where the connected component L↑+ is usually referred as the Lorentz group SO(1, 3). It

follows that F (M) can contain up to 4 components in general. If we assume F (M) has

4 components for simplicity, then the base manifold (spacetime) M is then called space

and time orientable. A choice of one component for F (M) corresponds to a space

and time orientation. Let F0(M) be such a choice, then the principal fibre bundle

(F0(M), π,M, SO(1, 3)) describes a spacetime with Lorentz gauge covariance. Since the

fibre bundle (F0(M), π,M, SO(1, 3)) construction is canonical whenever M exists, we

conclude that Einstein’s general relativity has local Lorentz gauge freedom.

So far, we have established the living space for gauge gravitational theories, yet we

do not have notion of curvature or shape for P at this moment. Curvature is the core
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of general relativity in the sense that it is responsible for the gravitational force one

perceives but one should emphasize that curvature is not a property pertaining to a

spacetime. In the theory of General Relativity in 1915, Einstein adopted the unique

Levi-Civita (Riemannian) connection for defining curvature of a spacetime. The following

reformulation of the Levi-Civita connection on a linear frame bundle equivalent to the one

in general GR textbooks is helpful for PGT generalization later. We begin with defining

curvature

Definition 5. If ψ ∈ Λk(P, V ), then we define ψH ∈ Λk(P, V ) by ψH(X1, . . . , Xk) :=

ψ(XH
1 , . . . , X

H
k ), where Xi ∈ TP .

Definition 6. (Exterior covariant derivative)

If ψ ∈ Λk(P, V ), then we define Dωψ := (dψ)H ∈ Λk+1(P, V ) with respect to the

connection ω.

With the exterior covariant derivative in particular for V = g of G, we can define the

notion of curvature on a principal fibre bundle.

Definition 7. (Curvature of a connection)

If ω is a connection 1-form on P , the curvature of the connection is defined as the

2-form Ωω := Dωω ∈ Λ2(P, g).

In terms of physics context, ω is referred to as the gauge potential and Ωω is the

field strength (corresponding to ω). The following form is usually more familiar in the

physics literature than Definition (7).

Theorem 1. If G is a matrix group, then the curvature 2-form can be expressed by

Ωω = dω + ω ∧ ω (2.5)

where ω is regarded as a matrix in g with each entry a real-valued 1-form ωµ
ν ∈ Λ1(P,R),
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write ω =



ω1
1 ω1

2 · · · ω1
n

ω2
1 ω2

2 · · · ω2
n

...
...

. . .
...

ωn
1 ωn

2 · · · ωn
n


and the wedge ω ∧ ω is defined as



ω1
1 ω1

2 · · · ω1
n

ω2
1 ω2

2 · · · ω2
n

...
...

. . .
...

ωn
1 ωn

2 · · · ωn
n


∧



ω1
1 ω1

2 · · · ω1
n

ω2
1 ω2

2 · · · ω2
n

...
...

. . .
...

ωn
1 ωn

2 · · · ωn
n


=



ω1
k ∧ ωk1 ω1

k ∧ ωk2 · · · ω1
k ∧ ωkn

ω2
k ∧ ωk1 ω2

k ∧ ωk2 · · · ω2
k ∧ ωkn

...
...

. . .
...

ωn
k ∧ ωk1 ωn

k ∧ ωk2 · · · ωn
k ∧ ωkn


(2.6)

In the case of a linear frame bundle L(M), (2.5) leads to the usual definition of

the curvature tensor on a Riemannian manifold (M, g,∇) by pullback of local sections

σUi : Ui ⊆M → L(M), given by

R(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z (2.7)

for X, Y, Z ∈ X(M), the collection of all C∞-vector fields. In particular, the curvature

2-from (2.5) reduces to the Faraday tensor Fµν = Aµ,ν − Aµ,ν for G = U(1) an Abelian

group,

Ωω
U = dωU :=

1

i
d(Aµ dx

µ) =
1

i
dAµ ∧ dxµ =

1

i
(Aν,µ − Aµ,ν)dxµ ∧ dxν

where ωU := σ∗Uω := 1
i
Aµ dx

µ ∈ Λ(U, u(1) ∼= iR) is a local 1-form on U ⊆M pulled back

by a local section σU : U ⊂ M → L(M). As for the particle force where G = SU(2) is

non-Abelian, the field strength (2.5) applies to see non-linear dependence on the gauge

potential ωµ as in the case of PGT. We are ready for introducing torsion, which appears

as another field strength in the PGT as we explain later.

Definition 8. (The canonical 1-form, the soldering form)

For a generalized observer u ∈ L(M), define the canonical 1-form ϕ ∈ Λ1(L(M),R1,3)

by ϕ(Xu) := u−1(π∗(Xu)), where X ∈ TL(M) is a vector field on L(M) and u−1 : TxM →

R1,3 is the inverse map of the linear isomorphism u. The restricted canonical 1-form on

F (M) is defined similarly on F (M), which is denoted by the same notation ϕ.

In order to describe the interaction between the external symmetry of the spacetime

and the internal symmetry of the gauge, a representation of G is needed. Recall that a
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representation of a group G on a vector space V is a group homomorphism ρ : G→ GL(V )

such that ρ(gh) = ρ(g) · ρ(h) for all g, h ∈ G. With a representation of a Lie group G, a

fundamental object is defined:

Definition 9. (Basic differential forms)

Let V be a vector space and Λ
k
(P, V ) be a space of basic differential k-forms on

P such that, for a given representation ρ : G → GL(V ), it is both G-invariant and

horizontal:

1. (G-invariant) For α ∈ Λ
k
(P, V ), X1, . . . , Xk ∈ TpP , p ∈ P , we have,

α(Rg∗X1, . . . , Rg∗Xk) = ρ(g−1) · α(X1, . . . , Xk) or R∗gα = ρ(g−1) · α, (2.8)

2. (horizontal) If one of X1, . . . , Xk is vertical, then α(X1, . . . , Xk) = 0.

with the definitions above, immediately one finds a fact that the canonical 1-form ϕ is

a basic differential 1-form with respect to the representation ρ : O(1, 3)→ GL(R1,3). The

exterior covariant derivative of basic differential forms are defined similarly:

Definition 10. (Exterior covariant derivative of Λ
k
(P, V ) )

Given a connection ω on P , with respect to the adjoint representation V = g, ρ : G→

GL(V ) by g 7→ ρ(g) = adg. We define

Dω : Λ
k
(P, V )→ Λ

k+1
(P, V ), by Dωψ := (dψ)H (2.9)

one can easily see that Dωψ satisfies (2.8) since

R∗gD
ωψ = R∗g(dψ)H = (R∗gdψ)H = (dR∗gψ)H = adg−1 · (dψ)H = adg−1 ·Dωψ

Similarly, the exterior covariant derivative of Λ
k
(P, V ) has another form.

Theorem 2. For ψ ∈ Λ
k
(P, V ), we have Dωψ = dψ + ω∧̇ψ.

where the notation ψ ∈ Λ
k
(P, V ) is defined as

α∧̇ψ(X1, . . . , Xj, Xj+1, . . . , Xj+k) :=
1

j!k!

∑
σ

ρ∗
Ä
α
Ä
Xσ(1), . . . , Xσ(j)

ää
·α
Ä
Xσ(j+1), . . . , Xσ(j+k)

ä
for α ∈ Λ

j
(P, g) and σ is a permutation of {1, . . . , j + k}. Finally, we may present the

notion of torsion stemming from the canonical 1-form ϕ of the frame bundle F (M).
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Definition 11. (Torsion 2-form)

The torsion 2-form of ω is defined by Θω := Dωϕ ∈ Λ
2
(F (M),R1,3), where ϕ is the

canonical 1-form on F (M) and ω is a connection ω given on F (M).

Therefore by Theorem. (2) one has

Θω := Dωϕ = dϕ+ ω∧̇ϕ (2.10)

In particular, Riemannian geometry describing GR is of one special case

Theorem 3. (Levi-Civita connection)

On the orthonormal frame bundle F (M), there exists a unique connection ω̃ ∈

Λ1(F (M), so(1, 3)) such that ω̃ has vanishing torsion, Dω̃ϕ = 0, which is called the

Levi-Civita connection.

The above bundle tools contain minimal geometric conception for us to understand

PGT theory as a whole. From this viewpoint, GR can be reformulated on the frame

bundle π : F (M)→M . Below is a dictionary of terminology between general principal

fibre bundles and gauge theories, see [53], [56], and [57]:

Principal fibre bundle theory Gauge theory

total space P space of phase factors

base space M spacetime

structure group G gauge group

local section σ local gauge

connection 1-form ω gauge potential

curvature 2-form Ω field strength

With the bundle tools above, we can start to explore the Poincaré gauge theory of

gravitation.

2.2 Poincaré gauge theory on the affine frame bundle

A(M)

PGT is, by definition, a gauge gravity theory of the Poincaré group P = R1,3 o SO(1, 3).

Since we have seen that GR can be formulated by the frame bundle (F (M), π,M, SO(1, 3), ω̃),
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one may ask what is the suitable bundle description for PGT? That is we intend to find a

principal bundle (P, π,M,G) with G = R1,3 o SO(1, 3).

Of course, we may just assume that such a fibre bundle exists. However, we want to

search for a natural construction like the frame bundle L(M) in Definition (3). Recall

that the Poincaré group P is the semidirect product of translations in Minkowski R1,3

and hyper-rotations SO(1, 3), defined by all rigid motion of the Minkowski spacetime R1,3.

Analyzing the Poincaré group helps us to construct the PGT, [58].

Definition 12. (Affine space)

If E is an affine space with a vector space V as the space of translations. We require

that V acts freely and transitively on E. By this we mean:

• (freely) for p ∈ E and v ∈ V , if v + p = p ⇔ v = 0,

• (transitively) for all p, q ∈ E, there exists v ∈ V such that p+ v = q.

If E1, E2 are two affine spaces, V1 and V2 are their groups of translations respectively,

then the map f : E1 → E2 is called an affine map if there exists a linear map β : V1 → V2

such that f(v + p) = βf (v) + f(p) for all v ∈ V , p ∈ E. In particular, if E1 = E2 = E we

define the affine group GA(E) of E by

GA(E) := {f : E → E| f is a bijective affine map}

then we have an exact sequence from the above,

0 // V
α // GA(E)

β
// GL(V ) // 1 (2.11)

in the sense that Imα = Ker β, which indicates that GA(E) splits into a semi-direct

product GA(E) = V o GL(V ). Thus if we take V = R1,3, one obtains GA(R1,3) =

R1,3 o GL(R1,3) ⊃ P, all rigid motion of the Minkowski space R1,3, including Lorentz

group SO(1, 3), parity transformation, time reversal and translation.

Let M be the spacetime. If we regard R1,3 as an affine space A1,3 and also the tangent

space TxM at x ∈ M as another affine space AxM (tangent affine space). Then

elements in AxM are of the form ū = (p, u(e0), . . . , u(e3)) ∈ AxM , where p ∈ AxM ,

{e0, . . . , e3} is the standard basis for R1,3, with u : R1,3 → TxM a linear isomorphism such

that {u(e0), . . . , u(e3)} forms a vector basis for TxM . One can then identify an element

ū ∈ AxM as an affine transformation ũ : A1,3 → AxM by

ũ(0; e0, . . . , e3) := (p, u(e0), . . . , u(e3)) ∈ AxM,
Ä
(0; e0, . . . , e3) ∈ A1,3

ä
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Denote AxM := {ũ = (p, u) | ũ : A1,3 → AxM, an affine transformation}. Then there is a

1-1 correspondence of ū ∈ AxM
1−1←→ ũ ∈ AxM such that we can identity AxM ∼= AxM .

As a comparison,

a linear frame u ∈ FxM ⇔ u : R1,3 → TxM ( u linear isomorphism)

an affine frame ũ ∈ AxM ⇔ ũ : A1,3 → AxM ( ũ affine transformation)

If we define the set A(M) :=
⋃
x∈M AxM and Rg : A(M) → A(M) the right action

of the gauge group GA(R1,3) = {g = (A, ξ)| A ∈ GL(R1,3), ξ ∈ R1,3} on A(M) by

R(A,ξ)(p, u) := (p+ u · ξ, u ◦A), where (p, u) ∈ AxM and (A, ξ) ∈ GA(R1,3), and define the

projection map π̃ : A(M)→M by π̃(p, u) := x for all affine frames (p, u) at x ∈M . Then

with proper differential structure on A(M), one can prove that (A(M), π̃,M,GA(R1,3))

forms a principal fibre bundle called the affine frame bundle, [20], [52]. Such is the

living space of the PGT. Since we want to study the relationship between the PGT and

GR, we should investigate the connection between A(M) and L(M). Recall that we have

the exact sequence (2.11) where

α : R1,3 → GA(R1,3) by α(ξ) :=

Ö
I4×4 ξ

0 1

è
β : GA(R1,3)→ GL(R1,3) by β

ÖÖ
A ξ

0 1

èè
:= A

γ : GL(R1,3)→ GA(R1,3) by γ(A) :=

Ö
A 0

0 1

è
and thus β ◦ γ = Id on GL(R1,3). Corresponding to the homomorphisms α, β, γ , we

define a natural projection β : A(M)→ L(M) by β(p, u) := u and γ : L(M)→ A(M) by

γ(u) := (0, u) so that β ◦ γ = Id on L(M). A connection ω̃ defined on the affine frame

bundle π̃ : A(M)→M is called a generalized affine connection. Taking V = R1,3 in

the exact sequence (2.11) results in the splitting exact sequence of Lie algebras:

0 // R1,3 // ga(R1,3) // gl(R1,3) // 1 (2.12)

so that we obtain a decomposition of the Lie algebra ga(R1,3) = gl(R1,3)⊕ R1,3.

Thus for a generalized affine connection ω̃, the pull-back γ∗ω̃ ∈ Λ1(L(M), ga(R1,3))

can be decomposed into two 1-forms

γ∗ω̃ = ω ⊕ ψ (2.13)
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according to their Lie-algebra value such that ω ∈ Λ1(L(M), gl(R1,3)) and ψ ∈ Λ
1
(L(M),R1,3).

In fact, by a theorem in [52], it turns out that ω defines a connection on L(M). While from

another theorem of McInnes, there is a 1 : 1 correspondence between an affine connection

and a linear connection

ω̃
1−1←→ (ω, ψ). (2.14)

In summary, one has

Theorem 4. (Kobayashi& Nomizu, [52])

Let ω̃ be a generalized affine connection on (A(M), π̃,M,GA(R1,3)) with the decomposi-

tion (2.13), then the affine curvature 2-form ‹Ωω ∈ Λ(A(M), ga(R1,3)) has the decomposition

γ∗‹Ωω̃ = Ωω +Dωψ (2.15)

where the covariant derivative Dω is defined by ω on L(M).

In particular, if a generalized affine connection ω̃ coincidentally has the form

γ∗ω̃ = ω ⊕ ϕ (2.16)

such that the R1,3 Lie-algebra valued component ϕ is the canonical 1-form in Definition. 8,

then we call such a connection ω̃ an affine connection (c.f. generalized affine connection).

Thus by (2.15), we see that an affine connection ω̃ on A(M) yields

γ∗‹Ωω = Ωω + Θω (2.17)

affine curvature = spacetime curvature + torsion

where Θω is the torsion form on L(M) as given by Θω := Dωϕ in (2.10). This shows

that on the affine frame bundle (A(M), π̃,M,GA(R1,3), ω̃) where ω̃ is an affine connection,

the curvature and torsion of spacetime on M are united as one affine curvature ‹Ωω. In

other words, the affine curvature ‹Ωω splits into curvature Ω and torsion Θω on the (base)

spacetime M . This is reminiscent of a quotation in [20]:

“This removes the objection that torsion is a feature of space-time structure which has

no analogue in gauge theory.”

To understand the above statement more clearly, we remark that, for example, one

can define the curvature 2-form Ωω of the U(1)-bundle (P, π,M,U(1), ω = 1
i
Aµ dx

µ) for

Maxwell’s electrodynamics, called the electromagnetic field strength F = dω . But one
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cannot define the torsion of the electromagnetic potential Aµ. Similarly, one cannot speak

of the torsion of the SU(n)-gauge field. What makes gravity special is exactly the existence

of the canonical 1-form ϕ in L(M), Definition 8. However, from the viewpoint of bundles

torsion is nothing more than a byproduct of the specific group P used.

Here, one can raise a näıve question as a summary for this section:

Why is Poincaré gauge gravity theory (PGT) naturally related to gravity

with torsion?

The answer is the following:

Since the gauging of the Poincaré group P into gravity theory necessarily leads to the

affine frame bundle (A(M), π̃,M,GA(R1,3), ω̃), and an affine connection ω̃ on A(M) is

pulled back naturally on the frame bundle L(M) by γ such that it results in the splitting

(2.16) according to the Lie-algebra, and thus the affine curvature splits accordingly by

(2.17), hence the torsion and the curvature on the spacetime.

In fact, if we require the PGT to be the bundle defined by (P(M), π̃,M,P , ω̃) with

structure group, called the Poincaré bundle as P, then we will need to reduce from

(A(M), π̃,M,GA(R1,3)) to the Poincaré bundle. However such a reduction is a delicate

issue, which is beyond our scope, see [20]. Thus in the following discussion, we assume the

Poincaré bundle as P exists as a sub-bundle of (A(M), π̃,M,GA(R1,3))

The above bundle construction clearly describes the gauge scenario for PGT. However,

when we project from the total bundle space P(M) to the spacetime M , the resultant field

strength we observe on M is simply curvature and torsion. Thus for most PGT theorists,

their actual computation does not involve the bundle formulation, except that it provides

a clear account of gauging gravity. Rather, one can only regard the projected version of

the spacetime with torsion and curvature, namely (M, g,∇) with ∇ a general connection

compatible to g on M , and such a local version on M is what we introduce next.

2.3 Riemann-Cartan geometry

Given a semi-Riemannian spacetime (M, g), GR is formulated on the tuple (M, g, ∇̃)

where ∇̃ is the Levi-Civita connection. If one considers a general connection ∇, then

(M, g,∇) is called a metric-affine spacetime, which can be regarded as the most general

spacetime under the framework of differentiable geometry. Here a general connection
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∇ : X(M)× X(M)→ X(M) on M is an operator such that [54],

∇fX+gYZ = f∇XZ + g∇YZ

∇X(Y + Z) = ∇XY +∇XZ

∇X(fY ) = f∇XY +X(f)Y

(2.18)

where X, Y, Z ∈ X(M), f, g ∈ C∞(M). With a connection, one can then define the torsion

tensor and the curvature tensor by [54],

Definition 13. (Curvature tensor and torsion tensor)

The Riemann curvature tensor R(·, ·) : X(M)× X(M)× X(M)→ X(M) and the

torsion tensor T (·, ·) : X(M)× X(M)→ X(M) of ∇ are defined by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

T (X, Y )Z = ∇XY −∇YX − [X, Y ]
(2.19)

for all X, Y, Z ∈ X(M).

Notice that on a metric-affine spacetime (M, g,∇) one does not have to place the

condition of metric compatibility (or metricity) constrained by

d (g(X, Y )) = g (∇X, Y ) + g (X,∇Y ) (2.20)

which is equivalent to a usual coordinate form gαβ,µ = Γµα
ν gνβ + Γµβ

ν gνα by taking

coordinate vector fields X = ∂
∂xα

, Y = ∂
∂xβ

, and Z = ∂
∂xµ

in (2.20).

Definition 14. (Riemann-Cartan spacetime, underlying space of PGT)

The tuple (M, g,∇) with a metric compatible (2.20) connection ∇ on M is called the

Riemann-Cartan spacetime, which is the underlying space of PGT, [12].

The Definition (14) of PGT is equivalent to the version of bundle formulation. That is

(M, g,∇) ⇔ (P(M), π̃,M,P , ω̃). However, this requires some steps which we now explain.

Starting from the Poincaré bundle (P(M), π̃,M,P , ω̃), to obtain curvature and torsion

defined on M , one requires a local section.

Let U ⊆M be an open neighborhood in M and σU : U → F (M) be a local (smooth)

section on U , a C∞-map such that π ◦ σU = IdU . With the given local section σU on

U ⊆M , equivalent to choosing an observer, we derive a locally defined curvature 2-form

on U from the Poincaré bundle (P(M), π̃,M,P , ω̃) via

σ∗UΩω (2.5)
= σ∗U (dω + ω∧̇ω) = d(σ∗Uω) + (σ∗Uω)∧̇(σ∗Uω)

σ∗UΘω (2.10)
= σ∗U (dϕ+ ω∧̇ϕ) = d(σ∗Uϕ) + (σ∗Uω)∧̇(σ∗Uϕ)

(2.21)
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if we denote ΩU := σ∗UΩω ∈ Λ2(U, so(1, 3)), TU := σ∗UΘω ∈ Λ2(U,R1,3), ωU := σ∗Uω ∈

Λ1(U, so(1, 3)), and ϑU := σ∗Uϕ ∈ Λ1(U,R1,3), then we can rewrite the above as

ΩU = dωU + ωU ∧ ωU ∈ Λ2(U, so(1, 3))

TU = dϑU + ωU ∧ ϑU ∈ Λ2(U,R1,3)
(2.22)

so that we return to the case in (2.6), where the Lie group is a matrix group. If we omit

the sub-index U for simplicity without confusion and write

Ω = ΩβαEαβ, T = Tα ẽα,

ω = ωαβ Eαβ, ϑ = ϑα ẽα,
(2.23)

where {ẽα ∈ R1,3} are the standard basis of the Minkowski spacetime and {Eαβ ∈ so(1, 3)}

is a basis of the Lie algebra so(1, 3) with α, β, . . . = 0, 1, 2, 3. Notice that since the

Lie-algebra basis Eαβ = −Eβα is anti-symmetric so that Ωβα = −Ωαβ and ωβα = −ωαβ is

anti-symmetric in the indices α and β. One also remarks that the indices of Ωαβ, ωα
β, T β,

. . . , etc. have nothing to do with the spacetime index or coordinate. i.e, one cannot say

Tα is a 1-tensor or ωα
β is a 2-tensor simply by judging from the number of indices.

With the basis expansion (2.23), one may further rewrite (2.22) with (2.6) in a usual

form recognizable in several references [11], [12]

Ωβ
α = ∇ωαβ = dωα

β + ωγ
β ∧ ωαγ =

1

2
Rβ

αµν ϑ
µ ∧ ϑν ,

Tα = ∇ϑα = dϑα + ωβ
α ∧ ϑβ =

1

2
Tµν

α ϑµ ∧ ϑν ,
(2.24)

both the last equalities may be verified via the relationships:

Ωβ
α(X, Y ) = ϑβ (R(X, Y )eα) , Tα(X, Y ) = ϑα (T (X, Y )) , or

Ωβα(X, Y ) = g (R(X, Y )eα, eβ) , Tα(X, Y ) = g((T (X, Y ), eα)
(2.25)

where eα = σ(x)(ẽα) ∈ X(M) is an orthonormal basis (tetrad) induced by the section σ,

X, Y ∈ X(M) and R(eµ, eν)eγ := Rσ
γµν eσ, T (eµ, eν) := Tµν

σ eσ are defined by (2.19). One

can also verify the following useful identities by direct computations, [52]:

∇Tα = Ωα
β ∧ ϑβ, (1st Bianchi), ∇Ωαβ = 0, (2nd Bianchi) (2.26)

Also the requirement of the metricity condition (2.20) in a tetrad eα is written as

0 = ωα
µ ηµβ + ωβ

µ ηµα, ωαβ = −ωβα (2.27)
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where ηαβ := g(eα, eβ) and in the last line we denote ωαβ := ωα
µ ηµβ for simplicity. Here

we remark that the connection 1-form ωα
β ∈ Λ1(M,R) is as equivalently defined by

∇eα := ωα
β eβ.

In summary, if we pullback from (A(M), π̃, GA(R1,3), ω̃), the underlying space of PGT,

to the spacetime M , the resultant elements are (M, g,∇, ϑα) with ϕ ⇔ ϑα a tetrad as

the R1,3-gauge potential for translation and ∇ ⇔ ωα
β as the so(1, 3)-gauge potential for

rotations satisfying (2.27), called Riemann-Cartan spacetime,[9]. The two field strength

torsion and curvature (Ωα
β, T

β) of ∇ are given by (2.24). Below we write the geometric

correspondence of the PGT in gauge theoretic language (c.f. [11], [12]):

PGT translational R1,3 rotational SO(1, 3)

gauge potentials (on L(M)) ϕ ω

gauge potentials (on M) ϑα ωα
β

field strengths (on L(M)) Θω = Dωϕ Ωω = Dωω

field strengths (on M) Tα = ∇ϑα Ωβ
α = ∇ωαβ

2.3.1 Changes of frames

It is important to study changes of frames under different observers in spacetime. Some

gauge quantities may change correspondingly under the transition and here we wish to

give a clear view.

In the definition of a principal fibre bundle P , it is defined to have a local trivialization

on TU : π−1(U) ⊆ P → U × G such that TU(p) = (π(p), ψU(p)) with ψU : π−1(U) → G

satisfying ψU(pg) = ψU(p) · g for all p ∈ π−1(U), g ∈ G.

One can then define the transition function on the overlap

Definition 15. (Transition function)

Let U , V be two open sets in M such that U ∩ V 6= φ, and let TU : π−1(U)→ U ×G

and TV : π−1(V )→ V ×G be two local trivializations of a principal bundle (P, π,M,G).

Then the transition function from TU to TV is defined as the map ΨUV : U ∩V → P by

ΨUV (x) := ψU(p)ψV (p)−1, (2.28)

where p ∈ P , x ∈M such that π(p) = x and ψV (p)−1 denotes the group inverse, not the

functional inverse.
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The definition of the transition function is well-defined since if p, q ∈ π−1(U) (p = qg

for some g ∈ G), then ψU(qg)ψV (qg)−1 = ψU(q)ψV (q)−1. For the transition function it is

easy to verify that it possesses the following properties

Proposition 1. The transition function ΨUV satisfies,

ΨUU(y) = e, (∀y ∈ U)

ΨUV (y) = Ψ−1
V U(y), (∀y ∈ U ∩ V )

ΨUV (y) ·ΨVW (y) ·ΨWU(y) = e (∀y ∈ U ∩ V ∩W )

(2.29)

The change of the two frames is equivalent to the transition between two sections.

Proposition 2. Let TU : π−1(U) → U × G and TV : π−1(V ) → V × G be two local

trivializations of P as given above, one can define a section σU : U → P associated to the

trivialization TU given by σU(x) := T−1
U (x, e), along with σV : V → P similarly defined.

For Y ∈ TxM , we have

σV ∗(Yx) =
[
LΨ−1

UV (x)∗ (ΨUV ∗(Yx))
]∗
σV (x)

+RΨUV (x)∗ ◦ σU∗(Yx) (2.30)

Proof. First we notice that since σU(x) = T−1
U (x, e) we have TU(σU(x) g) = (x, g), in

particular TU(σU(x)) = (x, e) = (π(σU(x)), ψU(σU(x))). Thus we find ψU(σU(x)) = e for

all x ∈ π−1(U). Now let γ : R→M be a curve such that γ(0) = x and γ′(0) = Y , then

σV ∗(Yx) :=
d

dt

∣∣∣∣
t=0

σV (γ(t)) =
d

dt
[σU(γ(t)) ΨUV (γ(t))]

=
d

dt

∣∣∣∣
t=0

[σU(x) ΨUV (γ(t))] +
d

dt

∣∣∣∣
t=0

[σU(γ(t)) ΨUV (x)]

=
d

dt

∣∣∣∣
t=0

î
σV (x) Ψ−1

UV (x) ΨUV (γ(t))
ó

+RΨUV (x)∗σUx(Yx)

(2.31)

where we have used ΨV U(x) = Ψ−1
UV (x) = ψV (x) · ψ−1

U (x). If we define a curve α in G by

α(t) := Ψ−1
UV (x) ΨUV (γ(t)), we find α(0) = e and

α′(0) :=
d

dt

∣∣∣∣
t=0

Ä
Ψ−1
UV (x) ΨUV (γ(t))

ä
= LΨ−1

UV (x)∗ (ΨUV ∗(Yx)) ∈ g

Then we may write α(t) = etA with A := LΨ−1
UV (x)∗ (ΨUV ∗(Yx)) ∈ g and the first term in

the last equality of (2.30) becomes

d

dt

∣∣∣∣
t=0

Ä
σV (x) Ψ−1

UV (x) ΨUV (γ(t))
ä

=
d

dt

∣∣∣∣
t=0

Ä
σV (x) · etA

ä
:=
[
LΨ−1

UV (x)∗ (ΨUV ∗(Yx))
]∗
σV (x)

where the last equality is due to (2.1).
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With the proposition above, we have

Corollary 1. On the frame bundle (L(M), π,M,GL(R1,3), ω), let σU : U → L(M),

σV : V → L(M) be two local sections corresponding to the local trivializations TU and

TV respectively. For the canonical 1-form ϕ ∈ Λ
1
(L(M),R1,3) and torsion 2-form Θω ∈

Λ
2
(L(M),R1,3) with canonical representation ρ : GL(R1,3) → GL(4,R) and Yx ∈ TxM

one has following local forms σ∗Uϕ ∈ Λ1(U,R1,3), σ∗UΘω ∈ Λ2(U,R1,3), σ∗V ϕ ∈ Λ1(V,R1,3),

and σ∗V Θω ∈ Λ2(V,R1,3) and they are related by

(σ∗V ϕ)(Yx) = ϕ(σV ∗Yx) = (ΨUV (x))−1 · (σ∗Uϕ)(Yx)

(σ∗V Θω)(Yx) = ϕ(σV ∗Yx) = (ΨUV (x))−1 · (σ∗UΘω)(Yx)
(2.32)

Proof. By applying the canonical 1-form ϕ directly on (2.30)

(σ∗V ϕ)(Yx) = ϕ(σV ∗Yx) = ϕ
Ä
RΨUV (x)∗σUx∗(Yx)

ä
= (ΨUV (x))−1 · (σ∗Uϕ)(Yx)

where the two equalities are true because ϕ is a basic differential 1-form in Def. (9) and

similarly for the torsion 2-form.

We explain why the local form σ∗ϕ ∈ Λ1(U,R1,3) is important, simply because it gives

a coframe ϑα ∈ TM on M .

Remark 1. (Coframe on M)

Let σ : U ⊆M → L(M) be a local section on U and (Eα) ∈ R1,3, α = 0, 1, 2, 3, be the

standard basis. Since σ(x) ∈ L(M) for x ∈ U , denoting σ(x)(Eα) := eα(x) ∈ TxU , then

(eα) ∈ X(U) form a basis on U and let the coframe (ϑα ∈ T ∗U) dual to (eα) be such that

ϑα(eβ) := δαβ . Therefore

(σ∗ϕ)(eα) := ϕ(σ∗eα) := (σ(x))−1·π∗(σ∗ eα) = (σ(x))−1(eα) = Eα = (ϑβ⊗Eβ)(eα) (2.33)

and hence

σ∗ϕ = ϑβ ⊗ Eβ, (σ∗ϕ)β = ϑβ (2.34)

This indicates that the pull back of the canonical 1-form ϕ gives a coframe ϑα corresponding

to the given section σ : U → L(M).

By the remark, Corollary 1 then implies the transition of the two frames on M .
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Remark 2. (Local transition)

Let (eα) ∈ X(U) and (ϑα := (σ∗Uϕ)α) ∈ Λ1(U) be a set of frame and coframe on

U ⊂ M as defined above by a local section σU : U → L(M) and (ẽα) ∈ X(V ) and

(ϑ̃α := (σ∗V ϕ)α) ∈ Λ1(V ) be another set of frame and coframe on V ⊂M similarly defined by

a section σV : V → L(M). Also denote the transition function ΨUV : U∩V → GL(1, 3) in a

matrix form Aβα(x) := (ΨUV (x))βα for x ∈ U∩V , then (2.32) states that if ẽα(x) = Aβα(x) eβ,

then the local tetrad and torsion 2-form follow the transformation

ϑ̃β(x) = (A−1)βα(x)ϑα(x), ‹T β(x) = (A−1)βα(x)Tα(x), (2.35)

where Tα ∈ Λ2(U,R) are as defined in (2.21) and (2.22).

In fact, by (2.30) we also obtain a transformation law for a connection 1-form ω and

curvature 2-form Ωω on a general principal bundle (P, π,M,G, ω).

Proposition 3. With the same notations above and define ωU := σ∗Uω ∈ Λ1(U, g), ωV :=

σ∗V ω ∈ Λ1(V, g), we have the transformation behavior between two local trivializations

ωV (Yx) = L−1
ΨUV (x)∗ (ΨUV ∗(Yx)) + adΨ−1

UV (x)(ωU(Yx)), ∀Yx ∈ TxM (2.36)

in particular, when the Lie group G is a matrix group we obtain a familiar form

ωV = Ψ−1
UV · dΨUV + Ψ−1

UV · ωU ·ΨUV (2.37)

therefore one says that “a connection does not transform like a tensor” due to the extra

piece Ψ−1
UV · dΨUV .

The transformation of the local curvature 2-forms Ωω
U := σ∗UΩω ∈ Λ

2
(U, g) and Ωω

V :=

σ∗V Ωω ∈ Λ
2
(V, g) is

Ωω
V (x) = adΨ−1

UV (x)(Ω
ω
U(x)),Ωω

V = Ψ−1
UV · Ωω

U ·ΨUV , (if G is a matrix group) (2.38)

One remarks that Proposition (3) is true for all principal bundles, while (2) is only

defined on the frame bundle L(M) over M .

2.3.2 Computational Aspects

So far we only setup the essential equipment for the PGT, but we have not yet specified

the gravitational dynamics to follow, a gravitational Lagrangian. Thus a specific gravity



2.3. RIEMANN-CARTAN GEOMETRY 23

Lagrangian shall give us the unique evolution of the PGT spacetime. Before we turn to

imposing meaningful Lagrangians on (M, g,∇), first we demonstrate some computational

skills.

Given a RC-spacetime (M, g,∇) with a coframe ϑα such that the connection 1-form

∇eα := ωα
β eβ. Then we can define the volume 4-form on M

η := ?1 = ϑ0 ∧ ϑ1 ∧ ϑ2 ∧ ϑ3 =
1

4!
εαβµν ϑ

α ∧ ϑβ ∧ ϑµ ∧ ϑν (2.39)

by the star operator (Hodge dual) ? : Λk(M) → Λ4−k(M). Using the Hodge dual, we

define a convenient basis called η-basis for Λ(M) :=
⊕

k Λk(M), see [59]-[62], [11], which

is a vector space.

ηα := ?ϑα, (3-form)

ηαβ := ?(ϑα ∧ ϑβ), (2-form)

ηαβγ := ?(ϑα ∧ ϑβ ∧ ϑγ), (1-form)

ηαβγδ := ?(ϑα ∧ ϑβ ∧ ϑγ ∧ ϑδ), (0-form)

(2.40)

where ϑα := gαβ ϑ
β, and each of which has dim{η} =

Ä
4
0

ä
, dim{ηα} =

Ä
4
1

ä
, dim{ηαβ} =

Ä
4
2

ä
,

dim{ηαβγ} =
Ä

4
3

ä
, dim{ηαβγδ} =

Ä
4
4

ä
. This is to be compared to the ϑ-basis, that also

forms a basis for each Λk(M).

1︸︷︷︸
0-form

, ϑα︸︷︷︸
1-form

, ϑα ∧ ϑβ︸ ︷︷ ︸
2-form

, ϑα ∧ ϑβ ∧ ϑγ︸ ︷︷ ︸
3-form

, ϑα ∧ ϑβ ∧ ϑγ ∧ ϑδ︸ ︷︷ ︸
4-form

In fact, one can verify that the η-basis can be written in another form,

ηα := ieαη, ηαβ := ieβηα,

ηαβγ := ieγηαβ, ηαβγδ := ieδηαβγ

(2.41)

where iV : Λk(M)→ Λk−1(M) denotes the interior product by (iV α)(X1, · · · , Xk−1) :=

α(V,X1, . . . , Xk−1) for a given vector (field) V ∈ TM with α ∈ Λk(M), and X1, . . . , Xk−1 ∈

X(M). In some of the literature, it is also denoted by symbol V cα := iV α, where we take

both interchangeably.

The η-basis is useful because of the following identities that help to reduce computation.

Proposition 4.

ϑα ∧ ηβ = δαβ η

ϑα ∧ ηβγ = δαγ ηβ − δαβ ηγ

ϑα ∧ ηβγσ = δαβ ηγσ + δαγ ησβ + δασ ηβγ

ϑα ∧ ηβγµν = δαν ηβγµ − δαµ ηνβγ + δαγ ηµνβ − δαβ ηγµν

(2.42)
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Proof. There are at least three ways to compute the first identity: the first is to utilize

Lemma 1. For ψ, φ ∈ Λk(M), we have 〈ψ, φ〉 = − ? (φ ∧ ?ψ).

A second way is compute it directly

ϑα ∧ ?ϑβ = ϑα ∧
Ç

1

3!
εβµνγ ϑ

µ ∧ ϑν ∧ ϑγ
å

=
1

3!
εβµνγ ε

αµνγ η = δαβ η

or a third way by considering

0 = ieβ(ϑα ∧ η) = ieβ(ϑα) ∧ η − ϑα ∧ ieβ(η)

due to ϑα ∧ η being a 5-form, which vanishes identically on 4-dimensional M . The second

identity can be proved by considering

ieγ (ϑ
α ∧ ηβ) = δαγ ηβ − ϑα ∧

Ä
irγ (ηβ)

ä
where ieγ (ηβ) = ηβγ by using (2.41). The third then follows a similar iteration trick.

The following covariant derivatives of the η-basis are also useful in computation.

Proposition 5.

Dηα = ηαγ ∧ T γ, Dηαβ = ηαβγ ∧ T γ, Dηαβµ = ηαβµγ T
γ (2.43)

with Dη = 0 and Dηαβµν = 0.

Proof. We only prove the second, the rest are similar. Since

Dηαβ =
1

2!
D (εαβµν ϑ

µ ∧ ϑν) = εαβµν T
µ ∧ ϑν = T µ ∧ ?(ϑα ∧ ϑβ ∧ ϑµ)

With the convenient notations above, next we introduce the decomposition of the field

strengths.

Under the local Lorentz group SO(1, 3), the torsion and the curvature are decomposed

into 3 and 6 irreducible pieces respectively, see [11], [63]. The torsion tensor of 24

independent components Tµν
α is decomposed into

Tα = (1)Tα + (2)Tα + (3)Tα ∈ Λ2(M)

(24) = (16) + (4) + (4)
(2.44)
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where
(1)Tα := Tα − (2)Tα − (3)Tα, (tensor)

(2)Tα :=
1

3
ϑα ∧ ieβ(T β), (vector)

(3)Tα :=
1

3
? (?(ϑα ∧ Tα) ∧ ϑα), (axial vector)

(2.45)

and the curvature of 36 independent components Rγ
αβµ is decomposed according to

Ωαβ =
6∑
I=1

(I)Ωαβ ∈ Λ2(M) (2.46)

where

(1)Ωαβ := Ωαβ −
6∑
I=2

(I)Ωαβ

(2)Ωαβ := (−1) ?
Ä
ϑ[α ∧Ψβ]

ä
(3)Ωαβ := − 1

12
? (X ∧ ϑα ∧ ϑβ)

(4)Ωαβ := (−1)ϑ[α ∧ Φβ]

(5)Ωαβ := −1

2
ϑ[α ∧ eβ]c (ϑγ ∧Ricγ)

(6)Ωαβ := − 1

12
Rϑα ∧ ϑβ

(2.47)

with

Ricα := eβcΩβ
α, R := eαcRicα, Xα := ?

Ä
Ωαβ ∧ ϑβ

ä
, X := eαcXα,

Ψα := Xα −
1

4
ϑα ∧X −

1

2
eαc
Ä
ϑβ ∧Xβ

ä
, Φα := Ricα −

1

4
Rϑα −

1

2
eαc
Ä
ϑβ ∧Ricβ

ä
(2.48)

where the first term, called the Ricci 1-form is recognized as Ricα := eβcΩβ
α = Rαµ ϑ

µ with

Ricci tensor coefficients. In general Rαβ 6= Rβα in the PGT and more generally in Riemann-

Cartan geometry (independent of any physics) due to the presence of torsion, and thus it has

16 independent components. The rest of the 5 irreducible pieces have their own properties,

see [11]. Thus we see from above that if Tα = 0, then (2)Ωαβ = (3)Ωαβ = (5)Ωαβ = 0, which

recovers the Riemannian space V4 describing GR.

We also define a convenient quantity to compare the connection of PGT ωα
β to the

Riemannian one ω̃α
β, the contortion 1-form Kα

β := ω̃α
β − ωαβ. Then we can write

Tα = Kα
β ∧ ϑβ. In fact, the metricity condition (2.27) imposes that K(αβ) ≡ 0. It turns

out that one can solve the contortion 1-form in terms of torsion

Kαβ = ie[αTβ] −
1

2
ieα
Ä
ieβTγ

ä
ϑγ (2.49)
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The differential form formalism, compared to the components formalism, usually can be

avoid much of the complicated computation. We conclude this section with an important

example:

Example 1. (Gravity Lagrangian)

Let the gravity Lagrangian be of the 4-form LG := 1
2κ

Ωαβ ∧ ηαβ, we want to translate

it into a component form. Expand Ωαβ ∧ ηαβ =
Ä

1
2
Rαβ

µν ϑ
µ ∧ ϑν

ä
∧ ηαβ and using (2.42)

repeatedly one obtains 1
2
Rαβ

µν

Ä
δνβ δ

µ
α − δνα δ

µ
β

ä
η = Rη. Hence we conclude that the Hilbert-

Einstein Lagrangian of GR can be written into the 4-form on M , given by [59].

LG :=
1

2κ
Ωαβ ∧ ηαβ =

1

2κ
R
√
−g d4x (2.50)

where κ = 8πG/c4.

2.4 the Einstein-Cartan theory

The Einstein-Cartan theory is a special case of Poincaré gauge gravity theory, and can be

considered as a generalization of GR with torsion.

Definition 16. (Einstein-Cartan Theory)

The Einstein-Cartan theory is defined by the tuple (M, g,∇) with the gravity action

LEC := 1
2κ

Ωαβ ∧ ηαβ, where ∇ is a metric-compatible connection.

In fact, the connection ωα
β in (2.50) need not be restricted to that of Levi-Civita.

Hence although the Einstein-Cartan theory and GR share the same form of the action,

they have a different geometry in general, especially when spin matter appears. Recall that

in GR the metric is coupled to the energy-momentum tensor Tij. In the Einstin-Cartan

theory the metric (or coframe) is coupled to the canonical energy-momentum tensor (of

the Noether type), i.e,

Tij := gij LM −
∂LM

∂(φa;i)
φa;j (2.51)

where LM = LM(φa, Diφ
a) is the matter Lagrangian of the matter field φa, the index

a = 1, . . . , k denotes the vector components of the matter field, and the indices i, j, . . . =

0, 1, 2, 3 denote the coordinate indices of the spacetime. Note that in general Tij 6= Tji. The

reason for such an asymmetry is due to the presence of torsion, which shall be explained

later.
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The torsion tensor in the Einstein-Cartan theory is coupled to the spin current tensor

of a matter field φ defined by [11]

Sijk =

(
∂LM

∂φa;k

)
ρ[ij]b

a · φb = −Sjik (2.52)

where ρ[ij]b
a := (ρ∗Eij)

a
b is a Lie-algebra representation of ρ : SO(1, 3) → GL(V ) and

{Eij ∈ so(1, 3)} is a basis of so(1, 3) (for details see (A.10)). The spin current (2.52)

comes from the conserved current of the internal SO(1, 3) symmetry, see Appendix. A

and couples to torsion. Thus in PGT the spin does play a role in the spacetime evolution,

unlike GR. However, in terms of differential forms the canonical energy-momentum tensor

and the spin-current of matter are found to be simpler expressed by the 3-forms, see [11],

[59], [64]:

Tα =
δLM

δϑα
, Sαβ =

δLM

δωαβ
(2.53)

where more specific explanation will be given later.

The field equations for the Einstein-Cartan theory are given in component form by

[18], [19],

Rij −
1

2
gij R = κTij

Tij
k + δki Tjl

l − δkj Till = κSijk
(2.54)

One can also write the (Einstein-Cartan)-Sciama-Kibble equation in a simpler form.

Before the derivation, we first observe a property that

Theorem 5. If the spin current of matter vanishes, Sijk ≡ 0, then the Einstein-Cartan

theory reduces to GR. Hence GR is a degenerate case of the Einstein-Cartan.

Proof. If Sijk ≡ 0, then from (2.54)2 contracting the indices j and k, one has Til
l ≡ 0,

which indicates that in fact the whole torsion tensor Tij
k ≡ 0 again by (2.54)2, and thus

recovers GR.

Thus in the Einstein-Cartan theory without spin matter the second equation of (2.54)

is simply null. Now we derive (2.54) by using the differential forms formalism.

Theorem 6. (Sciama-Kibble equation)

In differential forms, the Einstein-Cartan field equations are written as

1

2
ηαβγ ∧ Ωγβ = κ Tα

1

2
ηaβγ ∧ T γ = κSαβ

(2.55)
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Proof. Since the Einstein-Cartan theory is a special case of PGT, the two gauge potentials

(ϑa, ωα
β) are considered as independent variables. Gravitational variation is of the form

δLG = δϑα ∧ δLG
δϑα

+ δωαβ ∧ δLG
δωαβ

+ d(· · · ) (2.56)

where d(· · · ) is some exact differential term which vanishes upon the integration over a

closed 4-manifold by Stoke’s theorem. Similarly,

δLM = δϑα ∧ δLM

δϑα
+ δωαβ ∧ δLM

δωαβ
+ d(· · · ) (2.57)

Consider the total variation

δ
Ä
ηαβ ∧ Ωαβ

ä
= δηαβ ∧ Ωαβ + ηαβ ∧ δΩαβ, (2.58)

where the variational formula δ (ψ ∧ φ) = δψ ∧ φ + ψ ∧ δφ is used for all ψ ∈ Λp(M),

φ ∈ Λq(M) and since

δηαβ =
1

2!
δ (εαβµν ϑ

µ ∧ ϑν) = δϑµ ∧ ηαβµ

δΩαβ = dδωαβ + δωγβ ∧ ωαγ + ωγβ ∧ δωαγ

= dδωαβ + ωγ
α ∧ δωγβ + ωγ

β ∧ δωαγ = Dδωαβ.

(2.59)

then (2.58) reads

δ
Ä
ηαβ ∧ Ωαβ

ä
= δϑµ ∧

Ä
ηαβµ ∧ Ωαβ

ä
+ ηαβ ∧Dδωαβ

= δϑµ ∧
Ä
ηαβµ ∧ Ωαβ

ä
+D

Ä
ηαβ ∧ δωαβ

ä
− (Dηαβ) ∧ (δηαβ)

= δϑµ ∧
Ä
ηαβµ ∧ Ωαβ

ä
+ δωαβ ∧ (T γ ∧ ηαβγ) +D

Ä
ηαβ ∧ δωαβ

ä (2.60)

where we have used D(ηαβ ∧ δωαβ) = Dηαβ ∧ δωαβ + ηαβ ∧Dδωαβ in the second equality

and the identity Dηαβ = T γ ∧ ηαβγ from (2.43) is used in the last equality. Since the last

term D(ηαβ ∧ δωαβ) = d(ηαβ ∧ δωαβ) in (2.60) vanishes upon integration, by comparison

to (2.56) one derives the field equations:

δLEC
δϑµ

=
1

2κ
ηµαβ ∧ Ωαβ = −Tµ

δLEC
δωαβ

=
1

2κ
ηaβγ ∧ T γ = Sαβ

(2.61)

Remark 3. Here we remark that the variational formula (2.59)1 can be derived rigorously

from the formula in Eq.(33) of [65], namely
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Theorem 7. For all φ ∈ Λp(M), and an arbitrary frame (eα) ∈ TM , one has

(δ · ?− ? · δ) φ = δϑα ∧ (ieα(?φ))− ?[δϑγ ∧ ieγφ] + δgαβ

ñ
ϑ(α ∧ (ieβ)(?φ))− 1

2
gαβ ? φ

ô
(2.62)

which indicates that the Hodge dual operator does not commute with the variational operator

δ in general. To obtain (2.59)1, one applies φ = ϑα ∧ ϑβ with the orthonormal frame

condition such that δgαβ ≡ 0.

Here we remark that the translation from (2.55) to (2.54) is direct as the following: for

(2.55)1

1

2
ηαβγ ∧ Ωγβ =

1

4
ηαβγ ∧

Ä
Rγβ

µν ϑ
µ ∧ ϑν

ä
=

1

2

Ç
Rβα −

1

2
gαβ R

å
ηβ = κ Tαβ ηβ (2.63)

where we first expand Ωγβ with (2.24) and apply (2.42) repeatedly. Notice in the last

equality we have defined the coefficients of the 3-form expansion Tα in terms of the 3-form

basis ηα as the energy-momentum tensor in the usual sense. The coefficient Sαβγ
called spin current tensor is similarly defined i.e,

Tα := Tαβ ηβ, Sαβ = Sαβγ ηγ (2.64)

Then we see from this expansion that in general Tαβ 6= Tβα and Sαβγ 6= Sαγβ. The

translation for (2.55)2 is similar.

As we have seen from the proof of Theorem (5) in (2.54)2 that the relationship between

torsion and spin currents is algebraic.3 Basically, the Einstein-Cartan field equations (2.55)

are of 1st order partial differential equations (PDEs) in (ϑα, ωα
β) if it is supported by

a spin fluid source, [9], [66]. With a detailed examination of the field equations, in the

end one finds that the torsion field Tα = Dϑα is not a dynamical field, and hence not

propagating. This is unlike the typical Yang-Mills gauge theory, LYM ∼ F ∧ F , whose

field equations are generally of 2nd order PDEs in field variables. Thus from the gauge

theoretical point of view, EC is a degenerate theory. Following the essence of Yang-Mills,

Hehl, Nitsch, and Von der Heyde [67] constructed a more general framework for PGT

that in addition to the linear scalar curvature R in the gravity action (Einstein-Cartan),

quadratic terms of (Ωβ
α, T

α) in the Lagrangian should be also in consideration, hence the

introduction of quadratic PGT, [26], [67].

3”Algebraic” means only operations of +,−,×,÷ and n
√
· are involved, especially not differential or

integral operators.
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2.5 Quadratic PGT (qPG)

2.5.1 Field equations for general PGT

On a Riemann-Cartan spacetime (M, g,∇), we consider a general Lagrangian of the form

L = L(gαβ, ϑ
α, dϑα, ωα

β, dωα
β, φa, dφa) (2.65)

which is a total Lagrangian containing both gravity and matter field of φ ∈ Λp(U ⊆M,V )

and the index a denotes the component in the vector space V . However, if we require L

to have the Lorentz symmetry, i.e, under the transformation of two frames at x ∈M

ẽα(x) = (A(x))βα ϑ
β(x), ϑ̃α =

Ä
A−1(x)

äα
β
ϑβ(x) (2.66)

where A = (Aβα) : U ⊆M → SO(1, 3), the Lagrangian L has an invariant value. Then d

and ωα
β in L can only be involved with certain combination such that under (2.66) the

Lorentz symmetry is preserved. In fact, it can only be the combination of the exterior

covariant derivative given in Definition (10) or Theorem (2)

Dφ = dφ+ ω∧̇φ, ⇔ D = dφ+ ραβ ωα
β ∧ φ

where ρ : SO(1, 3)→ GL(V ). Therefore

Proposition 6. (SO(1, 3)-invariant Lagrangian)

By imposing the Lorentz symmetry, G = SO(1, 3), the general Lagrangian (2.65) is

reduced down to the form

L = L(gαβ, ϑ
α, φa, Dφa, Tα,Ωβ

α) (2.67)

One defines the variation of the independent arguments

δL = δϑα ∧ ∂L
∂ϑα

+ δTα ∧ ∂L
∂Tα

+ δΩβ
α ∧

∂L
∂Ωβ

α

+ δφa ∧ ∂L
∂φa

+ δ(Dφa) ∧ ∂L
∂(Dφa)

(2.68)

Moreover, if we replace the variations of δTα and δΩβ
α by

δTα = D (δϑα) + δωβ
α ∧ ϑβ, δΩβ

α = Dδωα
β (2.69)

where the identities are derived by applying the relation [δ, d] = 0. As a consequence, one

has

δL = δϑα∧
ñ
∂L
∂ϑα

+D

Ç
∂L
∂Tα

åô
+δωαβ∧

ñ
ραβ

a
b φ

b ∧ ∂L
∂(Dφa)

+ ϑ[α ∧
∂L
∂T β]

+D

Ç
∂L
∂Ωβα

åô
+ δφa ∧ δL

δφa
+ d

Ç
δϑα ∧ ∂L

∂Tα
+ δωα

β ∧ ∂L
∂Ωβ

α

+ δφa ∧ ∂L
∂Dφa

å
(2.70)
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where ραβ
a
b is defined in (A.10) and Dδϑα ∧ ∂L

∂Tα
= D

Ä
δϑα ∧ ∂L

∂Tα

ä
+ δϑα ∧D

Ä
∂L
∂Tα

ä
is used.

By the comparison of (2.68) to (2.70), we obtain [11]

δL
δϑα

=
∂L
∂ϑα

+D

Ç
∂L
∂Tα

å
,

δL
δωβα

= ραβ
a
b φ

b ∧ ∂L
∂(Dφa)

+ ϑ[α ∧
∂L
∂T β]

+D

Ç
∂L
∂Ωβα

å (2.71)

In particular, if the general Lagrangian (2.65) is decomposable into the form

L = LG(ϑα, Tα,Ωα
β) + LM(ϑα, φa, Dφa) (2.72)

where LG denotes the gravitational Lagrangian in PGT and LM is the matter Lagrangian.

(2.70) simply tells us

Theorem 8. (Field equations for PGT)

The field equations for the Lagrangian (2.72) is given by

∂LG
∂ϑα

+D

Ç
∂LG
∂Tα

å
= Tα,

ϑ[α ∧
∂LG
∂T β]

+D

Ç
∂LG
∂Ωβα

å
= Sαβ

(2.73)

where Tα ∈ Λ3(M) and Sαβ ∈ Λ3(M) are the (canonical) energy-momentum current

and spin-current of matter defined by [11]

Tα :=
δLM
δϑα

=
∂LM
∂ϑα

+D

Ç
∂LM
∂Tα

å
,

Sαβ :=
δLM
δω[αβ]

= ραβ
a
b φ

b ∧ ∂L
∂(Dφa)

+ ϑ[α ∧
∂LM
∂T β]

+D

Ç
∂LM
∂Ωβα

å
,

(2.74)

with the evolution of the matter field given by

δLM
δφ

=
∂LM
∂φ
−D

Ç
∂LM
∂(Dφ)

å
= 0. (2.75)

Together (2.73) and (2.75) constitute the complete evolution of PGT in the presence of the

matter field φ.

In fact, computing terms like ∂LG
∂ϑα

, ∂LG
∂Tα

, . . . in (2.73) require more work. The following

theorem can make computation easier, see [11]

Theorem 9. (Field equations for PGT)

The field equations for the Lagrangian (2.72) are given by

DHα − tα = Tα, DHαβ − sαβ = Sαβ (2.76)
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where Hα ∈ Λ2(M) and Hαβ ∈ Λ2(M) are called the translational excitation and the

Lorentz excitation (field momenta), defined by

Hα := −∂LG
∂Tα

, Hαβ := − ∂LG
∂Ωαβ

(2.77)

with tα ∈ Λ3(M) and sαβ ∈ Λ3(M) called the gravitational energy-momentum and

the gravitational spin current, respectively, given defined by

tα :=
∂LG
∂ϑα

= ieαLG +
Ä
ieαT

β
ä
∧Hβ +

Ä
ieαΩγβ

ä
∧Hβγ,

sαβ :=
∂LG
∂ωαβ

= −ϑ[α ∧Hβ]

(2.78)

Both the last equalities in (2.78) require some non-trivial procedures concerning the

local diffeomorphisms and local Lorentz invariance, see [11]. With this theorem, one easily

derives the Einstein-Cartan theory (2.55) alternatively.

Indeed, with the Einstein-Cartan Lagrangian (16), one computes that the gravitational

excitations from (2.77) and (2.78)

Hα := −∂LG
∂Tα

= 0, Hαβ := − ∂LG
∂Ωαβ

= ηαβ (2.79)

and the gravitational currents

tα = Ωβγ ∧ ηβγα, sαβ = 0 (2.80)

which recover (2.55).

2.5.2 Quadratic PGT Lagrangians

In the last two sections, ones sees that the Einstein-Cartan theory as a Poincaré gauge

theory is in many ways degenerate. Unlike Yang-Mills, there is a self-interaction of the

form F ∧ ?F , quadratic in the field strength. Naturally, one would expect that gravity as

a gauge theory may have analogous terms like T ∧ ?T and Ω ∧ ?Ω. Using the irreducible

decomposition of field strengths for gravity in PGT, (2.44)–(2.48) one can consider a

general Lagrangian quadratic in PGT field strengths,

LqPG =
1

2κ

[
a0 Ωαβ ∧ ηαβ − 2Λη + Tα ∧

(
3∑
I=1

aI ?
(I)Tα

)]

− 1

2%
Ωαβ ∧

(
6∑
I=1

bI ?
(I)Ωαβ

)
(2.81)
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where the self-coupling constants a0, . . . , a3, b1, . . . , b6 are defined to be dimensionless,

[κ] = T 2/ML, and [%] = T/ML2. In [35], the above quadratic combinations in (2.81) are

classified into 2 types,:

L+
weak =

1

2κ

[
a0 Ωαβ ∧ ηαβ − 2Λη + Tα ∧

(
3∑
I=1

aI ?
(I)Tα

)]

L+
strong = − 1

2%
Ωαβ ∧

(
6∑
I=1

bI ?
(I)Ωαβ

) (2.82)

where both L+
weak and L+

strong belong to the parity even pieces, which are easily observed

by the presence of Hodge dual operator. In fact, in [35] they considered a wider class of

quadratic combinations including terms like

L−weak =
b0

2κ
(3)Ωαβ ∧ ϑα ∧ ϑβ +

1

κ

Ä
σ1

(1)Tα ∧ (1)Tα + σ2
(2)Tα ∧ (3)Tα

ä
L−strong = − 1

2%

Ä
µ1

(1)Ωαβ ∧ (1)Ωαβ + µ2
(2)Ωαβ ∧ (4)Ωαβ + µ3

(3)Ωαβ ∧ (6)Ωαβ + µ4
(5)Ωαβ ∧ (5)Ωαβ

ä
(2.83)

which are considered as parity odd terms. Also it is shown in [35] that the most general

quadratic combinations can be written as

LqPG =
1

2κ
[(a0R− 2Λ + b0X) η

+
a2

3
V ∧ ?V − a3

3
A ∧ ?A− 2σ2

3
V ∧ ?A+ a1

(1)Tα ∧ ?(1)Tα

ô
− 1

2%

ñÇ
b6

12
R2 − b3

12
X2 +

µ3

12
RX

å
η + b4

(4)Ωαβ ∧ ?(4)Ωαβ

+ (2)Ωαβ ∧
Ä
b2 ?

(2)Ωαβ + µ2
(4)Ωαβ

ä
+ (5)Ωαβ ∧

Ä
b5 ?

(5)Ωαβ + µ4
(5)Ωαβ

äó
(2.84)

where V := ieγ (T γ) and A := ?(ϑα ∧ Tα) denote the vector and axial parts of the torsion

tensor, respectively. It has up to 8 independent variables in the Lagrangian, but where do

the physics of these terms lie? This is a question to be thoroughly explored. However,

recently, Shie, Nester, Yo (SNY, [25]) have chosen a small subclass out of (2.84) by the

Hamiltonian analysis of Poincaré gauge gravity [68], [69]. The SNY-model is simple but

physically interesting, which we explore in the next chapter.

In this chapter we have gone through the basic formulation of PGT in principal fibre

bundle language, which is suitable for the general gauge theory as well. Such a formulation

helps the transition from the typical Yang-Mills theory to gravity gauge theory and

shows their many similarities. Later, we project the PGT gauge potentials and strengths

(ϕ, ω,Ωω,Θω) onto the spacetime (ϑα, ωα
β,Ωαβ, Tα) via a local section σ : U ⊂ M → P .
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Such reduction addresses that the Poincaré gauge group invariance results in the field

strength of torsion and curvature one observes on the spacetime M , and clearly address

why we obtain torsion and curvature simultaneously when gauging the Poincaré group into

the spacetime. The resultant spacetime is called the Riemann-Cartan spacetime, described

by (M, g,∇). Thus this is the version that appears most in the physics literature.

We also studied a simplest Lagrangian, LG = 1
2κ

Ωαβ ∧ ηαβ (2.50) on a Riemann-Cartan

spacetime, known as the Einstein-Cartan theory developed around 1961 by Sciama and

Kibble. We also sketched the quadratic PGT as a natural extension mimicking the Yang-

Mills theory. It can be seen that PGT has a more general structure than GR by its nature,

and thus contains more variety and possibility.

Below we show a diagram, Fig.(2.5.2), that may best represent the relationship between

different geometries to conclude this chapter.
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Metric 
affine 

PGT 
Riemann-Cartan 

Weitzenböck 
(teleparallel) Riemannian 

Minkowski 
R 1,3 

Ω = 0 T = 0 

T = 0 Ω = 0 

g = 0 

Figure 2.1: Riemann-Cartan (RC) space and its subcases.
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3

Scalar-torsion Mode of PGT

3.1 Lagrangian for the scalar-torsion mode

As shown in Chater 2, qPG gravity consists of a Riemann-Cartan spacetime (M, g,∇) and

a Lagrangian 4-form

L(g, ϑ,Γ) = LG + LM , (3.1)

where ϑα is a set of tetrad, ωα
β ∈ Λ1(M) is the connection 1-form with respect to ϑα, LM

is the matter Lagrangian, and LG is the gravitational Lagrangian that can be made up by

certain combinations. In [25], SNY studied the spin 0+ mode, given by [25, 38]

LG =
a0

2
Rη +

b

24
R2η +

a1

8
Tα ∧ ?

Ç
(1)Tα − 2(2)Tα −

1

2
(3)Tα

å
, (3.2)

where (I)Tα are irreducible torsion pieces in (5.19), and the coefficients of LG in (3.2) are

constrained by the positivity argument [25] such that

a1 > 0, b > 0. (3.3)

3.2 Cosmology in Scalar-torsion Mode of PGT

To study the cosmology of the scalar-torsion gravity in PGT, we consider the homogeneous

and isotropic FLRW universe, given by the metric

ds2 = −dt2 + a2(t)

Ç
dr2

1− kr2
+ r2dΩ2

å
, (3.4)

where k is the sectional curvature of the spatial homogeneous universe and we set k = 0

for simplicity.

37
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For (3.2) of the SNY model in the FRLW cosmology with no spin source Sijk ≡ 0,

defined in (2.52), the field equations of PGT (2.76) lead to [25]

Ḣ =
µ

6a1

R +
1

6a1

T − 2H2, (3.5)

Φ̇(t) =
a0

2a1

R +
T

2a1

− 3HΦ +
1

3
Φ2, (3.6)

Ṙ = −2

3

Ç
R +

6µ

b

å
Φ, (3.7)

where µ = a1 + a0, H = ȧ(t)/a(t), and Φ(t) = Tt, which is the time component of the

torsion trace, defined by Ti := Tij
j, and the coordinate indices i, j, k, . . . run from 0, . . . 3.

Here, R in (3.5)-(3.7) denotes the affine curvature in (2.48). In addition, we have the

relation

R = R̄ + 2T j;j −
2

3
TkT

k , (3.8)

where R̄ = 6(Ḣ + 2H2) represents the curvature of the Levi-Civita connection induced by

(3.4). The energy-momentum tensor Tij is defined as (2.64) and T stands for the trace Tii.

Explicitly, one has

Ttt = ρM =
b

18

Ç
R +

6µ

b

å
(3H − Φ)2 − b

24
R2 − 3a1H

2,

T = 3pM − ρM .

(3.9)

with the subscript M representing the ordinary matter including both dust and radiation.

To see the geometric effect of torsion, we can write down the Friedmann equations as

H2 =
ρc

3a0

, ρc = ρM + ρT ,

Ḣ = −ρc + ptot
3a0

, ptot = pM + pT , (3.10)

with a0 = (8πG)−1 in GR, where ρc and ptot denote the critical energy density and total

pressure of the universe, while ρT and pT correspond to the energy density and pressure of

some effective field, respectively. By comparing the equation of motion of the scalar-torsion

mode in PGT (3.44) to the Friedmann equations (3.10), one obtains

ρT = 3µH2 − b

18

Ç
R +

6µ

b

å
(3H − Φ)2 +

b

24
R2,

pT =
1

3

Ä
µ(R− R̄) + ρT

ä
, (3.11)

which will be regarded as the torsion dark energy density and pressure, respectively.

ρ̇c + 3H (ρc + ptot) = 0, (3.12)
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which can also be derived by applying the identity

∇̄jḠ
ij = ∇̄j

Ç
R̄ij − 1

2
R̄gij

å
= ∇̄j

Ä
T ij + T ijT

ä
= 0,

where ∇̄ is the covariant derivative with respect to the Levi-Civita connection and

T i
T j = diag (−ρT , pT , pT , pT ) is the effective energy-momentum tensor of the torsion dark

energy.

In addition, from (3.5) – (3.7), one can check that the continuity equation for the

torsion field is also valid, i.e.

ρ̇T + 3H (ρT + pT ) = 0. (3.13)

Consequently, we obtain the continuity equation for the ordinary matter to be

ρ̇M + 3H (ρM + pM) = 0. (3.14)

By assuming no coupling between radiation and dust, the matter densities of radiation

(wr = 1/3) and dust (wm = 0) in scalar-torsion cosmology share the same evolution

behaviors as in GR, i.e. ρr ∝ a−4 and ρm ∝ a−3, respectively. In order to investigate the

cosmological evolution, it is natural to define the total EoS by [8]

wtot = −1− 2Ḣ

3H2
=
ptot
ρc
, (3.15)

which leads to

wtot = ΩMwM + ΩTwT , (3.16)

where Ωα = ρα/ρc and wα = pα/ρα with α = M,T , representing the energy density

ratios and EoSs of matter and torsion, respectively. Note that the EoS in (3.16), which

is commonly used in the literature, e.g. [8], can be determined from the cosmological

observations in [1, 2, 3, 6, 70]. In particular, it can be used to distinguish the modified

gravity theories from the ΛCDM [8].

Consequently, the evolution of the torsion dark energy can be described solely in terms

of wT by

ρT (z) = ρ
(0)
T exp

®
3
∫ z

0
dz′

1 + wT (z′)

1 + z′

´
. (3.17)

In the following sections, we focus on this important quantity.
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3.3 Numerical Results of Torsion Cosmology

The evolution of torsion cosmology is determined by (3.5) – (3.7). In general, one needs

to solve the dynamics of R, Φ and H by the system of ordinary differential equations.

However, one easily sees that in (3.7) there exists a special case: the constant scalar affine

curvature solution, R = −6µ/b [25]. Recall that in order to conform with the positive

kinetic energy argument, the condition (3.3) is required. Such a condition leads to the

negative curvature R = −6µ/b < 0 in this case with a negative matter density ρ < 0, the

condition of a1 < −a0 < 0 is required [25].

We concentrate on the EoS of the scalar-torsion mode in both special and normal cases

which we define later. We also present the cosmological evolution of the density ratio,

defined by Ω = ρ/ρc, from a high redshift to the current stage.

3.3.1 Special Case: R = const.

In this special case, we take the assumption of a1 < 0, µ < 0 and a0 > 0 in [25]. The

evolution equations (3.5) – (3.7) reduce to

ρM = −3a1H
2 − 3

2

µ2

b
, (3.18)

ρT =
3

2

µ2

b
+ 3µH2, (3.19)

Ḣ = − (1 + wM)

Ç
3

4

µ2

a1b
+

3

2
H2

å
. (3.20)

To employ numerical calculation, we rescale the parameters as below:

m2 = ρ(0)
m /3a0 , ã0 = a0/m

2b, ã1 = −a1/m
2b,

t̃ = m · t, µ̃ = ã1 − ã0, H̃2 = H2/m2, ‹R = R/m2, (3.21)

where ρ(0)
m is the matter density at z = 0 and the scalar affine curvature is ‹R = 6µ̃ > 0.

From (3.18), (3.19) and (3.20), we obtain the following dimensionless equations,

H̃2 =
ã0

ã1

Ä
a−3 + χa−4

ä
+

µ̃2

2ã1

, (3.22)

ρT

ρ
(0)
m

=
µ̃2

2ã0

− µ̃

ã0

H̃2, (3.23)

H̃H̃ ′ = (1 + wM)

Ç
3

4

µ̃2

ã1

− 3

2
H̃2

å
, (3.24)
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Figure 3.1: Evolutions of (a) the energy density ratio Ω and (b) the torsion EoS wT with

Ω(0)
m = 27.5%, where the solid (black), dashed (blue), and dotted-dashed (red) lines stand

for torsion, matter and radiation, respectively.

where the prime “′”.stands for d/d ln a and χ = ρ(0)
r /ρ(0)

m . Using (3.13), (3.16) and (3.23),

we find that

wT = −1− ρ̇T
3HρT

= −1− 4

3

˙̃
H

2H̃2 − µ̃
. (3.25)

From (3.22)–(3.25), it is easy to see that the evolution of ρT is automatically determined

without solving any differential equation for given values of ã0 and ã1. The numerical

results of this special case are shown in Fig. 3.3, where we have chosen ã0 = 76, ã1 = 100

and χ = 3.07 × 10−4 corresponding to Ω(0)
m = H̃−2

z=0 ' 27.5%. In Fig. 3.3a, we plot the

energy density ratios of torsion, matter and radiation, ΩT , Ωm and Ωr, respectively. Notice

that ρT depends on the parameters ã0 and ã1, and there exists a late-time de-Sitter solution

when H̃2 = µ̃2/2ã1. In the high redshift regime, in which H̃2 � µ̃, µ̃2/ã1, we observe that

the torsion density ratio ΩT is a constant which can also be estimated from (3.18) and

(3.19), namely

ρM
ρT

=
3ã1H̃

2 − 3µ̃2/2

3µ̃2/2− 3µ̃H̃2
' − ã1

µ̃
, (3.26)

which manifests itself as a negative constant. In Fig. 3.3b, we show that the torsion EoS

wT acts as matter wm = 0 and radiation wr = 1/3 in the matter-dominant (ρm � ρr)

and radiation-dominant (ρr � ρm) stages, respectively, which are interesting asymptotic

behaviors. We also observe that in the low redshift regime of log a ' 0, wT is smaller than

unity, indicating the existence of a late-time acceleration epoch.
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3.3.2 The Normal Case

The normal case corresponds to both the kinetic energy and the matter density being

positive, i.e, the parameters a0, a1 and b are subject to the condition (3.3). It is also

convenient to rescale the parameters in the form

ã0 = a0/m
2b, ã1 = a1/m

2b, t̃ = t ·m, µ̃ = ã0 + ã1,

H̃2 = H2/m2, ‹Φ = Φ/m, ‹R = R/m2, (3.27)

where m2 = ρ(0)
m /3a0. Using the above rescaling parameters, (3.5) – (3.7) and (3.44) are

then rewritten as

H̃H̃ ′ =
µ̃

6ã1

‹R− ã0

2ã1

a−3 − 2H̃2, (3.28)

H̃‹Φ′ = ã0

2ã1

Ä‹R− 3a−3
ä
− 3H̃‹Φ +

1

3
‹Φ2, (3.29)

H̃ ‹R′ = −2

3

Ä‹R + 6µ̃
ä ‹Φ, (3.30)

1

18

Ä‹R + 6µ̃
ä Ä

3H̃ − ‹Φä− ‹R2

24
− 3ã1H̃

2 = 3ã0

Ä
a−3 + χa−4

ä
, (3.31)

where we have used
em

T = 3PM − ρM = −ρm = −3a0m
2a−3 due to wr = pr/ρr = 1/3 and

wm = pm/ρm = 0. From (3.16) and (3.28)–(3.31), we have

wT =
1

3

µ̃
Ä‹R− R̄/m2

ä
3µ̃H̃2 −

Ä‹R + 6µ̃
ä Ä

3H̃ − ‹Φä2 /18 + ‹R2/24
+

1

3
. (3.32)

To perform the numerical computations, we need to specify two parameters: ã0 and

ã1, along with two initial conditions: ‹R and H̃. Thus, the initial condition for ‹Φ is

automatically determined by (3.31). The numerical results are shown in Fig. 3.4, where

the initial conditions at z = 0 are set as (ã0, ã1, ‹R0, H̃0) = (2, 1, 14, 2), (2, 1, 13, 2), (3, 1, 8, 2)

for solid, dot-dashed, and dashed lines, respectively. Note that χ = 3.07× 10−4 originates

from the WMAP-5 data, and H̃ = 2 corresponds to Ω(0)
m = H̃−2

0 = 0.25.

In Fig. 3.4a, we show the evolution of the density ratio, ΩT = ρT/ρc, as a function of the

redshift z. The figure demonstrates that the torsion density ρT dominates the universe in

the high redshift regime (z � 1) with the general parameter and initial condition selection,

while the matter-dominated regime is reached only within a very short time interval. In

Fig. 3.4b, we show that wT has an asymptotic behavior at the high redshift regime, i.e.
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Figure 3.2: Evolutions of (a) the energy density ratio ΩT and (b) the torsion EoS

wT in the universe as functions of the redshift z with Ω(0)
m = 25% and χ = 3.07 ×

10−4, where the solid, dotted-dashed and dashed lines correspond to (ã0, ã1, ‹R0, H̃0) =

(2, 1, 14, 2), (2, 1, 13, 2), (3, 1, 8, 2), respectively.

wz�0 → 1/3. Moreover, in the low redshift regime, it may even have a phantom crossing

behavior, i.e., the torsion EoS could cross the phantom divide line of wT = −1. As a result,

the scalar-torsion mode is able to account for the late-time accelerating universe. We also

notice that from the numerical illustrations of the normal case one observes asymptotic

behavior in the high red shift regime. Compared to Refs. [25, 34] only oscillating behavior

are indicated. However, we find such asymptotic behavior in the normal case is not only

generic, but rather a property that can be proved universally. Below we give a further

account.

3.4 Asymptotic Behavior of High Redshift

3.4.1 Semi-analytical solution in high redshift

In the following, we shall provide the semi-analytical solution for the positive energy case

of the scalar-torsion mode in the large scalar affine curvature limit R � 6µ/b which is

commonly achieved in the high redshift regime (a� 1). In such circumstances, we may
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write the energy density of ordinary matter and torsion in series expansions of a(t) as

ρM =
ρ(0)
m

a3
+
ρ(0)
r

a4
,

ρT

ρ
(0)
m

=
∞∑

k=−c
A−k a

k , (3.33)

respectively. Before the analysis, we adopt the rescaling (3.27) and write (3.28) as functions

of t̃ as

dH̃

dt̃
=

µ̃

6ã1

‹R− ã0

2ã1 a3
− 2H̃2, (3.34)

d‹Φ
dt̃

=
ã0

2ã1

Ç‹R− 3

a3

å
− 3H̃‹Φ +

1

3
‹Φ2, (3.35)

d‹R
dt̃
' −2

3
‹R ‹Φ, (3.36)‹R

18

Ä
3H̃ − ‹Φä− ‹R2

24
− 3ã1H̃

2 = 3ã0

Ç
1

a3
+
χ

a4

å
, (3.37)

In (3.36), we have taken the approximation of R � 6µ/b for the high redshift regime.

With the above rescaling, we shall argue that the lowest order of ρT does not exceed a−4

in the following discussion. We formulate the statement as a theorem.

Theorem 10. In the high redshift regime (a� 1), ρT = O(a−4).

Proof. First we expand

H̃2(t) =
∞∑

k=−c
rk a

k−4, (rk <∞) (3.38)

where c is some integer, so that we have

dH̃

dt̃
=

∞∑
k=−c

Ç
k − 4

2

å
rk a

k−4. (3.39)

Using (3.34), (3.36), (3.38) and (3.39), we obtain‹R =
3ã1

µ̃

Ñ
∞∑

k=−c
k · rk ak−4

é
+

3ã0

µ̃ a3
, (3.40)‹Φ = −3

2
H̃ ·

ã1

Ä∑∞
k=−c k(k − 4)rk a

k−4
ä
− 3ã0

a3

ã1

Ä∑∞
k=−c k rk a

k−4
ä

+ ã0
a3

, (3.41)

Substituting (3.38), (3.39), (3.40) and (3.41) into (3.35), and comparing the lowest

power (requiring c > −1, otherwise losing its leading position) of a in the high redshift,

a� 1, we derive the following relationÇ
ã1

µ̃

å2

c2 · r3
−c

ñ
c2 + (5− ã0

µ̃
)c+ 4

ô
= 0, (3.42)
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which leads to r−c = 0 if c ≥ 1 as 0 < ã0/µ̃ < 1 and c2 + (5 − ã0
µ̃

)c + 4 6= 0. This is

equivalent to saying that (3.38) has the form

H̃2 =
r0

a4
+
r1

a3
+
r2

a2
+
r3

a
+ r4 + · · · (3.43)

Finally, we achieve our claim from (3.10) that

ρT

ρ
(0)
m

= −
Ç
χ

a4
+

1

a3

å
+ H̃2

= −
Ç
χ

a4
+

1

a3

å
+
Å r0

a4
+
r1

a3
+
r2

a2
+
r3

a
+ r4 + · · ·

ã
= O

Ç
1

a4

å
. (3.44)

Note that the last equality follows since r0 6= χ, which will be explained later.

We now write the expansion in (3.44), by the theorem above, simply as

ρT

ρ
(0)
m

=
∞∑

k=−4

A−k a
k . (3.45)

We shall only take first few dominating terms for a sufficient demonstration. By the

procedure in the proof of the theorem, we can as well compare terms of various orders to

yield the following relations:

O(a−10) : 3 (A4 + χ)

Ç
1 +

ã1

µ̃
A3

å2

= 0, (3.46)

O(a−9) : 2

Ç
1 +

ã1

µ̃
A3

åñ
ã0

µ̃

Ç
1 +

ã1

µ̃
A3

å
A3 +

4ã1

µ̃
(A4 + χ)A2

ô
= 0, (3.47)

O(a−8) :

Ç
1 +

ã1

µ̃
A3

åñ
4
ã0

µ̃

Ç
1 + 3

ã1

µ̃
A3

å
A2

−
Ç

3A2 +
ã1

µ̃
(A2 (2 + 5A3)− 18A1 (A4 + χ))

åô
= 0. (3.48)

From (3.46), (3.47) and (3.48), one concludes a relation,

A3 = − µ̃
ã1

= −(ã0 + ã1)

ã1

< −1, (3.49)

with A1, A2 and A4 left as arbitrary constants to be determined by initial conditions

and (3.37). Note that (3.49) implies r1 = −ã0/ã1 < 0 in (3.38). However, due to the

observational data that a = 1 at the current stage, the radiation density is much smaller

than the dust density (χ� 1), whereas the torsion density is the same order as the dust

density, as seen from (3.44),

ρ
(0)
T

ρ
(0)
m

= [(r0 − χ) + r2 + · · · ]− (1 + |r1|) ' O(1) . (3.50)
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Figure 3.3: Evolutions of (a) wT and (b) |wT − 1/3| as function of the redshift z and the

scale parameter a, respectively, where the parameters and initial conditions are chosen as

ã0 = 2, ã1 = 1, H̃0 = 2, ‹R0 = 14 and χ = ρ(0)
r /ρ(0)

m = 3.1× 10−4.

Subsequently, we have that [(r0 − χ) + r2 + · · · ] ≤ max{O(1), O(|r1|)}, along with the

assumption rk <∞ for each k. As a result, we conclude that rk, for all k 6= 1, should not

be too large, which forbids the possibility r0 = χ. This argument shows the validity of the

last equality in (3.44) with the non-vanishing O(1/a4) coefficient.

From (3.16), via the continuity equation [24], we obtain

wT = −1− ρ′T
3ρT
' −1 +

1

3

Ç
4A4a

−4 + 3A3a
−3

A4a−4 + A3a−3

å
' 1

3

Ç
1− A3

A4

a

å
, (3.51)

where the prime “′” stands for d/d ln a and we have used (3.45) for a� 1.

3.4.2 Numerical computations

In this subsection, we perform numerical computations to support the analysis above. As

an illustration, we take the parameters ã0 = 2 and ã1 = 1 and initial conditions

H̃(z = 0) = H̃0 = 2, ‹R(z = 0) = ‹R0 = 14,

and show the evolutions of wT , ‹Φ, and ‹R in Figs. 3.3, 3.4a and 3.4b, respectively.

In Fig. 3.3a, we demonstrate the EoS of torsion as a function of the redshift z. As seen

from the figure, in the high redshift regime wT approaches 1/3, which indeed shows an

asymptotic behavior. Fig. 3.3b indicates that |wT − 1/3| approximates a straight line in

the scale factor a in the log-scaled coordinate since the slope in the log-scaled coordinates
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Figure 3.4: Evolutions of (a) the rescaled affine curvature ‹R and (b) the torsion ‹Φ
as functions of the scale parameter a in the log scale with the parameters and initial

conditions taken to be the same as Fig. 3.3.

is nearly 1. The singularity in the interval [0.1, 1] corresponds to the crossing 1/3 of wT .

Thus, the numerical results concur with our semi-analytical approximation in (3.51). In

Fig. 3.4, we observe that the behaviors of ‹R and ‹Φ ∝ 1/a2 in the high redshift regime are

consistent with the results in (3.40) and (3.41), given by‹R ' 2ã1

µ̃
A2 a

−2, (3.52)‹Φ ' 3H̃ ∝ a−2, (3.53)

respectively, where H̃2 ' (χ+ A4) a−4 from (3.38). Note that from (3.52), the behavior of

the affine curvature ‹R is highly different from that of the Riemannian scalar curvature

R̄ = −T /a0 = ρm/a0, which is proportional to 1/a3 in both the matter (dust) and radiation

dominated eras.
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4

Teleparallel Gravity

. . . Torsion is not just a tensor, but rather a very specific tensor that is intrinsically

related to the translation group, as was shown by Élie Cartan in 1923-24.

– Friedrich W. Hehl

4.1 A Degenerate Theory of PGT

From Chapter 2, we have seen that from the affine frame bundle theory where PGT resides,

the gauge group G = R1,3 o SO(1, 3) results in the decomposition of the affine connection

γ∗ω̃ = ω + ϕ according to the Lie algebra g = R1,3 ⊕ so(1, 3), and from (2.17) we see

Dωγ∗ω̃ = Dωω︸ ︷︷ ︸
so(1,3)

+Dωϕ︸ ︷︷ ︸
R1,3

(4.1)

It is then natural to ponder the question whether there could be some connection ω such

that either Dωω = 0 or Dωϕ = 0 which takes only a 1-sided Lie-algebra value.

This näıve question leads to two different gravitational theories. Of course the case

Dωϕ = T ω = 0 (vanishing torsion) is known as Riemannian geometry of GR; the other one

Dωω = Ωω = 0 (vanishing curvature), is called the teleparallel geometry (also known

as the absolute parallelism). It is also clear from the Lie algebra (4.1) (only the tail

of the Lie-algebra value R1,3 is left) to see the dubbed name translational gauge theory.

Thus GR and teleparallel gravity can be considered as two extreme yet complementary

degenerate cases. For clarity, we summarize as follows:

Definition 17. (Teleparallel geometry: bundle, vanishing curvature)

49
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On the orthonormal frame bundle (F (M), π,M, SO(1, 3)), if there exists a connection

1-form ω ∈ Λ1(F (M), so(1, 3)) such that Dωω ≡ 0, then we call the tuple (M, g,∇)

teleparallel geometry, where the connection ∇ on M is induced by Dω on F (M).

Gravitational theorists, who do not necessarily have to know bundle theories, usually

take an alternative version on the (projected) base manifold.

Definition 18. (Teleparallel geometry: base manifold, Weitzenböck connection)

Given a semi-Riemannian spacetime (M, g) with a set of (local, not necessarily) frame

{eα ∈ TM}, α = 0, 1, 2, 3, and a connection ∇W on M satisfying

∇W
eαeβ = 0, (for all α, β) (4.2)

the tuple (M, g,∇W , {eα}) is defined as teleparallel geometry with respect to {eα}, also

called a Weitzenböck spacetime along with the connection ∇W called the Weitzenböck

connection

The definition of a Weitzenböck connection automatically indicates all the connection

1-forms vanish, ωα
β := ϑβ(∇W eα) ≡ 0, and hence the curvature vanishes

Ωµ
ν = dωµ

ν + ων
γ ∧ ωγµ ≡ 0, ⇔ Rµ

ναβ ≡ 0. (4.3)

We emphasize that two facts that are neglected sometimes:

Remark 4. 1. The curvedness or flatness is not an absolute property of a spcetime

manifold, rather it changes with the connection assigned.

2. Initially the flatness of teleparallel gravity is with respect to one chosen frame,

say eα, but since Rµ
ναβ ≡ 0 is a tensor equation, we have R(X, Y )Z = 0 for all

X, Y, Z ∈ TM . In particular, if we choose another frame ẽβ for computation, we

still have curvature zero. Hence the parallelism is well-defined and independent of

any chosen frame as long as there exists one frame eα such that (4.2) holds.

However, one natural question may arise: whether the two definitions are equivalent or

not? A closer look of the question reveals its essence:

Dωα
β := dωα

β + ωγ
β ∧ ωαγ ≡ 0

?⇔ ωα
β ≡ 0

(vanishing curvature, Def 17)
?⇔ (Weitzenböck connection, Def 18)

(4.4)
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Obviously, the direction (⇐) is simply by (4.3). The other direction requires some effort

to see and involves partial differential equations in general. First we consider that there

are two frames {ẽα} and {eα}, where the latter satisfies the Weitzenböck condition (4.2).

Since there exists a linear isomorphism Aβα(x) for all x ∈M such that ẽα(x) = Aβα(x) eβ(x),

then we may calculate the Weitzenböck connection 1-form expressed in the frame {ẽα}.

Let ∇W ẽβ := ω̃αβ ẽα, then we have ω̃αβ (X) = ϑ̃α
Ä
∇W
X ẽβ

ä
where ϑ̃α is the dual basis of ẽα,

and thus

ω̃αβ (ẽµ) = ϑ̃α
(
∇W
ẽµ
ẽβ
)

= ẽµ(Aνβ)(A−1)αν , ⇔ ω̃αβ = (dAνβ) · (A−1)αν 6= 0. (4.5)

We see that the Weitzenböck connection 1-form ω̃αβ in the frame {ẽα} is in general nonzero

although ωβ
α ≡ 0 in the frame {eα}. The computation of changing frames helps answering

the question (4.4). Since if we start from any frame {eα} in Def. (17), to acquire the

Weitzenböck condition defined by (4.2) we need to solve Aβα(x) from the coupled partial

differential equations, namely

Dω̃α
β = dω̃α

β + ω̃γ
β ∧ ω̃αγ ≡ 0 (4.6)

then the existence of Aβα(x) at all x ∈M guarantees the equivalence of the other direction.

4.1.1 Another construction from PGT

There is another construction that leads to the same teleparallel gravity directly from PGT.

This intuitive derivation can be found in [71]. To require vanishing curvature Ωβ
α ≡ 0 for a

gravitational theory, one can put manually a Lagrangian multiplier two-form Λαβ ∈ Λ2(M)

to attain the desired constraint from the Lagrangian such that

Ltot = LG + Lmat −
1

2%
Λαβ ∧ Ωαβ. (4.7)

which leads to the PGT field equations (2.76),

DHα − eαcLG − (eαcT β) ∧Hβ = Tα
1

2%
DΛαβ + ϑ[α ∧Hβ] = Sαβ

(4.8)

where one observes that (4.8)2 helps solve the Lagrangian multiplier Λαβ while (4.8)1 is

free of Λαβ and thus defines the field equation for teleparallel gravity, see [72].

So far in this section we introduced three approaches that define teleparallel geometry.

However, we have not yet specified a geometric Lagrangian to indicate the evolution of

Weitzenböck spacetime. Below we introduce an interesting Lagrangian equivalent to GR.
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4.2 The Teleparallel Equivalent to General Relativity

(TEGR)

The teleparallel equivalent to general relativity (TEGR, or GR||) is a special type of

teleparallel gravity that manifests equivalence to GR in spacetime and matter evolutions.

First we give a formal definition.

Definition 19. (TEGR)

TEGR is defined by a Weitzenböck spacetime (M, g,∇W , {eα}) with the gravitational

Lagrangian (4-form)

LGR|| = − 1

2κ
Tα ∧ ?

Ç
−(1)Tα + 2(2)Tα +

1

2
(3)Tα

å
(4.9)

and vanishing spin source of matter, Sαβ ≡ 0. Here (I)Tα are the torsion irreducible pieces

defined in (2.44).

With this special TEGR Lagrangian (4.9), the translational and rotational excitations

(2.77) and gravitational currents (2.78) can be computed as

Hα =
1

κ
?

Ç
−(1)Tα + 2(2)Tα +

1

2
(3)Tα

å
, Hαβ = − ∂LG

∂Ωαβ
= 0,

tα = ieα(LG) + (ieα(T β)) ∧Hβ, sαβ =
∂LG
∂ωαβ

= 0,

(4.10)

As a consequence, only field equation (2.76)1 survives, given by (4.8)

dHα − tα = κTα (4.11)

where the second field equation degenerates much as in the Einstein-Cartan theory. In

fact, the equivalence of TEGR to GR is reflected by two facts: the first one is given by as

follows.

Theorem 11. The motion of matter (assumed spinless) in TEGR is equivalent to GR

(the proof demonstrated here is provided by Hehl).

Proof. Recall the contortion 1-form

Kα
β := ω̃α

β − ωαβ (4.12)

where ω̃α
β is the Levi-Civita connection and ωα

β is the Weitzenböck connection. From the

fact that

T β = dϑβ + ωα
β ∧ ϑα, 0 = dϑβ + ω̃α

β ∧ ϑα (4.13)
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we can rewrite torsion 2-form in terms of the contortion

T β = Kβ
γ ∧ ϑγ (4.14)

We also notice the fact that Kαβ = −Kβα if both ω̃α
β and ωα

β are metric compatible.

Now from the energy-momentum conservation law in U4 for PGT, we have

DTα =
Ä
eαcT β

ä
∧ Tβ +

Ä
eαcΩβγ

ä
∧Sβγ =

Ä
eαcKβ

γ

ä
∧ ϑγ ∧ Tβ −Kβ

α ∧ Tβ (4.15)

where we have used the Weitzenböck connection Ωβγ = 0 and (4.14). On the other hand,

the LHS of (4.15) follows from the definition that

DTα := dTα − ωαβ ∧ Tβ := dTα −
Ä
ω̃α

β −Kα
β
ä
∧ Tβ = D̃Tα +Kα

β ∧ Tβ, (4.16)

where D̃ denotes the Levi-Civita connection. When we equate (4.15) and (4.16), we have

D̃Tα +������
Kα

β ∧ Tβ =
Ä
eαcKβ

γ

ä
∧ ϑγ ∧ Tβ −������

Kβ
α ∧ Tβ (4.17)

where the two terms cancel due to the fact Kαβ = −Kβα, so that we obtain

D̃Tα =
Ä
eαcKβγ

ä
∧ ϑ[γ ∧ Tβ]. (4.18)

Recall that in TEGR, we assume only spinless matter Sγβ = 0 which has the identity

ϑ[γ ∧ Tβ] = 0. Then we derive D̃Tα = 0, which is the conservation law of GR, indicating

that the motion is same as GR. This completes the proof.

Next, we show the equivalence of the gravitational field evolution to GR. There are

two levels of the proof to certify such an equivalence. One sets out from the level of

the Lagrangian and converts LGR|| in (4.9) into the Hilbert-Einstein Lagrangian of GR

LEH = 1
2κ
‹Ωαβ ∧ ηαβ via a remarkable identity (see [65])

LGR|| = − 1

2κ
‹Ωαβ ∧ ηαβ + d(ϑα ∧ ?dϑα) (4.19)

where ‹Ωαβ is the curvature 2-form of Levi-Civita connection ω̃α
β. The other assertion for

the equivalence is shown at the level of the gravitational field equations as we present

below. First we prove some useful identities.

Lemma 2.

1

2
Kµν ∧ ηαµν = ?

Ç
−(1)Tα + 2(2)Tα +

1

2
(3)Tα

å
(4.20)

Ωβ
α = ‹Ωα

β − D̃Kα
β −Kα

µ ∧Kµ
β (4.21)
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Proof. The proof for the first identity can be found in the Appendix C [73]. Here we only

prove the second. By definition,

Ωβ
α = dωα

β − ωαγ ∧ ωγβ

with the contortion 1-form Kα
β = ω̃α

β − ωαβ. It can be rewritten as

Ωβ
α = d

Ä
ω̃α

β −Kα
β
ä
− (ω̃α

γ −Kα
γ) ∧

Ä
ω̃γ

β −Kγ
β
ä

=
Ä
dω̃α

β − ω̃αγ ∧ ω̃γβ
ä
−
Ä
dKα

β −Kα
γ ∧ ω̃γβ − ω̃αγ ∧Kγ

β
ä
−Kα

γ ∧Kγ
β

= ‹Ωβ
α − D̃Kα

β −Kα
γ ∧Kγ

β

Theorem 12. The GR|| field equation (4.8)1 is equivalent to Einstein’s equation (GR).

Proof. Recall that the GR|| choice Hβ is given by (4.10). Via (4.20) it reads

Hβ =
1

2κ
Kµν ∧ ηβµν . (4.22)

Thus the GR|| Lagrangian (4.9) can be rewritten as:

LGR|| = −1

2
T β ∧Hβ = − 1

4κ

Ä
Kβγ ∧ ϑγ

ä
∧ (Kµν ∧ ηβµν) =

1

2κ

Ä
Kβ

µ ∧Kµν ∧ ηνβ
ä

(4.23)

where we have used (4.14), (4.22) and identity (2.42). Then the GR|| field equation (4.8)1

reads:

DHα − eαcLGR|| − (eαcT β) ∧Hβ =

Ü
1

2κ
D̃Kµν ∧ ηαµν︸ ︷︷ ︸

(F)

+Kα
β ∧Hβ

ê
− 1

2κ

eαc ÄKβ
µ ∧Kµν

ä
∧ ηνβ +Kβ

µ ∧Kµν ∧ ηνβα︸ ︷︷ ︸
(F)

− (eαcT β) ∧Hβ (4.24)

where the term

DHα = D̃Hα +Kα
β ∧Hβ =

1

2κ
D̃Kµν ∧ ηαµν +Kα

β ∧Hβ (4.25)

utilizes (4.16), (4.22) and the fact D̃ηα1···αp ≡ 0 from (2.43), and

eαcLGR|| =
1

2κ

î
eαc
Ä
Kβ

µ ∧Kµν
ä
∧ ηνβ +Kβ

µ ∧Kµν ∧ ηνβα
ó

(4.26)

One observes that using the important identity (4.21) with the GR|| requirement Rβν ≡ 0,

the (F) terms collect as

1

2κ

Ä
D̃Kβν +Kβ

µ ∧Kµν
ä
∧ ηαβν =

1

2κ
‹Rβν ∧ ηαβν = −1

κ

Ç‹Rµα −
1

2
‹Rgµαå ηµ (4.27)



4.2. THE TELEPARALLEL EQUIVALENT TO GENERAL RELATIVITY (TEGR)55

which is immediately recognized as the Einstein tensor. The appearance of this term

almost claims the completion of the proof; it remains to prove that all the rest of the

terms in (4.24) cancel, which only takes some more steps to see it. Indeed, since the last

term in (4.24) can be rewritten asÄ
eαcT β

ä
∧Hβ =

Ä
eαc
Ä
Kβγ ∧ ϑγ

ää
∧Hβ (4.28)

=
ÄÄ
eαcKβγ

ä
∧ ϑγ −Kβ

α

ä
∧Hβ = −2

Ä
eαcKβ

µ

ä
∧Kµν ∧ ηνβ +Kα

β ∧Hβ

(4.29)

together, the 3 terms remaining vanish,

Kα
β ∧Hβ −

1

2κ

Ä
eαc
Ä
Kβ

µ ∧Kµν
ä
∧ ηνβ

ä
−
Ä
eαcT β

ä
∧Hβ = 0 (4.30)

where we have used eαc
Ä
Kβ

µ ∧Kµν
ä
∧ ηνβ = 2

Ä
eαcKβ

µ

ä
∧Kµν ∧ ηνβ.

The above two theorems then conclude that TEGR is equivalent to GR in the matter

and geometric evolutions. One observes that the use of computational tools developed in

Sec.(2.3.2) largely reduces the complicated calculation, while it causes more abstraction

and indirectness. For most teleparallel theorists, the component forms of TEGR are then

used more often (see [74]). Since the conversion in between is rarely seen, we demonstrate

some sketch below.

Theorem 13.

LGR|| := −1

2
Tα ∧Hα

=
1

2κ

Ç
1

4
Tµνα T

µνα +
1

2
Tµνα T

ανµ − Tµσσ T µδδ
å
η

:= −Tscalar · η

(4.31)

where the term Tscalar := 1
2κ

Ä
1
4
Tµνα T

µνα + 1
2
Tµνα T

ανµ − Tµσσ T µδδ
ä
∈ C∞(M) is referred

to as the torsion scalar.

Proof. From (2.45) we simplify (4.9) as

LGR|| =
1

2κ
Tα ∧ ?

Ç
Tα − ϑα ∧ ieβ(T β)− 1

2
ieα (ϑγ ∧ T γ)

å
(4.32)

and then we compute the terms above individually

ϑα ∧ ieβ(T β) = −Tµ ϑα ∧ ϑµ

ieα (ϑγ ∧ T γ) = Tα − Tα[µν] ϑ
µ ∧ ϑν

(4.33)
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where (2.24) and (2.42) are repeatedly used and Tµ := Tµν
ν is the torsion trace we defined

early. Note that here a single notation Tµ can either denote torsion trace or torsion 2-form.

However the confusion shall not rise since one can tell from the correct degree of differential

forms. After rearrangement, one is left to compute

Tα ∧ ?Tα = −1

2
Tµνα T

µνα η,

Tα ∧ ? (Tµ ϑ
α ∧ ϑµ) = Tµ T

µ η,

Tα ∧ ?
Ç
−1

2
ieα(ϑγ ∧ T γ)

å
= −1

2
Tα ∧ ?Tα −

1

2
T µνα Tα[µν]η.

(4.34)

if we put everything together, we obtain the component form in (4.31).

Remark 5. Most of the literatures that studies teleparallel gravity, the component formu-

lation is usually adopted. One of the merits is that the computation made direct. Since

both a tetrad and local coordinate vectors are a basis, one can expand a tetrad in terms of

the local coordinate vectors, hence

eα = eiα(x)
∂

∂xi
, ϑα = eαi (x) dxi (4.35)

where eiα : U ⊆M → R is the coefficient matrix. Along with the dual condition

ϑβ(eα) =
Ä
eβi (x) dxi

ä Ç
ejα(x)

∂

∂xj

å
= eβi (x) eiα(x) = δβα,

Ç
dxi
Ç
∂

∂xj

å∣∣∣∣
x

= δij

å
for all x ∈ U , one obtains the relation eβi (x) eiα(x) = δβα. Thus the entire teleparallel

field equation (4.11) in terms of eβi and eiα is only the equation of eβi alone. More often,

teleparallelists tend to call the coefficients eiα and eβi as a tetrad and co-tetrad.

4.3 Local Lorentz violation in TEGR

Although we have proved that TEGR is equivalent to GR in many aspects, there is one

peculiar property that does not share with GR: local Lorentz violation. It has been pointed

out in [39], [75] that the TEGR Lagrangian LGR|| does not respect local Lorentz symmetry,

where the local violation term is in the form of an exact differential. Hence in effect, as a

boundary term, it does not affect the action and field equations. However, the story will

be different in the f(T ) theory, in which violation terms cannot be eliminated, see [39].
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In fact, we can give an account why the TEGR Lagrangian fails to be Lorentz invariant

from the viewpoint of the fibre bundle theory. To depict the local Lorentz violation first

we define it operationally

Definition 20. (Local Lorentz Invariance and Violation)

Let {Ui ⊆M} be an open covering of the spacetime M , and a family of local Lagrangian

4-forms {Li ∈ Λ4(Ui,R)} defined on Ui. If on nonempty overlaps Ui ∩ Uj with transition

map Ψij : Ui ∩ Uj → SO(1, 3), the two Lagrangians agree Li(x) = Lj(x) (in the sense of

up to a constant), ∀x ∈ Ui ∩ Uj, then we say Li or Lj is locally invariant on Ui ∩ Uj.

Moreover, if L := ∪iLi is a locally invariant on any nonempty overlaps, then L is a locally

invariant Lagrangian on the whole M . Thus if a Lagrangian is not locally invariant on

some nonempty overlaps, we call it Lorentz violation otherwise.

From Section. 2.3.1, we see that if we have two orthonormal frames (eα) ∈ X(Ui) and

(ẽβ) ∈ X(Uj) defined on Ui and Uj respectively with Ui ∩ Uj 6= φ and α, β = 0, 1, 2, 3

with (ϑα) ∈ Λ1(Ui) and (ϑ̃β) ∈ Λ1(Uj) denoting their dual coframes, then by (2.35) the

frame changing between two sections σUi : Ui →M and σUj : Uj →M with the transition

function ΨUjUi : Ui ∩ Uj → SO(1, 3) one has the transforms

eβ(x) = (A(x))αβ ẽα(x) ⇔ ϑ̃β(x) = (A−1(x))βα ϑ
α(x) (4.36)

where Aαβ := (ΨUjUi)
α
β denotes the matrix form of SO(1, 3). According to such transforma-

tion rule, the TEGR action (4.9) and the corresponding field momenta (4.10) transforms

as ‹LG(x) = LG(x)− 1

2κ
d
Ä
(A−1(x))αβ d(A(x))βγ ∧ ηγα

ä
H̃α(x) = (A−1(x))βαHβ(x)− 1

2κ
(A−1(x))βα (A−1(x))νγ d(A(x))γµ ∧ ηβµν

t̃α(x) = (A−1(x))βα tβ(x) + d(A−1(x))βα ∧Hβ

− 1

2κ
d
Ä
(A−1(x))βα (A−1(x))νγ d(A(x))γµ ∧ ηβµν

ä
(x)

(4.37)

where x ∈ Ui ∩ Uj and the tilde-symbols refer to quantities in the Uj system.

After moments of thought, one recognizes that the violation of (4.37) follows from the

fact that they are not basic differential forms (see Def. (9)) from a principal bundle. One

sees that if α ∈ Λ
k
(P, V ) is a basic differential form, by applying the change of sections

(2.30) its local form transforms as

σ∗Uj α = ρ
Ä
Ψ−1
UiUj

(x)
ä
· σ∗Ui α (4.38)
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where σUi : Ui → P is a local section. Some well-behaved examples are: the torsion 1-form

Tα by (2.32) and (2.35), and the curvature 2-form Ωω by (2.38). An ill-behaved example

is the connection 1-form ω by (2.36) and (2.37). In fact, we have [51]

Theorem 14. Basic differential forms on a principal bundle π : P → M are in 1-1

correspondence to global-defined differential forms on M with values in the associated

bundle P ×G V

Λ
k
(P, V ) ∼= Λk(M,P ×G V ), (4.39)

where the associated bundle P ×G V is defined as (P × V )/G := {[p, v]| p ∈ P, v ∈ V }

by the quotient of the G-action (p, v) · g := (p · g, ρ(g−1) · v). Yet forms on M of value in

P ×GV are equivalently represented by a family of µi ∈ Λk(Ui, V ) with the gluing condition

µi = ρ(Ψ−1
ji ) · µj (4.40)

where Ψji : Ui ∩ Uj → G is the transition function.

Thus using the theorem, we conclude that

Corollary 2. (Local Lorentz violation)

The reason for the local Lorentz violation (4.37) is due to the fact that the TEGR

Lagrangian LGR|| is not a basic differential form, i.e, not a global-defined scalar on M .

In contrast, we know that the Hilbert-Einstein action has a nice transformation

behavior1 under the change of frames. As one now looks back to the Einstein-Hilbert

action, or even the more general Einstein-Cartan theory,

LG :=
1

2κ
Ωαβ ∧ ηαβ =

1

2κ
R
√
−g d4x ∈ Λ4(M)

it can be checked that it belongs to Λ
0
(P, V ). Therefore it is well-glued on each overlap

Uα ∩ Uβ and hence globally defined showing no local Lorentz violation.

Remark 6. There is usually a misleading concept that a scalar without index, e.g. a

Lagrangian, is always an invariant scalar under change of frames, since it may only be

locally defined. One has to check the gluing condition carefully. It should be now clear

1In fact, before Hilbert gave the Lagrangian (2.50) Einstein took one different from the scalar curvature

R by a total differential and was not invariant under changes of the coordinate frame. Nevertheless, the

corresponding field equations under the variation can still possess Lorentz invariance property.
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from the theorem that a locally invariant scalar must be originated from Λ
k
(P, V ) ∼=

Λk(M,P ×G V ), and hence the word “tensor” does not mean too much unless it is specified

globally or locally.

However it is generally believed that physics law should remain the same form in every

frame which is an essence of a gauge theory. This is reminiscent of the Yang-Mill’s theory

of the non-Abelian gauge. Local (gauge) violation occurs if we consider the field strength

defined like F = dA for some gauge potential A ∈ Λ1(M, g) transforming as

A = ϕ−1 dϕ+ ϕ−1 Ã ϕ

by (2.37). To cure the local violation of F , the remedy is to add the term A ∧ A such that‹F := dA+A∧A, which was the Yang-Mills original idea. Thus ‹F will then transforms as

(”a tensor” by an abuse of language) ‹F = Ψ−1 ‹FΨ, which is now globally defined.

4.3.1 Generalized teleparallel theories

Despite the local Lorentz violation term, the interesting property of TEGR equivalence

with GR makes some people to conceive an extension of teleparallel gravity to f(T ) theory

(here T = Tscalar). This proposal mainly replaces the Lagrangian LGR|| with L = f(T )

by mimicking the f(R) phenomenological gravity models, while the underlying geometry

remain unchanged. Thus one can see that f(T ) theory contains nontrivial local Lorentz

violation terms that cannot be treated as boundary terms, see [39]. In effect, the field

equations of f(T ) deviate from those of GR. However [76] finds that if one considers the

weak field limit of the tetrad field on the solar system scale, the geodesic equation of f(T )

coincides with that of GR up to the Newtonian limit, which indicates that the current

solar system observations hardly distinguish these two theories, regardless of the actual

form of f(T ). However, f(T ) theory does demonstrate a different evolution history on

the cosmological scale. Some recent studies show that f(T ) has a certain effect in on the

sub-horizon scale [77], which modifies the effective Newtonian constant and causes different

formation history for the large scale structure. In this background, f(T ) serves as an

alternative theory to compare with ΛCDM. Several papers are devoted in the subsequent

investigations of f(T ) models.

In addition to f(T ) theory, another minimal extension of teleparallel gravity mimicking

the scalar-tensor theory in GR was proposed, called teleparallel dark energy. Such a
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theory was shown to provide a contrast to that of GR, see [78], [79]. Some other problems

of f(T ) were also found by Ong, Izumi, Nester, and Chen [80] that in a generic f(T ) theory

there could be super-luminal propagating modes due to the effects of nonlinear constraints

via the analysis of the corresponding characteristic equations and the Hamiltonian structure.

Nevertheless, f(T ) theory still provides useful phenomenological explanations in cosmology

problems [81], [82].



5

Five Dimensional Theories

In this chapter we study the five dimensional theories of teleparallel gravity. Kaluza [41]

and Klein [42] attempted to apply extra dimension to unify electromagnetism and gravity.1

Kaluza’s ansatz in 1921 was to split the 5-dimensional spacetime M into a 4-dimensional

spacetime M and the Maxwell’s electrodynamics we perceive. However, Kaluza’s attempt

was to consider the fibre as R1 while Oskar Klein in 1926 modified his theory with curled

fibre S1 ∼= U(1), a compact Abelian Lie group. Nowadays we can interpret the Kaluza-Klein

theory as a principal fibre bundle π : P = M →M with gauge group G = U(1), where M

denotes our 4-dimensional spacetime. The splitting of M into M with electromagnetic

force is then due to the nature of the local trivialization of the principal fibre bundle in

Def.(1) with an assigned metric ḡ = π∗g + A⊗ A, where g is the metric on M and A is a

connection form on M such that A = π∗A, see [57].

In the following we are motivated by the Kaluza-Klein theory to construct five-

dimensional theories in teleparallel gravity.

5.1 Five-dimensional teleparallel gravity construction

As before, we keep our setting as general as possible. Let f : M → V be an isometric

embedding of a 4-dimensional Lorentzian manifold M (hypersurface) into a 5-dimensional

Lorentzian manifold (the bulk) (V, ḡ).

Consider a tetrad {e0, . . . , e3} on M and its natural extension as a tetrad {ē0, . . . , ē3, ē5}

1Around 1914, Nordström proposed a similar 5D unified field theory attempt of gravitation and

Maxwell’s electromagnetism before Kaluza and Klein, see [40].

61
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on V , where ēa := f∗(ea) and ē5 is the unit normal vector field to M . The corresponding

dual coframe to ea is {ϑ0, . . . , ϑ3} and to ēA is {ϑ̄0, . . . , ϑ̄3, ϑ̄5}, and thus f ∗(ϑ̄a) = ϑa. We

shall identify M with M := f(M) ⊂ V , X ∈ X(M) with X̄ ∈ X(M), and ϑa ∈ T ∗M with

ϑ̄a ∈ T ∗M ...,etc interchangeably.

Indices of the tetrad on M are labeled by small Latin letters a, b, c, . . . ,= 0, 1, 2, 3.

For the local coordinate on M the index is denoted by Greek letters µ, ν, . . . = 0, 1, 2, 3.

Both the spatial components of the local coordinates and tetrad on M share the labelling

by middle Latin letters i, j, k, . . . = 1, 2, 3; indices of the tetrad in V are labelled by

capital Latin letters A,B,C, . . . ,= 0, 1, 2, 3, 5; indices of the local coordinate, e.g, dxM =

(dxµ, dx5), in V are denoted by capital Latin letters M,N = 0, 1, 2, 3, 5, where 5 denotes

the extra dimension (5th dimension). Quantities with a bar, e.g, ēA, are used to mean

objects viewed in V .

e5
_

_ _
e5 e5

M=M
_

V

Figure 5.1: The isometric embedding f : M → V .

The 4-dimensional teleparallel gravity on M , as introduced in Chapter 4, is formulated

by a tetrad ϑa, and the Weitzenböck connection defined by (4.2) with respect to ea,

denoting ∇W eb := ωb
a ea. The metric g of M is written as

ds2 = gµν dx
µ ⊗ dxν = ηab ϑ

a ⊗ ϑb , (5.1)

where ηab denotes the Minkowski metric. The metric signature is fixed as (−,+,+,+, ε)

where ε := ḡ(ē5, ē5) = ±1 is the sign of the 5th dimension.

With the TEGR Lagrangian (4.9)

T := Ta ∧ ?
ñ

(1)T a − 2 (2)T a − 1

2
(3)T a

ô
, (5.2)
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or the component form (4.31)

T =
1

4
Tabc T

abc +
1

2
Tabc T

cba − T bba T
c
c
a (5.3a)

=
1

4
Tµνσ T

µνσ +
1

2
Tµνσ T

σνµ − T ννµ T
σ
σ
µ . (5.3b)

so that T = T ? 1. Teleparallel gravity on the bulk V is similarly defined with the

Weitzenböck connection 1-form {ω̄BA ∈ Λ1(V )} on V corresponding to {ē0, . . . , ē3, ē5}, and

the 5-form TEGR Lagrangian T̄ for V

T̄ = T̄A ∧ ?̄
ñ

(1)T̄A − 2 (2)T̄A − 1

2
(3)T̄A

ô
, (5.4)

where ?̄ is the Hodge dual operator in (V, ḡ) and T̄A := ∇W ϑ̄A = d̄ϑ̄A + ω̄AB ∧ ϑ̄B = d̄ϑ̄A is

the torsion 2-form on V . Here there are two Cartan differentials d : Λk(M)→ Λk+1(M)

and d̄ : Λk(V ) → Λk+1(V ) to be carefully distinguished, along with the requirement

d̄
∣∣∣
Λk(M)

= d
∣∣∣
Λk(M)

. The gravitational action on V is given by

(5)S = − 1

2κ5

∫
T̄ = − 1

2κ5

∫
T̄ ?̄1 , (5.5)

where κ5 = 8 π G(5) represents the 5-dimensional gravitational coupling, T̄ stands for the

torsion scalar of V , and ?̄1 = (5)e d5x = det(eAM) d5x is the volume form of V .

In order to understand 5-dimensional teleparallel gravity, it is necessary to look back

to the analysis in that of GR.

5.2 Five-dimensional gravity of GR

Here we provide an approach, which is rarely found in the literature, using Cartan’s moving

frame to derive the Gauss-Codazzi Theorem that provides a useful basis for the later

construction. The Gauss-Codazzi equation has the importance of connecting relations

between the 5-dimensions and the 4-dimensions, and hence gives the projected information

of the five-dimensional spacetime down to the 4-dimensional spacetime.

Keeping the notations for the setting from the last section, and suppose now that

(V,∇, ḡ) and (M, g,∇) are both semi-Riemannian manifolds. From Cartan’s structure

equation (vanishing torsion),

d̄ ϑ̄A + ω̄B
A ∧ ϑ̄B = 0, (on M)

dϑa + ωb
a ∧ ϑb = 0, (on M)

(5.6)
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in particular, from (5.6)1 with A = 5 and A = a we have

d̄ ϑ̄5 + ω̄b
5 ∧ ϑ̄b = 0,

d̄ ϑ̄a + ω̄5
a ∧ ϑ̄5 + ω̄b

a ∧ ϑ̄b = 0
(5.7)

also from (5.6)2, we may replace d̄ϑ̄a = −ωba∧ϑb since we require d̄
∣∣∣
Λk(M)

= d
∣∣∣
Λk(M)

. Then

we derive

(ω̄b
a − ωba) ∧ ϑb + ω̄5

a ∧ ϑ̄5 = 0. (5.8)

Recall that the extrinsic curvature (or the second fundamental form) is defined by

∇XY −∇XY = K(X, Y ) ē5 (5.9)

or alternatively

K(X, Y ) := εḡ
Ä
∇XY −∇XY, ē5

ä
= εḡ

Ä
∇XY , ē5

ä
. (5.10)

Taking X = ea, Y = eb, one obtains

ω̄a
5(eb) := ω̄ba

5 = K(ea, eb) := Kab. (5.11)

Note that here Kab denotes the extrinsic curvature 2-tensor, not the contortion 1-form

(4.12). On the other hand, the metric compatible condition

0 = d̄ḡ (ēa, ē5) = ḡ
Ä
∇ēa, ē5

ä
+ ḡ
Ä
ēa,∇ē5

ä
(5.12)

helps us to derive

ω̄5
b(ea) := −ηbcε ω̄c5(ea) = −ηbcε ω̄ac5 = −εKb

a (5.13)

where (5.11) is used. Finally combined with (5.8) we obtain the relation of connection

1-forms on V and on M , given by

ω̄b
a = ωb

a − εKb
aϑ̄5. (5.14)

Therefore only with some simple computation, one has attained

Theorem 15. ([83])

R
a
bcd = Ra

bcd − εKa
cKdb + εKa

dKcb, (Gauss)

R = R + 2
Ä
εLē5trK −KabKab

ä
, (Mainardi)

(5.15)
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Proof. Simply use the relation (5.14) on the curvature 2-form

Ω
A
B := d̄ω̄B

A + ω̄C
A ∧ ω̄BC =

1

2
R
A
BCD ϑ̄

C ∧ ϑ̄D. (5.16)

With A = a and B = b, one can derive the first equation; with A = a, B = 5 one can

derive

R
a

5b5 = εLē5Ka
b −KacKcb, R

a
5a5 = εLē5trK −KabKab, (5.17)

where Lē5 is the Lie derivative with respect to the normal direction. The second identity

of the curvature scalar is obtained from

R = Ω
AB ∧ ηAB = Ω

ab ∧ ηab + 2Ω
a5 ∧ ηa5. (5.18)

One notices that if we put the so-called cylindrical condition (see (5.25)), namely

Lē5Ka
b ≡ 0, then (5.15)2 reads R = R− 2KabKab, where the last term is reminiscent of

the Maxwell’s electrodynamics action −1
4
Fab F

ab with a suitable reparametrization [84].

If we interpret the extrinsic curvature of M in V as the electrodynamics we perceive,

then the five-dimensional gravity shall induce four-dimensional gravity plus Maxwell’s

electrodynamics. Also notice that there is no extra coupling term between gravity and

electromagnetism in this theory.

With these understanding in GR, next we turn to teleparallel gravity.

5.3 Effective gravitational action on M

To derive the effective teleparallel gravity from V onto M , a crucial ingredient is to find a

relation analogous to the Gauss equation (5.15). However one notices in TEGR that the

Weitzenböck connection leads to vanishing extrinsic curvature (5.10) of M in V , Kab ≡ 0 ,

since ∇W
e5 = ω̄5

a ea ≡ 0. Thus the Gauss equation (5.15)

R
a
bcd = Ra

bcd − εKa
cKdb + εKa

dKcb

simply becomes a zero identity due to R
a
bcd = 0 and Ra

bcd = 0 in teleparallel gravity,

which indicates that the brane is like a flat-paper of R2 put into an Euclidean space R3.

The extra degree of freedom in TEGR actually lies in the torsion 2-form. From (2.24)

we may decompose the torsion T̄ a of V into normal and parallel components with respect
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to M

T̄ a = T a + T̄ ab5 ϑ̄
b ∧ ϑ̄5 , (5.19)

where T a = 1
2
T abc ϑ

b ∧ ϑc is the torsion 2-form on M . Therefore the second term in (5.19)

plays a role like the extrinsic curvature Kab in GR.

Since f : M → V is an isometric embedding, for any chart (χ, U = (xµ) ⊆ R4) of M

we can always find a local normal form (Φ,W = (xµ, y) ⊆ R5) such that F = Φ−1 ◦ f ◦ χ :

χ(U)→ Φ(W ) is given by F (xµ) = (xµ, y = 0) and the 5D metric ḡ is in the form

ḡMN =

Ö
gµν(x

µ, y) 0

0 εφ2(xµ, y) ,

è
(5.20)

where y = x5. The choice of the notation φ is in order for the extra dimensional effect to

mimic a scalar field. Within such coordinates, we obtain a preferred frame for V with

ēA =

Ç
ea,

1

φ

∂

∂y

å
, ϑ̄A =

Ä
ϑ̄a, φ dy

ä
, (5.21)

such that ḡ = ηab ϑ
a ⊗ ϑb + εϑ̄5 ⊗ ϑ̄5. In this case,

T̄ n = d̄ϑ̄n + ω̄nA ∧ ϑ̄A = d̄ϑ̄n =
ea(φ)

φ
ϑ̄a ∧ ϑ̄n (5.22)

one reads T̄ 5
b5 = 1

φ
eb(φ) where eb(φ) := (dφ)(eb). Thus we conclude that in the frame

(5.21), the nonvanishing torsion components of V are T abc, T̄
a

5b and T̄ 5
b5 = 1

φ
eb(φ).

So far we have not yet specified the type of our five-dimensional spacetime. If we now

let the ambient space V be a local product of U ×W , where U ⊆M is open in M and W

corresponds to the extra spatial dimension. Utilize (5.4) and the local product structure

of V , we may compute the integration of the five-dimensional action over the base space

U of M ,

Sbulk =
−1

2κ5

∫
U

∫
W

Ç
T +

1

2

Ä
Tab5 T

ab5 + Ta5b T
b5a
ä

+
2

φ
ea(φ) ta − t5 · t5

å
φdy dvol4, (5.23)

where T is the (induced) 4-dimensional torsion scalar defined in (5.3) and let ta := Tab
b

denote the torsion trace instead of Ta to avoid confusion. The equation (5.23) then provides

us with a general effective action on the hypersurface M in TEGR theory. Next, we

concentrate on two specific theories of braneworld and Kaluza-Klein scenarios.

5.3.1 Braneworld Scenario

In the braneworld scenario, we set the hypersurface M located at y = 0 as a brane and

specify the fibre W = R such that V = M × R. From (5.23), the general action on the
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M

Figure 5.2: The space M ×G is compactified over the compact Lie group G, and after the

Kaluza-Klein decomposition we have an effective field theory over M (Image courtesy of

Wikipedia).

bulk reads

Sbulk =
−1

2κ5

∫
M

∫
R

®
φT + φ

Ç
1

2

Ä
Tab5 T

ab5 + Ta5b T
b5a
ä

+
2

φ
ea(φ) ta − t5 t5

å´
dy dvol4

(5.24)

The first term of the parentheses
∫
M

∫
R φT

√
−g dy d4x in (5.24) is recognized as the

usual TEGR Lagrangian with a non-minimally coupled scalar field φ on the brane lo-

calized in the fifth-dimension, which is analogous to the non-minimally coupled Hilbert

action
∫
M

∫
R φR

√
−g dy d4x of 4-dimension in GR. The second term arises from the

fifth-dimensional component.

According to the induced-matter theory, the fifth-dimensional component and the flow

along the 5th-dimension of the second term in (5.24) can be regarded as the induced-matter

from the geometry. It is the projected effect due to the extra spatial dimension. We

note that the mathematically equivalent formulation between the induced-matter and

braneworld theories has been demontsrated by Ponce de Leon in [85].

5.3.2 Kaluza-Klein Theory

If we identity the space V locally as U × S1 where topologically S1 ∼= U(1) and consider

the 4-dimensional effective low-energy theory to require the Kaluza-Klein ansatz in TEGR,

e5(gµν) = 0 or
∂

∂y
gµν = 0, (Kaluza-Klein ansatz) (5.25)

which is also called the cylindrical condition to indicate that the function is independent

of the fibre level. With this condition the theory allows only the massless Fourier mode
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[87]. The metric is then reduced to

ḡMN =

Ö
gµν(x

µ) 0

0 φ2(xµ)

è
(5.26)

with ε = +1. By the KK ansatz, we see T ab5 = 0 and t5 = 0 so that the extra-dimensional

integration is trivial, i.e,
∫
S1 φ(xµ) dy = 2πr φ(xµ), where r is the radius of the fifth-

dimension. As a result, we obtain

SKK =
−1

2κ4

∫
U

(φT + 2 ∂µφ t
µ) e d4x, (5.27)

where κ4 := κ5/2πr is the effective 4-dimensional gravitation coupling constant. We point

out that our result of (5.27) disagrees with that given in [49]. One can adopt a simple

case with F (T ) = T in Eq. (5) of [49] to check that the resultant equation differs from

ours in (5.27).

In the next section, we examine our five-dimensional theory of TEGR in a cosmological

background.

5.4 Friedmann Equation of Braneworld Scenario in

TEGR

Before the computation for the TEGR theory, it is necessary to reformulate the FLRW

cosmology of GR in differential forms.

5.4.1 FLRW cosmology in GR

In GR, the FLRW universe of sectional curvature k = 0 is described by

gµν = diag
Ä
−1, a2(t), a2(t), a2(t)

ä
(5.28)

a canonical choice of coframe field is given by

ϑ0 = dt, ϑi = a(t) dxi (5.29)

First we need to compute the connection 1-form of the Levi-Civita connection ∇̃ea =

ω̃a
b ϑb. Start with Cartan’s structure equation (5.6)2

0 = T 0 = ��dϑ0 + ω̃i
0 ∧ ϑi (5.30)
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on the isotropic condition, one can choose ω̃i
0 = B(t,x) dxi for some temporal function

B(t,x), and the spatial components yield

0 = T i = dϑi + ω̃j
i ∧ ϑj + ω̃0

i ∧ ϑ0. (5.31)

Again, on the isotropic consideration, we may assume ω̃j
i = Ckj

i(t,x) dxk, then (5.31) tells

us that

0 = (ȧ(t)−B(t,x)) dt ∧ dxi + Ckj
i(t,x) dxk ∧ a(t) dxj.

By the linear independence of {dt, dxi}, one arrives at B(t,x) = ȧ and Ckj
i(t,x) = 0,

which is

ω̃i
0 = ηij ω̃0

j =
ȧ

a
ϑi, and ω̃j

i ≡ 0. (5.32)

where we have used the relation ω̃0
i = −η00 η

ij ω̃j
0 from the metric compatibility. With

(5.32), the curvature 2-forms (2.24) are

Ωjk = ηkm Ωj
m =

ȧ2

a2
ϑj ∧ ϑk

Ω0j = ηjm Ω0
m =

ä

a
ϑ0 ∧ ϑj

(5.33)

one can readily verify the Friedmann equation from (2.55)

1

2
Ωβγ ∧ η0βγ = κt0, ⇔

Ç
ȧ

a

å2

= κρ,

1

2
Ωβγ ∧ ηiβγ = κti, ⇔ 2

ä

a
+ 4

Ç
ȧ

a

å2

= κ(ρ− p)

where the energy-momentum 3-form is defined by t0 = ρ η0 and ti = p δij η
j. Again, one

observes that the use of differential forms reduces tedious Christoffel symbol and curvature

components computation. With these helpful computations in the Riemannian case, we

may return to TEGR.

5.4.2 FLRW Brane Universe

Now we apply the teleparallel braneworld effect in cosmology. Assume that the brane M

at y = 0 is a homogeneous and isotropic universe. The bulk metric ḡ is further assumed

to be a maximally symmetric 3-space with spatially flat (k = 0) by

ḡMN = diag
Ä
−1, a2(t, y), a2(t, y), a2(t, y), ε φ2(t, y)

ä
(5.34)

by choosing the canonical coframe field

ϑ̄0 = dt, ϑ̄i = a(t, y) dxi, and ϑ̄5 = φ(t, y) dy (5.35)
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Subsequently, the torsion 2-forms are

T̄ 0 = d̄ ϑ̄0 = 0, T̄ i = d̄ϑ̄i =
ȧ

a
ϑ̄0 ∧ ϑ̄i +

a′

aφ
ϑ̄5 ∧ ϑ̄i, T̄ 5 =

φ̇

φ
ϑ̄0 ∧ ϑ̄5 , (5.36)

where the dot and prime stand for the partial derivatives respect to t and y, respectively.

Thus the non-vanishing torsion components of five-dimension are read off

T0i
i =

ȧ

a
, Tni

i =
1

φ

a′

a
, Tna

n =
ea(φ)

φ
(5.37)

With these data, the bulk Lagrangian (5.24) in the FRLW cosmology background has the

form

T̄ =

[
T +

(
3− 9 ε

φ2

a′2

a2
+ 6

ȧ

a

φ̇

φ

)]
dvol5 (5.38)

where ε = +1 and T = 6ȧ2/a2 is the usual 4-dimensional scalar torsion.

5.4.3 Equations of Motion

The gravitational field equations on the bulk can be derived from the formulation given

in [88, 89]. The equations of motion on V are 4-forms

D̄H̄A − ĒA = −2κ5
(5)Σ̄A , (5.39)

with

H̄A = (−2)?̄

Ç
(1)T̄A − 2 (2)T̄A −

1

2
(3)T̄A

å
,

ĒA := iēA(T̄ ) + iēA(T̄B) ∧ H̄B ,

Σ̄A :=
δL̄mat
δϑ̄A

, (5.40)

where Σ̄A is the canonical energy-momentum 4-form of matter fields, and H̄A can be

simplified as [89]

H̄A =
Ä
ḡBCK̄D

C

ä
∧ ?̄
Ä
ϑ̄A ∧ ϑ̄B ∧ ϑ̄D

ä
, (5.41)

with K̄D
C := ω̄DC − ω̃DC being the contortion 1-form.

Following the same procedure as in (5.32), we are able to derive the unique Levi-Civita

connection 1-form ω̃DC with respect to the coframe in V , given by

ω̃0
i =

ȧ

a
ϑ̄i, ω̃i0 = ω̃0

i , ω̃0
5 = ε

φ̇

φ
ϑ̄n, ω̃5

0 = ε ω̃0
5 ,

ω̃5
j = −ε a

′

φa
ϑ̄j, ω̃j5 = −εω̃ij, ω̃ij ≡ 0 .

(5.42)
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From (5.41) and (5.42), some computation yields the equations of motion for the bulk:

D̄H̄0 − Ē0 = 3

[(
ȧ2

a2
+
ȧ

a

φ̇

φ

)
− ε

φ2

Ç
a′′

a
− a′

a

φ′

φ

å
−
Ç

1 + ε

2φ2

å
a′2

a2

]
?̄ϑ̄0

+
3ε

φ

(
ȧ′

a
− a′

a

φ̇

φ

)
?̄ϑ̄5 = −κ5 Σ̄0 ,

D̄H̄5 − Ē5 =
3

φ

(
a′

a

φ̇

φ
− ȧ′

a

)
?̄ϑ̄0 + 3

ñÇ
ä

a
+

2ȧ2

a2

å
−
Ç

1 + ε

2φ2

å
a′2

a2

ô
?̄ϑ̄5

= −κ5 Σ̄5 .

(5.43)

Thus (5.43)1 is the Friedmann equation of the bulk. Moreover, if we let ε = +1 and expand

the energy-momentum 4-form Σ̄A = T̄BA ?̄ϑ̄B, we obtain

(
ȧ2

a2
+
ȧ

a

φ̇

φ

)
− 1

φ2

Ç
a′′

a
− a′

a

φ′

φ

å
− 1

φ2

a′2

a2
=
κ5

3
T̄00 (5.44)

Furthermore, if we consider our matter field as a perfect fluid, one can decompose the

energy-momentum tensor into bulk and brane parts as [90]

T̄BA (t, y) =
Ä
T̄BA
ä

bulk
+
Ä
T̄BA
ä

brane
,Ä

T̄BA
ä

brane
=

δ(y)

φ
diag(−ρ(t), P (t), P (t), P (t), 0) , (5.45)

where
Ä
T̄BA
ä

bulk
represents the vacuum energy-momentum tensor or the cosmological

constant (Λ5/κ5)ηBA in the bulk, and ρ(t) and P (t) are the energy density and the pressure

of the normal matter localized on the brane, respectively.

If the first discontinuity appears in the first derivative of the bulk metric ḡ, or ḡ ∈

C0(M) \ ⋃k=1C
k(M) to be precise, the Dirac delta function would appear in the second

derivative of the bulk metric. The FLRW metric leads to the equation of the scale factor

with the form at y = 0

a′′(t, y) = δ(y) [a′](t, 0) + ã′′(t, y) , (5.46)

where ã′′ denotes the non-distributional part of a′′ and the definition of the jump is

[f ](0) := lim
δ→0+

f(δ)− f(−δ) (f : M → R) , (5.47)

which measures the discontinuity of a real-valued function f across the brane. With the

form of the scale factor, (5.44) yields the junction condition

[a′](t, 0) =
κ5

3ε
ρ a0(t)φ0(t) (5.48)
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where a0(t) := a(t, 0) and φ0(t) := φ(t, 0) are considered as the scalar factor and a scalar

field on the brane, respectively. Furthermore, if we impose the so-called Z2 symmetry [91]

for the scale factor in Eq. (5.48) on the bulk as a real-valued quantity f must be an odd

function f(x) = −f(−x) across the brane, we obtain the Friedmann equation on the brane

to be
ȧ2

0(t)

a2
0(t)

+
ä0(t)

a0(t)
= −κ

2
5

36
ρ(t)(ρ(t) + 3P (t))− k5

3φ2
0(t)

Ä
T̄55

ä
bulk

, (5.49)

which is, unexpectedly, found to be the same as the braneworld theory of GR shown in [90].

Hence, this indicates that the cosmological braneworld scenario in TEGR coincides with

that of GR, i.e,, there is no distinction between TEGR and GR in the braneworld FLRW

cosmology, which again justifies the name of TEGR.

The physical consequence of the cosmological brane scenario here then follows from

the discussions in [90]. In particular, if the extra 5th-dimension is compact, one can check

if the solutions of a(t, y) and φ(t, y) derived from (5.43) are well-defined ones, as given in

[90]. In effect, we established the diagram

5D TEGR

reduction
��

ks +3

''

5D GR

reduction
��

4D TEGR ks +3 4D GR

Although the result may appear to be obvious, in fact there exists some non-triviality

within the reduction. The 5-dimensional reduction to the 4-dimensional of the TEGR and

GR involves different connections, the Levi-Civita and the Weitzenböck connection, and

different geometric projections. Thus after some moment of thoughts, one realizes it is not

that transparent as one though it was.

Finally, we remark that the Friedmann equation (5.43) in the bulk can be identified

as G00 = −κ5T̄00 and G05 = 0, which are the same as those in [90]. This result implies

that a radiating contribution of the universe can be generated in TEGR due to the extra

spatial dimension. It can be viewed as a generic property that there exists a component of

dark radiation in the braneworld scenario. We have to mention that there is no extrinsic

curvature in TEGR since the projected effects of the dark radiation and discontinuity

property of the brane come from torsion itself, which is clearly beyond the expectations of

GR [85, 86] as already pointed out in [50].
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Conclusion

In this thesis, we have given a complete view of Poincaré gauge gravity starting from the

affine frame bundle (A(M), π̃,M,GL(R1,3), ω̃) to Riemann-Cartan spacetime (M, g,∇).

It can be seen from such a viewpoint that the torsion is a natural byproduct of gauging

the Poincaré group P = R1,3 o SO(1, 3) into gravity, simply due to the existence of the

canonical 1-form ϕ ∈ Λ
1
(L(M),R1,3) of the frame bundle L(M) and the decomposition of

the Lie algebra P = R1,3 ⊕ so(1, 3).

We have also discussed one of the interesting models in PGT, the torsion-scalar mode

that does support the late-time universe acceleration, and investigated its features in a

cosmological model. In particular, we have studied that the energy density ratio ΩT and

the torsion EoS wT in two main cases of the scalar-torsion mode in PGT.

For the first case of the negative energy matter density with negative constant affine

curvature R < 0, the torsion EoS wT demonstrates the same behavior as the background

fluid in the high redshift regime: in the case of the radiation-dominated era we have

wT = 1/3, in the case wT = 0 of the matter-dominated era it is wT = 0 and in a later stage

of the de-Sitter point we also have wT = −1. We also observe that the torsion density

ratio of ΩT in the high redshift regime becomes a negative constant.

In the second case of the scalar-torsion mode where the positive kinetic energy condition

holds, the numerical solution of the field equations shows that in general wT has an

asymptote to 1/3 in the high redshift regime, while it could cross the phantom divide line

in the low redshift regime. With a further analysis we find that such asymptotic behavior

of wT and ΩT in fact can be resolved by a semi-analytical solution. In principle, we apply

a Laurent series expansion in the scale factor a(t) for the torsion density ρT and find
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that the series in fact has a cut-off as a the lower bound at O(a−4) in the high redshift,

corresponding to a radiation-like behavior. By a comparison of the next leading-order

term of a−3 in the field equations, we are able to extract the coefficient A3 = −µ/a1, which

results in the vanishing of the a−3 term in the affine curvature R, such that R is only

proportional to a−2, and this result is consistent with the numerical demonstration.

In the last two chapters, we regard another special geometry descendant from PGT,

teleparallel gravity. A clear definition for the Weitzenböck spacetime and its parallelism

are provided. In particular, using the basic differential forms on the principal fibre bundle,

we are able to understand the reason of local Lorentz violation in teleparallel gravity that

generally occurs.

We also construct the extra dimension theory for TEGR in five-dimensional spacetime.

With the use of Cartan’s moving frame by means of differential forms, we can find the

torsion relations between the brane and the bulk, analogous to the Gauss-Codazzi equation

in GR. In particular, from the extra dimension theory rigorously constructed, we can show

that the Kaluza-Klein theory in teleparallel gravity does not generate a Brans-Dicke type

of the effective 4-dimensional Lagrangian as in GR. This result disagrees with the one

given in [49].

We further apply our theory as the braneworld theory of teleparallel gravity and

investigate its FLRW cosmology solution. To our surprise, it provides equivalent field

equations and hence the same solutions as Einstein’s general relativity. We thus conclude

that the additional radiation of the universe can arise from the extra dimension, which is

a generic feature of the branworld theory.



Appendix A

The Spin Current

Let φ ∈ Γ(U)⊗ V be a particle field, a vector-valued local section on spacetime U ⊆M ,

where V is a vector space under consideration (in general Rn or Cn ). Consider the

infinitesimal variation of φ, denoted by δφ

δ
∫
LM

Ä
x, ϑα(x), φa(x), φa;k(x)

ä
dvol4 =

∫ (
∂LM

∂φa
δφa +

∂LM

∂φa;k
δφa;k

)
dvol4, (A.1)

=
∫ [

∂LM

∂φa
δφa +D∂k

(
∂LM

∂φa;k
δφa

)
−D∂k

(
∂L

∂φa;k

)
δφa

]
dvol4

(A.2)

=
∫ [(

∂LM

∂φa
−D∂k

(
∂LM

∂φa;k

))
δφa +D∂k

(
∂LM

∂φa;k
δφa

)]
dvol4

(A.3)

where dvol4 =
√
−g d4x, D is the exterior covariant derivative defined in (5), δφa;k :=

δ(Dφa)(∂k) = D(δφa)(∂k) due to the fixed connection, and we have applied the integration

by parts in the second equality. If we define a vector field Jk := ∂LM
∂φa

;k
δφa (general

conserved current) and assume φ satisfies the Euler-Lagrange equation (on-shell)

∂LM

∂φa
−D∂k

(
∂LM

∂φa;k

)
= 0, (A.4)

with the infinitesimal invariant (under a Lie group G) of the Lagrangian, we obtain,

δ
∫
LM

Ä
x, φa(x), φa;k(x)

ä
dvol4 =

∫
D∂k

(
∂LM

∂φa;k
δφa

)
dvol4 (A.5)

which will lead to Noether’s first theorem for the G-symmetry. Now we carefully define

the meaning of infinitesimal variation δφ. Let g be the Lie algebra of G, ρ : G→ GL(V )

be a Lie group representation, and E ∈ g is an element. Let φ(t) := ρ
Ä
etE
ä
· φ and define
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δφ as the variation of φ(t) in a 1-parameter subgroup of G,

δφ :=
d

dt
φ(t)

∣∣∣
t=0

= (ρ∗E) · φ (A.6)

where in components we write

δφa = (ρ∗E)ab φ
b (A.7)

where ρ∗ : g→ gl(V ) is the induced Lie algebra representation, (ξa) ∈ V is a set of chosen

basis for V , and we expand φ := φa ξa so that (ρ∗E)ab denotes the matrix representation of

ρ∗E under the basis ξa. Thus (A.5) in view of the invariance of the Lagrangian under G

leads (on shell) to

Div(J) = D∂k J
k ≡ 0 (A.8)

In particular, if we take the Lorentz symmetry with G = SO(1, 3), we obtain a conserved

current corresponding to each Eij generator in so(1, 3), i.e,

Jk =
∂L
∂φa;k

(ρ∗Eij)
a
b φ

b (A.9)

which is called the canonical spin angular momentum or (simply spin current).

Sij
k =

(
∂LM

∂φa;k

)
ρ[ij]b

a · φb = −Sjik,
Ä
where ρ[ij]b

a := (ρ∗Eij)
a
b

ä
(A.10)

It follows that we have ρ[ij]b
a := (ρ∗Eij)

a
b due to the property Eij = −Eji (∀ i, j) for

generators of so(1, 3). Notice that the indices a, b and i, j are indicating different objects,

which should be distinguished. Indices a, b correspond to the vector basis (ea) ∈ V , hence

the matrix indices, while i, j specify which Lie algebra basis of g we are referring to, not

the spacetime coordinate.
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[72] M. Blagojević, F. W. Hehl, Gauge Theories of Gravitation: A Reader with Commen-

taries, Imperial College, London, Press 2013
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