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Do electromagnetic waves always propagate along null geodesics?
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We find exact solutions to Maxwell equations written in terms of four-vector potentials in non–
rotating, as well as in Gödel and Kerr spacetimes. Exact electromagnetic waves solutions are
written on given gravitational field backgrounds where they evolve. We find that in non–rotating
spherical symmetric spacetimes, electromagnetic plane waves travel along null geodesics. However,
electromagnetic plane waves on Gödel and Kerr spacetimes do not exhibit that behavior.

PACS numbers: 04.20.Cv, 04.40.Nr, 41.20.Jb, 42.25.Bs

Keywords:

Introduction.- Maxwell equations in curved spacetimes
are ∇αF

αβ = 0 and ∇αF
∗αβ = 0, where ∇α stands

for the covariant derivative defined for a metric gµν , and
Fαβ is the antisymmetric electromagnetic field tensor,
while F ∗αβ is its dual. If the electromagnetic field is
written in terms of the four-vector potentials Aα, i.e.,
Fαβ = gαµgβνFµν and Fµν = ∇µAν−∇νAµ, then Fµν =
∂µAν−∂νAµ, where ∂µ is a partial derivative. With these
definitions, the equations ∇αF

∗αβ = 0 are identically
satisfied. The equations to be solved are

∂α
[√−ggαµgβν(∂µAν − ∂νAµ)

]

= 0 , (1)

where gµν is the inverse metric.
We deal with test electromagnetic fields which evolve

on a given gravitational background field. Several ex-
act solutions for Maxwell equations in curved spacetimes
have been found [1–8]. One of the most interesting so-
lutions of Eq. (1), due to their physical relevance, are
electromagnetic plane waves [9, 10].
We take plane waves to be described by Aµ = aµe

iS ,
where aµ is the amplitude and S the phase of the wave.
Both are real quantities and, in principle, both depend
on space and time. The four-wavevector of the wave is
defined by

Kµ = ∇µS = ∂µS , (2)

where K0 is identified with the frequency of the wave,
whereas Ki are the components of the (three dimen-
sional) wavevector. The nature of the propagation of
the electromagnetic wave is determined by a constraint
satisfied by the four dimensional wave. For example, in
flat-spacetime KµK

µ = 0, and electromagnetic radiation
evolves along null geodesics, i.e., the wave travels with
the speed of light.
Usually, Maxwell equations (1) are solved using the

geometrical optics approximation [1, 4, 9–11], where the
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wavelength of the wave is considered much smaller than
any characteristic length scale of the gravitational field
in which the wave evolves. Using this approximation,
Maxwell equations (1) are solved perturbatively, and in
this approximation, the electromagnetic plane wave so-
lutions are described by [9]

KµK
µ = 0 , aµK

µ = 0 , ∇µ (K
µaαaα) = 0 . (3)

The first equation implies that plane waves follow null
geodesics, whereas the second one shows that is the wave
is transverse. The third one is the photon number con-
servation equation. Despite the simplicity of solution (3),
there is no guarantee that an exact solution to Eqs. (1)
will satisfy the same conditions (3) for any given gravi-
tational field.
The purpose is this work is to show that there exist

particular (plane wave) solutions to Maxwell equations
which do not evolve along null geodesics. Wave solutions
have been studied previously [2–6] but these articles are
not focused on plane waves. In several of these works [4–
6], the analogy of the gravitational field with a medium
(with its corresponding susceptibility and permeability)
is exhibited in an explicit way. Therefore, it seems appro-
priate to find out whether electromagnetic plane waves
can follow paths which are different from null geodesics.
Electromagnetic waves in non–rotating spherically

symmetric spacetimes.- Before proceeding to find solu-
tions propagating in Gödel and Kerr metrics, we show
how the null geodesics propagation of light emerges from
Maxwell equations (1) in non–rotating spherically sym-
metric spacetimes. Examples of these background gravi-
tational fields are Schwarzschild, Reissner-Nordstrom [9],
Friedmann–Robertson–Walker (FRW) [12] and worm-
holes [13], for instance. We consider a general symmet-
ric metric in spherical coordinates (t = x0, r, θ, φ), such
that g00 = f(t)q(r), grr = h(t)b(r), gθθ = h(t)r2, and
gφφ = h(t)r2 sin2 θ, where f(t), h(t), q(r) and b(r) are
(up to now) arbitrary functions of t and r respectively.
All other metric components vanish.
A simple particular solution of Eqs. (1) can be found

if the potential is chosen to be Aµ(t, r) = Aφ(t, r)δφµ,
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where δ is the Kronecker delta (a similar solution can be
found for non–vanishing Aθ). Thus, Eqs. (1) simplify to

√

h

f
∂0

(
√

h

f
∂0Aφ

)

+

√

q

b
∂r

(
√

q

b
∂rAφ

)

= 0 . (4)

Defining new time and radial coordinates as τ =
∫

dt
√

−f/h, and ρ =
∫

dr
√

b/q, the previous equation
becomes the flat-spacetime wave equation ∂2

τAφ−∂2
ρAφ =

0, implying that Aφ may be written in a plane wave fash-
ion as

Aφ = exp

(

iω

∫

dt

√

−f

h
± iω

∫

dr

√

b

q

)

, (5)

where ω is a constant. This solution defines the wave-
vectors K0 = ω

√

−f/h, and Kr = ±ω
√

b/q, which sat-
isfy

KµK
µ = g00K2

0 + grrK2
r =

K2
0

fq
+

K2
r

hb
= 0 . (6)

Therefore, all non–rotating spherically symmetric space-
times have electromagnetic plane wave solutions trav-
elling along null geodesics which are transversal waves
AµK

µ = 0. In general for this case, if the plane wave

ansatz Aφ(t, r) = a(r)eitK0+iS(r) is made in Eq. (4),
where a is the amplitude of the wave and Kr = ∂rS,
then one can obtain a solution for which the amplitude
is constant, the wave follows null geodesics as in Eq. (6),
and photon number is conserved [9].
Let us consider two very well known cases, namely, the

Schwarzschild and FRW spacetimes. The null-geodesic
behavior of the light (6), implies that for Schwarzschild
spacetime the plane wave dispersion relation is

K0 = ±
(

1− 2M

r

)

Kr . (7)

This solution corresponds to the well known gravitational
redshift effect, where the plane wave is moving with group
velocity ∂K0/∂Kr = ± (1− 2GM/r) 6= ±1. On the
other hand, for the FRW spacetime, the wave disperses
as

K0 = ±
√
1− kr2

a
Kr , (8)

which is the cosmological redshift for a Universe with
curvature k = −1, 0, 1.
Electromagnetic waves in Gödel spacetime.- The Gödel

metric describes a rotating Universe which features closed
timelike curves. This metric is stationary [6, 14] and it is
written in cartesian coordinates as g00 = −1 = −gxx =
−gzz, gyy = −2+4 exp(

√
2xΩ)−exp(2

√
2xΩ), and g0y =√

2[1− exp(
√
2xΩ)], where Ω is a constant related to the

angular velocity of the rotating universe (which reaches
the flat spacetime limit when Ω → 0). All other metric
components vanish.

A particular solution to Eq. (1) can be found when the
potential is chosen to be Aµ(t, x) = Az(t, x)δµz . In this
case, Maxwell equations reduce to

∂2
0Az +

1√−gg00
∂x
(√−g∂xAz

)

= 0 , (9)

where g = − exp(2
√
2xΩ) is the metric determinant and

g00 = 1 + 2 exp(−2
√
2xΩ) − 4 exp(−

√
2xΩ). To find the

propagation of plane waves described by Eq. (9), one

can define the variable ξ = −e−
√
2xΩ/(

√
2Ω), to rewrite

the previous equation as ∂2
0Az + β(ξ)∂2

ξAz = 0, where

β(ξ) = 2Ω2ξ2/(1 + 4Ω2ξ2 + 4
√
2Ωξ). We can see that

the wave equation cannot be cast in a flat spacetime ana-
logue version, and thereby, the null geodesic behavior of
the light in Gödel spacetimes is ruled out. To explic-
itly show this, let us go back to Eq. (9) and perform the
plane wave ansatz Az(t, x) = a(x) exp[iωt±iS(x)], where
a is the wave amplitude and ω is a constant. Here, the
wavevectors are K0 = ω and Kx = ±∂xS, which allow
us to describe a transversal electromagnetic plane wave
AµK

µ ≡ 0. Using this ansatz in (9) we find

KµK
µ =

1√−ga
∂x
(√−g∂xa

)

,

0 = ∂x
(√−gKxa

2
)

, (10)

where KµK
µ ≡ g00K2

0 + K2
x. The first equation is the

dispersion relation of the wave determining the behav-
ior of light, and the second one is the photon number
conservation. Interestingly, there is no solution of the
previous system with constant amplitude. Also, there
is no solution consistent with KµK

µ = 0. For such a
case, Eqs. (10) become three different and inconsistent
conditions for the two variables Kx and a.
From the last of Eqs. (10) one gets

a =
1

(−g)1/4K
1/2
x

. (11)

This solution can be used in the first of Eqs. (10) to get
the dispersion relation

g00ω2 +K2
x = −Ω2

2
− K ′′

x

2Kx
+

3K ′2
x

4K2
x

, (12)

where ′ ≡ ∂x. From the previous exact dispersion rela-
tion, we can see that for Gödel spacetime a particular
electromagnetic plane wave does not propagate in null
geodesics. The exact geodesic behavior can be found by
solving the differential equation (12) for Kx. This fea-
ture has its origin in the rotation of the spacetime, which
modifies the path followed by photons (it is direct to ob-
tain the correct null geodesic flat spacetime limit when
Ω vanishes).
It is illustrative to calculate the solutions in the case

Ωx ≪ 1. At second order in Ω, the solution to (12) is

Kx ≈ ω − 2Ω2x2ω +
3Ω2

2ω
sin2(ωx) , (13)
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that allow us to recover the flat spacetime solution when
x = 0 (and the metric becomes flat at that point). This
solution implies that

KµK
µ = 3Ω2 sin2(ωx) , (14)

which is always positive. Thus, electromagnetic plane
waves in a slowly rotating Gödel Universe propagates in
space-like trayectories. This can be easily seen at small
lenght scales ωx ≪ 1, such that solution (13) simplifies
to

ω

Kx
≈ 1 +

1

2
Ω2x2 ≥ 1 , (15)

and the plane waves propagate with superluminal veloc-
ity for 0 ≤ Ωx ≪ 1.
This somewhat surprising behavior of an electromag-

netic plane wave solution stems from the non-stationary
character of the spacetime under consideration. Electro-
magnetic waves in Gödel spacetimes have been studied
by Mashoon [6] in a general formalism. However, no ex-
plicit plane wave solutions were presented in his article.
Because of this new result regarding wave propagation in
Gödel spacetimes, it is natural to inquire whether propa-
gation of electromagnetic plane waves in Kerr spacetime
presents similar features.
Electromagnetic waves in Kerr spacetime.- The sta-

tionary Kerr metric describes a rotating black hole of
mass M and effective angular momentum a. It has
non-vanishing metric components gµµ = gµµ(r, θ) and
gφ0 = g0φ = g0φ(r, θ), with µ = {t = x0, r, θ, φ}.
Explicitly, the metric in Boyer-Lindquist coordinates is
g00 = −1 + 2Mr/ρ2, grr = ρ2/∆, gθθ = ρ2, gφφ =

r2 + a2 + 2Mra2 sin2 θ/ρ2, and g0φ = −4Mar sin2 θ/ρ2,
where ρ2 = r2+a2 cos2 θ and ∆ = r2−2Mr+a2. In con-
trast to the two previous cases, now the metric depends
on two spatial variables. We show below that Maxwell
equations (1) can be solved exactly for all of the poten-
tial components (without choosing a gauge) for the Kerr
metric.
Write the four-vector potential components for this

case as Aµ(t, r, θ), with no φ-dependence, for simplicity.
With this assumption, the time-component of Maxwell
equation (1) can be understood as a vanishing curl state-
ment and may thus be solved by introducing a new field
χ = χ(t, r, θ) such that

∂θχ = −√−ggrr
[

g00 (∂rA0 − ∂0Ar) + g0φ∂rAφ

]

,

∂rχ =
√−ggθθ

[

g00 (∂θA0 − ∂0Aθ) + g0φ∂θAφ

]

, (16)

which identically satisfies the time-component of Eq. (1).
The introduction of the new field χ also allows us to
solve the r and θ-components of Eq. (1). Both equations
reduce to one equation, namely,

∂0χ =
√−ggrrgθθ (∂rAθ − ∂θAr) . (17)

Finally, the φ-component of Maxwell equations may be

written as

0 =
√−g

g00

gφφ
∂2
0Aφ + ∂r

(√−g
grr

gφφ
∂rAφ

)

+∂θ

(√
−g

gθθ

gφφ
∂θAφ

)

− ∂rβ∂θχ+ ∂θβ∂rχ ,(18)

where β = g0φ/g00 = −g0φ/gφφ is related to the rotation
rate of the black hole. On the other hand, as the metric
is time-independent, from Eqs. (16) and (17) we can find
an evolution equation for the χ field

0 =
√
−g

g00

gφφ
∂2
0χ+ ∂r

(√
−g

grr

gφφ
∂rχ

)

+∂θ

(√−g
gθθ

gφφ
∂θχ

)

+ ∂rβ∂θAφ − ∂θβ∂rAφ .(19)

Now, definining the complex potential Z± = Aφ ± iχ,
Eqs. (18) and (19) can be merged to

0 =
√−g

g00

gφφ
∂2
0Z± + ∂r

(√−g
grr

gφφ
∂rZ±

)

+∂θ

(√
−g

gθθ

gφφ
∂θZ±

)

± i∂rβ∂θZ± ∓ i∂θβ∂rZ± .

(20)

In this way, the problem of getting the solutions to the
four Maxwell equations (1), are now reduced to solve the
two uncoupled equations (20). The time derivatives of
the fields Z± can be identified with the two polarizations
of a wave propagating in the φ-direction

∂0Z± = ∂0Aφ ∓ i
√
−ggrrgθθ (∂rAθ − ∂θAr)

= F0φ ∓ i
√−gF rθ = Eφ ∓ i

√−ggrrgθθBφ ,(21)

where Eφ and Bφ are the electric and magnetic fields in
the φ-direction.
Eqs. (20) take into account the polarization of the

plane wave. This means that the right-handed and left-
handed polarizations can couple to the black hole rota-
tion through the derivatives of β. If the spacetime is
static (as in Schwarzschild case) this effect does not ap-
pear. This feature has been previously envisaged [6],
but no exact solution for a plane wave was presented
there. On the other hand, the uncoupled equations (20)
for the two polarizations are different from the renowned
Teukolsky equation [2, 3] for Kerr spacetime, which is co-
ordinate separable. The Teukolsky equation is obtained
through the use of the Newman-Penrose formalism to
obtain second order differential equations for some fields
that correspond to projections of the electric and mag-
netic fields on the Kinnersley’s null tetrad. To clarify the
relationship of our work to the one which appears in [2],
it is worth mentioning that Teukolsky’s approach yields
third order differential equations for the electromagnetic
potentials while our approach deals with second order
equations for the same fields.
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Now, to find a plane wave solution, the polarization
function is written as Z±(t, r, θ) = ξ±(r, θ)e

iωt+iS±(r,θ),
where ω is a constant and ξ± is the amplitude of the
wave (in inverse length units). Anew, the four wavevec-
tor components are defined as K0± = ω, Kr± = ∂rS±,
Kθ± = ∂θS±, and Kφ± = 0. Also notice that AµK

µ
± =

g00ωA0+ grrKr±Ar + gθθKθ±Aθ 6= 0 in general for Kerr
spacetime and, therefore, the wave is not transverse. Us-
ing this decomposition, Eq. (20) gives rise to the disper-
sion relation

√−g

gφφ
Kµ

±Kµ± = ∓∂rβKθ± ± ∂θβKr±

+
1

ξ±
∂r

(√−g
grr

gφφ
∂rξ±

)

+
1

ξ±
∂θ

(√−g
gθθ

gφφ
∂θξ±

)

,(22)

where Kµ
±Kµ± ≡ g00ω2+grrKr

2
±+gθθKθ

2
±, and a gen-

eralized photon number conservation law for Kerr space-
time given by

0 = ∂r

(√−g
grr

gφφ
Kr±

)

+ ∂θ

(√−g
gθθ

gφφ
Kθ±

)

+

(

2
√−g

grr

gφφ
Kr± ∓ ∂θβ

)

∂rξ±
ξ±

+

(

2
√−g

gθθ

gφφ
Kθ± ± ∂rβ

)

∂θξ±
ξ±

, (23)

which can be cast in a more appealing fashion

0 = ∂r

[(√−g
grr

gφφ
Kr± ∓ 1

2
∂θβ

)

ξ2±

]

+∂θ

[(√−g
gθθ

gφφ
Kθ± ± 1

2
∂rβ

)

ξ2±

]

. (24)

In principle, the value of KµKµ should be determined
by the dynamical equations. A consistent solution of
Eq. (23) [or (24)] should specify the behavior of a plane
wave travelling on a Kerr background. With this in mind,
Eq. (23) [or (24)] must be solved in order to yield an
expression for the wave amplitude. A particular solution
to Eq. (24) is

√−g
grr

gφφ
Kr± ∓ 1

2
∂θβ = ∂θξ± +

λ(θ)

ξ2±
,

√
−g

gθθ

gφφ
Kθ± ± 1

2
∂rβ = −∂rξ± , (25)

where λ is an arbitrary function of θ. This solution has
the correct Schwarzschild spacetime limit when the wave
has constant amplitude ξ = ξ0, β → 0, Kθ → 0 and
λ = ωξ20/ sin θ. From Eqs. (25) we are able to find a
solution for the wave amplitude that can be obtained by
manipulating the equations of that set. In general, from
Eqs. (25), we get (for a non-constant amplitude)

ξ± = λ1/3

[

2
√−g

gθθ

gφφ
Kθ± ± ∂rβ

]1/3 [

∂r

(√−g
grr

gφφ
Kr±

)

+ ∂θ

(√−g
gθθ

gφφ
Kθ±

)]−1/3

, (26)

that solves the photon number conservation equation in Kerr spacetime. The same result may be gotten using Eq. (23).
The solutions (25) can be used in dispersion relation (22) to finally yield

√−g

gφφ
Kµ

±Kµ± = ∓∂rβKθ± ± ∂θβKr± +
1

ξ±

[

∂θ

(

β2 − g00
gφφ

)

Kr± − ∂r

(

β2 − g00
gφφ

)

Kθ±

]

∓ 1

ξ±

[

∂r

(√−ggrr

2gφφ
∂rβ

)

+ ∂θ

(√−ggθθ

2gφφ
∂θβ

)]

− ωξ20
ξ3±

∂θ

(√−ggθθ

sin θgφφ

)

∓
√−gωξ20g

θθ∂θβ

sin θgφφξ4±

+
2ωξ20
sin θξ4±

(

β2 − g00
gφφ

)

Kr± − 2
√−ggθθω2ξ40
sin2 θgφφξ6±

, (27)

where we have used λ = ωξ20/ sin θ (to match the
Schwarzschild limit), and where the terms ξ±, ξ3±, ξ4±
and ξ6± in (27) must be replaced using Eq. (26).

We can see from the above dispersion relation that

the plane wave has Kµ
±Kµ± 6= 0, and consequently the

electromagnetic plane wave does not travel along null
geodesics. The proper behavior of the wave can be found
by solving the differential equation (27) for S±. It is
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worth noting that both evolution equations for Z+ and
Z− couple differently to the derivatives of β so, the solu-
tions for each polarization state are different, in general.
This effect is a direct consequence of the coupling of light
polarization and the rotation of the central mass. In this
way, light can travel along different paths at different
speeds depending on its polarization. This an effect pre-
viously suggested by Masshhon [6] and it is analogous to
the well known Faraday rotation effect in plasmas [15].
On the other hand, this polarization-gravity coupling ef-
fect is intimately related with photon spin coupling to
gravitional fields studied in Ref. [16] from a classical view-
point.
Discussion.- The propagation of light along null

geodesics is an exact result for plane waves propagat-
ing in vaccum flat spacetimes [17], or an approximate
geometrical optics limit for light propagation in curved
spacetimes. However, we have shown that in Gödel and
Kerr spacetimes, this behavior changes, and the electro-
magnetic plane wave does not follow null geodesics. This
is due to the rotational nature of the spacetime (i.e., non-
diagonal components of the metric) that produce an ef-
fective anisotropic medium where the photons propagate.
Therefore, there appears to be no such as thing as the

speed of light , but electromagnetic radiation propagates
with different speeds (different KµK

µ values) depend-
ing on the interaction of its polarization with the grav-
itational background. One may still define the speed of
light which corresponds to waves which propagate obey-

ing KµK
µ = 0.

This remarkable result could have strong implications
in astrophysics, where accurate measurements of the
speed of light are crucial . Yet, the more stricking new
idea emerges from Eq. (27) for Kerr metric, where the
importance of the light polarization in the wave prop-
agation is explicitly shown. It is well known that the
polarization of a wave affects its propagation properties
in a medium [10, 15], but to the best of our knowledge, no
such predictions have been reported for plane waves trav-
elling in vaccum in curved spacetime. Nevertheless, the
relevance of the polarization of an electromagnetic wave
in flat spacetime has been put in manifest in experiments
showing that structured light waves (not plane waves) in
vaccum can travel slower than speed of light [18, 19].

In conclusion, the gravitational field can alter the path
that an electromagnetic plane wave follows. This is rele-
vant for the understanding of the evolution and interac-
tion of electromagnetic fields with matter at large scales
in the Universe, and it could give hints in the interpreta-
tion of the non-constancy evidence of some fundamental
physical parameters [20].
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