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1 Introduction

There is no doubt that General Relativity (GR) is one of the most successful theories in
Physics, with a solid mathematical structure and experimental confirmation [1, 2|. As a
matter of fact, we are still measuring for the first time some phenomena that was predicted
by the theory a hundred years ago, like gravitational waves [3|. Nevertheless it presents some
problems that need to be addressed. For example, it cannot be formulated as a renormalizable
and unitary Quantum Field Theory. Also, the introduction of spin matter in the energy-
momentum tensor of GR may be cumbersome, since we have to add new formalisms, like
the spin connection. These problems can be solved by introducing a gauge approach to
the gravitational theories. This task was addressed by Sciama and Kibble in [4] and [5],
respectively, where they started to introduce the idea of a Poincaré Gauge (PG) formalism
for gravitational theories. Following this description one finds that the connection must be
compatible with the metric, but not necessarily symmetric. Therefore, it appears a non-
vanishing torsion field, that is consequence of the asymmetric character of the connection.
For an extensive review of the theories that arise through this reasoning see [6].

Since these kinds of theories were established, there has been a lot of discussion on
how would particles behave in a spacetime with a torsion background. In the case of scalar
particles, it is clear to see that they should follow geodesics, since the covariant derivative
of a scalar field does not depend on the affine connection. In addition, by assuming the
minimum coupling principle, we have that light keeps moving along null geodesics, as in the
standard framework of GR. This is because it is impossible to perform the minimally coupling
prescription for the Maxwell’s field while maintaining the U (1) gauge invariance |7]. Therefore
the Maxwell equations remain in the same form. The most differential part occurs when we
try to predict how particles with spin 1/2 should move within this background. This question
deserves a deeper analysis, mainly because these kinds of physical trajectories differ from the
ones predicted by GR, and if we are able to measure such differences, we will be devising a
method to determine the possible existence of a torsion field in our universe. Furthermore, if
we know the corresponding equations of motion we can also calculate the strength of this field,



although we already have some constraints thanks to torsion pendulums and cosmography
observations [8, 9]. In [10] we find a comprehensive review of all the proposals that have been
made to explain this behaviour. Nevertheless, even nowadays there is no consensus about
which one explains it more properly. Here, we will outline the most important suggestions:

e In 1971, Ponomariev [11] proposed that the test particles move along autoparallels
(curves in which the velocity is parallel transported along itself with the total connec-
tion). There was no reason given, but surprisingly this has been a recurrent proposal
in the posterior literature [12, 13].

e Hehl [14], also in 1971, obtained the equation of motion via the energy-momentum
conservation law, in the single-point approximation, i.e. only using first order terms in
the expansion used to solve the energy-momentum equation. He also pointed out that
torsion could be measured by using spin 1/2 particles.

e In 1981, Audretsch [15] analysed the movement of a Dirac electron in a spacetime
with torsion. He employed the WKB approximation, and obtained the same results
that Rumpf had obtained two years earlier via an unconventional quantum mechanical
approach [16]. It was with this article that the coupling between spin and torsion was
understood.

e In 1991, Nomura, Shirafuji and Hayashi [17] computed the equations of motion by
the application of the Mathisson-Papapetrou (MP) method to expand the energy-
momentum conservation law. They obtained the equations at first order, which are
the ones that Hehl had already calculated, but also made the second order approxima-
tion, finding the same spin precession as Audretsch.

In order to clarify these ideas we organise the article as follows. First, in section 2 we introduce
the mathematical structure of PG theories, and establish the conventions. Then, in the two
following sections we review the WKB approximation by Audretsch and the MP approach
by Nomura et al., comparing them and presenting the reasons to consider the former for our
principal calculations. In the fifth section we present the Raychaudhuri equation in the WKB
approximation, and use one of its parameters as an indicator of the strength of the spin-
torsion coupling. In section 5 we compute the acceleration and the respective trajectories of
an electron in a particular solution, and compare it with the geodesical behaviour predicted
by GR. The final section is devoted to conclusions and future applications.

2 Mathematical structure of Poincaré gauge theories

In this section, we give an introduction to the gravitational theories endowed with a non-
symmetric connection that still fulfills the metricity condition. The most interesting fact
about these theories is that they appear naturally as a gauge theory of the Poincaré Group |6,
18|, making their formalism closer to that of the Standard Model of Particles, therefore
postulating it as a suitable candidate to explore the quantization of gravity. We will use the
same convention as [15] in order to simplify the discussion.

Since the connection is not necessarily symmetric, the torsion may be different from zero

T =T’ (2.1)



For an arbitrary connection, that meets the metricity condition, there exists a relation with
the Levi-Civita connection
F;wp = Fpup+Kuup, (2'2)

where
KWP = T’JW + Tpm, — Tw/’ (2.3)

is the contortion tensor. Here, the upper index ° denotes the quantities associated with the
Levi-Civita connection.

Since the curvature tensors depend on the connection, there is a relation between the
ones defined throughout the Levi-Civita connection and the general ones. For the Riemann
tensor we have

R,,"”=R,, +V.,K,  —V,K,  —K,K,*+K, K, (2.4)

By the usual contractions one can obtain the expressions for the Ricci tensor and Ricci scalar.

Here we have just exposed all of these concepts in the usual spacetime coordinates.
Nevertheless, it is customary in PG theories to make calculations in the tangent space, that
we assume in terms of the Minkowski metric 7,,. At each point of the spacetime we will have
a different tangent space, that it is defined through a set of orthonormal tetrads (or vierbein)
e, that follow the relations

va v a a _ub ab
euae,ub = Tab, eﬂae = gﬂ ’ eM €va = Guv, €M el = n, (25)

where the latin letters refer to the tangent space and the greek ones to the spacetime coordi-
nates. It is clear that if these properties hold, then

Guv = euaeubnab‘ (26)

All the calculations from now on will be considered in gravitational theories characterized by
this geometrical background.

3 WKB method

In this section we summarize the results obtained by Audtresch in [15], where he calculated
the precession of spin and the trajectories of Dirac particles in torsion theories. The starting
point is the Dirac equation of a spinor field minimally coupled to torsion

. 1
ih (v“vu‘l’ + 4K[a5m“7575\1/> —m¥ =0, (3.1)
where the v are the modified gamma matrices, related to the standard ones by the vierbein

v* = e 7, (3.2)

and W is a general spinor state.

It is worthwhile to note that the contribution of torsion to the Dirac equation is propor-
tional to the antisymmetric part of the torsion tensor, therefore, a torsion field with vanishing
antisymmetric component will not couple to the Dirac field. This is usually known as inert



torsion. Since there is no analytical solution to Equation (3.1), we need to make approxi-
mations in order to solve it. As it is usual in Quantum Mechanics, we can use the WKB
expansion to obtain simpler versions of this equation.

So, we can expand the general spinor in the following way

. S(z)

U(z)=e n (—ih)"ay (z), (3.3)

where we have used the Einstein sum convention (with n going from zero to infinity). We
have also assumed that S (z) is real and a,, (x) are spinors. As every approximation, it has a
limited range of validity. In this case, we can use it as long as R1> ) B, Where Ap is the de
Broglie wavelength of the particle. This constraint expresses the fact that we cannot applied
the mentioned approximation in presence of strong gravitational fields and that we cannot
consider highly relativistic particles.

If we insert the expansion into the Dirac equation we obtain the following expressions
for the zero and first order in h:

(’y“%uS + m) ap (x) =0, (3.4)

and
. . 1
(7“%5 + m) ai (¢) = —7"Vyao — 1 K 8877’7 ao. (3.5)

We then assume that the four-momentum of the particles is orthogonal to the surfaces of
constant S (x), and introduce it as
Pu = _8MS- (3.6)

Then, if we stick to the lowest order, as a consequence of Equation (3.4), the particles will
follow geodesics, as one might expect. But, what happens if we consider the first order in A?
For the explicit calculations we refer the reader to [15], we will just state the definitions and
give the main results.

To obtain the equation for spin precession we have considered the spin density tensor as

Tk i
s = =7~ (3.7)
QA

where the o# are the modified spin matrices, given by

(0% i (0%
0625[%75] (3.8)

Then, we can obtain the spin vector from this density
e 1 praf
s = 55 Uy Safs (3.9)

where %8 is the modified Levi-Civita tensor, related to the usual one by the vierbein

ghvaB — e“ae”beaceﬁdsabc‘i, (3.10)

and u* represents the velocity of the particle

B dzt

’U/u = H = xl'u. (311)



Via the WKB expansion, we find that we can write the lowest order of the spin vector as
sh = Doy’ v*bo, (3.12)

where by is the ag spinor but normalised.
With these definitions, we can compute the evolution of the spin vector

uaﬁasg = 3K, SUB- (3.13)

On the other hand, the calculation of the acceleration of the particle comes from the splitting
of the Dirac current via the Gordon decomposition and from the identification of the veloc-
ity with the normalised convection current. Then it can be shown that the non-geodesical
behaviour is governed by the following expression

——— Ryupasboo®Pbov?, (3.14)

-l _
ay, =v°"Vev, = 1
Mesp

where Eum/g refers to the intrinsic part of the Riemann tensor associated with the totally
antisymmetric component of the torsion tensor:

L0 =T, + 3T g™. (3.15)

Unlike most of the literature exposed in the introduction, the expression (3.14) does not
have an explicit contortion term coupled to the spin density tensor, hence all the torsion
information is encrypted into the mentioned part of the Riemann tensor. Finally, it is worth-
while to note that the standard case of GR is naturally recovered for inert torsion, as expected.

4 Raychaudhuri equation

One way of studying the consequences of the non-geodesical behaviour is to analyse the
evolution of a congruence of the resulting curves throughout the Raychaudhuri equation.
Also, this will provide more clues about the singular behaviour of these particles, and will
help us to assure previous conclusions reached by the authors in [22]. It is known that
Killing vectors define a static frame that will allow us to measure the dynamical quantities
with respect to it [23]. Nevertheless, in general, an arbitrary spacetime will not have Killing
vectors, therefore we do not have a preferred frame to measure the acceleration. In this case,
the best one can do is to measure the relative acceleration of two close bodies, which is studied
by the analysis of the behaviour of congruences of timelike curves.

In order to observe the evolution of a congruence of curves, we shall study the Raychaud-

huri equation in spacetimes with torsion, that has been analysed thoroughly in the literature!
[24, 25].
To obtain this equation, we consider the tensor field By, = @Vvu, which entirely describes the
evolution of the separation vector in a congruence of timelike geodesics, calculated in terms
of the physical connection I. It is convenient to write this tensor in terms of two components,
one orthogonal (B, ), and the other one parallel (Bj,,, ) to the congruence. Given the spatial
metric hy, of the hypersurface orthogonal to the congruence at a given point, one has

B;UJ = BJ_,LLV + BHMV ) (41)

!Note that preliminary studies in this subject have not taken into account the change in the deviation
vector due to torsion [26, 27].



where
By, = hth,Bpo and BHW =B — Bl (4.2)

At the same time, the orthogonal part Bj,,, can be decomposed into its antisymmetric
component wy,,, known as vorticity, a traceless symmetric X, usually referred as shear, and
its trace 6, also known as expansion, such as

By = 300+ Sy + Gy (4.3)
Then, it can be seen that [24]
o0 = g - _352 S8, 58, — Rpr?o? + 9, (079,07
+ 2T, "0” (2% +a% + %éhap + v,,aa> + 20V, (0T, 7)) (4.4)

which is the Raychaudhuri equation.

Now, using the fact that the torsion tensor of the connection I' is totally antisymmetric
one obtains the following simplification of Equation (4.4)

s o o o 1o o
0 = Vai® — X0s2% — 0ap0™° — 502 — Ropv®v® 4 2T, P0P0% . (4.5)

For the next step, we take into account the relation between the vorticity calculated with
respect to both connections
Wap = Wap + 2T vy, . (4.6)

Then, substituing this relation in (4.5) one obtains

0 = Vail® — SapB — (g + Mg M) (679 + 2770y ) - %é2 ~ Ropo®f
+ 2T P0P (W%, + 2T , Fv,,) - (4.7)
Then, we use the fact that if we consider a congruence orthogonal to an spacelike hypersurface
the Levi-Civita vorticity w is null [28], namely
é = @a&a — Xolagio‘ﬁ — %92 — éaﬁvavﬂ — 4T, MTQB)‘U#’U)\ + 4T3, T p“vﬂv“
= Vi~ 5agB — 27— Rogo™P. (4

Moreover, if we substitute the acceleration given in Equation (3.14) into the previous equation,
we obtain
b 1

o o 9 ° ° o
vpvpﬁ = % = —50 — EMPZHP — RPSQU’D'USO + mesp

Vi (B gboo™bor?) . (4.9)

Therefore it is clear that in this case the only difference with respect to the geodesical move-
ment is the acceleration term. Let us analyse it in more detail:

Vi (B agbor™ 00" ) = (VR ) BooPbov” + B,y [V (oo™ 700 ) | 0
+ R boo bV, (4.10)



where we have used the Leibniz rule for the covariant derivative. Let us study the different
contributions separately.
For the third term we have that:

o . o 1. ,
R“VagbOUaBbOV#'UV — R/ﬂ’aﬁboaaﬂbo <39h#l’ + E,uu) , (4.11)

where the Levi-Civita vorticity tensor is not present in this expression because we are consid-
ering a congruence orthogonal to an spacelike hypersurface. Since the two contracted indexes
w and v of the Riemann tensor are antisymmetric and the tensors h and ¥ are symmetric we
have that: B

RF, b’ bV, =0. (4.12)

In general, for the first and the second term of Expression (4.10) we cannot find any
simplification. In any case, the appearance of focal points will occur when

]i?p‘pvpv“" > A 0", (4.13)
where 5
Au = 4mesp %,u (E“yaﬂgoaaﬁb()) . (4.14)

As explained at the beginning of this section, this term gives us the contribution of torsion to
the relative acceleration between two spin 1/2 particles, making it a good indicator to see the
difference with respect to a geodesical behaviour. Therefore, we can make a more rigorous
approach to the singular behaviour of these particles. In [22] the authors claim that the
appearance of n-dimensional black/white hole regions was a good criteria for the occurrence
of singularities, even for the Dirac particles, given that the difference with the geodesical
movement were not so strong near the event horizon. Now we can say that this will be a
good criteria as long as A, < 1, which is what we expect in plausible spacetimes with Dirac
particles.

5 Calculations within the Reissner-Nordstrom geometry induced by tor-
sion

In this section we will calculate the acceleration and trajectories of electrons in a Reissner-
Nordstréom solution obtained by two of the authors in the framework of PG field theory of
gravity, with the following vacuum action [29, 30]:

S = % / d'zv/=g [—J—? + %RAW,,RWAP - %RWVRW”
—%RW,,RWV +di Ry (R* — R™™)| . (5.1)
The exact metric of the solution is
ds* = f (r)dt* — 7 b)dTQ —7? (al@2 + sin29d4p2) , (5.2)
where S
FO)=1-""+ 23 (5.3)



From now on we will consider d; = 1, which simplifies the computations.
In order to know the total and modified connection we need to have the values of the non-
vanishing torsion components, which are:

to; 4r
(5.4)
0; _ g(r) _ _ 1
r; — 2 4r?
0; _ _ab: b d(r) _ _af; b K
Thy,' = €€ cap—s = €€y Eabgy
0; 6, b h(r 0; b
L 7“91'] =c"e 91'6@17 (2) =—e"e 916’11727"?(7‘)’

where i, 7 = 1,2 with i # j, and we have made the identification {67, 62} = {0, ¢}. Moreover,
€qp 1s the Levi-Civita symbol, and the dot "~ means the derivative with respect to the radial
coordinate. Also, since the definition of the torsion tensor in the mentioned article differs
from our conventions, all the components are divided by 2 with respect to the ones in there.
Now, with the components of the metric and the torsion tensors, we can calculate the modified
connection and therefore the Riemann tensor of Equation (3.14), in order to obtain the
acceleration. Moreover, we know that the by and by are the lowest order in & of the general
spinor state W. Then we can use that the most general form of a positive energy solution of
the Dirac equation for by and by is [31]

cos (3)
Bein (& — ;
= | ) | B (cos (8), e sin(5).0,0) 55

0
where the angles give the direction of the spin of the particle
= (sin (@) cos (B), sin () sin(B), cos () ). (5.6)

Before calculating the acceleration, let us use this form of the spinor to calculate the
corresponding spin vector. Using Equation (3.12) we have

0
—sin () cos (8) /f (r) .
M — ' ' ;s = (O, %ﬁj‘;(m, rsin («) sin (B) , rsin (0) cos (a)) _
__ sin(a)sin(B)
__cos(a)csc(6)
(5.7)



With all this we can calculate the acceleration for the special case of the solution. To
ease the reading of this paper, the acceleration components can be found in the Appendix A.
It is worthwhile to note that the only components of the torsion tensor that contribute to the
acceleration are those related to the functions d(r) and h(r). This is important, because if
we set the k constant to zero, any torsion component does not contribute to the acceleration.
Therefore, in this case the torsion tensor is inert, since the axial vector is zero, as expected.
On the other hand, The above expressions are complex and it is difficult to understand their
behaviour intuitively. In this sense, it is interesting to study two relevant cases that simplify
the equations:

e Low values of k:
If we consider a realistic physical implementation of this solution, in order to avoid
naked singularities, we expect low values of the parameter § = 5. Indeed, § is the di-
mensionless parameter which controls the contribution of the torsion tensor. Therefore,
if we consider the acceleration, we can see that it is a good approximation to consider
only up to first order in an expansion of the acceleration in terms of £&. These results
can be found in the Appendix B.

e Asymptotic behaviour:
It is interesting to study what happens at the asymptotic limit r — oo, in order to
observe what is the leading term and compare its strengh with other effects on the
particle. We obtain the following:

¢ m2¢h

T@gfgzoa ~ G (sin(c) sin(B)8'(s) + sin(6) cos(a)¢'(s)) , (5.8)
o m2h . . / . /
rlﬂ?oa ~ et (sin(c) sin(3)0'(s) + sin(f) cos(a)¢'(s)) , (5.9)
Jingoae ~ QWZZT‘% [—mé&r'(s) (sin(a) sin(B) + m?¢ cos(a))
+ mé&t'(s) (sin(e) sin(B) + m?¢ cos(a))
— 2sin(a) cos(B) sin(8)¢'(s)] (5.10)
jgvfgoa@ o~ n;iimc:;(? [mé&r'(s) (m 2¢ sin(a) sin(3) — cos(a))

+ mé&t'(s) (cos(a) — m?¢sin(a) sin(B)) + 2sin(@) cos(8)6'(s)] . (5.11)

Where we have used the viability condition (5.18), because as we will see, that is a
neccesary condition for the semiclassical aproximation.

We can observe that the time and radial components follow a r~! pattern, while the
angular components follow a 3 behaviour. Hence, in the first components the torsion
effect goes asymptotically to zero at a lower rate than the strength provided by the
conventional gravitational field. Meanwhile in the angular ones, it goes at a higher rate.

It is interesting to analyse the two components of the acceleration that are non-zero in GR,
a? and a¥, to reach a deeper understanding. They read

mhsin(0)

a®|—o = (s91'(s) +25"¢'(s)) , (5.12)

1— 2m

3
2Mespr -



and
mh csc(6)

2m
1_7‘

a¢|n:0 =

— <s“’r’(s) + 237“9’(8)) , (5.13)
Mesp?

where we have used the expression of the spin vector (5.7) to simplify the equations. As we can
see, the form of the two equations is very similar, and can be made equal by establishing the
identifications sin(#) < csc(f), and ¢ <> 6. For two of them we observe that the spin-gravity
coupling acts as a cross-product force, in the sense that the acceleration is perpendicular to
the direction of the velocity and the spin vector.

Now, to measure the torsion contribution in the acceleration we shall compare the acceleration
for k = 0 and for arbitrary values of k. In this sense, we define a new dimensionless parameter
as the fraction between the acceleration for a finite value of £ and the one given by x = 0:

B* il 5.14
() = i—. (5.14)

As we have stated before, the viability condition (5.18) implies that
cos(a)f'(s) — sin(a) sin(B) sin(0)¢'(s) = 0, (5.15)

s0 a'|x=o and = a"|,—o vanish identically. This means that we cannot study these two compo-
nents of the B* parameter. Nevertheless, we can still measure it in the angular coordinates.
Let us explore two examples, that are shown in Figure 1. There we represent different compo-
nents of B* in function of x for a fixed position and two different spin and velocity directions.

As can be seen, this gives rise to some interesting features, that we would like to address.
First of all, it is worthwhile to stress that there is nothing in the form of the metric or in the
underlying theory that stops us from taking negative values of k, in contrast with the usual
electromagnetic version of the solution. We can observe that as we take higher absolute values
for k we find that the acceleration caused by the spacetime torsion is directed in the opposite
direction of the one produced by the gravitational coupling, reaching significant differences
for large k. This is expected since we have chosen a strong coupling between spin and torsion.

Now, we go one step forward and calculate the trajectory of the particle, using Equa-
tion (3.14) and having in mind the spinor evolution equation (3.13), which can be rewritten
as

V"V by = 0. (5.16)

For the exact Reissner-Nordstrom geometry supported by torsion, we find several interesting
features. First, in order to maintain the semiclassical approximation and the positive energy
associated with the spinor, two conditions must be fulfilled:

f(ry< Lf(r), (5.17)

where L = 3.3-1078 m™!, so that in the units we are using the derivative of f (r) is at least
two orders of magnitude below the value of f (7).
The other one is

(500”%0) vs = 0. (5.18)

The first one is a consequence of the method that we are applying: if both curvature and tor-
sion are strong then the interaction is also strong, and the WKB approximation fails. This one

~10 -



Analysis of the influence of torsion in acceleration
1.2
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Figure 1: We have considered a black hole of 24 solar masses and a particle located near the
external event horizon in the § = 7/2 plane, at a radial distance of 2m + ¢, where £ = m/10.
The position in ¢ is irrelevant because the acceleration does not depend on this coordinate.
For the By case, we assume that the particle has radial velocity equal to 0.8, and that the
direction of the spin is in the ¢ direction. The rest of the velocity components are zero except
for o' = (8.8 4 0.3)"1/2. It is clear from (5.12) and (5.13) that we can only calculate the
relative acceleration in the 6 direction. For the B, case the velocity is in the 6 direction,
and has the same modulus as before. Again, the rest of the components are zero except for
vt = 1.3(8.8x + 0.3)_1/ 2. The spin has only a radial component, therefore the acceleration
would be in the ¢ direction.

is a purely metric condition, since it comes from the Levi-Civita part of the Riemann tensor,
so it will be the same for all the spherically symmetric solutions. The second one is the radial
component of the Pirani condition, that was explained in section 4. We have solved the above
equations numerically for different scenarios, obtaining the results that are shown in Figure 2.

We have chosen the same trajectories analysed in the discussion of the acceleration. That
discussion shows that any difference from the geodesical behaviour in the radial coordinate
would be an exclusive consequence of the torsion-spin coupling, with no presence of GR
terms, since the acceleration term in this coordinate depends on x. Indeed it is possible
to have situations under which the geodesics and the trajectories of spin 1/2 particles are
distanced due to this effect, even by starting at the same point. If we are able to measure
such a difference experimentally, we could have an idea of the specific values of the torsion
field present in this particular geometry.

6 Conclusions

Motivated by the lack of consensus on how Dirac particles propagate in torsion theories, we
review the two main formulations for this purpose and compare them. We reach the con-
clusion that the WKB method is more consistent for the mentioned task, since it does not
need any additional condition, like the Pirani one, in order to solve the resulting equations.

— 11 —



Radial distance with respect to the external event horizon

Difference between geodesic and electron radial coordinate
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(a) Trajectory at 35 km of the event horizon.
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(b) Relative position between the two particles.

Figure 2: For this numerical computation we have used a black hole with 24 solar masses
and k = 10, with the electron located outside the external event horizon in the § = /2
plane. We have assumed an electron with radial velocity of 0.9 and initial spin aligned in
the ¢ direction. All the rest of the initial conditions are the same than the ones presented in
Figure 1.

In addition, it seems a better approach to treat the intrinsic spin dynamic from the Dirac
equation than from a classical equation like the MP one.

After that, we have written the Raychaudhuri equation for the spin particles and defined
a new parameter to measure the non-geodesical behaviour. In contrast with just the acceler-
ation given by Equation (3.14), this parameter constitutes a well-defined physical criterion in
order to distinguish observationally the existence of a non-zero torsion, since it quantifies the
difference of the acceleration with respect to the geodesical one measured by nearby observers.

Finally, we have applied the WKB method to a specific geometrical solution of PG grav-
ity and analysed the results. Within the asymptotic behaviour at large distances, where the
WKB approximation holds, the torsion effects are typically much smaller than the contribu-
tion given by the Levi-Civita connection. Therefore, it is interesting to find scenarios where
this component is not present. In this particular case, we have found a cross-product behaviour
of the gravitational interaction, i.e. an acceleration induced that is perpendicular to the spin
direction of the particle and to its velocity when torsion is absent. Therefore differences from
geodesical behaviours in other directions can only be consequence of the torsion contribution.

With this fact in mind, we have found a situation where we can appreciate qualitative
differences between the geodesical movement and the trajectories of spin 1/2 particles, as
shown in Figure 2. However, this different dynamics needs an important magnitude of the
torsion coupling in order to be observed. To have a realistic situation that can be explained
through the studied metric, we would need a neutron-star like system, where we have a large
concentration of spin aligned particles due to a magnetic field inside the star. In such a case,
we could try to observe the difference of angles between photons and neutrinos coming from
the same source behind the neutron star. This and other studies will be analysed in future
works following the computations developed in this article.
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A Acceleration components

Here we present the components of the acceleration calculated following the prescription
discussed in section 5.

at = — wh NI { n 27:; +r sin(a) cos(B)r'(s)
2mespr2 (R—Q?;gr‘—i—r )
— 0'(s) [sin(a) sin(B) (r — m) + k7 cos(a)]
+ sin(0)¢'(s) [cos(a) (m — 1) + krsin(a) sin(ﬂ)]} (A.1)
o= 2mesprt (K ij 2mr + 12) { — 27;? - [0/ (s) (cos(a) (2m*r? — mr® — 3mer + 2
— &2t 4 kr?) + kr?sin(@) sin(8) (m — 7)) + sin(0)¢'(s) (sin(a) sin(B) (—2m*r? + mr®
+ 3mrr — k2 + k2t — kr?) + K cos(a) (m — 1))
+ rsin(a) cos(B) (k — 2mr + r2)2 t'(s) }, (A.2)
af = — fisin(6) 37 {—2 csc(0)r'(s) [cos(a) (2m27“2 —mr® — 3mur + &% — K2t 4 mrQ)
o (22

+ k13 sin(a) sin(B)(m — r] = 2r (—k + 2mr — r2) [sin(a) cos(B)(2mr — k) 2

— kesc(0)t'(s) (sin(a) sin(B)(r — m) + kr cos(a))] },

a¥ fuese(0) 3 {27”(5) [sin(a) sin(3) (2m2r2 —mr® — 3mkr + k2 — &2t + kr
4mespr7 (ﬁ72r:2r+r )
. Kk — 2mr + 12
— wrcos(a)(m — )] +2r (k — 2mr +1?) [sin(a) cos(B)(x — 2mr) #9'(3)
+ Kt'(s) (cos(a)(m — 1) + krsin(a) sin(ﬂ))] } (A.

B Acceleration at low s

Here we display the acceleration components at first order of the dimensionless parameter
¢ = k/m?, as indicated in section 5.

~13 -

Kk—2mr+r? ,

©'(s)

(A.3)

)

"



t_ _ meh sin(a) cos(5)4/ —QﬂT/S
tT Q(meSpr(r2m)\/12:n)[ (el " ;.

+(m — ) (sin(c) sin(B)¢'(s) + cos(a) sin(#)¢’(s))

+0(¢%), (B.1)

mhy/1 — 22
= —+—_" (cos(a)f'(s) — sin(c) sin(B) sin(0)¢'(s))

2MegpT

m2
— §m”h [0'(5) (27‘2 sin(a) sin(8)(m — r) + cos(a)(2r — 5m))

4 (mespr‘l\ /1 — 27’”)

+ sin(0)¢’(s) (27“2 cos(a)(m — r) + sin(a) sin(8)(5m — 2r))

+ 2rsin(a) cos(5)y/1 — 27m(r —2m)t'(s)

0 mh (cos(oz)r’(s)

+0 (&), (B.2)

a =

+ 2rsin(«) cos() sin(@)g@'(s))

2megrt \ o
m2h£ , - .
+ 7' (s) (2r°sin(«) sin m — 1) + cos(a)(2r — 3m
4m65pr5<r_2m)ml (5) (2r2sin(a) sin(8)(m — r) + cos(a) (2r — 3m))

+ rsin(a)(r —2m) (2 cos(f3)sin(f)4/1 — 2ng0’(s) — 2sin(B)(m — r)t’(s))]

+ 0 (€%, (B.3)

2Mespr? 1_ 2m

. mhsin(a) csc(6) (sin(ﬁ)rl(s) +2rcos(ﬂ)9/(5))

T

m2h¢ csc(6)

+ [T‘/(S) (2% cos(a)(m — 7) + sin(a) sin(8) (3m — 2r))

AMegpr®y /1 — 277”(7" —2m)
+ r(r —2m) <—2 sin(a) cos(8)4/1 — 2TmH’(s) — 2cos(a)(m — r)t’(s))]
Lo, (B.4)
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