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Abstract

By using a method improved with a generalized optical metric, the deflection of light for an

observer and source at finite distance from a lens object in a stationary, axisymmetric and asymp-

totically flat spacetime has been recently discussed [Ono, Ishihara, Asada, Phys. Rev. D 96,

104037 (2017)]. By using this method, in the weak field approximation, we study the deflection

angle of light for an observer and source at finite distance from a rotating Teo wormhole, es-

pecially by taking account of the contribution from the geodesic curvature of the light ray in a

space associated with the generalized optical metric. Our result of the deflection angle of light

is compared with a recent work on the same wormhole but limited within the asymptotic source

and observer [Jusufi, Övgün, Phys. Rev. D 97, 024042, (2018)], in which they employ another

approach proposed by Werner with using the Nazim’s osculating Riemannian construction method

via the Randers-Finsler metric. We show that the two different methods give the same result in the

asymptotic limit. We obtain also the corrections to the deflection angle due to the finite distance

from the rotating wormhole.

PACS numbers: 04.40.-b, 95.30.Sf, 98.62.Sb
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I. INTRODUCTION

Studies on wormholes can be dated back to the celebrated paper by Einstein and Rosen

[1], in which they investigated what is a particle in the theory of general relativity, and

consequently they noticed a spacetime bridge connecting two distinct spacetime events,

called Einstein-Rosen bridges. Decades later, Wheeler argued that such spacetime bridges

should be unstable even for a traveling photon [2]. Misner and Wheeler dubbed such a handle

of multiply-connected spacetime wormholes [3]. Morris, Thorne, and Yurtsever, nevertheless,

discussed traversable wormholes by holding a throat of the wormholes open with hypothetical

exotic matter (that must have negative energy in the framework of general relativity) [4].

Later, other types of traversable wormholes were found as allowable solutions to Einstein

equation, especially in a 1989 paper by Matt Visser [5], in which a spacetime tunnel through

the wormhole can be constructed where a shortcut path does not pass through a region of

such exotic matter. This type of wormhole models are called thin-shell wormholes. See Ref.

[6] for comprehensive reviews on wormholes. In the Gauss-Bonnet gravity (an alternative

to the theory of general relativity), however, exotic matter is not required for wormholes to

exist [7]. The latter wormhole model is based on an idea of modifying the left hand side

(namely, the geometrical side) of Einstein equation, while the former models are due to some

modifications of the right hand side, especially inclusions of hypothetical exotic matter.

Null and causal structures of such wormhole spacetimes are expected to be very different

from those around stellar objects and even those in black hole spacetimes. Therefore, the

light propagation in wormhole spacetimes has attracted a lot of interest. The deflection of

light in Ellis wormhole was first discussed by Chetouani and Clement [8, 9]. The gravitational

lensing as an observational probe of wormholes was investigated [10–21]. In the weak field

approximation, the deflection angle of light was derived in terms of the inverse power of the

photon impact parameter, for instance by Dey and Sen [22]. However, Nakajima and Asada

showed that this result breaks down at the next-to-leading order, though the leading order

term is correct [23]. This problem occurs due to the regularity at the center of wormholes

and therefore some methods valid for black holes no longer work for wormholes. On the

observational side of wormholes, Takahashi and Asada showed that the Sloan Digital Sky

Survey Quasar Lens Search (SQLS) put the upper bound on the cosmic abundance of Ellis

wormholes [24].
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Most of the work on the wormhole lensing mentioned above is for non-rotating wormholes.

Very recently, Jusufi and Övgün [25] discussed the gravitational lensing by rotating Teo

wormholes [26], in which they use Gibbons-Werner approach based on the Gauss-Bonnet

theorem [27]. An extension of the Gibbons-Werner approach for calculating the deflection

of light for the case of a Kerr black hole was done by Werner [28], in which he used Nazim’s

method of constructing the osculating Riemannian manifold and computed the Randers-

Finsler form of the metric for the Kerr spacetime. To be more precise, Jusufi and Övgün

employed Werner’s method to calculate the deflection angle of light for the asymptotic

observer and source in the weak field approximation of a rotating Teo wormhole. The

condition that the observer and source are located at the null infinity is a requirement for

using Werner’s method, because the Werner’s extension by using the Nazim’s osculating

Riemannian method needs that two ends of the light ray (corresponding to the observer and

source, respectively) are in a Euclidean space. We should note that it is an open issue how

to define angles in the Finsler geometry, though angles are well-defined in Euclidean regions

of the Finsler geometry.

The main purpose of this paper is to discuss the deflection of light for an observer and

source at finite distance from a rotating Teo wormhole as the gravitational lens. For this

purpose, we shall use a formulation developed in Ref. [29], which we shall call generalized

optical metric method henceforth.

The method for investigating the light propagation in a static and spherically symmetric

spacetime was reexamined by Gibbons and Werner, who discussed a problem of how to

determine a curve on a spatial surface in the optical geometry, where the metric used in

the optical geometry was first called the optical metric [27]. The idea of what Gibbons and

Werner call the optical geometry may be related with the optical reference geometry that

was used to describe inertial forces in general relativity by Abramowicz et al. [30], and may

be connected also with the idea of the optical 3-geometry that was introduced to discuss

thermal Green’s functions for black holes by Gibbons and Perry [31]. The optical geometry

may be also called the optical reference geometry or Fermat geometry [28]. The merit of the

optical metric is that the arc length along the light ray with this metric is directly related

with the time associated with the timelike Killing vector, when the spacetime is stationary.

Namely, the optical metric describes the Fermat’s principle for the light propagation in a

manner simpler than other spatial projections of the four-dimensional metric such as the
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intrinsic metric in the ADM formulation. The generalized optical method is an improved

method for calculating the deflection angle of light especially for the non-asymptotic observer

and source with the Weyl-Lewis-Papapetrou metric form of a stationary, axisymmetric and

asymptotically flat spacetime (but in the polar coordinates, though it is usually described

in the cylindrical coordinates [33–35]), by extending an earlier work on static, spherically

symmetric and asymptotically flat spacetimes [38]. The generalized optical metric method

has been used for discussions on the light deflection for the case of Kerr black holes [29].

There are the pros and cons in the generalized optical metric method. The merit of this

method is that it enables us to calculate the light deflection not only for asymptotic observer

and source but also for non-asymptotic cases. As stated already, Werner’s method, which

was used by Jusufi and Övgün, is currently limited within the case of asymptotic observer

and source, because the observer and source are needed to be in a Euclidean space of the

Finsler geometry. The price for using the generalized optical metric method is that we have

to take account of the geodesic curvature of the light ray in the optical geometry and have to

do the path integral of the geodesic curvature. We note that the light ray is not necessarily

geodesic in the optical geometry, though the light ray follows the null geodesic in a four-

dimensional spacetime [29]. In the present paper, we shall explicitly calculate the geodesic

curvature in the optical geometry for rotating Teo wormholes and perform its path integral.

A point is that a light ray in Werner’s approach is treated as a curve in a space described

by the Randers-Finsler type metric, while the generalized optical metric approach discusses

a light ray as a curve in a space that is defined by introducing the optical metric. Two

spaces in the two methods are different from each other. Therefore, it is important to ask

whether both methods give the same deflection angle of light, even if the same limiting case

as the asymptotic observer and source is taken. If the deflection angle depended on these

calculation methods, it might not be useful for gravitational lensing observations. We shall

show that it is not the case. Corrections for the finite distance cases will be also discussed.

In the rest of this paper, the observer is called the receiver (R), in order to avoid a

confusion in notations between the observer and the origin of the coordinates (O). This

paper is organized as follows. Section II describes a rotating Teo wormhole and its optical

metric form. In Section III, we perform detailed calculations of the Gaussian curvature and

geodesic curvature to obtain the deflection angle of light in the weak field approximation of

the rotating Teo wormhole. A comparison with the earlier work [25] is also done. Section
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IV is devoted to the conclusion. We use the unit of c = 1 throughout this paper.

II. GENERALIZED OPTICAL METRIC FOR ROTATING TEO WORMHOLE

A. Rotating Teo wormhole

A general form of a static axially symmetric rotating wormhole was first described by

Teo in Ref. [26]. Its spacetime metric reads

ds2 =−N2dt2 +
dr2

1− b0
r

+ r2H2
[

dθ2 + sin2 θ(dφ− ωdt)2
]

, (1)

where

the coordinates are −∞ < t < +∞, b0 ≤ r < +∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and we denote

N =H = 1 +
d(4a cos θ)2

r
, (2)

ω =
2a

r3
. (3)

The Teo wormhole by Eq. (1) is a rotating generalization of the static Morris-Thorne

wormhole. A rigidly rotating wormhole would be a case of N = H = 1 and ω = const. The

spacetime of Teo is stationary and axially symmetric and asymptotically flat, and the spatial

coordinates r, θ and φ coincide asymptotically with the spherical coordinates of a flat space.

Here, b0 denotes the throat radius of the wormhole where two identical asymptotically flat

regions are joined together at the throat r = b0. The parameter a is the total angular

momentum of the wormhole, and the parameter ω is the angular velocity of the wormhole

relative to the asymptotic rest frame, which gives rise to the Lense-Thirring effect in general

relativity.

As already noticed by Teo [26], the wormhole metric in Eq. (1) violates the null energy

condition. The wormhole (1) has no singularities in the curvature tensor and no event

horizon. The Teo wormhole metric is a purely geometrical object in the sense that the

metric does not take account of the stress-energy tensor in the Einstein equation. As for the

possible matter source of a rotating wormhole, we refer to [32], in which general requirements

on the stress-energy tensor were discussed to generate a uniformly rotating wormhole. Here,

we are just interested in the geometry of spacetime (1) as being an exact solution of the

gravitational field equations.
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B. Optical metric

Following Ref. [29], we define the generalized optical metric γij (i, j = 1, 2, 3) by a relation

as

dt =
√

γijdxidxj + βidx
i, (4)

which is immediately obtained by solving the null condition (ds2 = 0) for dt. Note that γij

is not the induced metric in the ADM formalism.

For the rotating Teo wormhole by Eq. (1), we find the components of the generalized

optical metric as

γijdx
idxj =

r7

(r − b0)
(

r4 − 4a2 sin2 θ
)

(16da2 cos2 θ + r)2
dr2

+
r6

r4 − 4a2 sin2 θ
dθ2 +

r10 sin2 θ
(

r4 − 4a2 sin2 θ
)2dφ

2. (5)

We obtain the components of βi as

βidx
i =− 2ar3 sin2 θ

r4 − 4a2 sin2 θ
dφ. (6)

In the rest of the paper, we focus on the light rays in the equatorial plane, namely θ = π/2.

Then, the constant d in the metric does not appear.

III. DEFLECTION ANGLE OF LIGHT BY A ROTATING TEO WORMHOLE

A. Deflection angle of light

Let us begin this section with briefly summarizing the generalized optical metric method

that enables us to calculate the deflection angle of light for non-asymptotic receiver (denoted

as R) and source (denoted as S) [29].

We define the deflection angle of light as [29]

α ≡ ΨR −ΨS + φRS. (7)

Here, ΨR and ΨS are angles between the light ray tangent and the radial direction from

the lens object, defined in a covariant manner using the generalized optical metric, at the

receiver location and the source, respectively. On the other hand, φRS is the coordinate angle
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between the receiver and source, where the coordinate angle is associated with the rotational

Killing vector in the spacetime. If the space under study is Euclidean, this α becomes the

deflection angle of the curve. This is consistent with the thin lens approximation in the

standard theory of gravitational lensing.

By using the Gauss-Bonnet theorem [36, 37], Eq. (7) can be recast into [29]

α = −
∫∫

∞

R
�

∞

S

KdS +

∫ R

S

κgdℓ, (8)

where K is defined as the Gaussian curvature at some point on the two-dimensional

surface, dS denotes the infinitesimal surface element defined with γ
(2)
ij where γ

(2)
ij de-

notes the two-dimensional metric in the equatorial plane (θ = π/2) and reads:

γ
(2)
ij dxidxj =

r5

(r − b0)(r4 − 4a2)
dr2 +

r10

(r4 − 4a2)2
dφ2. ∞

R �
∞
S denotes a quadrilateral embed-

ded in a curved space with γij, κg denotes the geodesic curvature of the light ray in this space

and dℓ is an arc length defined with the generalized optical metric (See Fig. 2 in Ref. [29]).

It is shown by Asada and Kasai that this dℓ for the light ray is an affine parameter [39].

Note that only the surface integral term appears in the right hand side of Eq. (8) if βi = 0

(See [38]), and the path integral term is proportional to the total angular momentum of the

wormhole (as shown in Subsection IIIC), hence caused by rotational (i.e. Lense-Thirring)

effects of the spacetime. We shall make detailed calculations of the R.H.S. of Eq. (8) below.

B. Gaussian curvature

For the equatorial case of a rotating Teo wormhole, the Gaussian curvature in the weak

field approximation is calculated as

K =
Rrφrφ

det γ
(2)
ij

=
1

√

det γ
(2)
ij

[ ∂

∂φ

(

√

det γ
(2)
ij

γ
(2)
rr

Γφ
rr

)

− ∂

∂r

(

√

det γ
(2)
ij

γ
(2)
rr

Γφ
rφ

)]

=− b0
2r3

− 56a2

r6
+O

(

a2b0
r7

,
a4

r10

)

, (9)

where a and b0 are book-keeping parameters in the weak field approximation. As for the first

line of Eq. (9), please see e.g. the page 263 in Reference [40]. We note that the first term in

the second line of Eq. (9) does not contribute because Γφ
rr = 0. It is not surprising that this
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Gaussian curvature does not agree with Eq. (26) in Jusufi and Övgün [25], because their

Gaussian curvature describes another surface that is associated with the Randers-Finsler

metric different from our optical metric.

In order to perform the surface integral of the Gaussian curvature in Eq. (8), we have to

determine the boundary of the integration domain. In other words, we need the light ray as

a function of r(φ). For the later convenience, we introduce the inverse of r as u ≡ r−1. The

orbit equation in this case becomes

(

du

dφ

)2

=
1

b2
− u2 − b0u

b2
+ b0u

3 − 4au

b3
− 4a(b0u− b0

2u2)

b3
+O

(

a2

b6

)

, (10)

where b is the impact parameter of the photon. See e.g. Reference [29] on how to obtain the

photon orbit equation in the axisymmetric and stationary spacetime. The orbit equation is

iteratively solved as

u =
sinφ

b
+

cos2 φ

2b2
b0 −

2

b3
a+O

(

b0
2

b3
,
ab0
b4

)

, (11)

By using Eq. (11) as the iterative solution for the photon orbit, the surface integral of

the Gaussian curvature in Eq. (8) is calculated as

−
∫∫

∞

R
�

∞

S

KdS =

∫ r(φ)

∞

dr

∫ φR

φS

dφ

(

− b0
2r2

)

+O
(

b0
2

b2
,
ab0
b3

)

=
b0
2

∫
sinφ

b
+ cos

2 φ

2b2
b0−

2

b3
a

0

du

∫ φR

φS

dφ+O
(

b0
2

b2
,
ab0
b3

)

=
b0
2

∫ φR

φS

[sin φ

b

]

dφ+O
(

b0
2

b2
,
ab0
b3

)

=
b0
2

[

− cosφ

b

]φR

φ=φS

+O
(

b0
2

b2
,
ab0
b3

)

=
b0
2b

(

√

1− b2uR
2 +

√

1− b2uS
2
)

+O
(

b0
2

b2
,
ab0
b3

)

, (12)

where we used sinφR = buR +O(ab−2, b0b
−1) and sinφS = buS +O(ab−2, b0b

−1) by Eq. (11)

in the last line.

C. Geodesic curvature

The geodesic curvature provides an important contribution to our calculations of the light

deflection, though it is not usually described in standard textbooks on the general relativity.
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Hence, we follow Reference [29] to briefly explain the geodesic curvature here. The geodesic

curvature can be defined in the vector form as (e.g. [37])

κg ≡ ~T ′ ·
(

~T × ~N
)

, (13)

where we assume a parameterized curve with a parameter, ~T is the unit tangent vector for

the curve by reparameterizing the curve using its arc length, ~T ′ is its derivative with respect

to the parameter, and ~N is the unit normal vector for the surface. Eq. (13) can be rewritten

in the tensor form as

κg = ǫijkN
iajek, (14)

where ~T and ~T ′ correspond to ek and aj , respectively. Here, the Levi-Civita tensor ǫijk is

defined by ǫijk ≡ √
γεijk, where γ ≡ det (γij), and εijk is the Levi-Civita symbol (ε123 = 1).

In the present paper, we use γij in the above definitions but not gij. Note that ai 6= 0 in

the three-dimensional optical metric by nonvanishing g0i [29], even though the light signal

follows a geodesic in the four-dimensional spacetime. On the other hand, we notice that if

we would have a geodesics in the optical metric then ai = 0 and thus κg = 0.

As shown first in Reference [29], Eq. (14) is rewritten as

κg = −ǫijkNiβj|k, (15)

where we use γije
iej = 1.

Henceforth, we focus on the equatorial plane (θ = π/2). Then, let us denote the unit

normal vector as Np. This vector is normal to the θ-constant surface. Therefore, it satisfies

Np ∝ ∇pθ = δθp, where ∇p is the covariant derivative associated with γij. Hence, Np is

written in a form as Np = Nθδ
θ
p. By noting that Np is a unit vector (NpNqγ

pq = 1), we

obtain Nθ = ±1/
√

γθθ. Therefore, Np can be expressed as

Np =
1

√

γθθ
δθp, (16)

where we choose the upward direction without loss of generality.

For the equatorial case, one can show

ǫθpqβq|p = − 1
√
γ
βφ,r, (17)

9



where the comma denotes the partial derivative, we use ǫθrφ = −1/
√
γ and we note βr,φ = 0

owing to the axisymmetry. By using Eqs. (16) and (17), the geodesic curvature of the light

ray with the generalized optical metric becomes [29]

κg = −
√

1

γγθθ
βφ,r. (18)

For Teo wormhole case, this is obtained as

κg =− 2a

r3
+O

(

a3

r7
,
a3b0
r8

)

. (19)

We examine the contribution from the geodesic curvature. This contribution is the path

integral along the light ray (from the source to the receiver), which is computed as

∫ R

S

κgdℓ =

∫ S

R

2a

r3
dℓ+O

(

b0
2

b2
,
ab0
b3

)

=

∫ π/2−φS

π/2−φR

2a cosϑ

b2
dϑ+O

(

b0
2

b2
,
ab0
b3

)

=
2a

b2

[

sin
(π

2
− φS

)

− sin
(π

2
− φR

)]

+O
(

b0
2

b2
,
ab0
b3

)

=
2a

b2

(

√

1− b2uS
2 +

√

1− b2uR
2
)

+O
(

b0
2

b2
,
ab0
b3

)

, (20)

for the retrograde case of the photon orbit. In the last line, we used sin φR = buR +

O(ab−2, b0b
−1) and sin φS = buS + O(ab−2, b0b

−1) by Eq. (11). The above contribution

becomes 4a/b2, as rR → ∞ and rS → ∞. The sign of the right hand side of Eq. (20)

changes, if the photon orbit is prograde.

D. Deflection angle

By combining Eqs. (12) and (20), the deflection angle of light for the prograde case is

obtained as

αprog =
b0
2b

(

√

1− b2uR
2 +

√

1− b2uS
2
)

− 2a

b2

(

√

1− b2uS
2 +

√

1− b2uR
2
)

+O
(

b0
2

b2
,
ab0
b3

)

.

(21)

The deflection angle for the retrograde case is

αretro =
b0
2b

(

√

1− b2uR
2 +

√

1− b2uS
2
)

+
2a

b2

(

√

1− b2uS
2 +

√

1− b2uR
2
)

+O
(

b0
2

b2
,
ab0
b3

)

.

(22)
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For both cases, the source and receiver may be located at finite distance from the worm-

hole. Eqs. (21) and (22) show that the light deflection is increasing with decreasing impact

parameter and increasing throat radius. The light deflection in the prograde (retrograde)

direction is decreasing (increasing) with increasing the angular momentum of the Teo worm-

hole, because the local inertial frame (in which the light propagates at the light speed c in

general relativity) moves faster (slower) and hence the light signal feels the gravitational

pull for shorter (longer) time. Regarding the light propagation around a rotating object,

similar physical explanations based on the dragging of the inertial frame were done about

the Shapiro time delay by Laguna and Wolsczan [41].

One can see that, in the limit as rR → ∞ and rS → ∞, Eqs. (21) and (22) become

αprog → b0
b
− 4a

b2
+O

(

b0
2

b2
,
ab0
b3

)

,

αretro → b0
b
+

4a

b2
+O

(

b0
2

b2
,
ab0
b3

)

. (23)

They agree with Eqs. (39) and (56) in Jusufi and Övgün [25], in which they are restricted

within the asymptotic source and receiver (rR → ∞ and rS → ∞).

IV. CONCLUSION

In the weak field approximation, we have discussed the deflection angle of light for an

observer and source at finite distance from a rotating Teo wormhole. We have shown that

both of the Werner’s method and the generalized optical metric method give the same

deflection angle at the leading order of the weak field approximation, if the receiver and

source are at the null infinity. We have also found corrections for the deflection angle due

to the finite distance from the wormhole. It is left for future to study higher order terms

in the weak field approximation of a rotating Teo wormhole and to examine also the strong

deflection limit.
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