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Abstract

According to common lore, massive elementary higher spin particles lead to

inconsistencies when coupled to gravity. However, this scenario was not com-

pletely ruled out by previous arguments. In this paper, we show that in a theory

where the low energy dynamics of the gravitons are governed by the Einstein-

Hilbert action, any finite number of massive elementary particles with spin more

than two cannot interact with gravitons, even classically, in a way that preserves

causality. This is achieved in flat spacetime by studying eikonal scattering of

higher spin particles in more than three spacetime dimensions. Our argument

is insensitive to the physics above the effective cut-off scale and closes certain

loopholes in previous arguments. Furthermore, it applies to higher spin particles

even if they do not contribute to tree-level graviton scattering as a consequence of

being charged under a global symmetry such as Z2. We derive analogous bounds

in anti-de Sitter spacetime from analyticity properties of correlators of the dual

CFT in the Regge limit. We also argue that an infinite tower of fine-tuned higher

spin particles can still be consistent with causality. However, they necessarily

affect the dynamics of gravitons at an energy scale comparable to the mass of the

lightest higher spin particle. Finally, we apply the bound in de Sitter to impose

restrictions on the structure of three-point functions in the squeezed limit of the

scalar curvature perturbation produced during inflation.
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1 Introduction

Weinberg in one of his seminal papers [1] showed that general properties of the S-

matrix allow for the presence of the graviton. Not only that, the soft-theorem dictates

that at low energies gravitons must interact universally with all particles – which is
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the manifestation of the equivalence principle in QFT. This remarkable fact has many

far-reaching consequences for theories with higher spin particles.

Even in the early days of quantum field theory (QFT), it was known that there

are restrictions on particles with spin J > 2 in flat spacetime. For example, Lorentz

invariance of the S-matrix requires that massless particles interacting with gravity in

flat spacetime cannot have spin more than two [1–3]. Moreover, folklore has it that any

finite number of massive elementary higher spin particles, however fine-tuned, cannot

interact with gravity in a consistent way. There is ample evidence suggestive of a strict

bound on massive higher spin particles at least in flat spacetime in dimensions D ≥ 4

from tree-level unitarity and asymptotic causality [4–9],1 however, to our knowledge

there is no concrete argument which completely rules out a finite number of massive

particles with spin J > 2.

Most notably, it was argued in [9] that in a theory with finite number of massive

particles with spin J > 2, unless each higher spin particle is charged under a global

symmetry such as Z2, they will contribute to eikonal scattering of particles, even

with low spin (J ≤ 2), in a way that violates asymptotic causality in flat spacetime.

The same statement is true even in anti-de Sitter (AdS) spacetime where the global

symmetries of higher spin particles are required by the chaos growth bound of the

dual CFT [10]. In addition, there is no known string compactification which leads to

particles with spin J > 2 and masses M � Ms in flat spacetime, where Ms is the

string scale. Of course, it is well known that higher spin particles do exist in AdS, but

they always come in an infinite tower and these theories become strongly interacting at

low energies [11,12]. All of these observations indicate that there are universal bounds

on theories with higher spin massive particles. In this paper, we will prove such a

bound from causality. We will show that any finite number of massive elementary

particles with spin J > 2, however fine tuned, cannot interact with gravitons in flat

or AdS spacetimes (in D ≥ 4 dimensions) in a way that is consistent with the QFT

equivalence principle and preserves causality. In particular, we will demonstrate that

the three-point interaction J-J-graviton must vanish for J > 2. However, this is one

interaction that no particle can avoid due to the equivalence principle, implying that

elementary particles with spin J > 2 cannot exist.

For massless higher spin particles, the inconsistencies are even more apparent. The

1See comments in section 2.6 for comparison between arguments in the literature and the argument
presented in this paper.
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tension between Lorentz invariance of the S-matrix and the existence of massless par-

ticles with spin J > 2 was already visible in [1]. Subsequently, the same tension was

shown to exist for massless fermions with spin J > 3/2 [13,14]. A concrete manifesta-

tion of this tension is an elegant theorem due to Weinberg and Witten which states that

any massless particle with spin J > 1 cannot possess a Lorentz covariant and gauge

invariant energy-momentum tensor [2].2 Of course, this theorem does not prohibit

the existence of gravitons, rather it implies that the graviton must be fundamental.

More recently, a generalization of the Weinberg-Witten theorem has been presented

by Porrati which states that massless particles with spin J > 2 cannot be minimally

coupled to the graviton in flat spacetime [3]. Both of these theorems are completely

consistent with various other observations made about interactions of massless higher

spin particles in flat spacetime (see [16–21] and references therein). Furthermore, the

generalized Weinberg-Witten theorem and the QFT equivalence principle are sufficient

to completely rule out massless particles with spin J > 2 in flat spacetime [2, 3]. The

basic argument is rather simple. The Weinberg-Witten theorem and its generalization

by Porrati only allow non-minimal coupling between massless particles with spin J > 2

and the graviton. Whereas, it is well known that particles with low spin can couple

minimally with the graviton. Therefore, the QFT equivalence principle requires that

massless higher spin particles, if they exist, must couple minimally with the graviton

at low energies – which directly contradicts the Weinberg-Witten/Porrati theorem.

Any well behaved Lorentzian QFT must also be unitary and causal. Lorentz invari-

ance alone was sufficient to rule out massless higher spin particles in flat spacetime.

Whereas, massive elementary particles with spin J > 2 do not lead to any apparent

contradiction with Lorentz invariance in flat spacetime. However, any such particle

if present, must interact with gravitons. The argument presented in [9] implies that

finite number of higher spin particles cannot be exchanged in any tree-level scatter-

ing. However, this restriction is not sufficient to rule out massive higher spin particles,

rather it implies that each massive higher spin particle must be charged under Z2 or

some other global symmetry. On the other hand, the equivalence principle requires the

coupling between a single graviton and two spin-J particles to be non-vanishing. By

considering an eikonal scattering experiment between scalars and elementary higher

spin particles with spin J and mass m in the regime |s| � |t| � m, where s and t are

the Mandelstam variables, we will show that any such coupling between the higher spin

2See [15] for a nice review.
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particle and the graviton in flat spacetime leads to violation of asymptotic causality.

This is accomplished by extending the argument of [9] to the scattering of higher spin

particles which requires the phase shift to be non-negative for all choices of polarization

of external particles.

A similar high energy scattering experiment can be designed in AdS to rule out

elementary massive higher spin particles. However, we will take a holographic route

which has several advantages. We consider a class of large-N CFTs in d ≥ 3 dimensions

with a sparse spectrum. The sparse spectrum condition, to be more precise, implies

that the lightest single trace primary operator with spin J > 2 has dimension ∆gap � 1.

It was first conjectured in [22] that this class of CFTs admit a universal holographic

dual description with a low energy description in terms of Einstein gravity coupled to

matter fields. The conjecture was based on the observation that there is a one-to-one

correspondence between scalar effective field theories in AdS and perturbative solutions

of CFT crossing equations in the 1/N expansion. The scalar version of this conjecture

was further substantiated in [23–40] by using the conformal bootstrap. More recently,

the conjecture has been completely proven at the linearized level even for spinning

operators including the stress tensor [41–46]. In the second half of the paper, we will

exploit this connection to constrain massive higher spin particles in AdS by studying

large-N CFTs with a sparse spectrum. To this end, we introduced a new non-local

operator, capturing the contributions to the Regge limit of the OPE of local operators.

This operator is expressed as an integral of a local operator over a ball times a null-

ray. It is obtained by generalizing the Regge OPE introduced in [46] to non-integer

spins, resulting in an operator that is more naturally suited for parametrizing the

contribution of Regge trajectories which require analytic continuation in both spin and

scaling dimension.

In the holographic CFT side we will ask the dual question: is it possible to add

an extra higher spin single trace primary operator with J > 2 and scaling dimension

∆ � ∆gap and still get a consistent CFT? A version of this question has already

been answered by a theorem in CFT that rules out any finite number of higher spin

conserved currents [47–49]– which is the analog of the Weinberg-Witten theorem in

AdS. However, ruling out massive higher spin particles in AdS requires a generalization

of this theorem for non-conserved single trace primary operators of holographic CFTs.

The chaos (growth) bound of Maldacena, Shenker, and Stanford [10] partially achieves

this by not allowing any finite number of higher spin single trace primary operators
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to contribute as exchange operators in CFT four-point functions in the Regge limit.

However, this restriction does not rule out the existence of such operators rather it

prohibits these higher spin operators to appear in the operator product expansion

(OPE) of certain operators. On the other hand, causality (chaos sign bound) imposes

stronger constraints on non-conserved single trace primary operators. In particular,

by using the holographic null energy condition (HNEC) [44, 46] applied to correlators

with external higher spin operators, we will show that massive higher spin fields in

AdS (in D ≥ 4 dimensions) lead to causality violation in the dual CFT. This implies

that any finite number of massive elementary particles with spin J > 2 in AdS cannot

be embedded in a well behaved UV theory in which the dynamics of gravitons at low

energies is described by the Einstein-Hilbert action.
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Figure 1: Spectrum of elementary particles with spin J > 2 in a theory where the dynamics
of gravitons is described by the Einstein-Hilbert action at energy scales E � Λ. The cut-
off scale Λ can be the string scale and hence there can be an infinite tower of higher spin
particles above Λ. Figure (a) represents a scenario that also contains a finite number of
higher spin particles below the cut-off and hence violates causality. Causality can only be
restored if these particles are accompanied by an infinite tower of higher spin particles with
comparable masses which is shown in figure (b). This necessarily brings down the cut-off
scale to Λnew = m, where m is the mass of the lightest higher spin particle.

One advantage of the holographic approach is that it also provides a possible so-

lution to the causality problem. From the dual CFT side, we will argue that in a

theory where the dynamics of gravitons is described by the Einstein-Hilbert action at

energy scales E � Λ (Λ can be the string scale Ms), a single elementary particle with

spin J > 2 and mass m � Λ violates causality unless the particle is accompanied by

an infinite tower of (finely tuned) higher spin elementary particles with mass ∼ m.

5



Furthermore, causality also requires that these new higher spin particles (or at least

an infinite subset of them) must be able to decay into two gravitons and hence modify

the dynamics of gravitons at energy scales E ∼ m. So, one can have a causal theory

without altering the low energy behavior of gravity only if all the higher spin particles

are heavier than the cut-off scale Λ.

Causality of CFT four-point functions in the lightcone limit also places nontriv-

ial constraints on higher spin primary operators. In particular, it generalizes the

Maldacena-Zhiboedov theorem of d = 3 [47] to higher dimensions by ruling out a finite

number of higher spin conserved currents [49]. The advantage of the lightcone limit

is that the constraints are valid for all CFTs – both holographic and non-holographic.

However, the argument of [49] is not applicable when higher spin conserved currents

do not contribute to generic CFT four-point functions as exchange operators. We will

present an argument in the lightcone limit that closes this loophole by ruling out higher

spin conserved currents even when none of the operators are charged under it.3 For

holographic CFTs, this completely rules out a finite number of massless higher spin

particles in AdS in D ≥ 4 dimensions.

The bound on higher spin particles has a natural application in inflation. If higher

spin particles are present during inflation, they produce distinct signatures on the

late time three-point function of the scalar curvature perturbation in the squeezed

limit [50]. The bounds on higher spin particles in flat space and in AdS were obtained

by studying local high energy scattering which is insensitive to the spacetime curvature.

This strongly suggests that the same bound should hold even in de Sitter space.4 Our

bound, when applied in de Sitter, immediately implies that contributions of higher spins

to the three-point function of the scalar curvature perturbation in the squeezed limit

must be Boltzmann suppressed ∼ e−2πΛ/H , where H is the Hubble scale. Therefore,

if the higher spin contributions are detected in future experiments, then the scale of

new physics must be Λ ∼ H. This necessarily requires the presence of not one but

an infinite tower of higher spin particles with spins J > 2 and masses comparable to

the Hubble scale. Any such detection can be interpreted as evidence in favor of string

3We should note that we have not ruled out an unlikely scenario in which the OPE coefficients
conspire in a non-trivial way to cancel the causality violating contributions. Three-point functions of
conserved currents are heavily constrained by conformal invariance and hence this scenario is rather
improbable.

4This argument parallels the argument made by Cordova, Maldacena, and Turiaci in [51]. The
same point of view was also adopted in our previous paper [46].
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theory with the string scale comparable to the Hubble scale.

The rest of the paper is organized as follows. In section 2, we present an S-matrix

based argument to show that massive elementary particles with spin J > 2 cannot

interact with gravitons in a way that preserves asymptotic causality. We derive the

same bounds in AdS from analyticity properties of correlators of the dual CFT in

section 3. In section 4, we argue that the only way one can restore causality is by

adding an infinite tower of massive higher spin particles. In addition, we also discuss

why stringy states in classical string theory are consistent with causality. Finally, in

section 5, we apply our bound in de Sitter to constrain the squeezed limit three-point

functions of scalar curvature perturbations produced during inflation.

2 Higher Spin Fields in Flat Spacetime

Figure 2: Tree-level exchange diagrams are the building blocks of ladder diagrams.

In this section, we explicitly show that interactions of higher spin particles with

gravity lead to causality violation. Eikonal scattering has been used in the literature

[9,52–56] to impose constraints on interactions of particles with spin. When the center

of mass energy is large and transfer momentum is small, the scattering amplitude is

captured by the eikonal approximation. Focusing on a specific exchange particle for

now, the scattering amplitude is given by a sum of ladder diagrams. These diagrams

can be resumed (see figure 2) and as a result introduce a phase shift in the scattering

amplitude [57].5 This phase shift produces a Shapiro time delay [58] that particles

experience [9]. Asymptotic causality in flat spacetime requires the time delay and

hence the phase shift to be non-negative [9,59]. Moreover, positivity of the phase shift

imposes restrictions on the tree-level exchange diagrams –which are the building blocks

of ladder diagrams– constraining three-point couplings between particles. This method

5We will comment more about the resummation later in the section.
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Figure 3: Eikonal scattering of particles. In this highly boosted kinematics, particles are
moving almost in the null directions such that the center of mass energy is large.

has been utilized to constrain three-point interactions between gravitons, massive spin-

2 particles, and massless higher spin particles [9, 52, 53]. Here we apply the eikonal

scattering method to external massive and massless elementary particles with spin

J > 2.

We will briefly review eikonal scattering in order to explicitly relate the phase shift

to the three-point interactions between elementary particles. We will take two of the

external particles to be massive or massless higher spin particles (J > 2) and the

other two particles to be scalars. The setup is shown in figure 3 where particles 1 and

3 are the higher spin particles, whereas particles 2 and 4 are scalars. We will then

use on-shell methods to write down the general three-point interaction between higher

spin elementary particles and gravitons [60]. This allows us to derive the most general

form of the amplitude in the eikonal limit. Positivity of the phase shift for all choices

of polarization tensors of external particles, constrains the coefficients of three-point

vertices. In particular, for both massive and massless particles with spin J > 2 in

space-time dimensions D ≥ 4, we find that the three-point interaction J-J-graviton

must be zero. However, this is one interaction that no particle can avoid due to the

equivalence principle, implying that elementary particles with spin J > 2 cannot exist.
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2.1 Eikonal Scattering

Let us consider 2→ 2 scattering of particles in space-time dimensions D ≥ 4 as shown

in figure 3. Coordinates are written in R1,D−1 with the metric

ds2 = −dudv + d~x2
⊥. (2.1)

Denoting the momentum of particles by pi, with i labeling particles 1 through 4, the

Mandelstam variables are given by

s = −(p1 + p2)2, t = −(p1 − p3)2 = −q2, (2.2)

where q is the momentum of the particle exchanged which in the eikonal limit has the

property q2 = ~q2, where ~q has components in directions transverse to the propagation

of the external particles.6 The tree level amplitude consists of the products of three-

point functions7

Mtree(s, ~q) =
∑
I

C13I(~q)CI24(~q)

~q 2 +m2
I

, (2.3)

where the sum is over all of the states of the exchanged particles with mass mI . In the

above expression, C13I and C24I are on-shell three-point amplitudes which are generally

functions of the transferred momentum ~q, as well as the polarization tensors and the

center of mass variables.

In highly boosted kinematics, particles are moving almost in the null directions u

and v with momenta P u and P v respectively. The center of mass energy s is large with

respect to other dimensionful quantities such as the particle masses. In particular, we

have s � |t| = ~q 2. The total scattering amplitude is given by the sum of all ladder

diagrams in t-channel which exponentiates when it is expressed in terms of the impact

parameter ~b which has components only along the transverse plane,

iMeik(s,−~q 2) = 2s

∫
dD−2~be−i~q·

~b
(
eiδ(s,

~b) − 1
)
, (2.4)

6See section 2.3 for the details of the kinematics.
7For a detail discussion about the iε see [9].
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where,

δ(s,~b) =
1

2s

∫
dD−2~q

(2π)D−2
ei~q·

~bMtree(s, ~q ) . (2.5)

Before we proceed, let us comment more on the exponentiation since it plays a central

role in the positivity argument. We can interpret the phase shift as the Shapiro time-

delay only when it exponentiates in the eikonal limit. However, it is known that the

eikonal exponentiation fails for the exchange of particles with spin J < 2 [61–63]. It is

also not obvious that the tree level amplitude must exponentiate in the eikonal limit

for the exchange of particles with spin J ≥ 2. A physical argument was presented in [9]

which suggests that for higher spin exchanges it is possible to get a final amplitude

that is exponential of the tree level exchange diagram. First, let us think of particle

2 as the source of a shockwave and particle 1 to be a probe particle travelling in that

background. At tree-level, the amplitude is given by 1 + iδ, where we ensure that

δ � 1 by staying in a weakly coupled regime. Let us then send N such shockwaves

so that we can treat them as individual shocks and hence the final amplitude, in the

limit δ → 0, N → ∞ with Nδ =fixed, is approximately given by (1 + iδ)N ≈ eiNδ.

This approximation is valid only if we can view N scattering processes as independent

events. Moreover, we want to be in the weakly coupled regime. Both of these conditions

can only be satisfied if δ grows with s – which is true for the exchange of particles with

spin J ≥ 2 [9]. Therefore, for higher-spin exchanges, we can interpret δ (or rather N

times δ) as the Shapiro time delay of particle 1.

There is one more caveat. The exponentiation also depends on the assumption that

δ is the same for each of the N -processes – in other words, the polarization of particle

3 is the complex conjugate of that of particle 1. In general, particle 3 can have any

polarization, however, we can fix the polarization of particle 3 by replacing particle 1

by a coherent state of particles with a fixed polarization. Since we are in the weakly

coupled regime, we can make the mean occupation number large without making δ

large. This allows us to fix the polarization of particle 3 to be complex conjugate of

that of particle 1 because of Bose enhancement (see [9] for a detail discussion).

Let us end this discussion by noting that the N-shock interpretation of the eikonal

process is also consistent with classical gravity calculations. For example, the Shapiro

time delay as obtained in GR from shockwave geometries is the same as the time delay

obtained from the sum of all ladder diagrams for graviton exchanges – which indicates

10



that these are the only important diagrams in the eikonal limit. Thus, it is reasonable to

expect that the exponentiation of the tree-level diagram correctly captures the eikonal

process.

Positivity:

When δ(s,~b) grows with s, we can trust the eikonal exponentiation which allows us to

relate the phase shift to time delay. In particular, for a particle moving in u direction

with momentum P u > 0, the phase shift δ(s,~b) is related to the time delay of the

particle by

δ
(
s,~b
)

= P u∆v . (2.6)

Asymptotic causality in flat space requires that particles do not experience a time

advance even when they are interacting [59]. Therefore, ∆v ≥ 0, implying that the

phase shift must be non-negative as well.

So far our discussion is very general and it is applicable even when multiple ex-

changes contribute to the tree level scattering amplitude. From now on, let us restrict

to the special case of massless exchanges.8 Using the tree-level amplitude (2.3), we can

write

δ(s,~b) =
1

2s

∑
I

∫
dD−2~q

(2π)D−2
ei~q·

~bC13I(~q)CI24(~q)

q2

=
Γ(D−4

2
)

4π
D−2

2

∑
I

CI24(−i~∂b)C13I(−i~∂b)
2s

1

|~b|D−4
(2.7)

which must be non-negative. Note that ~∂2
b annihilates 1/|~b|D−4, which is why we can

consider the exchange particle to be on-shell.9

2.2 Higher Spin-graviton Couplings

There are Lagrangian formulations of massive higher spin fields in flat spacetime, as

well as in AdS [64–66]. However, in this section, we present a more general approach

8For non-zero mI , the ~q integral yields K0(mIb), where K0 is the Bessel-K function.
9The same can be seen from the choice of the integration contour, as described in more detail in [9].

By rotating the contour of integration in ~q, we cross the pole at ~q 2 = 0 and therefor it is sufficient to
consider only three-point functions on-shell.
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that does not require the knowledge of the Lagrangian. We write down all possible

local three-point interactions between two higher spin elementary particles with spin

J and a graviton. This three-point interaction is of importance for several reasons.

First, this is one interaction that no particle can avoid because of the equivalence

principle. Therefore the vanishing of this three-point interaction is sufficient to rule

out existence of such higher spin particles. Moreover, as we will discuss later, this

three-point interaction is sufficient to compute the full eikonal scattering amplitude

between a scalar and a higher spin particle.

p3, z3

p1, z1

q, z

Figure 4: The three-point interaction between two elementary particles with spin J and a
graviton.

We start with the massive case and consider the massless case later on. Here we use

the same method used in [52, 60] for deriving the most general J − J − 2 interaction.

The momenta of higher spin particles are p1, p3 and the graviton has momentum q (see

figure 4). The conservation and the on-shell conditions imply

p1 = p3 + q , p2
1 = p2

3 = −m2 , q2 = 0 , (2.8)

where m is the mass of the higher spin particle. It is sufficient for us to consider

polarization tensors which are made out of null and transverse polarization vectors

z1, z3, z satisfying

z2
1 = z2

3 = z2 = 0, z1 · p1 = z3 · p3 = z · q = 0 . (2.9)

Transverse symmetric polarization tensors can be constructed from null and transverse

polarization vectors by substituting zµ1

i z
µ2

i · · · z
µs
i → E

µ1µ2···µs
i − traces. In addition, we

need to impose gauge invariance for the graviton. This means that each on-shell vertex
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should be invariant under z → z + αq, where α is an arbitrary number. Using (2.8)

and (2.9), we can write down all vertices in terms of only five independent building

blocks10

z1 · z3 , z1 · q , z3 · q ,

z · p3 , (z · z3)(z1 · q)− (z · z1)(z3 · q) . (2.10)

In order to list all possible vertices for the interaction J − J − 2, we must symmetrize

the on-shell amplitudes under 1 ↔ 3. We can then construct the most general form

of on-shell three-point amplitude from these building blocks. In particular, for J ≥ 2,

we can write three distinct sets of vertices. The first set contains J + 1 independent

structures all of which are proportional to (z · p3)2:

A1 = (z · p3)2(z1 · z3)J ,

A2 = (z · p3)2(z1 · z3)J−1(z3 · q)(z1 · q) ,
...

AJ+1 = (z · p3)2(z3 · q)J(z1 · q)J . (2.11)

The second set contains J-independent structures which are proportional to (z · p3):

AJ+2 = (z · p3)((z · z3)(z1 · q)− (z · z1)(z3 · q))(z1 · z3)J−1,

AJ+3 = (z · p3)((z · z3)(z1 · q)− (z · z1)(z3 · q))(z1 · z3)J−2(z3 · q)(z1 · q),
...

A2J+1 = (z · p3)((z · z3)(z1 · q)− (z · z1)(z3 · q))(z3 · q)J−1(z1 · q)J−1 . (2.12)

Finally the third set consists of J − 1 independent structures which do not contain

10In D = 4, the collection of momentum and polarization vectors p1, p2, zj i, j = 1, 2, 3 are not
linearly independent and there are additional relations between the building blocks.
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(z · p3):

A2J+2 = ((z · z3)(z1 · q)− (z · z1)(z3 · q))2(z3 · z1)J−2,

A2J+3 = ((z · z3)(z1 · q)− (z · z1)(z3 · q))2(z3 · z1)J−3(z3 · q)(z1 · q),
...

A3J = ((z · z3)(z1 · q)− (z · z1)(z3 · q))2(z3 · q)J−2(z1 · q)J−2 . (2.13)

In total there are 3J independent structures that contribute to the on-shell three-point

amplitude of two higher spin particles with mass m and spin J and a single graviton.

Therefore the most general form of the three-point amplitude for J ≥ 1, is given by11

CJJ2 =
√

32πGN

3J∑
n=1

anAn. (2.14)

Note that 3J is also the number of independent structures in the three point functions

in the CFT side after imposing permutation symmetry between operators 1, 3 and

taking conservation of stress-tensor into account.

2.3 Eikonal Kinematics

We now study the eikonal scattering of higher spin particles: 1, 2→ 3, 4, where, 1 and

3 label the massive higher spin particles with mass m and spin J and 2, 4 label scalars

of mass ms (see figure 3). Let us specify the details of the momentum and polarization

tensors. In the eikonal limit, the momentum of particles are parametrized as follows12

pµ1 =

(
P u,

1

P u

(
~q 2

4
+m2

1

)
,
~q

2

)
, pµ3 =

(
P̄ u,

1

P̄ u

(
~q 2

4
+m2

3

)
,−~q

2

)
,

pµ2 =

(
1

P v

(
~q 2

4
+m2

2

)
, P v,−~q

2

)
, pµ4 =

(
1

P̄ v

(
~q 2

4
+m2

4

)
, P̄ v,

~q

2

)
, (2.15)

where, P u, P̄ u, P v, P̄ v > 0 and pµ1−p
µ
3 ≡ q is the transferred momentum of the exchange

particle which is spacelike. The eikonal limit is defined as P u, P v � |q|,mi. In this limit

P u ≈ P̄ u, P v ≈ P̄ v and the Mandelstam variable s is given by s = −(p1 +p2)2 ≈ P uP v.

Moreover, for our setup we have m1 = m3 = m and m2 = m4 = ms.

11Here the propagators of the gravitons are canonically normalized to 1. Therefore we need explicit
GN dependence in (2.14) since it couples to the graviton.

12Our convention is pµ = (pu, pv, ~p).
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Massless particles have only transverse polarizations but massive higher spin par-

ticles can have both transverse and longitudinal polarizations. General polarization

tensors can be constructed using the following polarization vectors

εµT,λ(p1) =

(
0,
~q · ~e (1)

λ

P u
, ~e

(1)
λ

)
, εµL(p1) =

(
P u

m
,

1

mP u

(
~q 2

4
−m2

)
,
~q

2m

)
,

εµT,λ(p3) =

(
0,−~q · ~e

(3)
λ

P u
, ~e

(3)
λ

)
, εµL(p3) =

(
P u

m
,

1

mP u

(
~q 2

4
−m2

)
,− ~q

2m

)
,

(2.16)

where vectors eµλ ≡ (0, 0, ~eλ) are complete orthonormal basis in the transverse direction

~x⊥. The longitudinal vectors do not satisfy (2.9) because εL · εL 6= 0. However, they

still form a basis for constructing symmetric traceless polarization tensors which are

orthogonal to the corresponding momentum.

The polarization tensors constructed from (2.16) are further distinguished by their

spin under an SO(D− 2) rotation group which preserves the longitudinal polarization

εL for each particle. We denote this basis of polarization tensors as Eµ1µ2···µJ
j (pi) where

j labels the spin under SO(D−2). These tensors are basically organized by the number

of transverse polarization vectors they contain. The most general polarization tensor

for a particle with spin J can now be decomposed as

EEEµ1···µJ (p) =
J∑
j=0

rjEµ1···µJ
j (p), (2.17)

where rj’s are arbitrary complex numbers. However, in order to show that the higher

spin particles cannot interact with gravity in a consistent way, we need only to consider

a subspace spanned by

Eµ1µ2···µJ
J = εµ1

T,λ1
εµ2

T,λ2
· · · εµJT,λJ , (2.18)

Eµ1µ2···µJ
J−1 =

√
Jε

(µ1

L εµ2

T,λ2
εµ3

T,λ3
· · · εµJ )

T,λJ
, (2.19)

Eµ1µ2···µJ
J−2 =

√
D − 1

D − 2

(
ε

(µ1

L εµ2

L −
Pµ1µ2

D + 2J − 5

)
εµ3

T,λ3
εµ4

T,λ4
· · · εµJ )

T,λJ
, Pµν ≡ ηµν +

pµpν

m2
,

(2.20)

where, after contractions with other tensors we perform the following substitution:
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ei1λ1
ei2λ2
· · · eijλj → ei1···ij in which ei1···ij is a transverse symmetric traceless tensor.13 One

can easily continue this construction to generate the remaining polarization tensors.

One should add more longitudinal polarization vectors and subtract traces in order to

make them traceless.

2.4 Bounds on Coefficients

We now have all the tools we need to utilize the positivity condition (2.7) in the eikonal

scattering of a massive higher spin particle and a scalar. The expression (2.7) requires

knowledge of the contributions of all the particles that can be exchanged. However

as we explain next, in the eikonal limit the leading contribution is always due to the

graviton exchange. Let us explain this by discussing all possible exchanges:

• Graviton exchange: Since, gravitons couple to all particles, the scattering am-

plitude in the eikonal limit will always receive contributions from graviton ex-

changes. In particular, in the eikonal limit, the contribution of graviton exchange

to the phase shift goes as δ(s, b) ∼ s.

• Exchange of particles with spin J < 2: These exchanges are always subleading

in the eikonal limit and hence can be ignored.14

• Exchange of higher spin particles J > 2: In the eikonal limit, the exchange of

a particle with spin J can produce a phase shift δ(s, b) ∼ sJ−1. However, it

was shown in [9] that a phase shift that grows faster than s leads to additional

causality violation. Therefore if higher spin particles are present, their interac-

tions must be tuned in such a way that they cannot be exchanged in eikonal

scattering. This happens naturally when each higher spin particle is individually

charged under a global symmetry such as Z2. We should note that it is possible

to have a scenario in which an infinite tower of higher spin particles can be ex-

changed without violating causality. However, we will restrict to the case where

only a finite number of higher spin particles are present. At this point, let us

13In other words, whenever we see a combination of transverse polarization vectors:
εµ1

T,λ1
εµ2

T,λ2
· · · εµS

T,λS
, we will replace that by either of εµ1

T,+ε
µ2

T,+ · · · ε
µS

T,+ ± εµ1

T,−ε
µ2

T,− · · · ε
µS

T,−, where

eµ+ ≡ (0, 0, 1, i,~0) and eµ− ≡ (0, 0, 1,−i,~0). For us, it is sufficient to restrict to these set of polar-
ization tensors.

14We have mentioned before that the eikonal exponentiation fails for the exchange of particles with
spin J < 2. However, we can still ignore them because the exchange of lower spin particles cannot
compete with the graviton exchange in the eikonal limit.

16



also note that in AdS, the exchange of a finite number of higher spin particles

are ruled out by the chaos growth bound of the dual CFT.

• Exchange of massive spin-2 particles: Massive spin-2 particles can be present in

nature. However, the exchange of these particles, as explained in [9], cannot fix

the causality violation caused by the graviton exchange. Therefore, without any

loss of generality, we can assume that the scalar particles do not interact with

any massive spin-2 particle. For now this will allow us to ignore massive spin-2

exchanges. Let us note that it is not obvious that the argument of [9] about

massive spin-2 exchanges necessarily holds for scattering of higher spin particles.

So, at the end of this section, we will present an interference based argument

to explain the reason for why even an infinite tower of massive spin-2 exchanges

cannot restore causality.

In summary, in the eikonal limit, it is sufficient to consider only the graviton ex-

change. In fact, for simplicity we can just assume that the scalar interacts with every-

thing, even with itself, only via gravity. We will therefore use (2.7) to calculate the

phase shift where C13I is given by equation (2.14). For scalar-scalar-graviton there is

only one vertex, written as

CI24 ≡ C002 =
√

32πG(z · p2)2 . (2.21)

Consequently, the sum in (2.7) is over the polarization of the exchanged graviton. In the

eikonal limit, this sum receives a large contribution from only one specific intermediate

state corresponding to the polarization tensor of the exchanged graviton appearing in

C13I of the form zvzv and the polarization tensor appearing in CI24 of the form zuzu.15

As discussed earlier, if δ(s,~b) grows with s, causality requires δ(s,~b) ≥ 0 as a

condition which must be true independent of polarization tensors we choose for our

external particles. In particular, in the basis EEE , δ(s,~b) can be written as

δ(s,~b) = EEE†1K(~b)EEE3, (2.23)

15In the eikonal limit, the sum over the polarization of the graviton, in general, is given by [9]∑
I

εIµν(q)(εIρσ(q))∗ ∼ 1

2
(ηµρηνσ + ηνρηµσ) . (2.22)
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where K is a Hermitian matrix which is encoding the eikonal amplitude in terms of the

structures written in (2.14).16 Causality then requires K to be a positive semi-definite

matrix for any ~b. We sketch the argument for constraining three-point interactions

here and leave the details to appendices A and B.

First, let us discuss D > 4.17 We start with the general expressions for on-shell

three point amplitudes. The polarization tensors for both particles 1 and 3 are chosen

to be in the subspace spanned by EJ , EJ−1 and EJ−2:

EEE = rJEJ + rJ−1EJ−1 + rJ−2EJ−2 , (2.24)

where, rJ , rJ−1 and rJ−2 are real numbers. Using eikonal scattering we organize the

phase shift in the small b limit in terms of the highest negative powers of the impact

parameter b. We start by setting rJ−2 = 0. We then demand K(~b) to have non-negative

eigenvalues order by order in 1/b for transverse polarization e⊕ (or e⊗) for all directions

of the impact parameter ~b.18 This imposes the following constraints on the coefficients

ai = 0 , i ∈ {2, 3, · · · 3J} \ {J + 2, 2J + 2} , (2.25)

where, ai is defined in (2.14). In other words, we find that all vertices with more than

two derivatives must vanish. Moreover, the coefficients a1, aJ+2, a2J+2 are related and

the interaction CJJ2 can be reduced to the following vertex

CJJ2 =a1(z1 · z3)J−2
(

(z1 · z3)2(z · p3)2 + J
(
(z · z3)(z1 · q)− (z · z1)(z3 · q)

)
(z1 · z3)(z · p3)

+
J(J − 1)

2

(
(z · z3)(z1 · q)− (z · z1)(z3 · q)

)2
)
. (2.26)

When J = 2, this corresponds to the minimal coupling between massive spin-2 particles

and a graviton and no further constraints can be obtained using any other choice of

polarization tensors. On the other hand, for J > 2 we can use the polarization tensor

EJ−2 (which always exists for J ≥ 2) yielding

a1 = 0 , (2.27)

16This assumes polarization tensors being properly normalized, i.e. EEE†iEEE i = 1, otherwise (2.23)

should be divided by EEE†1EEE3.
17D = 4 is more subtle for various reasons and we will discuss it separately.
18Transverse polarizations e⊗, e⊕ are given explicitly in appendix A.
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implying that CJJ2 = 0. Therefore, there is no consistent way of coupling higher spin

elementary particles with gravity in flat spacetime in D > 4 dimensions.19

2.5 D = 4

The D = 4 case is special for several reasons. First of all, the 3J structures of on-shell

three-point amplitude of two higher spin particles with mass m and spin J and a single

graviton are not independent in D = 4. These structures are built out of 5 vectors,

however, in D = 4, any 5 vectors are necessarily linearly dependent. In particular, one

can show that

m2B2 + 2AB(q · z3)(q · z1) + 2A2(q · z3)(q · z1)(z1 · z3) = 0 , (2.28)

where, A = (z · p3) and B = (z · z3)(z1 · q)− (z · z1)(z3 · q) are two of the building blocks

of on-shell three-point amplitudes. The above relation implies that structures in the

set (2.13) in D = 4 are not independent since they can be written as structures from

set (2.11) and (2.12). Therefore, for spin J in D = 4, there are 2J + 1 independent

structures which is in agreement with the number of independent structures in the

CFT three point function of the stress tensor and two spin-J non-conserved primary

operators. The D = 4 case is special for one more reason – there are parity odd

structures for any spin J . In order to list all possible parity odd vertices for the

interaction J − J − 2, we introduce the following building block that does not preserve

parity :

B = εµ1µ2µ3µ4z1µ1
z3µ2

zµ3qµ4 . (2.29)

The parity odd on-shell three-point amplitude can be constructed using this building

block. In particular, we can write two distinct sets of vertices. The first set contains J

19There are parity odd structures in D = 5 for massive particles of any spin. As we show in appendix
C, These interactions also violate causality for J > 2 as well as J ≤ 2.
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independent structures:

Aodd1 = B(z · p3)(z1 · z3)J−1 ,

Aodd2 = B(z · p3)(z1 · z3)J−2(z3 · q)(z1 · q) ,
...

AoddJ = B(z · p3)(z3 · q)J−1(z1 · q)J−1 . (2.30)

The second set contains J − 1 independent structures:

AoddJ+1 = B((z · z3)(z1 · q)− (z · z1)(z3 · q))(z1 · z3)J−2,

AoddJ+2 = B((z · z3)(z1 · q)− (z · z1)(z3 · q))(z1 · z3)J−3(z3 · q)(z1 · q),
...

Aodd2J−1 = B((z · z3)(z1 · q)− (z · z1)(z3 · q))(z3 · q)J−2(z1 · q)J−2 . (2.31)

Therefore, the most general form of the three-point amplitude for J ≥ 1 is given by

CJJ2 =
√

32πGN

(
2J+1∑
n=1

anAn +
2J−1∑
n=1

ānAoddn

)
. (2.32)

We can again use the polarization tensors (2.18) to derive constraints. However, for

D = 4 the setup of this section is not adequate to completely rule out particles with

J > 2. In D = 4, the transverse space is only two-dimensional and therefore does not

provide enough freedom to derive optimal bounds. In particular, we find that a specific

non-minimal coupling is consistent with the positivity of the phase shift. We eliminate

this remaining non-minimal coupling by considering interference between the graviton

and the higher spin particle.

In D = 4, the use of the polarization tensors (2.18) leads to the following bounds:

ān = 0 and a2, · · · , a2J+1 are fixed by a1 (see (B.15)). The same set of bounds can also

be obtained by using a simple null polarization vector

εµ(p1) = iεµL(p1) + εµT,x̂(p1) , εµ(p3) = −iεµL(p3) + εµT,x̂(p3) , (2.33)

where the transverse and longitudinal vectors are defined in (2.16) and the vector x̂ is
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given by x̂ = (0, 0, 1, 0). The phase-shift in D = 4 is

δ(s,~b) =
1

4πs

∑
I

CI24(−i~∂b)C13I(−i~∂b) ln

(
L

b

)
, (2.34)

where, L is the IR regulator. Introduction of the IR regulator is necessary because of

the presence of IR divergences in D = 4. Using the polarization (2.33) we obtain

δ(s,~b) ∼ sa1 ln

(
L

b

)
+ s

2J−1∑
n=0

1

b2J−n

(
fn cos((2J − n)θ) + f̄n sin((2J − n)θ)

)
, (2.35)

where, cos θ = b̂ · x̂. Coefficients fn and f̄n are linear combinations of parity even and

parity odd coupling constants respectively.20 Requiring the phase shift to be positive

order by order in 1/b in the limit b � 1/m imposes the condition fn = f̄n = 0. This

implies that all the parity odd couplings must vanish and all the parity even couplings

are completely fixed once we specify a1 (full set of constraints for spin J are shown

in (B.15).) Therefore, positivity of the phase shift (2.35) is consistent with a specific

non-minimal coupling of higher spin particles in D = 4. In order to rule out this

specific interaction, we now consider interference between the graviton and the higher

spin particle.

Bound from Interference

We now consider eikonal scattering of gravitons and massive higher spin particles:

1, 2 → 3, 4. In this setup, 1 and 3 are linear combinations of massive higher spin

particle X and the graviton: αh + βX and α′h + β′X respectively, where α, α′, β, β′

are arbitrary real coefficients. While 2 and 4 are a fixed combination of X and the

graviton: h+X. We will treat 2 as the source and 1 as the probe (see figure 5). This

setup is very similar to the setup of [53].

Positivity of the phase-shift can now be expressed as semi-definiteness of the fol-

lowing matrix  δhh δhX

δXh δXX

 � 0 , (2.36)

20At leading order, only parity even structures contribute, i.e. f̄0 = 0.
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αh+ βX

α′h+ β′X

Figure 5: Bounds from interference in D = 4. In-states are linear combinations of massive
higher spin particle X and the graviton h.

where, δXh represents phase-shift when particle 1 is a higher spin particle of mass m

and spin J and particle 3 is a graviton.21 The above condition can also be restated as

an interference bound

|δXh|2 ≤ δhhδXX , (2.37)

where we have used the fact that δXh = δ∗hX . In the eikonal limit, the dominant contri-

bution to both δhh and δXX comes from the graviton exchange and hence δhh, δXX ∼ s,

where s is the Mandelstam variable. Therefore, asymptotic causality requires that δXh

should not grow faster than s.

Let us now compute δXh for a specific configuration. Momenta of the particles are

again given by (2.15) with appropriate masses. Moreover, we will use the following null

polarization vectors for various particles:

εµX(p1) = iεµL(p1) + εµT,x̂(p1) , εµh(p3) = εµT,x̂(p3) + iεµT,ŷ(p3) ,

εµX(p2) = iεµL(p2) + εµT,x̂(p2) , εµh(p2) = εµT,x̂(p2)− iεµT,ŷ(p2) ,

εµX(p4) = −iεµL(p4) + εµT,x̂(p4) , εµh(p4) = εµT,x̂(p4) + iεµT,ŷ(p4) , (2.38)

where x̂ = (0, 0, 1, 0) and ŷ = (0, 0, 0, 1). In the eikonal limit the dominant contribution

to δXh comes from X-exchange. In particular, after imposing constraints (B.15), we

21similar notation is used for other elements of the phase-shift matrix.
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find that

δXh ∼ a1s
J−1 e−2i(J−2)θ

b2(J−2)m4(J−2)
, (2.39)

where cos θ = b̂ · x̂. The above phase-shift violates causality for J > 2 implying

a1 = 0 for J > 2 . (2.40)

Therefore there is no consistent way of coupling higher spin elementary particles with

gravity even in four dimensional flat spacetime.

2.6 Comments

Comparison with other arguments

As mentioned in the introduction, there are qualitative arguments in the literature in

D = 4 suggesting that elementary massive higher spin particles cannot exist. The

idea originally advocated by Weinberg, is to require physical theories for elementary

particles to have a well behaved high energy limit or equivalently to demand a smooth

limit for the amplitude as mX → 0 [5, 6]. However, for minimal coupling with J > 2

particles, the amplitude grows with powers of
(

s
m2
X

)
as mX → 0 [4]. Therefore, given

a fixed and finite cutoff scale Λ and a mass mX , the amplitude can become O(1) for

mX �
√
s � Λ. For instance, it was shown in [7] by considering only the minimal

coupling of spin 5
2

to gravity, that tree-level unitarity breaks down at the energy
√
s ∼√

mXMpl � Mpl. This implies that this particle cannot exist if tree-level unitarity is

required to persist for scales up to Mpl. This seems natural if we require the theory

of higher spin fields to be renormalizable. However, from effective field theory point

of view, the smooth mX → 0 requirement, determines only the range of mass and

cut-off scale over which the low energy tree level amplitude is a good description of

this massive higher spin scattering experiment. Note that even within the tree level

unitarity arguments, one still needs to consider all possible non-minimal couplings as

well as all contact interactions in order to ensure that they do not conspire to change the

singular behaviour of the amplitude in the mX → 0 limit. In fact, [7, 8] demonstrates

examples in which adding non-minimal couplings can change the high energy singular

behaviour of the amplitude for longitudinal part of polarizations.

By contrast, the causality arguments used here, require only the cut-off to be para-

metrically larger than the mass of the higher spin particle, Λ � mX . Then, given an
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impact parameter b� m−1
X , the desired bounds are obtained even if the amplitude or

phase shift M(s, t) , δ(s, b)� 1 (unlike the violation of tree-level unitarity requiring the

amplitude to be O(1)) since even the slightest time advance is forbidden by causality.

Moreover, in the eikonal experiment, the two incoming particles do not overlap and

hence contributions from the other channel and contact interactions can be ignored [9].

An Interference Argument for D > 4

A generalization of the interference argument of D = 4 to higher dimensions also

suggests that there is tension between massive higher spin particles and asymptotic

causality. In fact, it might be possible to derive the bounds of this section by demanding

that the phase shift δXh does not grow faster than s, however, we have not checked

this explicitly. This argument has one immediate advantage. For a particle with spin

J , δXh ∼ sJ−1 and therefore it is obvious that even an infinite tower of massive spin-2

exchanges cannot restore causality. The only way causality can be restored is if we add

an infinite tower of massive higher spin particles. We should note that this arguments

rely on the additional assumption that the eikonal approximation is valid for spin-J

exchange with J > 2. The N -shocks argument of [9] is also applicable here which

strongly suggests that the eikonal exponentiation holds even for J > 2, however, a

rigorous proof is still absent.

Massless Case

Higher spin massless particles are already ruled out by the Weinberg-Witten theorem.

Nonetheless, we can rederive this fact using the eikonal scattering setup. If the higher

spin particles are massless, then gauge invariance requires that each vertex is invariant

under the shift zi → zi +αi pi, where αi’s are arbitrary real numbers. In this case only

the three following structures are allowed for J ≥ 2

D1 = (z · p3)2(z1 · q)J(z3 · q)J , (2.41)

D2 = ((z3 · q)(z1 · z)− (z · z3)(z1 · q)− (z · p3)(z1 · z3))(z · p3)(z1 · q)J−1(z3 · q)J−1,

D3 = ((z3 · q)(z1 · z)− (z · z3)(z1 · q)− (z · p3)(z1 · z3))2(z1 · q)J−2(z3 · q)J−2 .

This is again, as we will see in the next section, in agreement with the three structures

appearing in the CFT three point function once we impose conservation constraints
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for all three operators. The general form of the three-point function for J ≥ 2 is now

given by

CJJ2 =
√

32πGN

3∑
n=1

dnDn . (2.42)

For massless particles, EJ is the only polarization tensor. As before, by requiring

asymptotic causality we find

dn = 0 n = 1, 2, 3 (2.43)

for J > 2.

Parity Violating Interactions of Massive Spin-2 in D = 4

The argument presented in this section can also be applied to J = 2 in D ≥ 4. Of

course, our argument does not rule out massive spin-2 particles. Rather it restricts

the coupling between two massive spin-2 particles and a graviton to be minimal (2.26)

which agrees with [53]. However, for D = 4 our argument does rule out parity violating

interactions between massive spin-2 particles and the graviton. Moreover, the same

conclusion about parity violating interactions holds even for massive spin-1.

Restoration of Causality

Let us now discuss the possible ways of bypassing the arguments presented in this

section. Our arguments utilized the eikonal limit m, q �
√
s� Λ, where Λ is the UV

cut-off of the theory. Hence, our argument breaks down if the mass of the higher spin

particle m ∼ Λ.

There is another interesting possibility. One can have a massive higher spin particle

with mass m� Λ and causality is restored by adding one or more additional particles.

Exchange of these additional particles can only restore causality if they have spin

J > 2 with mass not much larger than m. However, exchange of any finite number

of such particles will lead to additional causality violation. Hence, the only possible

way causality can be restored is by adding an infinite tower of fine-tuned higher spin

particles with masses ∼ m. In addition, causality also implies that this infinite tower
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must affect the dynamics of gravitons at energies ∼ m.22

Composite Higher Spin Particles

The argument of this section is applicable to elementary massive higher spin particles.

However, whether a particle is elementary or not must be understood from the per-

spective of effective field theory. Hence, the argument of this section is also applicable

to composite higher spin particles as long as they look elementary enough at a certain

energy scale. In particular, if the mass of a composite particle is m but it effectively

behaves like an elementary particle up to some energy scale Λ which is parametrically

higher than m, then the argument of this section is still applicable. More generally,

argument of this section rules out any composite higher spin particle which is isolated

enough such that it does not decay to other particles after interacting with high energy

gravitons q � m.

Validity of the Causality Condition

Let us end this section by mentioning a possible caveat of our argument. In this sec-

tion, we have shown that presence of massive higher spin particles is inconsistent with

asymptotic causality which requires that particles do not experience a time advance

even when they interact with each other. It is believed that any Lorentzian QFT must

obey this requirement. However, there is no rigorous S-matrix based argument that

shows that positivity of the time delay is a necessary requirement of any UV com-

plete theory. A physical argument was presented in [9] which relates positivity of the

phase shift to unitarity but it would be nice to have a more direct derivation. In the

next section, we present a CFT-based derivation of the same bounds in anti-de Sitter

spacetime which allows us to circumvent this technical loophole.

3 Higher Spin Fields in AdSD

Let us now consider large-N CFTs in dimensions d ≥ 3 with a sparse spectrum. CFTs

in this class are special because at low energies they exhibit universal, gravity-like

behavior. This duality allows us to pose a question in the CFT in d-dimensions which

is dual to the question about higher spin fields in AdS in D = d + 1 dimensions. Is it

22We will discuss this in more detail in section 4.
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possible to have additional higher spin single trace primary operators XJ with J > 2

and scaling dimension ∆� ∆gap in a holographic CFT?

In general, any such operator XJ will appear as an exchange operator in a four-point

function of even low spin operators. In the Regge limit σ → 0,23 the contribution to the

four-point function from the XJ -exchange goes as ∼ 1/σJ−1 which violates the chaos

growth bound of [10] for J > 2 and hence all CFT three-point functions 〈XJOO〉 must

vanish for any low spin operator O. In the gravity side, this rules out all bulk couplings

of the formOOXJ in AdS, where XJ is a higher spin bulk field (massive or massless) and

O is any other bulk field with or without spin. For example, this immediately implies

that in a theory of quantum gravity where the dynamics of gravitons at low energies is

described by Einstein gravity, decay of a higher spin particle into two gravitons is not

allowed.

The above condition is not sufficient to completely rule out the existence of higher

spin operators. In particular, we can still have higher spin operators without violating

the chaos growth bound if the higher spin operator XJ does not appear in the OPE

of any two identical single trace primary operators. For example, if each higher spin

operator has a Z2 symmetry, they will be prohibited from appearing in the OPE of

identical operators. However, a priori we can still have non-vanishing 〈XJXJO〉. In

fact, the Ward identity dictates that the three-point function 〈XJXJT 〉 must be non-

zero where T is the CFT stress tensor. In this section, we will utilize the holographic

null energy condition to show that 〈XJXJT 〉must vanish for CFTs (in d ≥ 3) with large

N and a sparse spectrum, or else causality (the chaos sign bound) will be violated. The

Ward identity then requires that the two-point function 〈XJXJ〉 must vanish as well.

However, the two-point function 〈XJXJ〉 is a measure of the norm of a state created

by acting XJ on the vacuum and therefore must be strictly positive in a unitary CFT.

Vanishing of the norm necessarily requires that the operator XJ itself is zero.

In the gravity language, this forbids the bulk interaction XJ -XJ -graviton – which

directly contradicts the equivalence principle. Therefore, a finite number of higher spin

elementary particles, massless or massive, cannot interact with gravity in a consistent

way even in AdS spacetime (in D ≥ 4).

23In terms of the conformal cross-ratios, z ∼ σ and z̄ ∼ ησ. The Regge limit is defined as σ → 0
with η = fixed after we analytically continue z̄ around the singularity at 1 (see [41,44,46]).
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3.1 Causality and Conformal Regge Theory

We start with a general discussion about the Regge limit in generic CFTs and then

review the holographic null energy condition (HNEC) in holographic CFTs which we

will use to rule out higher spin single trace primary operators. The HNEC was derived

in [44, 46], however, let us provide a more general discussion of the HNEC here. The

advantage of the new approach is that it can be applied to more general CFTs. How-

ever, that makes this subsection more technical, so casual readers can safely skip this

subsection.

As discussed in [23,25,46] the relevant kinematic regime of the CFT 4-point function

for accessing the physics of deep inside the bulk interior is the Regge limit. In terms

of the familiar cross-ratios, in our conventions this limit corresponds to analytically

continuing z̄ around the singularity at 1 followed by taking the limit z, z̄ → 0 with

z/z̄ held fixed. Unlike the more familiar euclidean OPE limit, the contributions to the

correlation function in this limit are not easily organized in terms of local CFT oper-

ators. In fact contributions of individual local operators become increasingly singular

with increasing spin. Using conformal Regge theory [67], these contributions may be

resummed into finite contributions by rewriting the sum over spins as a contour inte-

gral using the Sommerfeld-Watson transform. This formalism relied on the fact that

the coefficients in the conformal block expansion are well defined analytic functions

of J away from integer values which was later justified in [40]. This allows one to

rewrite the sum over spins in the conformal block expansion as a deformed contour

integral over J , reorganizing the contributions to a sum over Regge trajectories. We

will not discuss the derivation here as the details are well reviewed in [42–44, 67]. We

will instead derive an expression for the contribution of a Regge trajectory directly to

the OPE of two local operators in terms of a non-local operator E∆,J described below.

We will first derive an expression for the contribution to the OPE of scalar operators

ψψ by an operator of spin J and scaling dimension ∆. To this end, we will utilize the

methods introduced in [60] to encode primary symmetric traceless tensor operators

into polynomials of degree J by contracting them with null polarization vectors zµ :

O(x; z) ≡ zµ1 ...zµJO(x)µ1...µJ . (3.1)

It was shown in [60] that the tensor may be recovered from this polynomial by using the

Thomas/Todorov operator. We are however interested in the case where the spin J is
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not necessarily an integer. Therefore we will employ the procedure introduced in [68] to

generalize this expression to continuous spin by dropping the requirement that O(x; z)

be a polynomial in z. With this definition, the expression for the contribution to the

OPE by a continuous spin operators is given by a simple generalization of the expression

appearing in [44]. We will then use the shadow representation [69–71] for the OPE in

Lorentzian signature [72,73]:

ψ(x1)ψ(x2)

〈ψ(x1)ψ(x2)〉

∣∣∣∣
∆,J

= N
∫
�12

ddx3

∫
Dd−2zDd−2z′

× (−2z.z′)2−d−J〈ψ(x1)ψ(x2)Õ(x3; z)〉
〈ψ(x1)ψ(x2)〉

O(x3, z
′). (3.2)

where we let points x1 and x2 to be time-like separated and the integration of x3 is

performed over the intersection of causal future of x1 and the causal past of x2, N is

a normalization constant and

Dd−2z ≡ ddzδ(z2)θ(z0)

vol R+

. (3.3)

The integrals over z and z′ replace the contraction over tensor indices that would

appear for integer J using the inner product for Lorenzian principal series introduced

in [68]. These are manifestly conformal integrals and the integration can be performed

using the methods described in [70].

In order to obtain the contribution to the Regge limit we will set x1 = −x2 = (u, v,~0)

and analytically continue the points to space-like separations resulting in integration

over a complexified Lorentzian diamond. We will then take the Regge limit by sending

v → 0 and u → ∞ with uv held fixed. The resulting expression is an integral over a

complexified ball times a null ray along the u direction:

ψ(u, v,~0)ψ(−u,−v,~0)

〈ψ(u, v,~0)ψ(−u,−v,~0)〉

∣∣∣∣∣
∆,J

= (−1)
∆−1

2 π
1−d

2 2∆ Γ
(

∆+J+1
2

)
Γ(∆− d/2 + 1)

Γ
(

∆+J
2

)
Γ(∆− d+ 2)

CψψO∆,J

CO∆,J

× (uv)
d−∆−J

2

u1−J

∫ ∞
−∞

dũ

∫
~x2≤uv

dd−2~x(uv− ~x2)∆−d+1O((ũ, 0, i~x); (0, 1, 0))

≡ uJ−1E∆,J , (3.4)

where CψψO∆,J
is the OPE coefficient, CO∆,J

is the normalization of 〈OO〉 and we have
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used (u, v, ~x⊥) to express coordinates. This operator captures the contribution to OPE

of ψψ in the Regge limit. Therefore, analytically continued conformal blocks can be

computed by inserting E∆,J inside a three-point function. For example, in the case of

external scalars we find

〈φ(x3)φ(x4)E∆,J〉
〈φ(x3)φ(x4)〉

uJ−1 ∼ lim
z,z̄→0

z/z̄ fixed

G	∆,J(z, z̄)

=
i(−1)J22∆+3J−2Γ

(
J+∆−1

2

)
Γ
(
J+∆+1

2

)
Γ
(
J+∆

2

)2

z
∆−J

2 z̄−
∆
2
−J

2
+2

(z − z̄)
, (3.5)

where G	∆,J(z, z̄) is obtained from the conformal block by taking z̄ around 1 while

holding z fixed. In (3.4) this analytic continuation corresponds to the choice of contour

in performing the ũ integral. The integrand encounters singularities in ũ as the points

become null separated from x3 or x4. Different analytic continuations of the conformal

block can be obtained by choosing appropriate contours. The choice of contour in the

ũ plane was discussed in [46] in greater detail. By an identical Sommerfeld-Watson

transform and contour deformation argument as in [67], the expression for the Regge

OPE can now be used to capture the contribution of Regge trajectories

ψ(u, v,~0)ψ(−u,−v,~0)

〈ψ(u, v,~0)ψ(−u,−v,~0)〉

∣∣∣∣∣
J(ν)

=

∫
dνuJ(ν)−1a(ν)E∆(J(ν)),J(ν) , (3.6)

where the coefficient a(ν) encodes the dynamical information about the spectrum of

the CFT for the Regge trajectory parametrized by J(ν).

The operator E∆,J can be contrasted with the light-ray operator L[O] introduced

in [68]. Although both correspond to non-local contributions to the OPE in the Regge

limit, they do not compute the same quantity. As mentioned above E∆,J computes

the analytic continuation of the conformal block, whereas L[O] computes the analytic

continuation of conformal partial wave which is the sum of the block and its shadow

which is proportional to G1−J,1−∆(z, z̄). However, because of the symmetry of the

coefficient a(ν) under ν → −ν using either operator in the Regge limit will yield the

same results after integration.
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Holographic CFT: Holographic Null Energy Condition

As described in more detail in [42–45, 67, 74] the leading Regge trajectory in a holo-

graphic theory with a large ∆gap can be parametrized as

J(ν) = 2− 1

∆2
gap

(
d2

4
+ ν2

)
+O

(
1

∆4
gap

)
. (3.7)

Using this expression for the trajectory we find that at leading order in ∆gap the

coefficient a(ν) will have single poles corresponding to the stress-tensor exchange as

well as an infinite set of double-trace operators. As shown in [44, 46], in the class of

states in which we are interested, the dominant contribution to this OPE is given by

the stress-tensor and the double-trace operators will not contribute. This contribution

is captured by the holographic null energy operator

Er(v) =

∫ +∞

−∞
du′
∫
~x2≤r2

dd−2~x

(
1− ~x2

r2

)
Tuu (u′, v, i~x) (3.8)

which is a generalization of the averaged null energy operator [44] and a special case

of the operator E∆,J described above with ∆ = d and J = 2.24 In particular, in the

limit r → 0, this operator is equivalent to the averaged null energy operator.

Causality in CFT implies that the four-point function obeys certain analyticity

properties [49, 75–77]. For generic CFTs in d ≥ 3, these analyticity conditions dic-

tate that the averaged null energy operator must be non-negative [77]. However, for

holographic CFTs, causality leads to stronger constraints. In particular, causality of

CFT four-point functions in the Regge limit implies that the expectation value of the

holographic null energy operator is positive in a subspace of the total Hilbert space of

holographic CFTs [44,46]:

E(ρ) ≡ lim
B→∞
〈Ψ|E√ρB(B)|Ψ〉 ≥ 0 , (3.10)

where, 0 < ρ < 1. The class of states |Ψ〉 are created by inserting an arbitrary operator

24We are using the following convention for points x ∈ R1,d−1 in CFTd:

x = (t, x1, ~x) ≡ (u, v, ~x) , where, u = t− x1 , v = t+ x1 . (3.9)
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Figure 6: Holographic null energy condition (HNEC): A holographic CFT is prepared
in an excited state |Ψ〉 by inserting an operator O near the origin and an instrument
which is shown in blue, measures the holographic null energy Er far away from the
excitation.

O near the origin

|Ψ〉 =

∫
dy1dd−2~y ε.O(−iδ, y1, ~y)|0〉 , 〈Ψ| =

∫
dy1dd−2~y 〈0|ε∗.O(iδ, y1, ~y) , (3.11)

where, ε is the polarization of the operator O with

ε.O ≡ εµν...O
µν... (3.12)

and δ > 0. The state |Ψ〉 is equivalent to the Hofman-Maldacena state of the origi-

nal conformal collider [78] which was created by acting local operators, smeared with

Gaussian wave-packets, on the CFT vacuum.

The HNEC is practically a conformal collider experiment for holographic CFTs (in

d ≥ 3) in which the CFT is prepared in an excited state |Ψ〉 by inserting an operator O

near the origin and an instrument measures E(ρ) far away from the excitation, as shown

in figure 6. Then, causality implies that the measured value E(ρ) must be non-negative

for large-N CFTs with a sparse spectrum. Next, creating the state |Ψ〉 by inserting

the higher spin operator XJ , we show that the inequality (3.10) leads to surprising

equalities among various OPE coefficients that appear in 〈XJXJT 〉.
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3.2 D > 4

We will use the HNEC to derive bounds on higher spin single trace primary operators

in d ≥ 4 (or AdSD with D ≥ 5). We will explicitly show that spin 3 and 4 operators

are completely ruled out and then argue that the same must be true even for J > 4.

The case of D = 4 is more subtle and will be discussed separately.

3.2.1 Spin-3 Operators

Let us start with an operator XJ with J = 3 which does not violate the chaos growth

bound because it has Z2 or some other symmetry which sets 〈OOXJ=3〉 = 0 for all

O. Consequently, this operator does not contribute as an exchange operator in any

four-point function in the Regge limit and the leading contribution to the Regge four-

point function still comes from the exchange of spin-2 single trace (stress tensor) and

double trace operators. Therefore, the HNEC is still valid and we can use it with states

created by smeared XJ=3 to derive constraints on 〈XJ=3XJ=3T 〉.
The CFT three-point function 〈XJ=3XJ=3T 〉, is completely fixed by conformal sym-

metry up to a finite number of OPE coefficients (see appendix D). After imposing per-

mutation symmetry and conservation equation, the three-point function 〈XJ=3XJ=3T 〉
has 9 independent OPE coefficients. We now compute the expectation value of the

holographic null energy operator E(ρ) in states created by smeared XJ=3:

|Ψ〉 =

∫
dy1dd−2~y εµ1εµ2εµ3Xµ1µ2µ3(−iδ, y1, ~y)|0〉 , (3.13)

where, εµ is a null polarization vector:

εµ = (−iξ,−i, ~ε⊥) , (3.14)

with ξ = ±1 and ~ε⊥
2 = 0.25 Following the procedure outlined in [46], we can compute

E(ρ) in state (3.13). The result has the following form

E(ρ) =
1

(1− ρ)d+3

∞∑
n=0

I
(n)
ξ (λ2)(1− ρ)n , (3.15)

25Note that in d = 3 this choice of polarization vector does not work. In this case, one needs to use
a general polarization tensor to derive constraints.
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where, I
(n)
ξ (λ2) are polynomials in λ2 which in general have terms up to order λ6, where

λ2 =
1

2
~ε⊥ · ~ε∗⊥ ≥ 0 . (3.16)

Given our choice of polarization, different powers of λ2 correspond to independent

spinning structures and decomposition of SO(d−1, 1)3 to representations under SO(d−
2). Therefore positivity of E(ρ) implies that the coefficients of each power of λ2 must

individually satisfy positivity, for ξ = +1 as well as ξ = −1. Now, applying the HNEC

order by order in the limit ρ → 1, the inequalities lead to 9 equalities among the 9

OPE coefficients. We find that the 9 OPE coefficients cannot be consistently chosen

to satisfy these equalities. Hence, causality implies that

〈XJ=3XJ=3T 〉 = 0 . (3.17)

Moreover, the Ward identity relates CX3 , coefficient of the two-point function 〈XJ=3XJ=3〉
(see eq D.2), to a particular linear combination of the OPE coefficients Ci,j,k and hence

the two-point function 〈XJ=3XJ=3〉 must vanish as well. This implies that we cannot

have individual spin-3 single trace primary operators in the spectrum. The detail of the

calculation are rather long and not very illuminating, so we relegate them to appendix

E.

3.2.2 Spin-4 Operators

We can perform a similar analysis with a spin-4 operator which leads to the same con-

clusion, however, the details are little different. The three-point function 〈XJ=4XJ=4T 〉,
after imposing permutation symmetry and conservation equation, has 12 independent

OPE coefficients (see appendix F). But the HNEC leads to stronger constraints as we

increase the spin of X and these 12 OPE coefficients cannot be consistently chosen to

satisfy all the positivity constraints. In fact, as we will show, it is easier to rule out

spin-4 operators using the HNEC than spin-3 operators.

We again perform a conformal collider experiment for holographic CFTs (in d ≥ 3)

in which the CFT is prepared in an excited state

|Ψ〉 =

∫
dy1dd−2~y εµ1εµ2εµ3εµ4Xµ1µ2µ3µ4(−iδ, y1, ~y)|0〉 , (3.18)
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where, εµ is the null polarization vector (3.14). The expectation value of the holographic

null energy operator E(ρ) in states created by smeared XJ=4 can be computed using

methods used in [46]

E(ρ) =
1

(1− ρ)d+5

∞∑
n=0

Ĩ
(n)
ξ (λ)(1− ρ)n , (3.19)

where, Ĩ
(n)
ξ (λ2) are polynomials in λ2 (3.16) with terms up to λ8 in general. Causality

implies that different powers of λ2 must satisfy positivity individually, for ξ = +1 as

well as ξ = −1. We find that the 12 OPE coefficients cannot be consistently chosen to

satisfy all the positivity constraints implying (see appendix F)

〈XJ=4XJ=4T 〉 = 0 . (3.20)

Consequently, the Ward identity dictates that the two-point function of XJ=4 must

vanish as well. This rules out single trace spin-4 operators with scaling dimensions

below ∆gap in the spectrum of a holographic CFT. As shown in the appendix F, we

ruled out spin-4 operators even without considering Eξ=−1(ρ). This is because as we

increase the spin of X, the number of constraint equations increases faster than the

number of independent OPE coefficients. This is also apparent from the fact that for

spin-3, we had to go to order 1
(1−ρ)d−2 to derive all constraints. Whereas, for spin-4,

the full set of constraints were obtained at the order 1
(1−ρ)d−1 .

3.2.3 Spin J > 4

For operators with spin J ≥ 5, the argument is exactly the same. In fact, it is easier

to rule them out because the HNEC leads to stronger constraints at higher spins. For

example, for J = 1, there are 3 independent OPE coefficients but the HNEC yields 2

linear relations among them. Consequently, the three-point function 〈XJ=1XJ=1T 〉 is

fixed up to one coefficient. The same is true for J = 2 – there are 6 independent OPE

coefficients and 5 constraints from the HNEC. Furthermore, in both of these cases,

constraint equations ensure that the expectation value of the holographic null energy

operator behaves exactly like that of the scalars: E(ρ) ∼ 1
(1−ρ)d−3 for d ≥ 4. In fact,

this is true for all low spin operators of holographic CFTs.

The HNEC barely rules out operators with J = 3. There are 9 independent OPE
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coefficients. Using the positivity conditions all the way up to order 1
(1−ρ)d−2 for ξ =

±1, we showed that the OPE coefficients cannot be consistently chosen to satisfy

all the positivity constraints. Whereas, the HNEC rules out J = 4 operators quite

comfortably. We only needed to consider positivity conditions up to order 1
(1−ρ)d−1 and

only for ξ = +1 to rule them out. The same pattern persists even for operators with

spins J ≥ 5 so we will not repeat our argument for each spin. Instead, we present

a general discussion about the structure of E(ρ) at each order in the limit ρ → 1 for

general ∆ and J (in d ≥ 4 dimensions). This enables us to count the number of

constraint equations at each order. A simple counting immediately suggests that a

non-vanishing 〈XJXJT 〉 cannot be consistent with the HNEC even for spins higher

than 4. By studying various examples with specific values of J , ∆ and d, we have

explicitly checked that our simple counting argument is indeed true.

The three point function 〈XJXJT 〉 has 5 + 6(J−1) OPE coefficients to begin with,

however not all of them are independent. Permutation symmetry implies that only

4J OPE coefficients can be independent. In addition, conservation of the stress-tensor

operator T imposes J additional constraints among the remaining 4J OPE coefficients.

Therefore, the three-point function 〈XJXJT 〉 is fixed by conformal invariance up to

3J truly independent OPE coefficients.26 Furthermore, the Ward identity leads to a

relation between these OPE coefficients and the coefficient of the two-point function

CXJ .

We again perform a conformal collider experiment for holographic CFTs (in d ≥ 4)

in which the CFT is prepared in an excited state created by smeared XJ . In the limit

ρ→ 1, the leading contribution to E(ρ) goes as

E(ρ) ∼ 1

(1− ρ)d+2J−3
, (3.21)

where only a single structure contributes with an overall factor that depends on a

specific linear combination of OPE coefficients. Just like before, the structure changes

sign for different powers of λ2 and hence in the 1st order, the HNEC produces only

one constraint. It is clear from [44, 46] that the coefficient of the term E(ρ) ∼ 1
(1−ρ)d−3

is fixed by the Ward identity and hence automatically positive. On the other hand,

the HNEC in general can lead to constraints up to the 2J-th order, i.e. the order

E(ρ) ∼ 1
(1−ρ)d−2 . But for J > 3, one gets 3J independent constraints from the HNEC

26The number of independent OPE coefficients is different in d = 3.
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even before the 2J-th order.

It is easier to rule out operators with higher and higher spins. A simple counting

clearly shows why this is not at all surprising. First, let us assume that the HNEC rules

out any operator with some particular spin J = J∗ > 2. That means for spin J∗ the

HNEC generates 3J∗ independent relations among the OPE coefficients. If we increase

the spin by 1: J = J∗ + 1, we get 3 more independent OPE coefficients. However, the

(2J∗ + 1)-th and (2J∗ + 2)-th orders in E(ρ) produce new constraints and at each new

order there can be J∗ + 1 new equalities. Moreover, the λ2 polynomials at each order

now has a λ2(J∗+1) term with its own positivity condition – this means that there can

be 2J∗ additional equalities from the first 2J∗ orders. Therefore, for spin J∗ + 1, there

are 3 new OPE coefficients, whereas there can be 2(2J∗ + 1) new constraints among

them. Of course, this is not exactly true because some of 2(2J∗ + 1) constraints are

not independent. However, for J∗ ≥ 4, the number of new constraints 2(2J∗ + 1)� 3

and hence this simple counting suggests that the HNEC must rule out operators with

spin J ≥ 5.

Let us now demonstrate that this simple counting argument is indeed correct. First,

consider J = 1. This is the simplest possible case which was studied in [46]. For J = 1,

there are 3 independent OPE coefficients. The number of constraints (equality) from

the HNEC at each order is given by {1, 1}.27 After imposing these constraints the

expectation value of the holographic null energy operator goes as ∼ 1
(1−ρ)d−3 . Similarly,

for J = 2 the number of constraints from the HNEC at each order is given by {1,1,2,1}
and the total number of constraints is still less than the number of independent OPE

coefficients [46].

For J = 3, the sequence is {1, 1, 2, 2, 2, 1} (see appendix E) and hence spin-3 opera-

tors were completely ruled out at the order 1
(1−ρ)d−2 . If we increase the spin by 1, we find

that the number of constraints from the HNEC at each order is {1, 1, 2, 2, 3, 2, 1, 0} (see

appendix F). The zero at the end indicates that spin-4 operators were already ruled out

at the order 1
(1−ρ)d−1 . Our simple counting suggests that the number of zeroes should

increase as we go to higher spins. Explicit computation agrees with this expectation.

In particular, for J = 5, there are 15 independent OPE coefficients and the number

of constraints at each order is {1, 1, 3, 3, 5, 2, 0, 0, 0, 0}. Therefore the spin-5 operators

are ruled out at the order 1
(1−ρ)d+2 . Similarly, for J = 6, there are 18 independent OPE

27The n-th element of the sequence {c1, · · · , cn, · · · , c2J} represents the number of independent
constraints at the order n.
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coefficients. Explicit calculation shows that the number of constraints at each order is

{1, 1, 3, 3, 5, 5, 0, 0, 0, 0, 0, 0}. Therefore, spin-6 operators can be ruled out even at the

order 1
(1−ρ)d+4 . All of these results imply that the presence of any single trace primary

operator with spin J > 2 is not compatible with causality.

3.3 AdS4/CFT3

Similar to the D = 4 case on the gravity side, CFTs in d = 3 are special. Of course,

large-N CFTs with a sparse spectrum in (2 + 1)-dimensions are still holographic and

the HNEC once again implies that higher spin single trace operators with ∆ � ∆gap

are ruled out. However, there are several aspects of the d = 3 CFTs which are different

from the higher dimensional case.

First of all, in CFT3 the three-point functions 〈XJXJT 〉 have both parity even and

parity odd structures for any J

〈XJXJT 〉 = 〈XJXJT 〉+ + 〈XJXJT 〉− . (3.22)

Furthermore, the number of independent parity even structures at d = 3 is different

from the higher dimensional case. The general three-point function (D.4) implies that

after imposing permutation symmetry and conservation equation, similar to the higher

dimensional case 〈XJXJT 〉+ should contain 3J independent structures. However, for

d = 3, not all of these structures are independent. In particular, this overcounting

should be corrected by setting OPE coefficients C1,1,k = 0 for k ≥ 1 in (D.4) [60].

Therefore, in d = 3, the parity even part 〈XJXJT 〉+ has 2J + 1 independent OPE

coefficients. Whereas, the parity odd part 〈XJXJT 〉− has 2J − 1 independent OPE

coefficients. Note that this is exactly what is expected from interactions of gravitons

with higher spin fields in 4d gravity.

There is another aspect of d = 3 which is different from the higher dimensional case.

The choice of polarization (3.14) in d = 3 implies that ~ε⊥ = 0 and hence the λ-trick

does not work. However, the full set of bounds can be obtained by considering the full

polarization tensor for XJ . This can be achieved by using the projection operator of [60]

which makes the analysis more complicated. However the final conclusion remains

unchanged.

Since we expect that the HNEC imposes stronger constraints as we increase the

spin, it is sufficient to only rule out XJ=3. The steps are exactly the same but details
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are little different. After imposing permutation symmetry and conservation equation,

the three-point function 〈XJ=3XJ=3T 〉 has 7 parity even and 5 parity odd independent

OPE coefficients. We again compute the expectation value of the holographic null

energy operator E(ρ) in states created by smeared XJ=3:

|Ψ〉 =

∫
dy1dy2 εµ1µ2µ3Xµ1µ2µ3(−iδ, y1, y2)|0〉 , (3.23)

where εµ1µ2µ3 is the traceless symmetric polarization tensor. Using the techniques

developed in [46], we now compute the expectation value of the holographic null energy

operator E(ρ) in this state which can be schematically expressed in the following form

E(ρ) =
6∑

n=1

jn(εµ1µ2µ3 , Ci,j,k)

(1− ρ)n
+ j0(εµ1µ2µ3 , Ci,j,k) ln(1− ρ) + · · · , (3.24)

where jn(εµ1µ2µ3 , Ci,j,k) are specific functions of the the polarization tensors and the

OPE coefficients. The dots in the above expression represent terms that vanish in the

limit ρ→ 1. The ln(1− ρ) term is unique to the 3d case and is a manifestation of soft

graviton effects in the IR.

By applying the HNEC order by order in the limit ρ → 1, we again find that the

HNEC can only be satisfied for all polarizations if and only if all the OPE coefficients

vanish. Consequently, the Ward identity implies that we cannot have individual spin-

3 operators in the spectrum.28 Moreover, a simple counting again suggests that the

same is true even for J > 3. In d = 3, as we increase the spin by one, the number of

parity even OPE coefficients increases by 2. However, now there are two more orders

perturbatively in (1−ρ) that generate new relations among the OPE coefficients. Each

new order produces at least one new constraint suggesting that if the HNEC rules out

parity even operators with some particular spin J , it will also rule out all parity even

operators with spin J + 1. In addition, it is straightforward to extend this argument

to include parity odd structures, however, we will not do so in this paper.

28As explained in appendix G it is still possible to use the λ-trick to derive constraints in dimension
d = 3. This implies that individual spin-4 single trace operators (at least the parity even part) are
also ruled out.
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3.4 Maldacena-Zhiboedov Theorem and Massless Higher Spin

Fields

In this section we argued that in holographic CFTs, any higher spin single trace non-

conserved primary operator violates causality. On the gravity side, this rules out any

higher spin massive field with mass below the cut-off scale (for example the string

scale). But what about massless higher spin fields? In asymptotically flat spacetime,

this question has already been answered by the Weinberg-Witten/Porrati theorem [2,3].

The same statement can be proven in AdS by using the argument of this section but for

conserved XJ ≡ J . Conservation of J leads to additional relations among the OPE

coefficients Ci,j,k’s in 〈J J T 〉. Even before we impose these additional conservation

relations, the HNEC implies Ci,j,k = 0 for J > 2, which is obviously consistent with

these new relations from conservation. Hence, our argument is valid even for higher

spin conserved current J .

Causality of CFT four-point functions in the lightcone limit also rules out a finite

number of conserved higher spin currents in any CFT [49]. This is a partial general-

ization of the Maldacena-Zhiboedov theorem [47], from d = 3 to higher dimensions.

The argument which was used in [49] to rule out higher spin conserved current is not

applicable here since J does not contribute to generic CFT four-point functions as

exchange operators.29 However, we can repeat the argument of [49] for a mixed corre-

lator 〈OOOO〉 in the lightcone limit where, O ≡ T +J . For this mixed correlator, J
does contribute as an exchange operator in the lightcone limit. In particular, we can

schematically write

〈OOOO〉 =

O

O 1 O

O
+

O

O T O

O
+
J

T J T

J
+· · · , (3.25)

where each diagram represents a spinning conformal block and dots represent con-

tributions suppressed by the lightcone limit. The argument of [49], now applied to

the correlator 〈OOOO〉, implies that this correlator is causal if and only if the last

term in (3.25) is identically zero. The J -exchange conformal blocks, for J > 2, in

the lightcone grow faster than allowed by causality. This necessarily requires that the

three-point function 〈J J T 〉 must vanish – which is sufficient to rule out J for J > 2.

29Let us recall that none of the operators are charged under J and hence one can tune 〈JOO〉 = 0
for any O. Consequently, J does not contribute as an exchange operator.

40



This generalizes the argument of [49] ruling out higher spin conserved currents even

when none of the operators are charged under it. We should note that technically it

might be plausible for the OPE coefficients to conspire in a non-trivial way such that

a conserved current J cannot contribute as an exchange operator (for all polarizations

of the external operators) but still has a non-vanishing 〈J J T 〉. However, it is very

unlikely that such a cancellation is possible since the three-point function 〈J J T 〉 can

only have three independent OPE coefficients. This unlikely scenario can be ruled out

by explicit calculations.

The above argument is applicable only because J is conserved. However, one might

expect that a similar argument in the Regge limit should rule out even non-conserved

XJ for holographic CFTs. This is probably true but the argument is more subtle in the

Regge limit because an infinite tower of double trace operators also contribute to the

correlator 〈OOOO〉. Hence, one needs to smear all four operators appropriately, in a

way similar to [41,44], such that the double trace contributions are projected out. One

might then use causality/chaos bounds to rule out the three-point function 〈XJXJT 〉.
However, it is possible that the smearing procedure sets contributions from certain

spinning structures in 〈XJXJT 〉 to zero as well. In that case, this argument will not

be sufficient. A proof along this line requires the computation of a completely smeared

spinning Regge correlator which is technically challenging even in the holographic limit.

3.5 Comments

Small Deviation from the Holographic Conditions

Large-N CFTs with a sparse spectrum are indeed special because at low energies they

exhibit gravity-like behavior. This immediately poses a question about the assumptions

of large-N and sparse spectrum: how rigid are these conditions? In other words, do

we still get a consistent CFT if we allow small deviations away from these conditions?

In this section, we answered a version of this question for the sparseness condition.

The sparseness condition requires that any single trace primary operator with spin

J > 2, must necessarily have dimension ∆ ≥ ∆gap � 1. This condition ensures

that the dual gravity theory has a low energy description given by Einstein gravity.

However, we can imagine a small deviation from this condition by allowing a finite

number of additional higher spin single trace primary operators XJ with J > 2 and

scaling dimension ∆ � ∆gap. As we have shown in this section, these new operators
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violate the HNEC implying the resulting CFTs are acausal.

Minkowski vs AdS

It is rather apparent that the technical details of the flat spacetime argument and the

AdS argument are very similar. For example, the number of independent structures for

a particular spin is the same in both cases. In flat spacetime as well as in AdS, we start

with inequalities which can be interpreted as some kind of time-delay. In addition, these

inequalities when applied order by order, lead to equalities among various structures.

These equalities eventually rule out higher spin particles. However, the AdS argument

has one conceptual advantage, namely, it does not require any additional assumption

about the exponentiation of the leading contribution. The CFT-based argument relies

on the HNEC. The derivation of the HNEC utilized the causality of a CFT correlator

which was designed to probe high energy scattering deep into the AdS bulk. It is

therefore not a coincidence that the technical details of the AdS and the flat space

arguments are so similar. Since the local high energy scattering is insensitive to the

spacetime curvature, it is not very surprising that the bounds in flat space and in AdS

are identical. This also suggests that the same bound should hold even in de Sitter.

Higher Spin Operators in Generic CFTs

The argument of this section does not rule out higher spin non-conserved operators

in non-holographic CFTs. However, the HNEC in certain limits can be utilized to

constrain interactions of higher spin operators even in generic CFTs. In particular, the

limit ρ → 0 in (3.10) corresponds to the lightcone limit and in this limit, the HNEC

becomes the averaged null energy condition (ANEC). The proof of the ANEC [77, 79]

implies that in the limit ρ→ 0, the inequality E(ρ) ≥ 0 must be true for any interacting

CFT in d ≥ 3. Moreover in this limit, the HNEC is equivalent to the conformal collider

setup of [78] which is known to yield optimal bounds. Therefore, the same computation

performed in the limit ρ→ 0 can be used to derive non-trivial but weaker constraints

on the three-point functions 〈XJXJT 〉 which are true for any interacting CFT in d ≥ 3.

These constraints, even though easy to obtain from our calculations of E(ρ), are rather

long and complicated and we will not transcribe them here.
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Other Applications of the Regge OPE

In this note we specialized E∆,J to the case of ∆ = d and J = 2 to arrive at the HNEC

operator in order to make use of the universality of the stress-tensor Regge trajectory

in holographic theories. However E∆,J more generally describes the contribution of

any operator to the Regge OPE of identical scalar operators. It would be interesting

to find the actual spectrum of these operators contributing to the Regge limit of the

OPE in specific theories. It would also be worthwhile to try and understand the

subleading contributions to the Regge OPE in holographic theories. Although these

contributions are not universal, we expect that causality will impose constraints on

these contributions as well.

We have explored the Regge limit of the OPE of two identical scalars. General-

ization to other representations is straightforward as it only requires knowledge of the

CFT three-point functions whose functional form is fixed by symmetry. Positivity of

these generalized Regge OPE operators will likely lead to new constraints since they

allow access to more general representations. Furthermore decomposition of the addi-

tional Lorentz indices under the little group will result on more constraint equations

which need to be satisfied to preserve causality.

4 Restoring Causality

4.1 Make CFT Causal Again

In the previous section, we considered large-N CFTs in d ≥ 3 dimensions with the

property that the lightest single trace operator with spin J > 2 has dimension ∆ ≡
∆gap � 1. These holographic conditions are equivalent to the statement that in the

gravity side the low energy behavior is governed by the Einstein gravity. Moreover,

∆gap corresponds to the scale of new physics Λ in the effective action in AdS (for

example it can be the string scale Ms). In any sensible theory of quantum gravity it is

expected that the Einstein-Hilbert action should receive higher derivative corrections

which are suppressed by the scale Λ. On the CFT side, this translates into the fact that

there is an infinite tower of higher spin operators with dimensions above the ∆gap. All

of these higher spin operators must appear as exchange operators in CFT four-point

functions in order to restore causality at high energies [41]. Furthermore, in this paper

we showed that the sparseness condition is very rigid and we are not allowed to add
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an additional higher spin operator XJ with spin J > 2 and ∆ � ∆gap if causality

is to be preserved. Let us consider adding an additional higher spin primary single

trace operator XJ with dimension ∆ = ∆0 � ∆gap (or on the gravity side a higher

spin particle with mass M0 � Λ) and ask whether it is possible to restore causality

by adding one or more primary operators (or new particles) that cancel the causality

violating contributions? In this section, we answer this question from the CFT side.

The bound obtained in the previous section from the HNEC is expected to be exact

strictly in the limit ∆gap → ∞. However, it is easy to see that the same conclusion

is true even when ∆gap is large but finite, as long as ∆0 � ∆gap. In this case, one

might expect that the OPE coefficients are no longer exactly zero but receive corrections

Ci,j,k/CXJ ∼ 1
∆a

gap
, where a is some positive number.30 However, this is inconsistent with

the Ward identity which requires that at least some of Ci,j,k/CXJ ∼ O(1). Therefore,

even for large but finite ∆gap, the operator XJ is ruled out as long as ∆0 � ∆gap.

In addition, this also implies that if we want to add XJ , it will not be possible to

save causality by changing the spectrum above ∆gap. Let us add extra operators at

dimensions ∼ ∆′gap � ∆gap in order to restore causality. Note that if ∆′gap � ∆0,

then contributions of these extra operators are expected to be suppressed by ∆′gap and

hence we can again make the above argument. Therefore, contributions of these extra

operators can be significant enough to restore causality if and only if ∆′gap ∼ ∆0.

The above argument also implies that perturbative 1/N effects are not sufficient to

save causality either. Any such correction must be suppressed by positive powers of

1/N and hence inconsistent with the Ward identity. This is also clear from the gravity

side, both in flat space and in AdS. Causality requires that the tree level higher spin-

higher spin-graviton amplitude must vanish. One might expect that loop effects can

generate a non-vanishing amplitude without violating causality, however, these effects

must be 1/N suppressed. Hence, this scenario is in tension with the universality of

gravitational interactions dictated by the equivalence principle.

The behavior of four-point functions in the Regge limit makes it obvious that these

extra operators at ∆′gap must have spin J ≥ 2 so that they can contribute significantly in

the Regge limit to restore causality. Furthermore, causality imposes strong restrictions

on what higher spin operators can be added at ∆′gap. The simplest possibility is to

add a finite or infinite set of higher spin operators at ∆′gap which do not contribute

30CXJ
is the coefficient of the two-point function of XJ and Ci,j,k are the OPE coefficients for

〈XJXJT 〉 (see appendix D).
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as exchange operators in any four-point functions. However, this scenario makes the

causality problem even worse. The causality of the Regge four point functions still leads

to the HNEC and one can rule out even an infinite set of such operators by applying

the HNEC to individual higher spin operators. The only other possibility is to add a

set of higher spin operators at ∆′gap which do contribute as exchange operators in the

four-point function 〈XJXJψψ〉, where ψ is a heavy scalar operator. In this case2, the

HNEC is no longer applicable and hence the argument of the previous section breaks

down. However, a finite number of higher spin primaries (J > 2) that contribute

as exchange operators violate chaos/causality bound [10, 41] and consequently this

scenario necessarily requires an infinite tower of higher spin operators.31 Therefore,

the only way causality can be restored is to add an infinite tower of finely tuned higher

spin primaries with ∆ ∼ ∆′gap ∼ ∆0. In other words, addition of a single higher spin

operator with ∆ = ∆0 necessarily brings down the gap to ∆0.

Let us note that the above argument did not require that this new tower of operators

contribute to the TT OPE. For this reason, one might hope that it is possible to fine-

tune the higher spin operators such that causality is restored and the gap is still at

∆gap when considering states created by the stress tensor. However, this scenario is

also not allowed as we explain next. In this case, one can still prove the HNEC starting

from the Regge OPE of TT when both operators are smeared appropriately (see [46]).

One can then repeat the argument of the previous section to rule out XJ , as well as

the entire tower of operators at ∆′gap. Therefore, the only way the tower at ∆′gap ∼ ∆0

can lead to a causal CFT is if they also contribute to the TT OPE. In particular, an

infinite subset of all higher spin operators must appear in the OPE of the stress tensor

(and all low spin operators)

TT ∼
∑
J

XJ . (4.1)

Let us end this section by summarizing in the gravity language. At the energy scale

E � Λ, the dynamics of gravitons is completely determined by the Einstein-Hilbert

action. If we wish to add even one higher spin elementary particle (J > 2) with mass

M0 � Λ, the only way for the theory to remain causal is if we also add an infinite tower

31Note that the chaos bound does not directly rule out spin-2 exchange operators. Therefore, one
might expect that the causality problem may be resolved by adding a finite number of spin-2 non-
conserved single trace primaries. However, it was shown in [9] that non-conserved spin-2 primaries
when contribute as exchange operators lead to additional causality violation and hence we will not
consider this scenario.
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of higher spin particles with mass ∼M0. Causality also requires that an infinite subset

of these new higher spin particles should be able to decay into two gravitons. As a

result, the dynamics of graviton can now be approximated by the the Einstein-Hilbert

action only in the energy scale E � M0 and hence M0 is the new cut-off even if we

only consider external states created by gravitons.

4.2 Stringy Operators above the Gap

We concluded from both gravity and CFT arguments that finitely many higher spin

fields with scaling dimensions ∆� ∆gap are inconsistent with causality even as external

operators. We can ask how this result may be modified if we consider external operator

X to be a heavy state above the gap, analogous to stringy states in classical string

theory.

Let us consider the expectation value of the generalized HNEC operator (3.6) in

the Hofman-Maldacena states created by a heavy single-trace higher spin operator with

spin l. Following [43] we parametrize the leading Regge trajectory as

j(ν) = 2− 1

∆2
gap

(
d2

4
+ ν2

)
+O

(
1

∆4
gap

)
. (4.2)

The external operator has the scaling dimension ∆X ≥ ∆gap. Consequently, we cannot

take the ∆gap → ∞ limit as before. Instead we must take ∆gap to be large but finite

and keep track of terms that may grow in this limit. In the Regge limit u → ∞,

with 1 − ρ & log(u)
∆2
gap

, we expect the leading trajectory to be nearly flat and integration

over the spectral density (3.6) to be approximated by the stress-tensor contribution at

ν = −id
2

up to 1
∆2

gap
corrections. This limit is similar to the discussion in section 5.5

in [42] for bounds on real part of phase shift for scattering in AdS. See also discussion

about imaginary part of phase shift for AdS scattering in [42,43,45].

Therefore the operator with a positive expectation value is given by32

u〈E∆(J=2),2(ρ)〉X = u

2l∑
i=0

t(i)

(1− ρ)d−3+i
+ · · · , (4.3)

32 The second line follows from the fact that at large ∆gap the saddle point is dominated by
the stress-tensor. Here we have assumed that the OPE coefficients do not scale exponentially with
increasing ∆gap and hence will not affect the saddle-point.
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where the dots denote terms which are subleading in ∆gap, t
(i)’s consist of certain

combination of OPE coefficients and polarization tensors. The OPE coefficients t(i),

are analytic continuation of original OPE coefficients. We have already seen that if the

OPE coefficients do not grow with ∆gap, the existence of the operator X is inconsistent

with causality. One way in which causality may be restored, is to impose the following

gap dependence on the OPE coefficients between heavy operators and the exchange

operator33:

t(i)

t(0)
.

1

∆i
gap

. (4.4)

The dependence of OPE coefficients on ∆gap is chosen in (4.4) such that higher negative

powers of 1−ρ would be multiplied by higher powers of 1
∆gap

and consequently become

more suppressed in the regime of validity of stress-tensor exchange. This means that

we would not get the previous constraints by sending ρ→ 1 and as a result, there is no

inconsistency with Ward identity or causality for higher spin operators above the gap.

Based on our CFT arguments, (4.4) is not fixed to be the unique choice which

restores causality. However, this behaviour is very similar to how the scattering am-

plitude in classical string theory is consistent with causality. The high energy limit of

scattering amplitudes in string theory are explored in [80–84]. In addition, generating

functions of three point and four point amplitudes for strings on the leading Regge

trajectory with arbitrary spin are constructed in [85, 86]. Here we focus on a high

energy limit of a two to two scattering between closed higher spin strings and tachyons

in bosonic string theory. Using the results of [85, 86], the string amplitude is given by

the compact expression

M(s, t) = (POL)
Γ(−α′s

4
)Γ(−α′t

4
)Γ(−α′u

4
)

Γ(1 + α′s
4

)Γ(1 + α′t
4

)Γ(1 + α′u
4

)
, (4.5)

where the Mandelstam variables satisfy s + t + u = 4
α′

(l − 4) for closed strings. Here,

(POL) represents the tensor structures and polynomials of different momenta. The

Gamma functions poles in the numerator of (4.5) correspond to the exchange of in-

finitely many higher spin particles with even spins and the mass relation m(J)2 =

33In fact, in the case of stress-tensor exchange, Ward identities forces at least one combination of
OPE coefficients to grow with ∆X ∼ ∆gap.
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2
α′

(J − 2). In the Regge limit, s→∞ with t held fixed, the amplitude simplifies to

M(s, t) ≈ (POL)
Γ(−α′t

4
)

Γ(1 + α′t
4

)

(
−isα

′

4

)−2+α′t
2

. (4.6)

Note that the Mandelstam variable s plays the same role as u in the CFT analogue.

Therefore, to make gravity the dominant force we can either take α′ → 0 which corre-

sponds to ∆gap →∞ in the CFT, or take t→ 0 which in CFT language is the lightcone

limit ρ→ 0. In both cases, the polarization part, (POL) becomes

lim
α′→0 or t→0

(POL) ∝ s4E1µ1µ2···µlE3
µ1µ2···µl , (4.7)

where powers of s are dictated by consistency with the gravity result in limits mentioned

above. Note that the tensor structure in (4.7) is independent of the momenta and does

not change sign even if we perform the eikonal experiment in this limit. Thus, in the

limit that gravity is dominant, possible causality violating structures are also vanishing

and there is no problem with causality. This happens naturally in string theory since

there is only one scale α′, controlling coefficients in tensor structures, interactions

between particles and their masses. As a result, vertices or tensor structures which

have higher powers of momentum ~q (analogous to powers of 1
1−ρ in CFT) should be

accompanied with higher powers of
√
α′ (analogous to powers of 1

∆gap
) on dimensional

grounds. See also [9, 87] for interesting details of eikonal experiment in string theory.

5 Cosmological Implications

The bound on higher spin particles has a natural application in inflation. The epoch of

inflation is a quasi de Sitter expansion of the universe, immediately after the big bang.

The primordial cosmological fluctuations produced during inflation naturally explains

the observed temperature fluctuations of cosmic microwave background (CMB) and

the large-scale structures of the universe. If higher spin particles were present during

inflation, they would affect the behavior of primordial cosmological fluctuations. In

particular, higher spin particles would produce distinct signatures on the three-point

function of scalar perturbations in the squeezed limit. Hence, the bound on higher spin

particles imposes rather strong constraints on these three-point functions.

Consider one or more higher spin particles during inflation. The approximate de

48



Sitter symmetry during inflation dictates that mass of any such particle, even before

we impose our causality constraints, must satisfy the Higuchi bound [88,89]

m2 > J(J − 1)H2 , (5.1)

where, H is the Hubble rate during inflation. Particles with masses that violate the

Higuchi bound correspond to non-unitary representations in de Sitter space, so the

Higuchi bound is analogous to the unitarity bound in CFT.34 The bound on higher

spin particles obtained in this paper are valid in flat and AdS spacetime. We will not

attempt to derive similar bounds directly in de Sitter. Instead, we will adopt the point

of view of [9, 51] and assume that the same bounds hold even in de Sitter spacetime.

This is indeed a reasonable assumption since these bounds were obtained by studying

local high energy scattering which is insensitive to the spacetime curvature. Therefore,

in de Sitter spacetime in Einstein gravity, any additional elementary particle with spin

J > 2 cannot have a mass m . Λ, where Λ is the scale of new physics in the original

effective action. In any sensible low energy theory we must have H � Λ and hence the

causality bound is stronger than the Higuchi bound. Furthermore, the causality bound

also implies that all elementary higher spin particles must belong to the principal series

of unitary representation of the de Sitter isometry group.

θ

Figure 7: The squeezed limit of three-point functions.

Inflation naturally predicts that the scalar curvature perturbation ζ produced dur-

ing inflation is nearly scale invariant and Gaussian. The momentum space three-point

function of the scalar curvature perturbation 〈ζ(~k1)ζ(~k2)ζ(~k3)〉 is a good measure of

the deviation from exact Gaussianity. Higher spin particles affect the three-point func-

tion of scalar perturbations in a unique way. In an inflating universe, the massive

34We should note that certain discrete values of mass below the Higuchi bound are also allowed.
See [90] for a nice review.
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higher spin particles can be spontaneously created. It was shown in [50] that the

spontaneous creation of higher spin particles produces characteristic signatures on the

late time three-point function of scalar fluctuations. In particular, in the squeezed limit

k1, k2 � k3 (see figure 7), the late time scalar three-point function admits an expansion

in spin of the new particles present during inflation:35

〈ζ(~k1)ζ(~k2)ζ(~k3)〉
〈ζ(~k1)ζ(−~k1)〉〈ζ(~k3)ζ(−~k3)〉

∼ εM2
Pl

∑
J

λ2
J IJ

(
mJ

H
,
k3

k1

)
PJ(cos θ) , (5.2)

where ε is one of the slow roll parameters and λJ is the coupling between ζ and the

higher spin particle with mass mJ and spin J . PJ(cos θ) is the Legendre polynomial

whose index is fixed by the spin of the particle and θ is the angle between vectors ~k1

and ~k3. The exact form of the function IJ

(
mJ
H
, k3

k1

)
can be found in [50]. The bound

on higher spin particles from causality implies that mJ ∼ Λ� H for J > 2 and hence

IJ

(
mJ

H
,
k3

k1

)
∼ −π2e−

2πΛ
H

(
Λ

H

)2J−3(
k3

k1

)3/2

Re

[
e
iπ
4

(
k3

4k1

)i Λ
H

]
. (5.3)

The oscillatory behavior of the above expression is a consequence of a quantum inter-

ference effect between two different processes [50]. Moreover, the above expression also

implies that contributions of higher spins to the three-point function in the squeezed

limit must be exponentially suppressed. The exponential suppression can be under-

stood as the probability for the spontaneous production of massive higher spin particles

in the principal series at de Sitter temperature TdS = H/2π.

Now, if IJ with J > 2 is detected in future experiments, then the scale of new

physics must be Λ ∼ H. This necessarily requires the presence of not one but an

infinite tower of higher spin particles with spins J > 2 and masses comparable to the

Hubble scale. This scenario is very similar to string theory. Any detection of IJ with

J > 2 can be interpreted as evidence in favor of string theory with the string scale

comparable to the Hubble scale and a very weak coupling which explains small H/Mpl.

It is obvious from (5.2) that the effects of higher spin particles are always suppressed

by the slow roll parameter and hence not observable in the near future. The derivation

of (5.2) relied heavily on the approximate conformal invariance of the inflationary

background. This approximate conformal invariance is also responsible for the slow

35For simplicity of notation, we are omitting the Dirac delta functions.
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roll suppression. However, if we allow for a large breaking of conformal invariance, the

signatures of massive higher spin particles can be large enough to be detected by future

experiments. In particular, using the framework of effective field theory of inflation

it was shown in [91] that there are interesting scenarios in which higher spin particles

contribute significantly to the scalar non-Gaussanity. Furthermore, it was shown in [91]

that higher spin particles can also produce detectable as well as distinctive signatures

on the scalar-scalar-graviton three-point function in the squeezed limit. Experimental

exploration of this form of non-Gaussanity through the measurement of the 〈BTT 〉
correlator of CMB anisotropies can actually be a reality in the near future [91]. In

fact, in the most optimistic scenario, the proposed CMB Stage IV experiments [92] will

be sensitive enough to detect massive higher spin particles, providing indirect evidence

in favor of a theory which is very similar to low scale string theory.
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A Transverse Polarizations

We construct the transverse polarization tensors used in section 2 explicitly. These

polarization tensors have only component in transverse directions x− y so they can be

used in D ≥ 4. Let us define

x+ = x+ iy , x− = x− iy . (A.1)
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Let us consider following basis vectors

e+ =
1√
2

(∂x − i∂y) , e− =
1√
2

(∂x + i∂y) ,

e+µ∂bµ =
1√
2
∂b+ , e−

µ
∂bµ =

1√
2
∂b− , (A.2)

where both of them are null vector. Also we have e+ · e− = 1. Hence they can be used

for constructing the transverse traceless polarization tensor eµ1µ2···µs :

e(+)µ1µ2···µs
= e+µ1e+µ2 · · · e+µs , e(−)µ1µ2···µs

= e−
µ1e−

µ2 · · · e−µs . (A.3)

These polarization tensors are not orthogonal to each other. They can be made or-

thogonal by taking the following linear combinations

e⊕
µ1µ2···µs =

1√
2

(
e(+)µ1µ2···µs

+ e(−)µ1µ2···µs
)
,

e⊗
µ1µ2···µs =

i√
2

(
e(+)µ1µ2···µs − e(−)µ1µ2···µs

)
, (A.4)

where they satisfy

e⊕
µ1µ2···µse⊗µ1µ2···µs = 0 , e⊕

µ1µ2···µse⊕µ1µ2···µs = e⊗
µ1µ2···µse⊗µ1µ2···µs = 1 ,

e⊕
µ1µ2···µs e⊕µ1µ2···µsµs+1···µs+j =

1√
2
e⊕µs+1µs+2···µs+j ,

e⊗
µ1µ2···µs e⊗µ1µ2···µsµs+1···µs+j =

1√
2
e⊕µs+1µs+2···µs+j , (A.5)

where s and j are positive numbers.

B Phase Shift Computations

A Lemma

In order to get the bounds in the transverse plane, we can use a trick that will be used

many times in this appendix. After plugging the polarization tensors for particles, we
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always find the following equation

I = eµ1µ2···µiµi+1···µJeµ1µ2···µi
νi+1νi+2···νJ′∂bµi+1 · · · ∂bµJ ∂bνi+1 · · · ∂bνJ′

1

bD−4
. (B.1)

We would like to show that sign of I alternates by choosing different directions for ~b

in the transverse plane.

Let us first consider J 6= J ′, J ′ = J + K. We specify x+, x− to be two arbitrary

directions in the transverse plane and the direction of the impact parameter ~b is picked

in the same plane spanned by x+, x−. By using e = e⊕ we find

I =2−1+J+K/2
(
∂Kb+ + ∂Kb−

)
(∂b+∂b−)J

1

bD−4

= 2J+K/2(−1)K
[(

D − 4

2

)
J

]2(
D − 4

2
+ J

)
K

cos(Kθ)

bD−4+2J+K
(B.2)

where (a)b ≡ Γ(a+b)
Γ(a)

and θ is the angle between the vector ~b and the x-axis, where

x = 1√
2
(x+ + x−). This implies that rotating ~b with respect to x-axis changes the sign

of I for K 6= 0.

If K = 0, both e⊕ and e⊗ yield the same sign for I, and we need to use polarizations

having components in other transverse directions, therefore the following argument

could not be applied to D = 4. For D ≥ 5, we can separate another transverse

coordinate z from x+, x− and after taking derivative we place the impact parameter ~b

in x, y, z plane. These coordinates are enough for getting the bounds and we do not

have to consider other transverse directions in for D ≥ 6. Again by plugging e = e⊕,

we find

I = 2−1+J cos (θ)2J

bD−4+2J

(
Γ(D−4

2
+ J)

Γ(D−4
2

)

)2

2F1

(
−J,−J, D − 4

2
,− tan(θ)2

)
, (B.3)

where θ is the angle between ẑ and ~b. For any integer value of J and D, the hyperge-

ometric function in (B.3) is a polynomial in its variable, changing sign for both even

and odd J .
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Diagonal Element Between EJ
We set E (3)µ1µ2···µJ = z3

µ1

T z3
µ1

T · · · z3
µJ
T , E (1)µ1µ2···µJ = z1

µ1

T z1
µ1

T · · · z1
µJ
T and send eµ1eµ2 · · · eµJ →

eµ1µ2···µJ . We also need to impose eµ1µ2···µJ
3 = (eµ1µ2···µJ

1 )† to have positivity. With

this choice of polarization, only A1, · · · ,AJ+1 contribute to phase shift and we write

down the contribution of each vertex to the phase shift. Let us define δ̃(s,~b) =
πD/2−2

Γ(D−4
2 )GNs

δ(s,~b),

δ̃(s,~b)
∣∣∣
Ai

= (−1)(i−1)aie
µ1···µi−1µiµi+1···µJeν1···νi−1

µiµi+1···µJ∂bµ1 · · · ∂bµi−1∂bν1 · · · ∂bνi−1

1

|b|D−4
.

(B.4)

In the small impact parameter limit, the term with the most negative powers of b

dominates over other terms. As explained in the lemma B, choosing different direction

for ~b for D ≥ 5 changes the sign for each of these terms. Therefore by applying the

argument successively, we find

ai = 0 2 ≤ i ≤ J + 1. (B.5)

Note that for a1, there is no derivative and hence rotating direction of~b does not change

the sign of this term. Choosing e to be either e⊗ or e⊕ we find for A1 a manifestly

positive contribution

δ̃(s,~b)⊕
∣∣∣
A1

= δ̃(s,~b)⊗
∣∣∣
A1

=
a1

|b|D−4
. (B.6)

EJ−1

We again set E (3)µ1µ2···µJ = E (1)µ1µ2···µJ = ε
(µ1

L εµ2

T ε
µ2

T · · · ε
µJ )
T . In this case all the remain-

ing vertices contribute to the phase shift and each vertex contribution is as follows

δ̃(s,~b)
∣∣∣
A2J+1+K

=
2(−1)i−1

m2J2
(a2J+1+K − (J −K)aJ+K+1)

× eµ1···µiµi+1···µJeν1···νi
µi+1···µJ∂bµ1 · · · ∂bµi∂bν1 · · · ∂bνi

1

|b|D−4
, (B.7)
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which by taking b small and using the trick discussed in B yields

a2J+1+K = (J −K)aJ+K+1 2 ≤ K ≤ J − 1 . (B.8)

While at the 1
bD−2 order, A1 contributes and we find

a2J+2 − (J − 1)aJ+2 = −a1
J(J − 1)

2
. (B.9)

Off-diagonal Components of EJ and EJ−1

In order to impose constraints on AJ+2,AJ+3, · · · A2J+1, we use E (1) = EJ , E (3) = EJ−1.

Subsequently, we find the contribution due to each of remaining vertices

δ̃(s,~b)
∣∣∣
AJ+1+i

=
2(−1)i

Jm
aJ+1+ie

µ1···µiµi+1···µJeν2···νi
µi+1···µJ∂bµ1 · · · ∂bµi∂bν2 · · · ∂bνi

1

|b|D−4

(B.10)

impling that aJ+1+i = 0. Using the diagonal elements in EJ−1 we find

aJ+1+i = 0 i = 2, · · · , J, (B.11)

a2J+1+i = 0 i = 2, · · · , J − 1. (B.12)

However the contribution from A1 is given by

δ̃(s,~b)
∣∣∣
A1

=
2(−i)
m

a1e
µ1µ2···µJ−1µJeµ1µ2···µJ−1

∂bµJ
1

|b|D−4
. (B.13)

Therefore, we find aJ+2 = J a1 , a2J+2 = J(J−1)
2

a1. This proves (2.26).

Diagonal Elements of EJ−2

For constraining a1 we used the diagonal elements in EJ−2 for both particles. Comput-

ing CJJ2 after imposing all the other constraints, we find for J ≥ 4

δ̃(s,~b) = a1
3(J − 2)(J − 3)

m4J(J − 1)

(
D + 2J − 6

D + 2J − 5

)2

eµ1µ2µ3···µJ−2eµ3···µJ−2

ν1ν2∂bµ1∂bµ2∂bν1∂bν2
1

|b|D−4

(B.14)
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and hence a1 = 0 due to the trick used in B. The equation B.14 is valid for J ≥ 4. For

J = 3, we used interference between E (1) = E0 and E (3) = E3 to set a1 = 0.

Bounds for D = 4

Positivity of the phase shift (2.35) leads to the following constraints in D = 4:

ān = 0 , n = 1, · · · , 2J − 1 ,

an+1

an
=

(n− J)(n+ J − 1)

n(2n− 1)

1

m2
, n = 1, · · · , J ,

aJ+n+2

aJ+n+1

=
n2 − J2

n(2n+ 1)

1

m2
, n = 1, · · · , J − 1 , (B.15)

with aJ+2 = Ja1.

C Parity Violating Interactions in D = 5

Only in D = 4 and 5, the massive higher spin particles can interact with gravity in a

way that violates parity. We already discussed the case of D = 4. Let us now discuss

the parity odd interactions in D = 5. Unlike D = 4, only massive particles are allowed

to couple to gravity in a way that does not preserve parity. In order to list all possible

parity odd vertices for the interaction J −J − 2, we introduce the following parity odd

building block:

B = εµ1µ2µ3µ4µ5z1;µ1z3;µ2zµ3qµ4p3;µ5 . (C.1)

The most general form of parity odd on-shell three-point amplitude can then be con-

structed using this building block. In particular, we can write two distinct sets of

vertices. The first set contains J independent structures:

Aodd1 = B(z · p3)(z1 · z3)J−1 ,

Aodd2 = B(z · p3)(z1 · z3)J−2(z3 · q)(z1 · q) ,
...

AoddJ = B(z · p3)(z3 · q)J−1(z1 · q)J−1 . (C.2)
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While the second set contains J − 1 independent structures:

AoddJ+1 = B((z · z3)(z1 · q)− (z · z1)(z3 · q))(z1 · z3)J−2,

AoddJ+2 = B((z · z3)(z1 · q)− (z · z1)(z3 · q))(z1 · z3)J−3(z3 · q)(z1 · q),
...

Aodd2J−1 = B((z · z3)(z1 · q)− (z · z1)(z3 · q))(z3 · q)J−2(z1 · q)J−2 . (C.3)

The most general form of the parity violating three-point amplitude is given by

CJJ2 =
√

32πGN

2J−1∑
n=1

ānAoddn . (C.4)

Bounds on parity violating interactions can be obtained by using a simple null polar-

ization vector

εµ(p1) = iεµL(p1)−iεµT,x̂(p1)+
√

2εµT,ŷ(p1) , εµ(p3) = −iεµL(p3)+iεµT,x̂(p3)+
√

2εµT,ŷ(p3) ,

(C.5)

where the transverse and longitudinal vectors are defined in (2.16). The vectors x̂ and

ŷ are given by x̂ = (0, 0, 1, 0, 0) and ŷ = (0, 0, 0, 1, 0). Positivity of the phase shift for

this polarization leads to

ān = 0 , n = 1, · · · , 2J − 1 (C.6)

for any spin J . Note that this bound holds even for J = 1 and 2.

D Correlators of Higher Spin Operators in CFT

Let us first define the building blocks

Hij ≡ x2
ijεi · εj − 2(xij · εi)(xij · εj), Vi,jk ≡

x2
ijxik · εi − x2

ikxij · εi
x2
jk

, (D.1)

where, xµij = (xi − xj)µ .
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Two-point function

〈ε1.XJ(x1)ε2.XJ(x2)〉 = CXJ
HJ

12

x
2(∆+J)
12

, (D.2)

where, ∆ is the dimension of the operator XJ and CXJ is a positive constant. ε1 and

ε2 are null polarization vectors contracted with the indices of XJ in the following way

(εµεν · · · )Xµν··· ≡ ε.X . (D.3)

Three-point Function

Let us now discuss the three-point function 〈ε1.XJ(x1)ε2.XJ(x2)ε3.T (x3)〉:

〈ε1.XJ(x1)ε2.XJ(x2)ε3.T (x3)〉

=
∑

{n23,n13,n12}

Cn23,n13,n12

V J−n12−n13
1,23 V J−n12−n23

2,13 V 2−n13−n23
3,12 Hn12

12 Hn13
13 Hn23

23

x
(2h−d−2)
12 x

(d+2)
13 x

(d+2)
23

,

(D.4)

where Cn23,n13,n12 are OPE coefficients and h ≡ ∆ + J . In the above expression all of

the polarization vectors are null, however polarizations εµεν · · · can be converted into

an arbitrary polarization tensor εµν··· by using projection operators from [60].

The sum in (D.4) is over all triplets of non-negative integers {n23, n13, n12} satisfying

J − n12 − n13 ≥ 0 , J − n12 − n23 ≥ 0 , 2− n13 − n23 ≥ 0 . (D.5)

To begin with, there are 5 + 6(J − 1) OPE coefficients Cn23,n13,n12 , however, not all of

them are independent. The three-point function (D.4) must be symmetric with respect

to the exchange (x1, ε1) ↔ (x2, ε2) which implies that only 4J OPE coefficients can

be independent in general. Moreover, conservation of the stress-tensor operator T will

impose additional restrictions on the remaining OPE coefficients Cn23,n13,n12 .

Conservation Equation

Relations between the OPE coefficients from conservation of the stress-tensor operator

T can be obtained by imposing the vanishing of ∂
∂xµ
〈T (x) · · · 〉 up to contact terms.

For 〈XJXJT 〉, the conservation equation leads to J additional constraint amongst the
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remaining 4J OPE coefficients. Therefore, the three-point function 〈XJXJT 〉 is fixed

by conformal invariance up to 3J independent OPE coefficients. Furthermore, the

Ward identity leads to a relation between these OPE coefficients and the coefficient of

the two-point function CXJ .

E Details of Spin-3 Calculation in D > 4

Constraints from Conservation Equation

Conservation equation leads to 3 relations among the OPE coefficients

C0,0,0 = −1

3

(
d2 + 4d

)
C0,2,0 −

1

6

(
−d2 − 4d+ 12

)
C1,1,0 + 2C0,1,0, (E.1)

C0,0,1 = −1

2

(
d2 + 2d

)
C0,2,1 −

1

4

(
−d2 − 2d+ 8

)
C1,1,1 −

3

2
dC0,2,0

− 1

2
(2− d)C1,1,0 + 2C0,1,1, (E.2)

C0,0,2 = −1

2

(
4− d2

)
C1,1,2 − 2dC0,2,1 −

1

2
(2− d)C1,1,1 + 2C0,1,2 . (E.3)

Deriving Constraints from the HNEC

Let us first start with ξ = +1. In the limit ρ → 1, the leading contribution to E(ρ)

goes as (1− ρ)−(d+3), in particular

E+(ρ) =
d(−4 + d2)− 18d(2 + d)λ2 + 72(2 + d)λ4 − 48λ6

(1− ρ)d+3
t1 + · · · (E.4)

up to some overall positive coefficient. t1 in the above expression is a particular linear

combination of all the OPE coefficients. Positivity of coefficients of each powers of λ2

leads to the constraint

t1 = 0 . (E.5)

After imposing this constraint, the next leading term becomes

E+(ρ) =
(d− 2)d− 12dλ2 + 24λ4

(1− ρ)d+2
t2 + · · · , (E.6)
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where, t2 is another linear combination of all the OPE coefficients. Positivity now

implies

t2 = 0 . (E.7)

After imposing both these constraints the next leading contribution can be written in

terms of two new linear combinations t3 and t4 of OPE coefficients:

E+(ρ) =
t3 − (a3t3 + a4t4)λ2 + t4λ

4 − (b3t3 + b4t4)λ6

(1− ρ)d+1
+ · · · , (E.8)

where, a3, a4, b3, b4 are numerical factors shown later in this appendix. The exact

values of these numerical factors are not important, but note that a3, a4, b4 > 0 for

d > 3. Positivity of coefficients of λ0 and λ4 imply that t3, t4 ≥ 0. Then, positivity of

coefficients of λ2 dictates that

t3 = t4 = 0 . (E.9)

After imposing these constraints, we get something very similar

E+(ρ) =
t5 − (a5t5 + a6t6)λ2 + t6λ

4

(1− ρ)d
+ · · · , (E.10)

where, t5 and t6 are two new linear combinations of OPE coefficients and a5, a6 are

positive numerical factors shown at the end of this appendix. Note that there is no λ6

term in this order. However, positivity of coefficients of λ0, λ2 and λ4 still produces

two equalities:

t5 = t6 = 0 . (E.11)

Repeating the same procedure for the next order, we obtain

E+(ρ) =
t7 − (a7t7 + a8t8)λ2 + t8λ

4 − (b7t7 + b8t8)λ6

(1− ρ)d−1
+ · · · , (E.12)

where, a and b coefficients are shown at the end of this appendix. A similar argument

in d ≥ 4 leads to constraints

t7 = t8 = 0 . (E.13)

After imposing all these constraints, finally we obtain

E+(ρ) =
t9

(1− ρ)d−2

(
1 +

4∆λ2

−d+ 2∆− 2
+

4∆(∆ + 1)λ4

(d− 2∆)(d− 2∆ + 2)

)
, (E.14)

60



where, coefficients of λ0, λ2 and λ4 are now all positive. Hence, the holographic null

energy condition now leads to t9 ≥ 0. We can now choose ξ = −1 and calculate E−(ρ).

After imposing ti = 0 for i = 1, · · · , 8, we get

E−(ρ) = − t9
(1− ρ)d−2

(
1 +

4∆λ2

−d+ 2∆− 2
+

4∆(∆ + 1)λ4

(d− 2∆)(d− 2∆ + 2)

)
(E.15)

and hence t9 ≤ 0. Therefore, combining both these inequalities, we finally get

t9 = 0 . (E.16)

From the definitions of ti’s it is apparent that t1, · · · , t9 are independent linear com-

binations of the OPE coefficients. Therefore, irrespective of their exact structures,

{t1, · · · , t9} forms a complete basis in the space of OPE coefficients. As a consequence,

the constraints t1, · · · , t9 = 0 necessarily require that all OPE coefficients Ci,j,k must

vanish.

a and b Coefficients

a and b coefficients are given by

a3 =
2d(13∆ + 9)− 8(∆ + 3)

(d− 2)(d(4∆ + 3)− 2(∆ + 2))
, b3 = − 16∆

(d− 2)d(d(4∆ + 3)− 2(∆ + 2))
,

a4 =
(d− 3)d(∆ + 1)

8d∆ + 6d− 4∆− 8
, b4 =

4∆ + 2

4d∆ + 3d− 2∆− 4
,

a5 =
6(∆− 1)

(d− 2)(2∆− 1)
, a6 =

(d− 3)∆

2(2∆− 1)
,

a7 =
2d2(2∆(∆ + 1)(∆ + 2)− 3)− 4d(∆(∆ + 2)(7∆ + 1)− 3) + 48(∆ + 1)∆2

(d− 2)(d− 2∆) (2(d− 5)∆2 + 4(d− 1)∆− 3d+ 6)
,

b7 = − 8∆2(∆ + 1)

(d− 2)(d− 2∆) (2(d− 5)∆2 + 4(d− 1)∆− 3d+ 6)
,

a8 =
(d− 3)(∆− 1)(d− 2(∆ + 1))

2(d− 5)∆2 + 4(d− 1)∆− 3d+ 6
, b8 =

2 (2∆2 + ∆− 1)

2(d− 5)∆2 + 4(d− 1)∆− 3d+ 6
.

t-basis in d = 4

For the purpose of illustration, let us transcribe t1, · · · , t9 for d = 4. We will not show
the general d expressions because the exact structures of t1, · · · , t9 are not important.
The fact that t1, · · · , t9 are independent linear combinations of Ci,j,k is sufficient to rule
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out the existence of spin-3 operators.

t1 = −
5π7/241−∆Γ

(
∆− 1

2

)
∆ (∆2 − 1) Γ(∆ + 4)

{−(2∆ + 5)((∆ + 5)((∆ + 5)∆ + 28)∆ + 168)C0,1,0 + 24(2∆ + 5)((∆ + 5)∆ + 10)C0,1,1

+ ∆(2(((((∆ + 17)∆ + 119)∆ + 471)∆ + 1044)∆ + 1156)C0,2,0 − 24(((3∆ + 34)∆ + 121)∆ + 170)C0,2,1

−∆(((((∆ + 13)∆ + 91)∆ + 379)∆ + 964)C1,1,0 − 12((3∆ + 26)∆ + 103)C1,1,1 + 864C1,1,2)− 576C0,1,2

− 8(173C1,1,0 − 300C1,1,1 + 468C1,1,2)) + 864C0,0,3 − 48(30C0,1,2 − 17C0,2,0 + 22C0,2,1 + 18C1,1,0 − 39C1,1,1 + 114C1,1,2)} ,

t2 =
5π7/221−2∆(2∆− 3)Γ

(
∆− 3

2

)
3(∆− 1)∆ (3∆4 + 26∆3 + 103∆2 + 200∆ + 156) Γ(∆ + 3)

{−6∆9C0,2,0 + 3∆9C1,1,0 − 102∆8C0,2,0

+ 45∆8C1,1,0 − 828∆7C0,2,0 + 334∆7C1,1,0 + 72∆6C0,1,1 − 4156∆6C0,2,0 − 288∆6C0,2,1 + 1562∆6C1,1,0

+ 864∆5C0,1,1 − 14446∆5C0,2,0 − 432∆5C0,2,1 + 5067∆5C1,1,0 − 2592∆5C1,1,2 + 4584∆4C0,1,1 − 2592∆4C0,1,2

− 36662∆4C0,2,0 + 9888∆4C0,2,1 + 11773∆4C1,1,0 − 21600∆4C1,1,2 + 13632∆3C0,1,1 − 18432∆3C0,1,2

− 67616∆3C0,2,0 + 55920∆3C0,2,1 + 19292∆3C1,1,0 − 79200∆3C1,1,2 + 24816∆2C0,1,1 − 53856∆2C0,1,2

− 85464∆2C0,2,0 + 129408∆2C0,2,1 + 21108∆2C1,1,0 − 156960∆2C1,1,2 + 1728
(
3∆3 + 15∆2 + 35∆ + 30

)
C0,0,3

+
(
3∆8 + 40∆7 + 236∆6 + 762∆5 + 1393∆4 + 1190∆3 − 720∆2 − 3024∆− 1728

)
C0,1,0 + 27072∆C0,1,1

− 77760∆C0,1,2 − 67392∆C0,2,0 + 157824∆C0,2,1 + 13968∆C1,1,0 − 184896∆C1,1,2 + 12096C0,1,1 − 41472C0,1,2

− 25920C0,2,0 + 86400C0,2,1 + 4320C1,1,0 − 103680C1,1,2} ,

t3 =
−π7/24−∆(2∆− 3)Γ

(
∆− 3

2

)
3(∆− 1) (3∆9 + 51∆8 + 414∆7 + 2078∆6 + 7223∆5 + 18331∆4 + 33808∆3 + 42732∆2 + 33696∆ + 12960) Γ(∆ + 2))

× {1728(18∆7 + 177∆6 + 831∆5 + 2334∆4 + 4645∆3 + 6783∆2 + 5732∆ + 1680)C0,0,3 + (3∆12 + 42∆11 + 219∆10

+ 206∆9 − 3651∆8 − 24138∆7 − 81903∆6 − 183990∆5 − 316308∆4 − 452936∆3 − 445512∆2 − 140544∆ + 126144)C0,1,0

− 2(3∆12C1,1,0 + 42∆11C1,1,0 + 432∆10C0,2,1 + 285∆10C1,1,0 + 720∆9C0,2,1 + 1448∆9C1,1,0 + 5184∆9C1,1,2

− 31608∆8C0,2,1 + 6519∆8C1,1,0 + 62208∆8C1,1,2 − 264672∆7C0,2,1 + 24066∆7C1,1,0 + 340416∆7C1,1,2

− 1033008∆6C0,2,1 + 67035∆6C1,1,0 + 1107648∆6C1,1,2 − 2495520∆5C0,2,1 + 140208∆5C1,1,0 + 2474496∆5C1,1,2

− 4233192∆4C0,2,1 + 220446∆4C1,1,0 + 4206816∆4C1,1,2 − 5473296∆3C0,2,1 + 264508∆3C1,1,0 + 5894208∆3C1,1,2

− 5511264∆2C0,2,1 + 234480∆2C1,1,0 + 6862752∆2C1,1,2 + 432(15∆8 + 172∆7 + 888∆6 + 2690∆5 + 5447∆4

+ 8078∆3 + 7918∆2 + 3304∆− 624)C0,1,2 − 12(9∆10 + 141∆9 + 1011∆8 + 4350∆7 + 12601∆6 + 26427∆5 + 43243∆4

+ 58314∆3 + 53728∆2 + 15312∆− 14112)C0,1,1 − 3664512∆C0,2,1 + 129600∆C1,1,0 + 5173632∆C1,1,2 − 967680C0,2,1

+ 34560C1,1,0 + 1347840C1,1,2)} ,

t4 =
π7/24−∆(2∆− 3)Γ

(
∆− 3

2

)
3(∆− 1)∆ (3∆9 + 51∆8 + 414∆7 + 2078∆6 + 7223∆5 + 18331∆4 + 33808∆3 + 42732∆2 + 33696∆ + 12960) Γ(∆ + 2)

× {−1728∆
(
9∆7 + 105∆6 + 550∆5 + 1797∆4 + 4019∆3 + 5976∆2 + 4704∆ + 1152

)
C0,0,3

− 2(−144(33∆9 + 482∆8 + 3220∆7 + 13428∆6 + 39443∆5 + 84574∆4 + 129300∆3 + 133632∆2 + 88992∆ + 31104)C0,1,2

+ 12(15∆11 + 300∆10 + 2836∆9 + 16806∆8 + 70033∆7 + 217146∆6 + 511924∆5 + 913140∆4 + 1197048∆3 + 1090080∆2 + 634176∆

+ 186624)C0,1,1 + ∆(−288(9∆9 + 135∆8 + 902∆7 + 3736∆6 + 10842∆5 + 22703∆4 + 33325∆3 + 32796∆2 + 17496∆ + 1728)C1,1,2

− 24(30∆10 + 411∆9 + 2444∆8 + 8520∆7 + 19136∆6 + 25089∆5 + 1406∆4 − 65772∆3 − 129792∆2 − 107712∆− 27648)C0,2,1

+ (9∆12 + 166∆11 + 1543∆10 + 9146∆9 + 38267∆8 + 119030∆7 + 280469∆6 + 495754∆5 + 634144∆4 + 536256∆3

+ 238752∆2 − 41472)C1,1,0)) + (9∆13 + 208∆12 + 2517∆11 + 20148∆10 + 116751∆9 + 511632∆8 + 1737543∆7

+ 4628948∆6 + 9669660∆5 + 15584136∆4 + 18714816∆3 + 15761088∆2 + 8439552∆ + 2239488)C0,1,0} ,
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t5 =
π7/24−∆(2∆− 3)Γ

(
∆− 3

2

)
3(9∆6 + 87∆5 + 370∆4 + 951∆3 + 1667∆2 + 1980∆ + 1008)Γ(∆ + 1)

{(15∆8 + 125∆7 + 636∆6 + 2162∆5 + 5397∆4

+ 9413∆3 + 12150∆2 + 10062∆ + 4212)C0,1,0 − 2(15∆8C1,1,0 + 80∆7C1,1,0 + 258∆6C1,1,0 + 583∆5C1,1,0

+ 2592∆5C1,1,2 + 1130∆4C1,1,0 + 9936∆4C1,1,2 + 1317∆3C1,1,0 + 12096∆3C1,1,2 + 1333∆2C1,1,0 − 6480∆2C1,1,2

+ 6(9∆6 + 84∆5 + 400∆4 + 988∆3 + 1387∆2 + 1036∆ + 384)C0,1,1 − 12(18∆6 + 285∆5 + 1136∆4 + 1817∆3 + 752∆2

− 400∆− 168)C0,2,1 + 252∆C1,1,0 − 6912∆C1,1,2 − 720C1,1,0 + 8208C1,1,2)} ,

t6 =
−π7/221−2∆(∆ + 1)(2∆− 3)Γ

(
∆− 3

2

)
(∆− 1) (9∆6 + 87∆5 + 370∆4 + 951∆3 + 1667∆2 + 1980∆ + 1008) Γ(∆ + 1)

{(3∆8 + 28∆7 + 160∆6 + 603∆5

+ 1622∆4 + 3005∆3 + 4191∆2 + 3564∆ + 1296)C0,1,0 − 2(3∆8C1,1,0 + 19∆7C1,1,0 + 73∆6C1,1,0 + 173∆5C1,1,0

+ 327∆4C1,1,0 − 864∆4C1,1,2 + 354∆3C1,1,0 − 2016∆3C1,1,2 + 263∆2C1,1,0 − 4320∆2C1,1,2 − 12(6∆4 + 47∆3

+ 104∆2 + 131∆ + 72)∆2C0,2,1 + 6(3∆6 + 28∆5 + 112∆4 + 244∆3 + 393∆2 + 372∆ + 144)C0,1,1

+ 12∆C1,1,0 − 576∆C1,1,2 − 144C1,1,0 + 3456C1,1,2)} ,

t7 =
π7/24−∆−1

(
2∆2 − 7∆ + 6

)
Γ
(
∆− 3

2

)
9 (3∆6 + 8∆5 + 16∆4 + 15∆3 + 11∆2 + ∆− 9) Γ(∆)

{
(
15∆6 + 64∆5 − 4∆4 − 130∆3 + 244∆2 + 270∆ + 243

)
C0,1,0

− 12
((

12∆5 + 9∆4 − 31∆3 + 13∆2 + 34∆ + 24
)
C0,1,1 + 2

(
−24∆5 + 27∆4 + 47∆3 − 38∆2 − 17∆ + 15

)
C0,2,1

)
} ,

t8 =
−π7/24−∆−1∆(2∆− 3)Γ

(
∆− 3

2

)
3(∆− 1) (3∆6 + 8∆5 + 16∆4 + 15∆3 + 11∆2 + ∆− 9) Γ(∆)

× {
(
3∆7 + 9∆6 − 8∆5 − 62∆4 − 30∆3 − 190∆2 − 163∆− 207

)
C0,1,0

− 12
((

2∆6 + ∆5 − 8∆4 + 2∆3 − 13∆2 − 16∆− 22
)
C0,1,1 + 2

(
−4∆6 + 7∆5 + 4∆4 − 13∆3 + 5∆2 + 8∆− 7

)
C0,2,1

)
} ,

t9 =
π7/24−2∆−3C0,1,0

63 (∆2 −∆− 1) Γ(∆ + 4)2
{24
√
π(∆ + 2)(∆ + 3)(16∆12 + 112∆11 + 802∆10 + 2041∆9 − 3583∆8 − 27783∆7

− 97848∆6 − 361565∆5 − 1046943∆4 − 1943909∆3 − 2130484∆2 − 1182496∆− 72840)Γ(2∆− 2)

−
4∆Γ

(
∆− 1

2

)
Γ(∆ + 4)

∆ (∆2 − 1)
(48∆12 + 560∆11 + 2182∆10 + 2763∆9 − 7389∆8 − 69237∆7 − 307656∆6

− 1103735∆5 − 3121789∆4 − 5823663∆3 − 6399516∆2 − 3547488∆− 218520)} .

F Details of Spin-4 Calculation in D > 4

Constraints From Conservation Equation

Conservation equation leads to 4 relations among the OPE coefficients of 〈XJ=4XJ=4T 〉:

C̃0,0,0 =
1

8

(
(d− 2)(d+ 8)C̃1,1,0 − 2d(d+ 6)C̃0,2,0

)
+ 2C̃0,1,0 ,

C̃0,0,1 =
1

6

(
−8dC̃0,2,0 − 2d(d+ 4)C̃0,2,1 + (d− 2)

(
(d+ 6)C̃1,1,1 + 3C̃1,1,0

)
+ 12C̃0,1,1

)
,

C̃0,0,2 =
1

4

(
−6dC̃0,2,1 − 2d(d+ 2)C̃0,2,2 + (d− 2)

(
(d+ 4)C̃1,1,2 + 2C̃1,1,1

)
+ 8C̃0,1,2

)
,

C̃0,0,3 =
1

2

(
−4dC̃0,2,2 + (d− 2)

(
(d+ 2)C̃1,1,3 + C̃1,1,2

)
+ 4C̃0,1,3

)
.
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Deriving Constraints from the HNEC

The full expression for E(ρ) is long and not very illuminating, so we will not transcribe

it here. Instead we introduce a new basis {t̃1, · · · , t̃12} in the space of OPE coefficients

C̃i,j,k and use this new basis to derive constraints. The exact structures of t̃1, · · · , t̃12

are not important because the fact that t̃1, · · · , t̃12 are independent linear combinations

of C̃i,j,k is sufficient to rule out the existence of spin-4 operators.

We again start with ξ = +1, however, for spin-4, this will be sufficient to rule

them out completely. In the limit ρ → 1, the leading contribution to E(ρ) goes as

(1− ρ)−(d+5), in particular

E+(ρ) =
t̃1

(d− 2)d(d+ 2)(d+ 4)(1− ρ)(d+5)
((d− 2)d(d+ 2)(d+ 4)

−32d(d+ 2)(d+ 4)λ2 + 288(d+ 2)(d+ 4)λ4 − 768(d+ 4)λ6 + 384λ8
)

+ · · · .
(F.1)

Positivity of coefficients of each powers of λ2 leads to the constraint

t̃1 = 0 . (F.2)

After imposing this constraint, the next leading term becomes

E+(ρ) =
t̃2

(1− ρ)d+4

(
1− 24λ2

d− 2
+

144λ4

(d− 2)d
− 192λ6

d(d2 − 4)

)
+ · · · , (F.3)

where, positivity now implies

t̃2 = 0 . (F.4)

After imposing both these constraints the next leading contribution behaves similar to

the spin-3 case:

E+(ρ) =
t̃3 − (ã3t̃3 + ã4t̃4)λ2 + t̃4λ

4 + (b̃3t̃3 + b̃4t̃4)λ6 + (c̃3t̃3 + c̃4t̃4)λ8

(1− ρ)d+3
+ · · · , (F.5)

where, ã3, ã4, b̃3, b̃4, c̃3, c̃4 are numerical factors given later in this appendix. Note that

ã3, ã4 > 0 and hence positivity of coefficients of λ0, λ2 and λ4 imply that

t̃3 = t̃4 = 0 . (F.6)
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The next order contribution has an identical structure:

E+(ρ) =
t̃5 − (ã5t̃5 + ã6t̃6)λ2 + t̃6λ

4 + (b̃5t̃5 + b̃6t̃6)λ6

(1− ρ)d+2
+ · · · , (F.7)

with ã5, ã6 > 0, implying

t̃5 = t̃6 = 0 . (F.8)

So far, everything is very similar to the spin-3 case. But the next order contribution

is somewhat different. In the next order, there are three independent structures

E+(ρ) =
t̃7 − (ã7t̃7 + ã8t̃8 + ã9t̃9)λ2 + t̃8λ

4 + t̃9λ
6 + (b̃7t̃7 + b̃8t̃8 + b̃9t̃9)λ8

(1− ρ)d+1
+· · · , (F.9)

where, ã7, ã8, ã9 > 0. Positivity now leads to three constraints

t̃7 = t̃8 = t̃9 = 0 . (F.10)

However, after imposing these constraints, in the next order we get only two new

structures mainly because a lot of contributions vanish after imposing the previous

constraints. In particular, we obtain

E+(ρ) =
t̃10 − (ã10t̃10 + ã11t̃11)λ2 + t̃11λ

4 − (b̃10t̃10 + b̃11t̃11)λ6

(1− ρ)d
+ · · · (F.11)

with either ã10, ã11 > 0 or b̃10, b̃11 > 0 which again implies

t̃10 = t̃11 = 0 . (F.12)

Finally, in the next order we get

E+(ρ) =
t̃12

(1− ρ)d−1

(
1 + ã12λ

2 + b̃12λ
4 − c̃12λ

6
)

+ · · · , (F.13)

where, ã12, b̃12, c̃12 > 0 as shown later in this appendix. Note that unlike the spin-3 case,

signs of coefficients of different powers of λ2 switch sign. Therefore, we can conclude

that

t̃12 = 0 . (F.14)

{t̃1, · · · , t̃12} forms a complete basis in the space of OPE coefficients and hence the
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constraints t̃1, · · · , t̃12 = 0 necessarily require that all OPE coefficients C̃i,j,k must

vanish implying

〈XJ=4XJ=4T 〉 = 0 . (F.15)

ã, b̃ and c̃ Coefficients

ã, b̃ and c̃ coefficients are given by

ã3 =
2(d(41∆ + 73)− 4(∆ + 11))

(d− 2)(d(6∆ + 11)− 4(∆ + 3))
, ã4 =

(d− 3)d(∆ + 2)

3(d(6∆ + 11)− 4(∆ + 3))
,

b̃3 =
48(d(27∆ + 43) + 52∆ + 60)

d (d2 − 4) (d(6∆ + 11)− 4(∆ + 3))
, b̃4 = − 8(d(3∆ + 5) + 5∆ + 6)

(d+ 2)(d(6∆ + 11)− 4(∆ + 3))
,

c̃3 = − 192(5∆ + 7)

d (d2 − 4) (d(6∆ + 11)− 4(∆ + 3))
, c̃4 =

8(2∆ + 3)

(d+ 2)(d(6∆ + 11)− 4(∆ + 3))
,

ã5 =
d(38∆ + 24)− 4(∆ + 8)

(d− 2)(d(4∆ + 3)− 2(∆ + 2))
, ã6 =

(d− 3)d(∆ + 1)

3(d(4∆ + 3)− 2(∆ + 2))
,

b̃5 =
144∆

(d− 2)d(d(4∆ + 3)− 2(∆ + 2))
, b̃6 =

8∆ + 4

−4d∆− 3d+ 2∆ + 4
,

ã7 =
12(3d+ 1)(∆− 1)(2∆ + 1)

(d− 2) (d (13∆2 − 3) + ∆2 − 1)
, b̃7 =

24∆ (∆2 − 1)

d (d2 − 3d+ 2) (∆ + 2) (d (13∆2 − 3) + ∆2 − 1)
,

ã8 =
(d− 3)d∆(2∆ + 1)

d (13∆2 − 3) + ∆2 − 1
, b̃8 =

2 (−4∆3 − 4∆2 + ∆ + 1)

(d− 1)(∆ + 2) (d (13∆2 − 3) + ∆2 − 1)
,

ã9 =
(d− 3)2d∆(∆ + 1)

4 (d (13∆2 − 3) + ∆2 − 1)
, b̃9 = −(2∆ + 1)(d(7∆(∆ + 1)− 5)−∆(∆ + 1))

(d− 1)(∆ + 2) (d (13∆2 − 3) + ∆2 − 1)
,

ã10 = −2 (−((d− 9)d+ 26)∆3 − 6((d− 7)d+ 4)∆2 − (d− 1)(11d+ 2)∆ + 6(d− 2)(d+ 1))

(d− 2)(d− 2∆)(d(∆(∆ + 4)− 3)−∆(7∆ + 4) + 6)
,

b̃10 = − 24∆(∆ + 1)(∆ + 2)

(d− 2)(d− 2∆) (d (∆2 + 4∆− 3)− 7∆2 − 4∆ + 6)
,

ã11 =
(d− 3)(∆− 1)(d− 2(∆ + 1))

2(d(∆(∆ + 4)− 3)−∆(7∆ + 4) + 6)
, b̃11 =

2(∆ + 2)(2∆− 1)

d (∆2 + 4∆− 3)− 7∆2 − 4∆ + 6
,

ã12 =
2 (2(5− 2d)∆2 − 3d∆ + d+ 2)

(d− 2)(2∆− 1)(d− 2∆ + 2)
, b12 =

4∆(d(∆ + 3)(2∆ + 1)− 2(∆(4∆ + 5) + 3))

(d− 2)(2∆− 1)(d− 2∆)(d− 2∆ + 2)
,

c̃12 =
8∆(∆ + 1)2

(d− 2)(2∆− 1)(d− 2∆)(d− 2∆ + 2)
.

G Details of CFT3 calculations

In this appendix, we discuss the details of the the parity even structures for spin 3

operators in d = 3. The full expression for E(ρ) is rather long and not very illuminating,
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so we will not transcribe it here. Following the logic of the higher d case, we introduce

a new basis {t1, · · · , t7} in the space of OPE coefficients Ci,j,k and use this new basis

to derive constraints.

In the limit ρ→ 1, the leading parity even contribution to E(ρ) goes as (1− ρ)−6,

in particular

E(ρ) =
j6(εµ1µ2µ3)

(1− ρ)6
t1 + · · · , (G.1)

where, j6(εµ1µ2µ3) is a specific function of the traceless symmetric polarization tensor.

j6(εµ1µ2µ3) has the property that

j6(εµ1µ2µ3) ∼ ε000ε000∗ ≥ 0 for εµ1µ22 = 0 ,

j6(εµ1µ2µ3) ∼ −ε222ε222∗ ≤ 0 for εµ1µ20 = 0 . (G.2)

Therefore, the HNEC implies that

t1 = 0 . (G.3)

After imposing this constraint, the next leading term becomes

E(ρ) =
j5(εµ1µ2µ3)

(1− ρ)5
t2 + · · · , (G.4)

where, j5(εµ1µ2µ3) is another function which has the property that

j5(εµ1µ2µ3) ∼ Re
[
ε000

(
ε001 + ε010 + ε100

)∗]
for εµ1µ22 = 0 (G.5)

which changes sign as ε001 → −ε001 implying

t2 = 0 . (G.6)

The next order term has two structures:

E(ρ) =
j4(εµ1µ2µ3)

(1− ρ)4
t3 +

j̃4(εµ1µ2µ3)

(1− ρ)4
t4 + · · · , (G.7)

where, j4 and j̃4 are specific functions of the polarization tensors. Now, applying the
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HNEC for the following set of polarizations:

(a) ε000 = ε011 = ε101 = ε110 = 1 ,

(b) ε012 = 1 ,

(c) ε222 = −ε211 = −ε121 = −ε112 = 1 ,

(d) ε000 = ε220 = ε202 = ε022 = 1 (G.8)

we find that both t3 and t4 must vanish. After imposing these constraints, the next

order term also has two structures:

E(ρ) =
j3(εµ1µ2µ3)

(1− ρ)3
t5 +

j̃3(εµ1µ2µ3)

(1− ρ)3
t6 + · · · , (G.9)

where, again we will not transcribe j5 and j̃5 for simplicity. Now, applying the HNEC

for the following set of polarizations:

(a) ε2µν = 0 ,

(b) ε012 = ±1 , ε222 = −ε211 = −ε121 = −ε112 = 1 (G.10)

we get

t5 = t6 = 0 . (G.11)

After imposing all these constraints, we finally obtain

E(ρ) =
j2(εµ1µ2µ3)

(1− ρ)2
t7 + · · · . (G.12)

We repeat the same procedure by choosing (a) ε0µν = 0 and (b) ε2µν = 0 that lead to

the final constraint

t7 = 0 . (G.13)

Since, {t1, · · · , t7} forms a complete basis in the space of OPE coefficients, the con-

straints t1, · · · , t7 = 0 necessarily require that all OPE coefficients Ci,j,k must vanish.

It is interesting to note that the same set of constraints can also be obtained by using

the λ-trick. We can first impose C1,1,k = 0 and then use the polarization (3.14) to

derive constraints in general dimension d. Then taking the limit d → 3 leads to the

correct set of constraints at each order.

68



References

[1] S. Weinberg, “Photons and Gravitons in s Matrix Theory: Derivation of Charge
Conservation and Equality of Gravitational and Inertial Mass,” Phys. Rev. 135,
B1049 (1964). doi:10.1103/PhysRev.135.B1049

[2] S. Weinberg and E. Witten, “Limits on Massless Particles,” Phys. Lett. 96B, 59
(1980). doi:10.1016/0370-2693(80)90212-9

[3] M. Porrati, “Universal Limits on Massless High-Spin Particles,” Phys. Rev. D
78, 065016 (2008) doi:10.1103/PhysRevD.78.065016 [arXiv:0804.4672 [hep-th]].

[4] N. Arkani-Hamed, T. C. Huang and Y. t. Huang, “Scattering Amplitudes For
All Masses and Spins,” arXiv:1709.04891 [hep-th].

[5] S. Weinberg, Lectures on Elementary Particles and Quantum Field Theory, edited
by S. Deser, No. I (MIT Press, Cambridge, MA, 1970).

[6] S. Ferrara, M. Porrati and V. L. Telegdi, “g = 2 as the natural value of the tree
level gyromagnetic ratio of elementary particles,” Phys. Rev. D 46, 3529 (1992).
doi:10.1103/PhysRevD.46.3529

[7] M. Porrati, “Massive spin 5/2 fields coupled to gravity: Tree level unitarity
versus the equivalence principle,” Phys. Lett. B 304, 77 (1993) doi:10.1016/0370-
2693(93)91403-A [gr-qc/9301012].

[8] A. Cucchieri, M. Porrati and S. Deser, “Tree level unitarity constraints on the
gravitational couplings of higher spin massive fields,” Phys. Rev. D 51, 4543
(1995) doi:10.1103/PhysRevD.51.4543 [hep-th/9408073].

[9] X. O. Camanho, J. D. Edelstein, J. Maldacena and A. Zhiboedov, “Causality
Constraints on Corrections to the Graviton Three-Point Coupling,” JHEP 1602,
020 (2016) doi:10.1007/JHEP02(2016)020 [arXiv:1407.5597 [hep-th]].

[10] J. Maldacena, S. H. Shenker and D. Stanford, “A bound on chaos,” JHEP 1608,
106 (2016) doi:10.1007/JHEP08(2016)106 [arXiv:1503.01409 [hep-th]].

[11] M. A. Vasiliev, “Higher spin gauge theories in various dimensions,” Fortsch.
Phys. 52, 702 (2004) [PoS JHW 2003, 003 (2003)] doi:10.1002/prop.200410167,
10.22323/1.011.0003 [hep-th/0401177].

[12] X. Bekaert, S. Cnockaert, C. Iazeolla and M. A. Vasiliev, “Nonlinear higher spin
theories in various dimensions,” hep-th/0503128.

[13] M. T. Grisaru and H. N. Pendleton, “Soft Spin 3/2 Fermions Require Gravity and
Supersymmetry,” Phys. Lett. 67B, 323 (1977). doi:10.1016/0370-2693(77)90383-
5

69



[14] M. T. Grisaru, H. N. Pendleton and P. van Nieuwenhuizen, “Supergravity and
the S Matrix,” Phys. Rev. D 15, 996 (1977). doi:10.1103/PhysRevD.15.996

[15] F. Loebbert, “The Weinberg-Witten theorem on massless particles: An Essay,”
Annalen Phys. 17, 803 (2008). doi:10.1002/andp.200810305

[16] C. Aragone and S. Deser, “Consistency Problems of Hypergravity,” Phys. Lett.
86B, 161 (1979). doi:10.1016/0370-2693(79)90808-6

[17] F. A. Berends, J. W. van Holten, P. van Nieuwenhuizen and B. de Wit, “On Spin
5/2 Gauge Fields,” Phys. Lett. 83B, 188 (1979) Erratum: [Phys. Lett. 84B, 529
(1979)]. doi:10.1016/0370-2693(79)90682-8, 10.1016/0370-2693(79)91257-7

[18] C. Aragone and H. La Roche, “Massless Second Order Tetradic Spin 3 Fields and
Higher Helicity Bosons,” Nuovo Cim. A 72, 149 (1982). doi:10.1007/BF02902412

[19] R. R. Metsaev, “Cubic interaction vertices of massive and massless higher spin
fields,” Nucl. Phys. B 759, 147 (2006) doi:10.1016/j.nuclphysb.2006.10.002 [hep-
th/0512342].

[20] N. Boulanger and S. Leclercq, “Consistent couplings between spin-2 and spin-
3 massless fields,” JHEP 0611, 034 (2006) doi:10.1088/1126-6708/2006/11/034
[hep-th/0609221].

[21] N. Boulanger, S. Leclercq and P. Sundell, “On The Uniqueness of Minimal Cou-
pling in Higher-Spin Gauge Theory,” JHEP 0808, 056 (2008) doi:10.1088/1126-
6708/2008/08/056 [arXiv:0805.2764 [hep-th]].

[22] I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, “Holography from Confor-
mal Field Theory,” JHEP 0910, 079 (2009) doi:10.1088/1126-6708/2009/10/079
[arXiv:0907.0151 [hep-th]].

[23] L. Cornalba, M. S. Costa, J. Penedones and R. Schiappa, “eikonal Approximation
in AdS/CFT: From Shock Waves to Four-Point Functions,” JHEP 0708, 019
(2007) doi:10.1088/1126-6708/2007/08/019 [hep-th/0611122].

[24] L. Cornalba, M. S. Costa, J. Penedones and R. Schiappa, “eikonal Approxi-
mation in AdS/CFT: Conformal Partial Waves and Finite N Four-Point Func-
tions,” Nucl. Phys. B 767, 327 (2007) doi:10.1016/j.nuclphysb.2007.01.007 [hep-
th/0611123].

[25] L. Cornalba, M. S. Costa and J. Penedones, “eikonal approximation in
AdS/CFT: Resumming the gravitational loop expansion,” JHEP 0709, 037
(2007) doi:10.1088/1126-6708/2007/09/037 [arXiv:0707.0120 [hep-th]].

[26] G. Mack, “D-dimensional Conformal Field Theories with anomalous dimensions
as Dual Resonance Models,” Bulg. J. Phys. 36, 214 (2009) [arXiv:0909.1024 [hep-
th]].

70



[27] G. Mack, “D-independent representation of Conformal Field Theories in D di-
mensions via transformation to auxiliary Dual Resonance Models. Scalar ampli-
tudes,” arXiv:0907.2407 [hep-th].

[28] A. L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, “Effective Con-
formal Theory and the Flat-Space Limit of AdS,” JHEP 1107, 023 (2011)
doi:10.1007/JHEP07(2011)023 [arXiv:1007.2412 [hep-th]].

[29] I. Heemskerk and J. Sully, “More Holography from Conformal Field Theory,”
JHEP 1009, 099 (2010) doi:10.1007/JHEP09(2010)099 [arXiv:1006.0976 [hep-
th]].

[30] A. L. Fitzpatrick and J. Kaplan, “Analyticity and the Holographic S-Matrix,”
JHEP 1210, 127 (2012) doi:10.1007/JHEP10(2012)127 [arXiv:1111.6972 [hep-
th]].

[31] A. L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B. C. van Rees,
“A Natural Language for AdS/CFT Correlators,” JHEP 1111, 095 (2011)
doi:10.1007/JHEP11(2011)095 [arXiv:1107.1499 [hep-th]].

[32] S. El-Showk and K. Papadodimas, “Emergent Spacetime and Holographic
CFTs,” JHEP 1210, 106 (2012) doi:10.1007/JHEP10(2012)106 [arXiv:1101.4163
[hep-th]].

[33] Z. Komargodski and A. Zhiboedov, “Convexity and Liberation at Large Spin,”
JHEP 1311, 140 (2013) doi:10.1007/JHEP11(2013)140 [arXiv:1212.4103 [hep-
th]].

[34] A. L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, “The An-
alytic Bootstrap and AdS Superhorizon Locality,” JHEP 1312, 004 (2013)
doi:10.1007/JHEP12(2013)004 [arXiv:1212.3616 [hep-th]].

[35] A. L. Fitzpatrick and J. Kaplan, “AdS Field Theory from Conformal Field The-
ory,” JHEP 1302, 054 (2013) doi:10.1007/JHEP02(2013)054 [arXiv:1208.0337
[hep-th]].

[36] V. Goncalves, J. Penedones and E. Trevisani, “Factorization of Mellin ampli-
tudes,” JHEP 1510, 040 (2015) doi:10.1007/JHEP10(2015)040 [arXiv:1410.4185
[hep-th]].

[37] E. Hijano, P. Kraus, E. Perlmutter and R. Snively, “Witten Diagrams Re-
visited: The AdS Geometry of Conformal Blocks,” JHEP 1601, 146 (2016)
doi:10.1007/JHEP01(2016)146 [arXiv:1508.00501 [hep-th]].

[38] L. F. Alday and A. Bissi, “Unitarity and positivity constraints for CFT at large
central charge,” arXiv:1606.09593 [hep-th].

71



[39] L. F. Alday, A. Bissi and T. Lukowski, “Lessons from crossing symmetry at large
N,” JHEP 1506, 074 (2015) doi:10.1007/JHEP06(2015)074 [arXiv:1410.4717
[hep-th]].

[40] S. Caron-Huot, “Analyticity in Spin in Conformal Theories,” JHEP 1709, 078
(2017) doi:10.1007/JHEP09(2017)078 [arXiv:1703.00278 [hep-th]].

[41] N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, “Einstein grav-
ity 3-point functions from conformal field theory,” JHEP 1712, 049 (2017)
doi:10.1007/JHEP12(2017)049 [arXiv:1610.09378 [hep-th]].

[42] M. Kulaxizi, A. Parnachev and A. Zhiboedov, “Bulk Phase Shift, CFT Regge
Limit and Einstein Gravity,” arXiv:1705.02934 [hep-th].

[43] M. S. Costa, T. Hansen and J. Penedones, “Bounds for OPE coefficients on
the Regge trajectory,” JHEP 1710, 197 (2017) doi:10.1007/JHEP10(2017)197
[arXiv:1707.07689 [hep-th]].

[44] N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, “Shockwaves from the
Operator Product Expansion,” arXiv:1709.03597 [hep-th].

[45] D. Meltzer and E. Perlmutter, “Beyond a = c: Gravitational Couplings to Matter
and the Stress Tensor OPE,” arXiv:1712.04861 [hep-th].

[46] N. Afkhami-Jeddi, S. Kundu and A. Tajdini, “A Conformal Collider for
Holographic CFTs,” JHEP 1810, 156 (2018) doi:10.1007/JHEP10(2018)156
[arXiv:1805.07393 [hep-th]].

[47] J. Maldacena and A. Zhiboedov, “Constraining Conformal Field Theories with
A Higher Spin Symmetry,” J. Phys. A 46, 214011 (2013) doi:10.1088/1751-
8113/46/21/214011 [arXiv:1112.1016 [hep-th]].

[48] N. Boulanger, D. Ponomarev, E. D. Skvortsov and M. Taronna, “On the unique-
ness of higher-spin symmetries in AdS and CFT,” Int. J. Mod. Phys. A 28,
1350162 (2013) doi:10.1142/S0217751X13501625 [arXiv:1305.5180 [hep-th]].

[49] T. Hartman, S. Jain and S. Kundu, “Causality Constraints in Confor-
mal Field Theory,” JHEP 1605, 099 (2016) doi:10.1007/JHEP05(2016)099
[arXiv:1509.00014 [hep-th]].

[50] N. Arkani-Hamed and J. Maldacena, “Cosmological Collider Physics,”
arXiv:1503.08043 [hep-th].

[51] C. Cordova, J. Maldacena and G. J. Turiaci, “Bounds on OPE Coefficients
from Interference Effects in the Conformal Collider,” JHEP 1711, 032 (2017)
doi:10.1007/JHEP11(2017)032 [arXiv:1710.03199 [hep-th]].

72



[52] K. Hinterbichler, A. Joyce and R. A. Rosen, “eikonal scattering and asymptotic
superluminality of massless higher spin fields,” Phys. Rev. D 97, no. 12, 125019
(2018) doi:10.1103/PhysRevD.97.125019 [arXiv:1712.10021 [hep-th]].

[53] J. Bonifacio, K. Hinterbichler, A. Joyce and R. A. Rosen, “Massive and Massless
Spin-2 Scattering and Asymptotic Superluminality,” JHEP 1806, 075 (2018)
doi:10.1007/JHEP06(2018)075 [arXiv:1712.10020 [hep-th]].

[54] M. Levy and J. Sucher, “Eikonal approximation in quantum field theory,” Phys.
Rev. 186, 1656 (1969). doi:10.1103/PhysRev.186.1656

[55] X. O. Camanho, G. Lucena Gmez and R. Rahman, “Causality Con-
straints on Massive Gravity,” Phys. Rev. D 96, no. 8, 084007 (2017)
doi:10.1103/PhysRevD.96.084007 [arXiv:1610.02033 [hep-th]].

[56] J. D. Edelstein, G. Giribet, C. Gomez, E. Kilicarslan, M. Leoni and B. Tekin,
“Causality in 3D Massive Gravity Theories,” Phys. Rev. D 95, no. 10, 104016
(2017) doi:10.1103/PhysRevD.95.104016 [arXiv:1602.03376 [hep-th]].

[57] G. ’t Hooft, “Graviton Dominance in Ultrahigh-Energy Scattering,” Phys. Lett.
B 198, 61 (1987). doi:10.1016/0370-2693(87)90159-6

[58] I. I. Shapiro, “Fourth Test of General Relativity,” Phys. Rev. Lett. 13, 789 (1964).
doi:10.1103/PhysRevLett.13.789

[59] S. Gao and R. M. Wald, “Theorems on gravitational time delay and related
issues,” Class. Quant. Grav. 17, 4999 (2000) doi:10.1088/0264-9381/17/24/305
[gr-qc/0007021].

[60] M. S. Costa, J. Penedones, D. Poland and S. Rychkov, “Spinning Con-
formal Correlators,” JHEP 1111, 071 (2011) doi:10.1007/JHEP11(2011)071
[arXiv:1107.3554 [hep-th]].

[61] G. Tiktopoulos and S. B. Treiman, “Relativistic eikonal approximation,” Phys.
Rev. D 3, 1037 (1971). doi:10.1103/PhysRevD.3.1037

[62] H. Cheng and T. T. Wu, “Expanding Protons: Scattering At High-energies,”
CAMBRIDGE, USA: MIT-PR. (1987) 285p

[63] D. N. Kabat, “Validity of the Eikonal approximation,” Comments Nucl. Part.
Phys. 20, no. 6, 325 (1992) [hep-th/9204103].

[64] L. P. S. Singh and C. R. Hagen, “Lagrangian formulation for arbitrary spin. 1.
The boson case,” Phys. Rev. D 9, 898 (1974). doi:10.1103/PhysRevD.9.898

[65] L. P. S. Singh and C. R. Hagen, “Lagrangian formulation for arbitrary spin. 2.
The fermion case,” Phys. Rev. D 9, 910 (1974). doi:10.1103/PhysRevD.9.910

[66] Y. M. Zinoviev, “On massive high spin particles in AdS,” hep-th/0108192.

73



[67] M. S. Costa, V. Goncalves and J. Penedones, “Conformal Regge theory,” JHEP
1212, 091 (2012) doi:10.1007/JHEP12(2012)091 [arXiv:1209.4355 [hep-th]].

[68] P. Kravchuk and D. Simmons-Duffin, “Light-ray operators in conformal field
theory,” arXiv:1805.00098 [hep-th].

[69] S. Ferrara, A. F. Grillo, G. Parisi and R. Gatto, “The shadow operator for-
malism for conformal algebra. vacuum expectation values and operator prod-
ucts,” Lett. Nuovo Cim. 4S2, 115 (1972) [Lett. Nuovo Cim. 4, 115 (1972)].
doi:10.1007/BF02907130

[70] D. Simmons-Duffin, “Projectors, Shadows, and Conformal Blocks,” JHEP 1404,
146 (2014) doi:10.1007/JHEP04(2014)146 [arXiv:1204.3894 [hep-th]].

[71] F. A. Dolan and H. Osborn, “Conformal four point functions and the oper-
ator product expansion,” Nucl. Phys. B 599, 459 (2001) doi:10.1016/S0550-
3213(01)00013-X [hep-th/0011040].

[72] B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, “A Stereoscopic
Look into the Bulk,” JHEP 1607, 129 (2016) doi:10.1007/JHEP07(2016)129
[arXiv:1604.03110 [hep-th]].

[73] J. de Boer, F. M. Haehl, M. P. Heller and R. C. Myers, “En-
tanglement, holography and causal diamonds,” JHEP 1608, 162 (2016)
doi:10.1007/JHEP08(2016)162 [arXiv:1606.03307 [hep-th]].

[74] R. C. Brower, J. Polchinski, M. J. Strassler and C. I. Tan, “The
Pomeron and gauge/string duality,” JHEP 0712, 005 (2007) doi:10.1088/1126-
6708/2007/12/005 [hep-th/0603115].

[75] T. Hartman, S. Jain and S. Kundu, “A New Spin on Causality Constraints,”
JHEP 1610, 141 (2016) doi:10.1007/JHEP10(2016)141 [arXiv:1601.07904 [hep-
th]].

[76] D. M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera,
“A Proof of the Conformal Collider Bounds,” JHEP 1606, 111 (2016)
doi:10.1007/JHEP06(2016)111 [arXiv:1603.03771 [hep-th]].

[77] T. Hartman, S. Kundu and A. Tajdini, “Averaged Null Energy Condi-
tion from Causality,” JHEP 1707, 066 (2017) doi:10.1007/JHEP07(2017)066
[arXiv:1610.05308 [hep-th]].

[78] D. M. Hofman and J. Maldacena, “Conformal collider physics: Energy and charge
correlations,” JHEP 0805, 012 (2008) doi:10.1088/1126-6708/2008/05/012
[arXiv:0803.1467 [hep-th]].

74



[79] T. Faulkner, R. G. Leigh, O. Parrikar and H. Wang, “Modular Hamiltonians for
Deformed Half-Spaces and the Averaged Null Energy Condition,” JHEP 1609,
038 (2016) doi:10.1007/JHEP09(2016)038 [arXiv:1605.08072 [hep-th]].

[80] D. Amati, M. Ciafaloni and G. Veneziano, “Effective action and all order
gravitational eikonal at Planckian energies,” Nucl. Phys. B 403, 707 (1993).
doi:10.1016/0550-3213(93)90367-X

[81] D. Amati, M. Ciafaloni and G. Veneziano, “Planckian scattering beyond the
semiclassical approximation,” Phys. Lett. B 289, 87 (1992). doi:10.1016/0370-
2693(92)91366-H

[82] D. Amati, M. Ciafaloni and G. Veneziano, “Can Space-Time Be Probed Below
the String Size?,” Phys. Lett. B 216, 41 (1989). doi:10.1016/0370-2693(89)91366-
X

[83] D. Amati, M. Ciafaloni and G. Veneziano, “Classical and Quantum Gravity
Effects from Planckian Energy Superstring Collisions,” Int. J. Mod. Phys. A 3,
1615 (1988). doi:10.1142/S0217751X88000710

[84] D. Amati, M. Ciafaloni and G. Veneziano, “Superstring Collisions at Planckian
Energies,” Phys. Lett. B 197, 81 (1987). doi:10.1016/0370-2693(87)90346-7

[85] M. Taronna, “Higher Spins and String Interactions,” arXiv:1005.3061 [hep-th].

[86] A. Sagnotti and M. Taronna, “String Lessons for Higher-Spin Interactions,” Nucl.
Phys. B 842, 299 (2011) doi:10.1016/j.nuclphysb.2010.08.019 [arXiv:1006.5242
[hep-th]].

[87] G. D’Appollonio, P. Di Vecchia, R. Russo and G. Veneziano, “Regge behav-
ior saves String Theory from causality violations,” JHEP 1505, 144 (2015)
doi:10.1007/JHEP05(2015)144 [arXiv:1502.01254 [hep-th]].

[88] A. Higuchi, “Forbidden Mass Range for Spin-2 Field Theory in De Sitter Space-
time,” Nucl. Phys. B 282, 397 (1987). doi:10.1016/0550-3213(87)90691-2

[89] S. Deser and A. Waldron, “Partial masslessness of higher spins in (A)dS,” Nucl.
Phys. B 607, 577 (2001) doi:10.1016/S0550-3213(01)00212-7 [hep-th/0103198].

[90] D. Baumann, “TASI Lectures on Primordial Cosmology,” arXiv:1807.03098 [hep-
th].

[91] H. Lee, D. Baumann and G. L. Pimentel, “Non-Gaussianity as a Particle Detec-
tor,” JHEP 1612, 040 (2016) doi:10.1007/JHEP12(2016)040 [arXiv:1607.03735
[hep-th]].

75



[92] K. N. Abazajian et al. [Topical Conveners: K.N. Abazajian, J.E. Carl-
strom, A.T. Lee Collaboration], “Neutrino Physics from the Cosmic Mi-
crowave Background and Large Scale Structure,” Astropart. Phys. 63, 66 (2015)
doi:10.1016/j.astropartphys.2014.05.014 [arXiv:1309.5383 [astro-ph.CO]].

[93] G. Tiktopoulos and S. B. Treiman, “Validity of the relativistic eikonal approxi-
mation,” Phys. Rev. D 2, 805 (1970). doi:10.1103/PhysRevD.2.805

76


	1 Introduction
	2 Higher Spin Fields in Flat Spacetime
	2.1 Eikonal Scattering 
	2.2 Higher Spin-graviton Couplings
	2.3 Eikonal Kinematics
	2.4 Bounds on Coefficients
	2.5 D=4
	2.6 Comments

	3 Higher Spin Fields in AdSD
	3.1 Causality and Conformal Regge Theory
	3.2 D>4
	3.3 AdS4/CFT3
	3.4 Maldacena-Zhiboedov Theorem and Massless Higher Spin Fields 
	3.5 Comments

	4 Restoring Causality
	4.1 Make CFT Causal Again
	4.2 Stringy Operators above the Gap

	5 Cosmological Implications 
	A Transverse Polarizations
	B Phase Shift Computations 
	C Parity Violating Interactions in D=5
	D Correlators of Higher Spin Operators in CFT
	E Details of Spin-3 Calculation in D>4
	F Details of Spin-4 Calculation in D>4
	G Details of CFT3 calculations

