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The Einstein Equivalence Principle (EEP) underpins all metric theories of gravity. Its key element is the
local position invariance of non-gravitational experiments, which entails the gravitational red-shift. Precision
measurements of the gravitational red-shift tightly bound violations of the EEP only in the fermionic sector of the
Standard Model, however recent developments of satellite optical technologies allow for its investigation in the
electromagnetic sector. Proposals exploiting light interferometry traditionally suffer from the first-order Doppler
effect, which dominates the weak gravitational signal necessary to test the EEP, making them unfeasible. Here,
we propose a novel scheme to test the EEP, which is based on a double large-distance optical interferometric
measurement. By manipulating the phase-shifts detected at two locations at different gravitational potentials
it is possible to cancel-out the first-order Doppler effect and observe the gravitational red-shift implied by the
EEP. We present the detailed analysis of the proposal within the post-Newtonian framework and the simulations
of the expected signals obtained by using two realistic satellite orbits. Our proposal to overcome the first-order
Doppler effect in optical EEP tests is feasible with current technology.

Introduction.—The Einstein equivalence principle (EEP) is
the foundation of all metric theories of gravity, including gen-
eral relativity [1-3]. The principle is comprised from three
statements. The first, known as the weak equivalence prin-
ciple, states that the trajectory of a freely falling test body
is independent of its internal structure and composition. The
two other statements deal with outcomes of non-gravitational
experiments that are performed in freely falling laboratories
where self-gravitational effects are negligible. The second
statement — Local Lorentz Invariance — asserts that such
experiments are independent of the velocity of the laboratory
where the experiment takes place. The third statement — Lo-
cal Position Invariance (LPI) — asserts that “the outcome
of any local non-gravitational experiment is independent of
where and when in the universe it is performed” [1].

Tests of the “when” part of the EEP bound the variabil-
ity of the non-gravitational constants over cosmological time
scales [4, 5]. The “where” part was expressed in Einstein’s
analysis [6] of what in modern terms is a comparison of two
identical frequency standards in two different locations in a
static gravitational field. In fact, the so-called red-shift im-
plied by the EEP affects the locally measured frequencies of a
spectral line that is emitted at location 1 with w; and then de-
tected at location 2 with ws. The red-shift can be parametrized
as

L@ o) W
where Aw (= wy — wy, U; = —(i)l-/c2 has the opposite
sign of the Newtonian gravitational potential ¢; at the emis-
sion (1) and detection (2), while @ # 0 accounts for pos-
sible violations of LPI. In principle, o may depend on the
nature of the clock that is used to measure the red-shift [1].
The standard model extension (SME) includes all possible

Lorentz- and CPT-violating terms that still preserve the funda-
mental SU(3) x SU(2) x U(1) gauge invariance and power-
counting renormalizability [7]. The SME contains variously
constrained parameters whose different combinations may
lead to v # 0 [8—10]. A variety of alternative theories of grav-
ity that are not ruled out by current data also predict nonzero
values of o [1, 11].

A typical red-shift experiment involves a pair of clocks, nat-
urally occurring [12] or specially-designed [13-16], whose
readings are communicated by electromagnetic (EM) radi-
ation. Recently, the comparison of co-located ultra-precise
clocks, which use two different atoms (hydrogen and cesium)
for their working transitions, allowed for a bound to be placed
on the difference ooy — o With high precision [16]. On the
other hand, this estimation of « is based on implicit or ex-
plicit assumptions on the standard propagation of the EM ra-
diation [10]. Hence, different types of experiments which em-
ploy that use a single EM-source and compare optical phase
differences between beams of light traversing different paths
in a gravitational field provide a complementary test of LPIL.

As an example, the “optical” Colella-Overhauser-Werner
(COW) experiment [17] was proposed in [18] and suggested
in [19] as a possible scientific component of the QEYSSAT
mission. A photon time-bin superposition [20] is sent from a
ground station on Earth to a spacecraft, both equipped with a
interferometer of imbalance [, in order to temporally recom-
bine the two time-bins and obtain an interference pattern de-
pending on the gravitational phase-shift [19],
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where ¢ is the gravity of Earth, h the satellite altitude and
A = 27e/w is the sent wavelength. For o = 0, this phase-shift
is of the order of few radians supposing [ = 6 km, A = 800 nm
and h = 400 km [19].



However, the careful analysis of the optical COW in [21]
showed that the first-order Doppler effect is roughly 10° times
stronger than the desired signal ¢,,. This first-order Doppler
effect was recently measured by exploiting large-distance pre-
cision interferometry along space channels [22], which repre-
sents a resource for performing fundamental tests of quantum
mechanics in space, as in [18, 23-26], for future space-based
scientific missions, such as LISA [27], and space-based quan-
tum cryptography [28-32].

Here, we propose a novel test of the EEP exploiting a single
EM-source and a double large-distance interferometric mea-
surement performed at two different gravitational potentials.
By comparing the phase-shifts obtained at a satellite and on
Earth, it is possible to overcome the first-order Doppler effect
affecting both the measurements and obtain the gravitational
contribution. Such a scheme allows to bound the violation of
LPI in the EM-sector with the precision on the order of 107°.

The proposal—A possible setup for our proposal is
sketched in Fig. 1 and is based on the satellite interferome-
try experiment realized in [22]. Such an interferometric mea-
surement is obtained by sending a light pulse through a cas-
cade of two fiber-based Mach Zehnder interferometers (MZIs)
of equal temporal imbalance 7; := nl/c, with [ denoting the
length of the delay line and n the refraction coefficient of the
fiber. In fact, after the first MZI the pulse is split into two
temporal modes, called short (S) and long (L) depending on
the path taken in the first MZI. The equal imbalance of the
two MZIs guarantees that the two pulses are recombined (at
the required level of precision) at the output of the second
MZI, where they are detected. The combination of the possi-
ble paths the pulses may take leads to a characteristic detec-
tion pattern comprised of three possible arrival times for each
pulse. The first (third) peak corresponds to the pulses that
took the S (£) path in both the MZIs, while the mid peak is
due to the pulse that took the S path in the first interferometer
and the £ path in the subsequent one, or viceversa. Hence,
interference is expected only in the central peak, due to the
indistinguishability of the two possibilities.

Such interference is modulated by the phase difference ¢
accrued in the propagation, that depends on the relative mo-
tion between the ground station (GS) and the spacecraft (SC),
as depicted in the bottom panel of Fig. 1, and on the difference
in gravitational potentials, as we will detail in the following.
From the ratio of the intensity of the central peak to the lateral
ones an estimation of ¢ can be obtained [22]. For simplicity
we assumed that the coherence time of the source 7. is much
shorter than the temporal imbalance 7; (1. < 7;), while the
mismatch A7; of the delay lines of the MZIs is A7y < 7, (see
Supplementary Material (SM), Sec. F for more details). Fur-
thermore, we assumed that a single-mode coupling system is
correctly implemented to guarantee the spatial overlap of the
interfering beams and thus resulting in a high visibility. The
latter assumption is demanding from the experimental point of
view, requiring for example adaptive optics to correct wave-
front distortion due to turbulence, but it is achievable with cur-
rent technology [34, 35].

A bound on « will be retrieved from the difference of two
phase-shifts ¢gc and pgg, each of which is obtained from
a interferometric measurement of the kind described above.
The first phase, pgc, is measured at detector A located on
the SC while the second one, pgg, at detector B located at
the GS by exploiting the reflection of the sent beam obtained
with a corner-cube retroreflector (CCR) mounted on the satel-
lite (Fig. 1).
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FIG. 1: (top) Scheme of the proposal. Both the GS and the SC are
equipped with a MZI of equal delay line [. (bottom) Geometry of the
experiment: ¥ is the velocity of the GS at the emission at potential
Us; U2 is the velocity of the SC at the detection on the satellite at
potential Us; ¥ is the velocity of the ground station at the detection
of the beam retroreflected by the SC, which occurs at potential Us =
U;. Approximating Earth’s angular velocity € as constant, |7|? =
|#i3]. Vectors 7112 and 7123 are the Newtonian propagation directions
of the light pulses.

Analysis of the proposal in the PPN approximation.—Now
we present the detailed analysis of the phases to be measured
by exploiting the the Parametrized Post Newtonian (PPN) for-
malism [3]. We use the notation of [21]. The spacetime
metric has the signature (—, +, 4+, +) and is denoted by &
Since we deal with very short time intervals, we use an Earth-
centered inertial system as the standard coordinate system.
For brevity we refer to this coordinate system as “global”,
distinguishing it from the local frames that are established at
the GS and the SC. Coordinates of events in these frames are
distinguished by superscripts, such as 5 and t5¢. The sub-
scripts refer to the location of a particular event: 1 and 3 oc-
cur at the GS, event 2 at the SC (see Fig. 1). Frequencies
w;; and unit vectors f;; carry double subscripts indicating the
locations of emission () and detection (j) events. Detailed
relationships between the quantities, and relevant background
about post-Newtonian propagation of light and interferome-
try are given in the SM, which provides a summary of the
treatment of light propagation in the PPN formalism (Sec. A),
phase calculation in gravitational field (Sec. B), and the de-
tailed application to the setup we consider (Secs. C and D).

Our precision target is achieving a bound of |a] < e for
light, with € :== /U ~ 10~° where U is the approximate po-



tential for near-Earth experiments [2]: U = GMg/(c*Rg).
The parameter € sets the scaling order of PPN expansion
around Earth. At this level of precision, we can ignore the
effects of the gravitational field of other bodies in the Solar
System, approximate the spacetime around the Earth as static,
and consider only the leading (i.e. second order in €) post-
Newtonian effects [2, 21, 36]. Thus, the non-vanishing com-
ponents of the metric in the PPN approximation are

8o = —1+2U, g; =0 (1+20). 3)

The most effective way to carefully estimate the accrued
phases for the interfering beams in the scheme presented
above is to use the geometry of Fig. 2, which represents the
position of the GS and the SC at the different stages of the ex-
periment. The interfering beams must take different paths in
the passage through the two MZlIs, one S path and one £ path.
Hence, at the satellite we will obtain interference between the
beam that took the £ path on Earth and the S one on the SC,
that is

I, = (£95,8%5C) : 15 1% 27 (4)

and the beam that passed the first time through the S path at
the GS and then took the £ one at the SC:

Iy, = (895,59 1525 97 (5)

In the above equations the numbers refer to the different
events depicted in Fig. 2. Analogously, at the GS we will
obtain interference between the beams

I, = (£95,89%) 1L 1 52 53 (6)
Ip, = (895,£9%):1 525353, )

which are detected at the GS after being retroreflected by the
CCR mounted on the SC.

The Doppler-cancellation scheme is based on the fact that
the one-way GS—SC shifted frequencies, w12 and wy <2+, con-
tain both the Doppler and gravitational contributions, while
the two-way GS—SC—GS ones, w;3 and w3+, are different
from the initial frequency w1 := wq only due to the Doppler
effect. This is because the gravitational contribution is can-
celled out at the leading order in the two-way trip.

The signal from which a bound on « is obtained is a linear
combination of the two measured phase-shifts

(PSC(tg*C) = (I)[IAz] - (P[IAJ ) (8)
pas(t5®) = ®[Ip,] — @[Ip,], ©9)

where ®[Ix] denotes the phase accrued along the paths Ix :=
(t1,Z1) — (t,Z) of Egs. (4)-(7). ®[Ix] is evaluated in the
geometric optics approximation in the SM, which leads to

O[Ix] = —wl(t —t1) — ALZ; %) + Dy, (10)

where the frequency w = —kq (denoting k* the wave 4-
vector associated with the beam [Ix) is constant along the

FIG. 2: Euclidean vectors representing positions of the GS and the
SC at different stages of the experiment. Distances travelled by the
beam on the go-return trip are L and D, respectively. At the leading
(zeroth) order in ¢, the round trip propagation time is 27" = 2L/c,
and the three vectors 711+, 713 and 733+ are parallel as depicted. Note
that |7;;] < L. Mismatches in the arrival times of the pulses are
discussed in SM, Sec. F.

null geodesic, At(F; ¥7) is the photon travel (coordinate) time

along the geodesic, and ®; is the phase picked up passing

through the delay line [, evaluated in the local reference frame.
With such an approach, the phase ¢gc evaluates to

@SC(tES) = (w12 — wo)Ty — WoTIS4 + 5w0t§§ , (11)

where 7; is the proper time of the delay line, dwp 1= wyxgx —
wio is the leading term in the frequency difference at the
satellite between the two beams I4, and I4, and woT;51 =
w;Atl*z* — wyAtyg is the phase difference due to the dif-
ference in the coordinate propagation times Aty and Atq«ox
with wy and wi denoting the conserved frequencies in the
global frame. All the quantities above are explicitly derived
in the SM.

From Eq. (11) we see that three components contribute to
pgc: the difference in phases accrued along the delay line,
the phase difference between the different paths taken by the
beams due to delay line, and a beat term due to a slight differ-
ence in frequencies as seen at the detector A, respectively.

Analogous considerations lead to the expression for the
phase-shift pgg detected at the GS:

@GS(tSG*S) = (wlg—wo)n—won(25¢—25¢)+26w0tgs , (12)

where woT (54 — 28)) = wIAtQ*;),* — w| Atog is the phase
differences accrued during the downward propagation, which
has to be added to the contribution —wg7;s+ accrued during
the upward propagation.



Both ¢gc and pgg contain terms of the first order in € re-
sulting from the first-order Doppler effect. Such terms are
eliminated by manipulation of the corresponding data sets
from the GS and SC in a manner similar to the time-delay
interferometry techniques in Ref. [37]. The key feature allow-
ing for this is that the ratio of the first order terms in ¢gc and
(pas is exactly equal to two. Hence, adapting the techniques
that were used for the data processing in the Gravity Probe A
experiment [38], the signal

S = psc(t57) —

contains only second order terms and allows for the retrieval
of the gravitational red-shift contribution Us — U;. The ex-
plicit form of the signal is:

Toas(tsS) (13)

S 2 [ - (01 — )]
2 (14 a)(Us—Uy) —
woTy (14 )0 v c?
S 22 S A, [Firo-a
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where o parametrizes the violation of LPI, L is the zeroth
order slant distance between the GS and the SC, d; is the cen-
tripetal acceleration of the GS at 1, and the other vectors are
specified in Fig. 1.

Simulations.—Now we present the numerical estimation of
the signal derived above by exploiting the orbits of actual
satellites used by the International Laser Ranging Service
(ILRS) [39]. The Satellite Laser Ranging (SLR) technique
allows for a high accuracy estimation of the distance of such
satellites by measuring the time-of-flight of laser pulses that
are sent from a GS on Earth, then retroreflected by the CCRs
mounted on the orbiting terminal, and finally collected by the
same GS. ILRS makes available the Consolidated Prediction
Format [40] files for SLR orbits, which contain the geocentric
(inertial Earth-centered) position of the terminals at a given
time. Furthermore, ILRS offers a software routine [41] to es-
timate the motion of the ground-station in the same frame.
Hence, we can simulate real passages of various SLR satel-
lites as seen from an actual GS on Earth and then estimate the
signals for such simulated orbits.

We specialized our simulations to two satellites in differ-
ent orbits, Ajisai (circular orbit) and Galileo 201 (eccentric
orbit). The used GS is the Matera Laser Ranging Observatory
(MLRO) [42] of the Italian Space Agency, that was exploited
for various demonstrations of the feasibility of satellite quan-
tum communications [22, 23, 31, 43—45]. The upper panels of
Fig. 3 show the signal S/(wo7;) from Eq. (14) as a function of
the time passage for the two satellites, while the bottom panel
are the signals estimated by supposing that such terminals are
equipped with an unbalanced interferometer providing a de-
lay line of [ = 100 m (1; = 3 - 10~7 s) and that the initial
wavelength is A = 27¢/wp = 532 nm. This choice of the pa-
rameters 7; and wg brings the strength of the signal in Eq. (14)
into a measurable regime.

Conclusions.—Our proposal allows for the cancellation of
the first-order Doppler effect in optical red-shift experiments.
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FIG. 3: Results obtained with Ajisai (left panels; inclination 50°,
eccentricity 0.001, altitude 1,490 km) and Galileo 201 (right panels;
inclination 50°, eccentricity 0.158, altitude ranging from 17,000 to
26,210 km) seen from the MLRO ground station. Upper panels show
the signals Uz — U and S/(wo7;) from Eq. (14) (with @ = 0) as
a function of the time passage. Bottom panels show the signal S
(in 7-unit) expected with a delay line [ = 100 m and wavelength
A =532 nm.

However, this proposal still faces two important practical is-
sues. First, atmospheric turbulence is a limiting factor for
large-distance optical interferometry. However, the planned
temporal delay between the two pulses is four orders of mag-
nitude lower than the conventional millisecond threshold of
the turbulence correlation time [46]. As a result, both the in-
terfering beams suffer through the same random noise that is
canceled in measuring psc and pgs. In fact, the same scale
difference was successfully exploited in [22]. Second, the two
delay lines cannot be perfectly identical. However, the rela-
tive precision §; < €, which for I = 100 m translates into
the absolute difference of less than 1 mm, is experimentally
achievable. Its values can be retrieved by monitoring in real-
time the first order interference at the two MZIs with a laser
of long coherence time. In this case the signal S/(wy7;) gets a
first-order constant offset J;, that can be reliably estimated and
eliminated by using the SLR data. Moreover, the additional
variable term of the order €d; can be eliminated similarly to
the second order Doppler terms (see SM, Sec. F).

Concluding, in this work we proposed an optical scheme to
bound the violation of the EEP in the electromagnetic sector
of the Standard Model. In this scheme the first-order Doppler
effect is suppressed and the weak gravitational red-shift can
be measured. The need of new tests of physics and the recent
advancements in satellite optical technologies make this pro-
posal both attractive and feasible with current technologies.
An in-depth investigation of the experimental design is a sub-
ject of forthcoming work.
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SUPPLEMENTARY MATERIAL

Discussion of light propagation and locally observed frequencies at the leading order of the post-Newtonian approximation
is given in Sec. A. Accumulation of interferometric phase in the relativistic framework is discussed in Sec. B. We describe the
details of the path difference and frequencies calculations in Sec. C, and provide the expressions for phase differences at the two
detection events, as well as analyze the the mismatch in the arrival times in Sec. D. The final expression for the signal is obtained
in Sec. E, and the effects of unequal imbalance between the interferometers are treated in Sec. F.

For simplicity we set ¢ = 1 in Secs. A and B. Further, coordinates of an event are labeled by z* = (¢, &), where & stands for
three spacelike coordinates in any spacetime. A vector in a three-dimensional Euclidian space is denoted as @, and is equipped
with the usual Euclidian inner product 7 - § = x'y' + 2%y* + 23y3. Hence, 7 = /7 -7 is a unit Euclidean vector, and the
coordinate distance is r := \/ﬁ 4-vectors are denoted in arial font, u, and their components with Greek superscripts, u*. To
simplify the formulas we write expression like wy+2+ as wiy.

A. Light propagation in the leading order PPN formalism

A detailed exposition of the PPN formalism and its application to light can be found in [2, 3]. The metric with including the
leading post-Newtonian terms (up to the second order in €) is given by

8o = —1+2U, &ij :6ij(1+2U)’ (S-1)

with U = %Q(r, 6) denoting the gravitational potential around the Earth including the quadrupole term [36]

2
Q(r,0):=1- %Jg%@ cos?f — 1), (5-2)

where .Jo = 1.083 x 1073 is the normalized quadrupole moment and the higher terms are neglected. R is the Earth equatorial
radius. Given the established bounds on the PPN parameter v [1] we set (1 + v) = 2 in the PPN metric of Eq. (3).
The 4-velocity of a massive particle is

dt
u= %(1,17) =: v(1,7), u? = —1, (S-3)

where 7 is the proper time and for a given ¥/ the constant v is obtained from the normalization with the post-Newtonian metric
of Eq. (3), The wave 4-vector is given by

at (. dF . )
k=— (1,dt> —k(LE), K=o, (S-4)

where o is an affine parameter and we have defined the parameter «, which is determined by the frequency measured by a
stationary observer in the given reference frame. The vector k£ may be expanded in the PPN parameter € as

E=n + 62];(2) + GSE(g) + ..., (S-5)

where 7 is a unit Euclidean vector giving the Newtonian light propagation. Here and in the expansions below we occasionally
use € as a formal parameter that tracks the orders of perturbation and is set to 1 in final expressions. For the frequency and phase
calculations at the second order of € it is enough to work with k = .

In a stationary metric the quantity kg is conserved. Therefore the conserved frequency at any point along the trajectory of the
light beam, up to the second order in e, is

w = —ko = k(1 —2€0). (S-6)
The frequency as seen in the proper frame of an observer that moves with the 4-velocity u = v, (1, 7) is
w = —k-u=kv,(1 —en-T— e220), (S-7)

where U is evaluated at the location of the observer.
With introduction of

q:=—k-u/kvy, (5-8)



a local frequency in any frame can be written as a product of three factors, w") = kwv,q. This decomposition conveniently
separates different parts of the four-vectors. For example, if the signal was sent from the location 7 then at j the local frequency
is determined by

qij = —ki(t;) - uj/Kijv; (S-9)

and has a value w;;.

B. Interferometry: phase calculations, moving frames, and curved space

We now describe light wave propagation and the acquired phase using geometric optics. The scalar wave amplitude of a beam
of light is A(z)eié(m), where the phase ® satisfies the eikonal equation, which amounts to the Hamilton-Jacobi equation for
massless particles. As a consequence we will refer to fictitious photons traveling along the trajectories of the light beams. We
speak conventionally about the interference or detection at the spacetime point x = (¢, &), while the origin of the beam(s) is at
xr1 = (tl, fl), etc.

In a stationary spacetime for a beam approximated by a geodesic segment between x; and x, the acquired phase is given by

‘I’(J?) = —w[(t — tl) — S(f, fl)] + &, = —w(t — S(f, fl)) + &4, (S-10)

where the “abbreviated action" S satisfies S(#71;%1) = 0. On a curved stationary background (the timelike Killing vector is
tangent to the time coordinate t) the frequency w is a conserved quantity —kg, and ¢ is the coordinate time.

On each trajectory of a fictitious massless point particle (photon) the phase is constant. Light rays guide the propagation of
surfaces of constant phase, and the function S(#, Z1) can be expressed via the photon travel time along the geodesic as

S(%;%1) = At(T; 1), (S-11)
ie.

Introducing a local orthonormal basis ey, a = 0, ...3, so any vector is expressed as k = k%e,, we can (locally) write the
phase as

O(z) = k2q + Uy = kHz, + U4, (S-13)

where the last expression holds if the origin of the coordinate frame (9/9t, 9/9%) coincides with the origin of the orthonormal
frame. If it is possible (e.g. for a single beam) to choose a frame where the coordinates are adjusted to x = 0, then

U, =& + At(f = 0; 71 )w. (S-14)
The frequency that is measured by an observer at rest in this frame is ws = —kq—o. In a different Lorentz frame S’ [that has
the same origin and is related by an arbitrary combination of boosts and rotations to the original orthonormal frame] the phase
is expressed as

D(a') = K%, + Uy, (S-15)

with the same accrued phase V1.
If a pulse is reflected off a moving mirror, then by observing that

(I)(SﬂQ) = —(JJtQ + (I)l + OJAt(fQ; fl) = —wt2 + (I)Q, (S-16)
and writing the reflected wave four-vector as k (in general w # w), we have for ¢ > t,

D(z) = —@(t — AL(F; o)) + P1 + wAL(To; 1) = —@(t — AL(F; T2)) + Po. (S-17)



C. Frequencies and path differences

C.1 Relationship between trajectory parameters

We give a detailed derivation of the relationship between 715 and nio3. Elementary geometry based on Fig. 2 gives

13 =: 2L + NagD. (S-18)
Let us define the vector / as
Nog =: —No + €V, Ny -V =0, (S-19)
and the quantity A as
D =:L(1+€A). (S-20)

At zeroth order in ¢, the time taken for the return trip of beam I1_,2_,5is (L + D)/c = 2L/c = 2T, so Eq. (S-18) becomes
(we set 3; := ﬁi/c and 0; = N2 - 53;)

261 = —fhi2A + 7, (S-21)
resulting in the first order corrections
D = L(1 -2, - 51), fiog = —Na2(1 + 212 - 51) + 24, (S-22)
that is,
A=—20,, 7=—20150, + 26 (S-23)

Other relationships are obtained similarly. Parameters of the 1*2* segment are given as

Nyo =: Mg + P12, Ni2-Vig =0, (S-24)
where the above equations define the vector
Tio = (B2 — B1) — niv2(d2 — 1) (8-25)
and == 1/L, and
L* = L(1 + pl). (S-26)
To leading order in p they are
(L* = L) = ming - (V2 — v1) = L - O(pe), i1z — Aijo| = O(ue). (S-27)

The term of the order of 2 carries with it a factor of the order €2, and therefore this term is small enough to be ignored at our
level of approximation and is undefined without taking into account the post-Newtonian correction to the orbit.

To find the relationship between the segments 23 and 2*3* we note that the difference between 51 and 53 is of the order of
€?. Indeed, the centripetal acceleration at the Earth’s surface is a = v% /R cos 9, where = m/2 — 0 denotes the latitude of
the ground station. The Earth’s acceleration is of the order v% /R so we may use its values at either points 1 or 3. Hence for

g3 = Moz + fila3, Moz - Uaz = 0, D* =D(1+ ud) = L*(1 + €A™), (S-28)
and
D* = L(1+ eA + ud) := L(1 + pl + eA™). (5-29)
we obtain
d = nigz- (B — B2) = n(d2 — 1) = ¢, (S-30)
and

Tag = —n(fBa — f1) — nivaglias- (B — Ba)] = —n(Ba — B1) + nitna(dg — 01) = iy (S-31)



C.2 Frequencies

The standard second-order expression for the frequencies detected at the satellite

wig _ (1—U1—55%> 1— g - fo
wo 1—U2_%B§ 1—ﬁ12-§1 ’

and at the ground station after a go-return trip,

Wiz _ 1 — g3 - f3 1— - fa
wo 1 — a3 B2 1—1n2- 61

Assuming the light source is stable, the proper frequencies of the beam at GS is not changing. However,

wis _<1_U1_5612) 1—ﬁ12~52*
“o 1-U; — 3852 L—nfy- A

The leading term in the difference wjy — wy2 comes from the terms of the order € and is itself of the order ueQ

*
Wiy — W12 - - - - - -

0 = =g (B2 — B1) —nfy - (By — By) = —pihz - (B2 — B1) — a2 - (G — d1)m/c.

Wo

Using the value of /15 from Eq. (S-25) we obtain

81 = —npl(Bs — B1)? — (02 — 01)%] =z - (Go — @1)m/c

10

(S-32)

(S-33)

(S-34)

(S-35)

(S-36)

Next, we assume that the experiment is performed during the ballistic part of the trajectory, so @ = §», where go/c? ~ Us /L
is the free fall acceleration. Since a ~ v?/L the relative difference in frequencies is of the order ue®> ~ €?7;/L. For wy ~

500 THz and p ~ 10~* — 10~ it gives the beat frequency at the order of 1 — 30Hz.
The frequency of the beam arriving at GS at 3* from the satellite at 2* is

Wis _ [ 1=nds- B3 1 —niy- B3
wo 1—n3- By 1 —njy- B

Yis — o8 _ Ay - (32 - 51) — Ny - (52* - 51*) + fig3 - (33 - 32) LTE (gg* - gz*) = 01 + 02,

resulting in the difference

wo
where
0y 1= fag - (B3 — Ba) — 13y - (B5 — B) = pihra - (B3 — Ba) — fras - (@3 — Go)mi/c.
Since the difference between 05 and ¥ is of the order of €2, #; and @; can be used in the above formula. Therefore
8 = pirz - (B — Ba) + fuz- (@1 — Go)mifc = —[(Ba — 51)? — (02 — 01)2| /T — fuaz - (Go — @1)m/c = 6

where T := L/c. Given Eq. (S-40), we set § := §; = Jo for what follows.
The upward propagating beams are described by the wave vectors

ki(t1) = /“611(1, n12), ki(t]) = “Tl(la nis),

(S-37)

(S-38)

(S-39)

(S-40)

(S-41)

and so the conserved frequencies are ws := (kq)o = k11(1 — 2U7) and wy = k31 (1 — 2Uy), respectively. Similarly, the two
conserved frequencies of the downward propagation are w| = ri22(1 — 2Us) and w] = k3,(1 — 2U>) (the difference between

Uy and Uy is of the order pe?). These frequencies are

w
w—T:1+01+(—U1+0%_%5%)7
0

(S-42)
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and
w; =wt + wO(ﬂﬁlz . 51 + Nyo - 617’[/0). (§-43)

Equations (S-42) and (S-43) imply

Wi — wp = wom (51(52 - gl)j: 01(02 — 1) + fllzc't_ﬁ) . (S-44)
Upon reflection koo = wia/(gaav2). Accordingly,
% = %101 — 2By gy — 2U; + 2(Rys - 52)2 —2(n2 - gl)(ﬁé -fi1g) + Ba -7, (S-45)
and
W] =wf — 2o (p1fa - Tha + fng - @7y /). (S-46)

C.3 Propagation times

At zeroth order in € the upward and downward propagation times coincide, T = L/c. The second order expressions (that
include the Shapiro time delay) are

Atlg =T+ Tup> At23 =: D/C “+ Tdown (S—47)

for the upward and downward propagation, respectively. Here we used the approximation () = 1 (uniform spherical Earth),
which does not cause a loss in precision as the 7,5, /qown cOrTections cancel out below and their explicit form is not necessary.
Indeed,

* *

L D
Atly = — + Tup, Atyy = — + Tdown, (S-48)

where the dropped terms are of the order of je?.

D. Phases differences

Even under the ideal conditions the two pulses that are separated at the moment ¢; and follow the delay line and the free space
travel in different order will arrive to the detectors A and B at slightly different times. The mismatch that we evaluate below
should be much smaller then the coherence time of the pulses.

The pulses I 4, (blue line on Fig. 2, the delay loop on the ground is followed by the upward path to the satellite) and I, (red
line on Fig. 2, the upward path to the satellite is followed by the delay there), that were produced at ¢; arrive to the detector A at
to~ and ty1, respectively. They accrue the phases

\11114 = w117 + w;Ath, \I/§4 = wAt1g + w127, (S-49)
and hence at the respective moments of arrival the signal is given by
O[La,] = —wipts +Uf,  O[la,] = —wiaty + V3, (S-50)

respectively.
At leading order in e the mismatch between the arrival of pulses 14, (at £5¢) to the satellite and completion of the loop by
beam I 4, onboard (at £7°) is due to the difference in their travel times,

L*— L
AT = t5¢ — ¢ = — =70 - ). (S-51)

This means that at the point Z5«, the beam that left the ground station at ¢S meets not the beam from which it was split at

t$5 == t$5 — 7, but the beam that left the ground station at t$5 := ¢$3 + AT. (The time intervals that correspond to the same
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spatial location differ between the three frames we use by the expression of the order of €2, while due to the changes in the state
of the motion the correction terms themselves differ by the terms of the order €3 or higher).
Hence the correct beat term at the time t5< is then

PREB(I5F) = (wiver —wi-20)157, (S-52)
However, using Eq. (S-35) we see that indicates that the corrected frequency difference is
Wivgs — Wi-9= = Wivgs — Wia — (W1-9+ — wi2) = dwo (1 + O(e)). (S-53)

Since we are interested in the phase differences up to the second order in € and the correction due to the time difference is of the
order O(de) = O(e3) we can approximate the phase-shift pgsc(t5°) as

gOsc(tg*C) =®[l4,] — O[14,] = (wiy — wlg)tgg + (w12 — w11)7 + wrAt1g — waAtikz, (§-54)

obtaining Eq. (11).
Similarly, at the detector B, where the pulses I, (blue line on Fig. 2) and I, (red line on on Fig. 2) that were produced at
tq arrive at the moments #1171 and ¢3«, respectively. Their phases at B are

(I)[IBJ = —wﬁt?ﬁ + w1 + OJfFAtIQ + wIAt%, (I)[IBQ] = —wlgtﬁls + wTAtlg + wiAtzg + w137, (S-55)
respectively. Hence with the relative precision e the difference in the arrival times,

D*—-D L*—-L
+ c

t$5 499 = =27(02 — 01). (S-56)

Similarly, the signal pcg(252) results from the phase difference between beam I3, (loop on the ground, go-return trip to the
satellite) and beam I, (go-return trip to the satellite, loop on the ground). The phase acquired by the beams along both paths
are

B —wm+ Wi Aty + w]Atss, vl = wrAtio + wy Atog + wi3T. (S-57)
Therefore the signal s (t$°) is given by
pas(t§S) = [Ip,] — ®[Ip,] = (Wi — wis)tSS + (w13 — w11)T + WAty — WAL}, + w Atag — W] Aths.  (S-58)
For the signal pgc(t5¢), at second order in € we find
WAtz — WAt = —wo[r (1 +01)(02 — 01) + (2 - 51/0 + Ry - @ymL/c?)] = —Wo TS (S-39)
where we used Egs. (S-42) and (S-43) for the frequencies and Eq. (S-47) for the coordinate propagation time. Hence
54 =(1401)(d2 —01) + Br-(By = B1) —01(02 — 01) + fng-d@r1 L/ = (09 — 01) + B1- (B2 — B1) + fng-a@rT/e.  (S-60)

For the signal s (t5°) we find the phase acquired during the upward propagation of the beams is the same as the above
expression, and for the return trip

wiAtQ‘g — wIAt% = —WoT] (ST — 25¢)7 (S-61)
where

5, = Ba- (B — B1) + faa-GoTc. (S-62)

E. The signal

The useful information can be extracted from the signal
S = Ysc (tgg) - %@GS (t?,G*S) = Sbeats + Sloop + Sspacea (S'63)

where for the ease of the analysis we identified three contributions. All three are of the same order of magnitude.



13
E.1 Beat contribution

At our level of precision the difference of the two beat terms will have time dependence only through slowly-varying changes
in frequencies and accelerations, and therefore we can ignore the O(e?) difference between the proper time on the satellite and
on the ground. The beats difference is given by

Sheats = @beat(tsc) — %(pbeat (tGS) = 5w0(t§9 - tgG*S) = —deltawyT (S-64)
and substituting Eq. (S-40) gives
Sbeats = WOTZ((52 - 51)2 — (02 = 01)% + L+ (o — 51)/62)- (5-65)

E.2 Delay loop contribution

The phase difference due to the beams propagation through delay loops on the satellite and on the ground also contain only
terms of the second order in € or higher. Indeed,

Stoop = (w12 — 2w13 2w0)7'l =: onl(sl(oc))p + sl(fc))p) (S-66)
The contribution
sfjlp = —1f12 - (Bo— B1) + $93 - (B3 — Ba), (S-67)
is built from the first order quantities, but due to the first-order equality of
— fiaz - B3 = s - fi = 01, —fig3 - B = iz - Ba = Do, (S-68)
sl(ogp is of the second order in e. Substituting the leading order expansion of 7193 = —7112 + €/ and U5 = ¥} + 2Led; /c we find
Stoap = 5 (7 (B1 = Ba) — 2Lz - @1 /c?). (S-69)

Using Eq. (S-23) for 7/, the above equation reduces to
Sl(;c))p 02+ 0102 + 87 — f1- B2 — Tz - @1 /c, (S-70)

The term S'%

Joop 18 given by

Sl(oc))p = Uy — Ur + 5((R12 - B1)? — (a3 - Ba)* — BT + 53
+ fi12-Ba fiaz- (B2 — B3) — faz-Bi (g - Ba + fag - B — fiag - B3) + fizz- B ﬁ23'gs)~ (S-71)

The above expression can be considerably simplified since we are interested only up to order e? expression. Equation (S-71)
reduces to

s\ = Uy — Uy + 163 — 157 + 010, — 03, (S-72)
finally giving
Stoop = woTi (U2 — U1 + 5 (51 B2)? — (01 — 02) — Ting - @1 /). (S-73)

E.3 Propagation difference

The phase difference due to the difference in paths the beams propagate along is
Sspace = —WwoT] (5¢ — %(QST — 25¢)) = —WoTIS, (S-74)

and by using Eq. (S-62),

Sspace = —WwoT; [52(/6;2 - gl) + ﬁ12'§2T/C] (S-75)
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E.4 Final expression

From a phenomenological point of view, the possible violation of LPI is parametrized by
Spo=—-1+10+a)20+..., (S-76)

leading, as an example, to Eq. (1).
For our proposal, putting Egs. (S-65), (S-73) and (S-75) into (S-63), the final expression for the signal from which a bound on
« will be obtained is

3 . . L.
S =wor |Us — Uy + 5(51 — B2)? = B2+ (B2 — 1) — 2(01 — 02)? —QTTAL12'51/C} , (S-77)

which, by taking into account Eq. (S-76), finally gives Eq. (14) of the main text.

F. Unequal delay times

It is impossible for the two delay lines to be perfectly identical. We define the relative difference in the proper propagation
times 9; as

TlSC — TlGS o AT

TlGS . TlGS ’

0 = (5-78)

which can be made suitably small and in the following we assume that §; < e. The delay time difference affects only the
signal pgc. In principle, it affects both the delay phase and the beat term, due to the additional contribution to the arrival time
mismatch. In this case the latter quantity becomes

L*—L

AT = + 710 :TZ(OQ — 01 +51), (S-79)

which at our level of precision still gives the beat term (w}, — w12)t5¢. On the other hand, the delay line contribution provides

a constant phase offset and the additional term of the €d; that results from the first order Doppler effect,
Agﬁsc = wioT0; = wo(l + (01 — 02))7'151 . (S-80)
Hence

AS/(WoTl) =0, + (01 — 02)51. (S-81)
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