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Abstract

We consider a wave packet of a spin-1/2 particle in a gravitational field, the effect of which can

be described in terms of a succession of local inertial frames. It is shown that integrating out of

the momentum yields a spin mixed state, with the entropy dependent on the deviation of metric

from the flat spacetime. The decoherence occurs even if the particle is static in the gravitational

field.
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Spacetime tells matter how to move [1]. For quantum objects, spacetime tells quantum

states how to evolve, that is, the quantum states are affected by the gravitational field. For

example, by considering quantum fields near black holes, Hawking showed that black holes

emit thermal particles [2, 3]. Analogously, Unruh showed that an accelerated detector in the

Minkowski vacuum detects thermal radiation [4, 5]. In recent years, there have been a large

number of discussions about quantum decoherence and quantum entanglement degradation

in quantum fields [6–14]. On the other hand, decoherence in the spin state due to the change

of reference frame exists also for a single relativistic particle with spin degree of freedom. It

was shown that the spin entropy is not invariant under Lorentz transformation unless the

particle is in a momentum eigenstate [15]. Such an effect can be generalized to the presence

of a gravitational field, by considering a continuous succession of Lorentz transformations.

This is a kinetic way of decoherence, and occurs even if the particle is static. It has been

shown, for a particle moving around a black hole near the Schwarzschild horizon, that a

rapid spin decoherence is observed for an observer static in the Killing time [16]. EPR

correlation and the violation of Bell inequality were also investigated [17]. In this Letter, we

show that spin decoherence is quite general for a particle in a gravitational field even if the

particle is static.

The state Ψp,σ of a massive particle is the eigenvector of the four-momentum pµ, and

σ denotes the spin. Under a homogeneous Lorentz transformation Λ which carries the

momentum from pµ to qµ = Λµ
νp

ν , the state of the particle transforms as [18]

U(Λ)Ψp,σ =

√

(Λp)0

p0

∑

σ′

D
(1/2)
σ′σ (W (Λ, p))ΨΛp,σ′, (1)

where D
1/2
σ′σ(W (Λ, p)) is the spin-1/2 representation of the Wigner rotaion W (Λ, p) =

L−1(Λp)ΛL(p), where L(p) represents a “standard boost” that carries the momentum from

(m, 0, 0, 0) to pµ and can be chosen as

[L(p)]µ0 = [L(p)]0µ =
pµ

m
, (2)

[L(p)]ij = δij +
pipj

m(p0 +m)
, (3)

where m is the mass of the particle, and indices i, j = 1, 2, 3. It can be calculated that

W 0
0 = 1, W i

0 = W 0
i = 0, and

W i
j = Λi

j +
Λi

0pj
p0 +m

− qiΛ0
j

q0 +m
. (4)
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Now we calculate the Wigner rotation of a massive spin-1/2 particle moving in the grav-

itational field. Consider the spacetime metric

ds2 = −(1 + gx)2dt2 + dx2 + dy2 + dz2, (5)

which corresponds to the local coordinate system of an accelerated observer in flat spacetime

or an observer in a uniform gravitational field [1]. It can also characterize the spacetime near

the event horizon of a Schwarzschild black hole, as the near horizon spacetime is locally flat

for a large black hole, and static observers near the horizon in the Schwarzschild spacetime

correspond to accelerated observers in Minkowski spacetime [19, 20].

We assume that the particle is moving with constant velocity uµ = dxµ/dτ , that is, the

spatial components of the velocity are independent of time. Note that the particle is not in

free fall, it must be subject to a force, which may cause spin decoherence dynamically. We

avoid this dynamical effect by assuming that the particle does not experience any torque.

In order to calculate the Wigner rotation, we introduce local inertial frames (LIF) at each

spacetime point along the particle’s world line, by using a tetrad ea
µ(x), defined through

ea
µ(x)eb

ν(x)gµν(x) = ηab, (6)

where we use Greek letters to label the general-coordinates (t, x, y, z), and Latin letters to

label the coordinates of the LIF, with the components denoted as 0, 1, 2, 3. For given gµν(x),

the locally inertial coordinate at x0 can only be determined up to order (x− x0)
2, as a LIF

remains inertial after a Lorentz transformation [21]. But the spin entropy is not invariant

between different LIFs.

One choice of the LIF can be made by choosing

e0
t =

1

1 + gx
, e1

x = e2
y = e3

z = 1, (7)

and all the other components are zero. In this LIF, the magnitudes of the spatial components

of velocity of the particle are the same as those in the general coordinate, thus we may exclude

the special relativistic effects described in [15]. The inverse of the tetrad can be obtained

from

eaµ(x)ea
ν(x) = δµ

ν , eaµ(x)eb
µ(x) = δab. (8)

And any vector Aµ is transformed to

Aa = eaµA
µ (9)
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in the LIF. Now, if the particle does not move along a geodesic, the LIF updates with time,

so does the momentum of the particle pa. The change of pa can be written as δpa = λa
bp

bdη,

where η is the coordinate time of the LIF, and λa
b is related to Λa

b as Λa
b = λa

bdη + δab.

λa
b can be calculated to be

λa
b = −(aaub − uaab) + χa

b, (10)

where the first term is due to the acceleration of the particle, aa and ua are the acceleration

and velocity in the LIF, respectively. aa = eaµa
µ, where

aµ = uν∇νu
µ = uν [∂νu

µ + Γµ
νσu

σ] , (11)

with Γµ
νσ being the Christoffel symbols, which can be calculated according to the standard

procedures, and aa can be obtained by lowering the indices. The results are

a0 = −a0 =
gux

√
1 + u2

1 + gx
, (12)

a1 = a1 =
g(1 + u2)

1 + gx
, (13)

a2 = a2 = 0, a3 = a3 = 0. (14)

The components of velocity in the LIF are

u0 = −u0 =
√
1 + u2, (15)

u1 = u1 = ux, u2 = u2 = uy, u3 = u3 = uz. (16)

The second term of Eq. (10), χa
b, which characterizes the change of the LIF along the world

line, is given by

χa
b = uµ(x) [eb

ν(x)∇µe
a
ν(x)] . (17)

Thus λa
b and Λa

b can be obtained.

Now we write W i
j as

W i
j = δij + ωi

j, (18)

and then, by using Eq. (4) with q0 = p0 in our case, we obtain

ω1
2 = −ω2

1 = −gpy
√

m2 + p2

(1 + gx)m2
, (19)

ω1
3 = −ω3

1 = −gpz
√

m2 + p2

(1 + gx)m2
, (20)
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ω2
3 = −ω3

2 = 0, (21)

where p =
√

p2x + p2y + p2z. Note that ω’s depend on x, which in turn depend on px. For a

wave packet, x may also has certain distribution, and we can simply replace x as x̄ and the

initial coordinate x̄ of the center of the wave packet, since it can be shown that if we take

into account the width of the wave packet in x direction, the difference is only of higher

order. The spin-1/2 representation of the Winger rotation is

D
1/2
σ′σ(W (x)) = I +

i

2
[ω23(x)σx + ω31(x)σy + ω12σz] dη

= I +
i

2
[ω(x) · σ] dη = I +

i

2
ω(x)(n̂ · σ)dη, (22)

where ω(x) = ω2
12(x)+ω2

23(x)+ω2
31(x), n̂i = ǫijkωjk(x)/ω(x), ǫijk is the completely antisym-

metric tensor with ǫ123 = 1, and n̂ = n̂ix̂
i. For finite time η,

D
1/2
σ′σ(η) = T

{

exp

[

i

2

∫ η

0

ω(x)(n̂ · σ)dη
]}

, (23)

where T represents time ordering. Hence

D
1/2
σ′σ(η) = I cos

(

θ

2

)

+ i(n̂ · σ) sin
(

θ

2

)

, (24)

where

θ =

∫ η

0

ω(x)dη

≈ gη

1 + gx̄

√

p2y + p2z
√

m2 + p2

m2
−
(

gη

1 + gx̄

)2 px
√

p2y + p2z
2m2

, (25)

For a spin-1/2 particle, the initial state





a0(p)

b0(p)



 .

becomes




a(p)

b(p)



 = D
1/2
σ′σ(η)





a0(p)

b0(p)



 (26)

after the Wigner rotation.

Now we assume the initial wave packet is Gaussian,

a0(p) = α
π−3/4

√
wxwywz

e
− 1

2

[

(px−p̄x)2

w2
x

+
(py−p̄y)

2

w2
y

+ (pz−p̄z)
2

w2
z

]

, (27)
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b0(p) = β
π−3/4

√
wxwywz

e
− 1

2

[

(px−p̄x)2

w2
x

+
(py−p̄y)2

w2
y

+ (pz−p̄z)
2

w2
z

]

, (28)

with |α|2 + |β|2 = 1, p̄i being the average momentum, and wi being the width of the wave

packet in each directions in the momentum space. Using Eq. (26), we obtain that after

rotation η, the state of the particle becomes

a(p) =
π−3/4

√
wxwywz

e
− 1

2

[

(px−p̄x)2

w2
x

+
(py−p̄y)2

w2
y

+
(pz−p̄z)

2

w2
z

]

×
[

α cos

(

θ

2

)

+ βn̂y sin

(

θ

2

)

+ iαn̂z sin

(

θ

2

)]

, (29)

b(p) =
π−3/4

√
wxwywz

e
− 1

2

[

(px−p̄x)2

w2
x

+
(py−p̄y)2

w2
y

+ (pz−p̄z)
2

w2
z

]

×
[

β cos

(

θ

2

)

− αn̂y sin

(

θ

2

)

− iβn̂z sin

(

θ

2

)]

. (30)

The density matrix of the particle can be written as

ρ(p1,p2) =





a(p1)a(p2)
∗ a(p1)b(p2)

∗

b(p1)a(p2)
∗ b(p1)b(p2)

∗



 . (31)

The reduced density matrix of the spin can be obtained by tracing out over p, that is, setting

p1 = p2 = p, and then integrating over p. The result is

∫

|a(p)|2 d3p = |α|2 − (|α|2 − |β|2)
4m2

(

gη

1 + gx̄

)2(

p̄2z +
w2

z

2

)

+
(αβ∗ + α∗β)

2

[

gη

1 + gx̄

p̄z
m

−
(

gη

1 + gx̄

)2
p̄xp̄z
m2

]

−i
(αβ∗ − α∗β)

4m2

(

gη

1 + gx̄

)2

p̄yp̄z, (32)

∫

|b(p)|2 d3p = |β|2 + (|α|2 − |β|2)
4m2

(

gη

1 + gx̄

)2(

p̄2z +
w2

z

2

)

−(αβ∗ + α∗β)

2

[

gη

1 + gx̄

p̄z
m

−
(

gη

1 + gx̄

)2
p̄xp̄z
m2

]

+i
(αβ∗ − α∗β)

4m2

(

gη

1 + gx̄

)2

p̄yp̄z, (33)

∫

a(p)b(p)∗d3p = αβ∗ − (αβ∗ + α∗β)

4m2

(

gη

1 + gx̄

)2(

p̄2z +
w2

z

2

)

−αβ∗

2m2

(

gη

1 + gx̄

)2(

p̄2y +
w2

y

2

)
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−(|α|2 − |β|2)
2

[

gη

1 + gx̄

p̄z
m

−
(

gη

1 + gx̄

)2
p̄xp̄z
m2

]

−iαβ∗

[

gη

1 + gx̄

p̄y
m

−
(

gη

1 + gx̄

)2
p̄xp̄y
m2

]

+i
(|α|2 − |β|2)

4m2

(

gη

1 + gx̄

)2

p̄yp̄z. (34)

Now we consider two cases. First we set α = 1 and β = 0, the result is
∫

|a(p)|2 d3p = 1− 1

4m2

(

gη

1 + gx̄

)2(

p̄2z +
w2

z

2

)

, (35)

∫

|b(p)|2 d3p =
1

4m2

(

gη

1 + gx̄

)2(

p̄2z +
w2

z

2

)

, (36)

∫

a(p)b(p)∗d3p = − 1

2m

gη

1 + gx̄
p̄z +

1

4m2

(

gη

1 + gx̄

)2

(2p̄x + ip̄y) p̄z. (37)

The spin entropy can be calculated by using the definition S = −∑

j λj lnλj, where λj’s are

the eigenvalues of the density matrix. The result is

S ≈ ξz(1− ln ξz), (38)

where ξz = 1
2

[

gwzη
2m(1+gx̄)

]2

. In Eq. (38), we have neglected the terms of higher orders in ξz.

Eq. (38) is similar to the results for Lorentz transformation [15],

S ≈
(

w2 tanh2 α

2
/8m2

) [

1− ln
(

w2 tanh2 α

2
/8m2

)]

,

where α = cosh−1(1−β2)−1/2, w is the width of the momentum distribution. The difference

is that in our case, the spin entropy is generated by the gravity and increases with time. It

can be seen that our result does not depend on the momentum pi of the particle. In other

words, the spin entropy of the particle would increase with time even the particle is static.

The widths of the wave packet in the momentum space appear in our result. In the limit of

wz

m
→ 0, that is, if the particle is in a momentum eigenstate, S remains zero.

We can also calculate the purity defined by P = Tr ρ2, the result is

P ≈ 1− 2ξz, (39)

which does not depend on the momentum either.

Now we consider the case α = β = 1√
2
. We obtain

∫

|a(p)|2 d3p =
1

2
+

1

2m

gη

1 + gx̄
p̄z −

1

2m2

(

gη

1 + gx̄

)2

p̄xp̄z, (40)
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∫

|b(p)|2 d3p =
1

2
− 1

2m

gη

1 + gx̄
p̄z +

1

2m2

(

gη

1 + gx̄

)2

p̄xp̄z, (41)

∫

a(p)b(p)∗d3p =
1

2
− 1

4m2

(

gη

1 + gx̄

)2(

p̄2y +
w2

y

2

)

− i

2

gη

1 + gx̄

p̄y
m

− 1

4m2

(

gη

1 + gx̄

)2(

p̄2z +
w2

z

2

)

+
i

2

(

gη

1 + gx̄

)2
p̄xp̄y
m2

. (42)

Thus the spin entropy is

S ≈ (ξy + ξz)(1− ln(ξy + ξz)), (43)

where

ξy =
1

2

[

gwyη

2m(1 + gx̄)

]2

. (44)

The purity is calculated to be

P ≈ 1− 2(ξy + ξz). (45)

Again, the spin entropy and the purity do not depend on the momentum, what determines

the final results is the width of the momentum distribution.

Now we consider a static particle with the general values of α and β. Using Eqs. (32)–(34)

with pi = 0, we obtain
∫

|a(p)|2 d3p = |α|2 −
(

|α|2 − |β|2
)

ξz, (46)
∫

|b(p)|2 d3p = |β|2 +
(

|α|2 − |β|2
)

ξz, (47)
∫

a(p)b(p)∗d3p = αβ∗ − 2αβ∗ξy − (αβ∗ + α∗β)ξz. (48)

The spin entropy and the purity are, up to the first order of ξy and ξz,

S ≈ ξ (1− ln ξ) (49)

and

P ≈ 1− 2ξ, (50)

respectively, where

ξ = 4|α|2|β|2ξy +
(

α2 + β2
) [

(α∗)2 + (β∗)2
]

ξz. (51)

To summarize, we have calculated the spin entropy and the purity of a spin-1/2 particle

in the presence of the gravitational field. It has been shown that because of the gravity, the

spin entropy of the particle increases with time even if the particle is static. This effect is
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generated by the gravity, and if g → 0, the spin does not decohere. Our results also depend

on the uncertainty of the momentum of the particle. If wi

m
→ 0, that is, the particle is in

the momentum eigenstate, the spin entropy remains zero.

Although in our calculations a uniform gravitational field is employed, the results are quite

general for any spacetime metrics. The calculations here are only related to the gravitational

force felt by the particle, regardless the specific shape of the spacetime. For any particle

moving in the general curved spacetime, we are able to calculate the Wigner rotation of the

particle by introducing instantaneous LIFs, and hence we conclude that the spin state of

the particle would decohere if the particle is not moving freely.
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