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A unified approach to the study of classical and quantum spin in external fields is de-

veloped. Understanding the dynamics of particles with spin and dipole moments in

arbitrary gravitational, inertial and electromagnetic fields is important in astrophysics

and high-energy and heavy-ion experimental physics.
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1. Projection method for spin in arbitrary external fields

One can develop a natural extension of the classic Frenkel-Thomas spin model

which is based on the definition of the “magnetic” and “electric” components of the

relativistic forces and moments of forces acting on a particle (hence it is natural

to call this approach a projection method). Let us recall that in Maxwell’s theory,

electrodynamic phenomena are described by the field strength tensor Fαβ , and the

magnetic and electric fields can be introduced in a covariant way as the longitudinal

and transversal projections on the velocity Uα:

Eα := FαβU
β , Bα :=

1

2c
ηαµνβFµνUβ. (1)

Here ηαβµν is the totally antisymmetric Levi-Civita tensor. Thereby one gets an

unique representation of the electromagnetic field strength tensor in terms of its

projections (electric and magnetic fields):

Fαβ =
1

c2
(EαUβ − EβUα + cηαβµνU

µBν) . (2)

In the model of a classical particle with internal degrees of freedom (the gen-

eralized Frenkel-Thomas model), the motion of a test particle is characterized by

the 4-velocity Uα and the 4-vector of spin Sα, which satisfy the normalization

UαU
α = c2 and the orthogonality condition SαU

α = 0. In general, the dynamic

equations for these variables can be written as

dUα

dτ
= Fα,

dSα

dτ
= Φα

βS
β. (3)

External fields of different physical nature (electromagnetic, gravitational, scalar,

etc.) determine the forces Fα acting on the particle, as well as the spin transport

matrix Φα
β which affects the spin. Normalization and orthogonality of the velocity

and spin vectors impose conditions on the right-hand sides of (3):

UαF
α = 0, UαΦ

α
βS

β = −SαF
α. (4)
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The spin transport matrix must be skew-symmetric, Φαβ = −Φβα, which automati-

cally guarantees SαS
α =const. The relativistic 4-velocity vector Uα is conveniently

parametrized via the spatial velocity 3-vector v̂a and the Lorentz factor γ:

Uα =

(
γ

γv̂a

)
, γ =

1√
1− v̂2/c2

, v̂2 = δabv̂
av̂b. (5)

The vector of the generalized force Fα acting on a particle has only a transversal

projection, according to (4). As for the spin transport matrix Φαβ , like any bivector,

we can decompose it into a pair of 4-vectors. Namely, by analogy with (1), we define

“electric” and “magnetic” projections

Nα := ΦαβU
β , Qα :=

1

2c
ηαµνβΦµνUβ . (6)

By construction, these 4-vectors are orthogonal to the velocity of the particle,

UαN
α = 0, UαQ

α = 0, (7)

and the relations (4) are then recast into

UαF
α = 0, SαN

α = SαF
α. (8)

As a result, we have an unique decomposition analogous to (2):

Φαβ =
1

c2
(NαUβ −NβUα + cηαβµνU

µQν) . (9)

The orthogonality conditions (7) can be resolved so that

N0 =
1

c2
(N · v̂), (10)

where as usual v̂ = {v̂a} and N = {Na}. Accordingly, we find in components:

Φa
0 = γ

(
Na − v̂aN0 − ǫabcQ

bv̂c
)
, (11)

Φ0
a =

γ

c2
(
Na − v̂aN

0 − ǫabcQ
bv̂c

)
, (12)

Φa
b =

γ

c2
(v̂aNb − v̂bN

a)− γǫabc
(
Qc − v̂cQ0

)
. (13)

The physical spin, as an “internal angular momentum” of a particle, is defined

with respect to particle’s rest frame system, in which uα = δα0 . The transition to

this system is carried out by the Lorentz transformation Uα = Λα
βu

β, where

Λα
β =

(
γ γv̂b/c

2

γv̂a δab + γ−1
v̂2 v̂av̂b

)
. (14)

Therefore, the dynamic equation for the physical spin sα = (Λ−1)αβS
β reads:

dsα

dτ
= Ωα

βs
β , (15)

where the tensor of angular precession of spin is constructed as

Ωα
β = (Λ−1)αγΦ

γ
δΛ

δ
β − (Λ−1)αγ

d

dτ
Λγ

β . (16)
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The 0th component of (15) vanishes, which is equivalent to the second condition

(4). As a result, the spin evolution equation (15) reduces to the 3-vector form

dsa

dτ
= Ωa

bs
b, or

ds

dτ
= Ω× s. (17)

Here the components of 3-vectors are introduced through s = {sa} and Ω ={
− 1

2ǫ
abcΩbc

}
. A direct calculation gives the precession angular velocity in terms of

the magnetic and electric projections of the spin transport matrix:

Ω = γ
{
Q− v̂Q0 +

γ

γ + 1

1

c2
[
v̂ (v̂ ·Q)− v̂2Q

]}
+

γ

γ + 1

F × v̂

c2
. (18)

It is worthwhile to note that Ω actually depends only on the transversal part of the

“magnetic” vector, namely Qα
⊥
= Qα − 1

c2
UαUβQ

β . Explicitly in components

Q0
⊥ =

γ2

c2
[
v̂ ·Q− v̂2Q0

]
, Qa

⊥ = Qa +
γ2

c2
[
v̂ ·Q− c2Q0

]
v̂a, (19)

and by a direct computation one can check that

Q⊥ − v̂Q0
⊥ = Q− v̂Q0, v̂ (v̂ ·Q⊥)− v̂2Q⊥ = v̂ (v̂ ·Q)− v̂2Q. (20)

From (19) one then finds

Q0
⊥
=

1

c2
v̂ ·Q⊥, (21)

and therefore we recast (18) into a final form

Ω = Q⊥ −
γ

γ + 1

v̂ (v̂ ·Q⊥)

c2
−

γ

γ + 1

v̂ ×F

c2
. (22)

The new general equations (22), (17) are valid for a particle with spin that interacts

with arbitrary external fields. The actual dynamics of the physical spin depends on

the forces acting on the particle and on the spin transport law.

2. Application: Spin in the gravitational and electromagnetic fields

In order to consider the most general case, we assume that the gravitational field is

described by an arbitrary coframe and an (independent) local Lorentz connection

(eαi ,Γi
αβ = −Γi

βα), whereas the electromagnetic field as usual is represented by the

vector potential Ai = (−Φ,A). The corresponding field strengths are the torsion

Tij
α = ∂ie

α
j − ∂je

α
i + Γiβ

αeβj − Γjβ
αeβi , the curvature Rij

αβ = ∂iΓj
αβ − ∂jΓi

αβ +

Γiγ
βΓj

αγ − Γjγ
βΓi

αγ , and the Maxwell tensor Fij = ∂iAj − ∂jAi. Accordingly,

the spacetime geometry in general carries the Riemann-Cartan structure with the

metric gij = eαi e
β
j gαβ and the nontrivial torsion. The “deviation” of the spacetime

geometry from the Riemannian structure can be conveniently measured by the

contortion tensor which is defined in terms of the difference of the local Lorentz

connection Γi
αβ and the Riemannian (Levi-Civita or Christoffel) connection Γ̃i

αβ :

Ki
αβ = Γ̃i

αβ − Γi
αβ . (23)
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2.1. Quantum spinning particle

A fermion particle with spin 1
2 , charge q and mass m is described by the relativistic

Dirac theory. The spinor field ψ dynamics is determined by the Lagrangian

L =
i~

2

(
ψγαDαψ −Dαψγ

αψ
)
−mcψψ +

1

2c
Mαβ ψσ

αβψ +
i~ν′

12
Ťα ψγαγ5ψ,(24)

where the spinor covariant derivative is defined as (with σαβ = iγ[αγβ])

Dαψ = eiα

(
∂iψ −

iq

~
Aiψ +

i

4
Γi

βγσβγψ

)
. (25)

The first two terms in (24) describe minimal coupling of the spinor field to elec-

tromagnetism and gravity encoded in (25). In addition, we assume possible non-

minimal interactions, which are described by two Pauli-type terms in (24), where

Mαβ = µ′Fαβ + cδ′
1

2
ηαβµνF

µν , (26)

is the generalized polarization tensor, and the axial torsion is defined as

Ťα = −
1

2
ηαµνβTµνβ =

{
Ť 0, Ť

}
. (27)

The parameters δ′, µ′, ν′ characterize the strength of nonminimal couplings.

2.2. Classical spinning particle

The classical theory of spin was developed soon after the concept of spin was pro-

posed in particle physics (see1 for introduction and history). This theory underlies

the analysis of the dynamics of polarized particles in accelerators and storage rings.

Neglecting second-order spin effects2, the dynamical equations for a spinning

particle in external electromagnetic and gravitational fields are written as

DUα

dτ
= −

q

m
Fα

β U
β , (28)

DSα

dτ
= − (ν′− 2)U iKiβ

αSβ −
q

m
Fα

βS
β

−
2

~

[
Mα

β +
1

c2
Uγ (UαMβγ − UβM

α
γ)

]
Sβ. (29)

Here we follow the notations and conventions introduced in the previous sections.

2.3. Application of the projection method

Comparing the system (28)-(29) with (3), we find explicitly the generalized force

and the spin transport matrix:

Fα = −
q

m
IFαβ U

β, Φαβ = −
q

m
IFαβ , (30)

where we introduced the combined external field

IFαβ = Fαβ +
2m

q~
M⊥

αβ −
m

q
U iΓiαβ . (31)
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As we see, ΦαβU
β = Fα. Here we denoted

M⊥

αβ =
(
δµα −

1

c2
UαU

µ
)(
δνβ −

1

c2
UβU

ν
)
Mµν . (32)

The components of this tensor read explicitly

M⊥

0a =
γ2

c

{
− v2Pa + v̂a(v̂ ·P) + c[v̂ ×M]a

}
, (33)

M⊥

ab = ǫabc
γ2

c2
{
c2Mc − v̂c(v̂ ·M) + c[v̂ ×P]c

}
. (34)

Here we identify cPa = {M0̂1̂,M0̂2̂,M0̂3̂},M
a = {M2̂3̂,M3̂1̂,M1̂2̂} as the polariza-

tion and magnetization 3-vectors, respectively.

Now we use the projection method developed above and extract the “electric”

and “magnetic” vectors from the artificial electromagnetic field (31)

IEα := IFαβU
β , IBα :=

1

2c
ηαµνβIFµνUβ , (35)

which yields an unique representation

IFαβ =
1

c2
(IEαUβ − IEβUα + cηαβµνU

µIBν) . (36)

Comparing (6) with (9), we thus identify

Nα = −
q

m
IEα, Qα = −

q

m
IBα. (37)

Let us define effective “electric” and “magnetic” fields

E
eff
a = {IF1̂0̂, IF2̂0̂, IF3̂0̂}, B

a
eff = {IF2̂3̂, IF3̂1̂, IF1̂2̂}. (38)

Or in compact form: Eeff
a = IFa0, and B

a
eff = 1

2ǫ
abcIFbc.

Consequently from (35) and (37) we derive the components

N0 = γ
qv̂ ·Eeff

mc2
, N = γ

q

m
(Eeff + v̂ ×Beff) , (39)

Q0 = − γ
qv̂ ·Beff

mc2
, Q = − γ

q

m

(
Beff −

1

c2
v̂ ×Eeff

)
. (40)

By construction, Q⊥ = Q, and moreover we have F = N . Inserting (39) and (40)

into (22), we obtain the precession angular velocity (22)

Ω =
q

m

(
−Beff +

γ

γ + 1

v̂ ×Eeff

c2

)
(41)

as a function of external fields which enter via the effective variables:

Eeff = E−
2m

q~
γ2 v̂ ×∆+

m

q
E, (42)

Beff = B+
2m

q~
γ2

[
∆−

1

c2
v̂ (v̂ ·∆)

]
+
m

q
B. (43)
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Recall that the components of the true electric and magnetic fields are introduced as

Ea = {F1̂0̂, F2̂0̂, F3̂0̂},B
a = {F2̂3̂, F3̂1̂, F1̂2̂}. The generalized polarization current,

∆ = M+
1

c
v̂ ×P, (44)

accounts in the spin precession (41)-(43) for the electromagnetic nonminimal cou-

pling effects, whereas the gravitoelectric and gravitomagnetic fields

E = Ẽ −
γc(3− ν′)

6
v̂ × Ť , B = B̃ +

γc(3− ν′)

6

(
Ť − v̂Ť 0

)
(45)

encompass general-relativistic Riemannian gravitoelectric Ẽ and gravitomagnetic B̃

contributions, as well as the post-Riemannian terms due to the spacetime torsion.

3. Discussion and conclusion

The classical and quantum spin dynamics are fully consistent. The physical contents

of the relativistic quantum theory (24) is revealed when we recast the Dirac equation

into a Schrödinger form and go to the Foldy-Wouthuysen (FW) representation. In

the Schwinger gauge, the coframe is parametrized by the functions V,K,W â
b:

e 0̂
i = V δ 0

i , eâi =W â
b

(
δbi − cKb δ 0

i

)
, a = 1, 2, 3, (46)

and the resulting FW Hamiltonian in the semiclassical approximation then reads

HFW = βmc2V γ + qΦ+
c

2
(K · π + π ·K) +

~

2
Σ ·Ω. (47)

Here the Lorentz factor (5) operator γ and the precession velocity (41) operator

Ω are both expressed in terms of the velocity operator v̂ which is related to the

momentum operator π = −i~∇− qA via β W b
âπb = mγv̂a.

The analysis of the spin dynamics in electromagnetic, inertial and gravitational

fields is fundamentally important for the study of the geometrical structure of space-

time3, as well as in the high-energy physics experiments4, in the search of gravita-

tional waves5, in the neutrino physics in matter6, and in the heavy-ion collisions7.
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