
ar
X

iv
:1

90
4.

06
03

6v
1 

 [
he

p-
ph

] 
 1

2 
A

pr
 2

01
9

Geometrical contribution to neutrino mass matrix
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Abstract

It is well known that the dynamics of fermions on curved spacetime requires a spin connection,

which contains a part called contorsion, related to torsion of the spacetime. This is an auxiliary

field, without independent dynamics but fully expressible in terms of the axial current density of

fermions. Its effect is the appearance of a quartic interaction of all fermions in the action, leading to

a nonlinear Dirac equation involving all fermions present. Noting that the coupling of contorsion

to fermions is not protected by any symmetry, thus allowing for different couplings to left and

right-chiral fermions, we show that all fermions gain an effective mass when propagating through

fermionic matter. This may have an observable effect on neutrino oscillations. In particular we

find that different neutrino flavors can mix even if they have zero rest mass in vacuum.
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I. INTRODUCTION

The origin of neutrino mass is a mystery [1, 2]. The Standard Model of particle physics,

so called because it encompasses all the known elementary particles and the interactions

between them, explains the masses of elementary particles in terms of electroweak sym-

metry breaking and the vacuum expectation value of the Higgs field. The Higgs field in

the electroweak theory is a complex doublet whose potential reaches a local minimum for

a continuous range of configurations of the field, corresponding to a non-vanishing vac-

uum expectation value (vev) of the neutral scalar Higgs field. This is the phenomenon of

spontaneous symmetry breaking, which means that the vacuum is not invariant under the

symmetry transformations of the classical Lagrangian and the quantum Higgs field consists

of fluctuations around this vev.

In the Standard Model, it is the SU(2) × U(1) electroweak symmetry which is sponta-

neously broken in the vacuum. For the fermions, this symmetry is a chiral one. Let us focus

on the leptons, but what we say can be generalized to quarks quite easily. Left-handed com-

ponents of leptons pair up into doublets of weak isospin ΨeL =





νL

eL



 while a right-handed

component has never been observed for the neutrino and thus the right-handed electron eR

is by necessity a singlet. The Higgs doublet field Φ =





φ+

φ0



 couples left-handed doublets

to the right-handed singlet via the Yukawa-type interaction

− he
(

Ψ̄eLΦeR + ēRΦ
†ΨeL

)

. (1.1)

For quantization, the Higgs doublet is expanded around its vev as Φ =





φ+

1√
2
(v +H + iζ)



 ,

with φ+ , H , ζ being quantum fields, i.e. fields with vanishing vevs. Then the Yukawa terms

can be written as

− he

[

v√
2
(ēLeR + ēReL) + ν̄eLeRφ

+ + ēRνeLφ
− +

1√
2
(ēeH + i ēγ5eζ)

]

. (1.2)

The first term, which provides the mass of electrons, thus owes its existence to spontaneous

symmetry breaking. Since the Standard Model does not include a right handed component

for the neutrino, a mass term for the neutrino is not generated by the Standard Model

interactions.
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But this is not completely true, as was first noted by Wolfenstein [3]. Interactions with

a medium results in effective masses for the neutrinos belonging to different lepton families,

leading to mixing and oscillations between the different neutrinos, an effect that has been

used to explain the solar neutrino problem, as well as the shortfall of electron-antineutrinos

coming from reactors. Neutrino oscillations occur because the mass eigenstates of the neu-

trinos are not identical with their flavour eigenstates. But the neutrino masses must be

non-vanishing as well as close to one another for this argument to explain neutrino oscilla-

tions in vacuum. In material media the effective mass of the neutrino is significantly modified

because of interactions. The change is different for the electron neutrino νe , which has both

charged-current and neutral-current interactions with the electrons in the medium, compared

to νµ and ντ which have only the second kind of interaction. This can enhance neutrino

oscillations significantly, depending on the distance travelled in matter by the neutrinos.

Let us first see what happens to neutrinos propagating in vacuum [9–11]. If the neutrinos

are all massless and thus degenerate eigenstates of the Hamiltonian, there will be no oscilla-

tion. Suppose however that the neutrinos have mass, different masses for different species,

and further that the mass eigenstates are not identical with the flavor eigenstates 1. Then

there will be mixing among neutrino eigenstates, which can be parametrized by a unitary

matrix. The neutrino field νl which appears in a doublet with a lepton l is related to the

field να whose excitations are mass eigenstates by this matrix U as [24]

|νlL〉 =
∑

α

Ulα|ναL〉 . (1.3)

At time t , the flavor eigenstates are related to the mass eigenstates by

|νlL〉 =
∑

α

e−iEαtUlα|ναL〉 . (1.4)

Then the probability of finding a νl′ at time t in a beam that had started out as νl is given

by

Pνl′νl(t) = |〈νl′ |νl(t)〉|2

=
∑

α ,β

∣

∣U∗
l′αUlαU

∗
lβUl′β

∣

∣ cos ((Eα −Eβ)t− φll′αβ) , (1.5)

1 This assumption represents departure from the Standard Model. It is justified a posteriori by the observa-

tion of neutrino oscillations [4–8]. The price of this assumption is the introduction of additional dynamical

degrees of freedom, at scales beyond current limits of experimental observation, to protect electroweak

gauge symmetry.
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where φll′αβ = arg
(

U∗
l′αUlαU

∗
lβUl′β

)

. The neutrinos are ultrarelativistic and start with the

same spatial momenta, so we can write their energies as Eα ≃ E + m2
α

2E
. We can also replace

the time of travel t by the distance of travel x and write

Pνl′νl(t) =
∑

α ,β

∣

∣U∗
l′αUlαU

∗
lβUl′β

∣

∣ cos

(

(m2
α −m2

β)x

2E
− φll′αβ

)

. (1.6)

Clearly there will be no mixing and no oscillation if the neutrinos have vanishing mass

in the vacuum. On a curved spacetime however, geometry provides a contribution to the

Hamiltonian, changing this conclusion.

II. FERMIONS IN CURVED SPACE

The dynamics of fermions in curved spacetime requires a spin connection, which specifies

how the covariant derivative operator acts on spinors. The spin connection involves the

Dirac matrices γI defined on an “internal” flat space, isomorphic to the tangent space at

each point. In the presence of spinors it is convenient to describe gravity in terms of the

spin connection AIJµ and tetrads eIµ in a formulation that sometimes goes by the name of

Einstein-Cartan-Kibble-Sciama (ECKS) gravity [12–15]. The Greek indices correspond to

spacetime and Latin indices belong to the internal space, the tetrads relating the metric gµν

of spacetime with the Minkowski metric ηIJ (− + ++) of the local tangent space through

the relations ηIJe
I
µe
J
ν = gµν .

In terms of these variables, the action of gravity plus (one species of) fermion can be

written as

S =

∫

|e|d4x
[

1

2κ
F IJ
µν e

µ
I e
ν
J +

i

2

(

ψ̄γKeµK Df
µψ − (ψ̄γKeµK Df

µψ)
†)+ imψ̄ψ

]

. (2.1)

where F is the curvature of the connection D ≡ d + A , while the covariant derivative of a

fermion has been written as Df
µψ = ∂µψ − i

4
AIJµ σIJψ . The cotetrad eµI is defined as the

inverse of the tetrad eIµ and satisfies eµI e
I
ν = δµν . The tetrads and the spin connection are

taken to be independent fields. Extremizing the action with respect to the spin connection

and performing some index manipulations we find an expression for the spin connection,

AIJµ = ωIJµ +
κ

8
eKµ ψ̄

[

γK , σ
IJ
]

+
ψ . (2.2)

Here ωIJµ is the part of the spin connection built purely out of tetrads,

ωIJµ =
1

2

[

eKµ eβKe
α[J∂αe

J ]β + e
[I
β ∂µe

J ]β + eα[Ie
J ]
β eµK∂αe

βK
]

. (2.3)
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In the absence of spinorial matter the spin connection is fully described on shell by ωIJµ ,

which in the metric formulation corresponds to the Levi-Civita (unique torsion-free metric-

compatible) connection and is related to the Christoffel symbols as Γσµν = eσI ∂µe
I
ν+e

σ
I eνJω

IJ
µ .

The spin connection is not affected by the presence of bosonic fields if they are minimally

coupled to gravity.

If we now extremize the action with respect to the tetrads, we will get an equation into

which we insert the solution for AIJµ obtained above and contract with tetrads to produce

Einstein equation

Rµν −
1

2
gµνR = κTµν , (2.4)

where Rµν and R are the Ricci tensor and scalar calculated using ωIJµ (or alternatively from

the metric), while the stress-energy tensor Tµν is now quartic in the fermionic field,

Tµν(ψ, ψ̄) =
i

4

(

∂µψ̄γIψe
I
ν − ψ̄γI∂µψe

I
ν +

i

4
ωIJµ e

K
ν ψ̄ [γK , σIJ ]+ ψ + (µ ↔ ν)

)

+ imgµνψ̄ψ − 3κ

16
gµν
(

ψ̄γIγ5ψ
)2
. (2.5)

In writing the last term we have used the identity [γK , σIJ ]+ = 2ǫIJKLγ
Lγ5 . The Dirac

equation in the presence of gravity is thus

2γKeµK∂µψ + eαI ∂µe
I
α γ

KeµKψ + ∂µe
µ
Kγ

Kψ + 2mψ − i

4
AIJµ e

µK [γK , σIJ ]+ ψ = 0 . (2.6)

Inserting the expression for AIJµ into this equation, we can write it as

γKeµK∂µψ − i

4
ωIJµ e

µKγKσIJψ +mψ +
3iκ

8

(

ψ̄γIγ5ψ
)

γIγ
5ψ = 0 . (2.7)

This is the nonlinear Dirac equation that governs the motion of a fermion in curved space-

time. This equation has been known for a long time in various contexts for spacetimes with

torsion [16–19]. Often this equation is written in “Planck units” in which Planck mass and

Planck length are the units of mass and length respectively, so the κ in the nonlinear term

is replaced by unity.

However, one important point often gets overlooked or at least is not explicitly mentioned,

which is the fact that every fermion field must be included in the matter action and therefore

all fermions will be present in the expression for spin connection,

AIJµ = ωIJµ +
κ

8
eKµ
∑

f

ψ̄f
[

γK , σ
IJ
]

+
ψf , (2.8)
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where the sum is over all species of fermions present in the universe. This term will also

appear in the nonlinear Dirac equation for each type of fermion,

γKeµK∂µψi −
i

4
ωIJµ e

µKγKσIJψi +mψi +
3iκ

8

(

∑

f

ψ̄fγ
Iγ5ψf

)

γIγ
5ψi = 0 . (2.9)

It is instructive to derive this equation from the perspective of a spacetime with torsion.

If we start from a spin connection written as AIJµ = ωIJµ + ΛIJµ , we find that

F IJ
µν (A) = F IJ

µν (ω) + ∂[µΛ
IJ
ν] +

[

ω[µ,Λν]
]

+ ηKLΛ
IK
[µ ΛLJν] . (2.10)

This Λ is known as contorsion, and by extremizing the action with respect to it we find that

the only nonvanishing variations come from the fermionic part of the action and the last

term of F IJ
µν (A), so that the equation of motion for Λ is

ΛIJµ =
κ

8
eKµ
∑

f

ψ̄f
[

γK , σ
IJ
]

+
ψf . (2.11)

We can insert this solution for Λ into the Einstein equations and the Dirac equation, which

are then exactly the same as we have found above. Furthermore, if we substitute this expres-

sion in the action, the resulting Einstein equations and the Dirac equation are also exactly

the same as found above. In general, inserting a solution into the action gives incorrect

results. In this case however, the antisymmetrized covariant derivative of Λ contribute to a

total derivative in the action, so Λ is an auxiliary field (see Appendix).

The action of gravity with fermions is thus

S =

∫

|e|d4x
[

1

2κ
F IJ
µν (ω)e

µ
I e
ν
J +

i

2

∑

f

(

ψ̄fγ
KeµK D̂f

µψf − (ψ̄fγ
KeµK D̂f

µψf )
† + 2mf ψ̄fψf

)

+
1

2κ
ηKLΛ

IK
[µ ΛLJν] e

µ
I e
ν
J +

1

8

∑

f

eµKΛ
IJ
µ ψ̄f

[

γK , σIJ
]

+
ψf

]

,

(2.12)

where we have written D̂f
µψ = ∂µψ − i

4
ωIJµ σIJψ . Thus what we have is nothing more than

general relativity with fermions. The contorsion Λ is an auxiliary field which enforces the

interaction of spacetime geometry with fermionic fields but does not propagate. In the

absence of fermions Λ vanishes, irrespective of any bosonic fields present as long as they are

minimally coupled to gravity. Again this is all very well known, but writing the action in

this form draws attention to another aspect which seems to have been overlooked.
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The invariance of this action under local Lorentz transfomations means that Λ transforms

homogeneously under them. In particular, the last term of the above action is invariant on

its own. Since Λ does not transform inhomogeneously, the coupling of Λ to fermions is

not like the coupling of a gauge field to fermions. The transformation of fermions does not

affect that of Λ, so their coupling is not protected by any invariance. This way it is more

analogous to the coupling of a real scalar field to fermions – the coefficient of ψ̄φψ can be

freely set by hand. But unlike a scalar field, Λ can couple chirally to fermions – it couples

to the left-handed neutrinos irrespective of whether or not there are right-handed neutrinos

in the universe. So there is no reason why different species of fermions cannot be coupled

to Λ with different coupling strengths, analogous to the Yukawa coupling of fermions to a

scalar field.

Therfore we propose that the generic form of the action of fermions coupled to gravity

must be, not Eq. (2.12), but

S =

∫

|e|d4x
[

1

2κ
F IJ
µν (ω)e

µ
I e
ν
J +

i

2

∑

f

(

ψ̄fγ
KeµK D̂f

µψf − (ψ̄fγ
KeµK D̂f

µψf )
† + 2mf ψ̄fψf

)

+
1

2κ
ηKLΛ

IK
[µ ΛLJν] e

µ
I e
ν
J +

1

8

∑

f

ΛIJµ e
µ
K

(

λfLψ̄fL
[

γK , σIJ
]

+
ψfL + λfRψ̄fR

[

γK , σIJ
]

+
ψfR

)

]

,

(2.13)

where we have taken into account the possibility that the tensor currents due to left and

right-handed fermions, which transform independently under local Lorentz transformations,

may couple to Λ with different coupling constants λfL and λfR , respectively. Even though

in this form the action appears to be a philosophical departure from how fermions have

always been treated in general relativity, it is in fact a generic form which must inevitably

appear when fermions are put in curved spacetime, unless the coupling constants λf are set

to zero by fiat. Furthermore, since Λ leads to a torsion

Cα
µν ≡ ΛIJ[µ eν]Je

α
I =

κ

2
ǫIJKLeαI eµJeνK

∑

f

ψ̄fγLγ5ψf , (2.14)

which is totally antisymmetric and thus does not affect geodesics, all particles fall at the

same rate in a gravitational field and the principle of equivalence is not violated by these

coupling constants.
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Solving for Λ and inserting the solution back into the action as before, we get

S =

∫

|e|d4x
[

1

2κ
F IJ
µν (ω)e

µ
I e
ν
J +

i

2

∑

f

(

ψ̄fγ
KeµK D̂f

µψf − (ψ̄fγ
KeµK D̂f

µψf )
† + 2mf ψ̄fψf

)

−3κ

16

(

∑

f

(

λfLψ̄fLγIγ
5ψfL + λfRψ̄fRγIγ

5ψfR
)

)2


 .

(2.15)

This is the generic form of the action of fermions in curved spacetime, which we will use as

the starting point of further calculations below. It is in fact not meaningful to work with a

Dirac equation containing Λ , because Λ must always equal its on-shell value. Furthermore,

the quartic term is independent of the background metric, but must be included as long as

there is gravity in the universe. The only ways this term can be absent from the action are

if gravity is turned off (κ→ 0), or if the quartic couplings λf are assumed to be zero. This

term is suppressed by two powers of Planck mass compared to the mass term, but it could

still help avert gravitational singularities [20–23]. We will see that it can also in principle

allow neutrino oscillations even when the neutrinos are massless.

III. NEUTRINO OSCILLATIONS

In considering the propagation of neutrinos through normal matter, i.e. solar or stellar

cores or nuclear reactors, we need to take into account only the effects due to electrons and

three colors each of up and down quarks in addition to the quartic self-interaction of the

neutrinos. Weak interactions will be present of course, we will come back to the effect of

that in a while. Let us also restrict to only two types of neutrinos as before. The quartic

term relevant to our purpose is

L(ψ̄ψ)2 = −3κ

16

[

∑

α ,β

λναλνβ(ν̄αγIνα)(ν̄βγ
Iνβ)

−2
∑

α,f

λνα(ν̄αγIνα)
(

−λfV ψ̄fγIψf + λfAψ̄fγ
Iγ5ψf

)

]

+ · · · (3.1)

where we have used the fact the neutrinos are left-handed, written λV = 1
2
(λL − λR) , λA =

1
2
(λL + λR) for the other fermions, and indicated by dots the terms which do not involve

neutrinos. Let us now suppose that the να which appear in the above expression, i.e. those
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which couple to Λ in Eq. (2.13), are different from the flavor neutrinos. This is our point of

departure from the Standard Model, similar to assuming that mass eigenstates of neutrinos

are different from their flavor eigenstates 2.

Following Wolfenstein [3] we calculate the forward scattering amplitude of the α-type

neutrinos,

M = −3κ

8
(ν̄αγIνα)λνα

〈

∑

β

λνβ ν̄βγ
Iνβ +

∑

f=e,p,n

(

λfV ψ̄fγ
Iψf − λfAψ̄fγ

Iγ5ψf
)

〉

, (3.2)

where the average is taken over the background. In the second sum, the spatial components

of the axial current average to spin in the nonrelativistic limit, which for normal matter is

negligible. The axial charge is also negligible. Similarly, the spatial components of the vector

current average to the spatial momentum of the background, which can also be neglected.

Since neutrinos are ultrarelativistic, their density inside a finite volume such as a star is

bounded by the rate of production times the average density of the region, i.e. several

orders of magnitudes smaller than the density of electrons or baryons. Thus the average of

the neutrino term can also be neglected.

So what we are left with is the average of the temporal component of the vector current of

fermions, which is nothing but the number density of the fermions 3, 〈ψ̄γ0ψ〉 = −〈ψ†
fψf 〉 =

−nf . The contribution of the forward scattering amplitude to the effective Hamiltonian

density is therefore

δHeff =

(

∑

f=e,p,n

λfnf

)

∑

α

λναν
†
ανα, (3.3)

where we have now dropped the subscript V and absorbed a factor of
√

3κ
8
in the definition

of each of the λ .

This term acts as an effective mass term for the neutrinos, with mα = λναρ , where

ρ =
∑

λfnf is a weighted density of fermions that is the same for all neutrinos. With two

species of neutrinos, we find |m2
2 −m2

1| = ρ2|λ2ν2 − λ2ν1| . The mixing matrix takes the form

2 It also appears to violate gauge invariance. We note however that the symmetry violating terms are

suppressed by factors of Planck mass and disappear in the flat space limit κ → 0; we can expect that

any potential problem due to symmetry violation will appear when these terms, and thus the energy

momentum density, are of order unity in Planck units. So we will ignore this issue for the moment as we

are interested in energy densities far below that.
3 We are being a bit sloppy here – the “density” of the fermion field is the time component of jµ ≡ e

µ
I ψ̄γ

Iψ.

If the spacetime allows a 3+1 decomposition of the background metric as gµν = (−λ2 + hij) , the volume

measures can be related as
√−g = λ

√
h , and e0I = λ−1δ0I , where δµI is the Kronecker delta. In this case

j0 = −λ−1ψ†ψ which is integrated over three spatial dimensions against the volume measure λ
√
h . We

have assumed this decomposition.
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U =





cos θ sin θ

− sin θ cos θ



 , so the probability of conversion of one particular flavor of neutrino

into the other becomes

Pconv = sin2 2θ sin2

(

ρ2∆λ2

4E
x

)

, (3.4)

where ∆λ2 = |λ2ν2 − λ2ν1 | .
This result is qualitatively different from the usual formula for neutrino oscillations in

vacuum. We have not included a mass term for the neutrino in vacuum – all contributions

to neutrino mass comes from the quartic interaction of the neutrino with fermions including

itself. The actual background geometry of the spacetime does not contribute to the effective

mass, at least for small curvatures, for which the leading order result of the forward scattering

amplitude is sufficient. Thus a neutrino propagating through vacuum does not oscillate into

different flavors. Oscillation occurs only in the region where there is a fermion density and

stops when the neutrino leaves that region. This is exactly like what happens for oscillation

due to weak interactions, except for the fact that leptons and baryons all contribute to the

effective mass of neutrinos. The coupling constants λ are in principle measurable by looking

at different media, such as stars with different baryon densities, or nuclear reactor cores,

and measuring the corresponding oscillation lengths of neutrinos.

A non-vanishing λV for any fermion requires that the left-handed component of the

fermion does not couple to torsion with the same strength as the right-handed component.

Thus chiral symmetry is broken by torsion, or alternatively, by the quartic term which has

its origin in spacetime geometry. Not only neutrinos, but all fermions get a contribution to

their masses from this geometrical mechanism. Even if we assume that the contribution to

effective mass is of the same order for all fermions in the same background matter density,

the mass of very dense stars can be significantly larger than what is calculated from their

baryon count. This can be expected to affect stellar models, dark matter estimates, and

cosmology.

IV. WEAK INTERACTIONS

Neutrinos passing through matter will also interact with it via electroweak gauge fields.

In this case, if we look at the effective four-fermion interaction at lowest order, only the

interactions with electrons are relevant. This is because the weak interaction couples flavor

10



eigenstates of the neutrinos with other fields; νe couples to electrons via both charged and

neutral currents, while νµ couples to electrons only via the neutral current. The modifica-

tion of the mixing angle due to weak interactions in normal matter is straightforward to

calculate [24], as we show in outline below. The effective Lagrangian due to the charged

current interaction can be written as

Lcc = −GF√
2

(

ψ̄eγ
I(1− γ5)ψe

) (

ν̄eγI(1− γ5)νe
)

, (4.1)

where a Fierz identity has been used. The (elastic) forward scattering amplitude provides

the contribution to the Hamiltonian,
√
2GF

〈

ψ̄eγ
I(1− γ5)ψe

〉

(ν̄eLγIνeL) ≃
√
2GFneν

†
eLνeL .

Normal matter does not contain muons, so νµ does not have a charged current interaction.

Both flavors of neutrinos have the same neutral current interactions, so that the contri-

bution appears as a common term to the Hamiltonian,

Vnc =
√
2GF

∑

f=e,p,n

nf

[

If3L − 2 sin2 θWQ
f
]

, (4.2)

where If3L is the third component of weak isospin for the left-handed component of the

fermion f and Qf is its charge. For electrically neutral normal matter, the electron and

proton contributions cancel each other and we are left with only the neutron contribution,

equal to −
√
2GFnn/2 for both types of neutrinos. The Hamiltonian, diagonal in the space

of mass eigenstates, can thus be written in flavor space as

H = HcI+
∆m2

4E





− cos θ sin θ

sin θ cos θ



 +





√
2GFne 0

0 0



 . (4.3)

Here we have written Hc for the common terms in the Hamiltonian, and ∆m2 = |m2
2−m2

1| =
ρ2
∣

∣λ2ν2 − λ2ν1
∣

∣ . The effective mixing angle θ̃, including the effects of both the geometric and

weak contributions, is thus given by

tan 2θ̃ =
∆m2 sin 2θ

∆m2 cos 2θ − 2
√
2GFneE

. (4.4)

This formula is for ultrarelativistic neutrinos, and thus valid only in regions where matter

density is not too high. For regions with low matter density and ne ≃ np ≥ nn and ne → 0 ,

we find that the right hand side is proportional to ne . For three generations of leptons we can

make similar substitutions into the standard formula for neutrino oscillations. For neutrinos

passing through regions where the matter density is not constant (MSW effect [3, 25, 26]),
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nonlinearity introduces additional complications particularly for very large matter densities,

since effective masses of neutrinos and thus ∆m2 , can vary greatly in such situations. We

will not attempt to do that calculation here.

We conclude by making a couple of final remarks. The effective fermion action appears to

be nonrenormalizable by power counting because of the quartic term. We have not worried

about this issue here because the quartic couplings contain in them a factor of
√
κ and thus

must vanish in the flat space limit. So the counterterms in curved spacetime will have to

involve curvature, so the question of renormalizability cannot be addressed without a theory

of quantum gravity [27]. The second point is about the size of the quartic term. Neutrino

masses are extremely small, but does the factor of
√
κ which we have absorbed in the λs

make them too small? We think that this question cannot be answered purely theoretically.

Unlike in the case of weak interactions, where the energy required to create W -boson pairs

from the vacuum sets the scale of the four-fermion interaction (and the oscillation formula

can be calculated directly from quantum field theory [28]), here the scale is not related to the

quantum dynamics of Λ , which does not in fact have any dynamics. Therefore the coupling

constants λ are free and can be set only by comparison with experimental data, not from

any theoretical argument.
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Appendix A: Calculation for Eq.(2.12)

Remembering that ΛIJµ and ωIJµ are antisymmetric in the internal indices, we can write the

relevant portion of the action as

I =

∫

d4x |e|
(

∂[µΛ
IJ
ν] +

[

ω[µ,Λν]
])

eµI e
ν
J

=

∫

d4x |e|
(

∂µΛ
IJ
ν − ∂νΛ

IJ
µ + ωIµKΛ

KJ
ν − ωIνKΛ

KJ
µ + ΛIµKω

KJ
ν − ΛIνKω

KJ
µ

)

eµI e
ν
J . (A1)
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Let us write the first, third and sixth terms of Eq. (A1) together as

A = eµI e
ν
J

(

∂µΛ
IJ
ν + ωIµKΛ

KJ
ν − ΛIνKω

KJ
µ

)

= ∂µ
(

eµI e
ν
JΛ

IJ
ν

)

− ΛIJν e
µ
I ∂µe

ν
J − ΛIJν e

ν
J∂µe

µ
I + eµI e

ν
Jω

I
µKΛ

KJ
ν − eµI e

ν
JΛ

I
νKω

KJ
µ . (A2)

Let us call eµI e
ν
JΛ

IJ
ν ≡ Λµ. Then the first, third and fourth terms of Eq. (A2) can be written

together as

A1 = ∂µΛ
µ − ΛIJν e

ν
J∂µe

µ
I + eµI e

ν
Jω

I
µKΛ

KJ
ν

= ∂µΛ
µ − ΛKJν eνJe

α
Ke

I
α∂µe

µ
I + eµI e

ν
Jω

I
µKe

K
α e

α
LΛ

LJ
ν

= ∂µΛ
µ + Λα(eµI ∂µe

I
α + ωIµKe

K
α e

µ
I )

= ∂µΛ
µ + ΛαΓµµα = ∇µΛ

µ . (A3)

The remaining terms of A are

A2 = −ΛIJν e
µ
I ∂µe

ν
J − eµI e

ν
JΛ

I
νKω

KJ
µ

= −ΛIKν eµI e
α
Ke

J
α∂µe

ν
J − eµI e

ν
JΛ

I
νKeαLe

αKωLJµ

= ΛIKν eµI e
α
Ke

ν
J∂µe

J
α + ΛIKν eµI e

α
Kω

J
µLe

L
αe

ν
J

= ΛIKν eµI e
α
K

(

eνJ∂µe
J
α + ωJµLe

L
αe

ν
J

)

= ΛIKν eµI e
α
KΓ

ν
µα = 0 .

In the last equality we have used the fact that Λ and ω are antisymmetric in the internal

indices while Γ is symmetric in its lower indices. Denoting the remaining terms of the

integral I together as B and proceeding the same way as above, we find that

B = ∇µΛ
µ . (A4)

Thus we can write Eq. (A1) as

I = 2

∫

d4x |e| ∇µΛ
µ . Q.E.D. (A5)
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