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Abstract

We study the effect of the polarization of light beams on the time delay measured in
Gravitational Wave experiments. To this end, we consider the Mathisson-Papapetrou-
Dixon equations in a gravitational wave background, with two of the possible supplemen-
tary conditions: by Frenkel-Pirani, or by Tulczyjew. According to the literature, no spin
effect is seen in the first case for photons, while we show that the second case is richer.
The result is a tiny effect on the measured time delay of photons depending on their
polarization state.

1 Introduction

Gravitational wave detection in interferometers such as the Laser Interferometer Gravitational-
Wave Observatory (LIGO) and the Virgo observatory involves laser beams travelling through an
inhomogeneous gravitational field. The gravitational wave profile is reconstructed by measuring
the difference of time of flight of the laser beams in two perpendicular arms. To compute
theoretically the time of flight deviations of the laser induced by a gravitational field, the beam
is treated as a collection of photons, with each photon subject to the geodesic equation of
General Relativity. In this paper, light is still considered as a localized massless particle, a
photon, but now without neglecting its spin, which is absent from the geodesic equation.

Spinning localized (extended) test particles are introduced in General Relativity by con-
sidering the Mathisson-Papapetrou-Dixon (MPD) equations [1, 2, 3]. These are very general
equations obtained when considering the dipole moment, either angular momentum or intrinsic
spin, of the test particles. With this method, when considering only the monopole moment
of a test particle, the geodesic equation is recovered, while when also considering its dipole
moment, the MPD equations are obtained. Note that Souriau also finds these equations in a
purely geometrical way when also neglecting the quadrupole moment and higher ones [4].
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With X,P, S denoting respectively the position, 4-momentum, and spin tensor of the test
particle, the Mathisson-Papapetrou-Dixon equations are given by,

Ṗ µ = −1

2
Rµ

ραβS
αβẊρ, (1.1)

Ṡµν = P µẊν − P νẊµ, (1.2)

where the dot over the trajectory X denotes the ordinary derivative with respect to its affine
parameter, Ẋ = dX/dτ , while the dot over P and S denotes the covariant derivative with
respect to that same parameter.

Note that this system is not deterministic, we lack an equation for Ẋ. Supplementary
conditions, or equations of state, are required to constrain the equations. There are two main
choices considered in the literature. Indeed, for a massless particle in Minkowski, we have
P = Ẋ and SµνP

ν = 0 holds, as Souriau shows this leads to the Maxwell equations after
geometric quantization [5]. Now, when there is curvature in the MPD equations, the velocity
Ẋ and the momentum P may not be parallel anymore. Hence the two choices: whether we
consider the 4-velocity or the 4-momentum to be in the kernel of the spin tensor. The first
choice is the Frenkel-Pirani constraint SµνẊ

ν = 0 [6, 7] where the particle is characterized by
its conserved mass m̃ ≡ P µẊµ. The second choice is the Tulczyjew constraint SµνP

ν = 0 [8]
together with its conserved mass m2 ≡ P µPµ. In both cases, the particle is also characterized by
its conserved longitudinal spin, which we will define later. For an extended body, the Tulczyjew
condition is natural and generally accepted, as it allows to parametrize uniquely the worldline
of the center of mass [3], while that choice is not unique for the Pirani constraint. Now, for
an elementary particle, especially the photon, we lose that argument of the uniqueness of the
worldline of the center of mass, and there seems to be no canonical way to choose an equation
of state. Thus, the debate between the Frenkel-Pirani constraint or the Tulczyjew constraint,
or maybe another one, remains open.

The way to differentiate the two equations of states for elementary particles seems to
be only through experiment. In general, elementary test particles behave in a different way
depending on which equation of state they obey, as we will see in an example below. This is true
both in a gravitational field, but also in an electromagnetic field, which can also be included
in the MPD equations [3, 4]. For example, for massive and charged elementary particles, both
equations of state recover the spin precession equation of the Bargmann-Michel-Telegdi (BMT)
equations [9] from the MPD equations, in the weak field limit. Recall that the BMT equations
describe the spin precession of a particle in a constant electromagnetic field, and are used to
measure experimentally with very high precision the gyromagnetic moment g of the test particle
[10]. While both equations of state lead to the spin precession equation, they both feature an
extra anomalous velocity [4, 11, 12, 13] for the test particle, not present in the original BMT
equations. Theoretical differences of the trajectory between the two equations of states are not
lacking, though the expected deviations seem extremely small in any case considered, whether
we study a particle in a gravitational or electromagnetic field.

The MPD equations with the Frenkel-Pirani constraint are not continuous in the limit
m̃→ 0. The equations for massless particles seem to be unrelated to the massive ones [14, 15].
Notice that massive spinning particles with the Frenkel-Pirani constraint are expected to deviate
from the usual geodesics in a non trivial way, even in Minkowski spacetime [15]. Obtaining
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equations of motion for the massless particle does not seem to be straightforward. Nevertheless,
authors who worked on the subject [16, 17] agree to say that the Frenkel-Pirani constraint
implies that massless particles follow null geodesics, regardless of the gravitational background.

So, if we accept the Frenkel-Pirani constraint, we can sleep peacefully, since there would
be no birefringence effect of light due to spin-curvature coupling, thus no effect on gravitational
waves detection.

The Tulczyjew constraint was originally justified for extended test particles [8, 3]. Since
then, it has been extended to the case of point particles by some authors. In the massless
case, the Tulczyjew constraint was used in recent years [18, 19, 20, 21] to correctly describe
the anomalous velocity present in the Spin Hall Effect of Light in optical media, predicted by
Fedorov and Imbert [22, 23], and measured experimentally in 2008 [24, 25]. See also [26] in
the electromagnetic field. Moreover, while the equations of motion of spinning photons become
degenerate in flat spacetime with this equation of state, the description becomes the one of a
plane wave travelling at the speed of light, and Souriau showed [5] that geometric quantization
of this system leads to the Maxwell equations.

Note that the technical study of massless spinning particles is rather different from that of
massive spinning particles, for both equations of state, as subtleties arise. For an example of a
massive particle in an exact gravitational wave with the Tulczyjew constraint, see [27].

Gravitational birefringence was already considered experimentally in 1974 [28], resulting
in an upper bound to the gravitational birefringence effect in gravitational lensing, but the
results are somewhat inconclusive, since we can expect such effects to be much weaker than the
precision of the experiment [29, 30]. Experimental bounds can also be found for birefringence
in other theories, for example with Lorentz violating effects, thanks to the high sensitivity of
the interferometry experiments in LIGO and Virgo [31, 32].

The first short section 2 will be used to introduce the notations we use in this paper.
Then, we will justify in section 3 the main trick of this paper which is to consider a photon
in a gravitational wave background as the limit of an ultrarelativist particle travelling in one
direction. The next section 4 contains the computations needed to obtain the equations of
motion, followed by an analysis and conclusions in section 5.

2 Notations

First, let us introduce our notations. The metric has signature (−,−,−,+). The components
of the Riemann curvature tensor are defined by the convention Rµ

ναβ = ∂αΓµβν − ∂βΓµαν + · · · .
In this paper, we often suppress indices by considering linear maps instead of 2-tensors. For
instance, we use the linear map S = (Sµν) and likewise for the shorthand notation R(S), with
R(S)µν = Rµ

ναβS
αβ. In the same way, we have the vector P and the associated covector

P = (P µ) where indices are lowered with the metric. Another shorthand notation will be
R(S)(S) = RµναβS

µνSαβ.
For a skewsymmetric linear map F , the operator Pf gives its Pfaffian Pf(F ). With the

fully skewsymmetric Levi-Civita tensor εµνρσ, with ε1234 = 1, we have the expression Pf(F ) =
−1

8

√
− det(gαβ)εµνρσF

µνF ρσ. We have the relation Pf(F )2 = det(F ). Indeed, the determinant
of a skewsymmetric matrix can always be written as a perfect square.
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Classical elementary particles are characterized by two conserved numbers, emanating from
the co-adjoint representation of the Poincaré group: its mass m and its longitudinal spin s. We
have seen already that the mass m is given by m2 = P 2 in the case of the Tulczyjew constraint.
The longitudinal spin, sometimes also called “scalar spin”, is defined by

− 1

2
Tr(S2) = s2 (2.1)

For a photon, we have s = ±~, where sign(s) is the helicity of the photon. This corresponds to
circular polarization of light, either with left or with right handedness.

3 Photons as a limit of ultrarelativistic particles

The so called Souriau-Saturnini equations are the combination of the MPD equations, together
with the Tulczyjew constraint SP = 0, and applied to the case of the photon. For massless
particles, the momentum is such that P 2 = 0, and so, for R(S)(S) 6= 0, we have the equations
(Souriau[4] and Saturnini[33] in French, see [34] for the proof in English),

Ẋ = P +
2

R(S)(S)
SR(S)P , (3.1)

Ṗ = −s Pf(R(S))

R(S)(S)
P , (3.2)

Ṡ = PẊ − ẊP . (3.3)

The Souriau-Saturnini equations describe the trajectory of a massless photon with spin in
a gravitational field. While they work rather well in a Robertson-Walker background [34], or
in the proximity of a star [33, 30], they break down when the curvature of the gravitational
background vanishes. This is due to the lonely term R(S)(S) in the denominator of (3.1).
When the curvature vanishes, the equations become those of a plane wave travelling at the
speed of light. Indeed, massless and chargeless particles cannot be localized in flat spacetime
with this approach. It becomes a problem for a metric of gravitational waves, as they are
usually computed as a perturbation around flat spacetime.

This time, for massive particles, P 2 = m2 6= 0, and we have similar equations [35, 15],

Ẋ = P − 2SR(S)P

4P 2 −R(S)(S)
, (3.4)

Ṗ = −1

2
R(S)Ẋ, (3.5)

Ṡ = PẊ − ẊP . (3.6)

Notice that we recover the Souriau-Saturnini equations in the limit P 2 → 0, which is not,
a priori, trivial. For example, this is not the case with the Pirani constraint.

Now, for massive particles, the denominator of (3.4) behaves in a nicer way. When the
Riemann tensor goes to zero, or when m2 � R(S)(S), we recover the usual geodesic equation.
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To be sure the denominator doesn’t vanish in the massive case, we should have 4m2 > R(S)(S).
We thus have a lower bound on the mass of the test particle. With f the frequency of the
gravitational wave and c the speed of light, that requirement becomes

m2 >
επ2 f 2 ~2

c4
(3.7)

Note that this depends on the amplitude ε of the gravitational waves. As this amplitude goes
to zero, the mass restriction reduces to m > 0. In the case of gravitational wave detections,
the frequency of gravitational waves is typically around f = 50Hz, and the amplitude around
ε = 10−20. This gives

m > 10−59 kg, (3.8)

to have a consistent set of equations describing a massive particle with spin in a typical back-
ground with gravitational waves.

The main idea to compute the time delay due to the photon’s spin in a background of
gravitational waves is to only compute the effect in the direction defined by the momentum.
Indeed, the photon goes back and forth in one direction of propagation, so here we are not
interested in the full trajectory in space of the photon/particle. Therefore, to compute the
delay, we can compute the effect of spin on a massive particle, though with a mass much
smaller than its momentum. Since we only compute the time delay in the direction defined by
the momentum, and since (3.4) reduces to (3.1) in the limit P 2 → 0, the mass will drop out
of the equations when compared to the momentum, thus giving us the expected time of flight
delay for a photon.

Notice that, in any case, the best experimental measurements on the mass of a photon
give us an upper bound for the mass of about 10−50 kg to 10−54 kg depending on the type of
measurements and assumptions [36, 37]. These upper bounds are a few orders of magnitude
higher than the constraint on the mass of the photon (3.8) in the massive equations.

4 Equations of motion for the ultrarelativistic photon

Using Cartesian coordinates (x1, x2, x3, t), we linearize the gravitational field equations with
the metric,

gµν = ηµν + ε hµν +O(ε2) (4.1)

where (ηµν) = diag(−1,−1,−1, 1) is the flat Minkowski metric, hµν the linear deviation of
the metric to flat spacetime, and ε � 1 a small parameter encoding the amplitude of the
gravitational wave.

Linearizing the Einstein field equations in ε, and considering a gravitational wave propa-
gating in the direction of the z axis, leads to the well-known solution for the perturbation hµν ,

(hµν) =


f+(t− x3) f×(t− x3) 0 0
f×(t− x3) −f+(t− x3) 0 0

0 0 0 0
0 0 0 0

 (4.2)
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with f+ and f× two functions describing the two polarization states of the gravitational waves.
For concreteness, take f+(t − x3) = cos(ω(t − x3)) and f×(t − x3) = 0 with c = 1. The

linearized metric thus takes the form,

(gµν) =


−1 + ε cos(ω(t− x3)) 0 0 0

0 −1− ε cos(ω(t− x3)) 0 0
0 0 −1 0
0 0 0 1

+O(ε2) (4.3)

Up to linear order in ε, we have R3
131 = −R3

141 = −R3
232 = R3

242 = R4
131 = −R4

141 =
−R4

232 = R4
242 = −1

2
ω2ε cos(ω(t− x3)).

Now, to alleviate notations, we write c ≡ cos(ω(t − x3)). We can write the 4-momentum
of a massive particle as,

(P µ) =


p1

(
1 +

ε

2
c
)

p2

(
1− ε

2
c
)

p3√
m2 + p21 + p22 + p23

+O(ε2) (4.4)

such that P 2 = m2.
The spin tensor is, up to linear order in ε,

(Sµν) =


0 −s3 (1 + εc) s2

(
1 + ε

2
c
) (p2s3−p3s2)√

m2+‖p‖2

(
1 + ε

2
c
)

s3 (1− εc) 0 −s1
(
1− ε

2
c
) (p3s1−p2s3)√

m2+‖p‖2

(
1− ε

2
c
)

−s2
(
1− ε

2
c
)

s1
(
1 + ε

2
c
)

0 (p1s2−p2s1)√
m2+‖p‖2

(p2s3−p3s2)√
m2+‖p‖2

(
1− ε

2
c
) (p3s1−p2s3)√

m2+‖p‖2

(
1 + ε

2
c
) (p1s2−p2s1)√

m2+‖p‖2
0


(4.5)

such that S is skewsymmetric, and still up to linear order,

SP = 0 and − 1

2
Tr(S2) = j2 (4.6)

with

j2 =
(s · p)2 +m2‖s‖2

‖p‖2 +m2
(4.7)

Next, we have,
Pf(R(S)) = O(ε2). (4.8)

See Appendix A for the expressions of R(S)(S) and S R(S)P .
We then have the equations of motion for the position of the massive particle (3.4),

Ẋ = P − 2SR(S)P

4P 2 −R(S)(S)
, (4.9)
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So, we get the equations of motion on 3d-space, with respect to the time coordinate t, in
the 3+1 splitting (x, t), as

dx

dt
=

(
2m2 − 1

2
R(S)(S)

)
P− SR(S)P(

2m2 − 1
2
R(S)(S)

)
P4 − SR(S)P4

(4.10)

At this point, the mass terms allow us to take the limit ε→ 0. Hence the development in
linear order of ε, for a massive particle with momentum p = (0, p2, 0),

dx2
dt

=
p2√

m2 + p22
− ε

2

p2(m
2 + p2

2) + ω2
(
p2(s

2
1 − s23)−

√
m2 + p22s2s3

)
(m2 + p22)3/2

cos(ω(t−x3))+O(ε2)

(4.11)
Hence, when p2

2 � m2, we have

dx2
dt

= 1− ε

2
cos(ω(t− x3))−

ε

2

λ2γ
λ2GW

(s21 − s23 − s2s3)
~2

cos(ω(t− x3)) +O(ε2) (4.12)

with λγ the wavelength associated to the photon, and λGW = 2π/ω is the wavelength of the
gravitational wave. With values taken from LIGO/Virgo, λγ = 1064nm,

ε

2

λ2γ
λ2GW

∼ 10−46

This means that geodesic effects of order ε2 ∼ 10−40 would be seen before observing any
spin effect in LIGO/Virgo type detectors.

From (3.6), we see that ds/dt is at most of order ε, so for the short scales involved in
a detector, we assume that the spin vector is constant. Thus, the maximum effect is when
photons are polarized such that s = (0, ~, ~), at least in the classical limit. In that case, the
measured time delay is decreased from ∆τ to

∆̃τ = ∆τ

(
1− 2

λ2γ
λ2GW

)
(4.13)

A corollary is that two photons of different polarization will have different times of flight.
Thus, a beam made up of photons of random polarization will introduce a noise due to spin
curvature effects. A way to eliminate this noise is to polarize the beams of light before sending
them into the arms. However, the amplitude of the noise created by this birefringence is of the
relative order of 10−46 in LIGO/Virgo, which is much below the current sensitivity in LIGO
and Virgo experiments.

5 Conclusions

To take into consideration the possible effects of the photon’s spin on its trajectory in curved
space, we used the very general Mathisson-Papapetrou-Dixon equations for spinning test par-
ticles, together with two possible supplementary conditions for photons, by Frenkel-Pirani, or
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by Tulczyjew. While for an extended body, such as a spinning star, either choice of sup-
plementary condition does not have much of a practical impact on the observable trajectory,
though Tulczyjew is usually preferred in that case, for elementary particles the choice has more
consequences.

The Frenkel-Pirani equation of state for a massless particle leads to a trajectory along
a null geodesic, regardless of the gravitational background. In that case, there would be no
change to the geodesic trajectory of photons in a background of gravitational waves. Keep in
mind, however, that with this supplementary condition, massive spinning particles have a non
trivial trajectory even in flat spacetime, and there is no correspondence between the massive
and massless case.

The Tulczyjew equation of state for a massless particle predicts a very small effect due to the
polarization of the light on its trajectory. Since the massive equations with this supplementary
condition lead to the massless equations in the limit m → 0, and because of the instability of
the localization of the test particle in the equations near zero curvature, the photon is treated in
this paper as an ultrarelativistic massive particle. This mass, which can be both large compared
to the spin-curvature coupling term R(S)(S) and extremely small compared to the momentum
of the photon allows for convenient limits to be taken in the equations. The geodesic equations
in a gravitational wave background are recovered, together with a new term depending on the
spin polarization of the photon. This means that with this supplementary condition, the time of
flight of a photon in a detector depends on its polarization state. This dependence is, however,
many order of magnitudes lower than the first order effects of gravitational waves on the time
of flight. But, if we achieve that kind of precision, polarizing the laser beam in a specific way
would be an easy way to reduce the noise introduced by birefringence. With enough precision,
this could even potentially be a way to discriminate between the two possible equations of state.
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LabEx, French “Investissements d’Avenir” programmes.
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[31] V. A. Kostelecký, A. C. Melissinos, M. Mewes, “Searching for photon-sector Lorentz vio-
lation using gravitational-wave detectors”, Phys. Lett. B761 (2016), p. 1.
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A Appendix: Expressions of R(S)(S) and SR(S)P

From the expression of the Riemann tensor, of the spin tensor (4.5), c ≡ cos(ω(t − x3)), and
R(S)(S) = RµνλσS

µνSλσ, we get,

R(S)(S) =
2ω2εc

m2 + ‖p‖2
[
2(p1s1 − p2s2)s3

(
p3 −

√
m2 + ‖p‖2

)
−
(
p21 − p22

)
s23+

−
(
s21 − s22

) (
p3

(
p3 − 2

√
m2 + ‖p‖2

)
+
(
m2 + ‖p‖2

)) ]
+O(ε2).

(A.1)

Similarly, we obtain, with SR(S)P µ = Rµ
νλσP

νSλσ,

SR(S)P =


SR(S)P1

SR(S)P2

SR(S)P3

SR(S)P4

 , (A.2)

with,
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SR(S)P1 =K

(
s3
(
m2 + ‖p‖2

) (√
m2 + ‖p‖2 − p3

)(
s1

(√
m2 + p2 − p3

)
+ p1s3

)
+

−
(
s2
√
m2 + ‖p‖2

(√
m2 + ‖p‖2 − p3

)
+ p2s3

)
× (A.3)

×
((√

m2 + ‖p‖2 − p3
)

(p2s1 + p1s2) + 2p1p2s3

))
+O(ε2),

SR(S)P2 =K

(
s3
(
m2 + ‖p‖2

) (
p3 −

√
m2 + ‖p‖2

)(
s2

(√
m2 + ‖p‖2 − p3

)
+ p2s3

)
+

+
(
s1
√
m2 + ‖p‖2

(√
m2 + ‖p‖2 − p3

)
+ p1s3

)
× (A.4)

×
((√

m2 + ‖p‖2 − p3
)

(p2s1 + p1s2) + 2p1p2s3

))
+O(ε2),

SR(S)P3 =K
√
m2 + ‖p‖2

((
s22 − s21

)√
m2 + ‖p‖2

(√
m2 + ‖p‖2 − p3

)2
+

+
(√

m2 + ‖p‖2 − p3
)(
−s3

√
m2 + vp2 (p1s1 − p2s2) + p22s

2
1 − p21s22

)
+ (A.5)

+ 2p1p2s3 (p2s1 − p1s2)

)
+O(ε2),

SR(S)P4 =K
√
m2 + ‖p‖2

(
2p23

(√
m2 + ‖p‖2 − p3

) (
s21 − s22

)
+ s3

(
p31s1 − p32s2

)
+

+ 3s3p1p2 (p2s1 − p1s2) +
(
m2 + 3p23 − 3

√
m2 + ‖p‖2p3

)
s3 (p1s1 − p2s2) + (A.6)

−
(√

m2 + ‖p‖2 − 2p3

) (
p21s

2
2 − p22s21

)
+
(√

m2 + ‖p‖2 − p3
)
s23
(
p21 − p22

)
+

− p3
(
p21s

2
1 − p22s22

)
−m2p3

(
s21 − s22

))
+O(ε2),

and,

K =
ω2ε cos(ω(t− x3))

(m2 + ‖p‖2)3/2
. (A.7)
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