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In general relativity the fermions are treated from the perspective of the gauged Lorentz group
and by introducing the corresponding gauge fields the spin connection. This procedure is intimately
related to the so-called ”vielbein” formalism and stems from the general structure that can be
associated to a manifold, the affine connection. In this work we derive the correct spin connection
based only on the general covariance of the theory and on the known space-time properties of fermion
bilinears generalized to the curved space. Our result coincides exactly with the spin connection

obtain through the tetrad formalism.

In general relativity the ordinary derivative of a tensor,
in order to obtain the general behavior of a tensor, is re-
placed by the covariant derivative written in terms of an
affine connection. For example for a vector the covariant
derivative is given by:

oVy = DV, =0,V, =T}, V,. (1)
Here I'f, represents the affine connection which may be
independent of a metric. In particular however it is al-
ways more amenable to consider an affine connection that
satisfies two main requirements [1]:

a) to be torsion free, i.e. ', =17 .

b) to be metric compatible which amount to asking
that the covariant derivative of the metric tensor is zero:
0, 90u = 0. (2)

ApGuv = Opgu — Fgugw -

Having established how a derivative of a tensor field
must be modified in curved space time one needs to con-
sider another type of fields of relevance in a quantum
field theory, the fermion fields. In QFT the fermions lie
in a four dimensional representation of the Lorentz group
SO(3,1) given by the gamma matrices which span a Clif-
ford algebra with the anti-commutation rule:

{v*,7"} = 20, (3)

where 7% is the Minkowski metric. The natural approach
in the presence of a curved space-time and of a general
coordinate transformation would be then to gauge the
Lorentz group and to introduce the gauge fields associ-
ated to this, the spin connection. Then in a formalism
introduced by Cartan and developed further in [2], [3]
one defines the gamma matrices in the curved space as:

V() = el (4)

where v* depend on the coordinate, y is the index in the
curved space and a is the index in the flat space. The
quantities e# are called a tetrad and satisfy the relation:

g = eliel™. (5)
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It is considered that the gamma matrices in the curved
space satisfy a generalized Clifford algebra with the anti
commutation relation:

{7" 7"} = 29" (6)
If one requires further that the operations of parallel
transport and projection on flat and curved indices com-
mute one arrives of the vielbein postulate:

Dyeyt = 0pey(z) =T} e —wpnen, =0, (7)

where wyy, is the spin connection which can be extracted

from Eq. (@) to be:

mn __ _mywv _on m vn __
w," =e) Ty, e + et 0 e’ =

mimv an m __vn
e, Ug,e”™ —0uey'e’™. (8)

Then the covariant derivative of a Dirac fermion in the
curved space time is written as:

D, =9,V — iwgbaab‘ll, 9)
where 04, = £[v,7"].

Various attempts have been made in the literature M]
to introduce fermion covariant derivative without the use
of the vielbein formalism in terms of only the curvilinear
coordinates. These involved usually new and complicated
mathematical structures and an entire formalism of their
own.

In the following we will derive the exact expression for
the fermion covariant derivative without the use of the
vielbein formalism or of the gauged Lorentz group and
by only making one natural assumptions.

Consider two Dirac fermions ¥ and ¥ and the gamma
matrices v* in the curved space time. The main assump-
tion is that the quantity W~*W transforms as a vector in
the curved space-time. Then the quantity,

D,[wyv], (10)

where D, was introduced in Eq. () should transform as
a rank two tensor.

We are interested in writing a covariant derivative such
that the quantity \Iw“(?pkll transforms as second rank ten-
sor. Consider that this covariant derivative is expressed
as,

UM 0, + X, ¥, (11)
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where X, may contain in it gamma matrices in the curved
space.

One can expand Eq. ([[0) which leads to:

Dp[\I]’V#\I]] =
(0, U)W + W [0,y T +
Uy"0,W 4+ Th Uy . (12)

We know that the expression in Eq. ([I2) must behave
like a second rank tensor. Similarly to Eq. () a cor-
responding covariant derivative for the field ¥ must ex-
ist. If one assumes that the main properties of the Dirac
fields present in the flat space extend to the curved one
one may write:

[(0, + X,) U] =0, 0" + WX (13)

Further on if one considers that ¥ in the curved space is
obtained through the same procedure as that in the flat
space but this time with gamma matrix 7° in the curved
space one obtains the covariant derivative for ¥ as:

DW= 9,0 +VUX/, (14)

where ¢ signifies transposed.

Without loss of generality one may write:
X, = —iApapo™”, (15)

where all the indices are considered in the curved space
time. Then one has:

D,V =9,V —iA,z0°°
D,V = 0,0 —iA,n50°%. (16)

If we introduce the expression in Eq. (I6) into Eq.
([I2) one obtains that the quantity,

DUy + Uy D, W +
F Uiy A poso®P U — WiA 050" YT +
W (0,7 + Fga\il”yglll, (17)

behaves as a second rank tensor. Since the term in the
first line of Eq. (IT) behave like a tensor then also the

terms on the second plus the third line must behave as a
second rank tensor. Then,

Uik Apapo®P W — Wi o501 +
V(v + DUy =14, (18)
where T is an arbitrary tensor expressed in terms of the
fermion fields. Since there is not such tensor besides those
introduced at this point with the correct mass dimension
one can consider this tensor zero.
One may rewrite Eq. (1) as:

iApaplyt, 0% = =T 77 — Oy (19)

In the flat space we know that:

1

S0 0"l =iy = ). (20)
Since we consider in the curved space a similar Clifford
algebra this time with the gamma matrices space time
dependent the same relation should work if the flat in-
dices would be replaced by the curved indices. Then Eq.

(@) becomes:
—4Ab 7P = —Th, — 97", (21)
We multiply Eq. (1)) by v* and take the trace to obtain:
1 1 N
AZA = ZFZLA + ETI“[V "] (22)

Finally the covariant derivative for the fermion fields is
written in terms of only quantities in the curved space
as:

D,V = 0,0 —iAS 3000, (23)

where A5 is given in Eq. .

Next we will show that the spin connection introduced
in Eq. (23)) is identical to that in Eq. (@). For that we
write:

—il[F“ +1Tr[ 20, o =
45 Ty Y OpY L=
1 u .
—ZZ[F";/\ + Ot epn™leceno =
1
_ZZ[FﬁAe#Ceé + dpeliesc) o, (24)

Eq. ([24) shows that the exact expression of the spin
connection obtained through the vielbein formalism can
be obtained by using only quantities defined in the curved
space with the gamma matrices in the curved space sat-
isfying a similar Clifford algebra.
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