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Abstract

An apparent paradox in Einstein’s Special Theory of Relativity, known as

a Thomas precession rotation in atomic physics, has been verified experimen-

tally in a number of ways. However, somewhat surprisingly, it has not yet been

demonstrated algebraically in a straightforward manner using Lorentz-matrix-

algebra. Authors in the past have resorted instead to computer verifications, or

to overly-complicated derivations, leaving undergraduate students in particular

with the impression that this is a mysterious and mathematically inaccessi-

ble phenomenon. This is surprising because, as shown in the present note, it

is possible to use a basic property of orthogonal Lorentz matrices and a judi-

cious choice for the configuration of the relevant inertial frames to give a very

transparent algebraic proof. It is pedagogically useful for physics students par-

ticularly at undergraduate level to explore this. It not only clarifies the nature

of the paradox at an accessible mathematical level and sheds additional light

on some mathematical properties of Lorentz matrices and relatively-moving

frames. It also illustrates the satisfaction that a clear mathematical under-

standing of a physics problem can bring, compared to uninspired computations

or tortured derivations.
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1 Introduction

Multiplying two Lorentz boosts whose velocity vectors are collinear gives a
third Lorentz boost whose velocity can be calculated from the first two us-
ing the Einstein velocity addition law. If the two original velocities are not
collinear, however, we do not get a pure Lorentz boost as the product, but
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rather a Lorentz boost multiplied by a certain 4 × 4 matrix whose columns
and rows are orthonormal. This orthogonal matrix has the effect of rotating
the spatial components of vectors in spacetime, while leaving their temporal
component unaffected.

An interesting review paper written by the eminent British mathematician
I. J. Good [1] discusses this relativistic rotation paradox, but Good clearly
struggles to provide a straightforward algebraic proof in the 3+1 case. Math-
ematically, it is necessary to show in a four-dimensional Minkowski spacetime
that a certain matrix product involving two Lorentz boosts with linearly in-
dependent velocity vectors is generally equivalent to an orthogonal Lorentz
matrix. In section 8 of [1], which seeks to prove the paradox ‘beyond any
doubt’, Good admits to being unable to do this algebraically and instead re-
sorts to providing numerical confirmations. Such computational confirmations
are easy to carry out, so he suggests that ‘only a short and elegant algebraic
proof would be worthwhile’. One of the motivations for the present note is
that a proof like this still seems to be lacking in the literature.

What we have at present in the way of mathematical demonstrations are
either elaborate approximations involving power series and extraneous assump-
tions such as infinitesimally small relative velocities (see, e.g., section 7.3 in
[3]), or otherwise lengthy and overly-sophisticated expositions usually not eas-
ily accessible to, say, undergraduate physics students. Some expositions are
intended to be more accessible but still seem rather involved and/or do not
make use of Lorentz-matrix-algebra, e.g., [4] and [5].

Due to the lack of a short and transparent algebraic treatment, this inter-
esting relativistic phenomenon is simply left unmentioned and unexplored in
almost all undergraduate texts, which seems a pity. The following argument
could be used shortly after introducing Lorentz transformation matrices and
their properties to budding relativists.

2 Proof of the rotation paradox

LetG = diag(1,−1,−1,−1) be the metric tensor in a four-dimensional Minkowski
manifold with events specified by a time coordinate x0 = ct and rectangular
spatial coordinates x1, x2, x3. A 4×4 Lorentz matrix Λ preserves the quadratic
form xTGx in the sense that if y = Λx then yTGy = xTGx, so

ΛTGΛ = G (1)

The set of all Lorentz matrices thus defined constitutes a group under matrix
multiplication, so inverses and products of Lorentz matrices are also Lorentz.

Let O, O and O be three inertial frames with collinear axes and with their
origins initially coinciding. Let β = (βi) =

(

vi
c

)

, i = 1, 2, 3, be the 3×1 velocity
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vector of O relative to O with corresponding Lorentz factor γ = 1√
1−β2

, where

β2 ≡ βTβ. Similarly, let a vector β = (βi), which is not collinear with β, be

the velocity vector of O relative to O with corresponding Lorentz factor γ.
Using a standard formula, e.g., formula (24) in [1] or formula (2.59) in [2], the

velocity vector of O relative to O is given by

β =
β + β[γ + (γ − 1)(β

T
β)/β2]

(1 + β
T
β)γ

(2)

with corresponding Lorentz factor γ. Using a simplification similar to one
described in section 7.3 of [3], we can let the plane defined by the vectors β
and β be the x1x2-plane of O so that β

3
= 0, and we can arrange the frames

O and O so that the vector β is along the x1 axis of O, implying β2 = β3 = 0.
We can do this for any given pair of velocity vectors which are not collinear,
so there is no loss of generality here. Then (2) gives

β
1
=

β
1
+ β1

1 + β
1
β1

(3)

β
2
=

β
2

(1 + β
1
β1)γ

(4)

β
3
= 0 (5)

and a standard formula, e.g., formula (7.11) in [3], allows us to write Lorentz

transformations L and L from O to O and from O to O respectively as

L =









γ −γβ1 0 0
−γβ1 γ 0 0
0 0 1 0
0 0 0 1









(6)

and

L =













γ −γβ
1

−γβ
2

0

−γβ
1

1 + (γ − 1)β
2

1

β
2 (γ − 1)β1

β
2

β
2 0

−γβ
2

(γ − 1)β1
β
2

β
2 1 + (γ − 1)β

2

2

β
2 0

0 0 0 1













(7)

A Lorentz boost L from O to O with velocity vector β would be a matrix like

(7), but with γ, β
1
, β

2
and β replacing γ, β

1
, β

2
and β respectively.

The relativistic rotation paradox is that, in general, L 6= L×L, but rather

L = R× L× L (8)
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or equivalently

R = L× L−1 × L
−1

(9)

where (9) is equation (28) in [1]. Numerical evidence in [1] suggests that

R =









1 0 0 0
0 r1 s1 t1
0 r2 s2 t2
0 r3 s3 t3









(10)

where the 3× 3 submatrix in (10) is orthogonal. An approximation to (10) is
also provided in equation (7.21) of [3] under the assumptions that the compo-
nents of β are small and only need to be retained to first order, that γ ≈ 1,
and that the distinction among γ, γ and γ can be ignored to first order.

However, it is straightforward to obtain an exact algebraic proof that R in
(9) is indeed an orthogonal matrix of the type given in (10) by observing that
R must be Lorentz, since it is a product of Lorentz matrices. Therefore all
that is required to prove the rotation paradox is to show that the 00-element

of L × L−1 × L
−1

is equal to 1, and that all the remaining elements in the
first row are equal to zero, since any Lorentz matrix with a first row of this
form must necessarily be an orthogonal matrix of the type given in (10). This
assertion can easily be verified by substituting a generic 4×4 matrix with first
row of the form (1 0 0 0) into the left-hand side of (1), setting the result equal
to G on the right-hand side, and then comparing corresponding elements.

Note that L−1 and L
−1

are immediately obtained from (6) and (7) simply
by removing the negative signs in the first row and first column. To prove that

the 00-element of L× L−1 × L
−1

equals 1, multiply the first row of L by each
of the columns of L−1 to get the 1× 4 row vector

(

γγ(1− β
1
β1) γγ(β1 − β

1
) −γ β

2
0
)

(11)

and then multiply this row vector by the first column of the matrix L
−1

to get

γ γ γ(1− β
1
β1 + β

1
β1 − β

1
β
1
)− γ γ β

2
β
2

=
(1 + β1β1

)2 − (β1 + β
1
)2 − β

2

2
(1− β2

1
)

√

1− β2

1

√

1− β
2

1
− β

2

2

√

(1 + β1β1
)2 − (β1 + β

1
)2 − β

2

2
(1− β2

1
)

= 1

as required. To prove that the 01-element of L×L−1 ×L
−1

equals 0, multiply

the row vector in (11) by the second column of L
−1

to get

γ γ γ(β
1
− β1β1

β
1
) +

[

1 + (γ − 1)
β
2

1

β
2

]

γ γ (β1 − β
1
)− γ β

2

[

(γ − 1)
β
1
β
2

β
2

]
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=
β
1
(1− β2

1
)

(1− β2

1
)(1− β

2

1
− β

2

2
)
− β

1
(β

2

1
+ β

2

2
)

(β
2

1
+ β

2

2
)(1− β

2

1
− β

2

2
)
= 0

as required. To prove that the 02-element of L×L−1 ×L
−1

equals 0, multiply

the row vector in (11) by the third column of L
−1

to get

γ γ γ(β
2
− β1β2

β
1
) +

[

(γ − 1)
β
1
β
2

β
2

]

γ γ (β1 − β
1
)− γ β

2

[

1 + (γ − 1)
β
2

2

β
2

]

=
β
2
(1− β2

1
)

(1− β2

1
)(1− β

2

1
− β

2

2
)
− β

2
(β

2

1
+ β

2

2
)

(β
2

1
+ β

2

2
)(1− β

2

1
− β

2

2
)
= 0

as required. Finally, to prove that the 03-element of L × L−1 × L
−1

equals 0,

multiply the row vector in (11) by the fourth column of L
−1

. This equals 0 by
inspection, so the relativistic rotation paradox is proved.
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