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Causal set theory attempts to formulate a quantum theory of gravity by assuming that the fun-
damental structure is a discrete set of basal events partially ordered by causality. In other words,
it extracts the causal structure that it takes to be essential for relativistic spacetimes, posits it
as fundamental, imposes discreteness, and tries to establish that these spacetimes generically
arise from the resulting structures in the continuum limit. Precursors can be found in David
Finkelstein (1969), Jan Myrheim (1978), and Gerard ’t Hooft (1979), although the endeavour
did not get started in earnest until 1987, when the seminal paper by Luca Bombelli, Joohan Lee,
David Meyer, and Rafael Sorkin (Bombelli et al. 1987) hit the scene.

This chapter gives a brief introduction to the leading ideas of the program and offers a
philosophical analysis of them. In §1, we introduce the theory by putting it into its historical
context of the tradition of causal theories of time and of spacetime and by showing how it grew
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Theories of Gravity, co-authored by Nick Huggett and Christian Wüthrich and under contract with Oxford Uni-
versity Press. More information at www.beyondspacetime.net. The primary author of this chapter is Christian
Wüthrich (christian.wuthrich@unige.ch). This work was supported financially by the ACLS and the John Tem-
pleton Foundation (the views expressed are those of the authors not necessarily those of the sponsors). We wish
to thank John Dougherty, Fay Dowker, David Meyer, David Rideout, and Sebastian Speitel for comments on
earlier drafts.
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out of concrete questions and results within that tradition. §2 presents and discusses the basic
kinematic axiom of causal set theory. Finally, in §3, we will articulate what we will call the
‘problem of space’ in causal set theory and illustrate the work required toward solving it. This
will involve a consideration of what space is (3.1), how it might naturally be identified in causal
set theory (3.2), and how the dimension (3.3)), topology (3.4), and metrical properties such as
distance (3.5) of such spatial structures could be determined.

1 Motivation and background

1.1 Historical prelude: causal theories of time and of spacetime

Starting in 1911, just a short few years after Hermann Minkowski articulated the geometry of
the spacetime of special relativity (SR), Alfred A Robb recognized that this geometry could
be captured by the causal structure among the events of this spacetime. In fact, as Robb
(1914, 1936) proved, the causal structure of Minkowski spacetime determines its topological
and metrical structure.1 In other words, the geometry of Minkowski spacetime can be fully
reconstructed starting from the set of basal events and the binary relation of causal precedence
in which they stand. As there are spacelike related events, there exist pairs of events such that
none of them precedes the other. This signifies a loss of ‘comparability’ and entails that the
primitive causal relation imposes what mathematicians call a merely partial order on the set
of events, as is appropriate for a special-relativistic theory.2 The spacelike relations between
incomparable events can be defined in terms of combinations of fundamental causal relations,
as there are always events in Minkowski spacetime which are to the causal future of any two
spacelike related events. Thus, two spacelike-related events thus stand in an indirect causal
relation.

The derivation of the full geometry of Minkowski spacetime from a few axioms mostly rely-
ing on a set of primitive events partially ordered by a primitive binary relation and the early
interpretation of this relation as causal has led philosophers to causal theories of spacetime more
generally, reinvigorating a venerable tradition of causal theories of time dating back at least to
Gottfried Wilhelm Leibniz. This rejuvenated tradition starts off in Hans Reichenbach (1924,
1928, 1956) and continues in Henryk Mehlberg (1935, 1937) and Adolf Grünbaum (1963, 1967)
as a causal theory of time order, rather than of spacetime structure. Arguing from an empiricist
vantage point, the goal was to explicate temporal relations in terms of their physical, i.e., more
directly empirically accessible, basis. In this spirit, Reichenbach postulates a set of events, merely
structured by basic relations of a causal nature, where the relations of ‘genidentity’ and of causal
connection play a central role.3 Reichenbach’s early attempts to execute this program failed on
grounds of circularity:4 his theory makes ineliminable use of the asymmetry of causal connection
to ground the asymmetry of temporal order, but his criterion to distinguish between cause and
effect—often called the ‘mark method’—relies, implicitly, on temporal order.5 The circularity

1It can be shown that the group of all automorphisms of the causal structure of Minkowski spacetime is
generated by the (inhomogeneous) Lorentz group—and dilatations, of course. This result was independently
proved by Zeeman (1964), and apparently also by A D Aleksandrov in 1949. For a detailed analysis, cf. Winnie
(1977).

2Consult Huggett et al. (2013, §2.1) for details. For a systematic account of the various attempts to axiomatize
the structure of Minkowski spacetime and an assessment of the characteristics of the resulting logical systems,
see Lefever (2013).

3Two events are genidentical just in case they involve the same—i.e., numerically identical—object. It is
thus clear that genidentity also involves, apart from mereological considerations, a causal connection between the
genidentical events.

4Speaking of circularity, he rules out closed causal chains ab initio—on empirical rather than logical grounds.
5As criticized by Mehlberg (1935, 1937) and Grünbaum (1963), among others.
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arises because the distinguishability of cause and effect is necessary in an approach that assumes
as fundamental an asymmetric relation and thus cannot take recourse to a more fundamental
description of the events that may ground the distinction. Reichenbach’s early formulation of the
causal theory of time order also uses spatiotemporal coincidence as primitive and thus fails to
explicate temporal order entirely in non-spatiotemporal terms.6 His later formulation (Reichen-
bach 1956) mends some of these deficiencies by attempting to explicate the causal asymmetry in
terms of factual asymmetries in actual series of events ordered by temporal betweenness. This
move does not get entirely rid of primitive temporal notions, but at least it provides an indepen-
dent, ‘physical’, grounding of the asymmetry of the causal connection. Grünbaum (1963, 1967)
adopts Reichenbach’s basic strategy, but tries to overcome the difficulties that befell its prede-
cessor. The result is mixed, and no full explication of spacetime in terms of physical relations is
achieved.7

Bas van Fraassen (1970, Ch. 6) offers what he argues is a significant simplification of the
theory that does not rely on purely spatial or spatiotemporal notions (182). His causal theory
of spacetime (as opposed to just time) takes as primitive the notion of an event and the binary
relations of genidentity and causal connectibility. Genidentity is an equivalence relation and is
used to define world lines of objects as equivalence classes under genidentity, while the reflexive
and symmetric relation of causal connectibility captures the causal structure of spacetime. Van
Fraassen’s final version of the theory—the details of which we will leave aside—dispenses with
genidentity in favour of primitive persisting objects.

Evidently, at least in the context of SR, the (possibly directed) causal connectibility relation
is equivalent to the spatiotemporal relation of ‘spatiotemporal coincidence or timelike related-
ness’ (the first disjunct is necessary because of the reflexive convention chosen). This raises the
worry—to which we will return below—whether the theory is trivial and the reconstruction hence
pointless in the sense that it just restates the spatiotemporal structure of Minkowski spacetime in
different terms and thus fails to ground that structure in more fundamental, non-spatiotemporal,
relations. Against this charge, van Fraassen, like his precursors before him, insists that the
causal theory outstrips the relational theory of spacetime because, unlike blandly spatiotempo-
ral relations, the fundamental causal relations are physical relations. This line of defence may
incite the further worry that the causal theory attempts to illuminate the obscure with the truly
impervious: analyses of causation are famously fraught with a tangle of apparently impenetrable
problems. This concern is allayed, van Fraassen retorts, by the fact that no general definition of
either causation or physical relations is required for the project to succeed; since the non-modal
component of ‘causal connectibility’—causal connection—gets explicated in terms of genidentity
and ‘signal connection’, and since these are evidently physical and empirical relations, ‘causally
connectible’ has a meaning which is not derivatively spatiotemporal. Furthermore, van Fraassen
(1970, 195) notes, the causal theory does not insist that all spatiotemporal relations are in fact
reduced, but merely that they are reducible, to causal connectibility. We will need to return to
this point below when we consider whether fundamental structures according to causal set theory
are spatiotemporal at all.

1.2 Earman’s criticism of causal theories of spacetime

Shortly after van Fraassen published what was then the most sophisticated articulation of the
causal theory of spacetime, John Earman (1972) aired devastating criticisms of the theory. Ear-
man’s objections traded on results in general relativity (GR) and established that no causal

6Cf. van Fraassen (1970, §6.2.a).
7Cf. also van Fraassen (1970, §6.3).
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theory of spacetime has the resources to deal with the full range of spacetime structures licensed
by GR.

In order to appreciate Earman’s points, and the story unfolding after his attack leading
directly to causal set theory, a few concepts need to be introduced. A spacetime is an ordered
pair 〈M, gab〉 consisting of a four-dimensional Lorentzian manifold M with a metric field gab
defined everywhere on it. A model of GR, or just a ‘relativistic spacetime model’, then is a triple
〈M, gab, Tab〉 including a stress-energy tensor Tab such that Einstein’s field equation (EFE),

Rab −
1

2
Rgab + Λgab = 8πTab, (1)

given here in natural units c = G = 1, where Rab is the Ricci tensor, R the Ricci scalar, and Λ the
cosmological constant, is satisfied. A spacetime is temporally orientable just in case a continuous
choice of the future half of the light cone (as against the past half) can be made acrossM. Since
a temporally orientable spacetime always affords a smooth, everywhere non-vanishing timelike
vector field ta on M,8 we can take such a vector field to encode the temporal orientation of
spacetime. In what follows, we will assume that all spacetimes are temporally orientable. If in
fact the orientation is given, e.g. by a smooth timelike vector field, then we will call the spacetime
temporally oriented.

In order to get to the relevant causal structure, we need the notion of a timelike relation:

Definition 1 (Timelike relation). Let 〈M, gab〉 be a temporally oriented relativistic spacetime
model. The binary relation � of timelike separation is then defined as follows: ∀p, q ∈M, p� q
if and only if there is a smooth, future-directed timelike curve that runs from p to q.

The relation�, which is technically a relation of timelike separation in GR, will nevertheless
be used to encode the causal structure. Let us grant, at least for the time being, that this relation
is indeed fundamentally causal. We will return to this point below.

Since we are interested in the causal structure, we need a criterion to identify causal structures.
Here is the relevant isomorphism:

Definition 2 (�-isomorphism). Let 〈M, gab〉 and 〈M′, g′ab〉 be temporally oriented relativistic
spacetime models. A bijection ϕ : M → M′ is a �-isomorphism if, for all p, q ∈ M, p � q if
and only if ϕ(p)� ϕ(q).

It is clear that two spacetimes have the same causal structure just in case there is a �-
isomorphism between their manifolds. The causal structure is precisely what is preserved under
these isomorphisms. Analogously, we can introduce the notion of a causal relation, which is only
slightly more general than that of a timelike relation:

Definition 3 (Causal relation). Let 〈M, gab〉 be a temporally oriented relativistic spacetime
model. The binary relation < of causal separation is then defined as follows: ∀p, q ∈M, p < q if
and only if there is a smooth, future-directed timelike or null curve that runs from p to q.

We have highlighted in bold font the relevant difference to Definition 1. Causal relations <
also give rise to a corresponding isomorphism, denoted ‘<-isomorphism’, in full analogy to the
�-isomorphism as defined in Definition 2. Note that the two relations � and < are generally
not interdefinable.9 But since their physical meaning is closely related, we will generally only
state the results using �.

8Wald (1984, Lemma 8.1.1).
9More precisely, as Kronheimer and Penrose (1967) show, it generally takes two of the three relations, causal,

chronological, and null, to (trivially) define the third. All three relations can be reconstructed from any one only
under the imposition of appropriate restrictions.
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The general goal for a causal theorist must be to take causal structure as fundamental and
show how this structure grounds everything else about the spacetime. In particular, we want
to see that its metric structure is determined by the causal structure. Thus, the success, or at
least viability, of the causal program gets measured, as it were, by the extent to which the causal
structure of relativistic spacetimes determines their metric (and topological) structure.

It turns out this success cannot be complete, as Earman (1972) notes. Conceding, as he
does, the causal connectibility relation to his explicit targets Grünbaum (1967) and van Fraassen
(1970), Earman demonstrates that there are relativistic spacetimes for which there is no hope
that the causal program succeeds, thus showing that the transition from a causal theory of time to
a causal theory of relativistic spacetime is not trivial. To add insult to injury, Earman concludes
that the doctrines of the causal theorist about spacetime “do not seem very interesting or very
plausible” (75). However, subsequent work by David Malament and others and in causal set
theory has clearly nullified that appearance, as should become apparent below.

Earman starts out by precisifying the notion of causal connectibility. In order to do that, let
us introduce the notions of the ‘chronological future’ and ‘past’:

Definition 4 (Chronological future and past). For all points p ∈M, let I+(p) and I−(p) be the
chronological future and the chronological past, respectively, as determined by:

I+(p) := {q : p� q},
I−(p) := {q : q � p}.

The causal future and past sets, denoted J+ and J−, respectively, can be defined in complete
analogy to Definition 4, substituting throughout the causal relation < for the timelike relation
�. These notions permit the precise articulation (of one notion) of ‘causal connectibility’ of two
events in a given spacetime as the physical possibility of a causal signal of nonnull (affine) length
to connect them:

Definition 5 (Causal connectibility). An event q ∈M is causally connectible to another event
p ∈M just in case q ∈ J+(p) ∪ J−(p).

Earman then asks whether the causal theorist can supply a criterion of spatiotemporal co-
incidence that relies purely on the basal causal notions. Suppose we have a set of otherwise
featureless ‘events’ that partake in relations of causal connectibility but that do not, fundamen-
tally, stand in spatiotemporal relations. Van Fraassen (1970, 184) then defines pairs of events
to be spatiotemporally coincident just in case they are causally connectible to exactly the same
events, i.e., for every event r, r is causally connectible to the one if and only if it is causally
connectible to the other. As Earman points out, this criterion is only adequate for spacetimes
which satisfy the following condition: for every pair of points p, q ∈ M, if J+(p) = J+(q) and
J−(p) = J−(q), then p = q. Since GR permits many spacetimes which violate this condition,10

a causal theorist could never hope to reduce spatiotemporal coincidence to causal connectibility
for all general-relativistic spacetimes. This condition is very closely related to another one:

Definition 6 (Future (past) distinguishing). A spacetime 〈M, gab〉 is future distinguishing iff,
for all p, q ∈M,

I+(p) = I+(q)⇒ p = q

(and similarly for past distinguishing).

10This condition is crudely violated, e.g., in spacetimes containing closed timelike curves, which consist in
numerically distinct points with nevertheless all have the same causal future and past. For a more subtle and
interesting example for a past but not future distinguishing spacetime as defined in Definition 6, see Hawking and
Ellis (1979, Fig. 37).
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If a spacetime is both future and past distinguishing, then we simply call it distinguishing. As
we will see momentarily, the conditions of future and past distinguishing mark an important limit
of what sorts of spacetimes a causal theory of spacetime can hope to successfully capture. This
is perhaps not too surprising given that a distinguishing spacetime cannot contain any closed
timelike or null curves and that non-distinguishing spacetimes do at least contain non-spacelike
curves which come arbitrarily close to being closed. Relying on causal structure as it does,
the causal program remains incapable in cases where this structure is pathological. However,
pathological causal structures are certainly possible in notoriously permissive GR (Smeenk and
Wüthrich 2011). And for Earman (1972, 78), there are no good reasons to reject those spacetimes
violating the condition as physically unreasonable, even though that is sometimes done, and not
just by defenders of the causal program. He thus concludes that the causal theory of spacetime
does not command the resources necessary to offer a novel basis “for getting at the subtle and
complex spatiotemporal relations which can obtain between events set in a relativistic space-time
background” (Earman 1972, 79).

Some spacetimes violating Earman’s condition are such that M can be covered by a family
of non-intersecting spacelike hypersurfaces. These spacetimes are topologically closed ‘timewise’
and every event inM contains closed timelike curves. In this case, it is always possible to find an
embedding space which is locally likeM but does not contain closed timelike curves. Given that
such embedding spaces are causally well-behaved, the causal theorist might be tempted to use
their causal structure to recover the spacetime structure of the spacetime. Earman notes that
such an enterprise would be bound to fail, given that the original spacetime and the embedding
space also differ in global properties: in the former, ‘time’ is closed, while in the latter it is not.
Thus, the causal structure of the embedding space could not possibly render the correct verdict
about such important global properties of the spacetime at stake. But notice that the causal set
theorist could respond to this by weakening the ambition to recovering merely the local, but not
necessarily the global, spacetime structure.

In fact, this strategy could be more widely applied to those non-distinguishing spacetimes
which can be partitioned into distinguishing ‘patches’ of spacetime. A patch 〈S ⊆ M, gab|S〉 of
a spacetime 〈M, gab〉 would be distinguishing just in case it is with respect to the events in the
patch, but not necessarily with respect to those outside of it. This covers many, though not all,
spacetimes which violate Earman’s condition. In this case, the causal theorist could claim to be
able to recover the spatiotemporal structure of the patch from the patch’s causal structure. In
this sense, the program could then still be executed to fruition ‘locally’. Thus, what Earman
identifies as a problem for the causal theorist could be turned into a strategy to deal with many of
the spacetimes ruled out of bounds by Earman. Of course, this strategy would only be acceptable
if accompanied by a commensurately attenuated ambition of the program.

Earman’s criticism, though sound, may thus not spell the end of the program. Thus, the
causal theorist can surely respond to Earman’s conclusion that “taking events and their causal
relations as a primitive basis is not sufficient for getting at the subtle and complex spatiotemporal
relations which can obtain between events set in a relativistic space-time background” (79) with
a dose of healthy revisionism. The causal theorist is bound to fail if her pretension was to
produce an alternative foundation for full GR, as Earman conclusively establishes; however, if
the aspiration is instead to offer either a merely ‘localist’ reconstruction of spacetimes in a sector
or GR or else—and more relevantly for our present purposes—a distinct, and perhaps more
fundamental, theory, Earman’s objections can be circumnavigated.11 The latter, of course, is
precisely what causal set theory aims to provide, as we will see shortly.

11For a detailed assessment as to what extent a causal theory can succeed in grounding GR, see Winnie (1977).
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1.3 Malament’s theorem

That the situation is not hopeless for the causal theorist, and, more specifically, that the causal
structure often provides a powerful ground for the entire geometry of a relativistic spacetime, was
established by remarkable results of Stephen Hawking and collaborators (Hawking et al. 1976)
and David Malament (1977), building on results regarding ‘causal spaces’ in the seminal paper
of Kronheimer and Penrose (1967). It is these results by Kronheimer and Penrose, Hawking and
collaborators, and Malament that motivate the causal set theory program. They can be thought
of as an extension of Robb’s reconstructive project from SR to GR. Mathematically, the basic
idea is that we take a point set with its topology, its differential structure, and its conformal
structure to extract the relation � defined on the point set. Then we throw away everything
except the point set and the relation� and try to recover the entire spacetime geometry. This is
accomplished—to the extent to which it is accomplished—in terms of implicit definitions using
invariances under the relevant group of mappings. Metaphysically, the idea is of course that,
fundamentally, there only is the point set structured by � and every other aspect of spacetime
geometry ontologically depends on that structure.

Using the definitions above, as summarized by Malament (1977, 1400), the relevant result of
Hawking, King, and McCarthy is the following theorem:

Theorem 1 (Hawking, King, and McCarthy 1976). Let φ be a �-isomorphism between two
temporally oriented spacetimes 〈M, gab〉 and 〈M′, g′ab〉. If φ is a homeomorphism, then it is a
smooth conformal isometry.

Homeomorphisms, i.e., continuous mappings that also have a continuous inverse mapping,
are maps between topological spaces that preserve topological properties. Furthermore,

Definition 7 (Conformal isometry). A �-isomorphism φ is a conformal isometry just in case
it is a diffeomorphism and there exists a (non-vanishing) conformal factor Ω :M′ → R such that
φ∗(gab) = Ω2g′ab.

Thus, Hawking and collaborators showed that the following conditional holds: if two tem-
porally oriented spacetimes have the same topology and causal structure, then they have the
same metric, up to a conformal factor. This leads to the natural question of just under what
conditions do two temporally oriented spacetimes with the same causal structure have the same
topology? Obviously, if we knew the answer then we could state under what conditions two
temporally oriented spacetimes with the same causal structure have the same metric, up to a
conformal factor. Malament’s result gives a precise answer to this question: just in case they
are distinguishing, i.e., just in case they are both future- and past-distinguishing. Here is the
theorem:

Theorem 2 (Malament 1977). Let φ be a �-isomorphism between two temporally oriented
spacetimes 〈M, gab〉 and 〈M′, g′ab〉. If 〈M, gab〉 and 〈M′, g′ab〉 are distinguishing, then φ is a
smooth conformal isometry.

It is important to note that neither future- nor past-distinguishability alone are sufficient to
clinch the consequent (Malament 1977, 1402). The theorem thus establishes that, for a large
class of spacetimes, causal isomorphisms also preserve the topological, differential, and conformal
structure, and hence the metrical structure up to a conformal factor. In this sense, we can say
that the causal structure of a relativistic spacetime in this large class ‘determines’ its geometry up
to a conformal factor. It is worth keeping in mind that this ‘determination’ is not underwritten
by explicit definitions of the geometrical structure of these spacetimes in terms of their causal
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structures;12 rather, the argument proceeds by showing that maps between spacetimes that leave
the causal structure invariant, will also leave the geometrical structure invariant (again, up to
a conformal factor). Even though this may be too thin a basis on which to lay grand claims of
ontological dependence, the results are sufficiently suggestive to motivate the entire program of
causal set theory.

Before moving to causal set theory proper, let us make a few remarks regarding its immediate
prehistory. Considerations concerning the relations between discrete and continuum spaces in
philosophy, physics and mathematics certainly predate causal set theory—in philosophy, for
instance, by a mere couple of millennia. At least since the advent of quantum physics have
physicists played with the idea of a discrete spacetime, which were seen to be motivated by
quantum theory.13 It was recognized early on that a fundamentally discrete spacetime structure
would create a tension with the invariance under continuous Lorentz transformations postulated
by SR, and that solving this problem would be crucial to finding a quantum theory of gravity.14

An early clear statement of something that starts to resemble the causal set program has been
given by David Finkelstein (1969). Finkelstein argues that the macroscopic spacetime with its
causal structure may arise as a continuum limit from a ‘causal quantum space’. He asserts
in the abstract of the paper that “[i]t is known that the entire geometry of many relativistic
space-times can be summed up in two concepts, a space-time measure µ and a space-time causal
or chronological order relation C, defining a causal measure space” (1261). Unfortunately, no
reference or proof is given in the text in support of this claim; in fact, the claim is essentially
repeated, but with the qualification that this is true only of “many” spacetimes dropped:

The causal order C determines the conformal structure of space-time, or nine of the
ten components of the metric. The measure on spacetime fixes the tenth component.
(1262)

This is effectively Malament’s theorem without the relevant qualification that the spacetimes be
distinguishing (and so is a false proposition)! Similarly, in another pre-causal-set-theory paper,
Jan Myrheim (1978) uses Malament’s result, published the previous year, as his vantage point
without giving a citation, merely claiming that

[i]t is a well-known fact that in the standard, continuum space-time geometry the
causal ordering alone contains enough information for reconstructing the metric, ex-
cept for an undetermined local scale factor, which can be introduced for instance by
means of the volume element dV . (4)

Myrheim’s project can clearly be considered a precursor to causal set theory. He argues that the
partial causal ordering can just as naturally be imposed on a discrete set as on a continuous one,
and that the discrete set has the advantage of automatically providing a natural scale, unlike the
continuous space. This natural scale, as Bernhard Riemann (1868, 135, 149) observed, results
from the fact that a discrete space, but not a continuous space, possesses an ‘intrinsic metric’
given by counting the elements. The number of elementary parts of the discrete space determines
the volume of any region of that space, which is of course not the case for continuous spaces.
Myrheim’s goal is to show how one can recover, in a statistical sense, not only the geometry, but
also the vacuum EFE for the gravitational field from the discrete causal structure. While the

12Whether or not such explicit definitions can be given remains an open problem (David Malament, personal
communication, 24 April 2013).

13E.g. Ambarzumian and Iwanenko (1930).
14For the earliest attempt to reconcile Lorentz symmetry with a discrete spacetime that we know of, cf. Snyder

(1947). We will return to this issue in the next chapter.

8



project is suggestive, and the goal the same as in causal set theory, it does not succeed.15

Around the same time, Gerard ’t Hooft (1979), in just a few short pages (338-344), sketches
a quantum theory of gravity closely related to causal set theory. While the use of lattices in
quantum field theory is generally considered a pretense introduced to simplify the mathematics
or to control vicious infinities, ’t Hooft takes the point of view that in the case of gravity, a
kind of a lattice “really does describe the physical situation accurately” (338). He, too, uses the
unqualified and hence false version of the statement that Malament proved in its qualified form
(340); he, too, makes no reference to either Hawking et al. (1976) or Malament (1977). Starting
out from a basic causal relation, for which he offers the temporal gloss as “is a point-event earlier
than” (ibid.), and requiring transitivity, ’t Hooft asserts four basic assumptions of the theory.
First, the causal relation gives a partial ordering of events and defines a lattice, i.e., a discrete
structure. Supposing that a continuum limit of this fundamental structure exists, he demands,
secondly, that this lattice contains all the information to derive a curved Riemann space in this
limit; that, thirdly, the existence of this limit constrains the details of the fundamental partially
ordered structure; and that, finally, a curved Riemann space with the appropriate signature
comprises all information on the entire history of the universe it represents, i.e., the entire
spacetime. The second and fourth assumptions jointly entail that the fundamental structure
contains all physically relevant information of the spacetime it describes. ’t Hooft then sketches
how the continuum limit could be taken and briefly mentions that a cosmological model could
be gained by simply adding the demand that there exists an event that precedes all others. The
sketch omits any dynamics, which ’t Hooft admits should be added such that it approximates
the usual Einstein dynamics in GR and adds that we should expect such an action to be highly
non-local.

’t Hooft then closes his speculations with the following words:

The above suggestions for a discrete gravity theory should not be taken for more
than they are worth. The main message, and that is something I am certain of, is
that it will not be sufficient to just improve our mathematical formalism of fields in a
continuous Riemann space but that some more radical ideas are necessary and that
totally new physics is to be expected in the region of the Planck length. (344)

Such a radically new start is precisely what the program of causal set theory seeks to offer.

2 The basic plot: kinematic causal set theory

Causal set theory as we now know it starts with the foundational paper by Luca Bombelli,
Joohan Lee, David Meyer, and Rafael Sorkin (Bombelli et al. 1987), who, unlike Myrheim and ’t
Hooft, explicitly build on Hawking et al. (1976), Malament (1977), and Kronheimer and Penrose
(1967). Advocates of causal set theory often insist that their theory consists of three parts,
like any other physical theory: kinematics, dynamics, and phenomenology. Even though many
physical theories may conform to this partition, there is, of course, nothing sacrosanct about
this trinity. As long as the theory clearly articulates what it considers the physical possibilities
it licenses to be and how this explains or accounts for aspects of our experience, it may have as
many parts as it likes. Be this as it may, we will split the discussion of the theory into kinematics
and dynamics, and deal with the former in this section and the latter in the next chapter.

15Although Myrheim is aware (cf. 3) that this is not in general true, he proceeds as if the causal ordering of
any relativistic spacetime is globally well-defined; he also seems to assume that the local uniqueness of geodesics
can be extended globally (6), which is not in general true. There are other oddities in his analysis, for instance
when he takes coordinates to be more fundamental than the metric (8).
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2.1 The kinematic axiom

Causal set theory assumes a four-dimensional point of view and, impressed with Malament’s
result, attempts to formulate a quantum theory of gravity ab initio, i.e., not by means of a quan-
tization of GR or a ‘general-relativization’ of the quantum physics of the other three fundamental
forces. The four-dimensional viewpoint regards spacetime as a fundamentally inseparable unity.
It thus stands in opposition to canonical approaches which divide four-dimensional spacetime
into three-dimensional spacelike slices totally ordered by one-dimensional time. Spacetime points
are replaced in causal set theory with elementary ‘events’. These events, just as points in the
spacetime manifold, have no intrinsic identity; instead, they only acquire their identity through
the relations in which they stand to other such events.16 Consonant with Malament’s result,
and as reflected in its name, causal set theory takes the relations which sustain the identities
of their relata to be causal relations. In a relativistic theory, causal relations order their relata
merely partially (Huggett et al. 2013, §2.1). Finally, the fundamental structure is assumed to
be ‘atomic’, and hence discrete. We are thus left with a fundamental structure of otherwise
featureless elements partially ordered by a relation of causal precedence into a discrete structure:

Basic Assumption. The fundamental structure is a discrete set of elementary events partially
ordered by a relation of causal precedence. In short, it is a causal set.

This assumption is too weak to articulate a sufficient condition delineating the models of
the theory; rather, it should be regarded as a conceptually central necessary condition. More
precisely, it can be stated as follows:

Axiom 1 (Kinematic Axiom of Causal Set Theory). The fundamental structure is a causal set
C, i.e. an ordered pair 〈C,�〉 consisting of a set C of elementary events and a relation, denoted
by the infix �, defined on C satisfying the following conditions:

1. � induces a partial order on C, i.e., it is reflexive (∀x ∈ C, x � x), antisymmetric (∀x, y ∈
C, if x � y and y � x, then x = y), and transitive (∀x, y, z ∈ C, if x � y and y � z, then
x � z).

2. � is locally finite:17 ∀x, z ∈ C, |{y ∈ C|x � y � z}| < ℵ0, where |X| denotes the cardinality
of the set X (sometimes called its ‘size’).

3. C is countable.

A causal set, or ‘causet’, can be represented by a directed acyclic graph,18 i.e., a set of nodes
(usually represented by dots) connected by directed edges (usually represented by arrows) without
directed cycles (which are cycles in which each node is traversed without changing direction). A
causet is determined by its directed acyclic graph. As is standard in causal set theory, we will
often use so-called ‘Hasse diagrams’, which are directed acyclic graphs of the transitive reduction
of finite partially ordered sets.19 In Hasse diagrams, the direction of the edges is encoded in

16The theory thus lends itself rather directly to a structuralist interpretation (Wüthrich 2012).
17This condition may perhaps be more adequately called ‘interval finiteness’ (Dribus 2013, 19), where an interval

[x, z] in a causet C is a subcauset that contains all events y ∈ C such that x � y � z. Intervals are sometimes
also called ‘Alexandrov sets’.

18At least if we gloss over the fact that acyclicity is often defined in a way that renders causets ‘cyclic’ because
their fundamental relation contains trivial ‘cycles’ x � x. If readers are bothered by our sloppiness here they are
invited to substitute ‘noncircular’ for ‘acyclic’.

19The transitive reduction of a binary relation R on a domain X is the smallest relation R′ on X with the same
transitive closure as R. The transitive closure of a binary relation R on X is a smallest transitive relation R′ on
X that contains R. Effectively, the transitive reduction of a graph is the graph with the fewest edges but the
same ‘reachability relations’ as the original graph, or, in the case at hand, the transitive reduction of a causet is
the causet with all those causal connections removed that are entailed by transitivity. At least in the finite case,
the transitive reduction of a causet is unique.
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Figure 1: The Hasse diagram of a causet.

the relative positions of the connected vertices, and not by arrows. The convention is that an
element ‘earlier’ in the partial order is always drawn below a ‘later’ element. Thus, an event x
is drawn below a numerically distinct event y and there is a line connecting the two just in case
x immediately precedes y. Figure 1 shows the Hasse diagram of a causet. Hasse diagrams are
convenient because no two distinct causets can have the same Hasse diagram, so that a Hasse
diagram uniquely determines the represented causet.20

2.2 Discussion of the basic assumptions

A few remarks on the basic assumption and the kinematic axiom. First, it is important that the
ordering be merely partial, and not total. A total order induced by a binary relation R on a set
X is a partial order such that every pair of distinct elements of X is comparable, i.e., ∀x, y ∈ X,
either Rxy or Ryx. That the ordering imposed by the causal structure is partial rather than
total is crucial to capture the causal structure of a relativistic spacetime, where two distinct
events can be spacelike separated and hence not stand in a relation of causal precedence. It is
because the ordering is causal that it must be partial.

Second, it is just as important that the ordering be no weaker than partial; in particular, it
matters that it is not a mere pre-order. A binary relation on a set induces a pre-order just in
case it is reflexive and transitive, but in general not antisymmetric. The additional imposition
of antisymmetry rules out the possibility of causal loops of the form of cycles of distinct events
a, b ∈ C such that a � b � a. Two remarks concerning causal loops are in order. First, it should
be noted that any events on such a loop would have the identical relational profile in the sense
that any event that precedes one of them precedes all of them, and any event that is preceded by
any one of them is preceded by all.21 If the relational profile of an elementary event constitutes its
identity, as the rather natural structuralist interpretation of the fundamental structure in causal
set theory would have it, events on a causal loop would therefore not be distinct at all and the
theory lacks the resources to distinguish between a single event and a causal loop. This may be
a limitation of the theory, but it reflects the assumption that any two events which do not differ
in their causal profile do not differ physically and hence should be considered identical. Second,
there are, of course, spacetimes in GR which contain causal loops (Smeenk and Wüthrich 2011).
Given that Axiom 1 prohibits causal loops at the fundamental level, it is not clear that causal
set theory has the resources to show how relativistic spacetimes with causal loops can emerge

20For a useful entry point onto the mathematics of partially ordered sets, cf. Brightwell and West (2000). For
a mathematically motivated and hence much wider perspective on causets, cf. Dribus (2013, 2017).

21See Wüthrich (2012, 236f) for details.
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from a fundamental causet without.22 Many physicists consider causal loops ‘unphysical’ and
hence do not mourn their absence from the fundamental level (and so perhaps from emergent
levels), but it is a cost that the theory incurs and that needs to be kept in mind. The fact that
causal loops appear in so many relativistic spacetimes, including in (extensions of) physically
important ones, should make us wary to dismiss them too precipitously, as is argued in Smeenk
and Wüthrich (2011) and elsewhere.23

Third, the fundamental structure is assumed to be locally finite, and hence discrete. Unlike
in loop quantum gravity, this discreteness is assumed in causal set theory, not derived. A first
set of justifications offered in the literature (e.g. in Henson (2009, 394)) argue from the technical
utility in assuming discreteness. A fundamentally discrete ‘spacetime’ can cure a theory from
divergences in various quantities that may not be tamed by renormalization, as well as simplify
the computational challenges faces by the physicist. A second set of justifications typically given
trades on physical reasons for preferring a discrete structure. For instance, without a short-
distance cut-off as supplied by a discrete ‘spacetime’, the semi-classical black hole entropy will
not come out finite as desired (ibid.); or the discreteness may be an effective way of avoiding
violations of the local conservation of energy in the form of photons with infinite energies (Reid
2001, 6). Perhaps most curious of all, Henson (2009, 394) argues that the concurrence of many
rather diverse approaches to quantum gravity on the discreteness of the fundamental structure
adds support to the stipulation of such discreteness in causal set theory. It is questionable,
however, how different programs with contradictory assumptions which presuppose, or infer, the
same discreteness can be considered mutually supportive. The truth of such an alternative theory
would be evidence against causal set theory as a whole, though not necessarily against all its
parts. Conversely, if causal set theory is true, or at least on the right track to a true quantum
theory of gravity, as it presumably contends, then this entails that its competitors are mistaken.
False theories may of course have true assumptions or implications; but whether this is so in
any particular case can only be argued by a careful analysis of the relation between the distinct
theories. Such an analysis is at best sketched in the literature; and of course, it may be that
everyone is barking up the wrong tree.24

Discreteness may give us other advantages. Myrheim (1978, 1f) further points out that a
fundamentally discrete ‘spacetime’ carries an intrinsic volume and would thus give us a natural
fundamental scale. This is again Riemann’s point so revered by Myrheim’s successors in causal
set theory. As Myrheim (1978, 1) also mentions, it may be that the discreteness has observable
consequences. But to identify one particular assumption of an entire theoretical building as
the one with a particular observable consequence is problematic; rather, a fully articulated
theory is a whole package of assumptions, definitions, and techniques that jointly entail many
consequences. Theory assessment, as most philosophers of science would insist, is typically an
affair too holistic for us to be able to identify single assumptions engendering single consequences.
Specifically, there are many ways in which a fundamentally discrete structure can be compatible
with emergent continuous spacetime symmetries such as Lorentz symmetry (see below). Thus, it
is far from obvious what the observable consequences of discreteness are, if any. Having said that,
discreteness may well be a central axiom of an empirically successful theory and could thus be
vindicated indirectly and a posteriori. With Sorkin (1995), one may simply consider fundamental
discreteness necessary to “express consistently the notion that topological fluctuations of finite
complexity can ‘average out’ to produce an uncomplicated and smooth structure on larger scales”

22But see Wüthrich (forthcoming).
23See the references therein. This caution certainly also motivates Earman’s earlier criticism of the causal

theory of spacetime: if all spacetimes violating Earman’s condition are dismissed as unphysical, the causal theory
survives his criticism unscathed.

24See Wüthrich (2012, 228f) for a more detailed analysis of these arguments.
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Figure 2: A past-distinguishing causet that fails to be future distinguishing.

(173). This is an appealing thought, though the apparent necessity may of course evaporate on
closer inspection. In sum, although all the reasons given in favor of discreteness, as defensible
as they are, are clearly defeasible, and, as we shall see in the next chapter, there is a sense in
which the discreteness leads to a form of non-locality, the proof, ultimately, is in the pudding: a
theory’s success ultimately validates its assumptions.

Whatever its ultimate justification, it should be noted that the discreteness of causets has
deep consequences. We will encounter some of these consequences over the course of this chapter
and the next. One difference that matters in the present context arises if one considers whether
an analogue of the program’s basic motivating result—Malament’s Theorem 2—holds in causal
set theory. To state the obvious, this result is a theorem in classical relativity theory. There are
other issues that would need to be settled for such a transliteration to be meaningful, but here
it should be noted that an obvious causet analogue of future and past distinguishability is easily
violated in causal set theory. Call a causet future (past) distinguishing just in case for all pairs
of events in the causet, if the set of events that are causally preceded by (causally precede) them
are identical, then the events are identical. It is obvious that a causet such as the one depicted
in Figure 2 violates this condition for the pair p and q—both events have the same causal future.
That such a structure can satisfy the causal conditions while still violating distinguishability is
a direct consequence of its discreteness. A causet which is not distinguishing and thus contains
at least one pair of events with either an identical future or an identical past contravenes the
premises of Malament’s Theorem, but of course it is fully determined by its causal structure
alone. It should be noted that in general a non-distinguishing causet still uniquely identifies
each event in terms of its structure alone: the causet in Figure 2 is not future distinguishing,
and hence not distinguishing, but the events p and q are structurally distinct in that they have
different causal pasts. Thus, they fail to be a ‘non-Hegelian pair’ (Wüthrich 2012).

2.3 Causation?

There remains an important point to be recorded before we move on. By virtue of what is the
fundamental relation that structures the causets a causal relation? One might object that such
an austere relation cannot possibly earn this monicker because ‘causation’—whatever its precise
metaphysics—refers to a much richer feature of our world. Why should one think that the partial
ordering imposed on the fundamental and featureless events stands in any tangible connection
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to the causation that we attribute to the macroscopic and richly structured events that populate
our world of experience? Of course, an answer to this question will probably require a solution to
the measurement problem, and certainly a detailed understanding of how an effective spacetime
emerges from underlying causets. We will turn to the latter problem in the next chapter. But
even granting—prematurely—a removal of these obstacles, there remain at least two worries.

First, it may be argued that the conditions listed in Axiom 1 are not sufficient to make the
relation at stake causal in the sense of relating causes and effects. The worry is familiar from
relativity, and surely from the causal theory of (space)time, to which pedants (ourselves included)
have always interjected that the ‘causal structure’ of spacetimes merely captures a minimally
necessary, but not sufficient, connection between events for them to be causally related as cause
and effect. The objection is motivated by the observation that we do not attribute causal efficacy
to all timelike or null relations; given an event, we take neither all events in its past lightcone
to be its ‘causes’, nor all events in its future lightcone to be its ‘effects’. But this interjection is
neither very insightful, nor is it at all damaging to the causal set program. Those moved by it
are hereby invited to mentally replace our talk of ‘causation’ with more precise, but also more
awkward, substitutions in terms of (possibly directed) ‘causal connectibility’.

Second, one may be worried that the conditions in Axiom 1 are not necessary for a relation
to qualify as causal. In fact, all of the conditions—reflexitivity, antisymmetry, and transitivity—
may be deemed unnecessary. Questioning the demand for reflexivity is rather straightforward,
as on many accounts an event itself is not considered either among its own causes or effects.
However, the demand for reflexivity is the least central to causal set theory. In fact, a new
theory can be formulated that is ‘dual’ to causal set theory except that the demand for reflexivity
is replaced by one for irreflexivity. One sometimes finds the resulting irreflexive version of
causal set theory, based on a strict partial order induced by an irreflexive relation ≺, in the
literature.25 If one presumes, quite reasonably, that whether all or none of the events stand
in the fundamental relation with themselves can neither be directly observed nor does it have
any empirical consequences, then the resulting dual theory is empirically equivalent to causal set
theory as formulated above. In this sense, the choice between a reflexive and an irreflexive relation
may be conventional.26 Thus, either a reflexive or irreflexive understanding of causation can
arguably be reconciled with causal theory theory. What could not be accommodated, however,
would be a non-reflexive notion of causation. Requiring causation to be antisymmetric may also
be unnecessary, as an analysis of causation may want to leave room for cyclical causation as it
can for instance be found in feedback loops. To this end, however, antisymmetry may only be
given up at the level of event types, but not of event tokens. Finally, recent work on causation
(cf. Paul and Hall 2013, Ch. 5) has found the requirement of transitivity unnecessary.

Taking a step back from the details of these objections, the causal relations of causal set theory
of course differs from that attributed to events in our ordinary lives. Nevertheless, given the tight
relationship between the fundamental relation of causal set theory and the causal structure of
relativistic spacetimes, we take it to be legitimate to dub this relation a ‘causal’ relation.

25A binary relation R imposes a strict partial order on its domain X just in case it is irreflexive (i.e., ∀x ∈
X,¬Rxx) and transitive. A relation which induces a strict partial order is always anti-symmetric, i.e., irreflexivity
and transitivity imply anti-symmetry. In fact, every such relation is asymmetric, i.e., irreflexivity and transitivity
imply asymmetry. A binary relation R is asymmetric just in case ∀x, y ∈ X,Rxy → ¬Ryx.

26Note that there is a bijection between ‘reflexive’ and ‘irreflexive’ causets: if � is a non-strict partial ordering
relation, then the corresponding strict partial ordering ≺ is the reflexive reduction given by x ≺ y just in case
x � y and x 6= y; conversely, if ≺ is a strict partial ordering relation, then the corresponding non-strict partial
ordering relation is the reflexive closure given by x � y just in case either x ≺ y or x = y, for all events x, y in
the domain. The fundamental relations of the two dual theories, ≺ and �, thus merely differ by the identity.
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3 The problem of space

Having given and discussed the basic—kinematic—framework of causal set theory, a urgent ques-
tion arises: what is the relationship between these causets and relativistic spacetimes? It cannot
be one of identity. Mathematically, these structures are distinct; so distinct in fact that any
physical interpretation of them which disregarded these differences would be in metaphysically
negligent. But even if strict identity is not an option, the claim that the fundamental relation
is causal could be rejected on the grounds that it still remains essentially spatiotemporal. This
is a common objection to causal theories of (space)time, and is repeated in Sklar (1983).27 The
objection is intended to lead to the conclusion that the reduction of (space)time structure to
causal structure has thus failed; at best, what one gets is the elimination of some, but not all,
spatiotemporal relations from the fundamental ideology. However, to interpret the causal rela-
tion in causal set theory as spatiotemporal would be disingenuous. The guiding idea of causal set
theory is to offer a theory in which relativistic causation is fundamental and spacetime emerges.
In that sense, all spatiotemporal structure is grounded in causal structure; spacetime ontologi-
cally depends on causal structure, but not vice versa. So let’s take this idea seriously and see
how far we can run with it.

In order to appreciate that the objection that the causal relation is just spatiotemporal has no
purchase in causal set theory—unlike in GR—, let us consider just how different causal sets and
spacetimes are. In the next chapter, we will see that causal sets are infested with a more virulent
form of non-locality than we find in relativistic spacetimes. Furthermore, causal sets are discrete
structures. This means that quite a bit of the geometric structure that we routinely attribute
to space and time—and that is certainly available in GR—is simply missing in a causet. It is
also important to note that the fundamental relation is causal, not temporal; temporal relations
are supposed to emerge. Strictly speaking, thus, there is no time in causal set theory, or at
least not at the kinematic level. Having said that, however, despite the intended difference, ≺
shares some properties with a generic relation of temporal precedence.28 Just as with temporal
precedence, we can define it as a reflexive or an irreflexive relation. If we further prohibit
temporal loops and assume the transitivity of temporal precedence, both relations are relations
are at least anti-symmetric (on the reflexive convention) or even asymmetric (on the irreflexive
convention). Either way, any relation of temporal precedence consistent with relativity, just as
causal precedence, orders its domain only partially, not totally. The causal precedence relation
at work in causal set theory does not pick a ‘Now’ or gives rise to a ‘Flow’. But neither does
temporal precedence on a B-theoretic metaphysics of time. In sum, then, the causal precedence
of causal set theory though distinct has structural similarity with a stripped down B-theoretic
version of (special-)relativistic time without metric relations such as durations.29

It should be noted that the remainder of the chapter concerns predominantly the presence
(or absence, as the case may be) of spatial structures in causets in an attempt to grasp their

27Sklar claims that on some versions of the causal theory of (space)time at least, the fundamental causal
relations such as ‘genidentity’ are based on what are at heart still spatio-temporal notions. Causal set theory
does not, however, depend on the relations scrutinized by Sklar.

28The intended relation is more generic than the relation of ‘chronological precedence’ we find in the relativity
literature, e.g. Kronheimer and Penrose (1967); in fact, the latter relation is arguably essentially causal, rather
than the other way around.

29Dowker (2020) thinks that already the causal structure of relativistic spacetimes used as a vantage point for
causal set theory really is a structure “of precedence, of before and after, not of causation” (147n) and that causal
set theory should thus have more appropriately been called ‘temporal set theory’. Unilluminating semantics
aside, there is a clear sense in which the causal structure in GR is fundamentally and primarily causal, and only
derivatively temporal, as it encodes relations of causal connectibility of events by light signals. This means, to
repeat, that the fundamental relation of causal set theory is best interpreted as ‘causal connectibility’ or ‘causal
precedence’.
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connection to physical space. We will only be concerned with spacetime insofar as it may offer
a path to space.

3.1 The ‘essence’ of space

This leaves us somewhat inconclusive as regards time in kinematic causal set theory. It should be
noted that we will encounter a much deeper problem, the so-called ‘problem of time’ in canonical
GR and quantum theories of gravity based on it in the chapters on loop quantum gravity. In
the remainder of this section, we will argue that there is a similar ‘problem of space’ in causal
set theory, i.e., that ‘space’ in particular is absent from fundamental causal set theory. The next
chapter will return to time in the context of causal set theory and offer a fuller analysis, which
will include its dynamics.

In order to ascertain the absence of space, we need to state what kind of thing ‘space’ is. Of
course it is notoriously problematic to proclaim what the essence of ‘space’—or anything else for
that matter—is, but we are going to do it anyway. Lest the readers mistake this for our being
hubristic, let us hasten to reassure them that we do not take this list to express any kind of
deep and final truth about the nature of space. We merely offer it as a useful starting point to
determine the absence of space in fundamental causal set theory. No particular item on the list
will be necessary for this purpose, they are all individually expendable; similarly, further items
can be added to the list without threatening the purposes of this exercise—if anything, this
would strengthen the case. The only thing that would undermine our argument for the absence
of ‘space’ would be if ‘space’ had no nature at all—because that’s precisely what we will find:
‘space’ in causal set theory has no structure at all and hence no natural properties whatsoever.

In his famed La Science et l’Hypothèse, Henri Poincaré (1905) confidently asserts at least
some essential properties of physical space:

In the first place, what are the properties of space properly so called?... The following
are some of the more essential:—

1st, it is continuous; 2nd, it is infinite; 3rd, it is of three dimensions; 4th, it is
homogeneous—that is to say, all its points are identical one with another; 5th, it is
isotropic. (52)30

An attentive metaphysician will have a few quibbles with this passage. First, essentiality is not
generally regarded as admitting of degrees. Second, Poincaré seems to employ either an awfully
strong condition of homogeneity (and, in the original, of isotropy) when he paraphrases it as
amounting to the identity of the points (or of all straight lines through a point), or else a notion
of identity weaker than numerical identity. The former seems indefensible, as it would imply,
among other things, that space cannot be extended—unless, of course, a point itself is extended.
Points can be extended and cover entire ‘spaces’, but only in non-Archimedean geometry (Ehrlich
2015). Assuming standard geometry, homogeneity should be taken to require that all points of
space share their essential physical properties but remain numerically distinct.

Let us take Poincaré’s lead though not his list and compile a list of essential properties of
physical space, which seems better equipped to serve our purposes.31 Space as we know and love
it seems to have

• the structure of a differentiable manifold with a topology,

• affine structure,

30Interestingly, the English translation omits the clause from the French original where the reader is informed
that ‘isotropic’ is to say that all straight lines through one point are identical with one another.

31See Hilbert and Huggett (2006) for a presentation of Poincaré’s different purposes.
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• metric structure,

• and a dimensionality.

‘Space’ as it is represented in various approaches to quantum gravity fails to have several or
all of these features. In this sense, we have a ‘problem of space’ ! This problem is particularly
pronounced in causal set theory. But first a few comments on the list. First, we do not mean
to claim that ‘manifest’ space must have these properties, but only that GR states space(time)
does. So arguably, a precisification of ‘manifest’ space would yield a theory that ascribes these
properties, or properties very much like these, to space. Furthermore, although we will be con-
cerned with spacetime as it figures in GR, the above list makes for perfectly natural assumptions
about the nature of space in a much larger class of spacetime theories.

3.2 The space in a causal set

So how could one identify ‘space’ in a causet? What is the most natural conception of space
‘at a time’ in causal set theory? Given some vantage point, i.e., some particular basal event,
how can one determine the set of events that are ‘simultaneous’ to it and jointly form ‘physical
space’ at an instant? There are obvious worries here concerning the relativity of simultaneity,
but let’s leave those to the side for the moment. In GR, at least in its globally hyperbolic sector,
we can foliate the four-dimensional spacetime into totally ordered three-dimensional spacelike
hypersurfaces that the metaphysician might consider identifying with ‘space at some time’. Of
course, the choice of foliation of a relativistic spacetime is highly non-unique and in general not
justifiable on physical grounds that would uniquely privilege the particular foliation chosen. Our
best shot at a similar construction in causal set theory would be to partition the causal sets
into totally ordered maximal sets of pairwise ‘spacelike’ related events. Just as the foliation of
globally hyperbolic spacetimes was non-unique, such partitions will in general not be unique in
causal set theory. Furthermore, no two events in any such set can stand in the fundamental
causal relation—if they did, one would causally precede the other and hence they could not be
part of ‘space’ at the same ‘time’. This means that the resulting subsets of events of the causet
would, by necessity, be completely structureless—no two points in any subset could be related
by the fundamental relation. Technically, this means that these subsets are ‘antichains’:

Definition 8 (Chain). A chain γ in a causet 〈C,�〉 is a sequence of events in C that are pairwise
comparable, i.e., for any two events x, y in γ, either x � y or y � x. This implies that a chain
is a subset of C that is totally ordered by � (hence ‘sequence’ rather than just ‘set’).

Definition 9 (Antichain). An antichain α in a causet 〈C,�〉 is a subset of events in C that are
pairwise incomparable, i.e., for any two events x, y in α, ¬(x � y) and ¬(y � x). This implies
that an antichain is a subset of C that remains completely unstructured by �.

Given that they are altogether unstructured, an antichain is completely characterized by
its cardinality, at least intrinsically. Extrinsically, it is characterized by how its elements are
embedded in the total structure of the causet. The extrinsic characterization of antichains
matters for our purposes, since it is important to partition, i.e., to divide into non-empty and non-
overlapping subsets without remainder, the entire causet in order to obtain what can reasonably
be considered a ‘foliation’. Furthermore, the elements of the partition—the antichains—should
be inextendible, i.e., they should be such that any basal elements of the causet not in the antichain
is related to an element of the antichain by �. The problem, to repeat, is that antichains have
no structure, and hence the fundamental causets have no (intrinsic) spatial structure at all, no
metrical structure, no affine and differentiable structure—there is no manifold—, and—if at all—
very different dimensionality and topology than the continuous spacetime they are supposed to
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give rise to. Furthermore, there is no evident spatial ordering, such as we ordinarily find in terms
of spatial proximity.

Before we have a closer look at some of these claims, let us state the important fact that at
least for any finite partially ordered set, such a partition into antichains is always possible.32 We
need some definitions before we can state the theorem:

Definition 10 (Height and Width). The height of a partially ordered set P is the cardinality of
the largest chain in P. The width of P is the cardinality of the largest antichain in P.

This allows us to formulate the theorem (Brightwell 1997, 55):

Theorem 3. Let P = 〈P,≤〉 be a finite partially ordered set with height h and width w. Then

(a) the domain P can be partitioned into h antichains;

(b) the domain P can be partitioned into w chains.

As a corollary, this gives us an upper bound for the cardinality of P : |P | ≤ hw. The part (b)
is a major result and requires a much more sophisticated proof and is also known as ‘Dilworth’s
Theorem’ (ibid.). For our purposes, however, the first part (a) suffices to establish that for
a finite causet, a partition into a sequence of ‘Nows’ is always possible. That the result can
straightforwardly be generalized to past-finite causets—a class of causets that will take center
stage in the next chapter—is clear from the proof of (a) (Brightwell 1997, 56). This proof proceeds
by constructing antichains as follows. Define the height h(x) of an event x in P as the cardinality
of the longest chain in P with top element x, i.e. the maximal element in the chain. Then collect
all the events of the same height into a set, i.e., a set of events of height 1, a set of events with
height 2, etc. Every event has a height and will thus be an element of one of these sets. These
sets turn out to be antichains, which completes the proof. Now the extension of Theorem 3 to
past-finite causets should be obvious: although the height of the causet will be infinite—and
hence the partition will consist of infinitely many sets or ‘layers’—, it is still the case that every
event has a height and that the resulting ‘height sets’ will be antichains. The same technique
cannot be applied in the case of causets which are neither past- nor future-finite,33 though at
least some of these infinite causets admit a foliation. Let me remind the reader that these result
only guarantee the existence, but not of course the unique existence of such a foliation; in fact,
the foliations of a causet will in general be non-unique.

So there is a problem of space in causal set theory: there is a clear sense in which causets
have no spatial structure. Given that the natural correlate of ‘space’ in causal set theory are
unstructured, inextendible antichains, can we nevertheless attribute some spatial structure to
these antichains? Can we reconstruct spatial structure from a fuller structure? Could it be that
perhaps a causal set induces some such structure on these antichains in a principled way? If
so, then we would have completed an important step toward solving the problem of space in
causal set theory. As it will turn out, this question cannot be addressed separately from the
overarching problem of the emergence of spacetime from causets. So asking more generally, and
in anticipation of the next chapter, is there a theoretically sound way of extracting geometrical
information from the fundamental causets that could be used to relate them to the smooth
spacetimes of GR? Before we get to the full geometry, and hence to how ‘manifoldlike’ causets
are, let us consider the more basic notions of dimension and topology, with a particular eye
toward trying to identify any ‘spatial’ structure in causets.

32A partition of any causet into antichains is always trivially possible: just take the antichains each consisting
of a single event. That such a partition would not satisfy our present needs should be clear, though. The point of
the following is to establish that for a large class of causets, we are guaranteed that partitions conducive to these
needs exist.

33An obvious variant of the same technique will work for future-finite causets.
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3.3 The dimensionality of a causal set

The general idea of how to attribute a particular dimension to a causet, or of a partial order more
generally, is to identify some property of the causet itself that is indicative of the dimensionality
of the ‘smallest’ manifold into which can be comfortably embedded (if it can be so embedded).
Following Brightwell (1997), a standard definition of the dimension of a partially ordered set
starts out from what is called the ‘coordinate order’. To illustrate that concept, consider the
order structure imposed on the plane R2 by introducing an ordering relation ≤ on the elements
of R2 such that 〈x, y〉 ≤ 〈u, v〉 just in case both x ≤ u and y ≤ v, where we introduce Cartesian
coordinates in the usual way such that a point p ∈ R2 is identified with an ordered pair of
‘coordinates’, and where ‘≤’ is interpreted as the usual ‘less or equal’ relation. ≤ induces a partial
order on R2, as there are pairs of points in R2 such as 〈0, 1〉 and 〈1, 0〉 that are incomparable. The
ordering can be straightforwardly generalized to yield what Brightwell (53) terms the coordinate
order on Rn for any positive integer n. One can then define the dimension as follows (55):

Definition 11 (Dimension of partial order). The dimension dim(P) of a partially ordered set
P = 〈P,�〉 is the minimum integer n such that P can be embedded in Rn with the coordinate
order.

A common alternative, but equivalent, definition renders—of course—the same verdict. It
defines the dimension of P = 〈P,�〉 as the smallest number of total ordering relations on P whose
intersection is �, i.e., ∀x, y ∈ P, x � y if and only if x is below y in each of the total orders.
This definition goes back to Dushnik and Miller (1941) and is called ‘combinatorial dimension’
in Meyer (1988, 26), and sometimes ‘order dimension’ elsewhere.

What is the minimum condition on a mapping from P to Rn that it qualifies as an ‘embed-
ding’? In the general case at hand, the only substantive rule is that the embedding is ‘order-
preserving’, i.e., it is a mapping f from P to Rn that preserves the ordering in that ∀p, q ∈ P, p �
q if and only if f(p) ≤ f(q), where ‘≤’ is the coordinate order as introduced above.

Applied to the case at hand, since any two elements are unrelated in an antichain, its dimen-
sion must be equal to its cardinality: an antichain of two elements requires an embedding into
R2 such that both elements can be mapped in a such a way that they are not related by the
coordinate order, an antichain of three elements needs an embedding into R3, etc.

What about the dimension for partial orders more generally? Dushnik and Miller (1941) not
only show that the dimension is well defined for every partially ordered set, but also prove that
the dimension of a partially ordered set of size n is finite if n is finite and no greater than n
if n is transfinite (Theorem 2.33). Hiraguchi (1951, 81) strengthens this to the statement that
the dimension of a partially ordered set is no greater than its size n, for n finite or transfinite.
He also shows (Theorem 5.1) the stronger claim that the dimension of a partially ordered set
increases by at most 1 with the addition of a single element to the partially ordered set.

While Definition 11 captures the intuition behind what it is to be a ‘dimension’, and these
results establish that ‘dimension’ is well defined and has an upper bound, the notions suffer
from three major limitations that make it unusable for present purposes. First, even though
the dimension is well-defined, it is generally hard to compute it: for n ≥ 3, the computation of
whether a given partially ordered set has dimension n is an NP-complete problem (cf. Felsner
et al. 2014). Second, it should be emphasized just how weak the established bounds are: for a
universe the size of something like 10245 in Planck units, and hence with as many causet elements,
we would like to strengthen the assertion that the fundamental causet has a dimension of at most
10245 by about 244 to 245 orders!

Third, and most importantly, Definition 11 needs to be modified to suit the present context:
here we are not concerned with embedding partially ordered sets into Rn, but rather with em-
bedding causets into relativistic spacetimes. Thus, while the first two limitations may be of a
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rather technical nature, this third point cuts directly to the heart of what we are interested in
in this book: the emergence of spacetime from structures in quantum gravity. Therefore, the
connection between spacetimes and causets must be imbued with physical salience. Without it,
there is no hope to advance the present project. For the purposes at hand, it is much more
sensible to define the dimension of a causet in relation to relativistic spacetimes. We start by
defining the relevant kind of embedding:

Definition 12 (Embedding). An embedding of a causet 〈C,�〉 into a relativistic spacetime
〈M, gab〉 is a injective map f : C →M that preserves the causal structure, i.e., ∀x, y ∈ C, x �
y ⇔ f(x) ∈ J−(f(y)).

A causet that is embeddable, i.e., affords an embedding into a relativistic spacetime, could in
this sense be regarded as a discrete approximation to a this spacetime—their causal structures
are consistent. Of course, systematically speaking, the fundamentality of the causet demands
that this relationship runs in the other direction: relativistic spacetimes, at least to the extent to
which they present physically reasonable models of the large-scale structure of the universe are
low-energy approximations to an underlying fundamental causet. Given Malament’s Theorem 2
it is evident, furthermore, that an otherwise unrestricted embedding of a causet into a spacetime
cannot fully recover all salient features of the spacetime; at most, it approximately determines
the conformal structure of the spacetime. Additional assumptions will be necessary to fix the
conformal factor, although the cardinality naturally offers to regard the number of elements as
a measure of the size. We will return to this problem in the next chapter; for the analysis of
dimensionality it suffices to consider any embeddable causets.

Although quantum gravitists are ultimately interested in the regime of strong gravitational
fields, the embeddability of causets into (subspaces of) Minkowski spacetime provides an im-
portant test case. It is natural, then, to follow the seminal Meyer (1988) and to study the
dimension of causets in terms of their embeddability into Minkowski spacetime. Meyer defines
the ‘Minkowski dimension’ as follows:

Definition 13 (Minkowski dimension). “The Minkowski dimension of a causal set is the dimen-
sion of the lowest dimensional Minkowski space into which it can be embedded (not necessarily
faithfully).” (Meyer 1988, 16f)

Meyer (1988, 1993) proves that the Minkowski dimension of a partial order is identical to
its dimension as defined in Definition 11 in dimension two, but not in higher dimensions. It is
natural to ask whether we can similarly find least upper bounds for dimensions higher than two.
It turns out that it is not the case that a partially ordered set of size n has a Minkowski dimension
of at most n, as there are some finite ones that cannot be embedded in any finite-dimensional
Minkowski spacetime (cf. Felsner et al. 1999). In the absence of analytical results with much
traction, different methods to estimate the Minkowksi dimension of causets have been developed,
with some encouraging numerical results particularly for high-density ‘sprinklings’.34

To return to the problem of space, it should be noted that all the work on the dimension of
partially ordered sets assumes a non-trivial relational structure on the set and, in the case of
causets, considers entire causets, and not just some unstructured subsets. It is not obvious what
the Minkowski dimension of the antichains that are supposed to represent ‘space’ at a ‘time’ is,
given that these were supposed to be interpreted purely spatially and Minkowski spacetime is
defined by its causal structure, and thus is spatiotemporal. Although the outcome will arguably
not miss its mark by as much as the standard dimension for partially ordered sets, these difficulties

34Most prominent among them are the ‘Myrheim-Meyer dimension’ (Meyer 1988) and the ‘midpoint-scaling
dimension (Bombelli 1987).
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illustrate just how unlike space an antichain is. If space is to be found in causal sets, it will require
more structure.

3.4 The spatial topology of causal sets

This brings us to the next to final task for this chapter: is it possible to induce a topology on the
‘spatial’ antichains which will endow them with a structure at least starting to look more ‘space-
like’? Given that there is no structure in an antichain, we cannot hope to extract topological
structure from it. It turns out that there is a way to induce a topology on the ‘spatial’ antichains
of a causet, but it requires much or all of the structure of the entire causet.

A topology on a set X is a set T of subsets of X—the ‘open sets’—which satisfies the following
conditions:

1. ∅ ∈ T and X ∈ T ;

2. the union of a collection of sets in T is in T ;

3. the intersection of any two (and hence any finite number of) sets in T is in T .

It turns out that for a finite X, there exists a one-to-one correspondence between topologies on
X and preorders on X, where a preorder is a binary relation that is reflexive and transitive.
Apart from the fact that a spatial antichain may not be finite, this theorem does not help us
to obtain a natural topology on the spatial antichain simply because there is no fundamental
physical relation at all that obtains between the elements of the antichain, and a fortiori no
preorder. Case closed?

Let’s not jump to conclusions; of course, one can easily impose topologies on an altogether
unstructured set. For any such set X, just set T = {X, ∅}—the so-called indiscrete topology on
X. But such a coarse topology will not further our goal in identifying some useful geometrical
structure on a spatial antichain. At the other end of the spectrum, we find the discrete topology
T = P(X), the set of all subsets of X and hence the ‘finest’ possible topology on X. But two
cautionary remarks expose the very limited appeal of the discrete topology for our purposes.

First, and as a first indication of the need to go beyond a ‘spatial’ antichain, imposing the
indiscrete topology seems to presuppose a distinction between the set and the empty set. In
other words, a presupposition of the indiscrete topology is that X is non-empty. That seems
harmless enough. But by the same token, the discrete topology seems to assume not only that
there are elements in X, but that there are numerically distinct elements. And that is decidedly
less harmless. If basal events in causal set theory are indeed featureless and � is the only
physical relation at the fundamental level, then any two events with the same relational profile,
i.e., a non-Hegelian pair, cannot be physically distinguished (cf. Wüthrich 2012; Wüthrich and
Callender 2017). In an antichain, of course, elements cannot be so distinguished. This raises two
challenges. The first is to metaphysically underwrite a difference between a singleton set and a
set containing a plurality of events. If we accept primitive plurality even in cases the elements
cannot be physically distinguished—as we may have to do for independent reasons (Wüthrich
2009)—, then that problem can be circumvented (and the presupposition in the indiscrete case
secured). But there remains a second, and harder, challenge. Merely to be able to assert that
the antichain consists of n elements does not suffice to distinguish the various subsets of the
antichain; even just for n = 2, there would have to be two distinct singleton sets in the discrete
topology. But with nothing to distinguish the elements they contain, nothing can mark their
distinctness. Of course we can assert that there must be two such singleton sets, but for a
topology to be able to structure the set in a meaningful way, it seems necessary to be able to tell
one of them apart from the other. This could be accomplished by insisting that the basal events
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of causal set theory command some haecceitistic identity; however, haecceities offend against the
natural structuralist interpretation of causal set theory (Wüthrich 2012).

It should be noted that if the basal elements in the antichain X enjoy numerical distinctness,
then we can in fact define a distance function d such that 〈X, d〉 is a metric space. For instance,
for any x, y ∈ X, define

d(x, y) =

{
0, if x = y,
1, if x 6= y.

(2)

This function straightforwardly satisfies the standard conditions demanded of a distance function
(i.e., nonnegativity, nondegeneracy, symmetry, and the triangle inequality), and 〈X, d〉 thus
qualifies as a metric space (called a discrete metric space). Clearly, however, this d will not not
give rise to any ‘space’ that resembles physical space as found, e.g., in GR. And it remains opaque
how a structure with such a distance function could be meaningfully embedded in a spacetime of
low dimensionality. Furthermore, imposing topologies and metrics on a ‘spatial’ antichain seems
to require a metaphysics of basal events that is anathema to the spirit of causal set theory.

Second, then, even granting this possibility of inflicting a topology and indeed a metric of
our ‘spatial’ antichains, no physically useful structure can be extracted from them. A topology
on a ‘spatial’ slice should underwrite nearness relations. In order to successfully do that, it
shouldn’t be too coarse—as was the indiscrete topology—for then it would seem as if no events
are ‘nearby’ one another. However, it also shouldn’t be too fine—as was the discrete topology—
for otherwise all events are near all other events. Either way, there are no physically useful
nearness relations that appropriately discriminate some events to be nearer than others. So we
will want a ‘goldilocks’ topology that finds the sweet spot in fineness. Furthermore, the topology
of ‘spatial’ antichains should cohere with, and in fact give rise to, the nearness relations as we
find them in spatial slices of the emerging relativistic spacetime. This means that it should be
appropriately grounded in the fundamental physics in place. Thus, our best bet to impose some
structure in general, and topological structure in particular, on ‘spatial’ slices of causal sets is to
start out from the one physical relation present in a causal set—�.

The imposition of a physically perspicuous topology based on � can be accomplished by
considering how an inextendible antichain is embedded in the causet. Major, Rideout, and Surya
(2006, 2007) offer just such a way of doing that. Their construction proceeds by ‘thickening’ the
antichain and exploiting the causal structure gained by this ‘thickening’. The idea is, roughly, as
follows. For any subset X of the domain C of a causal set, define F (X) := {x ∈ C| ∃y ∈ X, y �
x}—the causal future of X—and P (X) := {x ∈ C| ∃y ∈ X,x � y}—the causal past of X. Note
that given the reflexive convention chosen for �, x ∈ F (x) and x ∈ P (x) for any x in C. Next,
define the n-future thickening of an (inextendible) antichain A ⊂ C as

A+
n := {x ∈ C| x ∈ F (A) and |P (x) \ P (A)| ≤ n}, (3)

where |X| denotes the cardinality of set X, and, mutatis mutandis, the n-past thickening A−n
of A. Note that—again as a consequence of the reflexive convention—A+

0 = A−0 = A for any
antichain A. A+

1 and A−1 will contain the antichain together with all the immediate successors
and predecessors of events in the antichain, respectively, etc. See figure 4 for an example of A+

1 .
Finally, define an n-thickening An of A as A+

n ∪A−n .
Next, identify the maximal or ‘future-most’ elements mi of A+

n and form the sets Pi :=
{mi| P (mi) ∩ F (A)} of ‘past lightcones’ of the maximal elements truncated at the ‘spatial’
antichain A. Then P := {Pi} is a covering of A+

n , i.e., ∪iPi = A+
n . From these, we can construct

the shadow sets Ai := Pi ∩ A. See figure ?? for an example of a shadow set. We find that
A := {Ai} provides a covering of A and can be used as a vantage point to specify a topology
on A. A itself will not, in general, be a topology because it may not satisfy any of the three
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Figure 3: A 1-future thickening A+
1 of an antichain A.

conditions on topologies. Major et al. (2007) use the shadow states to construct topological
spaces called ‘nerve simplicial complexes’ and show that natural continuum analogues of these
topological spaces are homotopic to the globally hyperbolic spacetimes in which they are defined.
This is a hopeful sign that the topologies constructed in this manner are indeed the physically
salient ones, assuming, of course, that the topologies of these globally hyperbolic spacetimes
are. Furthermore, their results contribute toward establishing a relevant form of the so-called
hauptvermutung and hence to the emergence of spacetime from causal sets. We will turn to these
topics in the next chapter.

It should be noted that the topologies that will arise from just the maximal elements of an
n-future thickening for some one particular n are generally going to be too coarse to be fully
satisfactory. However, any such topology can be refined by adding shadow sets arising from
thickenings with different n, and from the analogous construction based on past thickenings and
‘minimal’ elements. The finest topology obtainable on a ‘spatial’ antichain A will result from
thickening in both causal directions and letting n range over all values 0, ..., N , for an N such
that A+

N ∪A
−
N = C. The finest topology for an antichain will thus be obtained from considering

the full structure of the causet it inhabits. It should thus be noted that the spatial structure—
in this case the topology of ‘spatial’ slices—asymmetrically depends on the fundamental causal
structure.

The constructions used to introduce topologies on ‘spatial’ slices can be used to introduce
something akin a covariant sum-over-histories approach to dynamics, as articulated by Major
et al. (2006). Informally, the picture resembles a three-layered cake with the middle bulk sand-
wiched between an ‘initial’ state of the universe consisting of the minimal elements of some A−n
and a ‘final’ state constituted by the maximal elements of an A+

m. The cake would then repre-
sent a ‘spatial’ slice that evolves from some ‘initial’ state to some ‘final’ state. Interestingly, it
is possible to define physically meaningful ‘transition amplitudes’ from the ‘initial’ to the ‘final’
state as measures over the set of completed causets containing the fixed ‘top’ and ‘bottom’ layer
of the relevant ‘cake’, but with generally differing ‘interpolators’ between them.
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Figure 4: A maximal element m2 of a 2-future thickening A+
2 of an antichain A and the resulting

shadow set A2.

3.5 Finding distances

A next step would be to recover metric structure from the causet. For ‘timelike’ distances, i.e.,
something like durations, there is a widely accepted recipe to obtain a straightforward proxy
of continuum timelike distances. In analogy to relativistic spacetimes, one defines a geodesic in
causal set theory as follows:

Definition 14 (Geodesic). A geodesic between two elements x � y ∈ C is the longest chain γ
from x to y, i.e., the chain of the largest cardinality with past endpoint x and future endpoint y.
If a geodesic γ has cardinality n+ 1, i.e., |γ| = n+ 1, then its length is n.

In general, a geodesic between two elements is not unique. That geodesics thus defined offer a
natural analogue of their continuous cousins was first conjectured by Myrheim (1978). Brightwell
and Gregory (1991) showed that for causal sets that are approximated (see next chapter) by a flat
spacetime interval, for sufficiently large geodesics, the length of geodesics in those causets rapidly
converges to (a multiple) of the proper time elapsed between the images of the endpoints in the
spacetime. Though analytic results are only available for low dimensions and flat spacetimes,
numerical studies (Ilie et al. 2006) suggest that the convergence holds also in dimensions up to
4 and in some curved spacetimes.35

Let us return to the topic of this section, ‘space’. Spatial distances can also be introduced,
albeit much more vicariously, but they too rely on the structure of the causet not contained in
the antichain. Rideout and Wallden (2009) have offered the most penetrating analysis of spatial
distance to date. An obvious first attempt (cf. Figure 5) starts out from the continuum case and
tries to generalize that to the discrete one. It defines the spatial distance between two spacelike
separated events x and y in terms of an appropriate timelike distance, since we already know
(from the previous two paragraphs) how to determine the timelike distance between two events
in a causet. In the continuum case, let w be an event in the common past J−(x) ∩ J−(y) and
z one in the common future J+(x) ∩ J+(y) such that the timelike distance between them is

35Cf. also Rideout and Wallden (2009, §1.3.2).
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Figure 5: A first stab at determining the spatial distance.

shortest for all such pairs. In other words, w is a maximal element of the common past and z
is a minimal element of the common future (see Figure 5). Then the spatial distance between x
and y is equal to the timelike distance between w and z in the continuum. For two-dimensional
Minkowski spacetime, the pair w and z is unique. In higher dimensions, however, this is not the
case: in d-dimensional Minkowski spacetime, there is a (d− 2)-dimensional submanifold of pairs
of events that minimize the timelike distance (Rideout and Wallden 2009, 7).

This non-uniqueness thwarts the application of this simple recipe to the discrete case of causal
sets that can only be embedded into higher-dimensional Minkowski spacetimes. Details of the
embedding and the ‘sprinkling’ will be discussed in the next chapter, but the problem turns
out to be that given the required kind of ‘sprinkling’ the events in the causet into Minkowski
spacetime, there is a finite probability for each of the infinitely many minimizing pairs that the
Alexandrov interval they encompass does not contain any of the images of events in the causet
and is thus empty of ‘sprinkled’ events. Consequently, there will always be some pair 〈w, z〉 such
that w � x � z and w � y � z are the longest chains between w and z (since x 6� y), both
of which are of length 2. Hence, the timelike distance between w and z, and thus the spatial
distance between x and y, will always be 2.

Although this would technically give us a distance function, it can hardly be considered
physically adequate. Rideout and Wallden (2009) analyze a number of more involved approaches
to extracting non-degenerate spatial distances from the fundamental structure of the causet.
Their results are limited, but promising. As far as we can tell, they all resort to considering
substantively larger parts of causets than merely unstructured antichains. Once again, this
reflects the fundamentality of the causal structure over any spatial or temporal structure.

3.6 Wrapping up

Relating causets to spacetimes via their ‘spatial’ and ‘temporal’ parts has thus thoroughly failed,
in more radical ways even than in GR. In the next chapter, we will consider how they might
be related in toto, as wholes. For now, we can only state just how different causets are from
spacetimes, lest we are inclined to see the causal relation at the core of the models of causal set
theory as ultimately spatiotemporal, as it arguably is in GR. The geometric structure that we
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would normally attribute to space in particular, and that is certainly available in GR, such as
topological, affine, differential, and metric structure is only very indirectly recoverable from the
structure of causets, if at all. It is simply not built in at the fundamental level. In this sense,
causal set theory offers a view of our world that is not ultimately spatiotemporal. In the next
chapter, we will analyze how relativistic spacetime could emerge from fundamental causal sets
and how spacetime functionalism will helpfully delimit the to-do list to establish this emergence.
In this analysis, we will identify the work sketched in §3 as functionalist. In order for emergence to
succeed, dynamical laws beyond the kinematics studied in this chapter will turn out to be called
for. We will complete our discussion of causal set theory with two philosophically fruitful points
that arise in connection to the dynamical aspects of the theory: the possibility of relativistic
becoming and a form of non-locality that has nothing to do with quantum physics.
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