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We show that a class of background independent models of quantum spacetime have local excita-
tions that can be mapped to the first generation fermions of the standard model of particle physics.
These states propagate coherently as they can be shown to be noiseless subsystems of the microscopic
quantum dynamics[3]. These are identified in terms of certain patterns of braiding of graphs, thus
giving a quantum gravitational foundation for the topological preon model proposed in [1].

These results apply to a large class of theories in which the Hilbert space has a basis of states
given by ribbon graphs embedded in a three-dimensional manifold up to diffeomorphisms, and the
dynamics is given by local moves on the graphs, such as arise in the representation theory of quantum
groups. For such models, matter appears to be already included in the microscopic kinematics and
dynamics.

I. INTRODUCTION

Ever since the notion that geometry is dynamical was
advanced in the 19th Century and, even more since that
idea was realized in general relativity, there has been a
dream: to unify matter with geometry and gravity by
demonstrating that matter arises from singularities or
topological defects in geometry. In this paper we find
that this expectation may be realized in a certain class of
quantum gravity theories.

In these theories, states are labeled by diffeomor-
phism classes of embeddings of ribbon graphs in a back-
ground topological space and the dynamics is gener-
ated by local moves on those graphs. We show that
in such theories non-geometrical conserved quantum
numbers arise which label emergent degrees of free-
dom and which may naturally be identified with ele-
mentary particles. This is because, under the commonly
used evolution moves, there are conserved excitations
related to the braiding of the states. Using a recent pro-
posal by one of us which maps precisely these excita-
tions to quantum numbers of the standard model[1], we
find that, under certain mild assumptions, these theo-
ries already contain emergent structures, having prop-
erties which can be identified with conserved charges of
the standard model. The dynamics of the quantum ge-
ometry may be expected to give rise to two specific ob-
servable consequences, namely the interactions of such
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particle states with each other (which we would hope to
be consistent with electroweak and colour interactions),
and the possible ”erosion” o f these particle states (lead-
ing to an inconsistency with the observed stability of
the first-generation leptons and quarks). In this paper
we do not claim to have shown that we correctly repro-
duce the interactions between particles. However we do
demonstrate that the dynamics of the quantum geome-
try does not destabilise the emergent particle states we
have identified. Further work on the stability of these
states is described in [2] and the issue of interactions un-
der these and similar rules of evolution is the subject of
current work.

To obtain these results we find very helpful a new
point of view about how the low energy limit of a quan-
tum gravity theory may be expected to emerge [3]. The
idea is to study the low energy limit of a background
independent quantum theory of gravity by asking how
the states of elementary particles remain coherent when
they are continually in interaction with the quantum
fluctuations of the microscopic theory. The answer is
that they are protected by symmetries in the dynamics.
We can then analyze the low energy physics in terms
of the symmetries that control the low energy coherent
quantum states rather than in terms of emergent clas-
sical geometry. In [3] it was shown that one can ap-
ply to this the technology of noiseless subsystems, or
NS, from quantum information theory[4]. In this frame-
work, subsystems which propagate coherently are iden-
tified by their transforming under symmetries that com-
mute with the evolution. These protect the subsystems
from decoherence[5].

Given a particular theory of dynamical quantum
geometry, however, it is not immediately apparent
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whether it has any such NSs. We show that in a large
class of theories, it does. These are theories in which
the microscopic quantum states are defined in terms of
the embedding, up to diffeomorphisms, of a framed, or
ribbon, graph in a three manifold and in which the al-
lowed evolution moves are the standard local exchange
and expansion moves[6, 7]. Such ribbon graphs occur
in the representation theory of quantum groups[8], and
arise in topological field theories and in quantum grav-
ity models with non-zero cosmological constant [9, 10].
The procedure described in [3] reveals emergent degrees
of freedom related to the braiding of the graphs. This is
the first main result of this paper.

Our second main result is that the simplest emergent
local states of such theories match, with certain mild as-
sumptions about the dynamics, precisely the first gen-
eration quarks and leptons of the standard model. To
show this we employ the results of [1] where a topo-
logical formulation of preon models[11] was given. In
essence, our results amount to an embedding of the
topological preon model in [1] in a class of background
independent quantum theories of gravity.

Preon models, first proposed in the 1970s, are mod-
els in which quarks, leptons, and in some cases vector
bosons and Higgs, are composite particles, made out of
just two or three elementary preons[11]. The main chal-
lenge they faced was to provide a consistent mechanism
binding preons into chiral fermions. Unlike hadrons,
the light quarks and leptons are much lighter than the
inverse of the largest experimentally allowed binding
scale for their proposed subcomponents. This made it
challenging to bind such hypothetical subcomponents
by means of ordinary gauge interactions[12]. The bind-
ing mechanism proposed here operates at Planck scales,
below the scales at which effective field theory would
be a good description. The states are bound here, not by
fields, but by quantum topology, because the configu-
rations that we interpret as quarks and leptons are con-
served under the dynamics of the quantum geometry.
That is, the states are bound because there are conserved
quantum numbers that measure topological properties
of the states.

The theories we study here are related to Loop Quan-
tum Gravity (LQG) and spin foam models, but differ in
that the graphs which comprise the states are framed, so
they are represented by the embedding of a two surface
in the spatial manifold. This is known to be required
when the cosmological constant is non-zero[9, 10]. They
also extend the description of quantum geometry used
in LQG in that it becomes optional whether or not to
put labels on the graphs, and the labels may be chosen
from the representation theory of an arbitrary quantum
group.

When these results are applied to loop quantum grav-
ity they answer a question which goes back to the first
papers on that subject, where it was shown that the dif-
feomorphism invariant states were characterized by the
knotting and linking of loops and graphs[13–15]. The

question is this: what features of geometry do the knot-
ting and linking measure? This has been mysterious be-
cause observables sufficient to label the degrees of free-
dom of quantum geometry were identified in the area
and volume operators, which measure combinatorial
and labeling information, but which are insensitive to
the topology of the embedding. The results we describe
here show that some of the information in the embed-
ding may have nothing to do with geometry, but instead
describes emergent particle states.

However, as we discuss in section VIII, the most nat-
ural interpretation of the underlying states is not a ge-
ometric one, in the sense of a quantization of general
relativity, but a pre-spacetime theory. The interpretation
we suggest in VIII is then in essence different from LQG
even though it shares the same state space and micro-
scopic evolution moves.

The outline of this paper is as follows. In the next sec-
tion we define the class of theories we will study. Sec-
tion II contains the definition of the type of theories we
are considering. Section III is devoted to the derivation
of the first main result, which is the existence of con-
served quantum numbers, preserved by the local dy-
namics of the quantum geometry, associated with the
braiding of edges. Section IV then presents the basics of
the physical interpretation of the braiding states which
arises by use of the results of [1]. In sections V we then
develop some tools for characterizing the details of the
conserved quantities and the action of symmetry oper-
ations, which allow us in section VI to present the de-
tails of the identification of the simplest braiding states
with the fermions of the first generation of the standard
model. A possible identification for the higher genera-
tions is the subject of section VII. As noted above, we do
not currently propose a complete description of the dy-
namics of the standard model, but restrict ourselves to
showing the existence of particle states which are con-
sistent with those known from the first generation of
quarks and leptons. Section VIII is devoted to the dis-
cussion of several key issues beyond the scope of this
paper, including locality, the mass matrix, interactions
and anomalies after which we conclude in Section IX
with a list of open questions.

II. THEORIES ON RIBBON GRAPHS

We start with a compact three manifold Σ of genus at
least 3. Given a two-dimensional surface S in Σ, we can
regard S as a union of trinions: 2-surfaces with three dis-
tinct/disjoint regions of connection (legs, for want of a
better name) to other such surfaces (Fig.1). Choosing a
maximal set of non-intersecting cuts on S gives a par-
ticular decomposition, or scoring, of S into trinions. We
shall call a scored 2-surface a ribbon graph Γ. It is a graph
in the sense of the obvious deformation of S into a rib-
bon graph with a node for each trinion and a connecting
ribbon edge or leg connecting each pair of nodes.
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FIG. 1: A trinion and a trinion decomposition of a 2-surface S.

A map from a ribbon graph to a quantum system can
be made by associating a finite-dimensional state space
Ht to each trinion t and the tensor product operation to
trinion gluings. The specific map from a trinion t to its
Hilbert space may depend on the choice of a quantum
group Gq. In this case one labels each open edge of a
trinion with a representation of Gq and t with the asso-
ciated intertwiner. For the present work, we just need a
functor that assigns a finite-dimensional vector space to
each trinion. Thus, the state space associated to a given
Γ is

HΓ =
⊗

t∈Γ

Ht, (1)

with the label t running over all trinions in Γ and a sum
over labels (if they are present). Nothing that follows de-
pends on the choice of Gq, so we make the trivial choice
of no labels.

The state space of the theory is

H =
⊕

Γ

HΓ, (2)

where the sum is over all topologically distinct embed-
dings of all such surfaces in Σ with the natural inner
product 〈Γ|Γ′〉 = δΓΓ′ .

Some specific examples of theories with such state
spaces are: graphs labeled by quantum groups (where
representations of the quantum group Gq label the edges
and Ht is the space of Gq-invariant tensors on S), topo-
logical field theory, Loop Quantum Gravity in both 2+1
and 3 + 1 (in which case the algebra is SUq(2) and the
quantum deformation is defined in terms of the cosmo-
logical constant Λ by q = exp{ 2π

k+2
}, with k = 6π

GΛ
[10])

and, in general, the functorial construction of topologi-
cal quantum field theories when the source category is
2-dimensional surfaces S.

Local dynamics on H can be defined by excising sub-
graphs of Γ and replacing them with new ones. The gen-
erators of such dynamics are given graphically in Fig.2.
Given a ribbon graph Γ, application of Ai results in

Âi|Γ〉 =
∑

α

|Γ′
αi〉 (3)

where Γ′
αi are all the ribbon graphs obtained from Γ by

an application of one move of type i (i = 1, 2, 3).

A1 =

A2 =

A3 =

(5)

FIG. 2: The three generators of evolution on the ribbon graph
space H. They are called expansion, contraction and exchange
moves.

FIG. 3: These two graphs are not distinguished by the usual
trinion decomposition of H.

Together with the identity, these moves generate the
evolution algebra

A evol = {1, Ai} , i = 1, 2, 3 (4)

on H .
This is a basic description of such theories which will

suffice for the purposes of this paper.

III. CONSERVED DEGREES OF FREEDOM

Note that the decomposition (2) of the state space H
sums over topologically distinct embeddings of the sur-
faces in Σ. For example, the two graphs of Fig.3 may
correspond to the same state in HΓ but correspond to
distinct states in H. They are distinct physical states be-
cause they are braided differently.

The basic point of this paper is a simple one and
can be summarized as follows. The braiding content of
states in H remains invariant under the action of A evol.
Thus, any physical information encoded in the braiding
will be conserved under this evolution. As the quantum
geometry evolves the conserved structure represented
by the braiding will not necessarily remain localized
with respect to the graph.In general as a graph evolves
a configuration that appears initially to be a localized
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braid becomes “spread out”. Nevertheless there is a
conserved quantity associated with the braiding. This
is to be expected and is discussed in detail in the penul-
timate section.

Let us first state the precise sense in which the braid-
ing is conserved. It is easiest to do so using the notion
of a noiseless subsystem from quantum information the-
ory [4]. Given a finite-dimensional state space

H = HA ⊗HB ⊕K, (6)

where K is the orthogonal complement of HA⊗HB in H,
and a completely positive map E on H, the subsystem
B is noiseless under E if, for all ρA ∈ HA, ρB ∈ HB , there
exists σA ∈ HA such that

E
(
ρA ⊗ ρB

)
= σA ⊗ ρB . (7)

That is, HB viewed as a subsystem of H is conserved un-
der E and any information encoded in HB will be pro-
tected under E.

Given H and E, it is a non-trivial exercise to find the
decomposition (6) that reveals the noiseless subsystem.
Some of the literature devoted to this task can be found
in [4]. In our case, however, it is easy to find a noise-
less subsystem in the state space we are considering,
when E is in A evol. Let us consider a given Γ shown
in Fig.4. The surface Γ consists of two nodes that share
three edges. These edges may be braided and twisted
an infinite number of ways. For each choice of braiding
and twisting there is a basis element in H and these span
subspace of H we will call Hbraid. This can be decom-
posed as

Hbraid = HT
Γ ⊗HB

Γ (8)

where HT
Γ =

∑
t∈Γ

Ht contains all trinions (unbraided

and untwisted) in Γ and HB
Γ =

⊗
t∈Γ

Hb where Hb

are state spaces associated with braids and twists in be-
tween the trinions (as illustrated in Fig.4).

We do not, at this stage, need to be explicit about the
different kinds of braids that appear in the second factor.
Our task will be to find out what the physical content of
the HB

Γ may be.
With the new decomposition, it is straightforward to

check that operators in A evol can only affect the HT
Γ and

that HB
Γ is noiseless under A evol. This can be checked

explicitly by showing that the actions of braiding and
twisting of the edges of the graph and the evolution
moves commute.

Note that this decomposition also makes explicit the
fact that, starting with a graph Γ and applying moves in
A evol on it, one cannot reach any other graph but only
graphs with the same braiding content as Γ.

IV. THE PHYSICAL CONTENT OF H
B

We have seen that the braiding and twisting of the
ribbon graphs is conserved under evolution. As was

FIG. 4: The new decomposition is in terms of untwisted and
unbraided trinions and braids connecting them.

pointed out in [3], a noiseless subsystem (or nearly
noiseless) in a background independent theory means
that there are degrees of freedom that are noiseless un-
der the Planckian evolution A evol and therefore should
appear in the low energy theory. The question is of
course what is the physical content of the braids and the
twists.

It is remarkable that the noiseless subsystem we un-
covered fits very naturally with the recent proposal by
one of us of a preon model for the first generation of
the standard model based on ribbon braids[1]. The ba-
sic idea of that proposal is to give the following physical
interpretation to the braids:

• Twist is interpreted as U(1) charge, so that a ±2π
twist in a ribbon represents charge ±e/3.

• The simplest non-trivial braids can be made with
three ribbons and two crossings, as in Figure 5. It
is remarkable that with a single condition, these
map to the first generation of the standard model
[1]. This is seen in Figures 16-19 and will be re-
called in more detail below.

In the rest of this paper we explore the embedding of
the model of [1] into quantum geometry. We will need
a more detailed description of the conserved quantities,
which we will develop in the next section. For example
to understand the identification of twist with charge we
have to understand how charge conjugation symmetry
acts on braids.

V. INVARIANTS OF EMBEDDINGS, SYMMETRIES
AND CONSERVED QUANTUM NUMBERS.

We saw in Section III that braiding and twisting are
preserved under the evolution moves, giving rise to the
emergence of the topological preon model from models
of quantum gravity. To ensure that the precise topolo-
gies used in the topological preon model of [1] are dis-
tinct states of quantum gravity it is very helpful to
work with explicit topological invariants which can eas-
ily be proved to be invariant under the evolution moves
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FIG. 5: A simple braid inside a ribbon graph

FIG. 6: The reduced link of the braid in Figure 5.

shown in Figure 2. This is the task of the present sec-
tion. We will need the reduced link invariant of a ribbon
graph embedding and the discrete symmetries on the
braids which we define next.

A. The reduced link invariant

Let L[Γ] denote the the link of a ribbon graph embed-
ding. This is the set of curves in Σ obtained by consid-
ering each edge of the ribbon graph as a curve in Σ. We
define the reduced link of a ribbon graph embedding, de-
noted RL[Γ], to be L[Γ] minus any unlinked unknotted
closed curves.

As an example, consider the simple piece of a ribbon
graph shown in Figure 5. Its reduced link is shown in
Figure 6. We see it evolved in Figures 7 and 8. It is easy
to verify that the reduced link is unchanged. We empha-
size that, although the state does change (because two
states that differ by a local move are orthogonal under
the inner product), the reduced link does not.

Figures 10 to 12 further illustrate the construction of
the reduced link of a ribbon graph. The reduced link
can be simplified by using the standard Reidemeister
moves.

It is easy to see that both the link, and the reduced link
of a ribbon graph are unchanged by the action of an ex-

FIG. 7: A possible evolution of the braid in Figure 5 under an
exchange move.

FIG. 8: Further evolving the braid in Figure 7 by expansion
moves.

FIG. 9: The effect of a parity transformation on a braid.

change move. While an expansion move does change
the link of a ribbon graph, it does not change the re-
duced link. An example of this can be seen by compar-
ing Figure 10 and Figure 12. We thus see that the re-
duced linking number RL[Γ] is an invariant, preserved
under the local moves.

We can define operators that represent the reduced
link invariants. Let K be a link in Σ and let J(K) be any
complex valued link invariant. Given a ribbon graph Γ,
let RL(Γ) be its reduced link invariant. Then define

J(Γ) = J(RL (Γ)) . (9)

Then we can define an operator Ĵ by its action on a basis

Ĵ |Γ〉 = J(Γ)|Γ〉. (10)

From the fact that the reduced link invariant is pre-

served by the evolution moves, we deduce that Ĵ is
in the commutant of A evol. This result tells us that
there are conserved quantum numbers emergent from
dynamical quantum geometries.

B. Subsystems of ribbon graphs

There are cases where the reduced link of a portion of
the graph gives a closed link, unlinked and unconnected
to the rest of the graph. This is illustrated in Figures 10
to 12. Since topological invariants of the reduced link
are preserved under evolution, this feature is conserved.
This gives us an invariant definition of a subsystem. We
can then consider the reduced link of such a subsystem.

We can define,

RLS(Γ) = RL(ΓS). (11)

By the same logic as before, this is preserved under evo-
lution moves. Hence given any link invariant J we have
again an operator
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FIG. 10: Constructing the link of a ribbon graph. The blue line
is a boundary which separates the region of interest from the
rest of the ribbon graph.

FIG. 11: The reduced link, taken by excluding unlinked, un-
knotted curves from the link obtained previously.

ĴS |Γ〉 =
∑

S

RLS(Γ)|Γ〉. (12)

where the sum is over disconnected pieces of the re-
duced link of the graph. The operator applies the link
invariant to each of the disconnected pieces and sums
them. In the case there is a boundary we can distin-
guish the components connected to the boundary, which
would not be included in the sum.

This implies that given the consistent splitting, ĴS

also is in the commutant of A evol. This means that we
have conserved quantities connected with subsystems.
This is true in spite of the fact that there are evolution
moves which generate interactions between the subsys-
tems and the rest of the ribbon graph.

We may note that the subsystems cannot in general
be considered “localized” as they may become arbitrar-
ily large and complex as the quantum geometry evolves.
But nevertheless, there is a notion of subsystem and it
will be useful to give some simple examples. Let us then
consider a system defined by a simple set of local con-
figurations of the form of Figure 13. They are a braided
set of n edges, which are joined on both ends by a set of
connected nodes (or just one node.) At least one of the
sets of nodes is connected to the rest of the ribbon graph.
We will call them encapsulated braids.

It is clear that the form of Figure 13 is preserved under
the evolution moves. Local invariants of the braidings
then label persistent structures of the kind discussed in
[3]. The commutant of the interaction algebra will then
include elements of the braid group that connect braids
with distinct reduced link invariant.

FIG. 12: The reduced link of a ribbon graph is unaffected by
expansion moves.

FIG. 13: Local structures, consisting of a braid joined on each
end by nodes. One or both sets of nodes are connected to the
rest of the ribbon graph.

C. Discrete symmetries of braids

It will be useful in classifying states to introduce the
discrete symmetries which can act on subsystems of the
kind just described.

Parity. Let T [Γ] be any projection of the embedding
of the graph onto a two-dimensional plane. Let PT [Γ]
be its parity inversion, shown in Figure (9), which for
a braid is equivalent to a left-right inversion, while not
affecting the handedness of any twists on the strands.
(Note that the definition of the parity transformation is
independent of the two-dimensional plane used for the
projection.) This is the projection of a graph P[Γ] which
is the parity inversion of Γ. If P[Γ] is diffeomorphic to
Γ we say that the chirality of Γ is even. Otherwise the
chirality is odd, because it will be true that P2[Γ] ∼ Γ.
We then arbitrarily label the chirality of either Γ or P[Γ]
to be left-handed, so the other is right-handed. It is easy
to show that the chirality of a ribbon graph embedding
is invariant under both exchange and expansion moves.

Charge Conjugation. To define charge conjugation pre-
cisely it is helpful to recall the braid algebra, which are
the discrete operations that generate braids[8]. Braids
(as in Figure 13) are generated by a finite set of braid-
ing and twisting moves, displayed in Figure 14. (Note
that while braiding occurs in ordinary graphs, twisting
requires framed graphs.) We can call a braid move (ei-
ther a braiding or a twisting) generically m. A generic
braid on n strands generated by p braid moves is then of
the form of B = mp....m2m1. The possible braid moves
form an algebra, which is described in [8]. The identity
in the algebra 1n consists of n unbraided and untwisted
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FIG. 14: The basic braiding moves on three strands, and the
basic twisting moves.

strands.
Let us fix n and the sets of nodes at the two ends. Then

the possible braids that can come in the box define a
Hilbert space, Hnbraids within which the possible braids
B give a basis |B〉. The generators bi and ti are repre-
sented by unitary operators in this space [22]. There is a
natural vacuum |0〉 = |1n〉 which is n unbraided strands.
Any braid is then defined by a sequence of braid moves
acting on |0〉,

|B〉 = mp....m2m1|0〉. (13)

For each choice of n and end nodes, Hnbraids defines
a possible system’s Hilbert space to describe emergent
particle states.

We can now describe how the discrete symmetries act
on the braids. We have already defined the parity oper-
ator P . This easily restricts to an operator on Hnbraids.
There is also a natural charge conjugation operator, C,
defined by

C ◦ B = B−1 = m−1
1 m−1

2 ...m−1
p (14)

to be the braid constructed by making the inverses of
each move, in the reverse order. It is straightforward to
show that P and C commute with the evolution rules,
and are hence observables.

It follows from (14) that

(C ◦ B)B = 1. (15)

This suggests the identification of twist with an abelian
charge, and C with charge conjugation. As noted above,
we in fact identify twist with U(1) charge.

VI. IDENTIFICATION OF THE FIRST GENERATION
FERMIONS OF THE STANDARD MODEL

We have now all the structure we need to present the
second main result, which is the embedding of the topo-
logical preon model of [1] in the class of quantum grav-
ity theories we defined above.

To do so we need to make the following additional
assumptions, which are common also to preon models,
including that in [1].

• The lightest states are the simplest non-trivial
braids made of ribbons with no twists (no charge)
or one full twist (positive or negative charge).

FIG. 15: The simplest three strand braids. The ovals signify
nodes.

• Quantum numbers are assigned only to braids
with no positive and negative charge mixing.
Such a rule is necessary in preon models as
discussed[1].

Ultimately such rules have to arise from the dynam-
ics. However to study them we need to have access to
the effective dynamics so that we can study the mass
matrix of the theory. In Section VIII, we discuss this fur-
ther; for the present, these remain ad hoc assumptions.

We will consider braids of the form of Figure 13. For
each number of strands n ≥ 3 there are an infinite num-
ber of states in the corresponding state space, Hnbraids.
These can be ordered in terms of minimal numbers of
crossings required to create the braid. A common way
to understand this is to represent a graph by a projec-
tion T [Γ]. For every ribbon graph embedding Γ there is
a minimal number of crossings, in any such projection,
m[Γ].

Our first assumption above amounts to considering
minimal crossing number m[Γ] to be a measure of the
complexity of a graph so that the braids with the lowest
crossing number will become the first generation. We
then analyze the structure of the braids with the lowest
crossing numbers.

For three strands there are non-trivial braids with two
crossings. The simplest structure these can have is a sin-
gle node at the top tying the strands together, while the
strands join to the environment through the bottom as
shown in Figure 15.

We therefore begin by analyzing these. Let us first ne-
glect twists. Assuming that the twists on all generators
are zero, the possible non-trivial topologies are shown in
Figure 16. We see that two possible mirror-image states
can be formed, which we may call left-handed and right-
handed states. The remarkable fact that the simplest
braids are chiral will allow us to propose the identifi-
cation of them with chiral fermion states.

We now allow any or all of the strands to carry a single
twist, with either positive or negative orientation. This
gives rise to 2 × 33 = 54 states.

Let us call this space of states V3 for the states of three
strand braids. It is the sum of the left- and right-braided



8

FIG. 16: The electron neutrino and anti-neutrino – two un-
charged states.

FIG. 17: The electron and positron — four maximally charged
states.

sectors:

V3 = VL
3 ⊕ VR

3 (16)

We note that

P : VL
3 → VR

3 (17)

and vice versa.
However, the rules given above tell us to ignore those

braids that contain both plus and minus charges (or
twists). We then define the reduced subsector Vred

3

which do not mix positive and negative twists, and
which only have single twists. Using the results of [1]
we now see that the states in the reduced subsector cor-
respond to the 15 fermions of the first generation of the
standard model of particle physics. It is straightforward
to show that these 15 states have distinct reduced link
invariants, hence together with parity these distinguish
the 30 distinct chiral states of the first generation of the
standard model. The preceeding arguments then estab-
lish that symmetries of the standard model, which trans-
form these states among themselves, are conserved un-
der the dynamics of the quantum gravity theory.

From [1], we can classify these states in terms of
twists:

• There are four fully-charged states, that is, states
with a single twist on each strand, shown in Fig-
ure 17. It then makes sense to identify twist t with
electric charge,

t =
e

3
. (18)

In this case we can identify the fully charged states
with the electron and positron.

• There are two neutral states, one left-braided, one
right-braided, which we can identify with the neu-
trino and antineutrino, shown in Figure 16. We

FIG. 18: The left-handed down states-showing tripling of
states for fractional charge.

FIG. 19: The three colours of left-handed up states.

note that they are both C and P conjugates of each
other.

• There are the partially charged states, with one
and two +s, and the rest zeroes. These are shown
in Figures 18 and 19. These are the quarks, with
total charges ± 1

3
and ± 2

3
. In each of these there

is an “odd strand out” - one that is different from
the other two. The non-trivial nature of the braid
means that there are three distinct positions in
the braid which the “odd strand out” can occupy.
Hence each of the partially charged states comes in
three versions. We will equate these permutations
with colour.

• Given these identifications, we can also define
generators of the standard model symmetries, G =
SU(3) × SU(2) × U(1) acting in the standard way
on the 30 dimensional space Vred

3 .

These results suggest identifying VL
3 with left-handed

chiral fermions and VR
3 with right-handed chiral

fermions.

VII. A POSSIBLE IDENTIFICATION OF THE SECOND
GENERATION AND THE VECTOR BOSONS

We have seen that the states which can be imbedded
with a minimum number of crossings – i.e. two cross-
ings – give the fermions of the first generation of the
standard model. We note that there are exactly the 15
states of the original standard model, with no place for
a right-handed neutrino. This is consistent with present
data.

It is natural to hypothesize then that the second gener-
ation standard model fermions come from the next most
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FIG. 20: A possible identification of the muon neutrino as a
three crossing state.

complicated states, which have three crossings. These
are three stranded braids such as shown in Figure 20.
It is straightforward to see that by adding twists to this
state one gets a repeat of the pattern for the first genera-
tion.

The structure of the higher crossing states is under in-
vestigation and will be reported elsewhere.

In [1] it is also proposed that the gauge vector bosons
of the standard model are composite, and are repre-
sented by triplets of ribbons with no crossings. Braids
with three ribbons and no crossings are mapped to the
bosons of the electroweak interaction. The electroweak
interactions between the fermions and the photon and
vector bosons are then described by cutting and joining
operations on 3-ribbon braids. These preserve the rele-
vant quantum numbers. For more detail, see [1]. How
these are incorporated into quantum gravity is presently
under study, so we will restrict ourselves here to the re-
marks below.

VIII. DISCUSSION

Before closing we want to discuss several issues
which bears on the interpretation of these results.

A. Locality

Locality is a tricky issue in background independent
quantum theories of gravity because there is no back-
ground metric with which to measure distances or inter-
vals. And it is non-trivial to construct diffeomorphism
invariant observables that measure local properties of
fields.

This is brought out by the topological nature of the
conserved degrees of freedom we have described here.
The reader may ask the following question: It is com-
mon to encounter such topological degrees of freedom
but doesn’t their topological nature mean they are of
limited interest? And to what extent will they interac-
tions be able to be characterized as local?

The origin of these issues is that there are two notions
of locality that may be relevant. In a given graph or rib-
bon graph there will be a notion of locality: two trinions
are neighbors if they are connected, or in a graph two
nodes are neighbors if they are connected by a link. We

can call this microlocality. In the theories we study here,
as well as in loop quantum gravity and spin foam mod-
els generally, the dynamics is generated by moves that
are local in this microscopic sense.

But if this is to be a good theory there should be a no-
tion of classical spacetime geometry that emerges from
the quantum geometry. This will give rise to another no-
tion of locality, which we may characterize as macrolocal-
ity.

The question is then whether there is any guarantee
that these two notions of locality will coincide? This in-
deed seems unlikely, because the quantum states which
are expected to represent classical spacetimes are to be
constructed from superpositions of graph states each of
which carries its own notion of locality.

The noiseless subsystem viewpoint we have used
here brings in new physical understanding of this ques-
tion. The braids are indeed not local with respect to the
micro-locality defined by the generators of A evol. There
is, however, no reason that this micro-locality coincides
with the macro-locality of the effective spacetime. In-
stead, the notion of macro-locality should be defined di-
rectly from the interactions of the noiseless subsystems
that we identify with the elementary particles.

Indeed, it is perhaps misleading to describe H as a
quantum spacetime. It is quantum but also it is pre-
geometric. The idea is then to not try to regard the quan-
tum geometry as a “bumpy” or “quantum” spacetime.
Instead, we simply regard {H,A evol} as a quantum in-
formation processing system. When we do, a new pos-
sibility appears of a dual viewpoint: the locality of the
spacetime is to be given and identified by the braid in-
teractions in HB . It is A evol that is non-local with re-
spect to our spacetime!

To see the advantage of this approach we should con-
sider that for one of these models of quantum gravity
to have a good low energy limit it must be the case
that the emergent symmetries that act on the space of
noiseless subsystems includes an approximate transla-
tion invariance in space and time. In this case the
conserved quantities will include momenta and energy.
From the present NS perspective these translation sym-
metries should emerge as additional symmetries which
protect the degrees of freedom we have identified as el-
ementary particles. This will guarantee that the interac-
tions among the particles conserve the emergent notions
of energy and momentum. It is this possibility that al-
lows us to use topological conservation numbers to rep-
resent matter.

The test of this approach will be whether it can be
worked out in detail, so we will not say more here about
how translation invariance is to emerge. But we may
note that this scenario is very different from the one that
has been commonly assumed in many discussions about
how space and time are to emerge from background in-
dependent models of quantum geometry. It makes no
use of the common assumption that the quantum geom-
etry describes a bumpy classical geometry so that the
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micro-locality of A evol ought to coincide with that of the
effective spacetime up to Planck scale corrections.

In summary, there are distinct ways for a spacetime
geometry to emerge from a quantum theory. At one end
of the spectrum lies the expectation that classical space-
time geometry will emerge as the classical/low energy
limit of quantum general relativity (as in Loop Quan-
tum Gravity) or a discrete and quantum version of Ein-
stein’s theory (as in Causal Dynamical Triangulations
[19]). Matter fields are to be added and coupled to the
quantum geometry. At the other end, one may expect
that the emergent spacetime is the collection of events
that are the interactions of the excitations of an under-
lying pre-spacetime quantum theory, with matter being
also emergent as these same excitations. That such an
emergent spacetime can be dynamical has recently been
investigated in [20, 21].

B. The mass matrix

In order to arrive at the standard model fermions we
have had to make two assumptions about the mass ma-
trix. These should be justified in a fundamental theory.
To discuss this we have to notice that the mass matrix
can only arise at the level that an effective dynamics in
spacetime emerges. As we noted above, this requires
that there be in the low energy limit an emergent trans-
lation invariance in space and time. This will imply the
conservation of energy and momentum for small ex-
citations around the ground state. When the effective
Hamiltonian H is evaluated on the states described here
at zero momentum it will give us a mass matrix.

The only thing we can say about the mass matrix at
this stage is that it should be constructed from topo-
logical invariants of the states which are preserved un-
der evolution. Motivated by the spectrum of stan-
dard model particles we make the following hypotheses
about the mass matrix in this class of theories: (1) Given
two braids as just described, which have the same num-
ber of strands and twistings, but differ by the number
of crossings, the mass will increase with the number of
crossings. (2) Non-trivially braided states with both pos-
itive and negative twisted strands incident on the same
vertex should have a heavy mass M . All other states are
light relative to the scale M .

C. Emergence of interactions

Another feature of the present proposal that we
would like to discuss is the fact that the invariant quan-
tities we find are quantum numbers and not individual
identified particles. That is, the in and out states (pre-
serving the relevant quantum numbers) of a Feynman
diagram are equivalent. More precisely, the very fact
that we are getting HB as a noiseless subsystem means
that A evol commutes with operators on HB and hence

A evol cannot tell us anything about the Standard Model
dynamics. In order to describe interactions we will have
to weaken the notion of a noiseless subsystem to a more
realistic notion of an approximate noiseless subsystem.
There are two ways that this could be done. The first is
that additional local moves need to be added to A evol to
give the standard model interactions. The second, more
elegant possibility is that the gauge interactions are also
emergent and arise at the level that we have a notion
of macrolocality that emerges from the interactions of
the approximate noiseless subsystems. Both possibili-
ties are under investigation.

D. The anomaly issue

Finally, we recall that in standard preon models
anomaly matching conditions need to be satisfied [12].
This is because the fundamental theory that binds the
preons is a conventional, background dependent quan-
tum field theory. In the present setup, the “preon-like”
objects appear only at the level of the quantum pre-
geometry. Individual ribbons do not exist as persis-
tent states and hence will not appear in an effective
field theory that describes the dynamics of the persistent
states below the Planck scale. So while there can be no
anomaly in that effective field theory, we already know
there is none, as it is the standard model. As the preons
are bound by the dynamics of quantum geometry rather
than gauge fields, no issue of anomaly matching arises.

IX. CONCLUSIONS AND OPEN ISSUES

The results presented here tell us that theories that sat-
isfy the conditions described in section 2 above, may be
already unified. Most remarkably, with rather mild condi-
tions imposed, the emergent particle degrees of freedom
include the first generation fermions and vector bosons
of the standard model.

It is worth noting that this result has been achieved
through a combination of quite conservative steps. On
the other hand, there are many open questions to be re-
solved if this proposal corresponds to reality. We here
list a few.

• How may an effective low energy dynamics
emerge? As we discussed in the previous sec-
tion, if the microscopic dynamics is contained in
the evolution algebra, it acts trivially on the sec-
tor of the theory that contains braids and twists,
meaning that (what we call) the effective theory is
completely decoupled from (what we call) the mi-
croscopic theory. One would like to know the con-
sequences of a more realistic setup, presumably in-
volving an enlargement of A evol so that the sector
containing the standard model quantum numbers
is approximately noiseless. This case would also
give results on the effective dynamics.
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• How does the usual quantum statistics arise? This
is an important open problem, whose solution
may require a further specification of the dynam-
ics so as to satisfy conditions of the topological
spin statistics theorems.

• How bound are the quarks and leptons? Does the
theory predict the existence of exotic states such as
stable fractionally charged particles?

• Is there a composite Higgs or some other mech-
anism for dynamical symmetry breaking? The
states described here naturally are CP invariant.
How may CP violation enter the theory? Is there a
derivation of the mass matrix in terms of topolog-
ical invariants?

• These results seem to show that the emergent
particle-like degrees of freedom arise whether or
not representations of a quantum group labels the
graphs and even independently of the actual am-
plitudes for the different evolution moves. How
then should these be chosen? Regarding the choice
of quantum group, we would favor the minimal
choice, which is that there is no group. There
are still states that correspond to products of rep-
resentations of the spacetime SU(2)L ⊕ SU(2)R,
but they must be built up by hand from braided

triplets of edges. It is then possible that all the
quantum numbers, including the geometric labels
used in loop quantum gravity can then be re-
garded as composites of fundamentally topologi-
cal properties. This gives a very attractive unifica-
tion in which both the geometry observables and
the quantum numbers of the elementary particles
are reduced to simple topological properties such
as twisting and braiding of edges.

• Alternatively, if the spacetime geometry is to be
constructed from the collection of events that are
the interactions of the conserved degrees of free-
dom, one has to show how gravity and the Ein-
stein equations will appear.
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