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Abstract

Recent work [1, 2] suggests that topological features of certain quantum gravity
theories can be interpreted as particles, matching the known fermions and bosons
of the first generation in the Standard Model. This is achieved by identifying
topological structures with elements of the framed Artin braid group on three
strands, and demonstrating a correspondence between the invariants used to
characterise these braids (a braid is a set of non-intersecting curves, that connect
one set of N points with another set of N points), and quantities like electric
charge, colour charge, and so on [1, 3]. In this paper we show how to manipulate
a modified form of framed braids to yield an invariant standard form for sets of
isomorphic braids, characterised by a vector of real numbers. This will serve as
a basis for more complete discussions of quantum numbers in future work.
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1 Introduction

It has long been hoped that the fundamental particles, of which all matter in
the Universe is composed, would turn out to be topological structures of some
type. This prospect is appealing because if correct it would indicate that the
permanence of matter and its properties (obeying principles like the conservation
of electric charge) could be explained in terms of different topological classes,
which are isotopically inequivalent. Furthermore it would explain the number
and type of different particles (electrons, neutrinos, quarks) in terms of a simple
counting exercise, much as the periodic table of the elements can be explained
by counting the number of protons in atomic nuclei. In [1] it was proposed that
certain hypothetical models of particle substructure could be reformulated in
terms of the framed Artin braid group on three strands. This idea was soon
adapted to interpret extra topological degrees of freedom occurring in certain
theories of quantum gravity [2], raising the exciting possibility that matter may
be an emergent feature of quantum gravity theories. In order to test this idea,
it is necessary to understand how such braided structures may be classified into
isotopically inequivalent classes, what quantities characterise these classes, and
how these may correspond with the quantum numbers of the standard model.

In this paper we present a general method for reducing framed braids on
three strands, carried on a closed surface, to a simplified form, in which all the
crossings have been removed, and only twists remain on the strands. Each braid
can then be classified into an equivalence class, each such class being specified
by a triplet [a, b, c] of multiples of half-integers. In section 2 we describe the
Artin braid group, the algebra of braids, and the generators of the braid group
on n strands. In section 3 we extend the braid group to framed braids, and
introduce the physical example of braided belts (these being framed braids car-
ried on a closed surface, the “belt”), which provide a useful mental image to
complement the mathematical discussion. We demonstrate how braided belts
on three strands may be reduced to a simplified form (without crossings), clas-
sified by a triplet of real numbers. In section 4 we reiterate several of the results
from the previous section in a mathematical formalism utilising permutation
matrices. We conclude with a demonstration of the classification of the quarks
and leptons of the first generation of the standard model in section 5.

2 The Artin Braid Group

Let Bn denote the Artin braid group on n strands [4]. We recall here that Bn
is generated by elementary braids {σ1, . . . , σn−1} with relations

1. σiσj = σjσi for |i− j| > 1,

2. σiσi+1σi = σi+1σiσi+1 for i = 1, · · · , n− 2.
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Figure 1: Braid Generators and Relations

See Fig. 1 for an illustration of the elementary braids and their relations. Note
that the braid group has a diagrammatic topological interpretation, as fol-
lows. Consider a set P consisting of n distinct points, {p1, p2, . . . , pn} shar-
ing the same z-coordinate (say zP ), and a second set Q of n distinct points,
{q1, q2, . . . , qn} sharing a different z-coordinate (say zQ). Then a braid is a
set of n non-intersecting strands that lead from the first set of n points to the
second set, such that the z-coordinate of a point along any strand changes mono-
tonically from zP to zQ as we move from a point in P , to the corresponding
point in Q. In other words, strands cannot “loop back” on (and be tied in knots
around) themselves. The braid generators σi are represented by diagrams where
the ith and (i+1)th strands wind around one another by a single half-twist (the
sense of this winding is shown in Fig. 1) and all other strands drop straight to
the bottom. Braids are diagrammed vertically as in Fig. 1, and the products
are taken in order from top to bottom. The product of two braid diagrams is
accomplished by adjoining the tops of the strands of the second braid to the
bottoms of the strands of the first braid, or in other words, identifying the n
points in the first set of the second braid with the points in the second set of
the first braid. An example of the product of two braids is illustrated in Fig. 2

Any braid on n strands can be written as a product of the generators
σ1, . . . , σn−1 and their inverses. The sequence of σ factors defining a braid
is called its braid word. We shall sometimes use the terms “braid” and “braid
word” interchangeably, for brevity.

In Fig. 1 we illustrate the example of the four-stranded braid group B4. In
that figure the three braid generators ofB4 are shown, and then the inverse of the
first generator is drawn. Following this, one sees the identities σ1σ

−1
1 = I (where

the identity element in B4 consists of four vertical strands), σ1σ2σ1 = σ2σ1σ2,
and finally σ1σ3 = σ3σ1.

We also observe that the generators induce permutations of the strand or-
dering. The generator σ1 induces the permutation P1,2 (that is, it swaps the 1st
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Figure 2: The product of two braids, A1 and A2.

and 2nd strands), the generator σ2 induces the permutation P2,3 and in general
the generator σi induces the permutation Pi,(i+1) = P(i+1),i. Notice also that
the same permutation is induced by a generator or its inverse, σ−1

i . Therefore
the generators contain more information than the permutations - in particular
the direction of the crossing is specified by the generators (as shown in Fig. 1),
the inverse of a generator inducing a crossing which is opposite in direction to
the crossing induced by the generator itself.

For further discussions of braids (and knots) the reader is directed to refer-
ences [4, 5, 6, 7, 8, 9].

3 Braided Belts

We now turn to studying surfaces that we shall call “braided belts”. As Figs 3-6
indicate, the braiding we are considering is a braiding of ribbon strands. This
requires a natural generalization of the braid group to the framed braid group
where each strand of the braid has been replaced by a ribbon, which can carry
twist. We count the twist on each strand or ribbon in terms of the number of
half-twists in the ribbon (i.e. twists through 180◦). It is therefore convenient to
define a standardised form for framed braids in which all the twist is isotoped
to the top of the braid. Then we can write [r, s, t]B where B is an ordinary
braid word and [r, s, t] is a triple of multiples of half-integers which catalogue
the twists in the ribbons. We shall call this triple of numbers the twist-word.
Thus a framed braid on three strands is completely specified by the twist word
and the braid word (this can of course be easily generalised to framed braids on
n strands).

At this point it is necessary to draw a distinction between framed braids,
and what we call braided belts. Framed braids are simply those braids which
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Figure 3: Turning over a node induces crossings and twists in the “legs” of
that node (left). A trinion flip may be used to eliminate crossing while creating
twists (right).

consist of n ribbons connecting one set of n points with a common z-coordinate,
to another set of n points also with a common z-coordinate, as described above.
In braided belts the sets of n points at both ends of the ribbon strands are
replaced by disks, or framed nodes. The union of the strands and disks is a
closed surface. The disks are thus nodes with n “legs” emerging from them, each
leg being the terminus of a ribbon strand. We furthermore relax the condition
that strands may not “loop back” on themselves. The ability to deform the
braided belt by flipping the node at one end over (effectively feeding it through
the strands), in order to undo crossings and hence simplify the braid structure
of the belt, is essential to the results we will discuss below.

On the left of Fig. 3 we illustrate a Y-shaped ribbon - that is, a node with
three ribbons or “legs” attached to it. Such a triple of ribbons meeting at a
node has previously been referred to as a “trinion” [2], and we shall adopt this
terminology. A trinion may be converted into a structure with both crossings
and twists, by keeping the ends fixed and flipping over the node in the middle,
as illustrated in Fig. 3 (we shall refer to this process of flipping over a node
while keeping the ends of the legs fixed as a “trinion flip”, or “trip” for short).
Conversely, on the right of Fig. 3 we show how a trinion with untwisted ribbons,
but whose upper ribbons are crossed, can be converted into a trinion with
uncrossed ribbons and oppositely-directed half-twists in the upper and lower
ribbons by performing an appropriate trinion flip (in the illustration, a negative
half-twist in the lower ribbon of the trinion and positive half-twists in the upper
ribbons). In Fig. 4, we show the same process performed on a trinion whose
(crossed) upper ribbons have been bent downwards to lie besides and to the left
of the (initially) lower ribbon. This configuration is nothing other than a framed
3-braid corresponding to the generator σ1 (with the extra detail that the tops
of all three strands are joined at a node). Keeping the ends of the ribbons fixed
as before and flipping over the node so as to remove the crossings now results
in three unbraided (i.e. trivially braided) strands, with a positive half-twist on
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Figure 4: Trinion bent to form a generator of the braid group

the leftmost strand, a positive half-twist on the middle strand, and a negative
half-twist on the rightmost strand. Hence the associated twist-word is [ 12 ,

1
2 ,−

1
2 ]

This illustrates that in the case of braids on three strands, each of the crossing
generators can be isotoped to uncrossed strands bearing half-integer twists. By
variously bending the top two ribbons down to the right of the bottom ribbon,
and/or taking mirror images, and performing the appropriate trinion flips we
can determine that the generators may be exchanged for twists according to the
pattern;

σ1 →
[
1
2 ,

1
2 , −

1
2

]
σ−1

1 →
[
− 1

2 , −
1
2 ,

1
2

]
σ2 →

[
− 1

2 ,
1
2 ,

1
2

]
σ−1

2 →
[
1
2 , −

1
2 , −

1
2

] (1)

All braids on three strands can be built up as products of these generators.

3.1 Framed braid multiplication

As mentioned above, a braid with several crossings is specified by its braid word,
which corresponds with several generators multiplied together. Unframed braids
are multiplied together by joining the tops of the strands of the second braid to
the bottoms of the strands of the first braid. Framed braids are multiplied in an
analogous way, however there are extra complications introduced by the presence
of twists. Therefore when forming the product of two (or more) framed braids,
we shall firstly join the bottom of the ribbons in the first braid to the tops of
the ribbons in the second braid, and so on (in the case of braided belts, we must
eliminate the intervening nodes first, while retaining the nodes at the “top” of
the first belt in the product, and the “bottom” of the last belt). Secondly we
shall isotop the twists from each of the component braids upwards to render
the product into standard form (as described above). They will get permuted
in the process, according to the permutation PB associated with the braid B
that they pass through. Given a permutation PB and a twist-word [x, y, z],
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we shall write the permuted twist-word as PB ([x, y, z]). Thus given two braids
[r, s, t]B1 and [u, v, w]B2, we can form their product by joining strands to form
[r, s, t]B1[u, v, w]B2, and then move the twists [u, v, w] upward along the strands
of the braid B1. Thus

[r, s, t]B1[u, v, w]B2 = [r, s, t]PB1 ([u, v, w])B1B2 (2)

where [r, s, t][x, y, z] = [r+x, s+y, t+z] and B1B2 denotes the usual product of
braid words. In general the twists will be permuted by all the braids they pass
through. For example, remembering that Pσi

= Pi,(i+1),

[r, s, t]σ1σ2[x, y, z] = [r, s, t]σ1[x, z, y]σ2

= [r, s, t][z, x, y]σ1σ2

= [r + z, s+ x, t+ y]σ1σ2. (3)

It should also be clear to the reader that since crossings can be exchanged for
twists, in the case of braided belts - which we shall be discussing exclusively from
this point onwards, we may go a step further and entirely eliminate the crossings
from a 3-braid. When we do so we uncross the strands (hence permuting them
by the permutation associated with the crossing being eliminated) and introduce
the twists indicated in eqn. (1). In general, this means that we iterate the process

[a1, a2, a3][b1, b2, b3]σiσj . . . σm → [a1 + b1, a2 + b2, a3 + b3]σiσj . . . σm
→ Pσi

([a1 + b1, a2 + b2, a3 + b3])[x, y, z]σj . . . σm (4)

where [x, y, z] is the twist-word associated to σi (as listed in Eqn. 1, when i is
specified). We iterate this procedure until the braid word becomes the identity.
Hence continuing the example above, from Eqn. (3),

[r + z, s+ x, t+ y]σ1σ2 → Pσ1([r + z, s+ x, t+ y])
[

1
2
,

1
2
,−1

2

]
σ2

→ [s+ x, r + z, t+ y]
[

1
2
,

1
2
,−1

2

]
σ2

→
[
s+ x+

1
2
, r + z +

1
2
, t+ y − 1

2

]
σ2

→ Pσ2

([
s+ x+

1
2
, r + z +

1
2
, t+ y − 1

2

])
×
[
−1

2
,

1
2
,

1
2

]
→

[
s+ x+

1
2
, t+ y − 1

2
, r + z +

1
2

]
×
[
−1

2
,

1
2
,

1
2

]
→ [s+ x, t+ y, r + z + 1]. (5)
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Figure 5: A Trip performed on a closed 3-Belt

We shall refer to the form of a braid in which all the crossings have been ex-
changed for twists as the pure twist form. The list of three numbers which
characterise the twists on the strands in the pure twist form will be referred to
as the pure twist-word. The pure twist-word is of interest because it is a topo-
logical invariant (since it is obtained when a braid is reduced to a particularly
simple form i.e. all crossings removed).

3.2 Making 3-belts

Consider a braided belt (or framed braid) on three strands. In the particular
(trivial) case where the strands do not cross each other, the associated braid
word is clearly the identity, I. In the case where the strands are untwisted,
the associated twist-word is also the identity. Such an untwisted trivial braid -
the identity braid on three strands - can be made by cutting two parallel slits
in a strip of leather, as shown on the left of Fig. 5. The resulting surface is
topologically equivalent to three parallel strips capped at the top and bottom
by an attached disk. We will refer to three strands (not necessarily unbraided)
attached to disks in this manner as a 3-belt. In Fig. 5, we show the consequence
of trinion flips in the making of a braided leather belt.

Recall that σ1 ≡ [ 12 ,
1
2 , −

1
2 ], and so we may write I = [− 1

2 , −
1
2 ,

1
2 ]σ1. The

right-hand side of Fig. 5 illustrates that the strands are now crossed and twisted,
but still the 3-belt we have obtained is isotopic to the trivial 3-belt. Figure 6
shows the result of six consecutive repetitions of this process (alternately to the
first two strands and the last two strands) of a 3-belt. The reader will note
by direct observation that along each of the three ribbon strands, all the twists
cancel. Thus when we isotop all the twists to the top of the braid we obtain a flat
(untwisted) braided belt, with braid-word (σ−1

2 σ1)3. Iteration of the procedure
that yields Fig. 6 is actually used by belt-makers.
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Figure 6: Braiding a Belt

Since the same physical structure can be isotoped to have the braid word
I or (σ−1

2 σ1)3, it is clear that the braid word is not a topological invariant.
However, as noted above, the pure twist-word is a topological invariant. If any
two braids [a, b, c]B1 and [x, y, z]B2 have the same pure twist-word, then they
are isotopic. For the remainder of this paper we shall be mostly interested in
classifying braided, twisted 3-belts by their pure twist numbers, rather than
inducing twists and crossings on an initially trivial 3-belt. We are therefore
primarily interested in the procedure illustrated in Eqn. (4). We now apply
this procedure to the braid word (σ−1

2 σ1)3, and confirm that its pure twist-
word is I = [0, 0, 0]. This corresponds with reversing the procedure (used by
belt-makers) described in the previous paragraph.

Firstly we consider the braid word σ−1
2 σ1

σ−1
2 σ1 →

[
1
2
,−1

2
,−1

2

]
σ1

→ P1,2

([
1
2
,−1

2
,−1

2

])[
1
2
,

1
2
,−1

2

]
→

[
−1

2
,

1
2
,−1

2

] [
1
2
,

1
2
,−1

2

]
→ [0, 1,−1] (6)
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Figure 7: A braided belt can be embedded within a larger network, represented
by the box.

To consider the full braid with six crossings we need to multiply this result with
itself three times, but also keep track of the permutations induced by the braid
word σ−1

2 σ1. This permutation will be P1,2(P2,3) = P(123), that is, the cyclic
permutation which sends [a, b, c]→ [c, a, b]. Hence,

(σ−1
2 σ1)3 → [0, 1,−1](σ−1

2 σ1)2

→ P(123)([0, 1,−1])[0, 1,−1]σ−1
2 σ1

→ [−1, 0, 1][0, 1,−1]σ−1
2 σ1

→ [−1, 1, 0]σ−1
2 σ1

→ P(123)([−1, 1, 0])[0, 1,−1]
→ [0,−1, 1][0, 1,−1]
→ [0, 0, 0] (7)

as expected.

The reader will notice that it is unnecessary to keep track of the permutation
induced by the first generator in a braid word (or the first braid word in a
product, when the corresponding pure twist-word is known), as there is nothing
for this permutation to act upon.

The braided belts we consider in this paper are of interest not only from a
purely topological basis, but also due to a possible connection with theoretical
physics. In [2] it was shown that braided belts attached at one end to a larger
network of ribbons could be used to represent the elementary quarks and leptons.
In order to keep the discussion in this paper relevant to the work in [2], we shall
henceforth treat the ordering of generators in a braid word as indicative of a “top
end” which is free to be trinion-flipped, and a “bottom end” which is attached
to a larger network (which for all practical purposes is fixed and static). The
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Figure 8: Finding the pure twist-word for a braid [ 12 ,
3
2 ,−

1
2 ]σ1σ2σ

−1
1 σ−1

1 σ−1
2

left-most generator in a product is equated with the top end, and this is why
we shall always work from left to right when we resolve a braid word to find the
associated pure twist-word. In diagrams of braided belts we shall henceforth
include a box on the boundary of the belt at the bottom end, to represent the
presence of a larger network to which the braided belt is attached, as shown in
Fig. 7

There is a simple schematic technique for finding the pure twist-word asso-
ciated with a braid word, as follows:

• Replace each generator in the braid word by one of the following triples
of symbols;

σ1 → + + −
σ−1

1 → − − +
σ2 → − + +
σ−1

2 → + − −

(8)

such that they form a vertical stack, leftmost generator at the top.

• Beneath each pair of similar symbols, place a cross, ×, connecting each
symbol to the diagonally opposite symbol in the pair below. Beneath
each dissimilar symbol, place a vertical bar, |, connecting it directly to the
symbol below it. The lines below the bottom row of symbols will end on
three blank spaces.

• Sum up the symbols along each vertical path, starting at the top of the
symbol stack, and ending on the blank spaces at the bottom. Each +
stands in for 1

2 . Each − stands in for − 1
2 . The resulting triplet of numbers

is the pure twist-word.

In the case where the braid is written in standard form [a, b, c]B we construct
the symbol stack for the braid word as described above, and then place the twist
word at the top, with three vertical lines descending to the top of the symbol
stack.
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Figure 9: The Positron, in fully-braided form (left), resolved in stages to its
pure twist form (right).

In Fig. 8 we give an example of using this process to find the pure twist-word
corresponding to the braid [ 12 ,

3
2 ,−

1
2 ]σ1σ2σ

−1
1 σ−1

1 σ−1
2 . The three diagrams in the

figure correspond with the addition of twists along each of the three strands.
The resulting pure twist-word is found to be [1, 2,−1].

A further example is given by the braid e+L = [1, 1, 1]σ1σ
−1
2 . This is the braid

structure assigned to the left-handed positron in [1]. We find that

e+L → [1, 1, 1]σ1σ
−1
2

→ [1, 1, 1]
[

1
2
,

1
2
,−1

2

]
σ−1

2

→
[

3
2
,

3
2
,

1
2

]
σ−1

2

→ Pσ−1
2

([
3
2
,

3
2
,

1
2

])[
1
2
,−1

2
,−1

2

]
→

[
3
2
,

1
2
,

3
2

] [
1
2
,−1

2
,−1

2

]
→ [2, 0, 1]. (9)

Thus [2, 0, 1] gives the framings on the equivalent parallel flat strip belt. See
Fig. 9 for a graphical version of this calculation, and a depiction of the boundary
of the surface that corresponds to e+L . We denote the boundary of this surface
by ∂e+L . Note that ∂e+L is independent (topologically) of the deformation that
we have applied to straighten out the braiding from the original definition of
e+L . Thus our algebraic reduction gives us an algorithm for finding the boundary
link for each particle in Bilson-Thompson’s tables.

In Fig. 11 - Fig. 14 we illustrate the correspondence between the braids
proposed in [1] to match the first-generation fermions of the Standard Model,
and their pure twist form. Notice that the pure twist forms are distinct in each
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Figure 10: By assuming that the outer edge of the braided belt is closed (when
we trace it through the rest of the network), we can equate a link (right) to
the pure twist form (left) of any braid, in this case the left-handed positron as
illustrated in Fig 9

illustrated case, except for the neutrino and anti-neutrino. In this case, the
left-handed “negative” neutrino is isomorphic to the right-handed “positive”
anti-neutrino. Likewise the left-handed “positive” anti-neutrino is isomorphic
to the right-handed “negative” neutrino. In other words, there are half as many
topologically distinct states for neutral particles as one would expect for charged
particles. This is in agreement with the Standard Model, where neutrinos are
purely left-handed, and anti-neutrinos are purely right-handed. The pure twist
numbers in each case are listed with the corresponding particles in the table
below;

left-handed right-handed
e− [0,-2,-1] e− [-1,0,-2]
ūB [0,-1,-1] ūB [-1,1,-2]
ūG [1,-2,-1] ūG [-1,0,-1]
ūR [0,-2,0] ūR [0,0,-2]
dB [1,-2,0] dB [0,0,-1]
dG [0,-1,0] dG [0,1,-2]
dR [1,-1,-1] dR [-1,1,-1]
νL [1,-1,0] νR [0,1,-1]
d̄B [1,0,0] d̄B [0,2,-1]
d̄G [2,-1,0] d̄G [0,1,0]
d̄R [1,-1,1] d̄R [1,1,-1]
uB [2,-1,1] uB [1,1,0]
uG [1,0,1] uG [1,2,-1]
uR [2,0,0] uR [0,2,0]
e+ [2,0,1] e+ [1,2,0]

13



Figure 11: Left-handed negatively-charged fermions, as per the structure pro-
posed by Bilson-Thompson, and their associated pure twist form

Figure 12: Right-handed negatively-charged fermions, as per the structure pro-
posed by Bilson-Thompson, and their associated pure twist form
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Figure 13: Left-handed positively-charged fermions, as per the structure pro-
posed by Bilson-Thompson, and their associated pure twist form

Figure 14: Right-handed positively-charged fermions, as per the structure pro-
posed by Bilson-Thompson, and their associated pure twist form

15



4 Algebra

In this section we give a representation of the three-strand braid group in terms
of permutation matrices. A permutation matrix P is a matrix whose columns
are a permutation of the columns of the identity matrix. Such a matrix acts
as a permutation on the standard basis (column vectors that have a single
unit entry). We shall sometimes refer to P as a permutation, rather than a
permutation matrix, for brevity. For example,

P1,2 =

 0 1 0
1 0 0
0 0 1

 (10)

and

P2,3 =

 1 0 0
0 0 1
0 1 0

 . (11)

Obviously  0 1 0
1 0 0
0 0 1

 1
0
0

 =

 0
1
0


and so on.

If D is a diagonal matrix and P is a permutation matrix, then

PD = DPP (12)

where DP = P (D) denotes the result of permuting the elements of D along the
diagonal according to the permutation P . This is directly analogous to eqn. (2)

The permutation matrices P1,2 and P2,3 generate (by taking products) all
permutations on three letters. These permutations can be used to represent
permutations induced by a braid, and hence they can stand in for the braid
word. A general twist word [a, b, c] may be represented by the matrix

[a, b, c] =

 ta 0 0
0 tb 0
0 0 tc

 .

The reader should be aware that the permutation matrices do not give a com-
plete image of the braid group, because they do not define the direction of
crossing. Hence the P s contain less information than the σis. However we can
find the pure twist form of a braid using this matrix representation in a manner
we will now describe.
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Consider the identity 3-belt, as illustrated in fig. 5. If we perform trinion
flips on the top of the belt, we induce both crossings and twistings. When the
crossings created in this process correspond to a given generator, σi, the twists
induced are the negative of the twists corresponding to σi, as listed in eqns (1).
The relative minus sign occurs because eqns (1) list the twist words created
when crossings are eliminated, rather than created. In the interests of notational
clarity, we shall therefore write ρi to denote the twists and permutations induced
on an initially trivial 3-belt by performing a trinion flip to cross strand i over
strand i+ 1. The corresponding twists and permutations are then;

ρ1 →
[
− 1

2 , −
1
2 ,

1
2

]
P1,2

ρ−1
1 →

[
1
2 ,

1
2 , −

1
2

]
P1,2

ρ2 →
[
1
2 , −

1
2 , −

1
2

]
P2,3

ρ−1
2 →

[
− 1

2 ,
1
2 ,

1
2

]
P2,3

(13)

compare this with eqns (1). Applying eqn. (12) we see that

P1,2[a, b, c] = [b, a, c]P1,2

and
P2,3[a, b, c] = [a, c, b]P2,3.

To find the pure twist-word corresponding to a given braid word, we first
replace the σi with the equivalent ρi e.g.

σ1σ2σ
−1
1 → ρ1ρ2ρ

−1
1 .

We next substitute in the twist words and permutations from eqns (13), and
apply eqn. (12). Once all the twist words have been shifted to the far left of the
resulting expression and summed, we read off the negative of this twist word to
find the pure twist-word corresponding to our initial braid word.

Example: Let us find the pure twist word corresponding to the braid σ1σ2σ
−1
1 .

We proceed as follows;

ρ1ρ2ρ
−1
1 =

[
−1

2
, −1

2
,

1
2

]
P1,2

[
1
2
, −1

2
, −1

2

]
P2,3

[
1
2
,

1
2
, −1

2

]
P1,2

=
[
−1

2
, −1

2
,

1
2

] [
−1

2
,

1
2
, −1

2

]
P1,2P2,3

[
1
2
,

1
2
, −1

2

]
P1,2

=
[
−1

2
, −1

2
,

1
2

] [
−1

2
,

1
2
, −1

2

] [
−1

2
,

1
2
,

1
2

]
P1,2P2,3P1,2

=
[
−3

2
,

1
2
,

1
2

]
P1,2P2,3P1,2

We then take the negative of the computed twist word, to obtain our result,
[ 32 ,−

1
2 ,−

1
2 ].
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Figure 15: Uniquely forming the product of two braids (left) by joining them
box-to-box, to yield a link (right).

These assignments of framed permutations to braids gives a representation
of the framed braid group into framed permutations. To see this we can directly
verify that σ1σ2σ1 = σ2σ1σ2 at the level of the framed permutations as follows;

ρ1ρ2ρ1 =
[
−1

2
,−1

2
,

1
2

]
P1,2

[
1
2
,−1

2
,−1

2

]
P2,3

[
−1

2
,−1

2
,

1
2

]
P1,2

=
[
−1

2
,−1

2
,

1
2

] [
−1

2
,

1
2
,−1

2

]
P1,2P2,3

[
−1

2
,−1

2
,

1
2

]
P1,2

= [−1, 0, 0]P1,2P2,3

[
−1

2
,−1

2
,

1
2

]
P1,2

= [−1, 0, 0]P1,2

[
−1

2
,

1
2
,−1

2

]
P2,3P1,2

= [−1, 0, 0]
[

1
2
,−1

2
,−1

2

]
P1,2P2,3P1,2

=
[
−1

2
,−1

2
,−1

2

]
P1,2P2,3P1,2. (14)

Similarly, we find that

ρ2ρ1ρ2 =
[
−1

2
,−1

2
,−1

2

]
P2,3P1,2P2,3.

Since ρ1ρ2ρ1 and ρ2ρ1ρ2 yield the same twist word we conclude that σ1σ2σ1 =
σ2σ1σ2. It is noteworthy that P1,2P2,3P1,2 = P2,3P1,2P2,3, however this has
no bearing on the result because the twist words alone are sufficient to define
isomorphism.
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Figure 16: If the edge running through the external network (represented by the
box) carries no twists, other than those on the braided belt strands themselves,
the strands may be cyclically permuted by passing one strand under (or around)
the others (top row, left to right). Fig. 7 gives an explicit example of such a case.
If the edge does twist around other edges in the rest of the network (bottom
row) then such cyclic permutations are not allowed.

5 Conclusions

We have demonstrated several equivalent approaches to manipulating framed
braids on three strands, carried on a surface with boundary (i.e. “braided
belts”), which yield an invariant form having no crossings. The twists on each
strand in this form define a triplet of numbers. Any braided belts having the
same triplet of associated numbers (the pure twist word) are isotopically equiv-
alent. We have furthermore demonstrated that the 3-braids proposed in [1] to
represent the fermions of the first generation are indeed isotopically inequivalent.

We have demonstrated how a braided belt on three strands may be mapped
to a link, with the linking numbers being computable from the pure twist num-
bers. We should note that the usual ambiguity then arises, as to how we uniquely
define a product of these links (which would be equivalent to interacting two
particles with each other), since the links may be deformed by Reidemeister
moves, leading to different possible products (depending on the point at which
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the links are joined to each other). In [1], the braids were assumed to have a
top and bottom end, and particles would annihilate with their corresponding
antiparticles by joining “bottom-to-bottom”. We may adapt this approach by
treating the box (representing the rest of the network within which the braids
are embedded) as the bottom of any braid, and combining braids (or links) box-
to-box to form their product, as illustrated in Fig. 15. For the moment this may
be treated as a convenience. The physical interpretation of this requirement will
be left for future work.

When considering a braided belt embedded at one end in a network, as we
have discussed in this paper, the pure twist-word of the braid is only defined
up to cyclic permutations of [a, b, c]. A single permutation is uniquely specified
only if the path along the outside edge of the braid and through the network
has topology that obstructs this cyclic permutation. In many cases this will
happen when the network contains nontrivial twists or linking. This may be
seen by recognising that the strands exiting a node can in general be cyclically
permuted around the node. If the external edge of the network is sufficiently
simple, the network itself may be treated as a node (Fig. 16). This clearly has
consequences for the interpretation of particle states proposed in [1], and will
also be addressed in future work.

The focus of this paper has been on manipulation of braids, rather than
direct connections to physics. However this work has established a useful basis
for discussions of physics in future work. In particular, functions of the pure
twist words of various fermions can be matched to quantum numbers like weak
isospin and hypercharge, baryon number, lepton number, and so forth.
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