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Abstract In these lectures we describe how a theory of quantum graviy be
constructed in terms of a lattice formulation based on dedaausal dynamical
triangulations (CDT). We discuss how the continuum limib dze obtained and
how to define and measure diffeomorphism-invariant cotweda In four dimen-
sions, which has our main interest, the lattice theory hamfrared limit which
can be identified with de Sitter spacetime. We explain whg thirared property
of the quantum spacetime is nontrivial and due to “entropft&cts encoded in the
nonperturbative path integral measure. This makes theaapgpee of the de Sitter
universe an example of true emergence of classicality fraanascopic quantum
laws. We also discuss nontrivial aspects of the UV behayena show how to in-
vestigate quantum fluctuations around the emergent backdrgeometry. Finally,
we consider the connection to the asymptotic safety sagnamd derive from it a
new, conjectured scaling relation in CDT quantum gravity.
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1 Introduction

How to reconcile the classical theory of general relatiwtth quantum mechanics
remains an unsolved problem. Flat Minkowskian spacetiramsen excellent local
approximation to spacetime down to the smallest distaneesan probe in the lab-
oratory. At least the Standard Model of elementary parichich relies heavily on
the Minkowskian spacetime structure, works almost too Wedlving us presently
with little clue as to what should replace it at shorter spiagedistances, i.e. higher
energies. If one naively tries to quantize the theory okgalrelativity by making a
perturbative expansion around this flat background oneedfavith the fact that the
corresponding field theory is not renormalizable. The masgudsion of the gravi-
tational coupling constantis2 in units wheree = h= 1. To deal with this problem
one can try to go beyond conventional quantum field theorng &rch attempt is
string theory. However, until now it has added little to ounderstanding of why
to a very good approximation we live in a 3+1 dimensional sitlzed world gov-
erned by Einstein’s equations with a positive cosmologicaistant, around which
there presumably are small quantum fluctuations. Loop guaugtravity is another
attempt to quantize gravity, which introduces new ways eéting gravity at the
Planck scale, but it has problems with recovering clasgjcavity in the infrared
limit. Here we will describe a much more mundane approachgusily standard
quantum field theory. In a sum-over-histories approach weattempt to define a
nonperturbative quantum field theory which has as its ieftdimit ordinary clas-
sical general relativity and at the same time has a nontiticaviolet limit. From
this point of view it is close in spirit to the renormalizatigroup approach, whose
application to gravity with the hope of establishing d@symptotic safetwas first
advocated long ago by Weinberg [1], and more recently suobatad by several
groups of researchers [2].

The approach reported here is nontrivial for two reasonsfvbdombine to make
it genuinely nonperturbative. First of all, as just sta@theory of quantum gravity
is not perturbatively renormalizable, and thus, whateadd fiheory one invents, it
must in some sense be nonperturbative. Here we want to uiéca ta provide an
ultraviolet regularization of the quantum field theory. Tihttice regularization of
quantum field theories has been very successful, but it mllydmplemented in flat,
Euclidean spacetime, where the Osterwalder-Schrademaxémsure us that this is
unproblematic. One knows how to get from a quantum field thémmulated in
Euclidean spacetime to a quantum field theory formulated imkdvskian space-
time. However, little is known about the analogous issuezame move from flat to
curved spacetimes and even more, to a situation where gpadetelf becomes the
object of quantizatioh That the situation is nontrivial even at the most elemgntar
level is seen by considering the Einstein-Hilbert actianfrwhich we can derive
the classical equations of general relativity. It is foripatraightforward to rotate
this action from Minkowskian to Euclidean signature. Hoaewne then has to face

1 An extension of the Osterwald-Schrader axioms to certdfeatnorphism-invariant theories was
given in [3].
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the fact that the Euclidean action is unbounded below, theundedness caused by
the “wrong sign” of the conformal mode, corresponding torallelocal rescalings
of the metric tensor. This is a potential obstacle for cartding the quantum theory:
when trying to sum over all geometries, with weights givertlig exponential of
minus the action, there are geometries with arbitrarilgdanegative action which
may render the sum over paths ill defined and the Euclideasryh®nsensical.
Consequently, the UV lattice regularization of the patlegnal has to be such that
it also regularizes the infinities which can arise due to thef@rmal factor. Even if
such a regularization exists (and it does, as we shall se@)chn one ever expect to
obtain something finite in the continuum limit where the fegization is supposed
to be removed?

The only solution from a continuum point of view is that thereat path integral
measure in the Euclidean sector suppresses the unbounafednal factor. In the
lattice approach the measure factor is of an “entropic” reati reflects how many
configurations (microscopic, geometrical realizatiohgré are corresponding to a
given value of the action. This entropic factor will enteraasintegral part of the
bare effective lattice action. (We will illustrate this bel in toy examples where
everything can be calculated analytically.) The “entropyt’pof the effective action
will be independent of its “bare coupling constant part”’udy, the possibility of
obtaining a continuum limit of a lattice theory is linked teetexistence of a critical
point (more generally, a critical surface) in coupling dams space. This will also
be the case here. The entropy part of the effective actigrsplarucial role in deter-
mining the critical value of the bare coupling constantsl, e continuum quantum
field theory will then emerge at that critical point. Howevarsuch cases there may
be no “obvious” continuum theory one can read off from thedateffective action
since we might not know the precise form of the entropy patthefeffective action.
This highlights the truly nonperturbative nature of the tamumum theory.

This review articlé is organized as follows: first we describe how a two-
dimensional toy model of quantum gravity can be solved ekpli illustrating some
of the points made above. Then we describe the four-dimeaktbeory, the nu-
merical results obtained by Monte Carlo simulations and twaonnect the lattice
formalism to the renormalization group approach and to a themry, so-called
Horava-Lifshitz gravity.

2 The CDT formalism in two dimensions

2.1 Generalities

The lattice formulation oEuclideanquantum gravity, i.e. the quantum theory of
Euclidean geometries, has been very successful in two diimes In two dimen-
sions, gravity does not have any field-theoretic degreeseefdbm, but neverthe-

2 For less technical accounts of this approach to quantunitgraee [37, 38].
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less two-dimensional Euclidean quantum gravity cong#w nontrivial example
of a diffeomorphism-invariant quantum theory of geometri€he lattice theory,
regularized by the method of so-called dynamical triantoms (DT), provides a
diffeomorphism-invariant cut-off of two-dimensional Higean quantum gravity. It
is thus a misconception that a lattice regularization wédtessarily break diffeo-
morphism invariance. Rather, one should view the use of fiérpath integral as
a way to sum directly ovegeometriesthus avoiding completely the issue of dif-
feomorphism invariance. The reason why such an interpoeté possible is that
the triangulations used in DT can be viewed as piecewisailigeometries without
any specific metric assigned to them: once we know the lergttine links and the
gluing of the simplices, we have the complete informatioouttthe geometry. Us-
ing identical simplices the basic information about thergetyy is entirely encoded
in the way the simplices are glued together, and the summatier geometries be-
comes the summation over possible abstract triangulatiims UV cut-off is the
lengtha of the sides of the simplices. Using this formalism, one camfilate a
Euclidean theory of quantum gravity using as building bikEkiclidean equilateral
simplices and one obtains a lattice version of two-dimemaiguantum gravity. It
can be solved analytically for finite and agrees with a continuum quantization of
two-dimensionaEuclideangravity (quantum Liouville theory) in the lima& — O.

However, in spacetime dimension larger than two this Eedlidlattice approach
does not seem to have the desired continuum limit. This @ppéailure was a key
motivation for introducing a modified approach based onated causal dynamical
triangulations (CDT). It realizes, in a nonperturbativentext, ideas put forward
in earlier work [4], which advocated that in a gravitatiopalth integral with the
correct, Lorentzian signature of spacetime one should stencausal geometries
only.

2.2 The combinatorial solution in two dimensions

Let us describe the explicit solution of CDT in two dimensipthat is, one space
and one time dimension [7].

The model is defined as follows. The topology of the undedyimanifold is
taken to beS' x [0, 1], with “space” represented by the closed manif8idwe con-
sider the evolution of this space in “time”. No topology charof space is allowed.

The geometry of each spatial slice is uniquely charactdrizethe length as-
signed to it. In the discretized version, the lengttwill be quantized in units of a
lattice spacing, i.e.L = | -awherel is an integer. A slice will thus be defined by
| vertices and links connecting them. To obtain a 2d geometry, we will eedhis
spatial loop in discrete steps. This leads to a preferremalf (discrete) “time”
t, where each loop represents a slice of congdtahthe propagation from time-slice
t to time-slicet + 1 is governed by the following rule: each verteat timet is
connected td vertices at time + 1, ki > 1, by links which are assigned a “time-
like” squared edge lengtha?. Thek; vertices,k > 1, at time-slicet + 1 will be
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connected by; — 1 consecutive space-like links, thus formikg- 1 triangles. Fi-
nally the right boundary vertex in the setlgfvertices will be identified with the left
boundary vertex of the set &f, 1 vertices. In this way we get a total g{zl(k@ -1)
vertices (and also links) at time-slite- 1 and the two spatial slices are connected
by S1_; ki = I + .1 triangles, see Fig. 1.

Fig. 1 The propagation of a spatial slice from time step stept + 1 in two-dimensional causal
triangulations. The ends of the strip should be joined tonfarband with topologg* x [0, 1].

The elementary building blocks of a geometry are therefaamgles with one
space- and two time-like edges. We define them to be flat imthedr. A consistent
way of assigning interior angles to such Minkowskian tri@sgds described in [5].
The angle between two time-like edgesyis= —arcco%, and between a space-
and a time-like edggs; = J + 2arccos}, summing up tog + 2y = 1. The sum
over all angles around a vertex withncoming andk outgoing time-like edges (by
definition j,k > 1) is given by 21+ (4—j — k) arccog. The regular triangulation
of flat Minkowski space corresponds jo= k = 2 at all vertices. The volume of a
single triangle is given byfaz.

One may view these geometries as a subclass of all poss#uguitations that
allow for the introduction of a causal structure. Namelyyé think of all time-like
links as being future-directed, a vertéxies in the future of a vertex iff there is
an oriented sequence of time-like links leading fremo v. Two arbitrary vertices
may or may not be causally related in this way.

In quantum gravity one sums over all geometries connecsayg, two spatial
boundaries of length; andL,, with the weight of each geometgygiven by

¢, g =0 [v=5 (in2d), @

where/\q is the bare cosmological constant. If in the discretized ehadck have a
piecewise linear geometry made frantriangles the corresponding action will be

2 2
via n=An, Azonan. 2)

S=Ao

In our discretized model the boundaries will be characterizy integers; andl,,
the number of vertices or links at the two boundaries. Tha paegral amplitude
for the “propagation” from geometty to I, will be the sum over all interpolating
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surfaces of the kind described above, with a weight givernbydiscretized version
of (1). Let us call the corresponding amplitu@él)(ll, I2). Thus we have

|1a|2 ZG 17|21 (3)
(11, 1251) ZG (I1,1; 1) IG V(1 lp,t— 1), @)
1 2
G (I1,121) = o 3 dh zi:m’ )
L kg kg }

whereA denotes thédare dimensionless lattice cosmological constamefined in
(2), and where denotes the total number of time-slices connedtjrandl,.

From a combinatorial point of view it is convenient to mark ertex on the
entrance loop in order to get rid of the factb@nd /1 in (4) and (5), that is,

Ga (I1,12t) = 11GV (11, 1:t). (6)

(The unmarking of a point may be thought of as the factoringbyu(discrete)
spatial diffeomorphisms). Note th&, (I1,12; 1) plays the role of a transfer matrix,
satisfying

Ga(ly, I ti+1t2) = ZG/\ (I1,1:t2) Ga (1, 125t2) (7)

Gy(ly,lt+1) = ZG)\(|1,|;1) Gy (1,1251). (8)

Knowing G, (I1,12; 1) allows us to findG, (l1,1,;t) by iterating (8)t times. This
program is conveniently carried out by introducing the gatieg function for the

numbersG, (11,12;t),

Gy (xyit) = ;xw Gy (kI3t), (9)
which we can use to rewrite (7) as

Gr(Xy;t1+1t2) = 7{ — G,\( ;tl)G,\ (Zy;t2), (10)

where the contour should be chosen to include the singiekiit the complex—
plane ofG) (x,z %;t;) but not those 06, (z y;t>).

One can either view the introduction & (x,y;t) as a purely technical device
or takex andy as related to boundary cosmological constantsALandAs denote
dimensionless lattice boundary cosmological constanish shat if the entrance

3 One obtains the renormalized (continuum) cosmologicasonA by an additive renormaliza-
tion, see below.
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boundary consists & links the lattice boundary action will bgk, or, introducing
a dimensionful bare lattice boundary cosmological coristas A;/a and a contin-
uum boundary length; = ka, AiL; (and similarly/\p = Ap/a etc.). We now write

x=@dh =dNa y—ght — gdoa (11)

such that = €4k becomes the exponential of the boundary cosmological term,
and similarly fory’ = €*f!. Let us for notational convenience define

g=¢€". (12)

For the technical purpose of counting we vigw andg as variables in the complex
plane. In general the function

G(x,y;0:t) =Gy (X, y;t) (13)

will be analytic in a neighbourhood d¢%,y,g) = (0,0,0).

From the definitions (5) and (6) it follows by standard tecjugis of generating
functions that we may associate a faggowith each triangle, a factor with each
vertex on the entrance loop and a fagtavith each vertex on the exit loop, leading
to

k
= oS (vl ] S (K — g°xy
G(x.y;g; 1)—k;J (gx;)(gy)> k;(QX) - g9(1-ox—ay) (14)

Formula (14) is simply a book-keeping device for all possiblays of evolving
from an entrance loop of any length in one step to an exit |dogng length. The
subtraction of the term /A1 — gx) has been performed to exclude the degenerate
cases where either the entrance or the exit loop is of leragth z

From (14) and eq. (10), with = 1, we obtain

ey 9X g9 .
G(X’yagat) - 1—gX G(l_ngyvgit 1) (15)
This equation can be iterated and the solution written as
. g°xy
Gl t) = FWF 0 R e R o0 g 0
whereR (x) is defined iteratively by
9
X)=———, X) = X. 17
RO = =550 P (17)

Let F denote the fixed point of this iterative equation. By staddachniques one
readily obtains
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U1 xFHFA(x—F) C1-/1-4¢?
R =F S rra—ry F= g (18)

Inserting (18) in eq. (16), we can write

FA(1-F?)%2xy

OV = (A B (A~ Brxry) + Gy (19)
2t1_Eg2\2
- (1—xF)—F2t+1(F—x)? {((]:.L—xli)zli(z/F)—th(F—x)(F—y)} (20
where the time-dependent coefficients are given by
A=1-F*2 B =F(1-F%), G=F*1-F%72). (21)

The combined region of convergence to the expansion in poglighy™, valid for
alltis

1
|g| < éa |X| < 17 |y| <l (22)
The asymmetry betweex andy in the expressions (19) and (20) is due to the

marking of the entrance loop. If we also mark the exit loop vagento multiply
G, (I1,12;t) by l,. We define

G2 (I1,12t) = 12Gy (I1,12:t) = 111G\ (11, 123t). (23)

The corresponding generating functi@® (x,y; g;t) is obtained fromG(x,y; g;t)
by acting withydiy,

F2(1-F%)?2xy
(Ac—Br(x+Y) +Cixy)?’

We can computés, (I1,12;t) from G(x,y;g;t) by a (discrete) inverse Laplace
transformation

G (xy;g;t) = (24)

[ dXx dy 1 1 o
Gy (I, l25t) = 2mix [ 2my ¥ 2 G(x,y,0:1), (25)
where the contours should be chosen in the region wéxgy; g;t) is analytic. A
more straightforward method is to rewrite the right-haraesof (19) as a power

series inx andy, yielding

F2t 1—F2 ZB|1+|2 min(ly,l2)-1 | lo—k—1 k
Gy (I ait) = ( ) 1+l ( AtQ) ’

lo AlrHzt2 & ki(li—k=2)!(I,—k—1)! B[Z
(26)
which, as expected, is symmetric with respeditandl, after division byl;.
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In the next section we will give explicit expressions 185 (I1,12;t), G, (I1,12)
andG, (x,y) (the integral ofG, (x,y;t) overt) in a certain continuum limit.

2.3 The continuum limit

The path integral formalism we are using here is very sinidahe one used to re-
present the free particle as a sum over paths. Also thereenierms a summation
over geometric objects (the paths), and the path integelf iserves as the propa-
gator. From the particle case it is known that the bare madsrgoes an additive
renormalization (even for the free particle), and that theelpropagator is subject
to a wave-function renormalization (see [6] for a reviewheTsame is true in two-
dimensional gravity, treated in the formalism of dynamitelngulations [6]. The
coupling constants with positive mass dimension, i.e. tsarmlogical constant and
the boundary cosmological constants, undergo an addiwvermalization, while
the partition function itself (i.e. the Hartle-Hawkind« wave functions) undergoes
a multiplicative wave-function renormalization. We thfere expect the bare cou-
pling constantd , A; andAq to behave as

VB, A G - A G o A Gy o
whereA,X,Y denote the renormalized cosmological and boundary cogivalb
constants and where we have absorbed a fac# in the definition ofA.

If we introduce the notation

Oc = eiCA , Xe= iC)\i , Y= eiCAf ; (28)
for critical values of the coupling constants, it followsifn (11) and (12) that
9= 0@, x=x ¥ y=y.ea. (29)

The wave-function renormalization will appear as a multgtive cut-off dependent
factor in front of the bare “Green’s functiof®(x,y; g;t),

Gi(X.Y;T) = lim aG(x,y;g;1), (30)

whereT = at, and where the critical exponentshould be chosen such that the
right-hand side of eq. (30) exists. In general this will ob&/possible for particular
choices ofgc, X andy, in (30).

The basic relation (7) can survive the limit (30) onlyrjf= 1, since we have
assumed that the boundary lengthsandL, have canonical dimensions and satisfy
Li = al;.

From egs. (19) and (21) it is clear that we can only obtain @madal continuum
limitif |F| — 1. This leads to a one-parameter family of possible choices
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1 -

%= Scom for F=€% aclR, (32)
for critical values ofg. It follows from (12) that most values af; correspond to
a complexbarecosmological constarik. However, the renormalized cosmological
constantA in (27) (depending on how we approaghin the complex plane) could
in principle still be real.

A closer analysis reveals that onlygt= +1/2, corresponding tar = 0, 1, is
there any possibility of obtaining an interesting contimulimit. Note that these
two values are the only ones which can be reached from a refimomvergence of
G(x,y;0;t) (see Fig. 2). Note also that requiring the bareo lie inside the region

Fig. 2 The circle of convergence in the complgplane (radius 1/2), and the critical lines, ending
ing=+1/2.

of convergence wheg — g leads to a restriction Ih > 0 on therenormalized
cosmological constant, sincelg| < 3 = Im A > In2.

Without loss of generality, we will consider the criticallvage = 1/2. It corre-
sponds to a purely imaginary bare cosmological constant C /a® = —iln2/a?.
If we want to approach this point from the region in the compieplane where
G(x,y;0;t) converges it is natural to choose the renormalized couﬁ\i'ngaginary

aswellA =iA, i.e.
1

Ins
/\:|a—22+|/\. (32)

One obtains a well-defined scaling limit (corresponding\te IR) by lettingA —
Ac along the imaginary axis. The Lorentzian form for the comtim propagator is
obtained by an analytic continuatign— —iA in therenormalizedcoupling of the
resulting Euclidean expressions.

At this stage it may seem that we are surreptitiously rengttt a fully Euclidean
model. We could of course equivalently have conducted thiesettiscussion up to
this point in the “Euclidean sector”, by omitting the factdr—i in the exponential
(1) of the action, choosing positive real and taking all edge lengths equal to 1.
However, from a purely Euclidean point of view there would have been any
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reason for restricting the state sum to a subclass of gemwsetdmitting a causal
structure. The associated preferred notion of a discrete &llows us to define an
“analytic continuation in time” (we will discuss this in nedetail later for higher-
dimensional gravity). Because of the simple form of theactn two dimensions,
the rotation

/dx dty/~grar — i/dx dtuy/Geg (33)

to Euclidean metrics in our model is equivalent to the amalydntinuation of the
cosmological constant. What is special about the above situation is that we per-
form the analytic continuation configuration by configuoatii.e. geometry by ge-
ometry. That is possible because of the particular set cfalageometries we have
chosen to include in the regularized path integral. More@gwill be clear later, it

is a feature which extends to higher dimensions too: eadepise linear geometry
with Lorentzian signature we use in the path integral hasretytic continuation

to a Euclidean piecewise linear geome#iyd one has a relation like (33) for the
Einstein-Hilbert actions of the two geometries (see latedktails).

From (19) or (20) it follows that we can only get macroscomogds in the
limit a — 0 if we simultaneously take,y — 1. (Forgc = —1/2, one needs to
takex,y — —1. The continuum expressions one obtains are identicalasettior
gc = 1/2.) Again the critical points correspond to purely imaginaare bound-
ary cosmological coupling constants. We will allow for sunfaginary couplings
and thus approach the critical poiit= A = 0 from the region of convergence of
G(x,y;0:t), i.e. via real, positiveX,Y where

A =iXa, Af=iva (34)

Again X andY have an obvious interpretation as positive boundary cosgicdl
constants in a Euclidean theory, which may be analyticallytioued to imaginary
values to reach the Lorentzian sector.

Summarizing, we have

g= %e*/‘az — %(1— %Aaz), (ie. F=1—aVvA) (35)

as well as

—Xa

x=eX831-aX, y=e1-ay, (36)

where the arrows> in (35) and (36) should be viewed as analytic coupling cartsta
redefinitions ofA, X andY, which we have performed to get rid of factors of 1/2
etc. in the formulas below. With the definitions (35) and (R63 straightforward
to perform the continuum limit o&(x,y; g,t) as(x,y,9) — (X, Ye,0c) = (1,1,1/2),
yielding

AN 672\/KT

GADGYIT) = (VA +X) +e VAT (VA —X)
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1

TRy e Aoy &
ForT — o one finds
. T 4N e*ZﬁT
GA(X,Y;T) — (X—l—\/K)Z(Y—i—\/K)' (38)

FromGx (X,Y;T) we can finally calculat&a (L1,L,; T), the continuum ampli-
tude for propagation from a loop of length, with one marked point, at time-slice
T = 0to aloop of lengthL, at time-sliceT, by an inverse Laplace transformation,

joo joo
Ga(Ly, Lo T) = / dX [ dyet e G, (X,Y;T). (39)
—Joo —joo
This transformation can be viewed as the limit of (25) #or> 0. The continuum
version of (10) thus reads
joo
GA(X,Y;Ti+To) = [ dZGa(X,-Z;T1) GA(Z,Y;T), (40)
i
where it is understood that the complex contour of integrashould be chosen to
the left of singularities of5, (X, —Z; T1), but to the right of those dB (Z,Y, Ty).
By an inverse Laplace transformation we get in the limit> «

G (L1, Ly T) =25 4Ly VAlLLth2) g 2VAT (41)

where the origin of the factdr; is the marking of a point in the entrance loop. For
T — O we obtain

GAOGYIT) T s (42

in agreement with the expectation that the inverse Laplacestorm should behave
like

Ga(L1, L T) =29 8(Ly — Ly). (43)
The general expression f@, (L1,L2; T) can be computed as the inverse Laplace
transform of formula (37), yielding

g [cothVATIVA(LL+L2) /AT, | ( 2\/ALiL, )
1 )

Ga(Ly, Ly T) =
Al L2T) sinhVAT L, sinhVAT

(44)

wherel(x) is a modified Bessel function of the first kind. The asymmegtneen
L1 andL, arises because the entrance loop has a marked point, whkeecasit
loop has not. The amplitude with both loops marked is obthimg multiplying
with L, while the amplitude with no marked loops is obtained afteidihg (44) by
L1. The highly nontrivial expression (44) agrees with the Ipoppagator obtained
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from a bona-fide continuum calculation in proper-time gaofgeure 2d gravity by
Nakayama [33].

The important point we want to emphasize here is that thetimsddenormaliza-
tion of the cosmological constant is an entropic effect wtednulated after rotation
to Euclidean signature. In fact, we can write the propagdt®y as

1
G(x,y,g;t) = Z"y'g ;mﬁ’ (45)

where the summation is over alhusaltriangulationsT (k,I,n) (as defined above
and rotated to Euclidean signature), consistingndfiangles and with the two
boundaries made dfandl links. C(T) is the order of the so-called automorphism
group of graphT and in our case, with a mark on one bound&{T) = 1. The
critical point isgc = 1/2. That can only be the case because the number of (causal)
triangulations constructed fromtriangles grows exponentially @2, The con-
tinuum renormalized cosmological constant, as defined by3%), emerges when
taking the difference between the value of the action forangetry made of trian-
gles and thentropyof the configurations with a given action (which in this case i
proportional to the number of triangles More precisely, let the number of causal
triangulations which can be constructed frartriangles be

A (n)=f(n)er",  Ac=1In2, (46)

where f(n) is a prefactor growing slower than exponentially, and wtdeh also
depend on the boundary cosmological constantsa dependence we will suppress
here. We can now write eq. (45) as

Zf AN g=g A, (47)

Introducing the notatioA = na? for the continuum area (again disposing of a factor
\/5/4 for notational simplicity) we see that (35) can be written a

A=A+, (48)

introducing the renormalized cosmological constanEq. (47) can now be written
as

. /0 " A f(A/a2) e A, (49)

with the continuum actior\ A and the nontrivial physics contained in the function
f(A/a?).

The two-dimensional CDT model can be generalized in a numbaays: one
can use different weights and explore the universality efritodel [8] and there
exists a Hamiltonian formulation [9]. Matter can be coupiedhe model [10] and
one can weaken the causal constraints [11]. In additioncane&elax the constraint
of a bounded geometry [12].
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3 Causal dynamical triangulations in four dimensions

3.1 The choice of triangulations

The generalization from two spacetime dimensions to thrdeuwr is in principle
straightforward [13, 14]. In what follows we will concentieaon the 4d case. We
consider spacetimes with the topolofy1] x S°. In principle we can choose any
spatial topology, as long as we do not allow it to change duime evolution. Here,
for simplicity, we will always take the topology of space tethat of a three-sphere.

Suppose now that we have a foliation of spacetime where "tisi¢aken to
mean proper time. Each time-slice, with the topologySf is represented by a
three-dimensional triangulation. We choose as the set ssipke triangulations of
S those which can be constructed from gluing together tethahehose links are
all of lengthas = a, playing the role of lattice spacing and UV cut-off. Theseae
hedra are thus building blocks for our curvBtigeometries, which we take to be
piecewise linear. The curvature of such a piecewise lineangetry is located at the
links. A number of tetrahedra will share a link. Each tetddrehas a dihedral angle
associated with that link, and the sum of dihedral angleheft¢trahedra sharing
the link would add up to & if space was flat around that link. If the dihedral angles
add up to something different it signals that the piecewisealr space is not flat.
In our case the tetrahedra are all identical with a dihedrglefy = arcco$1/3),
which implies there is no exact tessellation of flat thrematfisional space using
equilateral tetrahedra. However, it is not important fa tise we are making of the
piecewise linear geometries: we use them in the path iftedrare we sum over
all geometries (of a given, fixed topology). Thus the impotrguestion is whether
the set of piecewise linear geometries we are using is denfeiset of geome-
tries relevant for the path integral. To answer this questiee need to know the
measure on the set of geometries. Presently we do not evenahamathematical
characterization of the set of geometries to be used in ttheipi@gral (and the path
integral has of course not been defined in any mathematinaeyeWill the set of
relevant geometries be like the set of paths used in the ptabrial of the particle,
i.e. all continuous paths? Will the path integral over getiieg include all “continu-
ous” geometries? Because the answer is presently unknoswyjliyproceed with a
straightforward generalization of the class of piecewisgight paths of the particle
case and see what we get.

We now connect two neighbourirg-triangulationsTz(1) andT3(2), associated
with two consecutive discrete proper times 1 and 2, and er@&bur-dimensional,
piecewise linear geometry, such that the correspondingdonensional “slab” con-
sists of four-simplices, has the topology[6f1] x S°, and hasTz(1) andT3(2) as
its three-dimensional boundaries. The spatial links (armbisnplices) contained in
these four-dimensional simplices lie in eitfigf1) or T3(2), and the remaining links
are time-like with proper length squared = —aa?, a > 0. Subsimplices which
contain at least one time-like link we will call “time-liketn discrete units, we can
say thaff3(1) andTs(2) are separated by a single step in time direction, correspond
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t+1

/
Lp>

(4,1) (3,2

Fig. 3 A (4,1)- and a(3,2)-simplex interpolating between two neighbouring spati@es. The
time-reversed1,4)- and(2, 3)-simplices are obtained by turning these upside down.

ing to a time-like distancg/aa in the sense that each link in the slab which con-
nects the two boundaries has a squared proper leagtt. It does not imply that
all points on the piecewise linear manifold definedTgyl) have a proper distance
squared—aa? to the piecewise linear manifold defined By(2) in the piecewise
Minkowskian metric of the triangulation.

Thus, our slabs or “sandwiches” are assembled from fouredsional simplicial
building blocks of four kinds, which are labelled accordiiogthe number of ver-
tices they share with the two adjacent spatial slices oftemiénteger proper time.

A (4,1)-simplex has one tetrahedron (and consequently four esitioc common
with T3(1), and only one vertex in common wiffy(2). It has four time-like links,
connecting each of the four verticesTs(1) to the vertex belonging tdz(2). In the
second kind of four-simplex, of typgl,4), the roles ofT3(1) andT3(2) are inter-
changed. By contrast,(&, 2)-simplex has a spatial triangle (and consequently three
vertices) in common with the slicg(1) and a spatial link (with two vertices) in
common withTz(2), together with six time-like links connecting the two skc&he
corresponding?2, 3)-simplex is again obtained by interchangifig1) and T3(2).
The allowed simplices, up to time reversal, are shown inFi§or our purposes, we
need not keep track of the numbers of four-simplices and timé-reversed coun-
terparts separately, and will denote the total numbe#af)- and(1,4)-simplices

by fo’l) and similarly the total number @8, 2)- and(2,3)-simplices bny”Z). An
allowed four-dimensional triangulation of the slab hasology[0,1] x S°, is a sim-
plicial manifold with boundary, and is constructed accogdio the recipe above. To
summarize, a path in the gravitational path integral césmsia sequence of trian-
gulations ofS?, denoted byTz(k), k=0,...,n, where the space between each pair
Ts(k) andTz(k+1) has beenfilled in by a layer of four-simplices. In the patkgnal

we sum over all possible sequendds(k)} and all possible ways of triangulating
the slabs in betweefs(k) andTs(k+ 1).
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3.2 The choice of action

Piecewise linear geometries allow for a natural realizatibthe Einstein-Hilbert
action, as discovered by Regge [15]. For a piecewise lineamgtry ind dimen-
sions, defined by a triangulation with length assignmenéath link, the curvature
is concentrated on thigl — 2)-dimensional sub-simplices. For example, in three di-
mensions the curvature is located at the links, as descaibe¢k. In dimension four,
the curvature is concentrated at the triangles of the trikatigpn. A direct measure
of the sectional curvature of the subspace perpendiculardiven triangle is the
deficit angleone can associate with it, defined as the difference betweesum
of “dihedral” angles of the four-simplices sharing thetigée and 2r. A deficit an-
gle different from zero signifies nonvanishing curvatureour case we have two
kinds of triangles, purely space-like ones and time-likeofwhere two of the links
are time-like). The local contribution to the total intefg@ curvature from such a
(d — 2)-dimensional sub-simplex is the volume of the sub-simpleXiplied by the
deficit angle around it, and the integrated discrete (scalawature action is then
the sum of these contributions. This leads to a discretizest&n-Hilbert action of
the form

SH = ﬁ/d“x\/T(x) (R(x)—2/\) —

sReggezk( )3 vOl(A)i}(zn_ S e)+ S ol(2) (27‘[— y o

space-like 4—simplices time—like 4—simplices
atA A atA
—)\( S W@+ Y vO|(3,2)), (50)
(4,1)&(1,4)— (3,2)&(2,3)—
tetrahedra tetrahedra

whereRis the Ricci scalar curvature andthe cosmological constant. Furthermore,
we can read off that the constaais proportional to the inverse of the gravitational
coupling constan® and the constank is proportional to\ /G.

Itis straightforward to calculate the volumes of the spaitmal time-like triangles
as well as the four-volumes of thd, 1)- and(3,2)-simplices. This enables us to

express the discretized Einstein-Hilbert action as fumotif the numberslff’l) and

N2 defined in the previous subsection and the total nurhgef vertices in the
triangulation, leading to

SRe0e— (Ng— x)-kmv/4a +1 +

m _ 1
fo’l) : (kE Vaa +1- 3k arcsmhz\/é\/?TL

3k 20 +1 v8a +3
—7\/4a+1arcc092(3a+1)—/\ % >+
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(kn\/4a +1+ \/—k arcsin h\/—i viza+7

(3 +1)
—\/4(1 + 1<2 arccos cosi)
2\@/201 F 1\/30 + 1 4(2a +1)
AT 7). (51)

For details of the derivation of this formula from (50) weeefo [14]. The quantity
X denotes the Euler characteristic of the four-dimensigmedstime and appears be-
cause we have been using the Euler relalignr N; + N, — N3+ N4 = x along with
other so-called Dehn-Somerville relations to express thmebersN;, N, andNz in
terms ofN4 andNp, whereN; counts the number atdimensional (sub-)simplices
of a given triangulation. The constaatcomes from allowing for a finite scaling
a? = —aaZ between the length assignment of the proper length of syacktime-
like links.

The Lorentzian action (51) is obviously real far> 0. We now want to study
its rotation to Euclidean signature. This is naturally iempkented by performing
an analytic continuation ir from positive to negativer. In this way, the squared
proper lengths of all links become positive and we have aepiese linear geometry
of Euclidean signature, where the links connecting twoieestfrom neighbouring
time slices have lengti = |a|a2. Of course, we also want the Euclideanized four-
simplices to be nondegenerate. This requires > 7/12, the value below which
a (3,2)-simplex becomes degenerate. Performing the analytidrogatton in the
complex lowemrr-half-plane and ending at a negative value smaller thar21&/dults
in the following Euclidean actiompte that we have made a redefinitian— —a,
such that nowr > 7/12):

SFe99°— _kmrv/Aa — 1(No— X)

b kvda — 1<—7—T - i arcsin;
< 2 JAda—1 2v/2\/3a —1

3 2a \/80{ 3
+5arccos— 2> +A 9% )
V3 6a-5 3 40 —3
+N4 <k\/4a 1< aVaa—1 arccosy — + zarccosg —
+3 3 arccos ! ) +A 120 -7 (52)
2v2y2a—1/3a -1 96

This action is precisely the Regge action for a piecewisealingeometry, con-
structed from Euclidean building blocks whee= |ar|a2. By analytic continuation
in the complex lower-halér-plane we have therefore arrived at the usual formula
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iSMinkowski — —SEuclidean (53)

from quantum field theory, whei®: cjigean€Xpressed in terms of (continuum) Eu-
clidean geometry is

= o [ e Ve (RE)-20). (54

In quantum field theory on a flat, Minkowskian background sai¢Wick rotation”
does not usually refer to a specific configuration in the patbgral. A configu-
ration will typically not even be differentiable and thesed not have any analytic
continuation. Rather, it will refer to the functional formthe actionS[¢| and how
it changes by formally replacinigy by te. This reflects the fact that the Feynman
propagator, i.e. the result of a functional integrationrabe field(s)e, has specific
analytic properties which allow for a rotation irto the corresponding Euclidean
propagator. In our framework the situation is differenthat each individual piece-
wise linear geometry can be rotated to a corresponding st geometry and its
associated action transforms in accordance with (53).

For what follows it will be convenient to simplify this actiand write it as

iegge: ~(Ko+64)No+ K4(NA(14’1) + N£(13,2)) +A(2NL(14,1) + NL(13,2))’ (55)

wherekg = kity/4a — 1, K4 is a linear combination ok and A with coefficients
depending ofo, andA is, for fixed kg and k4, a function ofa, chosen such that
for a = 1 (i.e. whena; = as) we haveA = 0. For the values okg and k4 which

will be of interest for us any\ > 0 corresponds te; < as. In Fig. 4 we showa as
function ofA for kg = 2.2 andk,4 chosen critical (a concept to be discussed shortly).
Furthermore, we have dropped the term involvindt plays no role in the dynamics
since we are not changing the topology.

3.3 The entropic theory of gravity and its phase diagram

Having chosen the cut-off and an action, we can now write diherpath integral
or partition function for the CDT version of quantum grayity

Z(G,/\):/@[g] el Z(KO,K4,A)_ZCieSE<T>, (56)
T

where the summation is over all causal triangulatibrs the kind described above,
and we have dropped the superscript “Regge” on the diserkéiztionSe given by
(55). Like in the two-dimensional model, the factofCk is a symmetry factor,
given by the inverse of the ord€s of the automorphism group of the triangulation
T. Note that we can write the partition function as
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Fig. 4 Plot of the asymmetry factan, defined as? = aaZ, wherea; andas are the lengths of
time-like and space-like links, plotted as a function/of The horizontal line isx = 7/12, the
lowest allowed value ofr, where the (3,2)-simplices collapse in the time direction.

Z(Ko.Ka, ) = o (Ka+A)Ng o~ ANGHY (ko +64)No 5 1 ey
Na NG No TN Ng)
Introducing
X—=ge (Kg+4) y= eﬁA . z= e(Ko+6A) ’ (58)
we can write
Zy = 5 Ky 2 (NN ), (59)

N4N41

where /" (Ng, N No) denotes the number of CDT configurations with four-

simplices of Whch\lf1 Y are of type(4,1) or (1,4), and withNp vertices, including
symmetry factors. Thus the calculation of the partitiondlion is in principle a
combinatorial problem, just as in two dimensions where weédsolve the prob-
lem explicitly (and formula (59) is similar to (45)). This ke reason why we call
the model entropicthe partition function is entirely determined by the number
geometries in the simplest possible way, namely, by bemgéherating function
for these numberd.he counting of geometric “microscopic” configurations tfan

(Ng, fo’l), Np) is their entropy in the sense of statistical models. Unlikéxo di-
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mensions, it has until now not been possible to solve thistiog problem analyti-
cally, which means that we will have to rely on numerical noelh

Let us first understand better the nature of the partitiorction given by (57).
We can write the sum as

Z(Ko,Ka,A) = ée*“ﬁw Zy, (Ko, ), (60)

whereZy, (Ko, A) is the partition function for a fixed numbél, of four-simplices,
namely,

1

7y, (Ko, A) = ie*ANf’ (Tny) g(Ko+64)No(Tiy) (61)
Ny Cr

One can show thaty, (ko,A) is exponentially bounded as a functionf [16],
Zny (Ko, 4) < 44N (Ny, k0,4, (62)

where f(Ns) grows slower than exponentially. We caff the critical value ofka.
It is a function of A andkg and plays the same role ag in the two-dimensional
model discussed above: the partition function is only deffifoe k4 > kg and the
“infinite-volume” limit, where (N4) — o can only be achieved fats — k5. We
are interested in sending the lattice spaciags as,a; to zero while keeping the
physical four-volume, which is roughMa*, fixed. Thus we want to consider the
limit Ng — oo, and fine-tune, to Ky for fixed ko, A. This fine-tuning is similar to
the fine-tuningd — Ac in the two-dimensional model. Like there, we expect the
physicalcosmological constamt to be defined by thapproachto the critical point
according to
C A 4

K4—K4+16nGa, (63)

an equation similar to (48). It ensures that the term

N

o _ 4
167'[GV4’ Vi = Nga®, (64)

(Ka—Kg) Ng =
gives rise to the standard cosmological term in the Eindtlinert action. The cor-
responding phase diagram is described qualitatively by %:ig he shaded surface
is the “critical surface”, which we want to approach from ed¢by decreasings).
We put “critical surface” in quotation marks since more eatly fine-tuning to this
surface corresponds to taking the limit of infinite fourwole, which doegsot nec-
essarilyimply also a continuum limit. The situation here may be d#f& from that
of the two-dimensional model, where approachicautomatically meant taking
a continuum limit. Two-dimensional quantum gravity is ofucee a very simple
model with no propagating degrees of freedom, whereas indomensional quan-
tum gravity we expect to have genuinely propagating fieldeleg of freedom. Thus
the situation is more like in ordinary Euclidean latticedigheory/critical phenom-
ena, where “infinite volume” does not necessarily mean ‘icontm limit”.
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Fig. 5 The phases A, B and C in the coupling constant space spanngaay, k4). Phase C is
the one where extended four-dimensional geometries emerge

A good example of what one might expect is the Ising model oniteflattice.
To obtain a phase transition for this model one has to takdatiee volume to
infinity, since there are no genuine phase transitions fatefsystems. However,
just taking the lattice volume to infinity is not sufficientéasure critical behaviour
of the Ising model. We also have to tune the coupling constaits critical value,
at which point the spin-spin correlation length divergamifarly, having placed
ourselves on the “critical” surface of CDT quantum gravityrather, its “infinite-
volume” surface, we can discuss the various phases, irdi¢athe figure as A, B
and C. We move between these phases by changing the baréngoegistant
andkp. The solid lines drawn on the surface are the phase trangities between
the (potentially) different phases, which can be of first ighler order. In order to
go from the discrete lattice to the continuum theory, we dtenointerested in a
second- or higher-order phase transition, since suchiti@msare associated with
divergent correlation lengths of the field propagatorsyveilhg one to forget about
the lattice spacing relative to the correlation length. Wt e looking for such
transition points.

How can one imagine obtaining an interesting continuumbielaas a function
of ko? For the purpose of illustration, let us assume that theeswlihg correction
f(Ng, ko) has the form
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f (Ng, ko) = ex0)VNa, (65)

(where later we will check numerically that such a term iseied present, cf. eq.
(78)). The partition function now has the form

Z(Ka,Ko) = %e*(KA*KX)NHk(Ko)\/W. (66)
For dimensional reasons we expect the classical Einsteimitethe action to scale
like

1 " a4 VVa

s ] FEVED RO 0 Y (67)
motivating the search for a valug with k(kg) = 0, with the approach to this point
governed by

2
K(ko) O % e k(ko)vNg O @ (68)

With such a choice we can identify a continuum limit whég), calculated from
(66) (by a trivial saddle point calculation), goes to infinithile a — 0,

Ng) = Y, Na g (Ka—K§)Ng-+K(Ko)/Na N kz(Ko) 1 (69)
YN e (Ka—K§)Na+k(ko) Ny 4(Ks—K§5)? ~ N?%at
Thus we find
1 kz(Ko) C
(V) O Az Z(Ka,Ko) ~ eXp(m) = eXp(a)a (70)

as one would naively expect from Einstein’s equationdh wie partition function
being dominated by a typical instanton contribution, foudable constant.

The actual set-up for the computer simulations is slighiffiecent from the the-
oretical framework discussed above, in that we choose t& with a fixed num-
ber of four-simplicedN, in the computer simulations, rather than fine-tuniago
its critical value. We can perform computer simulations\ariousN, (and fixed
Ko,4) and in this way check scaling with respectNg. This is an alternative to
fine-tuningk4, and much more convenient from a computational point of vieay
largeNs we can then check whether there are any finite-size effecthether ef-
fectively we already are at the “critical surface” shown ig.F5. In addition, we
fix the total numbedlN; of spatial slices, with proper-time labdls t; =t; + a;, up
toty, =t1 + (Nt —1)a;, whereAt = & is the discrete lattice spacing in the temporal
directiorf, and denote by = N;a the total extension of the universe in proper time.
For convenience we identify, 1 with ty, in this way imposing the topolog§* x S°
rather thar{0,1] x S°. This choice does not affect physical results, as will begom
clear below when we present the numerical results.

4 The separation between adjacent slices,iin the sense that all links connecting two neighbour-
ing slices have length;, as discussed above.
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Fig. 6 The phase diagram of four-dimensional quantum gravityneefin terms of causal dynam-
ical triangulations, parametrized by the inverse bareigggonal couplingko and the asymmetry
parameter.

Finally, the computer simulations are so-called Monte €ainulations, where
the computer simply generates a sequence of configuratiotiss case piecewise
linear geometries, with the correct probability distribat as dictated by the mea-
sure and action used in the path integral. It is based on aulpckting in terms of
“moves”, which change the piecewise linear geometry in d-defined way (see
[14] for a detailed description). These geometries are tsedlculate expectation
values of observables.

3.4 The actual phase diagram

Based on computer simulations wily = 80.000 we have constructed the phase
diagram shown in Fig. 6 [23]. The dotted lines in the figurerespnt mere extra-
polations, and lie in a region of coupling constant spaceclis difficult to access
due to the inefficiencies of our computer algorithms.

There are three phases, labeled A, B and C. In phase C, whitlolramain
interest in [18, 19, 21, 20], we observe a genuinely fourafisional universe in
the sense that as a function of the continuum four-volMg@nearly related to the

number of four-simplices), the time extent scaleS/ja/s4 and the spatial volume as
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Vf/4. Moving into phase A, these scaling relations break dowstelad, we observe
a number of small universes arranged along the time diredifi@ “pearls on a
string”, if somewhat uneven in size. Individual beads altimgtime direction can
grow and shrink, be created or disappear as a function of thetdICarlo time
used in the simulations. These small universes are corthbgtéhin “necks”, i.e.
slices of constant integer timg where the spatig®-universes are at or close to the
smallest three-volume permitted (consisting of five tetdrh glued together), thus
preventing “time” from becoming disconnected.

By contrast, phase B is characterized by the “vanishingheftime direction, in
the sense that only one spatial hypersurface has a threexeappreciably larger
than the minimal cut-off size of five just mentioned. One nigh tempted to con-
clude that the resulting universe is three-dimensionat lacking the time direction
of the extended universe found in phase C. However, thetsitus more involved;
although we have a large three-volume collected at a singéad hypersurface,
the corresponding spatial universe has almost no exteirsibie spatial directions.
This follows from the fact (ascertained through direct nneament) that it is pos-
sible to get in just a few steps from one tetrahedron to angrdilf moving along
the centres of neighbouring tetrahedra or, alternatifedy one vertex to any other
along a chain of links. The Hausdorff dimension is therefpriée high, and possi-
bly infinite. Let us assume for the moment that it is indeeahitdi then the universe
in phase B has neither time nor spatial extension, and tkere geometry in any
classical sense.

We can now give the following qualitative characterizatafrthe three phases
in terms of what we will provisionally call “average geomgtrThe universe of
phase C exhibits a classical four-dimensional backgroeoagetry on large scales,
such that(geometry # 0. One may even argue th@jeometry = const in view
of the fact that according to the minisuperspace analysi@f21, 36] and al-
lowing for a finite, global rescaling of the renormalized jpeo time, the universe
can be identified with the rour@, a maximally symmetric de Sitter space of con-
stant scalar curvature (as we will describe in detail beld®y) contrast, in phase
B the universe presumably has no extension or trace of chligj corresponding
to (geometry = 0. Lastly, in phase A, the geometry of the universe appeabe to
“oscillating” in the time direction. The different behawioof typical configurations
is shown in Fig. 7. The “time” direction is horizontal and wietthe three-volume
Ns(t), i.e. the number of tetrahedra in a given time slice, as treugiference of a
circle. The three phases are separated by three phaseitnatises which meet in
a triple point as illustrated in Fig. 6.



CDT—an Entropic Theory of Quantum Gravity 25

1iL
AN

IR
Fi

Fig. 7 The volume profiles of typical configurations in the phase®8And C. Phase C (bottom
figure) is the one where extended four-dimensional geoeséinerge.

4 The macroscopic de Sitter universe (phase C)

4.1 Identifying the infrared part of the universe

Phase C in the above-mentioned phase diagram has our mgiesptbecause this
is where we observe an extended four-dimensional univéfseavill now discuss in
more detail the geometric properties of this “macroscopitVerse. The measure-
ments reported in this Section have been performed at thes@y,A) = (2.2,0.6)

of the bare coupling constants, a point which lies well ingittase C.

The Monte Carlo simulations referred to above will geneaagequence of space-
time histories. An individual spacetime history is not asetvable, in the same way
as a patfx(t) of a particle in the quantum-mechanical path integral is Hotvever,
it is perfectly legitimate to talk about thexpectation valuéx(t)) as well as the
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fluctuations aroundx(t)), both of which are in principle calculable in quantum
mechanics.

Obviously, there are many more dynamical variables in quangravity than
there are in the particle case. We can still imitate the quanhechanical situation
by picking out a particular one, for example, the spatiaévolumeé/s(t) at proper
time t. We can measure both its expectation vafugt)) as well as fluctuations
around it. The former gives us information about the largaes “shape” of the
universe we have created in the computer. A “measuremen(bf consists of a
tableNs(i), wherei = 1,...,N; andN; denotes the total number of time slices. The
time axis has a total length of time steps, wherl; = 80 in the actual simulations,
and we have cyclically identified time slié¢ + 1 with time slice 1.

What we observe in the simulations is that for the range afrdtse volumed\,
under study the universe domet extend (i.e. has appreciable three-volume) over
the entire time axis, but rather is localized in a region msiecbrter than 80 time
steps. Outside this region the spatial extendig(i) will be minimal, consisting
of the minimal number (five) of tetrahedra needed to form adfspher&®, plus
occasionally a few more tetrahed¥@his thin “stalk” therefore carries little four-
volume, which means that in a given simulation we can for rposttical purposes
consider the total four-volume of the remainder, the ex¢eindhiverse, as fixed.

In order to perform a meaningful average over geometrieshvxplicitly refers
to the extended part of the universe, we have to remove thslational zero mode
present, see [21] for a discussion of the procedure. Havdiped the “centre of
volume” along the time direction of our spacetime configiors, we can now per-
form superpositions of configurations and define the ave(bgg)) as a function
of the discrete time. The results of measuring this average discrete spatialasiz
the universe at various discrete timege illustrated in Fig. 8 and can be succinctly
summarized by the formula

. . 3 i
Ngl(l) = <N3(|)> = 2(1N_i &) Z&)l\]l-l/4 cos <w> , So~0.59 (71)
4 4

whereNs(i) denotes the number of three-simplices in the spatial stidésaretized
timei andN4 the total number of four-simplices in the entire univeésis. a constant
referring to the fact that we have a nonvanishing asymmgteyhich implies differ-
ent lengths for time- and space-like links and consequefifflgrent four-volumes
for four-simplices of type (4,1) and (3,2). Likewise, thﬂaicuat\lff"l)/Nf”2> depends
on the choice of bare coupling constants and has to be meafireourse, formula
(71) is only valid in the extended part of the universe whbesspatial three-volumes
are larger than the minimal cut-off size.

The data shown in Fig. 8 have been collected at the couplingd ) = (2.2,0.6)
and forN4 = 362000. For these particular values @f,A) we have verified rela-
tion (71) for N4 ranging from 45.500 to 362.000 building blocks (45.500090,

5 This kinematic constraint ensures that the triangulateanains aimplicial manifoldin which,
for example, twad-simplices are not allowed to have more than ¢the- 1)-simplex in common.
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Fig. 8 Background geometryNs(i)): MC measurements for fixeN, = 362000 and best fit
(71) yield indistinguishable curves at given plot resalnti The bars indicate the average size of
quantum fluctuations.

181.000 and 362.000). After rescaling the time and volunmr@akites by suitable
powers ofN4 according to relation (71), and plotting them in the same asyn
Fig. 8, one finds almost total agreement between the curvelfferent spacetime
volumes, as illustrated in Fig. 9. This constitutes a béalutxample of finite-size
scaling. At least with regard to measuring the average thohemeVs(t) all our
discretized volumesl, are sufficiently large to be treated as infinite, in the sense
that no further changes will occur for largsj.

By contrast, the quantum fluctuations indicated in Fig. 8extical bars for each
discrete timd are volume-dependent and will become (relatively) larger wiien
the total four-volume is decreased. Eq. (71) shows thaiadpailumes scale ac-

cording ton’/4 and time intervals according mj/“, as one would expect for a
genuinelyfour-dimensional spacetime. This is exactly the scaling we h&esl in
Fig. 9. It strongly suggests a translation of (71) to a cantm notation. The most
natural identification is given by

VG VE (1) = Vq 4—3|;co§ (é), (72)

where we have made the identifications

ti | ~ .
E' = — At /G Va(ti) = 2C4Ng(i)a®, (73)
SolN,

such that

/ At/ Va(t) = Va. (74)
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Fig. 9 Rescaling of time and volume variables according to rataid) forN4 = 45.500, 91.000,

181.000 and 362.000. The plot also include the curve (71jyeMoeciselyo O i/Ni/4 andP(o) O

Na(i)/N2/“.

In (73), /Gt is the constant proportionality factor between the tinaed genuine
continuum proper time, T = /G t. (The combinatiomdt;, /Gt Vs containsCy, re-
lated to the four-volume of a four-simplex rather than threédvolume correspond-
ing to a tetrahedron, because its time integral must eg)aWriting V, = 81°R*/3,
and,/Gx = R/B, eq. (72) is seen to describe a EuclidelarSitter universéa four-
sphere, the maximally symmetric space for positive cosgiodd constant) as our
searched-for, dynamically generated background geoiretthie parametrization
of (72) this is the classical solution to the action

1 "
S—m./dt@<

wherek, = 9(2r?)%/2 and A is a Lagrange multiplier, fixed by requiring that the
total four-volume be&/s, [ dt, /G Va(t) = V4. Up to an overall sign, this is precisely
the Einstein-Hilbert action for the scale factgt) of a homogeneous, isotropic uni-
verse (rewritten in terms of the spatial three-voluvaét) = 2r?a(t)?), although
we of course never put any such simplifying symmetry assiangtinto the CDT
model. The intriguing possibility of describing the dataténms of the minisuper-
space model (75) was first reported in [36].

A discretized, dimensionless version of (75) is

gVa2(t)
5(t

A0 +k2V31/3(t)—)\V3(t)>, (75)
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(Na(i +1) — Ns(i)?
Sdiscr = kllz ( & Ng(i) & + k Nl/s( )) (76)

wherek, O ky. This can be seen by applying the scaling (71), namedyi) =

N43/4n3(s) ands = i/NiM. This enables us to finally conclude that the identifi-
cations (73) when used in the action (76) lead naively tactrginuum expression
(75) under the identificatiéh

ki 3v6

We also note that the reported scaling (71) implies that wenr@e

(77)

Stiser = k1v/Na st (n31 S (n3(5+133— n3(3)) +k n1/3( )) 7 (78)

where & = 1/Ni/4. Thus, referring to (65), we see that there are at least tarms
log f (N4, ko, 4) which scale like\,/N4. To obtain the form (65) we need additional
terms of entropic nature since the coefficient,0M, in (65) is assumed positive.

4.2 The size of the universe and the flow Gf

It is natural to identify the coupling consta@ multiplying the effective action
for the scale factor with the gravitational coupling con$ta. The effective action
describing our computer-generated data is given by eq, &) its dimensionless
lattice version by (76). The computer data allow us to exta€l a’/G, with a the
spatial lattice spacing, and the precise constant of ptmpadity given by eq. (77).

For the bare coupling constar{isy,A) = (2.2,0.6) we have high-statistics mea-
surements foN4 ranging between 45.500 and 362.000 four-simplices (etgnitls,
Nf’l) ranging between 20.000 and 160.000 four-simplices). Th&elofA deter-
mines the asymmetry parameterand the choice ofko,A) determines the ratié
betweerN4 2 ande1 Y This in turn determines the “effective” four-volur@g of
an average four-simplex, which also appears in (77). Thebaugy in (77) is de-
termined directly from the time extensidq,;, of the extended universe according
to

. 1/4
Tuniv=TT% (N4(14’1)) . (79)
Finally, from our measurements we have determiqed 0.038. Taking everything

together according to (77), we obta@w 0.23a%, or /p| ~ 0.48a, wherelp; = /G
is the Planck length.

6 Due to the difference in four-volume betweNfgs’z) andef’l) for a # 1 we have to introduce a
compensating factai = so(Na) ¥4/ (NJ*)2/4, see [21] for a detailed discussion.
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From the identification of the volume of the four-sphevg,= 8m°R*/3 =

C~:4N§4’1)a4, we obtain thaR = 3.1a. In other wordsthe linear sizenR of the quan-
tum de Sitter universes studied here lies in the range of LP{anck lengths for
N4 in the range mentioned above and for the bare coupling constehosen as
(Ko,4) = (2.2,0.6).

Our dynamically generated universes are therefore not vigryand the quan-
tum fluctuations around their average shape are large, asp@ent from Fig. 8.
The presence of such fluctuations is evident in the bottopsdra picture of the
extended universe shown in Fig. 7, whose volume profile devifrom that of a
regular sphere. The point is of course that we have to peréoraveraging process
to obtain theexpectation valuef the volume profile, and this is precisely what we
have been doing numerically. It is rather surprising thatsmiclassical minisuper-
space formulation gives an adequate description — at leashé volume profile —
for universes of such a small size, a fact that should be wetomews to anyone per-
forming semiclassical calculations to describe the behavof the early universe.
However, when looking at more local geometric propertiethefuniverse, our lat-
tices are still coarse compared to the Planck sGalbecause the latter corresponds
to roughly half a lattice spacing. If we are after a theorywhgtum gravity valid on
all scales, we are specifically interested in uncoveringipheena associated with
Planck-scale physics. In order to collect data which are firem unphysical short-
distance lattice artefacts at this scale, we would ide@y to work with a lattice
spacing much smaller than the Planck length, while stilhgeible to set by hand
the physical volume of the universe studied on the compuitez. way to achieve
this is by changing the bare coupling constaxysA such that the coefficier in
(77),G =: Ka?, is changed to a larger value. Howewgiis a combination of a num-
ber of factors and they might change differently whenA are changed. It is thus
a (computer-)experimental exercise to find a path in(dgA) coupling-constant
plane such thak increases and we end up with = v/Ka > a. We will discuss
later whether such a path exists.

5 Constructive evidence for the effective action

We have found a perfect fit (71) to the emergent backgrounchgéy and the curve
can be related to the continuum effective action (75). Hawrgv is still of interest
to investigate to what extent the action (76) can be redefian the data. Interest-
ingly, as we shall see below, this can largely be done.

The data at our disposal are: (i) the measurement of the-tluleeneNs (i) at the
discrete time step and of the three-volume correlatdg(i)Ns(j). Having created

Q statistically independent configuratidnéq> (i) by Monte Carlo simulation allows
us to construct the average
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()= Ls (80)

N3(i )= = ), 80
PR

where the superscript ih)(@ denotes the result of the g'th configuration sampled;
(i) the covariance matrix

(NS (i) — Na(i)) (NS (1) — Na (). (81)

We now assume we have a discretized action which can be eggamndund the
expectation valuélz(i) according to

S(iiscr['\_l+n] Sdlscr an |Jnj+o( ) (82)

If the quadratic approximation describes the quantum fatesas around the expec-
tation valueN well, the inverse of the operatérwill be a good approximation to
the covariance matrix. Conversely, still assuming the catadapproximation gives
a good description of the fluctuations, tAeonstructed from the covariance matrix
will to a good approximation allow us to reconstruct the @ttvia (82).

Fig. 10 shows the measured covariance m&fixj) and its inverse, the operator
P. Some care is needed in inverti@gi, j) since it has two zero modes, one from
the constraint thal, is kept fixed, and (an approximate) one from the fact that
the translational mode of the ‘centre of volume’ can only kediup to a lattice
spacing, see [21] for a detailed discussion. As is clear filoerfigure, the inverse
P is completely dominated by the stalk data. This feature @vaitable: while the
correlation matrix is dominated by long-range fluctuatigdhge inverse matrix will
be dominated by short-distance fluctuations, i.e. the fatainas in the stalk, which
by definition are associated with cut-off energies.

Looking at the inverséd® of the measured covariance matrix, we observe that
to very good approximation it is small and constant, excepthe diagonal and
the entries neighbouring the diagonal. This means that waleaompose it into a
“kinetic” and a “potential” term. The kinetic paR<" is defined as the matrix with
non-zero elements on the diagonal and in the neighbouritrgeensuch that the
sum of the elements in a row or column is always zero. The piatgrart PP is
then given by whatever remains along the diagonal. We thezeirrive at a tentative
representation d? as _

m:éw+ﬁm, (83)

lﬁkin = piAij7 |J - ulaja (84)

where the matriced;; andg; are essentially defined through the construction just
described. We knowP from the data, and can make a leg&tfit to determine the

7 For details of normalization and subtleties in the defimited PX" and PPt related to the zero
modes we refer to [21].
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Fig. 10 The covariance matri€ (top) and its inverse (bottom).

numbersp; andu;. For details we refer again to [21]. The results are showrigs.F
11 and 12.

Let us look at the discretized minisuperspace action (763lwhas served as in-
spiration for the definition oPkin andPPO!, ExpandingNs(i) to second order around
Ns(i), one obtains the identifications

R (i) = %kl U"(Na(i)) = —u, (85)
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Fig. 11 The directly measured expectation vaILﬁ:ﬁ(i) compared to the averaga_g(i) recon-
structed from (85), fokg = 2.2 andA = 0.6.

whereU (Nz(i)) = k1R2N§/3(Q denotes the potential term in (76). We use the fitted
coefficientsp; to reconstruchiz(i) and then compare these reconstructed values with
the averageBlz(i) measured directly. Similarly, we can use the measuy'sdo re-
construct the second derivative$(Ns(i)) and compare them to the fomg5/3(i)
coming from (76). _

The reconstruction oz (i) is illustrated in Fig. 11 for a given four-volurmé,
and compared with the directly measured expectation valgés. One observes
that the reconstruction works very well and, most impofyattiat the coupling con-
stantk;, which in this way can be determined independently for eacin-folume
N, reallyis independent o, in the range of4's we have considered, as it should
be.

We will now try to extract the potentiél” (Ns(i)) from the information contained
in the matrixPP%. The determination of)”(Ns(i)) is not an easy task as can be
understood from Fig. 12, which shows the measured coeftgigmrextracted from
the matrixPP®, and which we consider rather remarkable. The interpolaiede
makes an abrupt jump by two orders of magnitude going frone#tended part of
the universe (stretching over roughly 40 time steps) to thk.sThe occurrence of
this jump is entirely dynamical, since no distinction hasreveen made by hand
between stalk and bulk. In order to extract physical infdiorerelated to a genuine
potential like the one appearing in (76), we of course mustrigt ourselves to
the region inside the “blob”, corresponding to the data eaegcircled in Fig. 12.
From the figure it is also clear that extractid§(Nz(i)) from the data available is a
nontrivial task.
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Fig. 12 Reconstructing the second derivatlx)é(N_3(i)) from the coefficientay;, for ko = 2.2,

A =06 andef’l) = 160000. Data chosen from the encircled region are independestiaot-
distance artefacts.

The range of the discrete three-voluni¢gi) in the extended universe is from
several thousand down to five, the kinematically allowedimiim. However, the
behaviour for the very small values N§(i) near the edge of the extended universe
is likely to be mixed in with discretization effects. In ord® test whether one
really has eNé/?’(i)—term in the action one should therefore only use valudgs i)
somewhat larger than five (shown as the encircled regiongnl&). This has been
done in Fig. 13, where we have converted the coefficigntom functions of the
discrete time stepsinto functions of the background spatial three-volulgi)
using the identification in (85) (the conversion factor canread off the relevant
curve in Fig. 11). The data presented in Fig. 13 were takendis@ete volume

= . , and fit well the forniN, ™ °, corresponding to a otentik .
N;*Y = 160000, and fit well the fornN; >/ ponding to a potentigIN2/3

Apart from obtaining the correct powB§5/3 for the potential for a given space-
time volumeNy, it is equally important that the coefficient in front of thexm be
independent olNs. This seems to be the case as is shown in Fig. 14, where we have
plotted the measured potentials in terms of reduced, diioeless variables which
make the comparison between measurements for difféigateasier. — In sum-
mary, we conclude that the data allow us to reconstruct thiera¢76) with good
precision.
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Fig. 13 The second derivativeU” (N3) as measured fd\:lfﬁ’l) =160000,Kp = 2.2 andA = 0.6.

6 Connection to Hdava-Lifshitz gravity

While we have verified that the action (76) describes the daty one aspect of
the formula may lend itself to a more general interpretatldntil now we have
chosen to view the “experimental” formula (71) as descghkarround four-sphere
via the identifications (72) and (73). However, the potdrdagymmetry between
space and time introduced in our model by working with a tiol&fion allows for
a different interpretation, namely, that space and timéyréahave differently, as
we will explain in what follows.

Although at the level of the piecewise linear structures aeeha precise rela-
tion between the coupling constafitand the asymmetry parametey this relation
enters the construction only in a relatively weak way, irt foaa givenA the bare
action we use is the Regge-Einstein-Hilbert action for @g@iése linear manifold
with the given connectivity and the length assignmagnt aaZ. Nowhere else does
this length assignment appear. Of couiiséhe model had a well-defined pertur-
bative expansion, one could have chosen the bare couplimgartts such that the
classical action (and, by implication, the relation betwaganda;) played an im-
portant role in the path integral. However, as already eérpthin the introduction,
this is not the case. Rather, our choice of bare couplingtaatssis dictated by the
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Fig. 14 The dimensionless second derivative- Nf/4U”(N3) plotted against—5/3, wherev =

Ns/NZ/* is the dimensionless spatial volume, tf*” = 40,000, 80.000 and 160.008 = 2.2
andA = 0.6. One expects a universal straight line near the origin fdelarge volumes) if the
power lawU (N3) 0 N/ is correct.

wish to find nontrivial physics, which restricts us to a regfar away from where
the action term dominates the entropy of configurations.

In other words, the effective action we have obtained bealssindirect traces of
the classical action put into the path integral. Similatg precise relation between
space and time directions in the final continuum theory wlldetermined by the
statistical averages resulting from the full path integrather than the parameter
put into the discretized action.

To illustrate the nonperturbative mechanism at work, letarssider the measure-
ments in phase C, where we observe a macroscopic universeweRtension in the
time direction scales Iikd,\li/4 for different, fixed four-volume$\,. It should be
emphasized that this scaling behaviour is by no means medieted, for example,
time in phase B scales completely differently (in fact, timet extension vanishes
there, which is of course an extreme situation). One is fbezded to conclude that
time and (the linear extension of) space scale identicalphiase C. This is corrob-
orated by evidence that well inside phase C there seems tavb#-defined notion
of a “physical” proper time extent independentafas one would have expected
naively [22].
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However, the fact that the behaviour in phase B is very difieleaves open
the interesting possibility that a nontrivial scaling teda between time and spa-
tial extent may ensuethen one approaches the B-C phase transition. linghat
case one could try to describe the situation by a continutdiectafe action where
time and space have different dimensionality. This is medgiwhat P. Hofava at-
tempted in his novel class of gravity theories [23], a top&will return to shortly.
But even in phas€, where time and space scale in the same way, one could ex-
plore the consequences of relaxing the notion that time padesshould be related
exactly as they are in general relativity. What we have damé oow is to inter-
pret our results in the continuum limit in terms of the claastheory. This can be
achieved by making a global rescaling of continuum propeefiwhich we have di-
rect access to through the preferred time foliation. Moex#jally, we have been
checking our data against the cosmological minisuperspecke! (75), which can
be derived from general relativity by assuming spatial hgemeity and isotropy.
Eq. (75), when written in terms of the scale faétaft), T denoting proper time,
reads

S= %T/dr (e +a-2a%). (86)

All our measurements are perfectly consistent with an gffeaction of this form,
but the “cosmological” observables we have been consigesinfar cannot dis-
criminate between this and more general cosmologies cofmimg a generalized
“gravity” theory with a built-in anisotropy between spaagedaime, like Hofava's.
In the latter, one can again assuspatialhomogeneity and isotropy to obtain cos-
mological solutions, which in the Euclidean sectarthe infrared limit arise from
an action quite similar to (86) [24, 25, 26], namely,

S= g / dr (3(3} — 1)aa’ + 6ya—a’(6r +V(a))). 87)

The “potential’V (a) in this expression has an expansion in inverse powegs of
coming from the higher-order spatial derivative terms i ofava-Lifshitz action.
In the actual computer simulations, in both (86) and (BT§ a Lagrange multiplier
rather than a cosmological constant, which ensures thatotimevolume is kept
fixed. As long as we can fix proper time only up to a constant anlbrg as we
cannot measure reliably the correction téfifa) containing inverse powers af it

is not really possible to distinguish “experimentally” ween (86) and (87) in terms
of a reconstruction of the action, as we did in the previougiSe. In this situation,
wheneverA > 1/3 andy > 0, a rescaling of time in (87) leads to the same form
as (86) up to a constant of proportionality. Taking into acdothe difficulties in
verifying the mere existence of the linear term in (86) frdva tata (cf. Fig. 12), it
is clear that we cannot presently extract from the data iriable way a potential
V(a) that depends on inverse powersayfstarting witha 4. The only region in
Fig. 12 where such information could be extracted is for thalkest values o&.

8 equivalently, one can also work with the associated thmemeV (1) = 2r?a(1)? as the basic
configuration space variable
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Unfortunately, this is also where lattice artefacts wilitogortant and artefacts from
the “stalk” may get mixed in with genuine continuum physiaglance at Fig. 12
reveals how large the effects of the stalk are right nextéostnalla region.

This not withstanding, we can discuss the qualitative spoadence between
the Hofava scenario and our phase diagram. In our earladysia of the different
phases of CDT quantum gravity, we have chosen for a partiquialitative descrip-
tion to match precisely that of a Lifshitz phase diagram [28]. The qualitative
feature we want to emphasize in this context is that the ralgepl by “average ge-
ometry” in quantum gravity bears an intriguing resemblatocthat played by the
Lifshitz field ¢. In an effective Lifshitz theory, the Landau free energysigrF (x)
as function of an order parametg(x) takes the forr

F(X) = 220(X)° +219(X)* +860(X)° + ...+ C2(0a ¢)* + c2(Ip 9)* + €2(I59)* + . .,
(88)

where for ad-dimensional systera = m+1,....d, f = 1,...,m. Distinguishing
between &”- and “B"-directions allows one to take anisotropic behaviour iate
count. For a usual systemm = 0 and a phase transition can occur wlgrpasses
through zero (say, as a function of temperature).azor 0 we havep = 0, while for
ay < 0we haveg| > 0 (always assumina, > 0). However, one also has a transition
when anisotropy is present(> 0) andd, passes through zero. For negatigeone
can then have an oscillating behaviourgin the m “ 3”-directions. Depending on
the sign ofay, the transition to this so-called modulated or helical ghesn occur
either from the phase wherg= 0, or from the phase whete| > 0. We conclude
that the phases C, B, and A of CDT quantum gravity depictedgn&-can be put
into one-to-one correspondence with the ferromagneti@rpagnetic and helical
phases of the Lifshitz phase diagrehf we in place ofg we use “average geom-
etry”. The triple point where the three phases meet is theadled Lifshitz point,
where in the Lifshitz model one can have a nontrivial scaling

The critical dimension beyond which the mean-field Lifshfizory alluded to
above is believed to be valid &t = 4+ m/2. In lower dimensions, the fluctuations
play an important role and so does the number of componertsedield . This
does not necessarily affect the general structure of thegptiimagram, but can alter
the order of the transitions. Without entering into the detaf the rather complex
general situation, let us just mention that for= 1 fluctuations will often turn the
transition along the A-C phase boundary into a first-orderdition. Likewise, most
often the transition between phases B and C is of second.order

We conclude that the structure of the Lifshitz phase diagseapresently com-
patible with our CDT observations. Based on the order paranievestigated in
[17], the A-C transition of CDT quantum gravity looks like Bear-cut first-order
transition. On the other hand, the verdict is still out fog 8-C line. The signals
from the Monte Carlo simulations are ambiguous, and it apgptieat close to the

9 see, for example, [28] for an introduction to the content scape of “Landau theory”

10 For definiteness, we are using here a “magnetic” languagthéot.ifshitz diagram. However,
the Lifshitz diagram can also describe a variety of othetesys, for instance, liquid crystals.
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transition line our algorithms for updating the geometniegd to be improved to
produce fully reliable results.

Phase transitions of higher than first order are of intringierest since they may
serve as points where one can define the continuum theooe 8iappears that we
have a well-defined infrared limit in phase C, such points idaaturally be UV
fixed points, and moving away from them should bring us to fRdirhit. Given
the overall structure of the phase diagram, the possibleasios are as follows: if
either the A-C or the B-C line is second-order, we can poddigtiise any point on it
to attempt to define a UV limit. By contrast, if they are firstder lines, we are left
with two interesting points which may be associated withghbi-order transition:
the endpoin®, of the open B-C line (cf. Fig. 6), where the phase transitiay e
of higher order than along the line itself, and the Lifshiiple pointR, where the
transition may also be of higher order.

Assuming there were such higher-order phase transitiomgdiow would we
determine whether the UV limit of the theory is isotropic pase and time or, more
generally, of Hofava-type? One defining aspect of Hoilafghitz gravity is the
assumption that the scaling dimensions of space and tinfier dif the ultraviolet
regime. This difference is used to construct a theory caitgihigher-order spatial
derivatives in such a way that it is renormalizable. How wdoothe observe such a
difference in the present lattice approach? — Consider\aets®g of time extent,
spatial extensioh and total four-volumé&/,(T,L). By measuringl andL we can
establish the mutual relations

_ 1/ds
TOV/Y Lo () o, (89)

Well inside phas€ we have measured] = 4 andds = 3, in agreement with what is
expected for an ordinary four-dimensional spacetime.dfdmmension [T] of time
wasz times the dimension [L] of length, we would have

ds
o-1

We observed earlier that well inside phase B bajtandd; must be large, if not
infinite. In case the B-C phase transition is second-ortlaray happen that goes
to a value different from 1 when we approach the transitioe.liTo investigate
this possibility, we have tried to determizeas a function of the parametér as
A — 0. ForA > 0.3 one obtains convincinglgt =~ 4 andds ~ 3 and thugz ~ 1. We
can make an even stronger statement, namely, that the desandbcontradict the
interpretation ofA as an (unphysical) asymmetry parameter: wheis increased
the corresponding is decreasing (see Fig. 4), while the number of lattice spac-
ings in the time direction is increasing, which at least gatvely allows for the
interpretation that the physical “time” is independentioBy contrast, fod < 0.3
the quality of our results does not allow for any definiteestagénts. Autocorrelation
times become very long and there may be large finite-volufieetsf which obscure
the measurements and which are precisely based on findessating.

zZ= (90)
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To summarize, there is still a distinct possibility that antrivial scaling with
z+# 1 can occur when one approaches the transition line betwkasep B and
C. Should the B-C transition turn out to be a first-order titéors, the interesting
points would beé? andR. It would then be natural to conjecture that the p&ins
a Horava-Lifshitz point with a nontrivial scaling relatidbetween space and time.
The pointP,, which does not appear in a standard Lifshitz diagram, wpelthaps
be a natural candidate for an isotropic scaling point. Onatinver hand, if the B-
C transition line is second-order, it leaves open the istarg possibility that the
critical exponent changes continuously fram 3 at the Lifshitz poinB toz=1 at
the (hypothetically) isotropic poiri.

7 Making contact with asymptotic safety

As we discussed earlier, it is presently difficult to get elés the B-C phase tran-
sition line, which is needed if we want to achieve a higheohg®on in the UV
regime, such that the lattice spacing is much smaller tharPtanck length. Also,
we do not know yet whether in such a limit we have isotropy iacgpand time,
like in the asymptotic safety approach, or need to invoke rasoéropic scenario
as outlined above. For the time being, let us assume thatithgointP, of the B-
C transition line in the phase diagram of Fig. 6 correspondat isotropic phase
transition point. How can one make contact with the graatetl renormalization
group treatment? The standard way would be to “measure’radiskes (by lattice
Monte Carlo simulations), like a mass in QCD or the stringsten in Yang-Mills
theory. For definiteness, consider the string tension, ivhés mass dimension two.
The measurements, for some chajgef the bare coupling constant, will give us a
numbero(go). We now write

0(go) = OrA?(Qo), (91)

whereor is the physical string tension amdgo) describes the dependence of the
lattice spacing on the bare coupling constant. Being able to write down dicgla
like this for all observables, wheeggp) is determined by the renormalization group
equation 4
Jo
a = ~P%). (92)

allows us to define a continuum theory at a fixed pogtvheref(go) = 0, since
there we can taka(go) — 0 whengo — gj. In the case of QCD or Yang-Mills theory
the fixed point is the Gaussian fixed pogjt= 0, but in the more general setting of
asymptotic safety it will be non-Gaussian.

Assume now that we have a fixed point for gravity. The grawitetl coupling
constant is dimensionful, and we can write for the bare dogmonstant

_ 228 dG _

Gla), ag = —B(G), B(G)=26—-cG3+--- . (93)
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The IR fixed points = 0 corresponds t6& constant while the putative non-Gaussian
fixed point corresponds 6 — G, i.e. G(a) — G*a2. In our case it is tempting to
identify our dimensionless constat with 1/(§, up to the constant of proportion-
ality given in (77). Close to the UV fixed point we have

G(a)=G" —Kal, ki =k +Ka’, &=-B'(G. (94)

Usually one relates the lattice spacing near the fixed poitité bare coupling con-
stants with the help of some correlation lengthAssume tha€ diverges according

to c

90— 95|
in the limit as we tune the bare coupling constgft+ gg. This correlation length

is associated with a field correlator and usually some physi@ssmp, by means
of

¢(%) = (95)

[Ny — gl
¢(%)
where|n; — ny| is a discrete lattice distance apd — x,| a physical distance. Re-

quiring the physical quantitig; — x| andmgp, to remain constant es— 0 then
fixesa as a function of the bare coupling constant,

= Mpn(ang — N2|) = Mpp|X1 — X2, (96)

1 * |V
A= 90— 9ol”- 97)
Eq. (97) is only valid close to the fixed point and should be parad to the renor-
malization group equation (92), from which we deduce that —1/|B’(gp)|.

In the gravitational case at hand we do not (yet) have obblsavhich would
allow us to define meaningful correlation lengths. At anerdt is by no means
a settled issue how tdefinesuch a concept in a theory where one integrates over
all geometries, and where the length is itself a functionedrgetry (see [32] for
related discussions). Instead, we construct from our ceenfgenerated “data” an
effective action, where all degrees of freedom, apart fioerstcale factor, have been
integrated out. We impose the constraint that the data &d fib a universe of total
lattice four-volumeN,. Measurements are performed at different, fixed valué pf
all the while maintaining the relatidh

Vs = Nja*, (98)

We then “remove the regulator”, by investigating the limif — oo. In ordinary
lattice field theory, we have two options for changidg either we keep fixed,
and therefore changé,, or we keepV, fixed and change. Let us illustrate the
difference in terms of a scalar field on a lattice. Its dimenkiss action can be
written as

Lin principle, we should be taking into account the differealumes of the two types of four-
simplices, which depend of, but we will ignore these details to streamline the pregenta
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=3 (3 (0li+ k) - 0i))?+mee?(i)), (99)
T

wherei labels discrete lattice points apdunit vectors in the different lattice direc-
tions. The correlation length is approximatejing, lattice spacings. Holdingfixed
and increasing), is not going to change the correlation length in any signifieeay

if N4 is sufficiently large. Thus the interpretation for fixads straightforward: the
physical volume/, is simply increased and finite-size effects will become $nal
and smaller. However, we can also insist on an interpretattoereV, is kept fixed,

Ny is increased and decreased accordingly. In this case, the lattice becomess fin
and finer with increasindls. But now the physical interpretation of (99) will change
with increasing\4, even if no bare coupling constant is changed, and the edioel
length is still approximately Amy lattice spacings. Since thphysicallattice length

a decreases proportional t(;XISle/4 the physicalcorrelation length is going to zero,
and the physical mass to infinity. This can be made explic{®8) by introducing
the lattice spacing,

: —n(i))2
S:a_12|2a4 <§((<p(l+u) ¢(i) )+§¢2(i)>. (100)

az

The physical mass iy, = mp/a and goes to infinity unless we adjush. The
factor 1/a? in front of the sum can be reabsorbed in a redefinitiop dfdesired.

In our case it is natural to considex as fixed if we want to make contact with
the continuum framework of asymptotic safety, since thib aliow us to varya.
Suppose we have identified a fixed point which we considerdstimg, e.g. the
point Py in our phase diagram. We now approach this point and measgulit is
a UV fixed point, eq. (94) tells us what to expect. Using (98),a&n now convert
this into an equation involvindy,, and suitable for application in CDT simulations,

ka(Ng) = k& — KN, /%, (101)

When we measurekh (N4) deep inside phage (at the point k2,4) = (2.2,0.6)),
we did not find anyNs-dependence df;. However, according to the insights just
presented, we should observe such a dependence at or cladd\tdixed point.
As already noted earlier, an explicit verification of suclekation will have to await
more reliable computer simulations close to the phaseitiamdéines.

In fact, we have already seen indications in CDT quantumityraf a short-
distance behaviour like that occurring in the asymptotfetyascenario. Recall the
“naive” renormalization conditions (64) and (68). Theyreventroduced mainly to
illustrate how a renormalization procedure could lead tddinenormalized cos-
mological and gravitational constants, both with a semsgilzal interpretation. If
we are close to the UV fixed point, we know ti@awill not be constant when we
change scale, b@ will. Writing G(a) = a?G*, egs. (64) and (68) are changed to

1

Ki—Kf= et k) = (102)



Ds

CDT—an Entropic Theory of Quantum Gravity 43

3.8¢

0 100 200 300 400
g

Fig. 15 The data points along the central curve show the spectraianDs(0o) of the universe
as function of the diffusion time. Superimposed is a best fit, the continuous cubggo) =
4.02—-119/(54+0). The two outer curves quantify the error bars, which inedasearly witho.
(Measurements taken for a quantum universe with 181.006siowplices.)

The first of these relations now looks two-dimensional (qf.(@8))! Nevertheless,
the expectation value of the four-volume still satisfiesdbgect relation

(Va) = (Ng) a* [ % (103)
as follows from (69).

Further hints of a two-dimensional signature at short dista have come from
measuring the so-called spectral dimension. Essentilifyjs the dimension a dif-
fusing “liquid” would experience in a spacetime with a tygliquantum geometry of
the kind appearing in the gravitational path integral, $eedriginal article [29] for
details. Fig. 15 recalls the result of measuring the splitreension, which appears
to change nontrivially as a function of diffusion time. Senshort diffusion times
probe short distances, we can read off from the fit indicatatithe short-distance
spectral dimension is close to two. What is most intrigusthiat the short-distance
resultDs = 2 has since been found in two other quantum field-theorepoagehes,
namely, the renormalization group treatment a la Reut@f §8d Horava-Lifshitz
gravity [31]. At the same time, it means that this particubservable cannot dis-
tinguish between isotropic and anisotropic quantum gyakitories.
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8 Discussion

The CDT model of quantum gravity, which we have describedha@se lectures is
extraordinarily simple. It implements the path integraéoeausal geometries with
a global time foliation. In order to perform the integratiexplicitly, we introduced
a grid of piecewise linear geometries, similar to how onecpenls when defining
the path integral in ordinary quantum mechanics. Next, wated each of these
geometries to Euclidean signature and used as our bare éleécinstein-Hilbert
action in Regge form. In terms of ingredients, that'’s all.

The resulting superposition exhibits a nontrivial scaliedpaviour as function of
the four-volume, and we observe the appearance of a weliatbéiverage geometry,
that of de Sitter space, the maximally symmetric solutioth® classical Einstein
equations in the presence of a positive cosmological cohsthe measurements
performed so far definitely probe the quantum regime, sihedltictuations of the
three-volume around de Sitter space are sizable, as carebersEig. 8. Both the
average volume profile and the quantum fluctuations arouackiwvell described
in terms of the minisuperspace action (75). A key featurgfmeciate here is that,
unlike in standard (quantum-)cosmological treatments, diescription is theut-
comeof a nonperturbative evaluation of tifll path integral, with everything but
the scale factor (equivalentlys(t)) summed over. Measuring the correlations of
the quantum fluctuations in the computer simulations forréiqadar choice of bare
coupling constants enabled us to determine the continuawitgtional coupling
constantG as G ~ 0.42a2, thereby introducing an absolute physical length scale
into the dimensionless lattice setting. Within measurioguaacy, our de Sitter uni-
verses (with volumes lying in the range of 6.000—47.02@'0 are seen to behave
perfectly semiclassically with regard to their large-sgaloperties.

These semiclassical results “emerge” even if, as emplthsizeve, we are far
from a region in coupling-constant space where the clasaatan can be consid-
ered as dominant in the path integral. The resulting quagemmetry comes about
through the interplay of the weight provided by the expoiaof the bare action
and the weight provided by the entropy of a particular kingaffiguration. From
this point of view the results are truly nonperturbativeseif they bear some simi-
larity to the semiclassical minisuperspace results. lughalso be emphasized that
we have only derived an effective action for the scale factotfor the “real”, trans-
verse degrees of freedom. The issue of how to do this for titer leemains to be
addressed.

The results we have reported are mostly “infrared” in nat@rer dynamically
generated universes are macroscopic (although small) avith-the exception of
the spectral dimension measurements —we are not yet prBlangkian (and possi-
bly sub-Planckian) scales. It is a major issue whether sisttog-distance comple-
tion of gravity exists in a conventional, field-theoretisahse. “Asymptotic safety”
is an attempt to formulate the general conditions for thisédhe case. In its sim-
plest realization on the lattice it requires a UV fixed poittis is precisely the kind
of situation the CDT framework allows us to address; we haphase diagram
and potential fixed points, and as outlined above it is ingpie possible to check
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whether the UV behaviour is in accordance with the predigifsom asymptotic
safety. Critical slowing down close to the potential fixednis, i.e. a vast increase
in the computer time needed to generate statistically iadéent geometries, has
so far made it impossible to obtain reliable results, butkwiemow in progress to
improve the updating algorithms.

Once we succeed in approaching the phase transition linerBaCeliable fash-
ion, we may also be able to check whether the Hofava-Légdenario is realized
in our model. In addition to the standard asymptotic safétyupe, the CDT con-
struction has the potential to accomodate also this saer#giobvious similarities
with the defining properties of Hofava’s “anisotropic gtgvapproach are the dis-
tinguished role of a time foliation, and the presence of daupitime evolution (in
CDT linked to the reflection positivity of the transfer majri

In addition to this, we have already pointed to the strikingilarity between
the CDT and Lifshitz phase diagrams upon (somewhat loogdyifying the Lif-
shitz mean-field order parametg@rwith “average geometry”. If more specifically
we want to relate the Lifshitz field to a mode of the gravitaéibfield, the confor-
mal factor appears as a natural candidate. The conformaé nsoaready known
to play a decisive role in a variety of geometro-dynamicaitests. In the bare Eu-
clidean Einstein-Hilbert action the kinetic term assamihwith the conformal factor
appears with the wrong, negative sign, leading to ill-defisgpressions for naive
cosmological, Euclidean path integrals. In Euclidean mitical string theory the
dynamics of the conformal factor is believed to cause a ttiansrom a “healthy
phase” (where < 1 for the central charge of matter) to a degenerate phase of so
called branched polymers (for> 1)*2. A similar phenomenon was observed in the
old Euclidean dynamical triangulations approach to quargtavity, where the bare
(inverse) gravitational couplingp plays the role of the central chargan the sense
that for large values okg the configurations degenerate into branched polymers
[39].

We have interpreted phase A (realized for large valuegpés the CDT remnant
of the branched-polymer phase, likewise caused by the domaof the conformal
mode. This suggests that the A-C phase transition may bgneted as a transition
where the kinetic term of the conformal mode changes sigis iSiprecisely what
happens at the A-C transition in a Lifshitz diagram, coroggfing to the expression
(88) for the free energy of the order parameger

The effective action for the conformal mode coming out of aperturbative
gravitational path integral receives potential contritms from several sources: (i)
from the bare action (where the kinetic conformal term has*ttrong”, negative
sign), (ii) from the measure, and (iii) from integrating ather field components
and, where applicable, other matter fields. It has been drgusviously that the
Faddeev-Popov determinants obtained from gauge-fixingttédgtational path in-
tegral contribute effectively with the opposite, positsign to the conformal kinetic
term [40, 41]. For example, when working in proper-time gaug imitate the time-

12 |n noncritical string theory there exists an analytic prauit for the dimension of (Euclidean)
target spacetimd > 2 the string surfaces degenerate into branched polymelsq&éd also [35]
for similar results on a hypercubic lattice.
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slicing of CDT, Euclidean metrics can be decomposed acogridé3
ds = dr? 4+ e/(™Wg;; (1,x)dX d¥, (104)

giving rise to a term-1/G()e3?, /detg(d; p)? in the bare gravity Lagrangian den-
sity, whereG® is the bare Newton’s constant. According to [41], one exp#wit
the leading contribution from the associated Faddeev-Pdgterminant has the
same functional form, but with a plus instead of a minus sagn with a different
dependence 06(?). The presence of contributions of opposite sign to the #ffec
action for the conformal modg(t, x) can therefore lead to two different behaviours,
depending on the value &) (equivalently, thec in our model), and thus account
for the observed behaviour at the transition between phasesl C14

In addition to the issues raised above, there is one moraiqneghich we would
like to understand in more detail at this stage, which came#re relation of our ef-
fective gravitational coupling consta@tto a more conventional gravitational cou-
pling constant, defined directly in terms of coupling gratd matter. It would be
desirable to verify that defining the physical Newton’s dansG as the coupling
constant multiplying the effective action for the thredwwnoe, as we have been do-
ing so far, agrees with a gravitational constant defined rdiweetly through matter
coupling. In principle it is easy to couple matter to CDT qtuen gravity, as we al-
ready know from multiple studies in the Euclidean case [d8lre spin, scalar and
gauge fields have been considered. It is less straightfdrt@azome up with a rea-
sonably simple set-up for extracting the semiclassicalatf gravity on the matter
sector (or vice versa), which is both well-defined on the etide of geometries
and allows for effective computer measurements. Attempthis direction were
already undertaken in the “old” Euclidean approach [44, 4B{ it is possible that
similar ideas can also be used in our causal version of tlarythAs a first step in
this direction, the expected effect of a single point masspted to CDT quantum
gravity on the volume profile of the universe has been quedtifi [46]. Further
work on coupled systems of matter and geometry is in progress
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