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CDT—an Entropic Theory of Quantum Gravity

J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll

Abstract In these lectures we describe how a theory of quantum gravitymay be
constructed in terms of a lattice formulation based on so-called causal dynamical
triangulations (CDT). We discuss how the continuum limit can be obtained and
how to define and measure diffeomorphism-invariant correlators. In four dimen-
sions, which has our main interest, the lattice theory has aninfrared limit which
can be identified with de Sitter spacetime. We explain why this infrared property
of the quantum spacetime is nontrivial and due to “entropic”effects encoded in the
nonperturbative path integral measure. This makes the appearance of the de Sitter
universe an example of true emergence of classicality from microscopic quantum
laws. We also discuss nontrivial aspects of the UV behaviour, and show how to in-
vestigate quantum fluctuations around the emergent background geometry. Finally,
we consider the connection to the asymptotic safety scenario, and derive from it a
new, conjectured scaling relation in CDT quantum gravity.
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1 Introduction

How to reconcile the classical theory of general relativitywith quantum mechanics
remains an unsolved problem. Flat Minkowskian spacetime seems an excellent local
approximation to spacetime down to the smallest distances we can probe in the lab-
oratory. At least the Standard Model of elementary particles, which relies heavily on
the Minkowskian spacetime structure, works almost too well, leaving us presently
with little clue as to what should replace it at shorter spacetime distances, i.e. higher
energies. If one naı̈vely tries to quantize the theory of general relativity by making a
perturbative expansion around this flat background one is faced with the fact that the
corresponding field theory is not renormalizable. The mass dimension of the gravi-
tational coupling constant is−2 in units wherec= h̄= 1. To deal with this problem
one can try to go beyond conventional quantum field theory. One such attempt is
string theory. However, until now it has added little to our understanding of why
to a very good approximation we live in a 3+1 dimensional classical world gov-
erned by Einstein’s equations with a positive cosmologicalconstant, around which
there presumably are small quantum fluctuations. Loop quantum gravity is another
attempt to quantize gravity, which introduces new ways of treating gravity at the
Planck scale, but it has problems with recovering classicalgravity in the infrared
limit. Here we will describe a much more mundane approach using only standard
quantum field theory. In a sum-over-histories approach we will attempt to define a
nonperturbative quantum field theory which has as its infrared limit ordinary clas-
sical general relativity and at the same time has a nontrivial ultraviolet limit. From
this point of view it is close in spirit to the renormalization group approach, whose
application to gravity with the hope of establishing itsasymptotic safetywas first
advocated long ago by Weinberg [1], and more recently substantiated by several
groups of researchers [2].

The approach reported here is nontrivial for two reasons which combine to make
it genuinely nonperturbative. First of all, as just stated,a theory of quantum gravity
is not perturbatively renormalizable, and thus, whatever field theory one invents, it
must in some sense be nonperturbative. Here we want to use a lattice to provide an
ultraviolet regularization of the quantum field theory. Thelattice regularization of
quantum field theories has been very successful, but it is usually implemented in flat,
Euclidean spacetime, where the Osterwalder-Schrader axioms ensure us that this is
unproblematic. One knows how to get from a quantum field theory formulated in
Euclidean spacetime to a quantum field theory formulated in Minkowskian space-
time. However, little is known about the analogous issue once we move from flat to
curved spacetimes and even more, to a situation where spacetime itself becomes the
object of quantization1. That the situation is nontrivial even at the most elementary
level is seen by considering the Einstein-Hilbert action from which we can derive
the classical equations of general relativity. It is formally straightforward to rotate
this action from Minkowskian to Euclidean signature. However, one then has to face

1 An extension of the Osterwald-Schrader axioms to certain diffeomorphism-invariant theories was
given in [3].
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the fact that the Euclidean action is unbounded below, the unboundedness caused by
the “wrong sign” of the conformal mode, corresponding to overall, local rescalings
of the metric tensor. This is a potential obstacle for constructing the quantum theory:
when trying to sum over all geometries, with weights given bythe exponential of
minus the action, there are geometries with arbitrarily large negative action which
may render the sum over paths ill defined and the Euclidean theory nonsensical.
Consequently, the UV lattice regularization of the path integral has to be such that
it also regularizes the infinities which can arise due to the conformal factor. Even if
such a regularization exists (and it does, as we shall see), how can one ever expect to
obtain something finite in the continuum limit where the regularization is supposed
to be removed?

The only solution from a continuum point of view is that the correct path integral
measure in the Euclidean sector suppresses the unbounded conformal factor. In the
lattice approach the measure factor is of an “entropic” nature: it reflects how many
configurations (microscopic, geometrical realizations) there are corresponding to a
given value of the action. This entropic factor will enter asan integral part of the
bare effective lattice action. (We will illustrate this below in toy examples where
everything can be calculated analytically.) The “entropy part” of the effective action
will be independent of its “bare coupling constant part”. Usually, the possibility of
obtaining a continuum limit of a lattice theory is linked to the existence of a critical
point (more generally, a critical surface) in coupling constant space. This will also
be the case here. The entropy part of the effective action plays a crucial role in deter-
mining the critical value of the bare coupling constants, and the continuum quantum
field theory will then emerge at that critical point. However, in such cases there may
be no “obvious” continuum theory one can read off from the lattice effective action
since we might not know the precise form of the entropy part ofthe effective action.
This highlights the truly nonperturbative nature of the continuum theory.

This review article2 is organized as follows: first we describe how a two-
dimensional toy model of quantum gravity can be solved explicitly, illustrating some
of the points made above. Then we describe the four-dimensional theory, the nu-
merical results obtained by Monte Carlo simulations and howto connect the lattice
formalism to the renormalization group approach and to a newtheory, so-called
Hořava-Lifshitz gravity.

2 The CDT formalism in two dimensions

2.1 Generalities

The lattice formulation ofEuclideanquantum gravity, i.e. the quantum theory of
Euclidean geometries, has been very successful in two dimensions. In two dimen-
sions, gravity does not have any field-theoretic degrees of freedom, but neverthe-

2 For less technical accounts of this approach to quantum gravity, see [37, 38].
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less two-dimensional Euclidean quantum gravity constitutes a nontrivial example
of a diffeomorphism-invariant quantum theory of geometries. The lattice theory,
regularized by the method of so-called dynamical triangulations (DT), provides a
diffeomorphism-invariant cut-off of two-dimensional Euclidean quantum gravity. It
is thus a misconception that a lattice regularization will necessarily break diffeo-
morphism invariance. Rather, one should view the use of DT inthe path integral as
a way to sum directly overgeometries, thus avoiding completely the issue of dif-
feomorphism invariance. The reason why such an interpretation is possible is that
the triangulations used in DT can be viewed as piecewise linear geometries without
any specific metric assigned to them: once we know the lengthsof the links and the
gluing of the simplices, we have the complete information about the geometry. Us-
ing identical simplices the basic information about the geometry is entirely encoded
in the way the simplices are glued together, and the summation over geometries be-
comes the summation over possible abstract triangulations. The UV cut-off is the
lengtha of the sides of the simplices. Using this formalism, one can formulate a
Euclidean theory of quantum gravity using as building blocks Euclidean equilateral
simplices and one obtains a lattice version of two-dimensional quantum gravity. It
can be solved analytically for finitea and agrees with a continuum quantization of
two-dimensionalEuclideangravity (quantum Liouville theory) in the limita→ 0.

However, in spacetime dimension larger than two this Euclidean lattice approach
does not seem to have the desired continuum limit. This apparent failure was a key
motivation for introducing a modified approach based on so-called causal dynamical
triangulations (CDT). It realizes, in a nonperturbative context, ideas put forward
in earlier work [4], which advocated that in a gravitationalpath integral with the
correct, Lorentzian signature of spacetime one should sum over causal geometries
only.

2.2 The combinatorial solution in two dimensions

Let us describe the explicit solution of CDT in two dimensions, that is, one space
and one time dimension [7].

The model is defined as follows. The topology of the underlying manifold is
taken to beS1× [0,1], with “space” represented by the closed manifoldS1. We con-
sider the evolution of this space in “time”. No topology change of space is allowed.

The geometry of each spatial slice is uniquely characterized by the length as-
signed to it. In the discretized version, the lengthL will be quantized in units of a
lattice spacinga, i.e. L = l ·a wherel is an integer. A slice will thus be defined by
l vertices andl links connecting them. To obtain a 2d geometry, we will evolve this
spatial loop in discrete steps. This leads to a preferred notion of (discrete) “time”
t, where each loop represents a slice of constantt. The propagation from time-slice
t to time-slicet + 1 is governed by the following rule: each vertexi at time t is
connected toki vertices at timet +1, ki ≥ 1, by links which are assigned a “time-
like” squared edge length−a2. The ki vertices,ki > 1, at time-slicet + 1 will be
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connected byki −1 consecutive space-like links, thus formingki −1 triangles. Fi-
nally the right boundary vertex in the set ofki vertices will be identified with the left
boundary vertex of the set ofki+1 vertices. In this way we get a total of∑l

i=1(ki −1)
vertices (and also links) at time-slicet +1 and the two spatial slices are connected
by ∑l

i=1ki ≡ lt + lt+1 triangles, see Fig. 1.

Fig. 1 The propagation of a spatial slice from time stept to stept +1 in two-dimensional causal
triangulations. The ends of the strip should be joined to form a band with topologyS1× [0,1].

The elementary building blocks of a geometry are therefore triangles with one
space- and two time-like edges. We define them to be flat in the interior. A consistent
way of assigning interior angles to such Minkowskian triangles is described in [5].
The angle between two time-like edges isγtt = −arccos32, and between a space-
and a time-like edgeγst =

π
2 + 1

2 arccos32, summing up toγtt + 2γst = π . The sum
over all angles around a vertex withj incoming andk outgoing time-like edges (by
definition j,k ≥ 1) is given by 2π +(4− j − k)arccos3

2. The regular triangulation
of flat Minkowski space corresponds toj = k = 2 at all vertices. The volume of a

single triangle is given by
√

5
4 a2.

One may view these geometries as a subclass of all possible triangulations that
allow for the introduction of a causal structure. Namely, ifwe think of all time-like
links as being future-directed, a vertexv′ lies in the future of a vertexv iff there is
an oriented sequence of time-like links leading fromv to v′. Two arbitrary vertices
may or may not be causally related in this way.

In quantum gravity one sums over all geometries connecting,say, two spatial
boundaries of lengthL1 andL2, with the weight of each geometryg given by

eiS[g], S[g] = Λ0

∫ √−g (in 2d), (1)

whereΛ0 is the bare cosmological constant. If in the discretized model we have a
piecewise linear geometry made fromn triangles the corresponding action will be

S= Λ0

√
5a2

4
n= λn, λ ≡ Λ0

√
5a2

4
. (2)

In our discretized model the boundaries will be characterized by integersl1 andl2,
the number of vertices or links at the two boundaries. The path integral amplitude
for the “propagation” from geometryl1 to l2 will be the sum over all interpolating
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surfaces of the kind described above, with a weight given by the discretized version

of (1). Let us call the corresponding amplitudeG(1)
λ (l1, l2). Thus we have

G(1)
λ (l1, l2) =

∞

∑
t=1

G(1)
λ (l1, l2; t), (3)

G(1)
λ (l1, l2; t) =

∞

∑
l=1

G(1)
λ (l1, l ;1) l G(1)

λ (l , l2, t −1), (4)

G(1)
λ (l1, l2;1) =

1
l1

∑
{k1,...,kl1

}
eiλ ∑

l1
i=1 ki , (5)

whereλ denotes thebare dimensionless lattice cosmological constant3 defined in
(2), and wheret denotes the total number of time-slices connectingl1 andl2.

From a combinatorial point of view it is convenient to mark a vertex on the
entrance loop in order to get rid of the factorsl and 1/l in (4) and (5), that is,

Gλ (l1, l2; t)≡ l1G(1)
λ (l1, l2; t). (6)

(The unmarking of a point may be thought of as the factoring out by (discrete)
spatial diffeomorphisms). Note thatGλ (l1, l2;1) plays the role of a transfer matrix,
satisfying

Gλ (l1, l2, t1+ t2) = ∑
l

Gλ (l1, l ; t1) Gλ (l , l2; t2) (7)

Gλ (l1, l2; t +1) = ∑
l

Gλ (l1, l ;1) Gλ (l , l2; t). (8)

Knowing Gλ (l1, l2;1) allows us to findGλ (l1, l2; t) by iterating (8)t times. This
program is conveniently carried out by introducing the generating function for the
numbersGλ (l1, l2; t),

Gλ (x,y; t)≡ ∑
k,l

xk yl Gλ (k, l ; t), (9)

which we can use to rewrite (7) as

Gλ (x,y; t1+ t2) =
∮

dz
2π iz

Gλ (x,z
−1; t1)Gλ (z,y; t2), (10)

where the contour should be chosen to include the singularities in the complexz–
plane ofGλ (x,z

−1; t1) but not those ofGλ (z,y; t2).
One can either view the introduction ofGλ (x,y; t) as a purely technical device

or takex andy as related to boundary cosmological constants. Letλi andλ f denote
dimensionless lattice boundary cosmological constants, such that if the entrance

3 One obtains the renormalized (continuum) cosmological constantΛ by an additive renormaliza-
tion, see below.
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boundary consists ofk links the lattice boundary action will beλik, or, introducing
a dimensionful bare lattice boundary cosmological constant Λi = λi/a and a contin-
uum boundary lengthLi = ka, ΛiLi (and similarlyΛ0 = λ0/a etc.). We now write

x= eiλi = eiΛi a, y= eiλ f = eiΛoa, (11)

such thatxk = eiλi k becomes the exponential of the boundary cosmological term,
and similarly foryl = eiλ f l . Let us for notational convenience define

g= eiλ . (12)

For the technical purpose of counting we viewx,y andg as variables in the complex
plane. In general the function

G(x,y;g; t)≡ Gλ (x,y; t) (13)

will be analytic in a neighbourhood of(x,y,g) = (0,0,0).
From the definitions (5) and (6) it follows by standard techniques of generating

functions that we may associate a factorg with each triangle, a factorx with each
vertex on the entrance loop and a factory with each vertex on the exit loop, leading
to

G(x,y;g;1) =
∞

∑
k=0

(

gx
∞

∑
l=0

(gy)l

)k

−
∞

∑
k=0

(gx)k =
g2xy

(1−gx)(1−gx−gy)
. (14)

Formula (14) is simply a book-keeping device for all possible ways of evolving
from an entrance loop of any length in one step to an exit loop of any length. The
subtraction of the term 1/(1− gx) has been performed to exclude the degenerate
cases where either the entrance or the exit loop is of length zero.

From (14) and eq. (10), witht1 = 1, we obtain

G(x,y;g; t) =
gx

1−gx
G(

g
1−gx

,y;g; t −1). (15)

This equation can be iterated and the solution written as

G(x,y;g; t) = F2
1 (x)F

2
2 (x) · · ·F2

t−1(x)
g2xy

[1−gFt−1(x)][1−gFt−1(x)−gy]
, (16)

whereFt(x) is defined iteratively by

Ft(x) =
g

1−gFt−1(x)
, F0(x) = x. (17)

Let F denote the fixed point of this iterative equation. By standard techniques one
readily obtains
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Ft(x) = F
1− xF+F2t−1(x−F)
1− xF+F2t+1(x−F)

, F =
1−
√

1−4g2

2g
. (18)

Inserting (18) in eq. (16), we can write

G(x,y;g, t)=
F2t(1−F2)2 xy

(At −Btx)(At −Bt(x+ y)+Ctxy)
(19)

=
F2t(1−F2)2 xy

[

(1−xF)−F2t+1(F−x)
][

(1−xF)(1−yF)−F2t(F−x)(F−y)
] , (20)

where the time-dependent coefficients are given by

At = 1−F2t+2, Bt = F(1−F2t), Ct = F2(1−F2t−2). (21)

The combined region of convergence to the expansion in powers gkxl ym, valid for
all t is

|g|< 1
2
, |x|< 1, |y|< 1. (22)

The asymmetry betweenx and y in the expressions (19) and (20) is due to the
marking of the entrance loop. If we also mark the exit loop we have to multiply
Gλ (l1, l2; t) by l2. We define

G(2)
λ (l1, l2; t)≡ l2 Gλ (l1, l2; t) = l1l2G(1)

λ (l1, l2; t). (23)

The corresponding generating functionG(2)(x,y;g; t) is obtained fromG(x,y;g; t)
by acting withy d

dy,

G(2)(x,y;g; t) =
F2t(1−F2)2xy

(At −Bt(x+ y)+Ctxy)2 . (24)

We can computeGλ (l1, l2; t) from G(x,y;g; t) by a (discrete) inverse Laplace
transformation

Gλ (l1, l2; t) =
∮

dx
2π ix

∮

dy
2π iy

1
xl1

1
yl2

G(x,y;g; t), (25)

where the contours should be chosen in the region whereG(x,y;g; t) is analytic. A
more straightforward method is to rewrite the right-hand side of (19) as a power
series inx andy, yielding

Gλ (l1, l2; t) =
F2t(1−F2)2Bl1+l2

l2 Al1+l2+2

min(l1,l2)−1

∑
k=0

l1+l2−k−1
k!(l1−k−1)!(l2−k−1)!

(

−AtCt

B2
t

)k

,

(26)
which, as expected, is symmetric with respect tol1 andl2 after division byl1.
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In the next section we will give explicit expressions forGλ (l1, l2; t), Gλ (l1, l2)
andGλ (x,y) (the integral ofGλ (x,y; t) overt) in a certain continuum limit.

2.3 The continuum limit

The path integral formalism we are using here is very similarto the one used to re-
present the free particle as a sum over paths. Also there one performs a summation
over geometric objects (the paths), and the path integral itself serves as the propa-
gator. From the particle case it is known that the bare mass undergoes an additive
renormalization (even for the free particle), and that the bare propagator is subject
to a wave-function renormalization (see [6] for a review). The same is true in two-
dimensional gravity, treated in the formalism of dynamicaltriangulations [6]. The
coupling constants with positive mass dimension, i.e. the cosmological constant and
the boundary cosmological constants, undergo an additive renormalization, while
the partition function itself (i.e. the Hartle-Hawking-like wave functions) undergoes
a multiplicative wave-function renormalization. We therefore expect the bare cou-
pling constantsλ ,λi andλ0 to behave as

√
5

4
Λ0 ≡

λ
a2 =

Cλ
a2 + Λ̃ , Λi ≡

λi

a
=

Cλi

a
+ X̃, Λo ≡

λ f

a
=

Cλ f

a
+ Ỹ, (27)

whereΛ̃ , X̃,Ỹ denote the renormalized cosmological and boundary cosmological
constants and where we have absorbed a factor

√
5/4 in the definition ofΛ̃ .

If we introduce the notation

gc = eiCλ , xc = eiCλi , yc = e
iCλ f , (28)

for critical values of the coupling constants, it follows from (11) and (12) that

g= gceia2Λ̃ , x= xc eiaX̃, y= yceiaỸ. (29)

The wave-function renormalization will appear as a multiplicative cut-off dependent
factor in front of the bare “Green’s function”G(x,y;g; t),

GΛ̃ (X̃,Ỹ;T) = lim
a→0

aηG(x,y;g; t), (30)

whereT = at, and where the critical exponentη should be chosen such that the
right-hand side of eq. (30) exists. In general this will onlybe possible for particular
choices ofgc, xc andyc in (30).

The basic relation (7) can survive the limit (30) only ifη = 1, since we have
assumed that the boundary lengthsL1 andL2 have canonical dimensions and satisfy
Li = ali .

From eqs. (19) and (21) it is clear that we can only obtain a nontrivial continuum
limit if |F | → 1. This leads to a one-parameter family of possible choices
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gc =
1

2cosα
for F = eiα , α ∈ IR, (31)

for critical values ofg. It follows from (12) that most values ofgc correspond to
a complexbarecosmological constantλ . However, the renormalized cosmological
constantΛ̃ in (27) (depending on how we approachgc in the complex plane) could
in principle still be real.

A closer analysis reveals that only atgc = ±1/2, corresponding toα = 0,π , is
there any possibility of obtaining an interesting continuum limit. Note that these
two values are the only ones which can be reached from a regionof convergence of
G(x,y;g; t) (see Fig. 2). Note also that requiring the bareλ to lie inside the region

Fig. 2 The circle of convergence in the complexg plane (radius 1/2), and the critical lines, ending
in g=±1/2.

of convergence wheng → gc leads to a restriction Im̃Λ > 0 on therenormalized
cosmological constant̃Λ , since|g|< 1

2 ⇒ Im λ > ln2.
Without loss of generality, we will consider the critical valuegc = 1/2. It corre-

sponds to a purely imaginary bare cosmological constantλc :=Cλ/a2 =−i ln2/a2.
If we want to approach this point from the region in the complex g-plane where
G(x,y;g; t) converges it is natural to choose the renormalized couplingΛ̃ imaginary
as well,Λ̃ = iΛ , i.e.

λ = i
ln 1

2

a2 + iΛ . (32)

One obtains a well-defined scaling limit (corresponding toΛ ∈ IR) by lettingλ →
λc along the imaginary axis. The Lorentzian form for the continuum propagator is
obtained by an analytic continuationΛ →−iΛ in therenormalizedcoupling of the
resulting Euclidean expressions.

At this stage it may seem that we are surreptitiously reverting to a fully Euclidean
model. We could of course equivalently have conducted the entire discussion up to
this point in the “Euclidean sector”, by omitting the factorof −i in the exponential
(1) of the action, choosingλ positive real and taking all edge lengths equal to 1.
However, from a purely Euclidean point of view there would not have been any



CDT—an Entropic Theory of Quantum Gravity 11

reason for restricting the state sum to a subclass of geometries admitting a causal
structure. The associated preferred notion of a discrete time allows us to define an
“analytic continuation in time” (we will discuss this in more detail later for higher-
dimensional gravity). Because of the simple form of the action in two dimensions,
the rotation

∫

dx dt
√−glor → i

∫

dx dteu
√

geu (33)

to Euclidean metrics in our model is equivalent to the analytic continuation of the
cosmological constantΛ . What is special about the above situation is that we per-
form the analytic continuation configuration by configuration, i.e. geometry by ge-
ometry. That is possible because of the particular set of causal geometries we have
chosen to include in the regularized path integral. Moreover, as will be clear later, it
is a feature which extends to higher dimensions too: each piecewise linear geometry
with Lorentzian signature we use in the path integral has an analytic continuation
to a Euclidean piecewise linear geometryand one has a relation like (33) for the
Einstein-Hilbert actions of the two geometries (see later for details).

From (19) or (20) it follows that we can only get macroscopic loops in the
limit a → 0 if we simultaneously takex,y → 1. (For gc = −1/2, one needs to
takex,y → −1. The continuum expressions one obtains are identical to those for
gc = 1/2.) Again the critical points correspond to purely imaginary bare bound-
ary cosmological coupling constants. We will allow for suchimaginary couplings
and thus approach the critical pointλi = λ f = 0 from the region of convergence of
G(x,y;g; t), i.e. via real, positiveX,Y where

λi = iXa, λ f = iYa. (34)

Again X andY have an obvious interpretation as positive boundary cosmological
constants in a Euclidean theory, which may be analytically continued to imaginary
values to reach the Lorentzian sector.

Summarizing, we have

g=
1
2

e−Λa2 → 1
2
(1− 1

2
Λa2), (i.e. F = 1−a

√
Λ) (35)

as well as
x= e−Xa → 1−aX, y= e−aY → 1−aY, (36)

where the arrows→ in (35) and (36) should be viewed as analytic coupling constant
redefinitions ofΛ ,X andY, which we have performed to get rid of factors of 1/2
etc. in the formulas below. With the definitions (35) and (36)it is straightforward
to perform the continuum limit ofG(x,y;g, t) as(x,y,g)→ (xc,yc,gc) = (1,1,1/2),
yielding

GΛ (X,Y;T) =
4Λ e−2

√
ΛT

(
√

Λ +X)+e−2
√

ΛT(
√

Λ −X)



12 J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll

× 1

(
√

Λ +X)(
√

Λ +Y)−e−2
√

ΛT(
√

Λ −X)(
√

Λ −Y)
. (37)

ForT → ∞ one finds

GΛ (X,Y;T)
T→∞−→ 4Λ e−2

√
ΛT

(X+
√

Λ)2(Y+
√

Λ)
. (38)

FromGΛ (X,Y;T) we can finally calculateGΛ (L1,L2;T), the continuum ampli-
tude for propagation from a loop of lengthL1, with one marked point, at time-slice
T = 0 to a loop of lengthL2 at time-sliceT, by an inverse Laplace transformation,

GΛ (L1,L2;T) =
∫ i∞

−i∞
dX
∫ i∞

−i∞
dY eXL1 eYL2 GΛ (X,Y;T). (39)

This transformation can be viewed as the limit of (25) fora → 0. The continuum
version of (10) thus reads

GΛ (X,Y;T1+T2) =

∫ i∞

−i∞
dZ GΛ (X,−Z;T1) GΛ (Z,Y;T2), (40)

where it is understood that the complex contour of integration should be chosen to
the left of singularities ofGΛ (X,−Z;T1), but to the right of those ofGΛ (Z,Y,T2).
By an inverse Laplace transformation we get in the limitT → ∞

GΛ (L1,L2;T)
T→∞−→ 4L1e−

√
Λ (L1+L2) e−2

√
ΛT , (41)

where the origin of the factorL1 is the marking of a point in the entrance loop. For
T → 0 we obtain

GΛ (X,Y;T)
T→0−→ 1

X+Y
, (42)

in agreement with the expectation that the inverse Laplace transform should behave
like

GΛ (L1,L2;T)
T→0−→ δ (L1−L2). (43)

The general expression forGΛ (L1,L2;T) can be computed as the inverse Laplace
transform of formula (37), yielding

GΛ (L1,L2;T) =
e−[coth

√
ΛT]

√
Λ(L1+L2)

sinh
√

ΛT

√
ΛL1L2

L2
I1

(

2
√

ΛL1L2

sinh
√

ΛT

)

, (44)

whereI1(x) is a modified Bessel function of the first kind. The asymmetry between
L1 andL2 arises because the entrance loop has a marked point, whereasthe exit
loop has not. The amplitude with both loops marked is obtained by multiplying
with L2, while the amplitude with no marked loops is obtained after dividing (44) by
L1. The highly nontrivial expression (44) agrees with the looppropagator obtained
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from a bona-fide continuum calculation in proper-time gaugeof pure 2d gravity by
Nakayama [33].

The important point we want to emphasize here is that the additive renormaliza-
tion of the cosmological constant is an entropic effect whencalculated after rotation
to Euclidean signature. In fact, we can write the propagator(13) as

G(x,y,g; t) = ∑
k,l ,n

xkyl gn ∑
T(k,l ,n)

1
C(T)

, (45)

where the summation is over allcausaltriangulationsT(k, l ,n) (as defined above
and rotated to Euclidean signature), consisting ofn triangles and with the two
boundaries made ofk andl links.C(T) is the order of the so-called automorphism
group of graphT and in our case, with a mark on one boundary,C(T) = 1. The
critical point isgc = 1/2. That can only be the case because the number of (causal)
triangulations constructed fromn triangles grows exponentially asenln2. The con-
tinuum renormalized cosmological constant, as defined by eq. (35), emerges when
taking the difference between the value of the action for a geometry made ofn trian-
gles and theentropyof the configurations with a given action (which in this case is
proportional to the number of trianglesn. More precisely, let the number of causal
triangulations which can be constructed fromn triangles be

N (n) = f (n)eλcn, λc = ln2, (46)

where f (n) is a prefactor growing slower than exponentially, and whichcan also
depend on the boundary cosmological constantsx,y, a dependence we will suppress
here. We can now write eq. (45) as

G(λ ) = ∑
n

f (n) e−(λ−λc)n, g≡ e−λ . (47)

Introducing the notationA= na2 for the continuum area (again disposing of a factor√
5/4 for notational simplicity) we see that (35) can be written as

λ = λc+Λa2, (48)

introducing the renormalized cosmological constantΛ . Eq. (47) can now be written
as

G(Λ) =

∫ ∞

0
dA f(A/a2) e−ΛA, (49)

with the continuum actionΛA and the nontrivial physics contained in the function
f (A/a2).

The two-dimensional CDT model can be generalized in a numberof ways: one
can use different weights and explore the universality of the model [8] and there
exists a Hamiltonian formulation [9]. Matter can be coupledto the model [10] and
one can weaken the causal constraints [11]. In addition, onecan relax the constraint
of a bounded geometry [12].
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3 Causal dynamical triangulations in four dimensions

3.1 The choice of triangulations

The generalization from two spacetime dimensions to three or four is in principle
straightforward [13, 14]. In what follows we will concentrate on the 4d case. We
consider spacetimes with the topology[0,1]×S3. In principle we can choose any
spatial topology, as long as we do not allow it to change during time evolution. Here,
for simplicity, we will always take the topology of space to be that of a three-sphere.

Suppose now that we have a foliation of spacetime where “time” is taken to
mean proper time. Each time-slice, with the topology ofS3, is represented by a
three-dimensional triangulation. We choose as the set of possible triangulations of
S3 those which can be constructed from gluing together tetrahedra whose links are
all of lengthas = a, playing the role of lattice spacing and UV cut-off. These tetra-
hedra are thus building blocks for our curvedS3-geometries, which we take to be
piecewise linear. The curvature of such a piecewise linear geometry is located at the
links. A number of tetrahedra will share a link. Each tetrahedon has a dihedral angle
associated with that link, and the sum of dihedral angles of the tetrahedra sharing
the link would add up to 2π if space was flat around that link. If the dihedral angles
add up to something different it signals that the piecewise linear space is not flat.
In our case the tetrahedra are all identical with a dihedral angleθd = arccos(1/3),
which implies there is no exact tessellation of flat three-dimensional space using
equilateral tetrahedra. However, it is not important for the use we are making of the
piecewise linear geometries: we use them in the path integral where we sum over
all geometries (of a given, fixed topology). Thus the important question is whether
the set of piecewise linear geometries we are using is dense in the set of geome-
tries relevant for the path integral. To answer this question, we need to know the
measure on the set of geometries. Presently we do not even have a mathematical
characterization of the set of geometries to be used in the path integral (and the path
integral has of course not been defined in any mathematical sense). Will the set of
relevant geometries be like the set of paths used in the path integral of the particle,
i.e. all continuous paths? Will the path integral over geometries include all “continu-
ous” geometries? Because the answer is presently unknown, we will proceed with a
straightforward generalization of the class of piecewise straight paths of the particle
case and see what we get.

We now connect two neighbouringS3-triangulationsT3(1) andT3(2), associated
with two consecutive discrete proper times 1 and 2, and create a four-dimensional,
piecewise linear geometry, such that the corresponding four-dimensional “slab” con-
sists of four-simplices, has the topology of[0,1]×S3, and hasT3(1) andT3(2) as
its three-dimensional boundaries. The spatial links (and subsimplices) contained in
these four-dimensional simplices lie in eitherT3(1) or T3(2), and the remaining links
are time-like with proper length squareda2

t = −αa2, α > 0. Subsimplices which
contain at least one time-like link we will call “time-like”. In discrete units, we can
say thatT3(1) andT3(2) are separated by a single step in time direction, correspond-
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t

t+1

(4,1)                                        (3,2)

Fig. 3 A (4,1)- and a(3,2)-simplex interpolating between two neighbouring spatial slices. The
time-reversed(1,4)- and(2,3)-simplices are obtained by turning these upside down.

ing to a time-like distance
√

αa in the sense that each link in the slab which con-
nects the two boundaries has a squared proper length−αa2. It does not imply that
all points on the piecewise linear manifold defined byT3(1) have a proper distance
squared−αa2 to the piecewise linear manifold defined byT3(2) in the piecewise
Minkowskian metric of the triangulation.

Thus, our slabs or “sandwiches” are assembled from four-dimensional simplicial
building blocks of four kinds, which are labelled accordingto the number of ver-
tices they share with the two adjacent spatial slices of constant integer proper time.
A (4,1)-simplex has one tetrahedron (and consequently four vertices) in common
with T3(1), and only one vertex in common withT3(2). It has four time-like links,
connecting each of the four vertices inT3(1) to the vertex belonging toT3(2). In the
second kind of four-simplex, of type(1,4), the roles ofT3(1) andT3(2) are inter-
changed. By contrast, a(3,2)-simplex has a spatial triangle (and consequently three
vertices) in common with the sliceT3(1) and a spatial link (with two vertices) in
common withT3(2), together with six time-like links connecting the two slices. The
corresponding(2,3)-simplex is again obtained by interchangingT3(1) andT3(2).
The allowed simplices, up to time reversal, are shown in Fig.3. For our purposes, we
need not keep track of the numbers of four-simplices and their time-reversed coun-
terparts separately, and will denote the total number of(4,1)- and(1,4)-simplices

by N(4,1)
4 and similarly the total number of(3,2)- and(2,3)-simplices byN(3,2)

4 . An
allowed four-dimensional triangulation of the slab has topology [0,1]×S3, is a sim-
plicial manifold with boundary, and is constructed according to the recipe above. To
summarize, a path in the gravitational path integral consists of a sequence of trian-
gulations ofS3, denoted byT3(k), k = 0, . . . ,n, where the space between each pair
T3(k) andT3(k+1) has been filled in by a layer of four-simplices. In the path integral
we sum over all possible sequences{T3(k)} and all possible ways of triangulating
the slabs in betweenT3(k) andT3(k+1).
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3.2 The choice of action

Piecewise linear geometries allow for a natural realization of the Einstein-Hilbert
action, as discovered by Regge [15]. For a piecewise linear geometry ind dimen-
sions, defined by a triangulation with length assignments toeach link, the curvature
is concentrated on the(d−2)-dimensional sub-simplices. For example, in three di-
mensions the curvature is located at the links, as describedabove. In dimension four,
the curvature is concentrated at the triangles of the triangulation. A direct measure
of the sectional curvature of the subspace perpendicular toa given triangle is the
deficit angleone can associate with it, defined as the difference between the sum
of “dihedral” angles of the four-simplices sharing the triangle and 2π . A deficit an-
gle different from zero signifies nonvanishing curvature. In our case we have two
kinds of triangles, purely space-like ones and time-like ones (where two of the links
are time-like). The local contribution to the total integrated curvature from such a
(d−2)-dimensional sub-simplex is the volume of the sub-simplex multiplied by the
deficit angle around it, and the integrated discrete (scalar) curvature action is then
the sum of these contributions. This leads to a discretized Einstein-Hilbert action of
the form

SEH =
1

16πG

∫

d4x
√

−g(x)
(

R(x)−2Λ
)

→

SRegge= k
(

∑
space−like

△

Vol(△)
1
i

(

2π − ∑
4−simplices

at △

Θ
)

+ ∑
time−like

△

Vol(△)
(

2π − ∑
4−simplices

at △

Θ
))

−λ
(

∑
(4,1)&(1,4)−
tetrahedra

Vol(4,1)+ ∑
(3,2)&(2,3)−
tetrahedra

Vol(3,2)
)

, (50)

whereR is the Ricci scalar curvature andΛ the cosmological constant. Furthermore,
we can read off that the constantk is proportional to the inverse of the gravitational
coupling constantG and the constantλ is proportional toΛ/G.

It is straightforward to calculate the volumes of the spatial and time-like triangles
as well as the four-volumes of the(4,1)- and(3,2)-simplices. This enables us to

express the discretized Einstein-Hilbert action as function of the numbersN(4,1)
4 and

N(3,2) defined in the previous subsection and the total numberN0 of vertices in the
triangulation, leading to

SRegge= (N0− χ) ·kπ
√

4α +1 +

N(4,1)
4 ·

(

k
π
2

√
4α +1−

√
3k arcsinh

1

2
√

2
√

3α +1

− 3k
2

√
4α +1arccos

2α +1
2(3α +1)

−λ
√

8α +3
96

)

+
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N(3,2)
4 ·

(

kπ
√

4α +1+

√
3k
4

arcsinh

√
3
√

12α +7
2(3α +1)

−

3k
4

√
4α +1

(

2arccos
−1

2
√

2
√

2α +1
√

3α +1
+arccos

4α +3
4(2α +1)

)

−λ
√

12α +7
96

)

. (51)

For details of the derivation of this formula from (50) we refer to [14]. The quantity
χ denotes the Euler characteristic of the four-dimensional spacetime and appears be-
cause we have been using the Euler relationN0−N1+N2−N3+N4 = χ along with
other so-called Dehn-Somerville relations to express the numbersN1, N2 andN3 in
terms ofN4 andN0, whereNi counts the number ofi-dimensional (sub-)simplices
of a given triangulation. The constantα comes from allowing for a finite scaling
a2

t =−αa2
s between the length assignment of the proper length of space-and time-

like links.
The Lorentzian action (51) is obviously real forα > 0. We now want to study

its rotation to Euclidean signature. This is naturally implemented by performing
an analytic continuation inα from positive to negativeα. In this way, the squared
proper lengths of all links become positive and we have a piecewise linear geometry
of Euclidean signature, where the links connecting two vertices from neighbouring
time slices have lengtha2

t = |α|a2
s. Of course, we also want the Euclideanized four-

simplices to be nondegenerate. This requires−α > 7/12, the value below which
a (3,2)-simplex becomes degenerate. Performing the analytic continuation in the
complex lowerα-half-plane and ending at a negative value smaller than -7/12 results
in the following Euclidean action (note that we have made a redefinitionα →−α,
such that nowα > 7/12):

SRegge
E =−kπ

√
4α −1(N0− χ)

+N(4,1)
4

(

k
√

4α −1

(

−π
2
−

√
3√

4α −1
arcsin

1

2
√

2
√

3α −1

+
3
2

arccos
2α −1
6α −2

)

+λ
√

8α −3
96

)

+N(3,2)
4

(

k
√

4α −1

(

−π +

√
3

4
√

4α −1
arccos

6α −5
6α −2

+
3
4

arccos
4α −3
8α −4

+
3
2

arccos
1

2
√

2
√

2α −1
√

3α −1

)

+λ
√

12α −7
96

)

. (52)

This action is precisely the Regge action for a piecewise linear geometry, con-
structed from Euclidean building blocks wherea2

t = |α|a2
s. By analytic continuation

in the complex lower-halfα-plane we have therefore arrived at the usual formula
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iSMinkowski→−SEuclidean (53)

from quantum field theory, whereSEuclideanexpressed in terms of (continuum) Eu-
clidean geometry is

SEH
E =− 1

16πG

∫

d4ξ
√

g(ξ )
(

R(ξ )−2Λ
)

. (54)

In quantum field theory on a flat, Minkowskian background sucha “Wick rotation”
does not usually refer to a specific configuration in the path integral. A configu-
ration will typically not even be differentiable and therefore not have any analytic
continuation. Rather, it will refer to the functional form of the actionS[φ ] and how
it changes by formally replacingitM by tE. This reflects the fact that the Feynman
propagator, i.e. the result of a functional integration over the field(s)φ , has specific
analytic properties which allow for a rotation int to the corresponding Euclidean
propagator. In our framework the situation is different, inthat each individual piece-
wise linear geometry can be rotated to a corresponding Euclidean geometry and its
associated action transforms in accordance with (53).

For what follows it will be convenient to simplify this action and write it as

SRegge
E =−(κ0+6∆)N0+κ4(N

(4,1)
4 +N(3,2)

4 )+∆(2N(4,1)
4 +N(3,2)

4 ), (55)

whereκ0 = kπ
√

4α −1, κ4 is a linear combination ofk andλ with coefficients
depending ofα, and∆ is, for fixed κ0 andκ4, a function ofα, chosen such that
for α = 1 (i.e. whenat = as) we have∆ = 0. For the values ofκ0 andκ4 which
will be of interest for us any∆ > 0 corresponds toat < as. In Fig. 4 we showα as
function of∆ for κ0 = 2.2 andκ4 chosen critical (a concept to be discussed shortly).
Furthermore, we have dropped the term involvingχ . It plays no role in the dynamics
since we are not changing the topology.

3.3 The entropic theory of gravity and its phase diagram

Having chosen the cut-off and an action, we can now write downthe path integral
or partition function for the CDT version of quantum gravity,

Z(G,Λ) =

∫

D [g] e−SEH
E [g] → Z(κ0,κ4,∆) = ∑

T

1
CT

e−SE(T), (56)

where the summation is over all causal triangulationsT of the kind described above,
and we have dropped the superscript “Regge” on the discretized actionSE given by
(55). Like in the two-dimensional model, the factor 1/CT is a symmetry factor,
given by the inverse of the orderCT of the automorphism group of the triangulation
T. Note that we can write the partition function as
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Fig. 4 Plot of the asymmetry factorα , defined asa2
t = αa2

s, whereat andas are the lengths of
time-like and space-like links, plotted as a function of∆ . The horizontal line isα = 7/12, the
lowest allowed value ofα , where the (3,2)-simplices collapse in the time direction.

Z(κ0,κ4,∆) = ∑
N4,N

(4,1)
4 ,N0

e−(κ4+∆ )N4 e−∆N(4,1)
4 e(κ0+6∆ )N0 ∑

T(N4,N
(4,1)
4 ,N0)

1
CT

. (57)

Introducing
x= e−(κ4+∆ ), y= e−∆ , z= e(κ0+6∆ ), (58)

we can write

Z̃(x,y,z) = ∑
N4,N

(4,1)
4 ,N0

xN4 yN
(4,1)
4 zN0 N (N4,N

(4,1)
4 ,N0), (59)

whereN (N4,N
(4,1)
4 ,N0) denotes the number of CDT configurations withN4 four-

simplices of whichN(4,1)
4 are of type(4,1) or (1,4), and withN0 vertices, including

symmetry factors. Thus the calculation of the partition function is in principle a
combinatorial problem, just as in two dimensions where we could solve the prob-
lem explicitly (and formula (59) is similar to (45)). This isthe reason why we call
the model entropic:the partition function is entirely determined by the numberof
geometries in the simplest possible way, namely, by being the generating function
for these numbers.The counting of geometric “microscopic” configurations of given

(N4,N
(4,1)
4 ,N0) is their entropy in the sense of statistical models. Unlike in two di-
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mensions, it has until now not been possible to solve this counting problem analyti-
cally, which means that we will have to rely on numerical methods.

Let us first understand better the nature of the partition function given by (57).
We can write the sum as

Z(κ0,κ4,∆) = ∑
N4

e−(κ4+∆ )N4 ZN4(κ0,∆), (60)

whereZN4(κ0,∆) is the partition function for a fixed numberN4 of four-simplices,
namely,

ZN4(κ0,∆) = ∑
TN4

1
CT

e−∆N
(4,1)
4 (TN4) e(κ0+6∆ )N0(TN4). (61)

One can show thatZN4(κ0,∆) is exponentially bounded as a function ofN4 [16],

ZN4(κ0,∆)≤ e(κ
c
4+∆ )N4 f (N4,κ0,∆), (62)

where f (N4) grows slower than exponentially. We callκc
4 thecritical value ofκ4.

It is a function of∆ andκ0 and plays the same role asλc in the two-dimensional
model discussed above: the partition function is only defined for κ4 > κc

4 and the
“infinite-volume” limit, where〈N4〉 → ∞ can only be achieved forκ4 → κc

4. We
are interested in sending the lattice spacingsa = as,at to zero while keeping the
physical four-volume, which is roughlyN4a4, fixed. Thus we want to consider the
limit N4 → ∞, and fine-tuneκ4 to κc

4 for fixed κ0,∆ . This fine-tuning is similar to
the fine-tuningλ → λc in the two-dimensional model. Like there, we expect the
physicalcosmological constantΛ to be defined by theapproachto the critical point
according to

κ4 = κc
4 +

Λ
16πG

a4, (63)

an equation similar to (48). It ensures that the term

(κ4−κc
4) N4 =

Λ
16πG

V4, V4 = N4a4, (64)

gives rise to the standard cosmological term in the Einstein-Hilbert action. The cor-
responding phase diagram is described qualitatively by Fig. 5. The shaded surface
is the “critical surface”, which we want to approach from above (by decreasingκ4).
We put “critical surface” in quotation marks since more correctly fine-tuning to this
surface corresponds to taking the limit of infinite four-volume, which doesnot nec-
essarilyimply also a continuum limit. The situation here may be different from that
of the two-dimensional model, where approachingλc automatically meant taking
a continuum limit. Two-dimensional quantum gravity is of course a very simple
model with no propagating degrees of freedom, whereas in four-dimensional quan-
tum gravity we expect to have genuinely propagating field degrees of freedom. Thus
the situation is more like in ordinary Euclidean lattice field theory/critical phenom-
ena, where “infinite volume” does not necessarily mean “continuum limit”.
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Fig. 5 The phases A, B and C in the coupling constant space spanned by(κ0,∆ ,κ4). Phase C is
the one where extended four-dimensional geometries emerge.

A good example of what one might expect is the Ising model on a finite lattice.
To obtain a phase transition for this model one has to take thelattice volume to
infinity, since there are no genuine phase transitions for finite systems. However,
just taking the lattice volume to infinity is not sufficient toensure critical behaviour
of the Ising model. We also have to tune the coupling constantto its critical value,
at which point the spin-spin correlation length diverges. Similarly, having placed
ourselves on the “critical” surface of CDT quantum gravity or, rather, its “infinite-
volume” surface, we can discuss the various phases, indicated in the figure as A, B
and C. We move between these phases by changing the bare coupling constants∆
andκ0. The solid lines drawn on the surface are the phase transition lines between
the (potentially) different phases, which can be of first or higher order. In order to
go from the discrete lattice to the continuum theory, we are often interested in a
second- or higher-order phase transition, since such transitions are associated with
divergent correlation lengths of the field propagators, allowing one to forget about
the lattice spacing relative to the correlation length. We will be looking for such
transition points.

How can one imagine obtaining an interesting continuum behaviour as a function
of κ0? For the purpose of illustration, let us assume that the subleading correction
f (N4,k0) has the form
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f (N4,κ0) = ek(κ0)
√

N4, (65)

(where later we will check numerically that such a term is indeed present, cf. eq.
(78)). The partition function now has the form

Z(κ4,κ0) =∑
N4

e−(κ4−κc
4)N4+k(κ0)

√
N4. (66)

For dimensional reasons we expect the classical Einstein term in the action to scale
like

1
16πG

∫

d4ξ
√

g(ξ ) R(ξ ) ∝
√

V4

G
, (67)

motivating the search for a valueκc
0 with k(κc

0) = 0, with the approach to this point
governed by

k(κ0) ∝
a2

G
, i.e. k(κ0)

√
N4 ∝

√
V4

G
. (68)

With such a choice we can identify a continuum limit where〈N4〉, calculated from
(66) (by a trivial saddle point calculation), goes to infinity while a→ 0,

〈N4〉=
∑N4

N4 e−(κ4−κc
4)N4+k(κ0)

√
N4

∑N4
e−(κ4−κc

4)N4+k(κ0)
√

N4
≈ k2(κ0)

4(κ4−κc
4)

2 ∝
1

Λ2a4 . (69)

Thus we find

〈V4〉 ∝
1

Λ2 , Z(κ4,κ0)≈ exp
( k2(κ0)

4(κ4−κc
4)

)

= exp
( c

GΛ

)

, (70)

as one would naı̈vely expect from Einstein’s equations, with the partition function
being dominated by a typical instanton contribution, for a suitable constantc.

The actual set-up for the computer simulations is slightly different from the the-
oretical framework discussed above, in that we choose to work with a fixed num-
ber of four-simplicesN4 in the computer simulations, rather than fine-tuningκ4 to
its critical value. We can perform computer simulations forvariousN4 (and fixed
κ0,∆ ) and in this way check scaling with respect toN4. This is an alternative to
fine-tuningκ4, and much more convenient from a computational point of view. For
largeN4 we can then check whether there are any finite-size effects orwhether ef-
fectively we already are at the “critical surface” shown in Fig. 5. In addition, we
fix the total numberNt of spatial slices, with proper-time labelst1, t2 = t1+at , up
to tNt = t1+(Nt−1)at , where∆ t ≡ at is the discrete lattice spacing in the temporal
direction4, and denote byT =Ntat the total extension of the universe in proper time.
For convenience we identifytN+1 with t1, in this way imposing the topologyS1×S3

rather than[0,1]×S3. This choice does not affect physical results, as will become
clear below when we present the numerical results.

4 The separation between adjacent slices isat , in the sense that all links connecting two neighbour-
ing slices have lengthat , as discussed above.
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Fig. 6 The phase diagram of four-dimensional quantum gravity, defined in terms of causal dynam-
ical triangulations, parametrized by the inverse bare gravitational couplingκ0 and the asymmetry
parameter∆ .

Finally, the computer simulations are so-called Monte Carlo simulations, where
the computer simply generates a sequence of configurations,in this case piecewise
linear geometries, with the correct probability distribution, as dictated by the mea-
sure and action used in the path integral. It is based on a local updating in terms of
“moves”, which change the piecewise linear geometry in a well-defined way (see
[14] for a detailed description). These geometries are usedto calculate expectation
values of observables.

3.4 The actual phase diagram

Based on computer simulations withN4 = 80.000 we have constructed the phase
diagram shown in Fig. 6 [23]. The dotted lines in the figure represent mere extra-
polations, and lie in a region of coupling constant space which is difficult to access
due to the inefficiencies of our computer algorithms.

There are three phases, labeled A, B and C. In phase C, which had our main
interest in [18, 19, 21, 20], we observe a genuinely four-dimensional universe in
the sense that as a function of the continuum four-volumeV4 (linearly related to the

number of four-simplices), the time extent scales asV1/4
4 and the spatial volume as
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V3/4
4 . Moving into phase A, these scaling relations break down. Instead, we observe

a number of small universes arranged along the time direction like “pearls on a
string”, if somewhat uneven in size. Individual beads alongthe time direction can
grow and shrink, be created or disappear as a function of the Monte Carlo time
used in the simulations. These small universes are connected by thin “necks”, i.e.
slices of constant integer timetn, where the spatialS3-universes are at or close to the
smallest three-volume permitted (consisting of five tetrahedra glued together), thus
preventing “time” from becoming disconnected.

By contrast, phase B is characterized by the “vanishing” of the time direction, in
the sense that only one spatial hypersurface has a three-volume appreciably larger
than the minimal cut-off size of five just mentioned. One might be tempted to con-
clude that the resulting universe is three-dimensional, just lacking the time direction
of the extended universe found in phase C. However, the situation is more involved;
although we have a large three-volume collected at a single spatial hypersurface,
the corresponding spatial universe has almost no extensionin the spatial directions.
This follows from the fact (ascertained through direct measurement) that it is pos-
sible to get in just a few steps from one tetrahedron to any other by moving along
the centres of neighbouring tetrahedra or, alternatively,from one vertex to any other
along a chain of links. The Hausdorff dimension is thereforequite high, and possi-
bly infinite. Let us assume for the moment that it is indeed infinite; then the universe
in phase B has neither time nor spatial extension, and there is no geometry in any
classical sense.

We can now give the following qualitative characterizationof the three phases
in terms of what we will provisionally call “average geometry”. The universe of
phase C exhibits a classical four-dimensional background geometry on large scales,
such that〈geometry〉 6= 0. One may even argue that〈geometry〉 = const. in view
of the fact that according to the minisuperspace analysis of[20, 21, 36] and al-
lowing for a finite, global rescaling of the renormalized proper time, the universe
can be identified with the roundS4, a maximally symmetric de Sitter space of con-
stant scalar curvature (as we will describe in detail below). By contrast, in phase
B the universe presumably has no extension or trace of classicality, corresponding
to 〈geometry〉 = 0. Lastly, in phase A, the geometry of the universe appears tobe
“oscillating” in the time direction. The different behaviour of typical configurations
is shown in Fig. 7. The “time” direction is horizontal and we plot the three-volume
N3(t), i.e. the number of tetrahedra in a given time slice, as the circumference of a
circle. The three phases are separated by three phase transition lines which meet in
a triple point as illustrated in Fig. 6.
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Fig. 7 The volume profiles of typical configurations in the phases A,B and C. Phase C (bottom
figure) is the one where extended four-dimensional geometries emerge.

4 The macroscopic de Sitter universe (phase C)

4.1 Identifying the infrared part of the universe

Phase C in the above-mentioned phase diagram has our main interest, because this
is where we observe an extended four-dimensional universe.We will now discuss in
more detail the geometric properties of this “macroscopic”universe. The measure-
ments reported in this Section have been performed at the values(κ0,∆) = (2.2,0.6)
of the bare coupling constants, a point which lies well inside phase C.

The Monte Carlo simulations referred to above will generatea sequence of space-
time histories. An individual spacetime history is not an observable, in the same way
as a pathx(t) of a particle in the quantum-mechanical path integral is not. However,
it is perfectly legitimate to talk about theexpectation value〈x(t)〉 as well as the
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fluctuations around〈x(t)〉, both of which are in principle calculable in quantum
mechanics.

Obviously, there are many more dynamical variables in quantum gravity than
there are in the particle case. We can still imitate the quantum-mechanical situation
by picking out a particular one, for example, the spatial three-volumeV3(t) at proper
time t. We can measure both its expectation value〈V3(t)〉 as well as fluctuations
around it. The former gives us information about the large-scale “shape” of the
universe we have created in the computer. A “measurement” ofV3(t) consists of a
tableN3(i), wherei = 1, . . . ,Nt andNt denotes the total number of time slices. The
time axis has a total length ofNt time steps, whereNt = 80 in the actual simulations,
and we have cyclically identified time sliceNt +1 with time slice 1.

What we observe in the simulations is that for the range of discrete volumesN4

under study the universe doesnot extend (i.e. has appreciable three-volume) over
the entire time axis, but rather is localized in a region muchshorter than 80 time
steps. Outside this region the spatial extensionN3(i) will be minimal, consisting
of the minimal number (five) of tetrahedra needed to form a three-sphereS3, plus
occasionally a few more tetrahedra.5 This thin “stalk” therefore carries little four-
volume, which means that in a given simulation we can for mostpractical purposes
consider the total four-volume of the remainder, the extended universe, as fixed.

In order to perform a meaningful average over geometries which explicitly refers
to the extended part of the universe, we have to remove the translational zero mode
present, see [21] for a discussion of the procedure. Having defined the “centre of
volume” along the time direction of our spacetime configurations, we can now per-
form superpositions of configurations and define the average〈N3(i)〉 as a function
of the discrete timei. The results of measuring this average discrete spatial size of
the universe at various discrete timesi are illustrated in Fig. 8 and can be succinctly
summarized by the formula

Ncl
3 (i) := 〈N3(i)〉 =

N4

2(1+ ξ )
3
4

1

s0N1/4
4

cos3
(

i

s0N1/4
4

)

, s0 ≈ 0.59, (71)

whereN3(i) denotes the number of three-simplices in the spatial slice at discretized
time i andN4 the total number of four-simplices in the entire universe.ξ is a constant
referring to the fact that we have a nonvanishing asymmetry∆ , which implies differ-
ent lengths for time- and space-like links and consequentlydifferent four-volumes

for four-simplices of type (4,1) and (3,2). Likewise, the ratio N(4,1)
4 /N(3,2)

4 depends
on the choice of bare coupling constants and has to be measured. Of course, formula
(71) is only valid in the extended part of the universe where the spatial three-volumes
are larger than the minimal cut-off size.

The data shown in Fig. 8 have been collected at the couplings(κ0,∆) = (2.2,0.6)
and forN4 = 362.000. For these particular values of(κ0,∆) we have verified rela-
tion (71) forN4 ranging from 45.500 to 362.000 building blocks (45.500, 91.000,

5 This kinematic constraint ensures that the triangulation remains asimplicial manifoldin which,
for example, twod-simplices are not allowed to have more than one(d−1)-simplex in common.
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Fig. 8 Background geometry〈N3(i)〉: MC measurements for fixedN4 = 362.000 and best fit
(71) yield indistinguishable curves at given plot resolution. The bars indicate the average size of
quantum fluctuations.

181.000 and 362.000). After rescaling the time and volume variables by suitable
powers ofN4 according to relation (71), and plotting them in the same wayas in
Fig. 8, one finds almost total agreement between the curves for different spacetime
volumes, as illustrated in Fig. 9. This constitutes a beautiful example of finite-size
scaling. At least with regard to measuring the average three-volumeV3(t) all our
discretized volumesN4 are sufficiently large to be treated as infinite, in the sense
that no further changes will occur for largerN4.

By contrast, the quantum fluctuations indicated in Fig. 8 as vertical bars for each
discrete timei are volume-dependent and will become (relatively) larger whenthe
the total four-volume is decreased. Eq. (71) shows that spatial volumes scale ac-
cording toN3/4

4 and time intervals according toN1/4
4 , as one would expect for a

genuinelyfour-dimensional spacetime. This is exactly the scaling we haveused in
Fig. 9. It strongly suggests a translation of (71) to a continuum notation. The most
natural identification is given by

√
gtt Vcl

3 (t) =V4
3

4B
cos3

( t
B

)

, (72)

where we have made the identifications

ti
B
=

i

s0N1/4
4

, ∆ ti
√

gtt V3(ti) = 2C̃4N3(i)a
4, (73)

such that
∫

dt
√

gtt V3(t) =V4. (74)
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Fig. 9 Rescaling of time and volume variables according to relation (71) forN4 = 45.500, 91.000,

181.000 and 362.000. The plot also include the curve (71). More precisely:σ ∝ i/N1/4
4 andP(σ ) ∝

N3(i)/N3/4
4 .

In (73),
√

gtt is the constant proportionality factor between the timet and genuine
continuum proper timeτ, τ =

√
gtt t. (The combination∆ ti

√
gttV3 containsC̃4, re-

lated to the four-volume of a four-simplex rather than the three-volume correspond-
ing to a tetrahedron, because its time integral must equalV4). WritingV4 = 8π2R4/3,
and

√
gtt = R/B, eq. (72) is seen to describe a Euclideande Sitter universe(a four-

sphere, the maximally symmetric space for positive cosmological constant) as our
searched-for, dynamically generated background geometry! In the parametrization
of (72) this is the classical solution to the action

S=
1

24πG

∫

dt
√

gtt

(

gttV̇3
2
(t)

V3(t)
+ k2V

1/3
3 (t)−λV3(t)

)

, (75)

wherek2 = 9(2π2)2/3 andλ is a Lagrange multiplier, fixed by requiring that the
total four-volume beV4,

∫

dt
√

gtt V3(t) =V4. Up to an overall sign, this is precisely
the Einstein-Hilbert action for the scale factora(t) of a homogeneous, isotropic uni-
verse (rewritten in terms of the spatial three-volumeV3(t) = 2π2a(t)3), although
we of course never put any such simplifying symmetry assumptions into the CDT
model. The intriguing possibility of describing the data interms of the minisuper-
space model (75) was first reported in [36].

A discretized, dimensionless version of (75) is
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Sdiscr = k1∑
i

(

(N3(i +1)−N3(i))2

N3(i)
+ k̃2N1/3

3 (i)

)

, (76)

where k̃2 ∝ k2. This can be seen by applying the scaling (71), namely,N3(i) =

N3/4
4 n3(si) and si = i/N1/4

4 . This enables us to finally conclude that the identifi-
cations (73) when used in the action (76) lead naı̈vely to thecontinuum expression
(75) under the identification6

G=
a2

k1

√

C̃4 s̃2
0

3
√

6
. (77)

We also note that the reported scaling (71) implies that we can write

Sdiscr = k1
√

N4 ∑
i

dsi

(

1
n3(si)

(n3(si+1)−n3(si)

dsi

)2
+ k̃2n1/3

3 (si)

)

, (78)

where dsi = 1/N1/4
4 . Thus, referring to (65), we see that there are at least termsin

log f (N4,κ0,∆) which scale like
√

N4. To obtain the form (65) we need additional
terms of entropic nature since the coefficient of

√
N4 in (65) is assumed positive.

4.2 The size of the universe and the flow ofG

It is natural to identify the coupling constantG multiplying the effective action
for the scale factor with the gravitational coupling constant G. The effective action
describing our computer-generated data is given by eq. (75), and its dimensionless
lattice version by (76). The computer data allow us to extract k1 ∝ a2/G, with a the
spatial lattice spacing, and the precise constant of proportionality given by eq. (77).

For the bare coupling constants(κ0,∆) = (2.2,0.6) we have high-statistics mea-
surements forN4 ranging between 45.500 and 362.000 four-simplices (equivalently,

N(4,1)
4 ranging between 20.000 and 160.000 four-simplices). The choice of∆ deter-

mines the asymmetry parameterα, and the choice of(κ0,∆) determines the ratioξ
betweenN(3,2)

4 andN(4,1)
4 . This in turn determines the “effective” four-volumeC̃4 of

an average four-simplex, which also appears in (77). The number s̃0 in (77) is de-
termined directly from the time extensionTuniv of the extended universe according
to

Tuniv = π s̃0

(

N(4,1)
4

)1/4
. (79)

Finally, from our measurements we have determinedk1 = 0.038. Taking everything
together according to (77), we obtainG≈ 0.23a2, or ℓPl ≈ 0.48a, whereℓPl =

√
G

is the Planck length.

6 Due to the difference in four-volume betweenN(3,2)
4 andN(4,1)

4 for α 6= 1 we have to introduce a

compensating factor ˜s0 ≡ s0〈N4〉1/4/〈N(4,1)
4 〉1/4, see [21] for a detailed discussion.
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From the identification of the volume of the four-sphere,V4 = 8π2R4/3 =

C̃4N(4,1)
4 a4, we obtain thatR= 3.1a. In other words,the linear sizeπR of the quan-

tum de Sitter universes studied here lies in the range of 12-21 Planck lengths for
N4 in the range mentioned above and for the bare coupling constants chosen as
(κ0,∆) = (2.2,0.6).

Our dynamically generated universes are therefore not verybig, and the quan-
tum fluctuations around their average shape are large, as is apparent from Fig. 8.
The presence of such fluctuations is evident in the bottom snapshot picture of the
extended universe shown in Fig. 7, whose volume profile deviates from that of a
regular sphere. The point is of course that we have to performan averaging process
to obtain theexpectation valueof the volume profile, and this is precisely what we
have been doing numerically. It is rather surprising that the semiclassical minisuper-
space formulation gives an adequate description – at least for the volume profile –
for universes of such a small size, a fact that should be welcome news to anyone per-
forming semiclassical calculations to describe the behaviour of the early universe.
However, when looking at more local geometric properties ofthe universe, our lat-
tices are still coarse compared to the Planck scaleℓPl because the latter corresponds
to roughly half a lattice spacing. If we are after a theory of quantum gravity valid on
all scales, we are specifically interested in uncovering phenomena associated with
Planck-scale physics. In order to collect data which are free from unphysical short-
distance lattice artefacts at this scale, we would ideally like to work with a lattice
spacing much smaller than the Planck length, while still being able to set by hand
the physical volume of the universe studied on the computer.The way to achieve
this is by changing the bare coupling constantsκ0,∆ such that the coefficientK in
(77),G=: Ka2, is changed to a larger value. However,K is a combination of a num-
ber of factors and they might change differently whenκ0,∆ are changed. It is thus
a (computer-)experimental exercise to find a path in the(κ0,∆) coupling-constant
plane such thatK increases and we end up withℓPl =

√
Ka ≫ a. We will discuss

later whether such a path exists.

5 Constructive evidence for the effective action

We have found a perfect fit (71) to the emergent background geometry and the curve
can be related to the continuum effective action (75). However, it is still of interest
to investigate to what extent the action (76) can be rederived from the data. Interest-
ingly, as we shall see below, this can largely be done.

The data at our disposal are: (i) the measurement of the three-volumeN3(i) at the
discrete time stepi, and of the three-volume correlatorN3(i)N3( j). Having created

Q statistically independent configurationsN(q)
3 (i) by Monte Carlo simulation allows

us to construct the average
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N̄3(i) := 〈N3(i)〉 ∼=
1
Q

Q

∑
q=1

N(q)
3 (i), (80)

where the superscript in(·)(q) denotes the result of the q’th configuration sampled;
(ii) the covariance matrix

C(i, j) ∼= 1
Q

Q

∑
q=1

(N(q)
3 (i)− N̄3(i))(N

(q)
3 ( j)− N̄3( j)). (81)

We now assume we have a discretized action which can be expanded around the
expectation valuēN3(i) according to

Sdiscr[N̄+n] = Sdiscr[N̄]+
1
2 ∑

i, j

niP̂i j n j +O(n3). (82)

If the quadratic approximation describes the quantum fluctuations around the expec-
tation valueN̄ well, the inverse of the operator̂P will be a good approximation to
the covariance matrix. Conversely, still assuming the quadratic approximation gives
a good description of the fluctuations, theP̂ constructed from the covariance matrix
will to a good approximation allow us to reconstruct the action via (82).

Fig. 10 shows the measured covariance matrixC(i, j) and its inverse, the operator
P̂. Some care is needed in invertingC(i, j) since it has two zero modes, one from
the constraint thatN4 is kept fixed, and (an approximate) one from the fact that
the translational mode of the ‘centre of volume’ can only be fixed up to a lattice
spacing, see [21] for a detailed discussion. As is clear fromthe figure, the inverse
P̂ is completely dominated by the stalk data. This feature is unavoidable: while the
correlation matrix is dominated by long-range fluctuations, the inverse matrix will
be dominated by short-distance fluctuations, i.e. the fluctuations in the stalk, which
by definition are associated with cut-off energies.

Looking at the inversêP of the measured covariance matrix, we observe that
to very good approximation it is small and constant, except on the diagonal and
the entries neighbouring the diagonal. This means that we can decompose it into a
“kinetic” and a “potential” term. The kinetic part̂Pkin is defined as the matrix with
non-zero elements on the diagonal and in the neighbouring entries, such that the
sum of the elements in a row or column is always zero. The potential part P̂pot is
then given by whatever remains along the diagonal. We therefore arrive at a tentative
representation of̂P as

P̂i j = P̂kin
i j + P̂pot

i j , (83)

P̂kin
i j = pi∆i j , P̂pot

i j = uiδi j , (84)

where the matrices∆i j andδi j are essentially defined through the construction just
described7. We knowP̂ from the data, and can make a least-χ2 fit to determine the

7 For details of normalization and subtleties in the definition of P̂kin andP̂pot related to the zero
modes we refer to [21].
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Fig. 10 The covariance matrixC (top) and its inverse (bottom).

numberspi andui . For details we refer again to [21]. The results are shown in Figs.
11 and 12.

Let us look at the discretized minisuperspace action (76) which has served as in-
spiration for the definition of̂Pkin andP̂pot. ExpandingN3(i) to second order around
N̄3(i), one obtains the identifications

N̄3(i) =
2k1

pi
, U ′′(N̄3(i)) =−ui, (85)
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Fig. 11 The directly measured expectation valuesN̄3(i) compared to the averages̄N3(i) recon-
structed from (85), forκ0 = 2.2 and∆ = 0.6.

whereU(N3(i)) = k1k̃2N1/3
3 (i) denotes the potential term in (76). We use the fitted

coefficientspi to reconstruct̄N3(i) and then compare these reconstructed values with
the averages̄N3(i) measured directly. Similarly, we can use the measuredui ’s to re-

construct the second derivativesU ′′(N̄3(i)) and compare them to the form̄N−5/3
3 (i)

coming from (76).
The reconstruction of̄N3(i) is illustrated in Fig. 11 for a given four-volumeN4

and compared with the directly measured expectation valuesN̄3(i). One observes
that the reconstruction works very well and, most importantly, that the coupling con-
stantk1, which in this way can be determined independently for each four-volume
N4, really is independent ofN4 in the range ofN4’s we have considered, as it should
be.

We will now try to extract the potentialU ′′(N̄3(i)) from the information contained
in the matrixP̂pot. The determination ofU ′′(N̄3(i)) is not an easy task as can be
understood from Fig. 12, which shows the measured coefficients ui extracted from
the matrixP̂pot, and which we consider rather remarkable. The interpolatedcurve
makes an abrupt jump by two orders of magnitude going from theextended part of
the universe (stretching over roughly 40 time steps) to the stalk. The occurrence of
this jump is entirely dynamical, since no distinction has ever been made by hand
between stalk and bulk. In order to extract physical information related to a genuine
potential like the one appearing in (76), we of course must restrict ourselves to
the region inside the “blob”, corresponding to the data range encircled in Fig. 12.
From the figure it is also clear that extractingU ′′(N̄3(i)) from the data available is a
nontrivial task.
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Fig. 12 Reconstructing the second derivativeU ′′(N̄3(i)) from the coefficientsui , for κ0 = 2.2,

∆ = 0.6 andN(4,1)
4 = 160.000. Data chosen from the encircled region are independent of short-

distance artefacts.

The range of the discrete three-volumesN3(i) in the extended universe is from
several thousand down to five, the kinematically allowed minimum. However, the
behaviour for the very small values ofN3(i) near the edge of the extended universe
is likely to be mixed in with discretization effects. In order to test whether one

really has aN1/3
3 (i)-term in the action one should therefore only use values ofN3(i)

somewhat larger than five (shown as the encircled region in Fig. 12). This has been
done in Fig. 13, where we have converted the coefficientsui from functions of the
discrete time stepsi into functions of the background spatial three-volumeN̄3(i)
using the identification in (85) (the conversion factor can be read off the relevant
curve in Fig. 11). The data presented in Fig. 13 were taken at adiscrete volume

N(4,1)
4 = 160.000, and fit well the formN−5/3

3 , corresponding to a potentialk̃2N1/3
3 .

Apart from obtaining the correct powerN−5/3
3 for the potential for a given space-

time volumeN4, it is equally important that the coefficient in front of thisterm be
independent ofN4. This seems to be the case as is shown in Fig. 14, where we have
plotted the measured potentials in terms of reduced, dimensionless variables which
make the comparison between measurements for differentN4’s easier. – In sum-
mary, we conclude that the data allow us to reconstruct the action (76) with good
precision.
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Fig. 13 The second derivative−U ′′(N3) as measured forN(4,1)
4 = 160.000,κ0 = 2.2 and∆ = 0.6.

6 Connection to Hǒrava-Lifshitz gravity

While we have verified that the action (76) describes the datawell, one aspect of
the formula may lend itself to a more general interpretation. Until now we have
chosen to view the “experimental” formula (71) as describing a round four-sphere
via the identifications (72) and (73). However, the potential asymmetry between
space and time introduced in our model by working with a time foliation allows for
a different interpretation, namely, that space and time really behave differently, as
we will explain in what follows.

Although at the level of the piecewise linear structures we have a precise rela-
tion between the coupling constant∆ and the asymmetry parameterα, this relation
enters the construction only in a relatively weak way, in that for a given∆ the bare
action we use is the Regge-Einstein-Hilbert action for a piecewise linear manifold
with the given connectivity and the length assignmenta2

t = αa2
s. Nowhere else does

this length assignment appear. Of course,if the model had a well-defined pertur-
bative expansion, one could have chosen the bare coupling constants such that the
classical action (and, by implication, the relation between as andat) played an im-
portant role in the path integral. However, as already explained in the introduction,
this is not the case. Rather, our choice of bare coupling constants is dictated by the
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Fig. 14 The dimensionless second derivativeu = N5/4
4 U ′′(N3) plotted againstν−5/3, whereν =
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4 is the dimensionless spatial volume, forN(4,1)

4 = 40.000, 80.000 and 160.000,κ0 = 2.2
and∆ = 0.6. One expects a universal straight line near the origin (i.e. for large volumes) if the
power lawU(N3) ∝ N1/3 is correct.

wish to find nontrivial physics, which restricts us to a region far away from where
the action term dominates the entropy of configurations.

In other words, the effective action we have obtained bears only indirect traces of
the classical action put into the path integral. Similarly,the precise relation between
space and time directions in the final continuum theory will be determined by the
statistical averages resulting from the full path integral, rather than the parameterα
put into the discretized action.

To illustrate the nonperturbative mechanism at work, let usconsider the measure-
ments in phase C, where we observe a macroscopic universe whose extension in the

time direction scales likeN1/4
4 for different, fixed four-volumesN4. It should be

emphasized that this scaling behaviour is by no means predetermined, for example,
time in phase B scales completely differently (in fact, the time extension vanishes
there, which is of course an extreme situation). One is therefore led to conclude that
time and (the linear extension of) space scale identically in phase C. This is corrob-
orated by evidence that well inside phase C there seems to be awell-defined notion
of a “physical” proper time extent independent ofα, as one would have expected
naı̈vely [22].
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However, the fact that the behaviour in phase B is very different leaves open
the interesting possibility that a nontrivial scaling relation between time and spa-
tial extent may ensuewhen one approaches the B-C phase transition line. In that
case one could try to describe the situation by a continuum effective action where
time and space have different dimensionality. This is precisely what P. Hořava at-
tempted in his novel class of gravity theories [23], a topic we will return to shortly.
But even in phaseC, where time and space scale in the same way, one could ex-
plore the consequences of relaxing the notion that time and space should be related
exactly as they are in general relativity. What we have done until now is to inter-
pret our results in the continuum limit in terms of the classical theory. This can be
achieved by making a global rescaling of continuum proper time, which we have di-
rect access to through the preferred time foliation. More specifically, we have been
checking our data against the cosmological minisuperspacemodel (75), which can
be derived from general relativity by assuming spatial homogeneity and isotropy.
Eq. (75), when written in terms of the scale factor8 a(τ), τ denoting proper time,
reads

S=
3π
4

∫

dτ
(

aȧ2+a−λa3
)

. (86)

All our measurements are perfectly consistent with an effective action of this form,
but the “cosmological” observables we have been considering so far cannot dis-
criminate between this and more general cosmologies comingfrom a generalized
“gravity” theory with a built-in anisotropy between space and time, like Hořava’s.
In the latter, one can again assumespatialhomogeneity and isotropy to obtain cos-
mological solutions, which in the Euclidean sector,in the infrared limit, arise from
an action quite similar to (86) [24, 25, 26], namely,

S=
π
8

∫

dτ
(

3(3λ̂ −1)aȧ2+6γa−a3(6λ + Ṽ(a))
)

. (87)

The “potential”Ṽ(a) in this expression has an expansion in inverse powers ofa,
coming from the higher-order spatial derivative terms in the Hořava-Lifshitz action.
In the actual computer simulations, in both (86) and (87)λ is a Lagrange multiplier
rather than a cosmological constant, which ensures that thefour-volume is kept
fixed. As long as we can fix proper time only up to a constant and as long as we
cannot measure reliably the correction termṼ(a) containing inverse powers ofa, it
is not really possible to distinguish “experimentally” between (86) and (87) in terms
of a reconstruction of the action, as we did in the previous Section. In this situation,
wheneverλ̂ > 1/3 andγ > 0, a rescaling of time in (87) leads to the same form
as (86) up to a constant of proportionality. Taking into account the difficulties in
verifying the mere existence of the linear term in (86) from the data (cf. Fig. 12), it
is clear that we cannot presently extract from the data in a reliable way a potential
Ṽ(a) that depends on inverse powers ofa, starting witha−4. The only region in
Fig. 12 where such information could be extracted is for the smallest values ofa.

8 equivalently, one can also work with the associated three-volumeV(τ) = 2π2a(τ)3 as the basic
configuration space variable
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Unfortunately, this is also where lattice artefacts will beimportant and artefacts from
the “stalk” may get mixed in with genuine continuum physics;a glance at Fig. 12
reveals how large the effects of the stalk are right next to the small-a region.

This not withstanding, we can discuss the qualitative correspondence between
the Hořava scenario and our phase diagram. In our earlier analysis of the different
phases of CDT quantum gravity, we have chosen for a particular qualitative descrip-
tion to match precisely that of a Lifshitz phase diagram [27,28]. The qualitative
feature we want to emphasize in this context is that the role played by “average ge-
ometry” in quantum gravity bears an intriguing resemblanceto that played by the
Lifshitz field φ . In an effective Lifshitz theory, the Landau free energy density F(x)
as function of an order parameterφ(x) takes the form9

F(x) = a2φ(x)2+a4φ(x)4+a6φ(x)6+ . . .+c2(∂α φ)2+d2(∂β φ)2+e2(∂ 2
β φ)2+ . . . ,

(88)
where for ad-dimensional systemα = m+1, . . . ,d, β = 1, . . . ,m. Distinguishing
between “α”- and “β ”-directions allows one to take anisotropic behaviour intoac-
count. For a usual system,m= 0 and a phase transition can occur whena2 passes
through zero (say, as a function of temperature). Fora2 > 0 we haveφ = 0, while for
a2 < 0 we have|φ |> 0 (always assuminga4 > 0). However, one also has a transition
when anisotropy is present (m> 0) andd2 passes through zero. For negatived2 one
can then have an oscillating behaviour ofφ in them “β ”-directions. Depending on
the sign ofa2, the transition to this so-called modulated or helical phase can occur
either from the phase whereφ = 0, or from the phase where|φ | > 0. We conclude
that the phases C, B, and A of CDT quantum gravity depicted in Fig. 8 can be put
into one-to-one correspondence with the ferromagnetic, paramagnetic and helical
phases of the Lifshitz phase diagram10 if we in place ofφ we use “average geom-
etry”. The triple point where the three phases meet is the so-called Lifshitz point,
where in the Lifshitz model one can have a nontrivial scaling.

The critical dimension beyond which the mean-field Lifshitztheory alluded to
above is believed to be valid isdc = 4+m/2. In lower dimensions, the fluctuations
play an important role and so does the number of components ofthe fieldφ . This
does not necessarily affect the general structure of the phase diagram, but can alter
the order of the transitions. Without entering into the details of the rather complex
general situation, let us just mention that form= 1 fluctuations will often turn the
transition along the A-C phase boundary into a first-order transition. Likewise, most
often the transition between phases B and C is of second order.

We conclude that the structure of the Lifshitz phase diagramis presently com-
patible with our CDT observations. Based on the order parameter investigated in
[17], the A-C transition of CDT quantum gravity looks like a clear-cut first-order
transition. On the other hand, the verdict is still out for the B-C line. The signals
from the Monte Carlo simulations are ambiguous, and it appears that close to the

9 see, for example, [28] for an introduction to the content andscope of “Landau theory”
10 For definiteness, we are using here a “magnetic” language forthe Lifshitz diagram. However,
the Lifshitz diagram can also describe a variety of other systems, for instance, liquid crystals.
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transition line our algorithms for updating the geometriesneed to be improved to
produce fully reliable results.

Phase transitions of higher than first order are of intrinsicinterest since they may
serve as points where one can define the continuum theory. Since it appears that we
have a well-defined infrared limit in phase C, such points would naturally be UV
fixed points, and moving away from them should bring us to the IR limit. Given
the overall structure of the phase diagram, the possible scenarios are as follows: if
either the A-C or the B-C line is second-order, we can potentially use any point on it
to attempt to define a UV limit. By contrast, if they are first-order lines, we are left
with two interesting points which may be associated with a higher-order transition:
the endpointP0 of the open B-C line (cf. Fig. 6), where the phase transition may be
of higher order than along the line itself, and the Lifshitz triple pointPt , where the
transition may also be of higher order.

Assuming there were such higher-order phase transition points, how would we
determine whether the UV limit of the theory is isotropic in space and time or, more
generally, of Hořava-type? One defining aspect of Hořava-Lifshitz gravity is the
assumption that the scaling dimensions of space and time differ in the ultraviolet
regime. This difference is used to construct a theory containing higher-order spatial
derivatives in such a way that it is renormalizable. How would one observe such a
difference in the present lattice approach? – Consider a universe of time extentT,
spatial extensionL and total four-volumeV4(T,L). By measuringT andL we can
establish the mutual relations

T ∝ V1/dt
4 , L ∝

(

V1−1/dt
4

)1/ds
∝ T(dt−1)/ds. (89)

Well inside phaseC we have measureddt = 4 andds= 3, in agreement with what is
expected for an ordinary four-dimensional spacetime. If the dimension [T] of time
wasz times the dimension [L] of length, we would have

z=
ds

dt −1
. (90)

We observed earlier that well inside phase B bothds anddt must be large, if not
infinite. In case the B-C phase transition is second-order, it may happen thatz goes
to a value different from 1 when we approach the transition line. To investigate
this possibility, we have tried to determinez as a function of the parameter∆ as
∆ → 0. For∆ > 0.3 one obtains convincinglydt ≈ 4 andds≈ 3 and thusz≈ 1. We
can make an even stronger statement, namely, that the data does not contradict the
interpretation of∆ as an (unphysical) asymmetry parameter: when∆ is increased
the correspondingα is decreasing (see Fig. 4), while the number of lattice spac-
ings in the time direction is increasing, which at least qualitatively allows for the
interpretation that the physical “time” is independent ofα. By contrast, for∆ . 0.3
the quality of our results does not allow for any definite statements. Autocorrelation
times become very long and there may be large finite-volume effects, which obscure
the measurements and which are precisely based on finite-size scaling.
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To summarize, there is still a distinct possibility that a nontrivial scaling with
z 6= 1 can occur when one approaches the transition line between phases B and
C. Should the B-C transition turn out to be a first-order transition, the interesting
points would beP0 andPt . It would then be natural to conjecture that the pointPt is
a Hořava-Lifshitz point with a nontrivial scaling relation between space and time.
The pointP0, which does not appear in a standard Lifshitz diagram, wouldperhaps
be a natural candidate for an isotropic scaling point. On theother hand, if the B-
C transition line is second-order, it leaves open the interesting possibility that the
critical exponent changes continuously fromz= 3 at the Lifshitz pointPt to z= 1 at
the (hypothetically) isotropic pointP0.

7 Making contact with asymptotic safety

As we discussed earlier, it is presently difficult to get close to the B-C phase tran-
sition line, which is needed if we want to achieve a higher resolution in the UV
regime, such that the lattice spacing is much smaller than the Planck length. Also,
we do not know yet whether in such a limit we have isotropy in space and time,
like in the asymptotic safety approach, or need to invoke an anisotropic scenario
as outlined above. For the time being, let us assume that the endpointP0 of the B-
C transition line in the phase diagram of Fig. 6 corresponds to an isotropic phase
transition point. How can one make contact with the gravitational renormalization
group treatment? The standard way would be to “measure” observables (by lattice
Monte Carlo simulations), like a mass in QCD or the string tension in Yang-Mills
theory. For definiteness, consider the string tension, which has mass dimension two.
The measurements, for some choiceg0 of the bare coupling constant, will give us a
numberσ(g0). We now write

σ(g0) = σRa2(g0), (91)

whereσR is the physical string tension anda(g0) describes the dependence of the
lattice spacinga on the bare coupling constant. Being able to write down a relation
like this for all observables, wherea(g0) is determined by the renormalization group
equation

a
dg0

da
=−β (g0), (92)

allows us to define a continuum theory at a fixed pointg∗0 whereβ (g0) = 0, since
there we can takea(g0)→ 0 wheng0 → g∗0. In the case of QCD or Yang-Mills theory
the fixed point is the Gaussian fixed pointg∗0 = 0, but in the more general setting of
asymptotic safety it will be non-Gaussian.

Assume now that we have a fixed point for gravity. The gravitational coupling
constant is dimensionful, and we can write for the bare coupling constant

G(a) = a2Ĝ(a), a
dĜ
da

=−β (Ĝ), β (Ĝ) = 2Ĝ− cĜ3+ · · · . (93)
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The IR fixed pointĜ= 0 corresponds toG constant while the putative non-Gaussian
fixed point corresponds tôG→ Ĝ∗, i.e. G(a)→ Ĝ∗a2. In our case it is tempting to
identify our dimensionless constantk1 with 1/Ĝ, up to the constant of proportion-
ality given in (77). Close to the UV fixed point we have

Ĝ(a) = Ĝ∗−Kac̃, k1 = k∗1+Kac̃, c̃=−β ′(Ĝ∗). (94)

Usually one relates the lattice spacing near the fixed point to the bare coupling con-
stants with the help of some correlation lengthξ . Assume thatξ diverges according
to

ξ (g0) =
c

|g0−g∗0|ν
(95)

in the limit as we tune the bare coupling constantg0 → g∗0. This correlation length
is associated with a field correlator and usually some physical massmph by means
of

|n1−n2|
ξ (g0)

= mph(a|n1−n2|) = mph|x1− x2|, (96)

where|n1− n2| is a discrete lattice distance and|x1− x2| a physical distance. Re-
quiring the physical quantities|x1− x2| andmph to remain constant asa→ 0 then
fixesa as a function of the bare coupling constant,

a=
1

cmph
|g0−g∗0|ν . (97)

Eq. (97) is only valid close to the fixed point and should be compared to the renor-
malization group equation (92), from which we deduce thatν =−1/|β ′(g∗0)|.

In the gravitational case at hand we do not (yet) have observables which would
allow us to define meaningful correlation lengths. At any rate, it is by no means
a settled issue how todefinesuch a concept in a theory where one integrates over
all geometries, and where the length is itself a function of geometry (see [32] for
related discussions). Instead, we construct from our computer-generated “data” an
effective action, where all degrees of freedom, apart from the scale factor, have been
integrated out. We impose the constraint that the data are fitted to a universe of total
lattice four-volumeN4. Measurements are performed at different, fixed values ofN4,
all the while maintaining the relation11

V4 = N4a4. (98)

We then “remove the regulator”, by investigating the limitN4 → ∞. In ordinary
lattice field theory, we have two options for changingN4; either we keepa fixed,
and therefore changeV4, or we keepV4 fixed and changea. Let us illustrate the
difference in terms of a scalar field on a lattice. Its dimensionless action can be
written as

11 in principle, we should be taking into account the differentvolumes of the two types of four-
simplices, which depend on∆ , but we will ignore these details to streamline the presentation
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S= ∑
i

(

∑
µ
(φ(i + µ)−φ(i))2+m2

0φ2(i)
)

, (99)

wherei labels discrete lattice points andµ unit vectors in the different lattice direc-
tions. The correlation length is approximately 1/m0 lattice spacings. Holdinga fixed
and increasingN4 is not going to change the correlation length in any significant way
if N4 is sufficiently large. Thus the interpretation for fixeda is straightforward: the
physical volumeV4 is simply increased and finite-size effects will become smaller
and smaller. However, we can also insist on an interpretation whereV4 is kept fixed,
N4 is increased anda decreased accordingly. In this case, the lattice becomes finer
and finer with increasingN4. But now the physical interpretation of (99) will change
with increasingN4, even if no bare coupling constant is changed, and the correlation
length is still approximately 1/m0 lattice spacings. Since thephysicallattice length

a decreases proportional to 1/N1/4
4 thephysicalcorrelation length is going to zero,

and the physical mass to infinity. This can be made explicit in(99) by introducing
the lattice spacinga,

S=
1
a2 ∑

i

a4

(

∑
µ

((φ(i + µ)−φ(i))2

a2

)

+
m2

0

a2 φ2(i)

)

. (100)

The physical mass ismph = m0/a and goes to infinity unless we adjustm0. The
factor 1/a2 in front of the sum can be reabsorbed in a redefinition ofφ if desired.

In our case it is natural to considerV4 as fixed if we want to make contact with
the continuum framework of asymptotic safety, since this will allow us to varya.
Suppose we have identified a fixed point which we consider interesting, e.g. the
point P0 in our phase diagram. We now approach this point and measurek1. If it is
a UV fixed point, eq. (94) tells us what to expect. Using (98), we can now convert
this into an equation involvingN4, and suitable for application in CDT simulations,

k1(N4) = kc
1− K̃N−c̃/4

4 . (101)

When we measuredk1(N4) deep inside phaseC (at the point (κ2,∆) = (2.2,0.6)),
we did not find anyN4-dependence ofk1. However, according to the insights just
presented, we should observe such a dependence at or close toa UV fixed point.
As already noted earlier, an explicit verification of such a relation will have to await
more reliable computer simulations close to the phase transition lines.

In fact, we have already seen indications in CDT quantum gravity of a short-
distance behaviour like that occurring in the asymptotic safety scenario. Recall the
“naı̈ve” renormalization conditions (64) and (68). They were introduced mainly to
illustrate how a renormalization procedure could lead to finite renormalized cos-
mological and gravitational constants, both with a semiclassical interpretation. If
we are close to the UV fixed point, we know thatG will not be constant when we
change scale, but̂G will. Writing G(a) = a2Ĝ∗, eqs. (64) and (68) are changed to

κ4−κc
4 =

Λ
Ĝ∗ a2, k1(κc

0) =
1

Ĝ∗ . (102)
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Fig. 15 The data points along the central curve show the spectral dimensionDS(σ ) of the universe
as function of the diffusion timeσ . Superimposed is a best fit, the continuous curveDS(σ ) =
4.02−119/(54+σ ). The two outer curves quantify the error bars, which increase linearly withσ .
(Measurements taken for a quantum universe with 181.000 four-simplices.)

The first of these relations now looks two-dimensional (cf. eq. (48))! Nevertheless,
the expectation value of the four-volume still satisfies thecorrect relation

〈V4〉= 〈N4〉 a4 ∝
1

Λ2 , (103)

as follows from (69).
Further hints of a two-dimensional signature at short distances have come from

measuring the so-called spectral dimension. Essentially,this is the dimension a dif-
fusing “liquid” would experience in a spacetime with a typical quantum geometry of
the kind appearing in the gravitational path integral, see the original article [29] for
details. Fig. 15 recalls the result of measuring the spectral dimension, which appears
to change nontrivially as a function of diffusion time. Since short diffusion times
probe short distances, we can read off from the fit indicated that the short-distance
spectral dimension is close to two. What is most intriguing is that the short-distance
resultDS= 2 has since been found in two other quantum field-theoretic approaches,
namely, the renormalization group treatment à la Reuter [30] and Hořava-Lifshitz
gravity [31]. At the same time, it means that this particularobservable cannot dis-
tinguish between isotropic and anisotropic quantum gravity theories.
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8 Discussion

The CDT model of quantum gravity, which we have described in these lectures is
extraordinarily simple. It implements the path integral over causal geometries with
a global time foliation. In order to perform the integrationexplicitly, we introduced
a grid of piecewise linear geometries, similar to how one proceeds when defining
the path integral in ordinary quantum mechanics. Next, we rotated each of these
geometries to Euclidean signature and used as our bare action the Einstein-Hilbert
action in Regge form. In terms of ingredients, that’s all.

The resulting superposition exhibits a nontrivial scalingbehaviour as function of
the four-volume, and we observe the appearance of a well-defined average geometry,
that of de Sitter space, the maximally symmetric solution tothe classical Einstein
equations in the presence of a positive cosmological constant. The measurements
performed so far definitely probe the quantum regime, since the fluctuations of the
three-volume around de Sitter space are sizable, as can be seen in Fig. 8. Both the
average volume profile and the quantum fluctuations around itare well described
in terms of the minisuperspace action (75). A key feature to appreciate here is that,
unlike in standard (quantum-)cosmological treatments, this description is theout-
comeof a nonperturbative evaluation of thefull path integral, with everything but
the scale factor (equivalently,V3(t)) summed over. Measuring the correlations of
the quantum fluctuations in the computer simulations for a particular choice of bare
coupling constants enabled us to determine the continuum gravitational coupling
constantG asG ≈ 0.42a2, thereby introducing an absolute physical length scale
into the dimensionless lattice setting. Within measuring accuracy, our de Sitter uni-
verses (with volumes lying in the range of 6.000-47.000ℓ4

Pl) are seen to behave
perfectly semiclassically with regard to their large-scale properties.

These semiclassical results “emerge” even if, as emphasized above, we are far
from a region in coupling-constant space where the classical action can be consid-
ered as dominant in the path integral. The resulting quantumgeometry comes about
through the interplay of the weight provided by the exponential of the bare action
and the weight provided by the entropy of a particular kind ofconfiguration. From
this point of view the results are truly nonperturbative, even if they bear some simi-
larity to the semiclassical minisuperspace results. It should also be emphasized that
we have only derived an effective action for the scale factor, not for the “real”, trans-
verse degrees of freedom. The issue of how to do this for the latter remains to be
addressed.

The results we have reported are mostly “infrared” in nature. Our dynamically
generated universes are macroscopic (although small) and –with the exception of
the spectral dimension measurements – we are not yet probingPlanckian (and possi-
bly sub-Planckian) scales. It is a major issue whether such ashort-distance comple-
tion of gravity exists in a conventional, field-theoreticalsense. “Asymptotic safety”
is an attempt to formulate the general conditions for this tobe the case. In its sim-
plest realization on the lattice it requires a UV fixed point.This is precisely the kind
of situation the CDT framework allows us to address; we have aphase diagram
and potential fixed points, and as outlined above it is in principle possible to check
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whether the UV behaviour is in accordance with the predictions from asymptotic
safety. Critical slowing down close to the potential fixed points, i.e. a vast increase
in the computer time needed to generate statistically independent geometries, has
so far made it impossible to obtain reliable results, but work is now in progress to
improve the updating algorithms.

Once we succeed in approaching the phase transition line B-Cin a reliable fash-
ion, we may also be able to check whether the Hořava-Lifshitz scenario is realized
in our model. In addition to the standard asymptotic safety picture, the CDT con-
struction has the potential to accomodate also this scenario. Its obvious similarities
with the defining properties of Hořava’s “anisotropic gravity” approach are the dis-
tinguished role of a time foliation, and the presence of a unitary time evolution (in
CDT linked to the reflection positivity of the transfer matrix).

In addition to this, we have already pointed to the striking similarity between
the CDT and Lifshitz phase diagrams upon (somewhat loosely)identifying the Lif-
shitz mean-field order parameterφ with “average geometry”. If more specifically
we want to relate the Lifshitz field to a mode of the gravitational field, the confor-
mal factor appears as a natural candidate. The conformal mode is already known
to play a decisive role in a variety of geometro-dynamical contexts. In the bare Eu-
clidean Einstein-Hilbert action the kinetic term associated with the conformal factor
appears with the wrong, negative sign, leading to ill-defined expressions for naı̈ve
cosmological, Euclidean path integrals. In Euclidean noncritical string theory the
dynamics of the conformal factor is believed to cause a transition from a “healthy
phase” (wherec ≤ 1 for the central charge of matter) to a degenerate phase of so-
called branched polymers (forc> 1)12. A similar phenomenon was observed in the
old Euclidean dynamical triangulations approach to quantum gravity, where the bare
(inverse) gravitational couplingκ0 plays the role of the central chargec, in the sense
that for large values ofκ0 the configurations degenerate into branched polymers
[39].

We have interpreted phase A (realized for large values ofκ0) as the CDT remnant
of the branched-polymer phase, likewise caused by the dominance of the conformal
mode. This suggests that the A-C phase transition may be interpreted as a transition
where the kinetic term of the conformal mode changes sign. This is precisely what
happens at the A-C transition in a Lifshitz diagram, corresponding to the expression
(88) for the free energy of the order parameterφ .

The effective action for the conformal mode coming out of a nonperturbative
gravitational path integral receives potential contributions from several sources: (i)
from the bare action (where the kinetic conformal term has the “wrong”, negative
sign), (ii) from the measure, and (iii) from integrating outother field components
and, where applicable, other matter fields. It has been argued previously that the
Faddeev-Popov determinants obtained from gauge-fixing thegravitational path in-
tegral contribute effectively with the opposite, positivesign to the conformal kinetic
term [40, 41]. For example, when working in proper-time gauge, to imitate the time-

12 In noncritical string theory there exists an analytic proofthat for the dimension of (Euclidean)
target spacetimed ≥ 2 the string surfaces degenerate into branched polymers [34], see also [35]
for similar results on a hypercubic lattice.
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slicing of CDT, Euclidean metrics can be decomposed according to13

ds2 = dτ2+e2φ(τ,x)gi j (τ,x)dxidxj , (104)

giving rise to a term−1/G(b)e3φ√detg(∂τ φ)2 in the bare gravity Lagrangian den-
sity, whereG(b) is the bare Newton’s constant. According to [41], one expects that
the leading contribution from the associated Faddeev-Popov determinant has the
same functional form, but with a plus instead of a minus sign,and with a different
dependence onG(b). The presence of contributions of opposite sign to the effective
action for the conformal modeφ(τ,x) can therefore lead to two different behaviours,
depending on the value ofG(b)(equivalently, theκ0 in our model), and thus account
for the observed behaviour at the transition between phasesA and C.14

In addition to the issues raised above, there is one more question which we would
like to understand in more detail at this stage, which concerns the relation of our ef-
fective gravitational coupling constantG to a more conventional gravitational cou-
pling constant, defined directly in terms of coupling gravity to matter. It would be
desirable to verify that defining the physical Newton’s constantG as the coupling
constant multiplying the effective action for the three-volume, as we have been do-
ing so far, agrees with a gravitational constant defined moredirectly through matter
coupling. In principle it is easy to couple matter to CDT quantum gravity, as we al-
ready know from multiple studies in the Euclidean case [43],where spin, scalar and
gauge fields have been considered. It is less straightforward to come up with a rea-
sonably simple set-up for extracting the semiclassical effect of gravity on the matter
sector (or vice versa), which is both well-defined on the ensemble of geometries
and allows for effective computer measurements. Attempts in this direction were
already undertaken in the “old” Euclidean approach [44, 45], and it is possible that
similar ideas can also be used in our causal version of the theory. As a first step in
this direction, the expected effect of a single point mass coupled to CDT quantum
gravity on the volume profile of the universe has been quantified in [46]. Further
work on coupled systems of matter and geometry is in progress.
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25. R. Brandenberger:Matter bounce in Hořava-Lifshitz cosmology,Phys. Rev. D80 (2009)

043516 [arXiv:0904.2835, hep-th].
26. G. Calcagni:Cosmology of the Lifshitz universe,JHEP0909 (2009) 112 [arXiv:0904.0829,

hep-th].
27. R.M. Hornreich, M. Luban and S. Shtrikman:Critical behavior at the onset ofk-space insta-

bility on theλ line, Phys. Rev. Lett.35 (1975) 1678.
28. N. Goldenfeld:Lectures on phase transitions and the renormalization group, Addison-Wesley,

Reading (Mass.) (1992).
29. J. Ambjørn, J. Jurkiewicz and R. Loll:Spectral dimension of the universe, Phys. Rev. Lett.95

(2005) 171301 [hep-th/0505113].
30. O. Lauscher and M. Reuter:Fractal spacetime structure in asymptotically safe gravity, JHEP

0510(2005) 050 [hep-th/0508202].
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