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Abstract. We review and present a few new results of the program of eznématter as braid
excitations of quantum geometry that is represented byledaiibbon networks, which are a gener-
alisation of the spin networks proposed by Penrose and thasedels of background independent
quantum gravity theories, such as Loop Quantum Gravity gid Boam models. This program
has been developed in two parallel but complimentary schenanely the trivalent and tetravalent
schemes. The former studies the trivalent braids on tritdleaided ribbon networks, while the lat-
ter investigate the tetravalent braids on tetravalentledhribbon networks. Both schemes have been
fruitful. The trivalent scheme has been quite successfabtblishing a correspondence between
the trivalent braids and Standard Model particles, whetteagetravalent scheme has naturally sub-
stantiated a rich, dynamical theory of interactions andpgation of tetravalent braids, which is
ruled by topological conservation laws. Some recent acdaircthe program indicate that the two
schemes may converge to yield a fundamental theory of mattgrantum spacetime.
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1 Introduction

1.1 An Invitation to emergent matter of quantum geometry

What is spacetime? What is matter? Physicists and philesegilve pondered these questions for
centuries. In fact, an ultimate goal of modern physics isrd f unified answer for both questions.
Recently, in order to answer these questions, a novel agptosvards emergeﬂﬂnatter as topological
excitations of quantum geometry has been put forward arehsixtely developed [1, 2] 3] 4,/5,6,[7, 8,
9,110,111 12, 113, 14]. Provided with the results of two regayers[13, 14] along this course, an article
that dfers a precise review and outlook of this research line seiemadyt

A brief historical account is as follows. In 2005, Bilsondrhpson proposed a topological matter
model, the Helon modél[1], which is based on the preon manfdtarari and Shupe[15, 16] and is more
elementary than the Standard Model (SM) of particles byimeging the elementary particles as braids
of three ribbons. At the time it was proposed, the Helon Madek the form of a combinatoric game
rather than a rigorous theory. In this model, the integrastswof ribbons of braids are interpreted as the
quantized electric charges of particles. The permutatdhsists on certain braids naturally account for
the color charges of quarks and gluons. This model incotpsi@simple scheme of the color interaction

1Here we mean coexisting quantum geometry and matter becamgerogram indicates that a background independent
quantum gravity theory may have built-in matter as topaabexcitations of the quantum geometry described by theryhe
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and the electro-weak interaction with lepton and baryon lmemmanifestly conserved. It may also be
able to account for the three generations of elementaryidesn

In 2006, Bilson-Thompson, Markopoulou and Smalin[2] codlee Helon Model in certain back-
ground independent Quantum Gravity models such as Loop tQua@ravity (LQG) and Spin Foam
(SF) models, by identifying helons with emergent topolag&xcitations of embedded trivalent spin net-
works that label the states in LQG. Hereafter this will béezhthe trivalent scheme. Developments of the

braids of embedded trivalent spin networks and the SM pesticThe trivalent scheme led to a new

perspective; instead of treating the Helon Model as yetraranodel of elementary particles, one can
encode it in LQG and SF models to make a theory of both spaeetimd matter. The dynamics govern-

ing particle interactions would then be a consequence afiyhamics of the discrete building blocks of

guantum spacetime. In this setting, matter is emergent oamtum spacetime, and the corresponding
low energy éective theories may give rise to general relativity coupléith quantum fields.

Unfortunately, results on the stability of braided stéd2g&f the trivalent scheme strongly suggested
that the dynamics of spacetime would allow particle propioga but not interactions. Inféect, braids
in the trivalent scheme are “too stable”. To address thiseisand because of the geometrical corre-
spondence between framed 4-valent spin networks and &saakvalent scheme was developéd]s, 6,
7,18,[9/10, 17]. In the 4-valent scheme, the topologicalcttines that can potentially be identified with
particles are also 3-strand braids, each of which is formethé three common edges of two adjacent
4-valent nodes of embedded, framed 4-valent spin netwditks 4-valent scheme gives rise to forms of
braid propagation and interaction that are analogous tdythamics of particles. Nevertheless, the lack
of suficient super-selection rules over an enormous zoo of 3eétraaids in 4-valent scheme withholds
a Rosetta Stone that maps the braids to the SM particles. €uiltler hand, the 4-valent braids may be
more elementary, high-energy entities whose low energif firoduces the SM particles[10,117].

Very recently, two papers by Hackétt|13, 14] and work by &ilsSThompson reported here in Section
[4.3, provide a framework that may encode both the trivaladtdxvalent schemes. This would allow the
economical reproduction of SM particle states that ocauithé trivalent scheme, and the propogation
and interactions that occur in the 4-valent scheme to be owdhbnto a single theory.

As a historical remark, the idea that matter is topologiededts of spacetime is an old dream that
dates back to 1867 when Lord Kelvin proposed that atoms wewtskn ethef[18]. Kelvin’s idea failed
for its flaws and the limited knowledge people had about oiwrarse then. Nevertheless, this dream has
persisted in physicists thereafter. Various proposalsmdliogical matter have arisen as physicists deepen
and broaden their recognition of nature. An example is thelagical Geon model due to Wheeler and
otherd[19| 20, 21, 22, 23] but the geons therein were urestatnd classical. To make stable gebn5s[20],
Finkelstein invented the notion of topological consewatiaws that also led to advances in condensed
matter physics, e.g., topologically conserved excitatiorthe sine-Gordon theory. Finkelstein's idea had
not been compatible with quantum gravity until the recentknmy Markopoulouet al]24,[25,[26] that
motivated our work. Analogously, certain condensed mastems have quasi-particles as collective
modes, e.g., phonons and rotons in superfluid. Herecent example in condensed matter physics is a
unification scheme due to Weet al]27,[28], where gauge theories and linearised gravity apjoehe
low energy &ective descriptions of a new phase, the string-net contieinédattice spin systems.

In the rest of the Introduction, we briefly introduce consegid ideas that underpin our approach to
emergent matter. We leave main discussions on the trivalehtl-valent schemes to other sections.

1.2 Noiseless Subsystems

To appreciate the ideas of emergent matter of embeddededrapin networks, one needs to understand
two notions, namely noiseless subsystems and spin netwoeksis address the former first. Noiseless
subsystems, put forward in quantum information and contiputdor quantum error correction[29, 130,

31,[32], are subsets of states of a quantum system that aerypee the evolution algebra of the system,
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and hence protected from any error. Markopoldbal. adopted the idea of noiseless subsystems to solve
the problem of the low energy limit in background indeperdprantum gravity theories[25, 33,134].

Background independence brings iffidulties that retain taking the low energy limit of a backgrdu
independent theory of quantum gravity[26] as a big opereisalthough attempts have been made in var-
ious approaches of quantum gravity. In LQG, elg.] [35, 36/38] use the method of coherent states,
which are, according to quantum physics, the quantum stédssst to classical ones. For another ex-
ample, in SF models| [39, 40, 41,142, 43] utilimepoint correlations functions, which is reasonable
because all semiclassical observable are either comelainctions or their derivatives. In view of this,
Markopoulou and Kribs[33, 25, 26] proposed a new way to rasthis issue by looking for conserved
guantities in background independent theories of gravdiyice the aforementioned noiseless subsys-
tems are conserved states under the evolution algebra airdugn system, there should be conserved
guantities associated with them. This is why one can adapinigthod of noiseless subsystems to find
conserved quantities of quantum geometry in a large clasaakground independent theories.

The first application of noiseless subsystems in LQG[34égjia possible explanation to black hole
entropy and how symmetries can emerge fromfiedmorphism invariant formulation of quantum grav-
ity. The noiseless substructures of braided ribbon netsyavkich appear to encode the helons in models
of quantum gravity such as LQG, are braids whose associateseo/ed quantities are called reduced
link invariants|2 ] 3] 4, 13, 14].

1.3 Spin networks

Penrose invented spin networks as a fundamental discrsteiplon of spacetime[44, 45]; later, Rov-
elli and Smolin found a more generalized version of spin pet& to label the states in LQG Hilbert
space[46]. Although the context of spin networks in thiscitis mainly LQG and its path integral
formulation, SF models, it will be clear that our results dit really depend on these models but find
their natural home in a generalisation of Penrose’s versipin networks also arise in lattice gauge
theories[47|, 48, 49, 50] and topological field theoriesi2,/ 53/ 54], which are not discussed here.

1.3.1 Penrose’s spin networks

Penrose noticed the fundamental incompatibility betweendgal Relativity and Quantum Physics, the
problem of the concept of continuum, and the divergencesuantyum field theories. He thought that
resolving this incompatibility demands a discrete notibagacetime at the Planck scale, where the clas-
sical notion of spacetime is no longer valid. Consequetttly,concept of time and space gives way to a
more fundamental notion, the microscopic causal relat@twben quantum evthsKnowing that spin

(or angular momentum) is intrinsic and characteristic tthimuantum systems and classical spacetime,
Penrose used combinatoric graphs, consisting of linessetéing at vertices, to represent the fundamen-
tal states of spacetime. Each line in a graph is labeled binaapinteger or half integer. Hence, such a
graph is called a spin network. Later dn,[[56] showed thatthssical 3-dimensional angles of space can
be recovered from trivalent spin networks. Note that these isetworks are unembedded and, opposed
to those in LQG, are a direct construction of fundamentahtira spacetime, rather than obtained from
guantizing spacetime or General Relativity by any means.

1.3.2 Spin networks from LQG

LQG is a non-perturbative, canonical quantization of Gahéelativitﬁ The background independence
of General Relativity actually does not leave any room faturbative quantization[57, 58, 59,/55]. LQG

2The underlying philosophy is relationalism, as opposecetictionism, reviewed ifn [59, 62,155].
3Other non-perturbative approaches to quantum gravityesdiss; however, here we focus on LQG.
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assumes ad(+ 1)-dimensional dterential manifoldM with a foliation M = X x R, without metric but
merely a diferential structure with a Lie algeﬁ}aalued connection 1-form field. We takie= 3.

Our approach does not directly depend on any specific teagbsiand results of LQG but is only
inspired by them, so we do not review the technical settimgiscuantization procedure in LQG.

In LQG, the states are spin networks, which are graphs enaloeidd (Fig. [I). An edgesis a flux
line, labelled by an irreducible representatipnof a Lie group (usuallys U(2) or S (3)). A vertex is
labelled by an intertwiner that is the invariant tensor & ldibels on the edges meeting at the vertex.

Figure 1: A portion of a generic spin network. Some labelsoanéted.

LQG has produced many physical results, which are extdgsigeiewed in [60] 61, 62]. The result
most relevant to this review is the evidence that the spatieeaPlanck scale is discrete because spin
network states are eigenstates of operators correspotaigpgometric measurements such as area and
volume. For example the area operafoacting on a 2-dimensional surfaehas the spectrum

AlsliD 12 > i + DI, (1.2)
}

ie{'us

wherel, is the Planck length, anH is a spin network that has no vertices on but only edgeﬁﬁin
Likewise, the intertwiners on the nodes of a spin network iegon determine the 3-volume of the
region. This fundamental discreteness resolves the siriguproblem and also eliminates ultraviolet
divergences, as it provides a natural ¢titd the Planck scale to the physical spectrum of the theory.

In general, a vertex of a spin network can have any valencateréhan two, the number of edges
meeting at the vertex, as seen in Fig. 1. We may consider s bbspin networks with definite valences,
i.e., spin networks respectively with three, four, and kighalences, such that a generic LQG state
is a linear combination of these basis states. one may aiisk timat trivalent spin networks may be
suficient to provide a complete basis that spans all spin nesvdrhkis is plausible and is suggested by
Rovelli[46,/55] for the case db U(2) andS (3). The trivalent spin networks represent a basis of LQG
state space. That is, associated with a spin netWaska statdl’), and for two such statdE) and|I"),
Iy = érr. Spin network labels on edges and nodes are representafitresgroup elements, labeling
the graphs in the classical configuration space, and thesmonding intertwiners.

Trivalent spin networks have ftliculty in representing 3-space because their nodes have3zero
volume. But each 4-valent node yields a 3-vo|[66, 64]. [65] also suggests to carry this correspon-
dence to any higher-valence. In this review, we shall stuath brivalent and 4-valent spin networks.

Trivalent spin networks acquire dynamics by evolving uritieraction of the Hamiltonian constraint
operator of LQG, which also helps to realize the 4Babimorphism invariance of the theory. The well-
accepted form of the Hamiltonian constraint acts only otiees (Fig.[2)Thiemann[66. 67, 68]; hence,
it behaves as a local move that evolves a spin network statediher. In fact, LQG has a path integral
formulation, SF models, casting the evolution of spin neksan a systematic, covariant way.

In many studies of SF modéls[69,170], spin networks and thistories are unembedded, combina-
toric graphs. The key fterence between embedded and unembedded spin networks tketelges
in the former can knot, braid, and link. The role of these knbtaids, and links has been a big open

4Usually su(2) or so(3).
SIf I' has edges 0B, a degeneracy arises and calls for regularization mettwdistain the correct spectrum[55].
5This correspondence is at the Planck level. Whether it Haldscontinuum limit is still open.
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Figure 2: Sketch of of the Hamiltonian constraint acting aredex. Irrelevant details are ignored.

issue. Nevertheless, in this article we will show the cqroeslence between some of these topological
structures of embedded spin networks and matiter. [E&f®another perspective.

According to SF models[72, 73, 1714,155], trivalent spin naksaevolve under two more moves, shown
in Fig.[3(a) and (b), including the one in Flg. 2.

(a) (b) i (c) i
)\ﬁA X ﬁ>_< WA= A

Figure 3: (a): expansion and contraction move. (b): exchangve. (c) a duality.

Trivalent spin networks are the dual skeletons of trianuia of 2D surfaces (Fid.] 3(c)), in which a
node (an edge) is dual to a triangle (a side of the trianglkis i€ consistent with 2D because the vertices
of trivalent spin networks have zero 3-volume. Hence, tludugion moves of trivalent spin networks are
dual to the Pachner moves|75] that relates triangulatidrikeosame surface (Fi§l 4). This topological
interpretation indicates that summing over histories @f évolution of certain fundamental building
blocks produces a quantum spacetime. That is, one can buitdLD spacetime from the evolution
of n-valent spin networks. This picture is partly implementedSFF models and fully implemented in
another formulation of quantum gravity, Group Field Thesr{GFT).

A subtlety exists, however. A spin network with structussleedges and nodes contains less infor-
mation than an exact dual of a 2D simplicial triangulatianwiich two triangles can be glued along a
side in two opposite ways. To remedy this, trivalent vetiaad their edges should be framed to disks
and ribbon respectively (Fig. 4a). We call these (embedftadjed spin networks th@raided) ribbon
networkd]. We also name the evolution moves on the (braided) ribbomwarks theadapted Pachner
moves(Fig. [ZE). The criteria for a legal 2D Pachner move is that the triesdiefore and after the move

v m<D

v

Figure 4: Pachner moves. (a)41 3. (b) 2— 2.

bounds a 3D tetrahedron (Fig. 4). Interestingly, Major amtbn[77,[78/ 79| 80] suggested that when
LQG contains a non-zero cosmological constant, the cooresipg spin networks become framed: edges
and vertices become ribbons and disks in the trivalent eagkEbecome tubes and spheres in the 4-valent
case. We shall loosely call the (embedded) framed 4-vaf@ntreetworks the 4-valent (braided) ribbon
networks. Likewise, 4-valent ribbon networks evolve uraleet of 4-valent adapted dual Pachner moves

"For embedded spin networks, the duality is in general ontalloi.e., restricted to a single node. This restriction is
unnecessary in 2D because a braided ribbon network is daatiogological manifold globally[76].
8This figure is adopted froni [11] with the author’s permission
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(Section3.4). Moreover, labels of framed spin networka tut to be representations of the qguantum
group, €.9.S Wy(2). In GFT'’s, the spin networks arise as framed but uneméedd

Our third ansatz requires the embedded 4-valent spin nledtorevolve under adapted dual Pachner
moves. These moves are adapted and are tlfiggeht from those in SF models. In many studies of spin
foam models, the spin networks and spin foam histories &entto be abstract, or unembedded. Our
results do not directly apply to these models, as the topmabgtructures our results concern arise from
the embedding of the graphs in a topological three maniid.neither do such models give dynamics
for states of loop quantum gravity, which are embedded. Atipre therefore is how to build spin-foam
like dynamics for embedded spin networks. The adapted dagirier moves to be defined in Section
[34 for the 4-valent braided ribbon networks will give anvaes

1.4 Three Ansatzes

All of the above encourages a unification scheme in whichenatnerges as topological excitations
of the braided ribbon networks. We thus posit that braidbtdan networks are the most fundamental
entities of natuB, which is beyond LQG and SF Models and actually in accordamvite Penrose’s
original proposal of spin networks, with, however, a greadldf generalization. More precisely, the
unification scheme and its results we have obtained are lmss#olee ansatzes:

1. spacetime is pre-geometric and discrete at the fundainsdle.
2. The discrete space is a superposition of basis statessesyed by braided ribbon networks.
3. The braided ribbon networks evolve under a set of localeaov

These ansatzes are independent of the spacetime dimeHsgior.we consider only (81)-dimensional
spacetime, consistent with the observable unifdrsehe braided ribbon networks are in general graced
with spin network labels, which are otherwise removed in #iticle because our results obtained so far
do not depend on them. The set of local moves include onlydbptad dual Pachner moves;however, it
may extend to incorporate other moves in future. We hopecthasical spacetime would exist as certain
limit of the pre-geometric history of the evolution of thegaphs.

2 The Trivalent Scheme

The trivalent scheme is the most natural case in which to drttieHelon Modell[11], which provides a
mapping between braided network states and the fermionda@suwhs of the SM. Here we will briefly
discuss the Helon Model in terms of abstract braided strasfiand how those structures may be mapped
to particle states and quantities such as hyperchargeptanymber and lepton number. We will then
discuss how these braids may be characterised by appeprdiosen topological invariants. At the end
of this section we will discuss how such braided structurey bbe embedded in framed spin networks.
The possibility of a unified treatment of trivalent and tea&iant networks is discussed in section| 4.3.

2.1 The Helon Model

In the helon model, the subcomponents of SM particles oitguin certain preon models are replaced
by a framed braid on three strands. The strands are joinagloieurfaces of non-zero size (which we
may think of as one disk at each end), and we will suppose thaevay of distinguishing these end

%Since all the information due to embedding can be charaepurely combinatorially, to be pointed out later, emlsetid
spin networks (or combinatorial spin networks with embaddiata) are more general than the unembedded[onés|98, 99].
10why our spacetime is (@l)-dimensional is a big open issue in physics and philosofphg earliest reasonable argument
was due to Ehrenfest in 1917[81] that atoms are instablessie3D. Recently, anthropic arguments also arouse. Neless,
all these arguments soundgosteriori and a theory that naturally gives rise to our{3) spacetime is still missing.
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surfaces so that the braids have a “top” and “bottom” (as shiowthe left of Fig[5). For brevity, let
us refer to these end surfaces as “caps”. Such a braid (el ttrands and the two caps) constitutes
a two-dimensional surface and we will immediately restdat attention to orientable surfaces. The
three strands between the caps can in general be distieguishtheir relative crossings, and it becomes
meaningful to speak of the first, second, and third strandewtite braid on three strands will represent
a single type of fermion or boson.

The individual strands in a braid can carry twists, as maeeitibabove, and we identify right-handed
and left-handed twists as positive and negative electrargds. This is the basis of the name ‘helon’
(evoking the image of a helix) for a single strand. The rezgent that we consider only orientable
surfaces restricts us to twists that are multiples mf $b let us interpret a twist through2r on any
helon (that is, any strand) as an electric chargee3. Twists throught4r, +6mr, and so on will not be
considered, as we shall see below that extra twists can laeded as equivalent to crossings. Besides
the helons carrying twist through2zr and +2r, there is a third type to consider, carrying no twist. We
will denote the three types of helonskds, H., andHg respectively.

Adapting a scheme originally devised by Harari[15] and &d8], we construct braids composed of
threeH, s (corresponding in electric charge to positrons), tiiteg (corresponding to electrons), a single
H. and twoHgs (corresponding to anti-down quarks), a singleand twoHgs (corresponding to down
qguarks), a singlélp and twoH, s (corresponding to up quarks), a singleand twoH_s (corresponding
to anti-up quarks), and threédys (corresponding to neutrinos). This scheme reproducefetimons of
the first generation of the SM, with no extra particles. Bsadnsisting of a mix oH, andH_ helons
are not allowed when constructing fermions (but are in faetito construct the gluons). We identify the
permutations of braids containing two helons of one typéd, @me of another (e.gH,H,Hg) with the
three colour charges of QCD, and write the helons in ordeipldts for convenience (this is, of course,
simply notation). The quarks are then as follows (subsgieinote colour);

|'|+H+HO (U_B) |'|+HOH+ (uﬁ) HOH+H+ (U_R)
HoHoH. (dg) HoHiHo (dg) HiHoHo (dr)
H-H_.Hp (Ug) H-HoH- (Ug) HoH-H- (Ur)
HoHoH- (dg) HoH-Hp (dg) H-HoHo (dr).

while the leptons are;
HiHH, (") HoHoHo  (ve) H-H-H_ (¢e)

Note that in this scheme we have identified neutrinos, butaméitneutrinos. This has occurred
because while thél_ may be regarded as the anti-partner to lthe there is no anti-partner to thdy
helon. This apparent problem will be turned to our advantagectior 2.B.

2.2 Topological invariants of trivalent braids

The braids on three strands may be characterised by anadnvaralled thepure twist numberfirst
described in[[12]. This is a triple of real numbers which doilne twist remaining on each strand when
the braid is deformed such that all crossings are removed.iJ hossible because any braidrostrands
can be written as a product of the generatoys. . ., on-1 and their inverses, wheke; crosses thé"
strand in front of thei(+ 1) strand, andr crosses thé™ strand behind thei ¢ 1) strand. The
sequence ofr factors defining a braid is called itgaid word Clearly, in the case of braids on three
strands we are only concerned with, o> and their inverses. The generators induce permutatiorseof t
strand ordering. The generaio induces the permutatioR » (that is, it swaps theSland 29 strands),
while the generatas-, induces the permutatiofy 3. Notice also that the same permutation is induced by
a generator or its inverse{l. Therefore the generators contain more information tharprmutations

- in particular the direction of the crossing is specified iy generators (as shown in Higy. 5).
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tl' XX
X, %
e 1] Sr—

Braid Generators
—

Figure 5: A braid, with the bottom cap denoted by a rectangpilack (left) and the generators of the
braid group on three strands (right).

It is convenient to define a standardised form for frameddsra which all the twist is isotoped to
the top of the braid. Then we can write § t]8 where8 is an ordinary braid word and,[s, 1] is a
triple of multiples of half-integers which catalogue thadis in the ribbons. We shall call this triple of
numbers thdwist-word Thus a framed braid on three strands is completely spedifigtie twist word
and the braid word. Since these braids are taken to existwories embedded in a manifold of three
dimensions, we also allow the braids to be deformed suchthieatop end of the braid is flipped over
(effectively feeding it through the strands). This allows usndaicrossings and hence simplify the braid
structure, as illustrated in Figl 6 where we show how a digh thiree untwisted ribbons emerging from
it (but with two ribbons crossed), can be converted into & digh uncrossed ribbons and oppositely-
directed half-twists in the upper and lower ribbons by fligpthe disk over (in the illustration, a negative
half-twist in the lower ribbon and positive half-twists imetupper ribbons). In Figl] 7, we show the same
process performed on a disk whose (crossed) upper ribbamslkieen bent downwards to lie besides
and to the left of the (initially) lower ribbon. This configtion is nothing other than a framed braid
on three strands corresponding to the generaiofwith cap at the bottom omitted). Keeping the ends
of the ribbons fixed as before and flipping over the cap so asrtwve the crossings now results in
three unbraided (i.e. trivially braided) strands, with aifige half-twist on the leftmost strand, a positive
half-twist on the middle strand, and a negative half-twistloe rightmost strand. Hence the associated
twist-word is [3, 3, —1]. This illustrates that in the case of braids on three ssaedch of the crossing
generators can be isotoped to uncrossed strands bearfrigteger twists. By variously bending the top
two ribbons down to the right of the bottom ribbon, Awrdtaking mirror images, and flipping the cap
at the top of the braid appropriately we can determine thaigdénerators may be exchanged for twists
according to the pattern;

11 1
o = |33 -3
-1 111
S T [ 2 T2 2] 2.1)
111 )
oo = |33 3
-1 1 1 1
P P B |

Figure 6: Swapping crossings for twist.
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Figure 7: Converting a braid generator into twists.

All braids on three strands can be built up as products ottheserators. It should therefore be clear
to the reader that we may entirely eliminate the crossing® fa braid on three strands. When we do so
we uncross the strands one generator at a time (hence pegitiigim by the permutatio®,, associated
with the crossingr; being eliminated) and introduce the twists indicated inagigu (Z.1). In general,
this means that we iterate the process

[al,ag,ag][bl, by, bg]a'iO'j e Om— [a]_ +by, a0 + by, a3 + b3]0'i0'j ..0m
- Po-i ([al + by, a0+ by, a3 + bg])[X, Y, Z]O'j e.0m (22)

where [, v, 7] is the twist-word associated tg (as listed in equation 2.1, whers specified), until the
braid word becomes the identity.

We shall refer to the form of a braid in which all the crossifigs’e been exchanged for twists as
the pure twist form The list of three numbers which characterise the twistshenstrands in the pure
twist form will be referred to as thpure twist-word The pure twist-word is of interest because it is
a topological invariant (since it is obtained when a braideduced to a particular simple form i.e. all
crossings removed). An algorithm for calculating the pwrestword of any three-strand braid was
described in[[12].

One criticism that has been levelled at this research pnogsahat braids appear somewhat ad-hoc
and unnatural, however it follows from the discussion abinat the use of braids in the Helon Model
is a convenience, and that each such braid can be relatedpolagical invariant which is independent
of the way the structure is drawn. When we speak of a partidulaid corresponding to a type of
fermion, we are therefore simply referring to an equivaéenkass of topological structures and using
one distinctive member of that equivalence class to refdrde@ntire class. We will see shortly how such
general topological structures may be embedded in trivalgin networks.

2.3 Quantum numbers of particle states

Given the discussion above, it is clear that rotating a diegof a braid on a page does not change
which equivalence class that braid belongs to (and henceayealways perform such a rotation without
compromising the validity or usefulness of our model). Letlen pick a certain braid with untwisted
strands (i.e. composed entirely ldfs) to act as a basic structure for one generation of fermitims.
like rotation, taking the mirror image of such a braid wilbduce a member of afierent topological
equivalence class, in general. Such a braid and its mirrag@tan be regarded as left-handed and right-
handed fermions. By adding one, two, or three twisted stdHds or H_s, but not both at the same
time), we construct left-handed and right-handed fermiith overall positive and negative charge.
This is illustrated in FigB. Notice that for any given norr-@enagnitude of charge, there are four states
(left-handed and right-handed particle, and left-handetiraght-handed antiparticle), but for the case of
zero charge there exist only two states. We identify thedle thie neutral left-handed fermion (neutrino)
and right-handed fermion (anti-neutrino).
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Figure 8: The fermions formed by adding zero, one, two ordlufearges to a neutral braid. Charged
fermions come in two handedness states each, whitely come in only one each. (3) denotes that there
are three possible permutations, identified as the quaducal The bands at top and bottom represent
the nodes and connections to the external network (“theofdébke Universe”).

The Helon Model allows us to describe electric charge anduratharge in terms of the topological
structure of braids, but we can similarly describe hypenghand isospin. We begin by assigning a
scalar quantity3 to braids, such thag = +1 for the braids on the top row of Figuré 8, afid= -1 to
the braids on the bottom row. Thiffectively distinguishes between fermions with a net posiéiad net
negative charge (and establishes a definition of the equitguantity for the neutrinos). Of courge
provides only a very crude distinction. To rectify this dlcoming we will define a new quantity, given
by one-third the number of “more positive” helons, minus-tinied the number of “less positive” helons.
We shall denote this quantity by the symiénl To clarify, H, helons are considered “more positive” than
Ho helons, which are “more positive” thath_ helons. IfN(H.) is the number oH, helons,N(Hp) the
number ofHgs andN(H_) the number oH_s within a triplet, and remembering thidt, andH_ helons
never occur within the same braided triplet, we may write

Q- /s( N(H,) + N(H)——N(Ho)) 2.3)

Hence we have&) = +1 for thee*, Q = +1/3 for theu, Q = —1/3 for thed, andQ = -1 for the
anti-neutrino. For the electron, anti-up, down, and naatthe signs are reversed. With this definition,
noting thatN(Hp) = 3— (N(H.) + N(H-)) and the total electric charge of a fermion is given by

Q=p(5N(H.) + 3N(H)). 2.4
it is easy to show that

Q:%(,B+Q). (2.5)

For the quarks and anti-quarksreproduces the SM values of strong hypercharge, while folahtons

B reproduces the SM values of weak hypercharge. We also abdeat for quarkg/2 reproduces the
values of the third component of strong isospin, while fqrtdms Q/2 reproduces the values of the
third component of weak isospin (in short, the roleg@ndQ as isospin and hypercharge are reversed
for quarks and leptons). With these correspondences tHeMa@in—Nishijima relationQ = Iz + Y/2

for quarks may trivially be derived from Eq. (2.5). This comstion does not distinguish between left-
handed and right-handed fermions, and so it does not matediads of weak isospin and hypercharge in
the SM. The reader should remember that the values of isasifypercharge in the SM are assigned
in an entirelyad hocmanner, to reflect the observed asymmetry of the weak intenaavhile in the
Helon Model these values are constructed. It is possiblentta further work the Helon Model may be
able to describe (if not explain) the asymmetry of the weddraction from first principles.
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2.4 Interactions and embedding in trivalent networks

Although the Helon Model does not provide a dynamical framdyit is possible to represent the
electroweak interactions in a simple manner, by formingdattaéd product of several braids. The product
of two braid diagrams is accomplished by adjoining the stsaof the second braid to the corresponding
strands of the first braid, as in FIg. 9. The product of twodsa#; and.Ay, is therefore a single braid,
the braid word of which is the concatenation of the genesaitorthe braid words ofA; and A,. It
therefore follows that ifA is the top-to-bottom mirror image off; the product ofA; and A, will
contain no crossings. The reader can easily check thatstlvige for any braid in the top row of Figl 8,
and the corresponding braid in the bottom row. Such a praaaggests particle-antiparticle annihilation.
More generally, when the product of two braids is formed, #wgth decomposed into several braids, the
twists on the strands may be shed so that the outgoing braids aréfdient from the incoming braids.
In this way an interaction such as-e~ — d+ve may be modelled, with the structure of the intermediate
braid product suggesting the structure of a boson. A mowslddtdiscussion of how particle interactions
can be modelled using braid products is giveriin [1].

a-f3) )

A A=
)

Ac=| Oy

Figure 9: The product of two braids

Ty

Figure 10: A framed braid on three strands (right), equiviaie a braided substructure in a network (left)

’

Having established the mapping between braids and SM [e&tizve now turn to the matter of
embedding the Helon Model in trivalent spin networks. Irsththeme, a braid occurs as a single node
from which three strands (helons) emerge. That is, the ctyeabp of a braid is identified as a trivalent
node. The strands braid around each other, and then joire taeth of the network at three other nodes
(see Figuré_10). It was shown inl[2] that such embedded brazidsbe characterised by the linking of
the edges of the braid. If we take a diagram of a topologichksucture in a trivalent network, and
trace along the left and right edges of each strand - disoguany unlinked closed loops - we obtain a
diagram of a link corresponding to that structure. This tmesion is illustrated in Fig_11. The link
obtained may in general be simplified by applying a series @ti@neister moves to the diagram, to
obtain a “reduced link”. The reduced link is an invariant dfraid, so that it does not change no matter
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how much the network of nodes and strands is deformed willémtanifold in which it is embedded.
Likewise, the standard trivalent evolution moves (1-3 &gi@n move and 2-2 exchange move) do not

change the reduced link.
N = _7--:-‘[\
Wi -5 -

Figure 11: Finding the reduced link of a topological struetwithin a ribbon network

It is here that the diiculty regarding interactions occurs. In order for any psscanalogous to the
braid product to take place, two braids must be able to coendairdd then split apart. If the outgoing par-
ticle states are to beftierent from the incoming particle states, then the assatraduced links should
also be diferent. But as noted above, it was shown that this is not pessiimer the 1-3 and 2-2 evo-
lution moves. While this ensures that individual leptond gnarks will not decay (since the associated
reduced link cannot be changed), it also appears to praduityitnon-trivial particle interactions. It is
possible that this issue could be addressed by postulatiegvavolution move. However in sectibn 4.3
we wish to explore an alternative approach, in which we cansia correspondence between braided
networks in the trivalent and tetravalent cases.

3 The 4-valent Scheme

Having seen the results and limitations of the trivalenesel, we shall move on to the 4-valent scheme,
which, although began as an extension to the trivalent onegdl out to be a rich, fully dynamical theory
of braids of 4-valent braided ribbon networks. The 4-vaksiteme has been studied and cast in two
parallel but complementary formalisms, namely the grajgimd the algebraic formalisms. While the
former dfers a more intuitive picture, the latter provides a more eaient playground for theorem-
proving and investigating the properties of braids and tthgnamics. Consequently, in this Section, we
shall adopt the graphic formalism for illustrative purpesaly but the algebraic formalism extensively.

3.1 4-valent Braided Ribbon Networks

4-valent braided ribbon networks are framed 4-valent spiwarks embedded iR3. The local duality
between a node of a 4-valent braided ribbon network and ahietiron allows representing a node by
a 2-sphere with four circular punctures and its edges bystahat are welded at the punctures. This
is depicted in Fig[[T2. We assume that each node is rigid anedegenerate, such that it can only be
translated and rotated, its punctures where its edgestachat are fixed, and no more than two edges of
a node are co-planar. Because a tubular edge is dual to gutl@rdace of a tetrahedron, a tube implicitly
carries three racing stripes that record the twist of a tuw;h dictates how two tetrahedra are glued on
a common face. Sectidn 4 gives a further discussion of thegatripes.

In a projection, we simplify the tube-sphere notation in.Hid(a) to a circle-line notation ((b) or
(c)), in which solid lines piercing through the circle repeat tubes that are above in the 3D notation,
while a dashed line connects two lines as the tubes that aex.ufihere is no information loss in doing
so because one can always arrange a node in the either thénskag). [12(b) or (c) by isotopy before
projecting it. Owing to the local duality between a node angteahedron and the symmetry on the
latter, if we grab an edge of a node, the other three edgesilaomnsan equal footing, inducing a rotation
symmetry w.r.t. the edge being grabbed (Figl 12(b) & (c))ichtwill be explained shortly. Therefore,
in a projection one can assign states to a node w.r.t. itdontaxis. If the rotation axis is an edge in the
back (front), the node is in state(e) and is called &-node &-node), as in Fig._12(b) ((c)).
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Figure 12: (a) is a tetrahedron and its dual node. In a diaggamode can have two states, ¢hand (c)
o. (f) shows an unambiguous label of the two right-handg¢gltwists in (d) and (e).

Nonetheless, if the three edges other than the rotatiorofgisode must be distinguished, e.g., to be
seen shortly in the case of the nodes of a braid, a degenefaacio state of the node arises. Consider
Fig.[12(b), the node is i® w.r.t. edgeB; rotating the node abou produces cyclic permutations of the
other edges. Ignoring the twists and crossings that aréectdey rotations, which will be our next topic,
it takes a full rotation for the node to roll back to its origirtonfiguration. Among all such permutations,
(C, A, D, (D, C, A),and @, D, C) keep the node im w.r.t. B, whereasA, C, D), (C, D, A), and
(D, A, C)flip the node tee. That is, each state has a 3-fold degeneracy; or in othersyeeth state is
a triplet. The six sub-states in total record the full confégion of the node w.r.t. the rotation axis.

If we denote a full rotation by 72, then the amount of rotation keeping a node within a stapéetri
is 2r/3; however, ar/3 causes a node to jump back and forth between two statet¢ripdote again
that this type of rotations are not the ones with a rigid naditit rather discrete and purely topological.
Details of these rotations will be studied in Secfion 3.3.1.

Naturally, an edges can be twisted discretely. The disonsabove of rotations shows that the small-
est distinguishable twist is/3; higher distinguishable twists in the projection mustttegral multiples
of /3. Fig.[12(d)-(f) shows how the handedness and hence th@tatwist is unambiguously defined.

3.2 Braids

The graphic notation enables us to find an interesting typgepafiogical excitations of 4-valent braided
ribbon networks, namel@-strand braids or 4-valent braids, defined in Fig[[13(a). A 3-strand braid is

@ /T T (b) \ / — = © ™
s, X . =4
T e - \ /

Figure 13: (a) A generi8-strand braid. (b) The four generators of. (c) An example.

~|®

3 3

made of twoend-nodesthat share threstrands, which are generically braided and twisted. Each end-
node has aexternal edgeattached elsewhere in the network. This definition is ungomdis because a
braid can always be arranged horizontally as in Eig. 13(a9.dWallow the strands of a braid to tangle
with any other edges in the network, including the braid®mal edges.

A 3-strand braid characterized by an 8-tupllg S), Ta, Ty, Tc, X, Sy, Ty} that consists of a pair of end-
node statesy;, Sy), a pair ofexternal twists (T;, T;), a crossing sequence, and a triple of internal
twists (Ta, Tp, Te). (S1, Sr) is valued in{+, —}. S’s inverse is-S or S. X codes the braiding (from left to
right) of the three strands; it must be an elemerBinthe group of ordinary braid of three strands, and
is thus generated by the four crossings in Eid. 13(b). Alstevare valued i@ in unit of /3.

n this notation, e.g.,& A, D) meansC — A, A~ D, andD ~ C.
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An X of order n = |X|, the number of crossings, reais= X;xo - - - X; - - - X, Wherex; € {u,u™t, d, d1}
is thei-th crossing. We also assigril or —1, the crossing number, to each generator according to its
handedness, i.eu,= d = 1 andu™ = d! = —1. Thus, ar; is an abstract crossing in a multiplication
but+1 or-1in a summation. Suppo3€ is a segment aX, then|X| > |X’| and three cases exist: Assume
X' =X X2 = Xn, 1) If X = X'Xpe1---, we write X" < X, 2) if X = X, X, -+ %,,X', we write X" < X, and
3) otherwise, we writeX” < X. X clearly induces a permutatiary of the three strands of a braid, which
takes value in the permutation gro8p = {1, (1 2), (1 3), (2 3),(1 2 3), (1 3 2)}.

ox is left-acting on the triple of internal twists because it permutes thdetr{{p,, Tp, Tc) on the
left of the X to the triple Tw, Ty, T¢) on the right by Ta, Tp, Te)ox = (T, Ty, Te). Equivalently,
we have Ta, To, Te) = o3 (T, Tw, Te), whereoy! is the inverse obry and isright-acting Besides,
(Ta, Tp, Te) = (Tg, Te, T¢) meansTy = Ty, Ty = Te, and T, = Ty, and we also haveTg, Ty, T¢) +
(Tg, Te, Tt) = (TaxTg, Th=Te, Tc=T¢). Therefore, A braid can take either of these two algeb@im§,

'?:[(Ta’ Tb, -I-C)O-X]'Srrr > (3 1)
Lo (T To . TS (3.2)

For instance, the braid in Fid._113(c) can be written @, 2, 0)or-14], Or 5[0;,11 4(2.0,0)];, where
ogrr =812 andrr;_lld = (2 31). Note that in a braid’s expression one should not viligevalue of
ox in Sz explicitly, asox is also responsible for keeping trackXf

We shall see that fferent types of braids pattern the corresponding 8-tuplésrdntly. For a trivial
braid, itsX is trivial, andox = 1; hence, the generic notation uniquely boils dowrfl'td'a, Tb,Tc]%r .

Four-valent braids are noiseless topological excitatimniraided ribbon networks[24] 2, 26]. We
emphasize that 4-valent braids are 3D structures that &ex lseudied in their 2D projections, which are
calledbraid diagrams hereafter. In fact, we are dealing with equivalence clasébgaids because each
braid is equivalent to an infinite number of braids under abe&totopy moves (to be introduced soon),
whose 2D projections relate equivalent braid diagrams.ivatgnce classes of braids are in one-to-one
correspondence with those of braid diagrams|5, 6, 17]; éene need not to distinguish a braid from its
diagrams. That is, by a braid we mean all its isotopic braads, we study this braid by its equivalence
class of braid diagrams. In the sequel, we may use braidsraidldiagrams interchangeably.

The generators of th¥ of a 4-valent braid obey the well-known braid relationsBgf which are

udu? = dtud, utdu=dud?, udu=dud (3.3)

We assume in any, these relations have been applied, such that,elg:d~* should have been written
asudud! = d~tudd! = d~1u by the first relation above. This assumption ensures thdt éaalent
braid we study has least number of crossings among all théshralated to it by Eq._3l3. As such, we
consider braid diagrams with the same number of crossingje@uivalent crossing patterns as the same!

3.3 Equivalence Moves

As aforementioned, equivalent braids and hence equivhtaided ribbon networks are related by a set
of local, equivalence moves that act on the nodes and edgesaifvork without altering the fleomor-
phism class of the embedding of the network. One type of theses are the well-known Reidermeister
moveg[82], which are translations of nodes and continuefrchation of ribbons[S, 17]. We shall focus
on the other type, discrete rotations of nodes, which aralj@edo braided ribbon networks.

3.3.1 x/3-Rotations: Generators of rotations

With respect to any of its four edges, a node admits discpet®ly topological rotation symmetries that
are not those with a rigid metric and do ndfext the diteomorphism class of the embedding of the
node. Sectiof 311 points out that each end-nod state islettpgeserved by a2 3 rotation but mapped
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Figure 14: (b) & (c) are results of (a) by rotating tekenode in (a) w.r.t. edge in two directions
respectively. Red dots are assumed connected elsewhefixeohd

to the other state byzg/3 rotation. Because two consecutivg rotations comprise anZ3 rotation,z/3
rotations are generators of all possible discrete rotataira node w.r.t. an edge of the node. We now
show howsr/3 rotations &ect a subgraph, in which a node is rotated. In eithera ao state, a hode
can be rotated in two opposite directions. [Figl. 14 showsdise ahere a is in @-state w.r.t. its rotation
axis before ther/3 rotation is done. Thefkect of arx/3 rotation on a-node is the mirror image of Fig.
[I4. A n/3 rotation of a node always flips the state of the node, creatasssing of two edges of the
node, and generatestd on the rotation axis and=al twist on each of the rest three edges.

Since our key topological structures are braids, we wonder the rotations act on a braid. In this
case, e.g., in Fig. 15, we only allow an external edge of allicatbe an rotation axis[5]. In Fig._1L5 the left
braid is equivalent to the right one with one less crossirts Bbservation motivates a classification of
braids as if they are isolated structures. We name a few irapiodefinitions, whose details are referred
to [5,[€]. A braid isreducible if it is equivalent to a braid with fewer crossings and othierirreducible .

A braid isleft-, right-, or two-way-reducible if it can be reduced by rotations on either its left, right,
or both end-nodes. A braid equivalent to a trivial braid,, isebraid without crossings, mompletely
reducible. The algebraic form of a rotation on a braid as a whole can bedan [&].

Figure 15: Two braids are equivalent under/8-rotation of node 2.

As equivalence moves, the rotations and translations dhmave associated invariants. Although
such an invariant exist on arbitrary sub-graph of braidbtan network, in which equivalence moves
act[5,[6], we are more interested in restricting the sulplggato be 4-valent braids only. In this case, a
braid bears two invariants of discrete rotations, namslgffective twist andeffective statg8],

C |X|
O=Ti+Tr+ > Ti-2> %
i=a i=1
x = ()Xss,. (3.4

Moreover, we shall see that both quantities in[Eql 3.4 aeasserved quantities of braid interactions.

3.3.2 Braid Representations

As an equivalence class, a braid should be studied in terrosrtdin convenient representative of the
class. Each braid bearsumique representation in which the braid has twist-free external e@es
Here is why. Were there two braids with twist-free exterrddes in one equivalence class, they had

12This uniqueness is defined modulo the ordinary braid relatias explained in Sectibn B.2.
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to be related by rotations, which is contradictory to that egtation creates twists on an external edge.
This representation is convenient to the study of braid dyosin general.

All irreducible braids in a class must have the same numberasfsings; otherwise, the longer ones
should either be reducible or belong to another class. Ttrexdrreducible braids in a class must have
the smallest number of crossings. We henceforth call adugible braid arextremum of a class. A
braid is in anextremal representationif it is represented by its extremum. the extremal represizmt
is not unique because a braid has infinite number of exttema[8 An extremal representation is called
atrivial representation if the associated extremum has no crossings.

3.4 Dynamics: Evolution Moves

To define the models our results apply to, we have to choosedd dgnamical moves. In SF and other
models of spin networks, dual Pachner moves are a commooeifidi 73| 55], as seen in Sectlon 113.2
for the trivalent scheme. We now discuss the dual Pachneesnawv 4-valent braided ribbon networks.

Let us fix a non-singular topological manifold and choose a triangulation of itin terms of tetrahedra
embedded inM whose union is homeomaorphic l. Any such simplicial triangulation oM has a
natural dual that is a framed 4-valent graph embedded.iThe framing determines how the tetrahedra
are glued on their faces. Thus, a Pachner move on the tranguishould result in a local move in the
framed graph, i.e., the dual Pachner move.

Nevertheless, not every embedding of a framed four valeagtgin M is dual to a triangulation of
M. Examples of obstructions to finding the dual include theadraids (e.g., Figule 13). This is an
embedding of a graph that could not have arisen from takiaegitfal of a regular simplicial triangulation
of M. We note that these obstructions are local, in the sensathab-graph of the embedded graph
could be cut out and replaced by another sub-graph that vediold the duality to a triangulation of1.

The question then is how to define the dual Pachner moves egraphs that are not dual to any part
of a triangulation ofM. The answer is that we do not. We thus have the basic rule:

Basic rulelld The evolution moves on 4-valent braided ribbon networksteeedual Pachner moves
that are allowed only on subgraphs which are dual to a 3-ball.

The Pachner moves and the dual evolution moves that obeyatfie tule on the 4-valent braided
ribbon networks, namely the 2 3 (3 — 2) and 1— 4 (4 — 1) moves, are respectively explained by
Fig. [16 and Fig[1l7 and their captions. The result of a duahR&icmove is unique up to equivalence

c’
(d)

Figure 16: The 2» 3 Pachner moves between (a) two and (b) three tetrahedraduEh® <« 3 move

between (c) two nodes ia-state and (d). (c) and (d) are dual to (a) and (b). The red astedl green
lines in (b) outline the three tetrahedra. Green edges iar@yenerated by the duak2 3 move. If the

two nodes in (c) are im-state, the result of a 2> 3 move is the left-right mirror image of (d).

moves, i.e., the discrete rotations and adapted Reidemeigives. The basic rule we posit, which
dictates the legitimacy of a dual Pachner move, actuallisltomiwn to the following conditions.

Condition 3.1. A legal dual Pachner move falls into the following three case

1. Two nodes allow & — 3 move jf they share only one edge and can be put by equivalence moves
in the same state with the common edge twist-free [Fig. 16 (t$ mirror image).

13This rule and other possible rules are discussed in detfillh
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(@)

Figure 17: (a) The k- 4 Pachner moves between one and four tetraheda. The dua#tiiInoves are
between (b) and (c). Red edges in (c) are the generated by&hd &> 4 move.

2. Three nodes allow & — 2 move jfthey and their edges can be set by equivalence moves as either
Fig.[16(c) or its mirror image, where there is a contractitit®p made of three twist-free edges.

3. A1 — 4 move is always doable; howeverda— 1 on four nodes is doablgfithe four nodes
together with their edges can be arranged in the form of eifhg. [I7(c) or its mirror image, in
which there is a contractible loop and all common edges arstifree.

In view of Condition[ 3.1, a 2» 3 move is illegal on the two end-nodes of the braid in Eigl 13(c
so is a 3— 2 move on any three nodes that contain this pair, which mdle$taid stable under single
evolution moves. This generalise to that any nontriviaidmith internal twists is stable under single
evolution moves. Thetable braid are thus considered noiseless subsysteéms[6] and locdhtmes
with conserved quantiti€s[7] 8]. Section]3.7 has more orstidgility and locality of 4-valent braids.

The dual Pachner moves in SF models contain only the penowitetlations of edges, which is
suficient only for triangulations. In contrast, our dual Pachmeves are adapted to the embedded case
by recording the spatial relation (under or above) of theesdnd nodes in a projection of the 3D graph;
they are thus called thedapted dual Pachner movesaind are able to endow embedded 4-valent spin
networks a spin-foam like dynamics. This answers the questised at the end bf 1.3.2.

3.5 Dynamics: Propagation, Direct and Exchange Interactio of Braids

In order that the stable braids, as topological excitatmfrthe 4-valent braided ribbon networks, can be
candidates for particles or pre-particles, they must badyocal. Indeed, the evolution moves endow the
stable braids rich dynamics: they can propagate and iriténdebriefly address braid propagation first.

Since a braid can be considered an insertion in an edge, esrsdnse to speak of them propagating
to the left or to the right along that edge. To help visualizis tn the diagrams we will always arrange
a braid so that the edge of the graph it interrupts runs hotédly on the page. There are two types of
propagation of braids, namely induced propagation angi@ptiopagation.

Under the evolution moves, especially thes14 moves, the ambient network of a braid may expand
on one side of a braid but contract on the other side, suclthibatraid &ectively moves towards the
side of contraction. We call this phenomenioduced propagation because the braid is not directly
involved in the evolution and remains the same. Any braidgrapagate in this induced way.

Opposed to induced propagationaistive propagation which occurs only to specific network con-
figurations and braids; it is called active because the sratducture undergoes intermediate changes
(and probably permanent change of its internal twists)rnduthe propagation. Braids that can propa-
gate in this way are calleaktively propagating and otherwisatationary or non-actively propagating
Nevertheless, active braid propagation needs some spac@kthat may modify the overall settings of
the 4-valent scheme, we thus refer(tol[6, 17] for details.

Two braids may propagate and meet each other in a situatioh,tkat they can interact. Two interac-
tion types exist: direct interaction and exchange intevactWe shall illustrate these striking behaviours
of the braids by figures and present some key results of thandigs in the algebraic notation.
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We first elucidate the direct interaction. lml@ect interaction of two adjacent braids, one can merge
the other, through a sequence of evolution moves. We shaledéhis by a complete example and then

by the generalised definition.

Braid B
l 2—3 moveonnodesx &y

crossings

Braid B’

crossings of B’

l Translate node 2, 3, & 4 to the left.
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Fig. 118 depicts all the stbps the two braids in (a) take to become
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Figure 18: An example of direct right-interaction

the single braid in (h) to complete an interaction. Despite $elf-explaining figure, a few remarks are
in order. In this example, the equivalence moves - the itatand translations - are nondynamical but
are there only to set the nodes and edges in an proper cotifigutiaat manifests the legitimacy of an

evolution move, e.g., the final4 1 move (compare it to Fig. 17).

Braid B in Fig.[18(a) is an example of what we catitively interacting braids because all the moves
are done basically oB’'s nodes and edgeB/, except its left end-node, plays no role. Moreover, we Fig.
[18 is an example dfirect right-interaction , in the sense that the actively interacting braid mergels wit
the braid on its right. In fact, a direct interaction alwaggalve at least one actively interacting braid.

For simplicity braidB’ is assumed twist-free. One may notice that the twist®fon strandc of
braid B appears again in the braid in Fig.]18(h). This is not a cogmeg but an instance of certain

conservation laws that braid interactions follow.

Bearing this example in mind, Fig. 119 serves as an undemsbd@draphical definition of thdirect
right-interaction of two braids. Note that translating the nodes 2, 3, and 4thegevith their common
edgeg, g, andg” to the left, passing through all @&'s crossingsXg in Fig. [19 is certainly not always
possible becaus¥g may obstructs the translation by creating a tangle like imdig. [19(d). This
translation is guaranteed viable only when brBids at least completely right-reducible (see Higl 18).
Note also that nodes 1, 2, 3, and 4 with their edges cannoyalb@arranged by equivalence moves to
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translate nodes 2, 3, and 4 with edges g, g°, g”’
to the left, passing all the crossings; then rear-

range nodes 1, 2, 3, & 4 by equivalence moves ._"CDP/ — e
ARy

in a proper configuration ready for a 4—1 mo-
ve; finally, do the 4— 1 move. B tangled

<

Figure 19: (a)-(c) Definition of the direct right-interamni. (d) An obstructed translation.

meet Conditiori_3]1(3), such that the fina4 1 move can be done to complete the interaction. If all
steps in Fig[ 19 are possible, brd&dnust be actively interacting.

It is a theorem[B, |7] that a braid is actively interacting stvains the braid to be equivalent to a trivial
braid with both end-nodes in the same state (e.g., [Fi§. 26¢alRthat an actively interacting braid is
studied most conveniently in its trivial representatiomjef should reaq?l[Ta, Tp, TC]$r .

Figure 20: The braidB in[18 is equivalent to a trivial braid.

The discussion above is all about direct right-interacti@irect left-interaction is defined analo-
gously and can be visualized as the left-right mirror imafyeght-interaction. Thus, in the sequel, we
assume direct left-interaction is understood. We denotieegtdnteraction of two braid8,; and B, by
B1 +4 B> = B; whether it is a left- or right-interaction is manifest cexiually.

A formal division of braids in now natural. We temporarilyrage the set of stable braids ﬁﬁg‘.
Nevertheless, for reasons to become transparent we emérgg adding two more braids:

B = $0.0.015 . (35)

which are completely trivif. B; are actually unstable because they are dual to a 3-ball. tbleeate
their instability they are obviously actively interactingys such, let us still call the enlarged set the set of
stable braids but denote it B°>. 85 admits a disjoint union of three subsets:

BS =8P Bf LB (3.6)

where®BP, 87, and3s are the sets respectively of actively interacting braidsl{iding B), all actively
propagating braids that do not actively interact, and @tatiy braids. Meaning of the superscripts will
be clear later. Although actively interacting braids asmalctively propagating[6, 10], they are excluded
from BF. Itis a theorem thatB e 8P, the dfective state 0B, yg = 1[8].

We now dwell on the algebra of direct interactions. For sioityl let us consideB, B’ B8P B =
3[Ta Th, T3 on the left of B = %,'[Tg, T, Tg]?rﬁ. If B andB’ satisfy the interaction Conditibn3.1(1)

14Note again that at this point spin network labels are not a&y.plncluding spin network labels has two immediate con-
sequences. Firstly, like any other braid®¥, B are not just two braids but infinite ones coloured bffetent sets of spin
network labels. SecondIfg; are only trivial topologically but neither algebraicallpmphysically.
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trivially, i.e., if T, + T/ =0 andS = S, then the direction interaction & andB’ is simply

’ Tr+Ty=0 S 1 T T/\1S S ’ ’ 1S
B+4B = 3F[(Ta T, Tc) + (Ta T, Tc)]T; = F[Ta+Ta To+ Th T+ TC]T,’ . 3.7)
If, however,B andB’ satisfy the interaction condition nontrivially, i.e. ifteer B's right end-node oB’’s
left end-node must be rotated to make them meet Conditih)3.4ome algebra is needed. We would
refer to [7) 8] for the details; rather, we present the Lerhmiba3 the general result. Note that we put an
actively interacting braid in its trivial representationdsan arbitrary braid in its unique representation.

Lemma 3.1. Given a braid B= [T, Tn, |3 € 8P on the left of a non-actively interacting braid,
B = %[(Tg, T¢ Tg)ax]? , With the interaction condition satisfied Ify)"*S = S;, the direct interaction
of B and B results in a braid

B = O G(PS (Ta To To)) + (PLS (T4, T4, TO) + (Th + Tro ) 3
°(Ta T, Te r (Ta T Te 1+ e Doxms-ti-toxlo

where(T| + Ty, -,-) is the short for(T; + T,, T) + T, T + T;).

The P%' in theB” in Lemmd 3.1 is a permutation on the triple, determined&psndm and valued in
the groupSs. Fig. [14 and its mirror images readily shows$, = (1 2),P*, = (23),P;; = (3 2), and
P~, = (1 2). More general equalities can be derived recursivetyfannd in [7]. The functions(S;, m)
andX; (S, n) return crossing sequences generated by the rotationgeaéedetB’s right end-node and
B’’s left end-node ready for a 2> 3 move. [8] dfers their definitions and properties. We show only
an example hereX;(+, 2k) = (ud)™ andX(+, 2k — 1) = d(ud) ¥, wherek € Z. An positive exponent
of a crossing sequence means, for exampld)?(= udud while a negative one means, for instance,
(ud)=? = d~tutdtut. Lemmd3.1l is independent of the trivial representatiorsendorB[8]. Eq.[3.7
is merely a special case of Leminal3.1. We are now ready for a rasilt.

Theorem 3.1. Given B= Tsl[Ta, Tb,Tc]% e 8P, and any braid, B= %[(Tg, Tt’),Té)crx]cS)' e 8BS, such
that B+ B’ = B” € 85, the gfective twist numbe® is an additive conserved quantity, while thfeetive
statey is a multiplicative conserved quantity, namely

@B// = ®B + @B/
XB” = XBXB'-

(3.8)

This theorem, proved in_[8], demonstrates that the two iaws of equivalence moves of braids,
® andy, are also conserved charges of direct interactions. Cesitsem laws play a pivotal role in
revealing the underlying structure of a physical theory. iBxariants and conserved gquantities we are
able to determine how the content of our theory may relateattighe physics and if extra inputs are
compulsory. In Section 3.6, we try to identify our consergedntities with particle quantum numbers.

Sinceyg = 1VB € 8P, Theoreni 311 shows that B directly interact with a braid witly = —1, the
result must be a braid with = —1 too and is thus not il°. Moreover,8P +4 85\ 8° c 8S\ 8P,

Because fermions usually do not directly interact with eatbler but can interact with (gauge) bosons,
that a direct interaction always involve at least one algtivgeracting braid implies an analogy between
actively (non-actively) interacting braids and bosonsnffiens). The evidence of this analogy will be-
come stronger soon, after we study exchange interactiots artalogy manifests the meaning of the
superscript by, as for bosons, o8, the set of actively interacting braids. As to the set of actively
interacting braids, we divided it int8 " and®3s, and we are more inclined to consider the former analo-
gous to the set of fermions because the braids firare chiral[6], analogous to that the SM elementary
fermions are chiral, which manifest the superscripirt 8.

The result of a direct interaction of two braids is unique! ndtheless, this uniqueness may cease
to hold if the braided ribbon networks are graced with spitwioek labels, such that the result of an
evolution move becomes a superposition of outcomes witedhee topology but tlierent sets of labels.



Emergent Braided Matter of Quantum Geometry 21

(a) T, B (b) a
871X X S, &)X

1—4o0nS, ﬂ

T, — — T,

-

‘ Translate the three nodes on the dashed loop to the left of X’

Figure 21: Definition of braid decayB gy =Y B”, B,B € 8BS, B” ¢ 8°. The dashed lines emphasize
the dependence of their relative positions on the Sate

It is natural to ask if a braid can decay, like a particle. Theveer is Yes. A braid decay is a reversed
process of a direct interaction. Hence, through decay a ladaiays radiates an actively interacting
braid, ot its left or its right. We thus fierentiate a left-decay from a right-decay, which are syimbdl
respectively byB5B’ + B”, indicating thaB’ € 8°, andB3B’ + B” becausd3” € 8P.

Fig. [21 defines right-decay. Fid. 121(a) shows a right-redacbraid,B = S[(Ta, Tp, Tc)oxx]> |
with a chosen reducible crossing segmentX’ 2 Xmnaxred € X, WhereXmaxrediS the maximal reducible
segment ofX. This indicates that, in contrast to direct interactionraidmay decay in multiple ways,
each corresponding to a choig¢ that must be specified in a decay process. As the reverseeutt dir
left-interaction, Fig[2ll should be easily understood, sehalgebraic form is

B = S[(Ta, Th, Te)oxx]® = S[((Ta, To, Te) = o (T Ti Tl + (T4 T, TYorx 1™ 3.9)
=B +B", T
whereS’ = (-)X1S,, B” € 8P, and the %4” denotes the adjacency & andB’”. Left-decay is defined
similarly. The relation between decay and direct intetacensures thatfective twist® and dfective
statey are also additively and multiplicatively conserved in Qrdecay.

Not only a reducible braid but also an irreducible - in fact abraid can radiate. What an irreducible
braid emits is but either 0B in Eq. [3.5. In fact, because a® 4 can always take place on either
end-node of any braid, a subsequent-32 on three of the four nodes generated by the>14 move
results in either &; or aB{, depending on the state of the end-node. This is Bfre included iyS
although they are unstable. It is therefore plausible Biaére analogous to gravitons.

We now proceed to the exchange interaction of braids. Urdildirect interaction, an exchange
interaction can be defined on the wh@é as a maps# : 8BS x 85 — 85 x 8S. Exchange interaction
gets its name because each such process always involveslzamge of a virtual actively interacting
braid. It is useful to keep track of the direction of the flowtb& actively interacting braid during an
exchange interaction. Therefore, wdteientiate deft and aright exchange interactignrespectively
denoted byre and+e. The arrow indicates the "flow” of the virtual actively ing&ting braid.

The graphic definition ofight exchange interaction is illustrated in Fig.[2R. The left exchange
interaction is defined likewise. We now make a few remarks.

Firstly, we begin with theBy = S[(T1a, T1n, T1c)Txaxs]® @NdB2 = (T2a, Tob, T2c)ox,]5% , Which
are two stable braids, in Fig.22(a). The zero external snas¢ omitted aB; andB; are in their unique
representationsB;’s right end-node andB,’s left end-node are set in the same st&geto satisfy the
interaction condition. We also assume tBathas a reducible crossing segment, Xay.
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@ /7] B, By —@_Ta: T,
< | a b <: >_
T[S 5 X2 WIeT, T,
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T — YT,
12'—>3 move of the two nodes in state S l 32 on the two nodes in —S”’ and that in §°.
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T,
translate the three new nodes - two in —S and one in S B
- with edges g, g’, g’” to the left, passing crossing se- T
quence X1B; then rearrange the them by equivalence (e) S’ XlB S
moves to a proper configuration ready for a 3+—2. T
c

Figure 22: (a)-(d): Definition of right exchange interaotid; 1e B2 — B] + B}, By, B2, B}, B}, € BS,
(e) The virtual actively interacting braid exchanged frBato B,.

Secondly, ifX;g is not trivial, i.e., if By is right-reducible, translating the three nodes on the loop
in (b) and rearranging them by equivalence moves into a propefiguration ready for a 3» 2 move
generates a pair of triples of internal twistgTa, Tp, T¢) and (Ta, Tp, Tc), and cause§’ = (-)*8IS, as
in (c). Taking the permutations induced Ky and byX;g into account, in (d) we have the relations:

(Tia’ 1ba Tic) = (Tla’ lea TlC) - O')_(}A(Ta, Tb’ TC) (310)
(T5a Top T30) = (Tas T Te) + 0 (T2, Ta, T2c), (3.11)

which produce the two adjacent braid, andB), related toB; andBy.

Thirdly, according to direct interaction, the only possibtiple (Ta, Ty, T¢) in Fig.[22(c) is exactly the
same as the triple of internal twists of an actively intdragbraid -B = ST(Ta, Tp, Te)ox,s]S - in Fig.
[22(e). For an actively interacting braid of the form in Figl(€),S’ = (-)*#!S; hence B's left and right
end-nodes are respectively in the same states as that @fftlemtl-node o8, in Fig. [22(d) and that of
the right end-node oB; in Fig. [22(a). Thus, the form of brail}, in Fig. [22(d) must be precisely the
result of the direct interaction @& andB,, which by Lemma 311 is

B+d B2 = %[((Tas To, T) + 0 s (T2a: Tab, Tac))orx, Sa = B,

which validates the relation in EQ.3]11.

Therefore, the process of the right exchange interactiéinetkin Fig.[22 is as iB; andB; interact
with each other via exchanging a virtual actively intenagtbraidB, then becomds; andB’,. Or one
may say that an exchange interaction is mediated by an Bctiveracting braid. This reinforces the
analogy between actively interacting braids and basbnNote that in an exchange interaction, there
does not exist an intermediate state in which only the Vidatively interacting braid is present because
our definition of a braid requires the presence of its two eodes. The following theorem summarizes
the above as another main result. (The case of left exchatgi@gtion is similar.)

Theorem 3.2. Given two adjacent braids, BB, € B5. By = SU[(T1a, T1b, T1c)oxux,s]° iS 0N the left
and has a reducible crossing segmengXand B = 5(T2a, Tob, TZC)O'XZ]SZ’ , there exists a braid B %P,

SMore generally, this should imply the analogy between atfiinteracting braids and particles that mediate intévast
which should potentially include super partners of gaugmhs.
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B = ST(Ta, To, Te)ox,]S With S’ = (—=)*8IS,, such that it mediates the exchange interaction ofr&i
B, to create B, B, € 85, i.e,

Bl-T-eBz - B;I. + B,2
= S((T1a Tab, Tac) = 0k, (Ta To Te)orxin]® + ST(Ta T Te) + 0y (T2a Tabs Tac))orx, ]

The fourth remark is, ifX;g = I, however, Ta, Tp, Tc) = (0,0,0), and hence'l(ia, T Tic) =
(Ta, Tab, Tae), (T5 T5, Too) = (Ta, To, Te), andS’ = S. That is,B; = By andB, = B,. Thus, the
virtual actively interacting braid exchanged in the inti@n is eitherB] or B;, which were aforemen-
tioned to be analogous to gravitons.

Here is the final remark. By the same reason why a braid carydeaaultiple ways, two braids
can have exchange interactions in more than one ways to@pased to direct interaction. This non-
uniqueness of exchange interaction has an analogy in leaptitysics. For instance, quarks have both
electric and color charges, both photons and gluons canateefdirces on quarks. The relation between
actively interacting braids and bosons is yet not an actigadtification, however. In fact, if each actively
interacting braid corresponded to a boson, there would dbetany "bosons”. The underlining physics
of that two braids can have exchange interactionsfiedint ways deserves further studies.

It should be emphasized that each individual exchangeaictien is a process that yields a unique
resul@. An expression likeB1+¢B, is only formal. Only when the exact forms Bf and B, with their
reducible segments are explicitly giveB,+<B, acquires a precise and unique meaning. In computing
an exchange interaction, we have to specify our choice ofdtiacible crossing segment of the braid
that gives out the virtual actively interacting braid. Fayauch choice Theoreim 3.2 holds.

The following Theorem shows that the additive and multgiee conserved quantities of direct in-
teraction in Theorern 3.1 are also conserved in the same mander exchange interaction.

(3.12)

Theorem 3.3. Given two neighbouring stable braidsy, B, € 85, such that an exchange interaction
(left or right or both) on them is doable, i.e.; B¢ B, — B) + B, B,B € 8BS, the gfective twist® is
an additive conserved quantity, while thgeetive statg, is a multiplicative conserved quantity, namely

te
Op + Op = B, + Op
: 2 o (3.13)

te
XBXB, = XBiXBy>
independent of the virtual actively interacting braid bgiexchanged during the exchange interaction.

This Theorem is proved in [10]. Consequently, exchangesiialy interacting braids give rise to
interactions between braids that are charged under théogipal conservation rules. The conservation
of @ is analogous to the charge conservation in particle physics

3.6 Dynamics: CPT and Braid Feynman Diagrams

In this Section we discuss the charge conjugation, parmity,teme reversal symmetries of stable braids,
and the braid Feynman diagrams. We shall present some kd{sresth a few remarks.

36.1 C,P,andT

Though not separately, as a theorem the combined action €BEymmetry in any Lorentz invariant,

local field theory. Being a physical model of QFT, the SM retpehe CPT-symmetry too. This urges
the search for the possible discrete, non-equivalencesfsemations of 4-valent braids and check their
correspondence with C, P, and T transformations. Whethebraids would eventually be mapped to or

18With spin network labels the result is not unique any moreabiee two topologically equal braids can be decorated by
different sets of labels, and an interaction should result iparpasition of braids labelled fiierently.
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more fundamental than the SM particles, they should posgesgum numbers that are transformed by
C, P, and T. Conversely, investigating the action of dischetnsformations on our braid excitations can
help us to construct quantum numbers of a braid.

A large number of possible discrete transformations of tvaldnt braids exist, however, e.g., the
permutation grougss on the triple of internal twist, several copies#f that flip a twist, an end-node
state, and a crossing respectively, etc.. The challengeishe filter out the unwanted discrete transfor-
mations. Surprisingly, the braid dynamics introduced abiwns out to naturally select exactly seven
legal discrete transformations of the braids, as C, P, Tlagid products add up to seven in total (eight
including identity). Now we show how this “super-selectianorks. In view of that QFT does not bear
a transformation that magically changes a particle to sbimgtelse, the dynamics of the braids of em-
bedded 4-valent spin networks, namely propagation andaciien, naturally constrains what discrete
transformations are allowed on braids, which is summarazed guideline in the following Condition.

Condition 3.2. A legal discrete transformatiof® on an arbitrary braid B must be an automorphism on
B Bf andBS separately.

We expect the discrete transformations to be representititependent; therefore, the study of their
effects should be made on braids in their generic forms (Eiga)l&id Eq[3]1). Tabld 1 displays the
result, in which explicit identification of the legal distedransformations with C, P, and T is made.

Discrete Action on Prop- Action on
Transformation B = J[(Ta, To, T)orx]} Direction Ip, o, n)
1 (T, To. T)orxl3 = P, o1
c (T, To, T 115, + o Ip, o, %
P S(Tar, T, Te)orpolS - o< |-p, o, 1)
T T1(Te. To. Ta)rsrpol 3 - o< (=) |-p. —o 1)
cP - (Tar Ty, Te)orxa] 2 - o |-p, o, n°)
o e To.Tadonseol®, - | < () -p,—oun)
PT S(Te. o, Ta)ors, o1 | < p,-on)
CPT ST, Th, Ta)or 1] 5, + | () p -

Table 1: The group of discrete transformations on a geneaicl ldiagram. In column-3, a (+) means
the propagation direction of the braid is flipped (ffeated). For comparison, column-4 is the action of
the group on a one-particle state, with 3-momentyr8rd component- of spinJ, and charge.

In column-2 of TabléILR, 7x, andS; are discrete operations on the crossing sequ&nufa braid,
respectively defined b : X = XqXo -+ Xq > XnXn-1++- X1, Tx 0 X = XaXo -+ X > X G-+ %L, and
Sc: VX € X, % - dif x =uandx — uif x = d. Hence X! = TxR(X). Note thato-;(1 # Ox-1in
general. These operations are commutative and are eladorafe, 17].

In Table[1, we chose to denote C, P, and T transformationsikiilbert space by calligraphic letters
C, P, and7 because braids are topological excitations of embeddedrgtivorks that are the states
in the Hilbert space describing the fundamental spacetifome can easily check that the eight discrete
transformations including identity in the first column ofblell indeed form a group, which is actually
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the largest group of legal discrete transformations ofr&rst braids[9], 17]. This is the first reason why
they can be identified with C, P, T, and their products.

We emphasize again that these discrete transformationgaidstare not equivalence moves; they take
a braid to inequivalent ones, as seen in Table 1. Staringarthcolumn of the table, one readily finds
that some characterizing quantities of a braid, e.g., ffective twist and ffective state, are invariant
under some transformations but not under others. Table btaned by utilizing these topological
characterizing quantities, without involving spin netlwdabels. We do not count in the phase and
sign factors in the 4th column of Tadlé 1 either. All the tfansiations are restricted to local braid
states, rather than a full evolution picture. Given thesgprisingly, the map between the legal discrete
transformations of braids and those on single particlestappears to be unique.

According to column-4 in Tablel 1, the transformatidds7, CP, andC7 reverse the three momen-
tum of a one-particle state. But then, what is the momentum lofaid? Fortunately, we need not to
explicitly define the 3-momentum of a braid for the momentbthe discrete transformations that can
flip the momentum because it should always agrees with thé'dtacal propagation direction, however
it is defined[9]. Therefore, the discrete transformatiangersing the 3-momentum of a braid are exactly
those flipping the propagation direction of the braid. Thé®dnelps to pins down Tabé 1.

The dfective twist® and dfective statg, are representation-independent invariants and dynasnical
conserved quantities of a braid, while charges, e.g.,r&emtd color chargers, are quantum numbers of
a particle. Hence, onl®, y, and functions of them can be candidates for certain charjadraid. As
we know, the electric charge of a particle is an integral iplgtof 1/3, an additively conserved quantity,
and a result otJ(1) gauge symmetry. Thefective twist of a braid has three similar traits. We have
seen the first two and now talk about the third property. Thming that inflate a spin network edge to
atube is in fact &J(1) framing. That is, a tube is essentially an isomorphisomftJ (1) to U(1), which
is characterized by its twists. A twist-free tube is an idgnmnap, whereas a twisted tube represents a
non-trivial isomorphism. These suggest to intergdedr an appropriate function of it as the "electric
charge” of a braid, which may in turn explains the origin andmtization of electric charge.

Here is the final remark on Taklé 1. On a single particle s&@?7 has one moreftect than a
C because it also turns, the zcomponent spin, te-o~. Although we do not know yet what of a braid
corresponds to-, we can still nail down th€P7". [9],[17] argue that spin network labels should play the
role that determines the “spin” of a braid state.

The C, P, and T group stable braids into CPT-multiplets. Taglb in a multiplet are not equivalent
but may share some traits. It would be heuristic to find how a-@Rltiplet of braids is characterized.
Theoreni 3.1 shows that only CPT-multiplets of actively iatding braids have a topological character.

Theorem 3.4. All actively interacting braids in a CPT-multiplet have tkame number of crossings if
each of them is in its unigue representation. This numbeguety characterizes the CPT-multiplet.

The proof of the theorem can be found[inl[9] 17]. Theokem 3gsdwt apply to non-actively inter-
acting braids. In fact, we can always find two non-activelgiliacting braids withm crossingsh > 1),
in their unique representations, which are not related ¢ esher by any discrete transformation. For
example, the 2-crossing braid®{(Ta, Tp, Tc)oyg-1] and Si[(T, T}, TO)owd S can never belong to the
same CPT-multiplet, regardless of their internal twistd and-node states. Nevertheless, it is still true
thatall the non-actively interacting braids in a CPT-multipletve the same number of crossings if they
are in the same type of representaf{@h This is simply because the discrete transformationsat@lter
the representation type and the number of crossings of d.brai

Having seen thefiects of C, P, and T on single braid excitations, we now disthussction of these
discrete transformations on braid interactioBgaid interactions turn out to be invariant under CPT, and
more precisely, under C, P, and T separaf@J{10]. By this we mean, say, for a direct interaction under
a C,C(B) +qC(B’) = C(B+4 B’), while under a P, it mear®(B’) +4 P(B) = P(B +4 B"). Note that the P-
transformation of a direct interaction swaps its directidrsubtlety arises in the case of T, however. An
interaction involves the time evolution of a spin network.apply our T-transformation to an interaction,
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one should reverse all the dynamical moves. Hence, a Tinanation turns a direct interaction into a
decay. That is, to show the invariance Bfrq B* — B” under time reversal, it $ices to show that
7 (B")37(B) +7(B). Analogous, the invariance of an exchange interacBf B, — B} + B, under
time reversal readf(B’z)ie‘/"(B’l) — 7(By) + 7(B1). The case of braid decay follows similary[10].

This observation of the absence of CP-violation in our thetwes not comply with the SM of parti-
cles, which seems to infer an issue that the interactionsadi® are deterministic, in the sense that an
interaction of two braids produces a definite new braid. Kéedess, this may not be a problem at all
because we have only worked with definite vertices of inteyas. In terms of vertices we have definite
result for an interaction as to the case in QFT,; this is sinidawvhat have been done in SF models or
GFTs. Besides, one can certainly argue that if our braidsmare fundamental entities, the CP-violation
in particle physics need not to hold at this level. Puttinig BP-violation problem aside, however, a
fully quantum mechanical picture should be probabi@tic

If the absence of CP-violation was truly an issue, we woultsater braids with the same topological
structure but dterent sets of spin network labels as physicalljedent. One may adapt some SF meth-
ods to assign amplitudes to the adapted dual Pachner motrestwiided ribbon networks. An evolution
move may then yield outcomes with the same topological cordigon but diferent spin network labels;
each outcome has a certain probability amplitude. As atemuinteraction of two braids may give rise
to superposed braids, each of which has a certain prolyatuilive observed, with the same topological
content but dierent set of spin network labels. With this, CP-violatintemactions may arise.

Note that the current study of discrete transformationsraids would not be impact by just adding
spin network labels in a straightforward way in to our scheeeason is that the discrete transforma-
tions of the braids do not change the spin network label dh excsting edge of the network. One may
try to construct discrete transformation that change tlire isgtwork labels on braids, but one does not
havea priori a reason to make a special choice among many arbitrary walaraf this.

3.6.2 Asymmetry of Braid Interaction

Both direct and exchange interactions are asymmetric. &f liescription is as follows. That direct
interaction is asymmetric means: Given an actively intimgcbraid B and an arbitrary braids’, in
general either of the direct right interacti@wy B’ or the left interactiorB’ +4 B cannot occur because
of the violation of the corresponding interaction conditig&ven if both interactions are feasibi+4 B’
andB’ +¢ B are two inequivalent braids in general, which reBdsy B’ 2 B’ +4 B. Two exceptions exist.
In the cases wherB andB’ meet certain constraint® +4 B’ andB’ +4 B can simply be equal[8].

On the other hand, interestingld +4 B’ and B’ +4 B can be related by discrete transformations.
Because P-transformation swaps the two braids undergoidigeat interaction, i.e.P(B +4 B’) =
P(B’) +4 P(B), we immediately have

B +4B=P(B+qB), if B=P(B), B = P(B) (3.14)

where theP can be replaced bg® by the same token. Note that, however, time reversal camfater
B +4 B’ andB’ +4 B because it turns a direct interaction into a decay.

As aforementioned, the set of actively interacting bragdslesed under direct interaction. This and
the asymmetry of direct interaction then give rise to théofeing theorem[6] 8].

Theorem 3.5. The set of actively interacting braids® is an algebra under direct interaction, namely
BP +4 BP = VP, This algebra is associative and non-commutative.

It follows that braid decay also asymmetric but we shall gkip and move on to the asymmetry of
exchange interaction, which is subtler.

The asymmetry of exchange interaction is three-fold. Kir&r By, B, € 85, in generalB;+¢B, #
Bo+eB1 (B1+eB2 2 Bo+eBi), which is called theasymmetry of the first kind. Secondly, in general

170One should note that a few theoretical physicists may naeagn this.
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B1+eB> 2 Bi+eBy, which is christened thasymmetry of the second kind The asymmetry of the
third kind states that genericallB;¥<B> # B,+eB1. As in the case of direct interaction, whéq
and B, satisfy certain constraints, symmetric exchange intenastarise; however, a subtlety should be
noted. Since two braids may havefdrent exchange interactior;+.B, and B,+¢B1 cannot be equal
for all possible ways of hovB; and B, may interact. The right question to ask is, taking right exade
interaction as an example: For aBy and By, do there exist an instance Bf+<B, and one ofB,+.B;
among all possible ways of these two interactions, such BaatB, = By+¢B1? [10] answers this
guestion for the first two kinds of asymmetry. This asymmefryhe third kind is new and not studied
in [10] but it would not be hard by following the derivations[iL0].

Like direct interactions, asymmetric exchange interatimay be related by discrete transformations,
but only for the asymmetry of the third kind. Since in the asystry of the third kind, the positions of
the braids and the interaction direction are both swappedinwmediately see that only P and CP are
able to do this. Therefore, we obtain Eq. 3.15, in whithan be replaced bg®.

Bo+eB1 = P(B1+eBy), if By = P(By1), B2 = P(By). (3.15)

3.6.3 Braid Feynman Diagrams

An effective theory of the dynamics of 4-valent braids based omfayn diagrams is possible, which
are calledbraid Feynman diagrams Unlike the usual QFT Feynman diagrams having no internal
structure, each braid Feynman diagram is fiaative description of the whole dynamical process of a
braid interaction and has internal structures that redeedevolution of the braid and its ambient.

We use—>—— and——>—= for respectively outgoing and ingoing braidsi, ¢--->----- and
---->----*for respectively outgoing and i mgomg non- actlvely progi@mg braid in BS. Outgoing and
ingoing braids inBP are better represented byvvu andworoue respectively.

In accordance with left and right-decay, we will hencefaitnote left and right direct interactions
by +4 and+4 respectively. Note that if the two braids being interactimg both in%?, the direction of
the direct interaction is irrelevant because the resulidependent of which of the two braids plays the
active role in the interaction. SinéBP+yBP ¢ BP and BO+4(Bf L BS) ¢ B L BS, the only possible
single vertices of right direct interaction and of right dg@re respectively listed in Fig. 123(a) and (b),
whose left-right mirror images are vertices of direct leferaction and left-decay. The arrows over the

MV\ﬁ< i B\- B px. % AN{
1
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Figure 23: (a) All vertices of direct right-interaction.) (&ll vertices of right-decay. Time flows up.

wavy lines in Fig[ZB are important for theyfifirentiate a direct interaction from a decay.

Fig. depicts all possible basic 2-vertex diagrams fdntre&xchange interaction, whose left-right
mirror images are certainly the basic diagrams for left exgje interaction. These diagrams manifests
the invariance of the exchange interaction under the C, RdTitzeir products.

Whether an exchange interaction can have symmetric instaisducid in its diagram. Taking the
asymmetry of the first kind as an example, if a diagram looks&dly the same as its left-right mirror
image with the arrow over the virtual braid not mirrored, tdoeresponding exchange interaction allows
symmetric instances. It follows that Fig.124(a), (b), (€), (), and (u)-(x) are such diagrams.

18These braids can still propagate in an induced way.
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Figure 24: Possible right exchange interaction 2-vertidg@me flows up.

The diagrams in FigureE. 23 aind 24 crystallizes the analegyden braids if8° and bosons, as the
topological conservation laws permit them to be singly reéand destroyed and as exchanges of these
excitations give rise to interactions between braids adhignhder the topological conservation rules.

Multi-vertex and loop braid Feynman diagrams can be coat&duout of these basic vertices. As
a result, there should exist affective field theory based on these diagrams, in which thegibty
amplitudes of each diagram can be computed. For this onddshigurre out the terms evaluating external
lines, vertices, and propagators of braids. In a more cam@lense, an action of théfective fields
representing braids that can generate these braid Feyniagramhs should be devised. Eadfeetive
field is a function of the representations of the group eldmanthe characterizing 8-tuple (and spin
network labels if necessary) of a braid; these representatiabel a line in the corresponding braid
Feynman diagram. An easier task is to assign a reasonatidalplity amplitude of each braid Feynman
diagram. In either case, the very first challenge is to findmor@priate mathematical language to study
the 4-valent scheme analytically. In the next section wébméfly mention three possible formalisms.

3.7 Discussions and Outlook

The 4-valent scheme resolves some issues and limitatiosssiieg in the 3-valent approach but also
raises new issues. In the first place, we obtain a @3-dimensional evolution of quantum states of
spacetime, which has intrinsic dynamics of the braid ekoita of these states. Because of the framing
and embedding of spin networks, strands of a braid exaitattbmit twists only in units of/B. The twists
of a braid is directly related to its electric charge, whielurally, rather than by hand, gives rise to charge
guantization and fractional charges such as quark charfles.4-valent theory also contains another
natural selection: braid dynamics magically picks out augrof exactly eight discrete transformation,
including identity, which can be identified with analoguésCoP, T, and their products.

Some issues the 4-valent scheme raises have been discussedrmiess previously. In the sequel,
we shall analyse some issues that bear on the interpretatibese results. In the last section, however,
we shall introduce ideas, future work, and work in progregsch may remove these issues.
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Stability and locality

We argued that the stable braids are local excitations @ldav braided ribbon networks because they
are noiseless subsystems of the networks. Neverthel@sspthparison with topological field theories
that do not bear any local degrees of freedom seems to seddhkty of 4-valent braids in doubt. In
fact, locality in background independent theories of quangravity is delicate, as it is correlated with
two other important issues, hamely the problem of the canmlegpacetime and that of low energy limit.
Moreover, the locality and stability of a braid are also egtad.

A background independent quantum gravity theory usuatligda metric that directly measures spa-
tial locality. But the graph metric of a spin network may defitne network locality. In this sense, a
stable braid is local because it is confined between two nadie®rtunately, the issue in the stability of
a braid may damage its locality because Cond[fioh 3.1 ordtepts the a stable braid from being undone
but does not prevent the braid’s end-nodes from being exgqzhhyg 1— 4 moves. In the latter scenario,
the three strands of a braid may turn out to be attached tosnfagldrom each other on the network,
causing the braid nonlocal. We might strengthen the stalmitindition by further forbidding the action
of a 1— 4 move on either end-node of a stable braid but the pay is #sedbbraid decay.

Moreover, the locality discussed above is micro-localdpposed to which is macro-locality that
is defined in the low energy end of the theory. Markopoulou Snwlin proposed these two notions
of locality and found that they do not match in genéral[24hish is also exemplified in [83]. The
guantum spacetime in our context is pre-geometric, as isisnaover quantum histories of superposed
pre-geometric spin networks; it is conjectured that cardirs spacetime emerge as certain limit of this
guantum spacetime. Hence, requiring the micro-localitiinge on each spin network to match the
macro-locality in continuous spacetime makes no sense.

Macro-locality is more relevant to the known physics; hoerevt is obtained from micro-locality.
This leads back to the problem of low energy limit, to resolt@ch Markopoulouet al. adapted the
idea of noiseless subsystems with micro-symmetries fromnfum Information. Therefore, we expect
that the symmetry of the braid excitations will induce eneatgsymmetries, including time and space
translation invariance, in the low energffextive description of the braids.

Particle identification and mass

The ultimate physical content of the 4-valent scheme is albf Eomprehensible at this stage. In the
trivalent scheme[ 4] tentatively maps the trivalent bsaiol SM particles. Whether such a map exists in
the 4-valent scheme is yet obscure. A reason is that alththegdynamics of 4-valent braids strongly
constrains the defining 8-tuple of a stable braid, in paiicthe actively interacting braids, the closed
form of this constraint is still missing. Consequently, \@eKl for a censorship to pick out the 4-valent
braids that may be mapped to SM patrticles. Nonetheless, vinelined to another prospect: Braid
excitations are fundamental matter whose low eneftgcave theory yield the SM patrticles.

If the latter is true, the potential instability and nonddity of stable braids may not be an issue
because only the low energffective counterparts of the braids are physically relevant.

In any case, is how mass arises? Two likelihoods are in oréiest, a braid may acquire zero or
nonzero mass from some of its intrinsic attributes. Secomass is not well-defined at the level of
spin networks but is emergent in the low energy limit, diedtr via certain symmetry breaking. The
latter requires working out theffective theory, which is our future work. As to the former, aiblis the
number of crossings can be a candidate for its mass (thisasahjectured in the trivalent schemel[2, 4]).
Here is the logic. The number of crossings of an activelyrattng braid in its unique representation
uniquely characterizes the CPT-multiplet the braid betotog hence, this number cannot be the charge
(already mapped to the braid'&ective twists) or 3-momentum of the braid but probably edatio the
energy of the braid. Besides, actively interacting braigsexjuivalent to trivial braids, whereas non-
actively interacting ones are not. If we associate a brardiss to its number of crossings, all actively
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interacting braids seem massless, consistent with thalogne with (gauge) bosons. and most non-
actively interacting braids are massive because they Higtreducible.

Other questions pending for answers

e At the level of spin networks, is there a quantum statisticbraids that can turn the analogy
between actively interacting braids and bosoffisraative? If true, are there anyonic braid states?

e Both trivalent and 4-valent schemes need a mechanism ttecneatrivial braids on unbraided
network&d. Sectiori3.711 discusses a possible way out.

e Our ansatz that spacetime is fundamentally discrete i$ypagpired by the LQG area and vol-
ume operators with discrete spectra. Nevertheless, whttase area and volume operators are
physical is still under debate[84,185]. On the one hand,etlmgserators are not gauge invariant.
On the other hand, the areas and volumes that we routinelgureare associated to spatial re-
gions determined by matter[86,164] but LQG was devised to beeary of gravity only. Now
that our program of emergent matter shows that matter mapdmed in LQG as emergent braid
excitations of spin networks, it may help to settle the debat

e Our program of emergent matter is also related to Quantumh@gaa class of general theories of
background independent quantum gravity based on gragl@&0$9[87] finds the speed of Iig@
as a Lieb-Robinson bound[B8] in certain Quantum Graphitdem As both trivalent and 4-
valent braids can propagate, does a Lieb-Robinson boundhiof propagation exist? The 4-valent
scheme expects that actively interacting braids satunateieb-Robinson bound of the system but
non-actively interacting ones do not, such that they anga@t/ely massless and massive.

3.7.1 Future directions

We now sketch our plan of reformulating the 4-valent schemeven our whole program of emergent
matter in other frameworks of mathematical physics, sud@kE, Tensor Category, and so on.

Group Field Theories with braids
GFT&] consider d-dimensional simplicies the fundamental bangdilocks of ¢I+ 1)-dimensional space-
time and treat them as fields whose variables are elemertig igroup defining the simplicies. That is,
a GFT is a local, covariant quantum field theory of universesérms of the fields associated with the
fundamental building blocks. It would produce a transiteonplitude between quantum "universes” by
summing over the Feynman diagrams of this transition,steanming over all triangulations and topolo-
gies as the histories built from the evolution of the fundatakd-simplicies. These Feynman diagrams
can also be viewed as spin networks and duabte ()-simplicies. Group Field Theories encompass
most of the other approaches to non-perturbative quantawitgrsuch as Loop Quantum Gravity and
Spin Foam models, provide a link between them, and go beymntinhitations of them[94].

We name two viable routes of formulating a GFT of 4-valenidgaSpin networks are purely com-
binatoric and unembedded in GFTs, so the first strategy islerge the configuration space of certain
(3+ 1) GFT by adding to its fundamental field group variables tiaracterize a 4-valent braid.

Inspired by constructing theories of collective modes indensed matter physics, our second, sim-
pler strategy is to devise a braid field as a composite fieldpdiaof fundamental group fields whose
group variables are identified in a braided way, and themgrate out the fundamental fields to obtain an
effective theory of the composite fields in certain backgrourdrgby the fundamental ones.

9Trivial braidsBj in Eq.[35 can be otherwise created and annihilated, in tedeht scheme.

20This is understood as the maximum speed, at which informatm propagate in a system.

21The first GFT - the Boulatov model - originated as a genertiimaof the Matrix Models of 2D gravity to 3D[91]. GFTs in
3D and 4D were realised to be generating theories of Spin Foadels[92, 98]. Later, GFTs are suggested to be fundamental
formulations of quantum gravily[94]. [95] presents an estee review on the subject.
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Both ways combine spin network labels automatically andkfgeeted to result in a low energy ef-
fective theory of braid excitations in a background spacetiThe former sounds more fundamental and
should be able to solve the issue that nontrivial braids atip@ created from spin networks initially free
of braids. The latter is what we are currently taking, by vahiee found it is likely to construct a toy
GFT with only certain trivial braids, whosefective theory is a scalar* theory.

Tensor Categorical methods
Braided tensor Categories[96] appear to be another elegahtinified way to resolve many aforemen-
tioned issues once and for all. In fact, the connection beteQ)G and SF Models and Tensor Cate-
gories has been recognized for about decades[97, 98, 98].thit the string-net condensate due to Wen
et al[100,/101] also illuminates that tensor categories may bddhguage underlying a unification of
gravity and matter. Braided tensor categories can unleasprogram from embedding by casting both
trivalent and 4-valent braids combinatorially[98], whishbeyond the context of LQG.

A twist of a strand of a braid can be interpreted as charaobgria non-trivial isomorphism from
U(1) toU(1). Nonetheless, the concept of twist can be generalizeshyosector spaces, which is how
it is defined in braided tensor categories. In this mannermag view spin network labels as if they
represent generalized framing of spin networks other that{1) framing we have just studied, such
that generalized twists can arise, which mégoa unification of our twists and spin network labels, as
well as of internal symmetries and spacetime symmetries.

The end-nodes and external edges of 4-valent braids may fextrer constraints on what tensor
categories are at our disposal or even motivate new typesnsbt categories. Tensor-categorized 4-
valent braids and evolution moves may be evaluated by theaet techniques already defined in theories
of tensor category or new techniques adapted to our case.

3.7.2 Relation to Topological Quantum Computing

One should not be surprised to notice that the 4-valencenselnd emergent matter is related to Topo-
logical Quantum Computing (TQC). This relation has threefa. Firstly, though seemingly superficial,
braids and their algebra are present in both disciplines. afondifference is that each 4-valent braid
have two end-nodes and has only three strands, which iseotge in TQC.

Secondly, as aforementioned, being a concept rooted intQue@omputinginformation and adapted
to models of quantum gravity, noiseless subsystems are aridgrlying notion of the program of emer-
gent matter. Furthermore, [25,]26] suggest that backgréneebendent quantum gravity is a quantum
information processing system. On the other hand, in [2//1@8] topological quantum phase transitions
have proven to give rise to emergent gauge and linearizedtgna.

Thirdly, one of our future directions is to employ tensoregairies - in particular braided ribbon cate-
gories - to make an elegant reformulation of the 4-valenesth while TQC is also naturally described
in the language of tensor category[103,1104] and relatethtodd spin networks[99].

Therefore, it is interesting to study TQC from the viewpoaftquantum gravity and vice verse,
which may shed new light on both disciplines. For example,may interpret each 4-valent braid
as representing a process of quantum computation, with émete of the braid as a fusion rule of
anyons or a quantum gate in TQC. We wonder if the interactoddsvalent braids can be introduced to
TQC to study how two quantum processes can join, how one goaptocess can split, and when two
sequences of quantum processes can be equivalent. Cdpv@R€E may assist to decipher or assign
new significances of the conserved quantities of 4-valeaitbr

4 A Unified Formalism

Recently in[[13] the trivalent nodes were recast into theatetlent scheme, giving a consistent footing
to study which results from each scheme could be transf@vedto the other. Here we reproduce the
unified definition of Braided Ribbon Networks of valentéwith n > 3) as follows:
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¢ We begin by considering amvalent graph embedded in a compact 3 dimensional manitafel.
construct a 2-surface from this by replacing each node byph2re withn punctures (1-sphere
boundaries on the 2-sphere), and each edge by a tube whietnisattached to each of the nodes
that it connects to by connecting the tube to one of the pueston the 2-sphere corresponding to
the node.

e Lastly we add to each tube— 1 curves from one puncture to the other and then continue thes
curves across the sphere in such a way that each oftili@es connected to a node shares a curve
with each of the other tubes.

o We will freely call the tubes between spheesigesthe sphereaodesand the curves on the tubes
racing stripesor less formallystripes

o We will call a Braided Ribbon Network the equivalence clasmooth deformations of such an
embedding that do not involve intersections of the edgeberacing stripes.

We immediately face the following consequence: under tbfsdion there are only braided ribbon
networks of valence 2,3 or 4 (with valence 2 being a collectb framed loops). To see this fact we
consider a 5-valent node - a 2-sphere with 5 punctures, veith @uncture connected to each other
puncture by a non-intersecting curve. Taking each punesi@ node, and the curves as edges, we then
get that these objects would constitute the complete graghrmdes and as they lie in the surface of a
2-sphere, such a graph would have to be planar. This is infpedsy Kuratowski’'s theorern[105]: the
complete graph on 5 nodes is non-planar. Likewise, we havarfp higher valenca that the graph that
would be constructed would have the complete graph on 5 reslassubgraph, and so they too can not
be planar. If the reader desires an intuition for this, it rbayinstructive to recall that these statements
follow from the four colour theorem - the existence of suctodenwould imply the existence of a map
requiring five (or more) colours.

Figure 25: (a) Trivalent node. (b) Four-valent node

We can also introduce a modification to the framework thawadlfor higher valence vertices. To do
this we first make a few definitions.

Definition 4.1. We define thenatural valence of a braided ribbon network to be the number of racing
stripes on each edge.

Definition 4.2. We say that a node isatural if each of the tubes which intersect share a racing stripe
with each of the other tubes. Otherwise we will say that a nedemposite

We can then definemvalent BRN with natural valenam (heren can take values af = km—2(k—1)
for any integek) as a braided ribbon network where each of the nodes hatses which intersect it but
where each of the tubes has— 1 racing stripes. Likewise we can define a multi-valent BRXhwi
natural valencenin a similar manner but without fixing the value lofor all nodes. We then construct
composite nodes by connecting natural nodes in series Iplesiealges and shortening the edges which
connect them internally until all of these nodes combine single sphere with the appropriate number
of punctures (see figute 26). As these combined nodes ardysiiied they are then dual to gluings of
simplices which when grouped together would be equivatkeatpolygon (for a natural valence of 3) or
a polyhedron with triangular faces(for natural valence)of 4
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Figure 26: Forming Composite nodes

4.1 Relating to the Ribbon pictures

AL

Figure 27: From BRN to trinions

We can construct from the previous form of trivalent braidétion graphs a braided ribbon network
as we've now defined them as follows: for each node of the m&twe consider a closed ball in the
embedding space which has the node on its surface but whichrheampty intersection with the rest of
the ribbon graph. These spheres then define the nodes ofditedhribbon network. The edges of the
braided ribbon networks are then defined by similarly casing tubes between these spheres so that
the boundaries of the edges of the ribbon graph coincidetivittboundary of the tubes. The boundaries
of the surface of the ribbon graph then become the racingestiof the braided ribbon network.

Likewise we can construct a traditional braided ribbon mekafrom a 3-valent braided ribbon net-
work by making the following observation: at each node tt@ng stripes divide the sphere into two
parts, likewise along each edge the tube is divided in twoheyracing stripes. We can consistently
choose one side or the other and identify this as the surfiaadraditional braided ribbon network (al-
ternatively we can think of ‘squishing’ the two halves tdgatinto a single surface, in a sort defining
one side to be the ‘front’ and the other the ‘back’).

4.2 Applications of the Unified Formalism

In [13] and [14] this formalism was used to demonstrate sdvgeneral results for Braided Ribbon
Networks and embedded spin networks. We shall not reprotthése results here, but instead direct the
reader to those papers for demonstrations of:

e The generalization of the reduced link to the unified forsraliand hence to 4-valent BRNs.
e The demonstration of the conservation of the 4-valent reduiok.

e The Construction of maps between BRNs and Spin Networks.

e The demonstration that the reduced link is a conserved dyudot Spin Networks.

These results give us a new use for Braided Ribbon Netwdnky: tave become arffective tool for
understanding the information in the embedding of Spin et®. They also demonstrate that a great
deal of the structures that we study in BRNs also exist and@mserved in embedded spin networks.
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4.3 Correspondence between the trivalent and tetravalentases

The natural formulation of framed tetravalent networksmesntioned in section 3.1, is as tubular links
between spherical nodes. It is in fact quite easy to see tldit a network can be matched up to a
framed trivalent (ribbon) network, by simply “slicing” aliular link down opposite sides, as discussed
in sectior 4.1

Given any framed trivalent network, we can always combin@caht nodes to create composite
tetravalent nodes. Likewise, the tetravalent nodes ofitib®n networks obtained by the splitting process
described above can be decomposed into pairs of trivale®snd his allows us to switch between braids
in the framed trivalent and tetravalent cases.

Suppose we begin with a trivalent framed braid. We are alvadys to reduce this braid to its pure
twist form, as noted above. Once in this form, in which allssings have been removed, it is always
possible to rotate the node at the top of the braid in such aerdhat all the twisting on one strand (say,
the rightmost strand) is removed, and extra twists and ergssare induced on the other two strands.
We thereby arrive at a braid on three strands in which a sisignd does not carry any twisting or
crossing. The node at the bottom of this strand may then le¢yfommbined with the node at the top of
the braid to form a single tetravalent node. Likewise theesoat the bottom of the two twisted strands
may be combined to form a single tetravalent node. This poczillustrated in Fid. 28. By this process
we obtain a braid located between two tetravalent nodesam®ccur in the framed tetravalent case
(sectior3.]1). The braid obtained is, of course, embeddediltbon network, but it can always be used
to reconstruct a tube-and-sphere framed tetravalent BRN.

o] [p—

Figure 28: Forming composite nodes allows us to convert éetvirivalent and tetravalent style braids.

The significance of this construction is that it allows usgeaxiate framed tetravalent networks with
structures occurring in the Helon Model (and hence with Sivhfens), and allows the structures in the
Helon Model to interact via the results on framed tetraviatextworks [6]. We thereby obtain a model
which allows us to reproduce both kinematic and dynamigad¢ets of the Standard Model.

5 Conclusions

While the idea of matter emerging from spacetime as topoédgiubstructures is an old one, it is only
recently that our understanding of the subatomic struatfireatter has made models of such emergent
matter viable. In this review article we have discussed ten@lbel approaches, the trivalent and tetrava-
lent scheme, which grew out of the suggestion that the mast bavel of substructure within matter may
be modelled by braided ribbons. The tetravalent schemenoaspto embody a rich dynamical theory
of braid interactions and propagation ruled by topologamaiservation laws, but has until now not been
able to construct a direct mapping to the particle stateb@faM, instead producing a seemingly infi-
nite range of equivalence classes of braid states thanfallivo types respectively analogous to bosons
and fermions. The trivalent scheme has been unable to mu@eactions, but has been quite success-
ful at taming the profusion of braid states present by contitrg equivalence classes of braids, each
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equivalence class being mapped to a single type of parfidie. unification of trivalent and tetravalent
approaches we suggest here promises to allow the developifreefully dynamical theory of interacting
particles, to restrict the range of particle states exgstiithin the theory, and to provide a Rosetta stone
that allows trivalent braids, tetravalent braids, and thdigles of the SM to be equated in a satisfying
manner. If successful, this will be a compelling theory oaum spacetime and emergent matter.

Acknowledgements

SBT is grateful to the Ramsay family for their support throdlge Ramsay Postdoctoral Fellowship. JH
is grateful to his Thesis Advisor Lee Smolin for his discassand critical comments. YW is in debt to

his Supervisor Mikio Nakahara for his constant support agmegosity. YW is also supported by “Open
Research Center” Project for Private Universities: maigtiund subsidy from MEXT, Japan.

References

[1] S.Bilson-Thompson, arXiv:hep-f#503213.
[2] S.Bilson-Thompson, F. Markopoulou and L. Smol@iass. Quant. GraR4 (2007) 3975, arXiv:hep-t8603022.

[3] J. Hackett, Locality and Translations in Braided Ribbon Netwark€lass. Quant. Grav.24 (2007) 5757,
arXiv:hep-thH0702198.

[4] S.Bilson-Thompson, J. Hackett and L. KEman, arXiv:0804.0037.
[5] Y. Wan, arXiv:0710.1312.
[6] L. Smolin and Y. WanNucl. PhysB796 (2008) 331, arXiv:0710.1548.
[7] J.Hackett and Y. WarCClass. Quant. Graw6 (2009) 125008, arXiv:0803.3203.
[8] S.He and Y. WanNucl. PhysB804 (2008), arXiv:0805.0453.
[9] S.He and Y. WanNucl. PhysB805 (2008) 1., arXiv:0805.1265.
[10] Y. Wan,Nucl. PhysB814 (2009) 1. arXiv:0809.4464.
[11] F. Markopoulou and I. Prémont-Schwafdass. Quant. Graw25 (2008) 5015, arXiv:0805.3175.

[12] Bilson-Thompson S., Hackett, J., and Kawan, L. Particle Topology, Braids, and Braided BeltsMath. Phys50,
(2009), 11350&, arXiv:0903.1376.

[13] Hackett J., Invariants of Spin Networks from BraidedBdn, arXiv:1006.5025.

[14] Hackett J., Invariants of Braided Ribbon Networks, iarX006.5096.

[15] H. Harari,Phys. LettB86 (1979) 83.

[16] M. ShupePhys. LettB86 (1979) 87.

[17] Y. Wan,Emergent Matter of Quantum Geomet®h.D. Thesis, University of Waterloo, 2009.
[18] W. Thompson (Lord Kelvin)Proc. Roy. Socvol. 41, pp. 94-105, Edinburgh, 1867.

[19] J. A. WheelerPhys. Red7 (1955) 511.

[20] D. Finkelstein and C. W. MisneAnnals of Physicé (1959) 230.

[21] D.R. Brilland J. B. HartlePhys. Rev135 (1964) B271.

[22] G.P. Perry and F. |. CooperstodRlass. Quant. Gravl6 (1999) 1889.

[23] H. F. Dowker and R. D. SorkirClass. Quant. Gravl5 (1998) 1152, arXiv:gr-g6609064.
[24] F. Markopoulou and L. SmolirPhys. RevD70 (2004) 124029.

[25] D. W. Kribs and F. Markopoulou, arXiv:gr-¢@510052.

[26] F. Markopoulou,. Phys. Conf. Se67 (2007) 012019, arXiv:gr-¢@703027.

[27] M. A. Levin and X. G. WenRev. Mod. Phys(7 (2005) 871, arXiv:cond-m@407140.
[28] Zz.C. Guand X. G. Wer, arXiv:gr-¢@606100.

[29] P. Zanardi and M. Raset®hys. Rev. Let79 (1997) 3306, arXiv:quant-g705044.

[30] J. Kempe et al.Phys. RevA63 (2001) 042307, arXiv:quant-f004064.


http://arxiv.org/abs/hep-ph/0503213
http://arxiv.org/abs/hep-th/0603022
http://arxiv.org/abs/hep-th/0702198
http://arxiv.org/abs/0804.0037
http://arxiv.org/abs/0710.1312
http://arxiv.org/abs/0710.1548
http://arxiv.org/abs/0803.3203
http://arxiv.org/abs/0805.0453
http://arxiv.org/abs/0805.1265
http://arxiv.org/abs/0809.4464
http://arxiv.org/abs/0805.3175
http://arxiv.org/abs/0903.1376
http://arxiv.org/abs/1006.5095
http://arxiv.org/abs/1006.5096
http://arxiv.org/abs/gr-qc/9609064
http://arxiv.org/abs/gr-qc/0510052
http://arxiv.org/abs/gr-qc/0703027
http://arxiv.org/abs/cond-mat/0407140
http://arxiv.org/abs/gr-qc/0606100
http://arxiv.org/abs/quant-ph/9705044
http://arxiv.org/abs/quant-ph/0004064

36 S. Bilson-Thompson, J. Hackett, L. Ki@isnan, and Y. Wan

[31] J. A. Holbrook, D. W. Kribs and R. Laflamm@uant. Inf. Proc2 (2004) 381, arXiv:quant-p8402056.
[32] D. W. Kribs, R. Laflamme and D. PouliRhys. Rev. Letd4 (2005) 180501, arXiv:quant-fi12076.
[33] F. Markopoulou and . D.Poulin, Noiseless subsystenasth@a low energy limit of spin foam modelgnpublished
[34] O. Dreyer, F. Markopoulou and L. SmoliNucl. PhysB744 (2006) 1.

[35] H. Sahlmann and T. Thieman@Jass. Quant. Graw23 (2006) 867, arXiv:gr-q6207030.

[36] A. Ashtekar, L. Bombelli and A. CorichRhys. RevD72 (2005) 02500, arXiv:gr-¢6504052.

[37] B.Bahr and T. Thiemani€lass. Quant. Gra6 (2009) 045011, arXiv:0709.4619.

[38] T. Thiemann, (Cambridge University Press, 2007).

[39] E. Alesci and C. RovelliPhys. RevD76 (2007) 104012, arXiv:0708.0883.

[40] E. Alesciand C. RovelliPhys. RevD77 (2008) 044024, arXiv:0711.1284.

[41] C. Perini, C. Rovelliand S. Speziale, arXiv:0810.1714

[42] E. Alesci, E. Bianchi and C. Rovelli, arXiv:0812.5018.

[43] J.D. Christensen, E. R. Livine and S. Spezi&lbys. LettB670 (2009) 4023, arXiv:0710.0617.

[44] R. Penrose, Angular monentum: an approach to combiahgpacetime (Cambridge University Press, 1971) .
[45] R. Penrose, On the nature of quantum geometry (FreeSaamFrancisco, 1972) .

[46] C. Rovelliand L. SmolinPhys. RevD52 (1995) 5742, arXiv:gr-g6505006.

[47] J.Kogut and L. Susskind?hys. RevD11 (1975) 395.

[48] W. Furmanski and A. Kowald\ucl. PhysB291 (1987) 594.

[49] J. Wade Cherrington, arXiv:0810.0546.

[50] J. Wade Cherrington and J. D. Christendéncl. PhysB813 (2009) 370.

[51] H. Ooguri,Mod. Phys. LettA7 (1992) 2799.

[52] V. Turaev and O. Viro, Topology 31 (1992) 865.

[53] L. Crane and I. B. Frenkell. Math. Phys35 (1994) 5136.

[54] T.J.FoxonClass. Quant. Gravl2 (1995) 951.

[55] C. Rovelli, Quantum Gravity (Cambridge University Bse2004).

[56] J.P. Moussouris, Quantum models as spacetime basegtonpling theory, PhD thesis, Oxford, 1983.
[57] A. Ashtekar, Lectures on Non-Perturbative Canonica\v@y (World Scientific, 1991).

[58] J.C. Baez, Gauge Fields, Knots and Gravity (World Sitfien1994).

[59] L. Smolin,/arXiv:hep-tf0507235.

[60] L. Smolin, (2007), hep-#0408048.

[61] L. Smolin, Generic Predictions of Quantum Theories ofawty (Cambridge University Press, 2009) ,
arXiv:hep-tH0605052.

[62] C. Rovelli, Living Rev. Rel. 11 (2008) 5.

[63] R. Loll, Phys. Rev. Let#Z5 (1995) 3048.

[64] R. De Pietri and R. Rovell|, arXiv:gr-¢@602023.

[65] F. Markopoulou| arXiv:gr-q©704013.

[66] T. Thiemann, Phys.Lett. B 380 (1996) 257, gyaf06088.

[67] T. ThiemannClass. Quant. Graw5 (1998) 839, gr-g8606089.

[68] T.ThiemannClass. Quant. Graw5 (1998) 875, gr-g8606090.

[69] J.W. Barrett and L. Crand, Math. Phys39 (1998) 329€, gr-g6709028.

[70] L. Freidel and K. Krasno\Class. Quant. Gra\25 (2008) 125018, 0708.1595.
[71] Y. Wan and J. Hacketfl. Phys. Conf. SeB06 (2011) 012053, arXiv:0811.2161.
[72] J. C. BaezClass. Quant. Gravl5 (1998) 1827, arXiv:gr-g8709052.

[73] C. Rovelli, Living Rev. Rel. 1 (1998) 1, arXiv:gr-¢&710008.

[74] J. C. Baezlect. Notes Phy$43 (2000) 25, arXiv:gr-g&905087.


http://arxiv.org/abs/quant-ph/0402056
http://arxiv.org/abs/quant-ph/0412076
http://arxiv.org/abs/gr-qc/0207030
http://arxiv.org/abs/gr-qc/0504052
http://arxiv.org/abs/0709.4619
http://arxiv.org/abs/0708.0883
http://arxiv.org/abs/0711.1284
http://arxiv.org/abs/0810.1714
http://arxiv.org/abs/0812.5018
http://arxiv.org/abs/0710.0617
http://arxiv.org/abs/gr-qc/9505006
http://arxiv.org/abs/0810.0546
http://arxiv.org/abs/hep-th/0507235
http://arxiv.org/abs/hep-th/0408048
http://arxiv.org/abs/hep-th/0605052
http://arxiv.org/abs/gr-qc/9602023
http://arxiv.org/abs/gr-qc/9704013
http://arxiv.org/abs/gr-qc/9606088
http://arxiv.org/abs/gr-qc/9606089
http://arxiv.org/abs/gr-qc/9606090
http://arxiv.org/abs/gr-qc/9709028
http://arxiv.org/abs/0811.2161
http://arxiv.org/abs/gr-qc/9709052
http://arxiv.org/abs/gr-qc/9710008
http://arxiv.org/abs/gr-qc/9905087

Emergent Braided Matter of Quantum Geometry 37

[75]
[76]
[77]
(78]
[79]
(80]
(81]
(82]
(83]
(84]
(85]
(86]
(87]
(88]
(89]
(90]
(91]
(92]
(93]
(94]
[95]
[96]
[97]
(98]

[99]

[100]
[101]
[102]
[103]
[104]
[105]

U. Pachner, Ahb. Math. Sem. Univ. Hamburg 57 (1987) 69.

R. De Pietri and C. Petronid, Math. Phys41 (2000) 6671, arXiv:gr-g6004045.

S. Major and L. Smolin, B473 (1996) 267, arXiv:gr/§612020.

R. Borissov, S. Major and L. Smoliglass. Quant. Gravl3 (1996) 3183, arXiv:gr-q6512043.
S. Major, Q-Quantum Gravity, PhD thesis, The Pennsylv&tate University, 1997.
L. Smolin,|arXiv:hep-t0209079.

P. Ehrenfest, Proceedings of the Amsterdam Academyt207) 200.

K. Reidemeister, Knot Theory (Chelsea, New York, 1948)

Y. Wan,|arXiv:hep-tf0512210.

B. Dittrich and T. Thiemann]. Math. Phys50 (2009) 012503, arXiv:0708.1721.

C. Rovelli,larXiv:0708.2481.

C. Rovelli and L. SmolinNucl. PhysB442 (1995) 593.

A. Hamma et al.Phys. Rev. Lettl02 (2009) 017204, 0808.2495.

E. H. Lieb and D. W. RobinsorGommun. Math. Phy28 (1972) 251.

T. Konopka, F. Markopoulou and L. Smolin, (2006), h&611197.

T. Konopka, F. Markopoulou and S. SeveriRhys. RevD77 (2008) 104029, 0801.0861.
D. Boulatov,Mod. Phys. LettA 7 (1992) 1629, hep-f8202074.

L. Freidel,Int. J. Theor. Phys44 (2005) 176¢, hep-f8505016.

D. Oriti, (2006), gr-q¢0512103.

D. Oriti, arXiv:gr-q¢060703.

D. Oriti, Spin Foam Models of Quantum Spacetime, PhBighzarXiv:gr-q¢0311066.
C. Kassel, Quantum GroupsGraduate Texts in Mathesé8pringer Verlag, 1995).
L. Crane,Commun. Math. Phy4.35 (1991) 615.

Kauffman, Louis H., Map Coloring, g-Deformed Spin Networks, andagv-Viro Invariants for 3-Manifolddntl. J.
Mod. PhysB(6), Nos. 11, 12 (1992), 30 pages.

Kauffman, Louis H. and Lomonaco, Samuel J.,gideformed spin networks, knot polynomials and anyonic lmgioal
guantum computatiord. Knot Theory Ramification46 3, (2007), 65 pages.

Z.C. Gu, M. A. Levin and X. G. WerRhys. RevB78 (2008) 205116, arXiv:0807.2010.

Z.C. Gu et al.Phys. RevB79 (2009) 085118, arXiv:0809.2821.

M. A. Levin and X. G. WenPhys. RevB71 (2005) 045110.

Z. Wang/ arXiv:cond-m#p601285.

E. C. Rowell/ arXiv:0803.1258.

Kuratowski, K., Sur le probléme des courbes gauchesgologie,Fund. Math, 15 (2005), 13 pages.


http://arxiv.org/abs/gr-qc/0004045
http://arxiv.org/abs/gr-qc/9512020
http://arxiv.org/abs/gr-qc/9512043
http://arxiv.org/abs/hep-th/0209079
http://arxiv.org/abs/hep-th/0512210
http://arxiv.org/abs/0708.1721
http://arxiv.org/abs/0708.2481
http://arxiv.org/abs/hep-th/0611197
http://arxiv.org/abs/hep-th/9202074
http://arxiv.org/abs/hep-th/0505016
http://arxiv.org/abs/gr-qc/0512103
http://arxiv.org/abs/gr-qc/0311066
http://arxiv.org/abs/0807.2010
http://arxiv.org/abs/0809.2821
http://arxiv.org/abs/cond-mat/0601285
http://arxiv.org/abs/0803.1258

	1 Introduction
	1.1 An Invitation to emergent matter of quantum geometry
	1.2 Noiseless Subsystems
	1.3 Spin networks
	1.3.1 Penrose's spin networks
	1.3.2 Spin networks from LQG

	1.4 Three Ansatzes

	2 The Trivalent Scheme
	2.1 The Helon Model
	2.2 Topological invariants of trivalent braids
	2.3 Quantum numbers of particle states
	2.4 Interactions and embedding in trivalent networks

	3 The 4-valent Scheme
	3.1 4-valent Braided Ribbon Networks
	3.2 Braids
	3.3 Equivalence Moves
	3.3.1 /3-Rotations: Generators of rotations
	3.3.2 Braid Representations

	3.4 Dynamics: Evolution Moves
	3.5 Dynamics: Propagation, Direct and Exchange Interaction of Braids
	3.6 Dynamics: CPT and Braid Feynman Diagrams
	3.6.1 C, P, and T
	3.6.2 Asymmetry of Braid Interaction
	3.6.3 Braid Feynman Diagrams

	3.7 Discussions and Outlook
	3.7.1 Future directions
	3.7.2 Relation to Topological Quantum Computing


	4 A Unified Formalism
	4.1 Relating to the Ribbon pictures
	4.2 Applications of the Unified Formalism
	4.3 Correspondence between the trivalent and tetravalent cases

	5 Conclusions

