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Abstract

I review the basic ingredients of discretized gravity which motivate
the introduction of Group Field Theory. Thus I describe the GFT
formulation of some models and conclude with a few remarks on the
emergence of noncommutative structures in such models.
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Introduction

This article is based on a talk given at the XX International Fall Workshop
on Geometry and Physics in Madrid and it is aimed at illustrating the deep
geometric roots of the Group Field Theory (GFT) approach to Quantum
Gravity, together with the recent emergence of Noncommutative Geometry
into the game.

The first part, partly based on [1], is dedicated to a review of the discrete
formulation of gravity as a BF theory with constraints, including the Holst
formulation [2] with the Barbero-Immirzi parameter [3, 4]. It is not meant
to be exhaustive while it is directed to a public of non-specialists, with the
accent put on geometric structures. I then introduce the GFT description
of the discrete BF path integral and briefly review the implementation of
constraints.

In the final part I discuss the emergence of noncommutative structures
at various levels of the models considered.

1 Gravity as a BF theory with constraints

The starting point of this analysis is the well known reformulation of the
Einstein-Hilbert action S [ g ] =

∫

M d4x
√

|g| R in the first order formalism,
as

S [ e , ω ] =

∫

M
Tr 1 [ (e ∧ e) ∧ F ] =

∫

M

1

2
ǫABCD e

A ∧ eB ∧ FCD (1) action

with A,B,C,D = 1, .., 4. F = Dω is the curvature of the connection
one-form of the principal SO(3, 1)-bundle1 while e are the tetrad one-forms
implicitly defined by gµν = eAµ e

B
ν ηAB. The connection one-form ω and

the tetrads e are to be regarded as independent variables. The equations
of motion may be seen to be equivalent to Einstein’s equations when the
tetrads are non-degenerate. Let me recall that e = eAµ dx

µvA is a vector
valued one form of the associated vector bundle, so that, once a trivialization
chosen e ∧ e = eAµ e

B
ν dx

µ ∧ dxντAB with τAB ∈ so(3, 1). Moreover, the

connection and the curvature are locally of the form ω = ωAB
µ dxµτAB

F = FAB
µν dxµ ∧ dxντAB. Therefore Tr 1 is to be intended as the bilinear

nondegenerate form on the so(3, 1) algebra

< Ja, Pb >1= ηab < Ja, Jb >1=< Pa, Pb >1= 0 a, b = 1, .., 3

1I will indicate Lie groups with capital letters, Lie algebras with lower-case letters, a
generic Lie group with G and a generic Lie algebra with L
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with Ja = JA = ǫBC
A τBC A,B,C = 1, .., 3 Pa = PA = τA,4, A = 1, .., 3.

The action (1) my be recast into the form of a BF action with constraints.
The BF action

S [B , ω ] =

∫

M
Tr 1 (B ∧ F ) (2)

encodes a topological gauge theory described in terms of Lie algebra valued
2-forms, B,F , where F is the curvature. The equations of motion simply
state that the connection ω is flat and DωB = 0. The constraints C(B) have
to impose that the B field be simple, that is B = e ∧ e. The action becomes
then

S1 [B , ω , φ ] =

∫

M
BAB ∧ FAB + C(B). (3)

In so(3, 1) we can define another trace Tr 2 =< ., . >2,

< Ja, Jb >2=< Pa, Pb >2= δab, < Ja, Pb >2= 0

so that a new action is produced

S2 =

∫

M
Tr 2(e ∧ e ∧ F ) =

∫

M
eA ∧ eB ∧ FAB [ω]. (4)

When added to the action S1 it doesn’t change the equations of motion but it
has quantum consequences. The full action SH = S1 +

1
γS2 is the Palatini-

Holst action [2]; the real parameter γ is the Barbero-Immirzi parameter
[3, 4]. The relevance of this second term in the action is well known: it
allows to introduce the Ashtekar connection which is at the basis of the
canonical quantization programme for gravity.

SH may be regarded as a constrained BF action

SH =

∫

M
BAB ∧ FAB + C(B) (5) sh

where the constraint has to implement

BAB = ǫAB
CDe

C ∧ eD +
1

γ
eA ∧ eB . (6) constr

1.1 Gravity in three dimensions

In three space-time dimensions the Einstein-Hilbert action becomes in the
first order formalism

S[ω, e] =

∫

M
Tr (e ∧ F ) (7)

with
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• ω = ωA
µ dx

µτA, the SO(2, 1) connection one-form τA ∈ so(2, 1)

• F = FA
µνdx

µντA the curvature of the connection one-form

• e = eAµ dx
µτA triads, with the identification so(2, 1) ≃ V (M)

• Tr ↔ Killing form in so(2, 1)

This is the BF action for the gauge group SO(2, 1), with B = e. Because
the B field is a one-form there are no extra constraints to be imposed.

We can buildBF models in any space-time dimensions, with gauge group
the Lorentz group SO(D − 1, 1) . For BF in D dimensions F is always a
Lie algebra valued 2-form (the curvature), while B is a D − 2 Lie algebra
valued form. In particular in D = 2 (with B a zero form)2 and D = 3
(with B a one-form), the BF action reproduces the gravity action and it is
a topological theory. In D ≥ 4 BF + constraints reproduces gravity, and it
is dynamical.

1.2 Discretization of the BF action

From now on we stick to the Riemannian case so that the Lorentz group is
replaced by the rotation group and we often work with its covering group.
We consider space-time triangulations with a D-dimensional simplicial com-
plex KD = {σD, ..., σ0}. To discretize B which is a Lie algebra valued D− 2
form, we integrate it on a D − 2 simplex

B −→ E ∈ so(D), E =

∫

σD−2

B.

To discretize the curvature 2-form we follow the prescription of Regge cal-
culus where, in D = 2 the curvature is measured by the deficit angle when
turning around a vertex (0-simplex)

δ(v) = 2π −
∑

ℓ,ℓ′⊃v

θv(ℓ, ℓ
′).

Analogously, in D = 3 the curvature is measured by the deficit angle when
turning around an edge (1-simplex). Therefore, in D generic the local cur-
vature on the triangulated manifold is detected by the holonomy of the

2Notice however that in D = 2 the BF formulation requires the gauge group to be the
Poncaré or the De Sitter group (for details see for example [5])
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connection around a D− 2 simplex. The closed path around the D− 2 sim-
plex is the boundary of a face, f∗ in the dual discretization K∗. Therefore
we have hℓ∗ = P exp

∫

ℓ∗⊂∂f∗
ω and

Hf∗ ≡ HσD−2
=

∏

ℓ∗⊂∂f∗

hℓ∗ (8)

where we have explicitly indicated the duality between dual faces and D−2
simplices. The two-dimensional sub-complex contained in K∗ draws a graph
G. Each assigned G ⊂ |K∗| represents a specific discretization of space-time.

The discretized BF action becomes

S(EσD−2
,HσD−2

) =
∑

σD−2∈K

TrEσD−2
HσD−2

. (9)

from which we derive the discretized partition function

A[K,K∗] =

∫

L

∏

σD−2∈K

dEσD−2

∫

G

∏

ℓ∗∈K∗

dhℓ∗ exp[i Tr (EσD−2

∏

ℓ∗∈∂f∗

hℓ∗)]

(10)
where L is the Lie algebra of the appropriate rotation group G. The integral
in the Lie algebra can be formally performed and we get

A[K∗] =

∫

∏

ℓ∗∈K∗

dhℓ∗
∏

f∗∈K∗

δ(
∏

ℓ∗∈∂f∗

hℓ∗) (11) bfampl

This result, valid in any dimension, is expressed solely in terms of the dual
discretization. It can be interpreted as the amplitude of the graph G drawn in
K∗. It is interesting to notice that the same result is obtained independently
in the spin-foams approach [6], as the transition amplitude from a space
geometry to another.

The natural question which arises is: what is, if any, the field theory
which generates such Feynman graphs? Group field theory, introduced in
the early 90’s in [7] and later developed by [8, 9, 10] is a candidate to that.

2 Group Field Theory

Group Field Theories are a particular family of tensor models where the
fields are tensors defined on the Lorentz group manifold. Tensor models are
in turn the natural generalization of matrix models to higher dimensions,
aimed at describing aleatory space-time geometries (for an up to date review
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on the subject and recent achievements see [11]). As in more general tensor
models, GFT encode the space-time dimension in the order of the tensor-
field while, specific to these models, the field arguments live on products of
the Lorentz (rotation) Lie group

φ : (g1, ...gD) ∈ [SO(D)]D → φ(g1, ...gD).

Feynman amplitudes of a D dimensional GFT are dually associated with a
discrete space-time via a specific triangulation and gluing rules given by the
propagator and vertices of the theory. The functional integral formalism
defines a weighted sum over triangulations with each weight (amplitude)
related to a sum over geometries, therefore achieving a desired feature of
any candidate quantum theory of gravity - a sum over both topologies and
geometries.

The simplest GFT models generate amplitudes of the BF type, as in
(11) . They are therefore topological models. A possible choice is to include
the dynamics by implementing the constraints on the propagator, while the
vertex of the theory would remain unchanged with respect to the topolog-
ical theory. The other possibility is to constrain the vertex and leave the
propagator unmodified. Following [12] I adopt here the first point of view .

The propagator C, is a Hermitian operator with Hermitian kernel C(g1, . . . , gD; g
′
1, . . . , g

′
D):

[Cφ](g1, . . . , gD) =

∫

dg′1 . . . dg
′
DC(g1, . . . , gD; g

′
1, . . . , g

′
D)φ(g

′
1, . . . , g

′
D).

(12)
It is represented graphically as a stranded line with D strands and the
precise form of C characterizes the different models. The vertex is the same
for all models: its kernel is a product of delta functions matching strand
arguments, so that each delta function joins two strands in two different
lines. For instance, in three dimensions the SU(2) BF vertex is expressed as

Sint[φ] =
λ

4

∫

(

12
∏

i=1

dgi

)

φ(g1, g2, g3)φ(g4, g5, g6)φ(g7, g8, g9)

φ(g10, g11, g12) K(g1, ..g12), (13)

with

K(g1, ..g12) = δ(g3g
−1
4 )δ(g2g

−1
8 )δ(g6g

−1
7 )δ(g9g

−1
10 )δ(g5g

−1
11 )δ(g1g

−1
12 ) (14) 3vertex

It represents the gluing of four triangles to form a tetrahedron, the elemen-
tary space-time block in 3D. In D dimensions it is therefore replaced by a
term proportional to φD+1. The propagator represents instead the gluing of
two D−simplices along a common face.
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2.1 GFT for BF theories

The propagator for BF theories is just the projection on gauge invariant
fields,

P(φ) =

∫

SO(D)
dhφ(g1h, . . . , gDh), (15)

It verifies P
2 = P so that the only eigenvalues are 0 and 1. This is another

manifestation of the fact that BF models have no dynamical content. The
operator P is Hermitian with kernel

P(g1, ..., gD ; g′1, ...g
′
D) =

∫

dh
D
∏

i=1

δ(gih(g
′
i)
−1). (16) prop

The full GFT action for these models may be synthetically represented as

S[φ] =

∫

dgφ2 + λ

∫

dgφD+1 (17) GFTaction

where the fields are functions of D copies of the group and the integration
is performed on as many copies of the group as needed, so that dg stands
for the appropriate power of the Haar measure. To compute the amplitude
of a given graph we assign to each propagator the definition in Eq. (16)
and to each vertex the appropriate generalization of Eq. (14). We choose
for simplicity graphs with no external legs. After integration over all group
variables associated to the strands of propagators we obtain

AG =

∫

∏

ℓ∈LG

dhℓ
∏

f∈FG

δ

(

~∏

ℓ∈f
h
ηℓf
ℓ

)

, (18) gftampl

where we have omitted the star labeling the dual discretization. The inci-
dence matrix ηℓf has value +1 if the face f goes through the edge ℓ in the
same direction, −1 if the face f goes through the edge ℓ in the opposite di-
rection, 0 otherwise. Let us that notice that the total amplitude Eq. (18) is
factorized as a product of face amplitudes and it reproduces the result that
we obtained for BF amplitudes in Eq. (11). We therefore have a positive
answer to the question we posed at the end of section 1, at least for simple
models: we have a field theory which generates the transition amplitudes
for space-time geometries in the absence of constraints. It can be easily
shown that, when using the Peter-Weyl decomposition for group variables
we obtain an expression for the amplitude (18) in terms of 6j-symbols which
is exactly the Ponzano-Regge model [13].
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In four dimensions we have to implement the constraints described in
section 1, at the level of the discrete theory. There are various proposals, the
first being the Barrett-Crane model [14] while the inclusion of the Barbero-
Immirzi parameter led to the EPRL/FK model [15, 16]. Here the Barrett-
Crane model is recovered in the γ → ∞ limit. Interestingly, recently new
models have appeared, with and without the Barbero-Immirzi parameter
[17], [18] which are based on the noncommutative algebra of flux variables.
Here we just sketch the EPRL/FK model.

2.2 Models of 4D gravity

The EPRL/FK model [15, 16] implements in two steps the constraints in
Eq. (6) with a non trivial value of the Barbero-Immirzi parameter γ. In
order to describe the model we introduce SU(2) coherent states [19]

|j, g〉 ≡ g|j, j〉 =
∑

m

|j,m〉[R(j)]mj (g).

with |j,m > the eigenstates of the Lie algebra generators and [R(j)]mj (g) the
spin-j representation of the group element g. We have for the partition of
unity

1j = dj

∫

SU(2)
dg |j, g〉〈j, g| = dj

∫

G/H=S2

dn |j, n〉〈j, n|

with |j, n〉 = gn|j, j〉. In four dimensions we use the SU(2)×SU(2) coherent
states |j+, n+〉 ⊗ |j−, n−〉

1j+ ⊗ 1j− = dj+dj−

∫

dn+dn−|j+, n+〉 ⊗ |j−, n−〉〈j+, n+| ⊗ 〈j−, n−|

In this language the constraints are implemented as [16]
j+/j− = (1 + γ)/(1 − γ) and n+ = n− = n

γ > 1 j± =
γ ± 1

2
j,

γ < 1 j± =
1± γ

2
j.

We consider now the propagator of the 4D BF theory, with gauge group
SO(4), which is a natural generalization of the 3D propagator Eq. (16),
when represented in the coherent states basis

P(g; g′) =

∫

SU(2)×SU(2)
dudv

4
∏

f=1

∑

jf+,jf−

djf+djf−

Tr Vjf+
⊗Vjf−

(

ugf (g
′
f )

−1v−11jf+ ⊗ 1jf−
)

. (19)
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In each strand the identity 1j+ ⊗ 1j− is replaced by a projector T γ
j

T γ
j = dj++j−

[

δj−/j+=(1−γ)/(1+γ)

]

∫

dn|j+, n〉⊗ |j−, n〉〈j+, n| ⊗ 〈j−, n|. (20)

which verifies (T γ
j )

2 = T γ
j . Grouping the four strands of a line defines a

T
γ operator that acts separately and independently on each strand of the

propagator:
T
γ = ⊕jf ⊗

4
f=1 T

γ
jf

(21)

so that the EPRL/FK propagator is

C = PT
γ
P. (22)

The operator C is symmetric. This implies that Feynman amplitudes are
independent of the orientations of faces and propagators. Since Tγ and P do
not commute, the propagator C can have non-trivial spectrum (with eigen-
values between 0 and 1). Moreover, since T

γ is a projector, the propagator
C of the EPRL/FK theory is bounded in norm by the propagator of the BF
theory, as well as Feynman amplitudes.

To obtain the amplitude of a given graph G we combine the propagator
and the vertex expressions as in usual quantum field theory and integrate
over all g, g′ group variables (see [12] for details). The total amplitude may
be seen to be factorized as (the integral of ) a product of face amplitudes

AG =

∫

∏

ℓ∈LG

duℓdvℓ
∏

f∈FG

Af (23)

with ℓ ∈ LG the edges of our graph, and Af given by

Af =
∑

jf≤Λ

djf+djf− Tr jf+⊗jf−

p
∏

a=1

(

h
ηℓaf

ℓa,va
h
ηℓaf

ℓa,va+1
T γ
jf

)

(24)

It can be seen that we recover the SU(2) BF model in the limit γ → 1. At
this point we have all the ingredients of a quantum field theory. Specific
graphs have been computed (see for example [12]) and their degree of di-
vergence analyzed. There is however no understanding on the perturbative
expansion of the partition function and a full renormalization group analy-
sis is still lacking. A modification of the model, which introduces colors for
the fields has recently been introduced. It allows for a better control of the
kind of topologies which are dually associated to the graphs (see [20] and
references therein).
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3 Noncommutative structures

In this section we will only consider the three dimensional case, although
some of the results we will describe have been extended to the full 4d case
[17, 18].

As we have seen, in three dimensions gravity is described by a BF theory
with SU(2) group and the group field theory associated to its discretization
is represented by the Boulatov model, with action in Eq. (17) (with D=3).

We can define on the group manifold coordinate functions

pi = −i Tr gσi, i = 1, .., 3 (25)

where σ are the Pauli matrices, and we parametrize g ∈ SU(2) as g =
p0I + iσip

i, with (p0)2 +
∑

i(p
i)2 = 1. We indicate with xi the conjugate

variables which live on the fibers of the cotangent bundle T ∗SU(2). The
confusing notation for the base and fiber coordinates is linked to the phys-
ical interpretation from the gravity point of view. The canonical Poisson
brackets on the cotangent bundle are

{pi, pj} = 0 (26)

{xi, xj} = ǫkijxk (27)

{pi, xj} = 2(−δij
√

1− |~p|2 + ǫijkp
k) (28)

They describe the dynamics of many interesting physical systems, as for
example the dynamics of the rigid rotor with xi associated to the angular
momentum components and pi to the orientation of the rotor, or, when
generalized to field theory, the Poisson algebra of currents for the principal
chiral model.

As a group T ∗SU(2) is the semidirect product of SU(2) and the abelian
group R

3, with Lie algebra the semidirect sum represented by

[Ji, Jj ] = ǫkijJk (29)

[Pi, Pj ] = 0 (30)

[Ji, Pj ] = ǫkijPk. (31)

The non-trivial Poisson bracket on the fibres of the bundle, (27), is usually
understood in terms of coadjoint action of the group SU(2) on its dual
algebra L∗ = (R3)∗ ≃ R

3 and it reflects the non-triviality of the Lie bracket
(29)3.

3The Lie algebra generators Ji are identified with the linear functions on the dual
algebra
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The question arises whether the non-trivial Poisson bracket on F(L∗)
may be quantized yielding a noncommutative star-product in the spirit of
deformation quantization. This is relevant to our problem because, in the
BF picture, the group variables are associated to the holonomies while the
xi variables are associated to the triad components [21].

I am aware of essentially two different answers and it is not clear at the
moment what is the relation among them.

The first approach consists in regarding the algebra F(L∗) as a subal-
gebra of the algebra of quadratic functions on R

4. This is known as the
classical Jordan-Schwinger map or symplectic realization. For details we
refer to the existing literature [22, 23]. Once such an immersion is realized,
one can use the Moyal product on F(R4) or variations of it (see for example
[24] where the Voros product has been used and [25] for a recent application)
to induce a star product on F(L∗). It can be shown that the subalgebra
is closed under the product. The symplectic realization of the coordinate
functions xi is

xi = z̄aσabi z
b, x0 = z̄aδabzb (32)

with x0 = |~x| in the kernel of the projection, a, b ∈ 1, 2 and we have made
the identification R

4 ≃ C
2 with canonical symplectic structure

{z̄a, zb} = i . (33)

Let us notice that similar realizations of a 3d Lie algebra as Poisson sub-
algebra of quadratic functions on R

4 have been derived for all the 3d Lie
algebras [22]. The Moyal star product

φ ⋆M ψ(z̄, z) = φ exp

(

θ

2

←−
∂ za

−→
∂ z̄a −

←−
∂ z̄a

−→
∂ za

)

ψ (34)

induces in F(L∗) the product

(xi ⋆M φ)(x) =

{

xi − i
θ

2
ǫijkxj∂k −

θ2

8
[(1 + x · ∂)∂i −

1

2
xi∂ · ∂]

}

φ(x) (35)

which implies for coordinate functions

xi ⋆M xj = xi · xj + i
θ

2
ǫijkxk −

θ2

8
δij (36)

Once again, similar expressions exist not only for SU(2) but for all 3d cases
[23]. If we replace the Moyal product with the Voros product

φ ⋆V ψ(x) = φ exp
(

θ
←−
∂ za

−→
∂ z̄a

)

ψ (37)

10



we get instead
xi ⋆V xj = xi · xj + θ(|~x|+ iǫijkxk) (38) starvoros

with x0 = |~x|. Let us point out that indeed a whole family of star products
can be derived, corresponding to different ordering choices in the quantiza-
tion procedure on the plane. These products, Moyal and Voros products
being just two representatives, are characterized by being translation invari-
ant, therefore reproducing the same star commutator [26].

The second approach consists in defining the star product for F(L∗) in
terms of a group Fourier transform

φ̃(x) =

∫

dgφ(g)e Tr (g~σ)·~x (39)

with
e Tr (g1~σ)·~x ⋆F e

Tr (g2~σ)·~x := ei Tr (g1g2~σ)·~x (40)

It was first introduced in [27], then further investigated in [28, 29]. It has
been adapted to GFT in [21] and recently extended to the four dimensional
case in [17, 18]. We refer to the literature for a proper definition of the
product, limiting ourselves to observe that the induced star product among
coordinates does not coincide with the Moyal-induced one. We have instead

xi ⋆F xj = xi · xj + iκǫijkxk (41) Fstar

with κ a suitable constant, needed to fix the dimensionality. The interesting
feature of this product is that it naturally arises in the GFT action for the
Boulatov model, when we pass to the Fourier transform [21].

It would be interesting to understand what is the relation between all
these products, given that they realize the same commutation relations

xi ⋆ xj − xj ⋆ xi = iǫijkxk (42)

up to multiplicative constants. In particular we would like to understand
whether the Fourier-related star product in Eq. (41) may be induced from
one of the translation invariant star products on the algebra F(R4), via
symplectic realization.

To conclude this section on noncommutative structures in GFT let me
speculate on the issue of recovering the cosmological term in the GFT action.

It is known that, at the level of spin-foam amplitudes, the cosmologi-
cal constant is taken into account on replacing the group SU(2) with its
quantum analogue SUq(2). This is the Turev-Viro model [30]. On the other
hand, at the classical level, it is known since the famous paper of Witten
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[31] that the cosmological constant is easily introduced in the 3D action of
gravity if one regards gravity with zero cosmological constant as a Chern-
Simons theory for the Poincaré gauge group ISO(2, 1). Then one deforms
the algebra of ISO(2, 1) into a fully nonabelian one (SO(3, 1) or SO(2, 2),
depending on the sign of the cosmological constant).

If we look back at the starting Poisson algebra of coordinate functions
Eqs. (26)-(28) and its Lie algebra counterparts Eqs (29)-(31), we realize
that this amounts to modify Eq. (30) in the Lie algebra and dually Eq. (26)
in the Poisson algebra. This makes SU(2) into a Lie-Poisson group. Its full
quantization should give the desired quantum group and allow to recover
the cosmological term at the GFT level. We shall come back to this issue
in a separate publication.
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