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Abstract: We present a pedagogical introduction to the notions underlying the connec-

tion formulation of General Relativity - Loop Quantum Gravity (LQG) - with an emphasis

on the physical aspects of the framework. We begin by reviewing General Relativity and

Quantum Field Theory, to emphasise the similarities between them which establish a foun-

dation upon which to build a theory of quantum gravity. We then explain, in a concise

and clear manner, the steps leading from the Einstein-Hilbert action for gravity to the

construction of the quantum states of geometry, known as spin-networks, which provide

the basis for the kinematical Hilbert space of quantum general relativity. Along the way

we introduce the various associated concepts of tetrads, spin-connection and holonomies

which are a pre-requisite for understanding the LQG formalism. Having provided a min-

imal introduction to the LQG framework, we discuss its applications to the problems of

black hole entropy and of quantum cosmology. A list of the most common criticisms of

LQG is presented, which are then tackled one by one in order to convince the reader of the

physical viability of the theory.

An extensive set of appendices provide accessible introductions to several key notions

such as the Peter-Weyl theorem, duality of differential forms and Regge calculus, among

others. The presentation is aimed at graduate students and researchers who have some

familiarity with the tools of quantum mechanics and field theory and/or General Relativ-

ity, but are intimidated by the seeming technical prowess required to browse through the

existing LQG literature. Our hope is to make the formalism appear a little less bewildering

to the un-initiated and to help lower the barrier for entry into the field.
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1 Introduction

The goal of Loop Quantum Gravity (LQG) is to take two extremely well-developed and

successful theories, General Relativity and Quantum Field Theory, at “face value” and at-

tempt to combine them into a single theory with a minimum of assumptions and deviations

from established physics. Our goal, as authors of this paper, is to provide a succinct but

clear description of LQG - the main body of concepts in the current formulation of LQG,

some of the historical basis underlying these concepts, and a few simple yet interesting

results - aimed at the reader who has more curiosity than familiarity with the underlying

concepts, and hence desires a broad, pedagogical overview before attempting to read more

technical discussions. This paper is inspired by the view that one never truly understands

a subject until one tries to explain it to others. Accordingly we have attempted to create a

discussion which we would have wanted to read when first encountering LQG. Everyone’s

learning style is different, and accordingly we make note of several other reviews of this

subject [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], which the reader may refer to in order to gain a

broader understanding, and to sample the various points of view held by researchers in the

field.

We will begin with a brief review of the history of the field of quantum gravity in the

remainder of this section. Following this we review some topics in General Relativity in

section 2 and Quantum Field Theory in section 3, which hopefully fall into the “Goldilocks

zone”, providing all the necessary basis for LQG, and nothing more. We may occasionally

introduce concepts in greater detail than the reader considers necessary, but we feel that

when introducing concepts to a (hopefully) wide audience who find them unfamiliar, in-

sufficient detail is more harmful than excessive detail. We will discuss the Lagrangian and

hamiltonian approaches to classical GR in more depth and set the stage for its quantiza-

tion in section 4 then sketch a conceptual outline of the broad program of quantization of

the gravitational field in section 5, before moving on to our main discussion of the Loop

Quantum Gravity approach in section 6. In section 7 we cover applications of the ideas

and methods of LQG to the counting of microstates of black holes and to the problem of

quantum cosmology. We conclude with criticisms of LQG and rebuttals thereof in section

8 along with a discussion of its present status and future prospects.

It is assumed that the reader has a minimal familiarity with the tools and concepts of

differential geometry, quantum field theory and general relativity, though we aim to remind

the reader of any relevant technical details as necessary.1

Before we begin, it would be helpful to give the reader a historical perspective of the

developments in theoretical physics which have led us to the present stage.

We are all familiar with classical geometry consisting of points, lines and surfaces. The

framework of Euclidean geometry provided the mathematical foundation for Newton’s work

1Given that we are aiming this paper at a broad audience, we may even hope that some readers will

find it helpful with their understanding of GR and/or QFT, quite aside from its intended role explaining

quantum gravity.
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on inertia and the laws of motion. In the 19th century Gauss, Riemann and Lobachevsky,

among others, developed notions of curved geometries in which one or more of Euclid’s pos-

tulates were loosened. The resulting structures allowed Einstein and Hilbert to formulate

the theory of General Relativity which describes the motion of matter through spacetime

as a consequence of the curvature of the background geometry. This curvature in turn is

induced by the matter content as encoded in Einstein’s equations (2.10). Just as the par-

allel postulate was the unstated assumption of Newtonian mechanics, whose rejection led

to Riemmanian geometry, the unstated assumption underlying the framework of general

relativity is that of the smoothness and continuity of spacetime on all scales.

Loop quantum gravity and related approaches invite us to consider that our notion of

spacetime as a smooth continuum must give way to an atomistic description of geometry

in which the classical spacetime we observe around us emerges from the interactions of

countless (truly indivisible) atoms of spacetime. This idea is grounded in mathematically

rigorous results, but is also a natural continuation of the trend that began when 19th century

attempts to reconcile classical thermodynamics with the physics of radiation encountered

fatal difficulties - such as James Jeans’ “ultraviolet catastrophe”. These difficulties were

resolved only when work by Planck, Einstein and others in the early 20th century provided

an atomistic description of electromagnetic radiation in terms of particles or “quanta”

of light known as photons. This development spawned quantum mechanics, and in turn

quantum field theory, while around the same time the special and general theories of

relativity were being developed.

In the latter part of the 20th century physicists attempted, without much success, to

unify the two great frameworks of quantum mechanics and general relativity. For the most

part it was assumed that gravity was a phenomenon whose ultimate description was to be

found in the form of a quantum field theory as had been so dramatically and successfully

accomplished for the electromagnetic, weak and strong forces in the framework known as

the Standard Model. These three forces could be understood as arising due to interactions

between elementary particles mediated by gauge bosons whose symmetries were encoded

in the groups U(1), SU(2) and SU(3) for the electromagnetic, weak and strong forces,

respectively. The universal presumption was that the final missing piece of this “grand

unified” picture, gravity, would eventually be found as the QFT of some suitable gauge

group. This was the motivation for the various grand unified theories (GUTs) developed by

Glashow, Pati-Salam, Weinberg and others where the hope was that it would be possible

to embed the gravitational interaction along with the Standard Model in some larger group

(such SO(5), SO(10) or E8 depending on the particular scheme). Such schemes could be

said to be in conflict with Occam’s dictum of simplicity and Einstein and Dirac’s notions of

beauty and elegance. More importantly all these models assumed implicitly that spacetime

remains continuous at all scales. As we shall see this assumption lies at the heart of the

difficulties encountered in unifying gravity with quantum mechanics.

A significant obstacle to the development of a theory of quantum gravity is the fact

that GR is not renormalizable. The gravitational coupling constant G (or equivalently

1/M2
Planck in dimensionless units where G = c = ~ = 1) is not dimensionless, unlike the

fine-structure constant α in QED. This means that successive terms in any perturbative
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series have increasing powers of momenta in the numerator. Rejecting the notion that

systems could absorb or transmit energy in arbitrarily small amounts led to the photonic

picture of electromagnetic radiation and the discovery of quantum mechanics. Likewise,

rejecting the notion that spacetime is arbitrarily smooth at all scales - and replacing it with

the idea that geometry at the Planck scale must have a discrete character - leads us to a

possible resolution of the ultraviolet infinities encountered in quantum field theory and to

a theory of “quantum gravity”.

Bekenstein’s observation [12, 13, 14] of the relationship between the entropy of a black

hole and the area of its horizon combined with Hawking’s work on black hole thermodynam-

ics led to the realization that there were profound connections between thermodynamics,

information theory and black hole physics. These can be succinctly summarized by the

famous area law relating the entropy of a macroscopic black hole SBH to its surface area

A:

SBH = γA (1.1)

where γ is a universal constant and A� Apl, with Apl ∝ l2p being the Planck area. While

a more detailed discussion will wait until 7.1, we note here that if geometrical observables

such as area are quantized, eq. (1.1) can be seen as arising from the number of ways that

one can join together N quanta of area to form a horizon. In LQG the quantization of

geometry arises naturally - though not all theorists are convinced that geometry should be

quantized or that LQG is the right way to do so.

With this historical overview in mind, it is now worth summarizing the basic notions

of General Relativity and QFT before we attempt to see how these two disciplines may be

unified in a single framework.

1.1 Conventions

Before we proceed, a quick description of our conventions for indices will hopefully be useful

to the reader;

• Greek letters µ, ν, ρ, λ, ... ∈ {0, 1, 2, 3} from the middle of the alphabet are four-

dimensional spacetime indices. Other Greek letters, α, β, . . . will be used for general

cases in N dimensions.

• Lowercase letters from the start of the Latin alphabet, a, b, c, . . . ∈ {1, 2, 3} are three-

dimensional spatial indices. These will often be used when dealing exclusively with

the spatial part of a four-dimensional quantity that would otherwise have Greek

indices.

• Uppercase letters I, J,K, . . . ∈ {0, 1, 2, 3} are “internal” indices which take values in

the sl(2,C) Lorentz lie-algebra.

• Lowercase Latin letters j, k, l, . . . ∈ 1, 2, 3, ..., N from the middle of the alphabet are

indices for a space of N dimensions. Equations involving these indices are the general

cases, which can be applied to Minkowski space, R3, etc. They will also be used as

su(2) lie-algebra indices
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Wherever possible we will attempt to avoid using “special” letters (e.g. π, i =
√
−1, γ in

the context of the Dirac matrices, σ in the context of the Pauli matrices) as indices, unless

there is no chance of confusion.

2 Classical GR

General Relativity (GR) is an extension of Einstein’s Special Theory of Relativity (SR),

which was required in order to include observers in non-trivial gravitational backgrounds.

SR applies in the absence of gravity, and in essence it describes the behavior of vector

quantities in a four-dimensional Galilean space, with the Minkowski metric2

ηµν = diag(−1,+1,+1,+1), (2.1)

leading to a 4D line-element

ds2 = −c2dt2 + dx2 + dy2 + dz2 . (2.2)

The speed of a light signal, measured by any inertial observer, is a constant, denoted c.

If we denote the components of a vector in four-dimensional spacetime with Greek indices

(e.g. vµ) the Minkowski metric3 divides vectors into three categories; timelike (those vectors

for which ηµνv
µvν < 0), null or light-like (those vectors for which ηµνv

µvν = 0), and

spacelike (those vectors for which ηµνv
µvν > 0). Any point, with coordinates (ct, x, y, z),

is referred to as an event, and the set of all null vectors having their origin at any event

define the future light-cone and past light-cone of that event. Events having time-like or

null displacement from a given event E0 (i.e. lying inside or on E0’s lightcones) are causally

connected to E0. Those in/on the past light-cone can influence E0, those in/on the future

lightcone can be influenced by E0.

General Relativity extends these concepts to non-Euclidean spacetime. The metric of

this (possibly curved) spacetime is denoted gµν . Around each event it is possible to consider

a sufficiently small region that the curvature of spacetime within this region is negligible,

and hence the central concepts of Special Relativity apply locally. Rather than developing

the idea that the curvature of spacetime gives rise to gravitational effects, we shall treat this

as assumed knowledge, and discuss how the curvature of spacetime may be investigated.

Since spacetime is not assumed to be flat (we’ll define “flat” and “curved” rigorously below)

and Euclidean, in general one cannot usefully extend the coordinate system from the region

of one point in spacetime (one event) to the region of another arbitrary point. This can be

seen from the fact that a Cartesian coordinate system which defined “up” to be the z-axis

at one point on the surface of the Earth, would have to define “up” not to be parallel to the

z-axis at most other points. In short, a freely-falling reference frame cannot be extended

to each point in the vicinity of the surface of the Earth - or any other gravitating body. We

2Of course the choice diag(+1,−1,−1,−1) is equally valid but we will have occasion later to restrict our

attention to the spacial part of the metric, in which case a positive (spatial) line-element is cleaner to work

with.
3Strictly speaking it is a pseudo-metric, as the distance it measures between two distinct points can be

zero.
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are thus forced to work with local coordinate systems which vary from region to region. We

shall refer to the basis vectors of these local coordinate systems by the symbols ei. A set

of four such basis vectors at any point is called a tetrad or vierbein. The metric is related

to the dot product of basis vectors by gij = ei · ej . As the basis vectors are not necessarily

orthonormal, we also may define a set of dual basis vectors ei, where ei · ej = δij .

Figure 1: The future-pointing and past-pointing null vectors at a point define the future

and past light cones of that point. Slices (at constant time) through the past light cone

of an observer are two-spheres centred on the observer, and hence map directly to that

observer’s celestial sphere.

2.1 Parallel Transport and Curvature

Given the basis vectors ei of a local coordinate system, an arbitrary vector is written in

terms of its components vi as ~V = viei. It is of course also possible to define vectors with

respect to the dual basis. These dual vectors will have components with lowered indices,

for example vi, and take the general form vie
i. The metric is used to switch between

components referred to the basis or dual basis, e.g. vj = gijv
i. Vectors defined with raised

indices on their components are called ‘contravariant vectors’ or simply ‘vectors’. Those

with lowered indices are called ‘covariant vectors, ‘covectors’ or ‘1-forms’. Note that ei,

having lowered indices, are basis vectors, while the ei, having raised indices, are basis

1-forms. We will return to the distinction between vectors and 1-forms in section 3.2.

When we differentiate a vector along a curve parametrised by the coordinate xk we

must apply the product rule, as the vector itself can change direction and length, and the

local basis will in general also change along the curve, hence

d~V

dxk
=
∂vj

∂xk
ej + vj

∂ej
∂xk

. (2.3)

We extract the ith component by taking the dot product with the dual basis vector (basis

1-form) ei, since ei · ej = δij . Hence we obtain

dvi

dxk
=
∂vi

∂xk
+ vj

∂ej
∂xk
· ei , (2.4)
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which by a suitable choice of notation is usually rewritten in the form

∇kvi = ∂kv
i + vjΓijk. (2.5)

The derivative written on the left-hand-side is termed the covariant derivative, and consists

of a partial derivative due to changes in the vector, and a term Γijk called the connection

due to changes in the local coordinate basis from one place to another. If a vector is

parallel-transported along a path, its covariant derivative will be zero. In consequence any

change in the components of the vector is due to (and hence equal and opposite to) the

change in local basis, so that
∂vi

∂xk
= −vj ∂ej

∂xk
· ei . (2.6)

The transport of a vector along a single path between two distinct points does not reveal

any curvature of the space (or spacetime) through which the vector is carried. To detect

curvature it is necessary to carry a vector all the way around a closed path and back to its

starting point, and compare its initial and final orientations. If they are the same, for an

arbitrary path, the space (or spacetime) is flat. If they differ, the space is curved, and the

Figure 2: The parallel transport of a vector around a closed path tells us about the

curvature of a region bounded by that path. Here a vector is parallel transported along

curve λ1 from A to B, and back from B to A along λ2. Both λ1 and λ2 are sections of great

circles, and so we can see that the vector maintains a constant angle to the tangent to the

curve between A and B, but this angle changes abruptly at B when the vector switches

from λ1 to λ2. The difference in initial and final orientation of the vector at A tells us

that the surface (a sphere in this case) is curved. Just as an arbitrarily curved path in R2

can be built up from straight line segments, an arbitrary path in a curved manifold can be

built up from sections of geodesics (of which great circles are an example).
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amount by which the initial and final orientations of the vector differ provides a measure

of how much curvature is enclosed within the path. Alternatively, one may transport two

copies of a vector from the same starting point, A, along different paths, λ1 and λ2 to

a common end-point, B. Comparing the orientations of the vectors after they have been

transported along these two different paths reveals whether the space is flat or curved. It

should be obvious that this is equivalent to following a closed path (moving along λ1 from

A to B, and then along λ2 from B to A, c.f. figure 2). The measure of how much this

closed path (loop) differs from a loop in flat space (that is, how much the two transported

vectors at B differ from each other) is called the holonomy of the loop.

In light of the preceding discussion, suppose a vector ~V is transported from point A

some distance in the µ-direction. The effect of this transport upon the components of
~V is given by the covariant derivative ∇µ of ~V . The vector is then transported in the

ν-direction to arrive at point B. An identical copy of the vector is carried first from A in

the ν-direction, and then in the µ-direction to B. The difference between the two resulting

(transported) vectors, when they arrive at B is given by

(∇µ∇ν −∇ν∇µ)~V . (2.7)

This commutator defines the Riemann curvature tensor,

Rλρµνv
ρ = [∇µ, ∇ν ]vλ. (2.8)

If and only if the space is flat, all the components of Rλρµν will be zero, otherwise the space

is curved.

Since the terms in the commutator of covariant derivatives differ only in the ordering

of the indices, it is common to place the commutator brackets around the indices only,

rather than the operators, hence we can write

∇[µ∇ν] = [∇µ, ∇ν ] = ∇µ∇ν −∇ν∇µ . (2.9)

2.2 Einstein’s Field Equations

Einstein’s equations relate the curvature of spacetime with the energy density of the matter

and fields present in the spacetime. Defining the Ricci tensor Rρν = Rµρµν and the Ricci

scalar R = Rνν (i.e. it is the trace of the Ricci tensor, taken after raising an index using

the metric gµν), the relationship between energy density and spacetime curvature is then

given by

Rµν − 1

2
Rgµν + Λgµν = 8πGTµν , (2.10)

where G is Newton’s constant, and the coefficient Λ is the cosmological constant, which prior

to the 1990s was believed to be identically zero. The tensor Tµν is the energy-momentum

tensor (also referred to as the stress-energy tensor). We will not discuss it in great detail,

but its components describe the flux of energy and momentum (i.e. 4-momentum) across

various timelike and spacelike surfaces4. The component Tµν describes the flux of the

4The presence of the energy-momentum tensor is related to the fact that it is not merely the mass of

matter that creates gravity, but its momentum, as required to maintain consistency when transforming

between various Lorentz-boosted frames
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µth component of 4-momentum across a surface of constant xν . For instance, the zeroeth

component of 4-momentum is energy, and hence T 00 is the amount of energy crossing a

surface of constant time (i.e. energy that is moving into the future but stationary in space,

hence it is the energy density).

It should be noted that we can write Γρµν in terms of the metric gµν (see for e.g. [15]),

Γρµν =
1

2
gρδ (∂µgδν + ∂νgδµ − ∂δgµν) . (2.11)

Since the Riemann tensor is defined from the covariant derivative, and the covariant deriva-

tive is defined by the connection, the metric gµν should be interpreted as a solution of the

Einstein field equations, eq. (2.10).

It is sometimes preferable to write equation (2.10) in the form

Gµν = 8πGTµν − Λgµν (2.12)

where the Einstein tensor Gµν = Rµν − Rgµν/2 is the divergence-free part of the Ricci

tensor. The explicit form of equation (2.10) emphasises the relationship between mass-

energy and spacetime curvature. All the quantities related to the structure of the spacetime

(i.e. Rµν , R, gµν) are on the left-hand side. The quantity related to the presence of matter

and energy, Tµν , is on the right-hand side. For now it remains a question of interpretation

whether this means that mass-energy is equivalent to spacetime curvature, or identical to

it. Perhaps more importantly the form of the Einstein Field Equations makes it clear that

GR is a theory of dynamical spacetime. As matter and energy move, so the curvature of

the spacetime in their vicinity changes.

It is worth noting (without proof, see for instance [15]) that the gravitational field in

the simplest case of a static, spherically-symmetric field around a mass M , defines a line

element of the form derived by Schwarzschild,

ds2 = −c2

(
1− 2GM

c2r

)
dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (2.13)

For weak gravitational fields, and test masses moving at low velocities (v � c) the majority

of the deviation from the line element in empty space is caused by the coefficent of the dt2

term on the right. This situation also coincides with the limit in which Newtonian gravity

becomes a good description of the mechanics. In the Newtonian picture the force of gravity

can be written as the gradient of a potential,

~F = ∇V. (2.14)

It can be shown that

∂g00 ∝ ∇V, (2.15)

implying that gravity in the Newtonian or weak-field limit can be understood, primarily,

as the amount of distortion in the local “speed” of time caused by the presence of matter.
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2.3 Changes of Coordinates and Diffeomorphism Invariance

General relativity embodies a principle called diffeomorphism invariance. This principle

states, in essence, that the laws of physics should be invariant under different choices of

coordinates. In fact, one may say that coordinates have no meaning in the formulation of

physical laws, and in principle we could do without them.

In a practical sense, however, when performing calculations it is often necessary to

work with a particular choice of coordinates. When translating between different points

we may find that that basis vectors are defined differently at different points (giving rise

to a connection, as we saw above). However if we restrict our attention to a particular

point we find that the coordinate basis may be changed by performing a transformation on

the basis, leading to new coordinates derived from the old coordinates. Transformations of

coordinates take a well-known form, which we will briefly recap. Suppose the two coordinate

systems have basis vectors x1, . . . , xn and y1, . . . , yn. Then for a given vector ~V with

components ak and bl in the two coordinate systems it must be true that akx
k = ~V = bly

l.

Differentiating with respect to y, the relationship between coordinate systems is given by

bl = ak
∂xk

∂yl
. (2.16)

This tells us how to find the components of a vector in a “new” coordinate system (the

y-basis), given the components in the “old” coordinate system (the x-basis). Let us write

Jkl = ∂xk/∂yl, and then since a summation is implied over k the transformation of co-

ordinates can be written in terms of a matrix acting upon the components of vectors,

bl = Jkl ak. Such a matrix, relating two coordinate systems is called a Jacobian matrix.

While one transformation matrix is needed to act upon vectors (which have only a single

index), one transformation matrix per index is needed for more complex objects, e.g.

bjkl = Jmj J
n
k J

p
l amnp . (2.17)

Since the metric defines angles and lengths (and hence areas and volumes) calculations

involving the volume of a region of spacetime (e.g. integration of a lagrangian) must

introduce a supplementary factor of
√
−g (where g is the determinant of the metric gµν)

in order to remain invariant under arbitrary coordinate transformations. Hence instead of

dnx→ dny we have

dnx
√
−g(x)→ dny

√
−g(y) . (2.18)

The square root of the determinant of the metric is an important factor in defining areas,

as we can see by considering a parallelogram whose sides are defined by two vectors, ~x and

~y. The area of this parallelogram is given by the magnitude of the cross product of these

vectors, hence

Aparallel. =
√

(~x× ~y) · (~x× ~y) =

√
(~x · ~x)(~y · ~y) sin2 θ =

√
(~x · ~x)(~y · ~y)(1− cos2 θ) . (2.19)

Suppose that ~x and ~y are basis vectors lying in a plane. Then the metric in this plane will

be

mab =

(
~x · ~x ~x · ~y
~y · ~x ~y · ~y

)
(2.20)
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where a, b ∈ {~x, ~y}. Comparing equations (2.19) and (2.20), we see that

Aparallel. =
√

(~x · ~x)(~y · ~y)− (~x · ~y)2 =
√

detmab . (2.21)

It is therefore reasonable to expect an analogous function of the metric to play a role

in changes of coordinates. Furthermore we would expect the total area of some two-

dimensional surface, which can be broken up into many small parallelograms, to be given

by integrating the areas of such parallelograms together (this point will be taken up again

is sec. 6.1).

To see why eq. (2.18) applies in the case of coordinate transformations5, consider an in-

finitessimal region of a space. Let this region be a parallelipiped in some coordinate system

x1, . . . , xn. Now suppose we want to change to a different set of coordinates, y1, . . . , yn,

which are functions of the first set (e.g. we want to change from polar coordinates to

cartesian). The Jacobian of this transformation is

J =
∂(x1, . . . , xn)

∂(y1, . . . , yn)
=


∂x1

∂y1
· · · ∂x1

∂yn

...
...

∂xn

∂y1
· · · ∂xn

∂yn .

 (2.22)

The entries in the Jacobian matrix are the elements of the vectors defining the sides of

the infinitessimal region we began with, referred to the new basis. Each row corresponds

with one vector, and the absolute value of the determinant of such a matrix, multiplied by

dny = dy1 . . . dyn gives the volume of the infinitessimal region. An integral referred to these

new coordinates must include a factor of this volume, to ensure that the coordinates have

been transformed correctly and the integral doesn’t over-count the infinitessimal regions of

which it is composed, hence∫
f(x1, . . . , xn)dx1 . . . dxn =

∫
f(y1, . . . , yn)|detJ |dy1 . . . dyn . (2.23)

The Jacobian matrix defines the transformation between coordinate systems. To be

specific, we will choose the Minkowski metric ηµν for the first coordinate system. The

metric of the second coordinate system remains unspecified, hence

gαβ =
∂xµ

∂yα
∂xν

∂yβ
ηµν . (2.24)

We can treat this expression as a product of matrices. If we do so, we must be careful about

the ordering of terms, since matrix multiplication is non-commutative, and it is useful to

replace one of the Jacobian matrices by its transpose. However this extra complication

can be avoided since we are interested in the determinants of the matrices, and det(AB) =

detAdetB = detB detA, and also detAT = detA so the ordering of terms is ultimately

unimportant. Taking the absolute value of the determinant of eq. (2.24),

|J | =
√
g

η
=
√
−g (2.25)

5This argument is taken from chapter 8 of [16], where a more detailed discussion can be found.
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since η = detηµν = −1. From this and eq. (2.23) the use of a factor
√
−g follows immedi-

ately.

The transformations described above, where a new coordinate basis is derived from an

old one is called a passive transformation. By contrast, it is possible to leave the coordi-

nate basis unchanged and instead change the positions of objects, whose coordinates will

consequently change as measured in this basis. This is called an active coordinate transfor-

mation. With this distinction in mind, we will elaborate on the concept of diffeomorphism

invariance in GR.

A diffeomorphism is a mapping of coordinates f : x → f(x) from a manifold U to a

manifold V that is smooth, invertible, one-to-one, and onto. As a special case we can take

U and V to be the same manifold, and define a diffeomorphism from a spacetime manifold

to itself. A passive diffeomorphism will change the coordinates, but leave objects based on

them unchanged, so that for instance the metric before a passive diffeomorphism is gµν(x)

and after it is gµν(f(x)). Invariance under passive diffeomorphisms is nothing special, as

any physical theory can be made to yield the same results under a change of coordinates.

An active diffeomorphism, on the other hand, would yield a new metric g′µν(x), which would

in general measure different distances between any two points than does gµν(x). General

relativity is significant for being invariant under active diffeomorphisms. This invariance

requires that if gµν(x) is any solution of the Einstein field equations, an active diffeomor-

phism yields g′µν(x) which must be another valid solution of the EFEs. We require that

any theory of quantum gravity should also embody a notion of diffeomorphism invariance,

or at the very least, should exhibit a suitable notion of diffeomorphism invariance in the

classical limit.

An understanding of classical General Relativity helps us to better understand trans-

formations between locally-defined coordinate systems. We will now proceed to a discussion

of Quantum Field Theory, where these local coordinate systems are abstracted to “inter-

nal” coordinates. And just as the discussion of GR provides us with tools to more easily

visualise the concepts at the heart of QFT, the quantisation of field theories discussed in

the next section will lay the foundations for our attempts to extend classical GR into a

quantum theory of gravity.

3 Quantum Field Theory

Quantum Field Theory should be familiar to most (if not all) modern physicists, however

we feel it is worth mentioning the basic details here, in order to emphasize the similarities

between QFT and GR, and hence illustrate how GR can be written as a gauge theory.

In short, we will see that a local change of phase of the wavefunction is equivalent to the

position-dependent change of basis we considered in the case of GR. Just as the partial

derivative of a vector gave (via the product rule) a derivative term corresponding to the

change in basis, we will see that a derivative term arises corresponding to the change in

phase of the quantum field. This introduces a connection and a covariant derivative defined

in terms of the connection.
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3.1 Covariant Derivative and Curvature

We may write the wavefunction of a particle as a product of wavefunctions φ(x) and u(x)

corresponding respectively to the external and internal degrees of freedom6,

ψ(x) = φ(x)au(x)a (3.1)

where there is an obvious analogy to the definition of a vector, with the ua playing the

role of basis vectors, the φ(x)a playing the role of the components, and summation implied

over the repeated index a. In complete analogy with eq. (2.3), by applying the chain rule

we find that
dψ

dxµ
=
∂φa
∂xµ

ua + φa
∂ua
∂xµ

(3.2)

For illustrative purposes, let us consider a fairly simple choice of basis, where we have only

one u and so we drop the index a. We will write u = eigθ(x). Then the derivative of ψ will

take the form

dψ

dxµ
=

∂φ

∂xµ
eigθ(x) + igeigθ(x)φ

∂θ(x)

∂xµ

= eigθ(x)

(
∂

∂xµ
+ ig

∂θ(x)

∂xµ

)
φ (3.3)

Next we can pre-multiply the whole expression by e−igθ(x) to eliminate the exponential term

on the right hand side. This is equivalent to eq. (2.4) where we extracted an expression for

the derivative of the components using ei · ej = δij . Lastly we switch notation slightly to

more closely resemble eq. (2.5), and define the term in brackets to be a covariant derivative

Dµ = ∂µ + igAµ (3.4)

where Aµ = ∂µθ, and Dµ satisfies all the properties required of a derivative operator

(linearity, Leibniz’s rule, etc.).

A transformation θ → θ′ = θ + λ will result in a transformation of the wavefunction

ψ → ψ′ = eigλψ, and a transformation of the connection Aµ → A′µ. For brevity, let

us write G = eigλ. We can find the transformation of Aµ from the requirement that

D′µψ
′ = D′µGψ = GDµψ, which means that

(∂µ + igA′µ)Gψ = G(∂µ + igAµ)ψ

∴ (∂µG)ψ +G∂µψ + igA′µGψ = G∂µψ + igGAµψ

∴ (∂µG)ψ + igA′µGψ = igGAµψ

∴ igA′µG = igGAµ − (∂µG)

∴ A′µ = GAµG
−1 +

i

g
(∂µG)G−1 . (3.5)

Substituting in G = eigλ we deduce that Aµ transforms as

A′µ = Aµ − ∂µλ . (3.6)

6A more thorough discussion of the material in this subsection can be found in chapter 3 of [17]

– 13 –



Since we defined Aµ = ∂µθ above, the presence of a minus sign might be a bit surprising.

Surely from the definition of Aµ we expect that ∂θ′ = ∂θ + ∂λ. However what eq. (3.6) is

telling us is simply that when we locally change the basis of a wavefunction but leave the

overall physics unchanged, the connection must change in an equal and opposite manner

to compensate. This is akin to the concept of diffeomorphism invariance discussed in

section 2.3. In both GR and QFT there are two ways to change the local coordinate basis.

The first is by moving from an initial position to a new position where the basis is defined

differently. The second is by staying at one point and performing a transformation (a

diffeomorphism in GR, a gauge transformation in QFT) to change the coordinate basis.

In each case, we want the laws of physics to remain the same, despite any change to the

chosen coordinate basis. We can see how this condition is enforced by the transformation

of the connection, eq. (3.6), and the role of the covariant derivative in the action for a

Dirac field ψ of mass m;

S =

∫
d4x ψ̄(i~cγµ∂µ −mc2)ψ . (3.7)

A global gauge transformation corresponds to rotating ψ by a constant phase ψ → eigλψ.

Under this change we can see that the value of the action

S →
∫
d4x ψ̄e−igλ(i~cγµ∂µ −mc2)eigλψ (3.8)

does not change because the factor of eigλ acting on ψ and the corresponding factor of

e−igλ acting on ψ̄ pass through the partial derivative unaffected, and cancel out. However

if we allow λ to become a function of position λ(x), then the global gauge transformation

is promoted to a local gauge transformation, due to which the partial derivative becomes

∂µ

(
eigλ(x)ψ

)
= eigλ(x) (∂µ + ig(∂µλ(x)))ψ (3.9)

leading to a modification of the action S → S −
∫
d4x~cγµ(∂µλ)ψ̄ψ. The covariant deriva-

tive, however, compensates for the x-dependence of λ, since as we saw in eq. (3.5) it has

the property that

Dµψ → Dµ

(
eigλ(x)ψ

)
= eigλ(x)Dµψ (3.10)

and so the phase factor passes through the covariant derivative as desired. It is now trivial

to show that the Dirac action defined in terms of the covariant derivative,

SDirac =

∫
d4x ψ̄(i~cγµDµ −mc2)ψ (3.11)

is invariant under local phase transformations of the form ψ → eigλ(x)ψ, ψ̄ → ψ̄e−igλ(x),

so long as Aµ(x) transforms as per eq. (3.6). The connection Aµ tells us how the phase of

the wavefunction at each point corresponds to the phase at a different point, in analogy to

the connection in GR which told us how coordinate bases varied from point to point, but

additionally the requirement that the action be invariant under local gauge transformations

necessitates that it is not simply the wavefunction, but also the connection that changes

under a gauge transformation.
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The discussion above has been restricted to the case of a simple rotation of the phase

(that is, eigλ ∈ U(1), the rotation group of the plane). In GR, by contrast, the local

bases at different points may be rotated in three dimensions relative to each other (that

is, the basis vectors are acted upon by elements of SO(3)). We can accordingly generalise

the discussion above to include phase rotations arising from more elaborate groups. For

instance, in the case of SU(2) we replace the wavefunction ψ by a Dirac doublet

ψ → ψ =

(
ψ1(x)

ψ2(x)

)
(3.12)

and act upon this with transformations of the form

U(x) = exp(iλI(x)tI). (3.13)

Here tI = σI/2, (with σI the Ith Pauli matrix)7. In this case the covariant derivative

becomes

Dµ = ∂µ + igAIµt
I (3.14)

(summation on the repeated index is implied). In analogy to the case discussed above for

GR, we can form the commutator of covariant derivatives. In this case, we obtain the field

strength tensor Fµν , the analogue of the Riemann curvature tensor,

[Dµ, Dν ] = igF Iµνt
I (3.15)

where we can see (by applying the standard commutation relations for the Pauli matrices,

namely [σI , σJ ] = 2iεIJKσK , and relabelling some dummy indices) that

F Iµν = ∂µA
I
ν − ∂νAIµ − gεIJKAJµAKν . (3.16)

When our gauge group is abelian (as in QED) all the generators of the corresponding

Lie algebra commute with each other and thus the structure constants of the group (εIJK

in the SU(2) example of eq. (3.16)) vanish. In this event the field strength simplifies to

F Iµν = ∂µA
I
ν − ∂νAIµ (3.17)

The field strength F Iµν itself is gauge covariant but not gauge invariant. Under an

infinitesimal gauge transformation A0 → A0+δA the field strength also changes by F [A0]→
F [A0 + δA] = F0 + δF where the variation in field strength is given by δF = Dµ[A0] as

the reader can easily verify by substituting and expanding in eq. (3.16) or eq. (3.17). Here

Dµ[A0] denotes that the covariant derivative is taken with respect to the original connection

A0.

The basic statement of Einstein’s gravitational theory, often expressed in the saying

“Matter tells geometry how to curve and geometry tells matter how to move.”

7In general the tI will be the appropriate generators of the symmetry group, where I = 1, 2, . . . N .
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has a parallel statement in the language of gauge theory. In a gauge theory, matter is

represented by the fields ψ whereas the “geometry” (not of the background spacetime, but

of the interactions between the particles) is determined by the configurations of the gauge

field. The core idea of GR can then be generalised to an equivalent idea in field theoretic

terms,

“Gauge charges tell gauge fields how to curve and gauge fields tell gauge charges

how to move.”

Now, what we have so far is an action, eq. (3.11) which describes the dynamics of

spinorial fields, interactions between which are mediated by the gauge field. The gauge

field itself is not yet a dynamic quantity. In any gauge theory, consistency demands that the

final action should also include terms which describe the dynamics of the gauge field alone.

We know this to be true from our experience with QED where the gauge field becomes

a particle called the photon. From classical electrodynamics Maxwell’s equations possess

propagating solutions of the gauge field - or more simply electromagnetic waves. The term

giving the dynamics of the gauge field can be uniquely determined from the requirement

of gauge invariance. We need to construct out of the field strength an expression with no

indices. This can be achieved by contracting F Iµν with itself and then taking the trace over

the Lie algebra indices. Doing this we get the term

Sgauge = −1

4

∫
d4xTr [FµνFµν ] (3.18)

which in combination with (3.11) gives us the complete action for a gauge field interacting

with matter

S = Sgauge + SDirac =

∫
d4x

{
−1

4
Tr [FµνFµν ] + ψ̄(i~cγµDµ −mc2)ψ

}
(3.19)

3.2 Dual tensors, bivectors and k-forms

The field strength is usually first encountered in the case of electromagnetism, where the

relevant gauge group is U(1) which has only one group generator and so we can drop the

index I in eq. (3.17). The electromagnetic field strength Fµν combines the electric and

magnetic fields into a single entity,

Fµν = ∂µAν − ∂νAµ =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 (3.20)

Since each component of Fµν is associated with two index values, we can think of the

components as “bivectors” (oriented areas lying in the µ-ν plane), in analogy with vectors

which carry only a single index (and are oriented lengths lying along a single axis). For

the reader unfamiliar with bivectors we will very quickly review them.

A unit basis vector ei can be visualised as a line segment with a “tail” and a “head”,

and an orientation given by traversing the vector from its tail to its head. A general vector
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is a linear combination of basis vectors, ~v = v1e1 + v2e2 + v3e3 + . . . Similarly a unit basis

bivector can be visualised as an area bounded by the vectors ei and ej , written as the

wedge product ei ∧ ej , and with an orientation defined by traversing the boundary of this

area along the first side, in the same direction as ei, then along the second side parallel

to ej , and continuing anti-parallel to ei and ej to arrive back at the origin (this concept

can be extended arbitrarily to define trivectors, etc. as illustrated in Figure. 3). A general

bivector is a linear combination of basis bivectors. Writing the field strength as a general

bivector we find that it takes the form

Fµν = E1(e1∧e0)+E2(e2∧e0)+E3(e3∧e0)+B1(e2∧e3)+B2(e3∧e1)+B3(e1∧e2) (3.21)

Electric fields are those parts of Fµν lying in a plane defined by one space axis and the time

axis, while magnetic fields are those lying in a plane defined by two space axes (Figure 3).

Reversing the orientation of a bivector is equivalent to traversing its boundary “backwards”,

so we may write ej ∧ ei = −ei ∧ ej . This is consistent with the fact that the field strength

is antisymmetric, i.e. Fµν = −Fνµ.

We can also combine the electric and magnetic fields into a single entity by defining

the dual field strength,

?Fµν =
1

2
ελρµνFλρ =


0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0

 (3.22)

We can see that the mapping between field strength and dual field strength8 associates a

given electric field component with a corresponding magnetic field component, such that

Ej ↔ −Bj . Thinking in terms of bivectors, the quantity defined on the plane between any

pair of spacetime axes is associated to the quantity defined on the plane between the other

8The notation F̃ is also used for the dual field strength.

Figure 3: Wedge products of basis vectors define basis bivectors, basis trivectors, and

so on. While a vector’s magnitude is its length, a bivector’s magnitude is its area, and

the magnitude of a trivector is its volume. The orientation of the unit bivector and unit

trivector are shown here by the dashed arrows. The field strength Fµν can be represented

as a set of bivectors oriented between pairs of timelike and spacelike axes in four dimensions

(shown here by distorting the angles between axes, as is done in a two-dimensional drawing

of a cube). Shaded (unshaded) bivectors are the magnetic (electric) field components.
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Figure 4: Two vectors (far left) with the same direction and different magnitude differ in

their length, while two bivectors (left) differ in their area. The magnitude of k-forms is a

density, and can be represented by interval lines. A 1-form (right) has a direction, just like

a vector, but the spacing of interval lines represents its magnitude. A 2-form (far right)

defines a plane, just like a bivector does, and once again the magnitude is represented by

the spacing of interval lines. In all cases, the greater magnitude object is on the top row.

two spacetime axes. The field strength is said to be self-dual if ?F = +F , and anti-self-dual

if ?F = −F . Although we will not be concerned with (anti-)self-dual field strengths in the

rest of this paper, we will be dealing with (anti-)self-dual gauge connections from section 5.1

onwards. The EM field strength as presented here is merely the simplest example to use to

introduce the concept of self-duality, and illustrate its physical meaning. Further discussion

of duality, for the reader requiring a deeper understanding, is presented in appendix D.

Some readers will also no doubt have noticed the similarity between bivectors ei ∧ ej , and

differential 2-forms dxi ∧ dxj . The two are indeed very similar. A bivector defined by

the wedge product of two vectors a ∧ b can be imagined as a parallelogram with two sides

parallel to a, and the other sides parallel to b. The magnitude of this bivector is the area of

the enclosed parallelogram. Differential forms, on the other hand, have a magnitude which

is thought of as a density. This is often drawn as a series of lines (similar to the contour lines

on a topographical map or the isobars on a weather map) with smaller spacing between

lines indicating higher density (Figure 4). Hence a 1-form can be thought of as a density

of contour lines or contour surfaces perpendicular to the direction of the 1-form. The inner

product of a vector with a 1-form is a scalar - the number of lines that the vector crosses.

Similarly a 2-form can be thought of as a series of contours spreading out through a plane

(this plane being defined by the directions of the two 1-forms wedged together to make the

2-form). Clearly there is a one-to-one mapping between vectors and 1-forms, and between

bivectors and 2-forms, which involves changing one’s choice of magnitude, (length or area)

↔ (density). It is certainly more common to see 1-forms, 2-forms, and higher-dimensional

forms used throughout physics, but bivectors and higher-dimensional multivectors can be

very useful too (see appendix D.1 for a further discussion of multivectors) and are often

easier to visualise.
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3.3 Wilson Loops and Holonomies

In section 2 we defined a holonomy as a measure of how much the initial and final val-

ues of a vector transported around a closed loop differ. The discussion in the previous

section demonstrates that the internal degrees of freedom of a spinor can also be position-

dependant, and hence it should be possible to define a holonomy by the difference between

the initial and final values of a spinor transported around a closed loop9. As a first step to

constructing such a definition, let us consider what happens when we compare the values

of a field at different points, separated by a displacement dxµ. We begin by using eq. (3.2),

eq. (3.3) and eq. (3.4) to write

dψ

dxµ
=

∂φ

∂xµ
u+ φ

∂u

∂xµ
= u (∂µ + igAµ)φ (3.23)

from which we readily see that igAµu = ∂µu, or equivalently igAµudx
µ = du. The internal

components of the fields will be related by a gauge rotation which we will call U(dxµ). The

action of this rotation can be expanded as

U(dxµ)u = u+ du = u+ igAµudx
µ = (1 + igAµdx

µ)u (3.24)

and we immediately see that

U(dxµ) = exp{igAµdxµ} (3.25)

U(dxµ) is the parallel transport operator that allows us to bring two field values at different

positions together so that they may be compared. Remembering that the effect of parallel

transport is path-dependant, this operator can be readily generalised to finite separations

along an arbitrary path λ and connections valued in arbitrary gauge groups, in which case

we find

U(x, y) = P exp

{∫
λ
igAµ

I(x)tIdxµ
}

(3.26)

where the P tells us that the integral must be path ordered10, tI are gauge group generators

as before, and x and y are the two endpoints of the path λ we are parallel transporting

along. If the gauge connection vanishes along this path then the gauge rotation is simply

the identity matrix and ψ is unchanged by being parallel transported along the path. In

general, however, the connection will not vanish.

Now consider the situation when the path λ is a closed loop, i.e. its beginning and

end-point coincide. Analogously to the situation for a curved manifold, where the parallel

transport of a vector along a closed path gives us a measure of the curvature of the spacetime

bounded by that path, the parallel transport of a spinor around a closed path yields a

measure of the gauge curvature living on a surface bounded by this path. We can see this

simply in the case of a small square “plaquette” in the µ-ν plane, with side length a. The

9The name holonomy is also used within the LQG community to refer to a closed loop itself. We feel this

is unnecessarily confusing, and hence we shall avoid using the term “holonomy” for a closed loop or closed

path. The reader should be aware that this terminology does, however, exist within the wider literature.
10See Appendix E for the definition of a “path ordered” exponential.
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Figure 5: An arbitrary closed path in the plane can be approximated by tilings of pla-

quettes. Since each plaquette is traversed anti-clockwise, adjacent edges make cancelling

contributions to the parallel transport of a spinor, leaving only the contribution at the

boundary of the tiling (as illustrated for the plaquettes in the lower-right corner).

gauge rotation in this case is a product of the rotation induced by parallel-transporting

a spinor along each of the four sides of the plaquette in order. The parallel transport

operators for each side of the plaquette are found from eq. (3.26), and explicitly, their

product around a plaquette is

W = eigaA
†
ν(x+aν)eigaA

†
µ(x+aµ+aν)eigaAν(x+aµ)eigaAµ(x) (3.27)

Assuming that we are dealing with a non-Abelian field theory, this product of exponentials

can be converted to a single exponential by use of the Baker-Cambell-Haussdorf rule, which

for the product of four terms takes the form

eAeBeCeD = exp{A+B+C+D+[A,B]+[A,C]+[A,D]+[B,C]+[B,D]+[C,D]+...} (3.28)

After a bit of algebra we find that this simplifies to

W = exp{iga2Fµν + ...} (3.29)

where the ... represent higher-order terms. An arbitrary loop can be approximated by a

tiling of small plaquettes, to yield a result proportional to the total tiled area, multiplied by

Fµν . Since the common edges of adjacent plaquettes are traversed in opposite directions,

the contributions along these edges are cancelled, and the entire tiling results in a path

around the outside of the tiled area (Fig. 5). Such an arbitrary loop is called a Wilson

loop, and the holonomy associated to it is called the Wilson loop variable, denoted Wλ. To

obtain a single variable from the parallel transport around a loop, we take the trace of the

parallel transport operator, hence

Wλ = TrP exp

{∮
λ
igAµ

I(x)tIdxµ
}

(3.30)

The Wilson loop is gauge-invariant, since each line segment of which the loop is composed

transforms as

U(x, y)→ G(y)U(x, y)G−1(x) (3.31)
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under a gauge transformation like that in eq. (3.5), and so the product of several line

segments forming a closed loop transforms as

W →W ′ = G(x1)U(x1, x2)G−1(x2) . . . G(xn)U(xn, x1)G−1(x1) (3.32)

Different gauge transformations therefore correspond with different choices of starting point

for the loop. However the trace is invariant under cyclic permutations, TrABC = TrBCA =

TrCAB, and so the Wilson loop variable is independent of choice of gauge transformation

[18].

This discussion shows that Fµν is a measure of the gauge curvature within a surface,

as well as a measure of the holonomy of the loop enclosing the surface (that is, the gauge

rotation induced on a spinor when it is parallel-transported around a closed loop). Hence

when the connection does not vanish the associated holonomy will in general not be trivial.

3.4 Dynamics of Quantum Fields

We will conclude this section with a discussion of two approaches to the dynamics of

quantum fields. These are well-established in the case of theories like QED and QCD,

and so it will be natural later on to consider equivalent approaches when we wish to

quantise spacetime, which is the dynamical field in GR. These two approaches are based

on lagrangian and hamiltonian dynamics.

3.4.1 Lagrangian (or Path Integral) Approach

As shown in eq. (3.18), starting with the curvature of a gauge field it is possible to define

an action which governs the dynamics of the gauge field. In the path-integral approach to

quantum field theory the basic element is the propagator (or the partition function whenM
is a Euclidean manifold) which allows us to calculate the probability amplitudes between

pairs of initial and final states of our Hilbert space. Although we will be concerned with

fields throughout the majority of the following discussion, the prototypical example is that

of the non-relativistic point particle in flat space moving under the influence of an external

potential V (x) for which the action is given by

Spp[γ] =

∫
γ
d3xdt

(
1

2
mẋ2 − V (x)

)
(3.33)

Note that the potential term must be replaced by a gauge field Aµ in the relativistic case,

in which case the action takes the form

SRel[γ] =

∫
γ
d3xdt

(pµ +Aµ)(pµ +Aµ)

m0
(3.34)

where pµ is the energy-momentum 4-vector of the particle and m0 is its rest mass. This is

the familiar action for a charged point particle moving under the influence of an external

potential encoded in the abelian gauge potential Aµ. The action integral depends on the

choice of the path γ taken by the system as it evolves from the initial to final states in

question. The action can be evaluated for any such path and not just the ones which
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extremize the variation of the action. This allows us to assign a complex amplitude (or

real probability in the Euclidean case) to any path γ by:

exp {iS[γ]} (3.35)

Using this complex amplitude as a weighting function we can calculate matrix elements for

transitions between an arbitrary pair of initial Ψi(t) and final Ψf (t′) states by summing all

paths or histories which interpolate between the two states,〈
Ψi(t) | Ψf (t′)

〉
=

∫
D[ψ] exp {iS[γ]} , (3.36)

in contrast to the classical view of dynamics, in which a system moves from an initial state

to a final state in exactly one way. Here D[ψ] is an appropriate measure on the space of

allowed field configurations.

For the point-particle |q, t〉 represents a state where the particle is localized at position

q at time t. The matrix-element between states at two different times then takes the form〈
q, t | q, t′

〉
=

∫
D[ψ] exp {iSpp[γ]} . (3.37)

The weighting factor gives higher value to the contribution from those paths which have an

associated action close to the minimum. It is this which results in classical behaviour, in

the appropriate limit. However the contributions of all possible paths must still be taken

into account to accurately calculate the transitions between states.

3.4.2 Hamiltonian approach: Canonical quantisation

The alternative to the lagrangian or path-integral approach is to study the dynamics of a

system through its Hamiltonian. This leads to Dirac’s procedure for canonical (or “second”)

quantisation11. The Hamiltonian H for a dynamical system can be constructed from the

Lagrangian L by performing a Legendre transformation. Given a configuration variable q,

which we can think of as a generalised position, and a corresponding generalised momentum

p defined by

p =
∂L

∂q̇
, (3.38)

then the Hamiltonian is given by

H[p, q] = pq̇ − L[q, q̇] (3.39)

in the case of a point particle, and generalisations of this equation for other systems. If we

define the Poisson bracket of two functions by

{f, g} =
n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
(3.40)

11The quantisation of the motion of a particle in a classical potential is sometimes referred to as “first

quantisation”. This is the basis for the somewhat un-intuitive name “second quantisation” for quantisation

extended to the potential as well.
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where f = f(q, p, t) and g = g(q, p, t), then Hamilton’s equations can be written in the

form

q̇ =
∂H

∂p
= {H, p} and ṗ = −∂H

∂q
= {H, q} (3.41)

and give the time evolution of the system. Hence, leaving the second spot in the brackets

empty, time evolution is generated by the operator {H, } which acts upon the generalised

coordinates and momenta.

In quantum mechanics and quantum field theory observables are replacd by operators,

i.e. x→ x̂. While operators do not necessarily commute, classical observables do. However

the Poisson bracket of two observables will not necessarily be zero, and Dirac was led to

postulate that in the transition from classical to quantum mechanics, Poisson brackets

between observables should be replaced by commutation relations, where the scalar value

of the commutator is i~ times the scalar value of the equivalent Poisson bracket, i.e.

{f, g} = 1 implies
[
f̂ , ĝ
]

= i~ (3.42)

This prescription will be central to our attempts to quantise spacetime in later sections.

This completes the necessary background discussion of quantum field theories.

4 Expanding on classical GR

We now return to the discussion of General Relativity. Equipped with the preceding

discussions of both the quantisation of field theories, and the geometrical interpretations

of gauge transformations, it is time to set about formulating what will eventually become

a theory of dynamical spacetime obeying rules adapted from quantum field theory. But

before we get there we must cast classical GR into a form amenable to quantisation.

From classical mechanics we know that dynamics can be described either in the Hamil-

tonian or the Lagrangian frameworks. The benefits of a Lagrangian framework are that

it provides us with a covariant perspective on the dynamics and connects with the path-

integral approach to the quantum field theory of the given system. The Hamiltonian

approach, on the other hand, provides us with a phase space picture and access to the

Schrodinger method for quantization. Each has its advantages and difficulties and thus

it is prudent to be familiar with both frameworks. We will begin with discussing these

approaches in a classical framework, and move to quantisation in section 5.

4.1 Lagrangian approach: The Einstein-Hilbert Action

The form of the Lagrangian, and hence the action, can be determined by requirements

of covariance and simplicity. Out of the dynamical elements of geometry - the metric

and the connection - we can construct a limited number of quantities which are invariant

under coordinate transformations, hence they should have no uncontracted indices. These

quantities must be constructed out of the Riemann curvature tensor or its derivatives.

These possibilities are of the form: {R,RµνRµν , R2,∇µR∇µR, . . .}. The simplest of these

is the Ricci scalar R = Rµναβg
µαgνβ . As it turns out this term is sufficient to fully describe
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Einstein’s general relativity, yielding a lagrangian that is simply
√
−gR, where as noted in

subsection 2.3, g = det(gµν).

This allows us to construct the simplest lagrangian which describes the coupling of

geometry to matter:

SEH+M =
1

κ

∫
d4x
√
−gR+

∫
d4x
√
−gLmatter (4.1)

where Lmatter is the lagrangian for the matter fields that may be present and κ is a constant,

to be determined. If the matter lagrangian is omitted, one obtains the usual vacuum field

equations of GR. This action (omitting the matter term) is known as the Einstein-Hilbert

action, SEH.

It is worth digressing to prove (at least in outline form) that the Einstein field equations

(EFEs) can be found from SEH+M. The variation of the action (4.1) yields a classical

solution which, by the action principle, is chosen to be zero,

δS = 0 =

∫
d4x

[
1

κ

δ
√
−g

δgµν
R+

1

κ

√
−g δR

δgµν
+
δ
√
−gLmatter

δgµν

]
δgµν (4.2)

which implies that

1√
−g

δ
√
−g

δgµν
R+

δR

δgµν
= −κ 1√

−g
δ
√
−gLmatter

δgµν
. (4.3)

The energy-momentum tensor can be defined as

Tµν = − 2√
−g

δ
√
−gLmatter

δgµν
(4.4)

where g = det(gµν), and Lmatter is a lagrangian encoding the presence of matter12. From

equation (4.4) we can immediately see that

1√
−g

δ
√
−g

δgµν
R+

δR

δgµν
=
κ

2
Tµν . (4.5)

We now need to work out the variation of the terms on the left-hand-side. Omitting the

details, which can be found elsewhere (see e.g. the appendix of [15]), we find that

δ
√
−g = − 1

2
√
−g

δ
√
g =

1

2

√
−g(gµνδgµν) = −1

2

√
−g(gµνδg

µν) (4.6)

thanks to Jacobi’s formula for the derivative of a determinant. The variation of the Ricci

scalar can be found by differentiating the Riemann tensor, and contracting on two indices

12This definition of the energy-momentum tensor may seem to come out of thin air, and in many texts

it is simply presented as such. To save space we will follow suit, but the reader who wishes to delve

deeper should consult [19], in which Tµν is referred to as the dynamical energy-momentum tensor, and it is

proven that it obeys the conservation law ∇µTµν = 0 (as one would hope, since energy and momentum are

conserved quantities), as well as being consistent with the form of the electromagnetic energy-momentum

tensor.
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to find the variation of the Ricci tensor. Then, since the Ricci scalar is given by R = gµνRµν
we find that

δR = Rµνδg
µν + gµνδRµν . (4.7)

The second term on the right may be neglected when the variation of the metric vanishes

at infinity, and we obtain δR/δgµν = Rµν . Plugging these results into eq. (4.5) we find

that

− 1

2
gµνR+Rµν =

κ

2
Tµν (4.8)

which yields the Einstein equations if we set κ = 16πG.

As noted in eq. (2.11), we can write Γρµν in terms of the metric gµν ,

Γρµν =
1

2
gρδ (∂µgδν + ∂νgδµ − ∂δgµν)

and since the covariant derivative ∇µ is a function of Γρµν , and the Riemann tensor is

defined in terms of the covariant derivative, the Einstein-Hilbert action is ultimately a

function of the metric gµν and its derivatives.

As a further aside, we will briefly describe how the Lagrangian formulation allows us to

make contact with the path-integral or sum-over-histories approach outlined in sec. 3.4.1,

and apply it to the behaviour of spacetime as a dynamical field. In general, this approach

involves calculating transition amplitudes with each path between the initial and final

states being weighted by an exponential function of the action associated with that path.

In the case of gravity we may think of four-dimensional spacetime as a series of spacelike

hypersurfaces, Σt, corresponding to different times. Each complete 4-dimensional geometry

consisting of a series of 3-dimensional hypersurfaces that interpolate between the initial

and final states may be thought of as the generalisation of a “path”. This 3+1 splitting

of spacetime into foliated three-dimensional hypersurfaces will be covered in more detail

in the next subsection. To calculate the matrix-elements (as in eq. (3.36)) for transition

amplitudes between initial and final states of geometry, Σt and Σt′ (see Fig. 6) we use the

Einstein-Hilbert action for GR on a manifold M without matter

SEH =
1

κ

∫
d4x
√
−g R (4.9)

Let us represent the states corresponding to the initial and final hypersurfaces as |hab, t〉 and

|h′ab, t′〉, where hab is the intrinsic metric of a given spatial hypersurface, and a, b ∈ {1, 2, 3}.
Then the probability that evolving the geometry will lead to a transition between these

two states is given by

〈hab, t|h′ab, t′〉 =

∫
D[gµν ] exp {iSEH(gµν)} (4.10)

where the action is evaluated over all 4-metrics gµν interpolating between the initial and

final hypersurfaces. D[gµν ] is the appropriate measure on the space of 4-metrics. While this

approach is noteworthy, and ultimately leads to a very successful computational approach

to quantising gravity [20], it is not the path we follow to formulate Loop Quantum Gravity.

Instead, as mentioned above, the lagrangian formulation of General Relativity is used as a

stepping-stone to the hamiltonian formulation.
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Figure 6: Weighted sums of transitions between different configurations of spacelike hy-

persurfaces may be used to calculate the transition amplitude between an initial and final

state of geometry (right), see eq. (4.10). This is analogous to the path-integral approach

used in quantum field theory (left), see eq. (3.36).

4.2 Hamiltonian approach: The ADM splitting

Since General Relativity is a theory of dynamical spacetime, we will want to describe the

dynamics of spacetime in terms of some variables which make computations as tractable as

possible. The Hamiltonian formulation is well suited to a wide range of physical systems,

and the ADM (Arnowitt-Deser-Misner) formalism, described below, allows us to apply it

to General Relativity. We can think of the action (4.1), which is clearly written in the

form of an integral of a lagrangian, as a stepping-stone to this hamiltonian approach. This

hamiltonian formulation of GR takes us to the close of our discussion of classical gravity,

and will be used as the jumping-off point for the quantisation of gravity, to be undertaken

in Section 5.

The ADM formalism involves foliating spacetime into a set of three-dimensional space-

like hypersurfaces, and picking an ordering for these hypersurfaces which plays the role of

time, so that the hypersurfaces are level surfaces of the parameter t. This is a necessary

feature of the hamiltonian formulation of a dynamical system, although it seems at odds

with the way GR treats space and time as interchangable parts of spacetime. However this

time direction is actually a “fiducial time”13 and will turn out not to affect the dynamics.

It is essentially a parameter used as a scaffold, which in the absence of a metric is not

directly related to the passage of time as measured by a clock.

To begin, we will suppose that the 4-dimensional spacetime is embedded within a

manifold M (which may be R4 or any other suitable manifold). Next we choose a local

foliation14 {Σt, t} ofM into spacelike 3-manifolds, where Σt is the 3-manifold correspond-

13The term “fiducial” refers to a standard of reference, as used in surveying, or a standard established

on a basis of faith or trust.
14Generally one assumes that our 4 manifolds can always be foliated by a set of spacelike 3 manifolds. For

a general theory of quantum gravity the assumption of trivial topologies must be dropped. In the presence

of topological defects in the 4 manifold, in general, there will exist inequivalent foliations in the vicinity of

a given defect. This distinction can be disregarded in the following discussion for the time being.
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ing to a given value of the parameter t. We will refer to such a manifold as a “leaf of

foliation”. The topology of the original four-dimensional spacetime is then Σ⊗ R, while t

is a parametrization of the set of geodesics orthogonal to Σt, c.f. (Fig. 7). In addition at

each point of a leaf we have a unit time-like vector nµ (with nµnµ = −1) which defines the

normal at each point on the leaf.

Figure 7: When performing the ADM splitting, the lapse function N and shift vector Nµ

define how points on successive hypersurfaces are mapped together.

Given the full four-metric gµν onM and the vector field nµ the foliation is completely

determined by the requirement that the surfaces Σt of constant “time” are normal to nµ.

The diffeomorphism invariance of general relativity implies that there is no canonical

choice of the time-like vector field tµ which maps a point xµ on a leaf Σt to the point x′µ on

the leaf Σt+δt, i.e. which generates time evolution of the geometry. This property is in fact

the gauge symmetry of general relativity. It implies that we can choose any vector field

tµ as long as it is time-like. Such a vector field can be projected onto the three-manifold

to obtain the shift vector Na = t‖ which is the part tangent to the surface, while the

component of tµ normal to the three-manifold is then identified as the “distance between

hypersufaces” and is called the lapse function N = t⊥. Therefore tµ can be written as

tµ = Nnµ +Nµ (4.11)

where, though we have written the shift as a four-vector to keep our choice of indices

consistent, it is understood that N0 = 0 in a local basis of coordinates adapted to the

splitting.

Now we can determine the components of the four-metric in a basis adapated to the

splitting as follows:

g00 =gµνt
µtν

=gµν (Nnµ +Nµ) (Nnν +Nν)

=N2nµnµ +NµNµ + 2N(Nµnµ)

=−N2 +NµNµ (4.12)
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where we have used nµnµ = −1 and Nµnµ = 0 in the third line. Working in a coordinate

basis where Nµ = (0, Na), we have g00 = −N2 + NaNa
15. Similarly to obtain the other

components of the metric we project along the time-space and the space-space directions:

gµνt
µNν = NµNµ ≡ NaNa (4.13)

Since, by definition g0ν ≡ gµνt
µ, this implies that g0a = Na. The space-space components

of gµν are simply given by selecting values of the indices µ, ν ∈ {1, 2, 3}. Thus the full

metric gµν can be written schematically as

gµν =

(
−N2 +NaNa N

NT gab

)
(4.14)

where a, b ∈ {1, 2, 3} and N ≡ {Na}. The 4D line-element can then be read off from the

above expression

ds2 = gµνdx
µdxν = (−N(t)2 +NaNa)dt

2 + 2Nadt dxa + gabdx
adxb (4.15)

where again a, b ∈ {1, 2, 3} are spatial indices on Σt.

Figure 8: Intrinsic curvature measured by parallel transport (left), and extrinsic curvature

measured by changes in the normal vectors (right).

The components gab of the metric restricted to a leaf of foliation are not the same as

the intrinsic metric in a leaf of foliation. The intrinsic metric is related to the projection

operator that takes any object Tµ,...,ν defined in the full four-dimensional manifold and

projects out its component normal to the leaf Σt. To understand how to decompose Tµ,...,ν
into a part T‖, which lies only in the hypersurface Σt and a part T⊥, orthogonal to Σt, we

may consider a vector vµ. The orthogonal component is given by v⊥ = vµnµ. Similarly the

component lying in Σt is obtained by projecting the vector along the direction of the shift,

15From this expression we can also see that g00 = −N2 +NaNa is a measure of the local speed of time

evolution and hence is a measure of the local gravitational energy density.
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so v‖ = vµNµ. Writing a general four-vector as vµ = v⊥n
µ + v‖

Nµ

|N | (where |N | = NµNµ is

the norm of the shift vector) and acting on it with gµν + nµnν we have

(gµν + nµnν)

(
v⊥n

ν + v‖
Nν

|N |

)
= v⊥nµ(1 + nνnν) +

v‖

|N |
(Nµ + nνNν) = v‖

Nµ

|N |

Since nµnµ = −1, and nνNν = 0 by definition, we are left with only the component of

vµ parallel to Σt. We see that hµν = gµν + nµnν is the required projection operator.

This tensor also happens to correspond to the intrinsic three-metric on Σt, induced by its

embedding in M:

hab = gab + nanb (4.16)

where as above a, b ∈ {1, 2, 3}. The reader might wonder how a rank 3 tensor hab can be

written in terms of a rank 4 object gµν . To understand this, note that the spatial metric

can also be written as a rank 4 tensor:

hµν = gµν + nµnν

However, by construction, the time-time (htt) & space-time (htx, hty, htz) components van-

ish and we are left with a rank 3 object. There is no contradiction in writing the spatial

metric with either spatial indices (a, b, . . .) or with spacetime indices (µ, ν, . . .) as its con-

traction with another object is non-zero if and only if that object has a purely spatial

character.

We have already seen how the Einstein-Hilbert action can be written in terms of the

metric gµν and its derivatives. It makes sense, therefore, that in the case of General

Relativity, where we have foliated the spacetime into spacelike hypersurfaces, we should

take the intrinsic metric on Σ (from now on we drop the t superscript as we will deal with

only one, representative, leaf of the foliation) as our configuration or “position” variable.

To find the relevant hamiltonian density we proceed in a manner that parallels the approach

in classical mechanics or field theory - namely we perform a Legendre transform to obtain

the Hamiltonian function from the Lagrangian. In the case of classical mechanics, given a

Lagrangian L dependent on some coordinates q, we see that

H[p, q] = pq̇ − L[q, q̇] where p =
∂L

∂q̇
, (4.17)

where p is the generalised momentum conjugate to q. Similarly, in the case of scalar field

theory, we find that

H[π, φ] =

∫
d4xπφ̇− L[φ, φ̇]. (4.18)

In the case of GR we find that

H[πµν , hµν ] =

∫
d3xπabḣab − L[hab, ḣab] (4.19)

In addition to the intrinsic metric hab, the hypersurfaces 3Σ 16 also have a tensor which

describes their embedding inM, as shown in Fig. 8. This object is known as the extrinsic

16The notation 3Σ is sometimes used to denote that these are three-dimensional hypersurfaces, however

this is redundant in our present discussion.
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curvature, and is measured by taking the spatial projection of the gradient of the normal

vectors to the hypersurface:

kab = ha
chb

d∇cnd ≡ Danb (4.20)

where Da is now the covariant derivative operator which acts only on purely spatial objects.

As shown in Appendix C.1, that as is true in the case of the intrinsic metric, contracting

the extrinsic curvature with any object with a time-like component gives zero: kµνn
µ =

0, implying that the extrinsic curvature is a quantity with only spacelike indices: kab.

Moreover kab = k[ab] is a symmetric object by virtue of its construction 4.20 (Appendix C.2).

Due to the properties of the Lie derivative and the purely spatial character of the

extrinsic curvature one can show (see Appendix B)that kab = £nhab, i.e. the extrinsic

curvature is the Lie derivative of the intrinsic metric w.r.t. the unit normal vector field

na. Now the Lie derivative £~vX of an object X w.r.t. a vector field va can be interpreted

as the rate of change of X along the integral curves generated by va. By analogy with

the definition of p in eq. (4.17) we might be tempted to identify the extrinsic curvature

with the “momentum variable” conjugate to the “position variable” (namely the intrinsic

metric). This is not far off the mark. As we will see the conjugate momentum will, indeed,

turn out to be a function of kab.

The Einstein-Hilbert action can be re-written in terms of quantities defined on the

spatial hypersurfaces, by making two substitutions. Firstly, and analogously to g, we write

h for the determinant of hab and recognise that the four-dimensional volume form
√
−g

is equal to N
√
h (that is, the three-dimensional volume form multiplied by the distance

between hypersurfaces). Secondly, using the Gauss-Codazzi equation17,

(3)Rµνρσ = hµαh
β
νh

γ
ρh

δ
σR

α
βγδ − kνσkµρ − kνρkµσ (4.21)

the four-dimensional Ricci curvature scalar R can be re-written in terms of the three-

dimensional Ricci scalar (3)R (that is, the Ricci scalar restricted to a hypersurface Σ), and

the extrinsic curvature of Σ as

R = (3)R+ kabkab − k2 (4.22)

where k is the trace of the extrinsic curvature taken with respect to the 3-metric

k := kabhab . (4.23)

The Gauss-Codazzi relation is a very general result which is true in an arbitrary number

of dimensions. The reader with time on their hands may wish to derive it for themselves

by using the definition of the Ricci scalar in terms of the Christoffel connection and using

the 3-metric hµν to project quantities in 3 + 1 dimensions down to the three dimensions of

Σ. By repeating this process with objects living in n & n+ 1 dimensions, one can obtain

the version which applies for manifolds of any dimensionality n.

17A derivation of which can be found in Appendix 1.3 of [7]
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Using these substitutions, the Einstein-Hilbert action can be rewritten in a form that

is convenient for identifying the parts which depend only on Σ

SEH =

∫
dt d3xN

√
h
(

(3)R+ kabkab − k2
)

=

∫
dtLEH (4.24)

We next need to find ḣab, which is obtained by taking the Lie derivative (Appendix B) with

respect to the vector field tµ which generates time-translations (for a detailed derivation,

see Appendix C.3 ):

ḣab = £~thab = 2Nkab + £ ~Nhab (4.25)

The conjugate momentum is then found to be

πab =
δL

δḣab
=
√
h(kab − k hab) (4.26)

Substituting these results into eq. (4.19) we obtain

H[πab, hab] =

∫
d3xπabḣab − L[hab, ḣab] (4.27a)

=

∫
d3xN

(
−
√
h(3)R+

1√
h

(πabπab −
1

2
π2)

)
− 2NaDbπ

ab (4.27b)

=

∫
d3xNH−NaCa (4.27c)

where for brevity we have adopted the notation

H =
(
−
√
h(3)R+ 1√

h
(πabπab − 1

2π
2)
)

(Hamiltonian constraint) (4.28a)

Ca = 2Dbπ
ab (Diffeomorphism constraint) (4.28b)

where π is the trace of πab, and D is the covariant derivative with respect to the 3-metric

hab.

We can reverse the Legendre transform to rewrite the action for GR as

SEH =

∫
dtLEH =

∫
dtd3x

(
πabḣab −H[πab, hab]

)
(4.29a)

=

∫
dtd3x

(
πabḣab −NH+NaCa

)
(4.29b)

It is now apparent that the action written in this form is a function of the lapse and

shift but not their time derivatives. Consequently the Euler-Lagrange equations of motion

obtained by varying SEH with respect to the lapse and shift are

δSEH
δN

= −H = 0 (4.30a)

δSEH
δNa

= Ca = 0 (4.30b)

implying that H and Ca are identically zero and are thus to be interpreted as constraints on

the phase space! This is nothing more than the usual prescription of Lagrange multipliers

– 31 –



- when an action depends only on a configuration variable q but not on the corresponding

momentum p, the terms multiplying the configuration variable are constraints on the phase

space.

Ca and H are referred to as the vector (or diffeomorphism) constraint and the scalar

(or Hamiltonian) constraint, respectively. The diffeomorphism constraint generates diffeo-

morphisms within the spatial hypersurfaces Σt. The Hamiltonian constraint generates the

time evolution which takes the geometry of Σt to Σt+1. A little later, when we cast GR in

the first order formulation we will encounter a third constraint, referred to as the Gauss

constraint. We shall discuss the interpretation of the constraints once the Gauss constraint

has been properly introduced, but note here that the Hamiltonian constraint is relevant to

the time evolution of the spacelike hypersurfaces, while other two constraints act spatially

(i.e. within the hypersurfaces).

We see that the Hamiltonian density HEH in eq. (4.27c), obtained after performing

the 3 + 1 split of the Einstein-Hilbert action via the ADM procedure [21], is a sum of

constraints, i.e. HEH = NH − NaCa = 0. This is a generic feature of diffeomorphism

invariant theories.

4.3 Physical Interpretation of Constraints

Here we briefly describe the form of the Poisson brackets between the various constraints

and their physical interpretation18. The Poisson brackets between two functions f and g

defined on the phase space is given by

{f, g} =

∫
d3x

δf

δhab

δg

δπab
− δf

δπab
δg

δhab
(4.31)

where hab, π
ab are the canonical coordinates and momenta respectively. Since these vari-

ables are fields defined over the three-dimensional manifold Σ, it is necessary to integrate

over Σ to obtain a number. Since the diffeomorphism constraint Ca = 2Dbπ
ab is a function

of momenta only, the Poisson bracket of this constraint with the canonical coordinate is

given by

{hcd(x′), ξaCa(x′′)} = −
∫
d3x

δhcd(x
′)

δhef (x)

δ
[
2ξaDbπ

ab(x′′)
]

δπef (x)

= −
∫
d3x 2 δec δ

f
d δ

a
e δ

b
f δ(x− x′) δ(x′′ − x)Dbξa(x

′′)

= −δ(x′ − x′′) 2Ddξc (4.32)

18For what follows, it will be helpful to recall some aspects of symplectic geometry. In the symplectic

formulation of classical mechanics a system consists of a phase space in the form of an even-dimensional

manifold Γ equipped with a symplectic structure (anti-symmetric tensor) Ωµν . Given any function f : Γ→ R
on the phase space, and a derivative operator ∇, there exists a vector field associated with f , given by

Xα
f = Ωαβ∇βf . Given two functions f, g on Γ, the Poisson brackets between the two can be written as

{f, g} = Ωαβ∇αf∇βg which can also be identified with −LXf g = LXgf - the Lie derivative of g along the

vector field generated by f or vice-versa. Thus in this picture, the Poisson bracket between two functions

tells us the change in one function when it is Lie-dragged along the vector field generated by the other

function (or vice-versa). For more details see [22, Appendix B]
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where ξa is a vector field defined on Σ, which serves to “smear out” the constraint Ca over

the manifold so that we get a function defined over the entire phase space, rather than just

being defined at each point of Σ. To go from the first line to the second we have integrated

by parts and dropped the term which is a pure divergence. This is justified if the field

ξa has support only on a compact subset of Σ. The constraint Ca takes the metric hab to

a neighboring point on the phase space: hab → hab − 2Dbξa. Using the properties of the

Lie derivative, the second term can also be written as Lξhab = Daξb +Dbξa implying that

hab → hab−Lξhab, and that therefore i.e. ξaCa is the generator of spatial diffeomorphisms

along the vector field ξa on the spatial manifold Σ. This is the reason for calling it the

“diffeomorphism constraint” in the first place.

Similarly a much more involved calculation along the lines of the one above yields

for the Poisson bracket between a function f on the phase space and the “Hamiltonian

constraint” H [23, Sec. I.1.1]

{NH, f} = LN~nf (4.33)

i.e. H generates diffeomorphisms along the vector field N~n orthogonal to the hyper-

surface Σ. In other words H maps functions defined on the hypersurface Σt at a given time

t to functions on a hypersurface Σt′ at a later time t′. This is the reason for referring to H
as the “Hamiltonian constraint”; because it generates time evolution of functions on the

phase space, the same way the Hamiltonian in classical or quantum mechanics does.

We do not wish to provide more details of the ADM procedure than are strictly nec-

essary. Further details about the ADM splitting and canonical quantization can be found

in [15] in the metric formulation, and [21] in the connection formulation19.

4.4 Seeking a path to canonical quantum gravity

In the Hamiltonian formulation one works with a phase space spanned by a set of gen-

eralized coordinates qi, and a set of generalized momenta pi. For the case of General

Relativity, the generalised coordinate is the intrinsic metric hab of the spatial 3-manifold

Σ and the extrinsic curvature kab induced by its embedding in M determines the corre-

sponding generalized momentum, as per (4.26). For comparison the phase spaces of various

classical systems are listed in the following table

System Coordinate Momentum

Simple Harmonic Oscillator x p

Ideal Rotor θ Lθ
Scalar Field φ(x, t) π(x, t)

Geometrodynamics hab πab =
√
h(kabkab − k2)

Connection- dynamics Aa
i Eai

Now, given our phase space co-ordinatized by {hab, πab} and the explicit form of the Hamil-

tonian of GR in terms of the Hamiltonian eq. (4.28a) and diffeomorphism eq. (4.28b)

constraints, we may expect that we can proceed directly to quantization by promoting

19The terms “metric formulation” and “connection formulation”will be defined in sec. 4.5
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the Poisson brackets on the classical phase space to commutation relations between the

operators acting on a Hilbert space HGR:

hab → ĥab πab → i~
δ

δhab
(4.34a){

hab(x), πa
′b′(x′)

}
= δ(x− x′)δa′aδb

′
b →

[
ĥab, i~

δ

δhab

]
= i~δa

′
aδ
b′
b (4.34b)

f [hab] → |Ψhab〉 (4.34c)

It should then remain to write the constraints H and Cµ in operator form

H, Ca → Ĥ, Ĉa (4.35)

which act upon states |Ψq〉 which would then be identified with the physical states of

quantum gravity. The physical Hilbert space is a subset of the kinematic Hilbert space

which consists of all functionals of the 3-metrics: |Ψq′〉 ∈ Hphys ⊂ Hkin.

Unfortunately the above prescription is only formal in nature and we run into severe

difficulties when we try to implement this recipe. The primary obstacle is the fact that

the Hamiltonian constraint stated in eq. (4.28a) has a non-polynomial dependence on the

3-metric via the Ricci curvature 3R. We can see this schematically by noting that 3R is a

function of the Christoffel connection Γ which in turn is a complicated function of hab:

3R ∼ (∂Γ)2 + (Γ)2; Γ ∼ q∂q ⇒ ∂Γ ∼ ∂q∂q + q∂2q (4.36)

This complicated form of the constraints raises questions about operator ordering and

is also very non-trivial to quantize. Therefore, in this form, the constraints of general

relativity are not amenable to quantization.

This is in contrast to the situation with the Maxwell and Yang-Mills fields, which

being gauge fields can be quantized in terms of holonomies (see section 3.3), which form

a complete set of gauge-invariant variables. An optimist might believe that were we able

to cast General Relativity as a theory of a gauge field, we could make considerably more

progress towards quantization than in the metric formulation. This does turn out to be

the case as we see in the following sections.

4.5 Connection Formulation

Our ultimate goal is to cast general relativity in the mould of gauge field theories such as

Maxwell or Yang-Mills. The parallel between covariant derivaties and connections in GR

and QFT suggests that gravity may be treated as a gauge field theory with Γρµν as the gauge

connection. However, though the Christoffel connection is an affine connection it does not

transform as a tensor under arbitrary coordinate transformations (c.f. [15, chapter 4]) and

thus cannot play the role of a gauge connection which should be a covariant quantity.

Γρµν allows us to parallel transport vectors vµ and, in general, arbitrary tensors (vectors

are of course a special case of tensors) i.e. it allows us to map the tangent space Tp at point

p to the tangent space Tp′ at the point p′. The map depends on the path connecting p and

p′ and it is this fact that allows us to measure local geometric properties of a manifold.
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However, in order to allow the parallel transport of spinors the Christoffel connection is

not sufficient.

The Christoffel connection does not “know” about spinor fields of the form ψµ
I (where

I is a lie-algebra index). A theory of quantum gravity which does not know about fermions

would not be very useful. Thus we need an alternative to the Christoffel connection which

has both these properties: covariance with respect to coordinate transformations and cou-

pling with spinors.

Up until now we have worked with GR in second-order form, i.e. with the metric gµν
as the only configuration variable (hence this is also called the metric formulation). The

Christoffel connection Γρµν is determined by the metric compatibility condition,

∇gµν = 0 (4.37)

The passage to the quantum theory is facilitated by switching to a first-order formulation

of GR (also called the connection formulation), in which both the metric and the connection

are treated as independent configuration variables. However due to the problems with the

Christoffel connection noted above, we shall choose a first-order formulation in terms of

a tetrad or “frame-field” (which we will see shortly takes the role of the metric) and a

gauge connection (the “spin connection”), both of which take values in the Lie algebra of

the Lorentz group. In the following subsections we will describe the tetrads and the spin

connection in some detail, before proceeding to our first example of a first-order formulation

of gravity, the Palatini formulation.

The connection formulation exposes a hidden symmetry of geometry as illustrated

by the following analogy. The introduction of spinors in quantum mechanics (and the

corresponding Dirac equation) allows us to express a scalar field φ(x) as the “square” of a

spinor φ = ΨiΨi. In a similar manner the use of the tetrads allows us to write the metric

as a square gµν = eIµe
J
ν ηIJ . The transition from the metric to connection variables in GR

is analogous to the transition from the Klein-Gordon equation

(−∂2
t + ∂i∂i −m2)ψ = 0 (4.38)

to the Dirac equation

(iγµ∂µ −m)ψ = 0 (4.39)

in field theory (where here we have used c = ~ = 1).

The connection is a Lie-algebra valued one-form Aµ
IJτIJ where τIJ are the generators

of the Lorentz group. Our configuration space is then spanned by a tetrad and a connection

pair: {eIµ, A
µ
IJ}. The tetrads are naturally identified as mappings between the Lie algebra

sl(2,C), and the Lie algebra so(3, 1) of 4-vectors.

4.5.1 Tetrads

We begin by considering the four dimensional manifoldM, introduced in section 4.2, above.

As we know, any sufficiently small region of a curved manifold will look flat20 and so we

20So long as the manifold is continuous, not discrete. This is an important point to keep in mind for

later.

– 35 –



may define a tangent space to any point P in M. Such a tangent space will be a flat

Minkowski spacetime, and the point P may be regarded as part of the worldline of an

observer, without loss of generality. This tangent space will be spanned by four vectors,

eµ. Each basis vector will have four components, eIµ where I ∈ {0, 1, 2, 3}, referred to

the locally-defined reference frame (the “laboratory frame” of the observer who’s worldline

passes through P , with lengths and angles measured using the Minkowski metric). As

noted back in section 1, such a set of four basis vectors is referred to as a tetrad or vierbein

(German for “four legs”)21. Since the tetrads live in Minkowski space, their dot product is

taken using the Minkowski metric. But the dot product of basis vectors is just the metric

itself, so the metric of M at any point is just given by

gµν = eIµe
J
ν ηIJ (4.40)

where ηIJ = diag(−1,+1,+1,+1) is the Minkowski metric. Taking the determinant of

both sides we find that

det(gµν) = det(ηIJ)det(eIµ)2 = −det(eIµ)2 (4.41a)

∴ e =
√
−g (4.41b)

where g ≡ det(gµν) and e ≡ det(eIµ). Due to this fact the tetrad can be thought of as the

“square-root” of the metric.

Tetrads can thus be interpreted as the transformation matrices that map between two

sets of coordinates, as can be seen by comparing eq. (4.40) with the standard form for a

coordinate transformation, eq. (2.16). It is this fact which makes the tetrads a useful tool

in modern formulations of GR. Since the components of spinors are defined relative to the

flat “laboratory frame” of the tangent space, and tetrads map the metric of this tangent

space to the metric of the full four-dimensional spacetime, they serve the role we mentioned

above, of allowing us to construct a connection that knows about spinor quantities as well

as vectors and tensors. The construction of such a connection will be described in the

following subsection.

As an aside, we note that any vector vµ can be written as an sl(2,C) spinor vab as

vab := vµe
µ
Iσ

I
ab (4.42)

where σI = {1, σx, σy, σz} is a basis of the lie-algebra sl(2,C) and a, b are the spinorial

matrix indices shown explicitly for clarity.

4.5.2 Spin Connection

It is a truth universally acknowledged, that a student in possession of a basic familiar-

ity with Loop Quantum Gravity will be in want of an explanation of the significance of

SL(2,C). If we wish to construct a theory that encompasses GR under the framework of

gauge field theories we should anticipate that the local symmetries of spacetime will define

21The similar word vielbein (“any legs”) is used for the generalisation of this concept to an arbitrary

number of dimensions (e.g. triads, pentads).
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the gauge group of our quantum gravity theory. As noted in sec. 2 the causal structure of

spacetime defines a future light-cone and past light-cone at each event. The past light-cone

of an observer at any given value of time is the celestial sphere at a fixed distance from the

observer. The celestial sphere can be parametrised by the angles θ, φ, and any point on

a sphere can be stereographically projected onto a plane. For our purposes, this shall be

taken to be the complex plane, so that any point on the celestial sphere corresponds with

a complex number ζ = X + iY . We can write this as the ratio of two complex numbers

ζ = α/β, which can (if we so desire) be written as functions of θ, φ. A change of the

complex coordinates (which is equivalent to a coordinate transformation of the real angles

θ, φ) can be effected by acting on the 2-vector with components α, β with a linear trans-

formation, written in the form of a 2× 2 matrix with complex components. If we take the

determinant of this matrix to be +1 (which we can do, without loss of generality) this is

an SL(2,C) transformation. Thus the Lorentz group, SL(2,C), is the local gauge group

of special relativity.

While dynamics on a flat spacetime can be described by the Poincare group, in a general

curved spacetime such as we would expect in GR, translational symmetry is broken and only

local Lorentz invariance remains as an unbroken symmetry. The mapping between local

coordinate bases is encoded in the connection. As noted above, the Christoffel connection

does not allow for the parallel transport of spinors. It is therefore not suitable to be used in

constructing a theory of quantum gravity. The simplest candidate that allows for parallel

transport of spinors is an sl(2,C) valued connection Aµ
IJ . Such a choice of connection

is a logical candidate for casting GR as a gauge theory, and will be referred to as a spin

connection.

In order to be able to parallel transport objects with spinorial indices we need a suitable

extension of the notion of a covariant derivative which acts on vectors to one which acts

on spinors (we follow [24, Appendix B]). The condition for parallel transport of a vector is

that its covariant derivative with respect to the Christoffel connection should vanish, i.e.

∇kvi = ∂kv
i + vjΓijk = 0 (4.43)

Similarly the condition for parallel transport of a spinor requires that its covariant deriva-

tive with respect to the gauge connection should vanish

Dµψ = ∂µψ + igAµψ = 0 (4.44)

where Aµ ≡ AIµt
I is the gauge connection. Analogously, given the tetrad eIµ and the

Christoffel connection Γγαβ we define an sl(2,C) valued spin connection ωIJα and use these

to construct the generalised derivative operator on M which annihilates the tetrad

DαeIβ = ∂αe
I
β − Γγαβe

I
γ + ωIαJe

J
β = 0 (4.45)

The term “spin connection” may cause some confusion, by tricking newcomers into

thinking they have to learn a new concept, when it fact this is nothing more than the

notion of parallel transport of a particle along a Wilson line.
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Now one would expect that this derivative operator should also annihilate the (internal)

Minkowski metric ηIJ = eαIe
α
I and the spacetime metric gµν = eIµe

J
ν ηIJ . One can check that

requiring this to be the case yields that the spin-connection is anti-symmetric ω
{IJ}
α = 0

and the Christoffel connection is symmetric Γα[βγ] = 0.

We can solve for Γαβγ in the usual manner (see for e.g. [15]) to obtain

Γγαβ =
1

2
gγδ (∂αgδβ + ∂βgδα − ∂δgαβ) (4.46)

Inserting the above into eq. (4.45) we can solve for ω to obtain

ωIJα =
1

2
eδ[I

(
∂[αe

J ]
δ] + e|β|J ]eKα ∂βeδK

)
(4.47)

Note that in the above expression the Christoffel connection does not occur.

In the definition of D we have included the Christoffel connection. Ideally, in a gauge

theory of gravity, we would not want any dependence on the spacetime connection. That

this is the case can be seen by noting that all derivatives that appear in the Lagrangian

or in expressions for physical observables are exterior derivatives, i.e. of the form D[αe
I
β].

The anti-symmetrization in the spacetime indices and the symmetry of the Christoffel

connection Γγ[αβ] = 0 implies that the exterior derivative of the tetrad can be written

without any reference to Γ:

D[αe
I
β] = ∂[αe

I
β] + ω[α

ILeβ]L = 0 (4.48)

We can solve for ω by a trick similar to one used in solving for the Christoffel connection.

Following [24, Appendix B], first contract the above expression with eαJe
β
K to obtain

eαJe
β
K

(
∂[αe

I
β] + ω[α

ILeβ]L

)
= 0 (4.49)

Now let us define ΩIJK = eαI e
β
J∂[αeβ]K . Performing a cyclic permutation of the indices

I, J,K in the above expression, adding the first two terms thus obtained and subtracting

the third term we are left with

ΩJKI + ΩIJK − ΩKIJ + 2eαJωαIK = 0 (4.50)

This can be solved for ω to yield

ωαIJ =
1

2
eKα [ΩKIJ + ΩJKI − ΩIJK ] (4.51)

which is equivalent to the previous expression, eq. (4.47), for ω.

Next we consider the curvature tensors for the Christoffel and the spin connections and

show the fundamental identity that allows us to write the Einstein-Hilbert action solely in

terms of the tetrad and the spin-connection. The Riemann tensor for the spacetime and

the spin connections, respectively are defined as:

D[αDβ]vγ = Rαβγ
δvδ; D[αDβ]vI = RαβI

JvJ (4.52)
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Writing vγ = eIγvI and inserting into the first expression we obtain

Rαβγ
δvδ = D[αDβ]vγ = D[αDβ]e

I
γvI = eIγRαβI

JvJ = eIγRαβI
JeδJvδ (4.53)

where we have used the fact that DµeIν = 0. Since the above is true for all vδ, we obtain

Rαβγ
δ = RαβI

JeIγe
δ
J (4.54)

The Ricci scalar is given by R = gµνRµν = gµνRµδν
δ. Using the previous expression we

find

Rµδν
δ = RµδI

JeIνe
δ
J (4.55)

Contracting over the remaining two spacetime indices then allows us to write the Ricci

scalar in terms of the curvature of the spin-connection and the tetrads,

R = Rµν
IJeµI e

ν
J . (4.56)

4.5.3 Palatini Action

The Einstein-Hilbert action, from the discussion in sec. 4.1, can be written in the form

SEH =
1

κ

∫
d4x
√
−ggµνRµν . (4.57)

The Palatini approach to GR starts with this action and treats the metric and the con-

nection as independent dynamical variables. Variation of the action with respect to the

metric yields the vacuum field equations (Rµν = 0), while variation with respect to the

connection implies that the connection is the Christoffel connection. Discussion of the

Palatini approach in terms of the metric and connection can be found in many textbooks

(e.g. [25], chapter 11).

Having gone to the effort of defining tetrads and the spin connection we now wish to

write the action for GR in terms of these variables. We saw in sec. 4.1 that requirements of

covariance and simplicity dictated the form of the action for GR. Similarly our construction

of an action based on tetrads and the spin connection is guided by physical considerations.

Firstly we want the action to be diffeomorphism invariant. We also require the lagrangian

density to be a four-form, which we can integrate over a four-dimensional spacetime to

give a scalar (thus this action is valid only in four dimensions). The curvature of the con-

nection is already a two-form, so (suppressing spacetime indices for simplicity) we include

eI ∧ eJ ≡ e[µ
Ieν]

J , which is a two-form22. This yields the Palatini action, the simplest

diffeomorphism-invariant action one can construct using tetrads and the curvature of the

gauge connection. We emphasise that this is not simply SEH rewritten with a change of

variables, but a parallel construction. The discussion above is intended to describe the

physical intuition behind this construction. It is conventional to use the notation F IJµν for

22If we use two copies of the curvature tensor then we get Yang-Mills theory (F ∧ F ). But that doesn’t

include the tetrad.
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the curvature of the spin connection, to yield

SP [e, ω] =
1

2κ

∫
d4x ? (eI ∧ eJ) ∧ FKL εIJKL

=
1

4κ

∫
d4x εµναβεIJKL eµ

Ieν
JFαβ

KL , (4.58)

where

FKLγδ = ∂[γωδ]
KL +

1

2

[
ωγ

KM , ωδM
L
]
. (4.59)

The similarity between eqs. (4.57) and (4.58) should be clear, especially when we

remember that gµν = eIµe
J
ν ηIJ (eq. (4.40)). At this point Fµν

IJ is the curvature of ω, but

it remains to be shown that it satisfies the identity of eq. (4.56). The equations of motion

obtained by varying the Palatini action are

δSP
δωνIJ

= εµναβεIJKLDν

(
eα
Ieβ

J
)

= 0 , (4.60a)

δS

δeIµ
= εµναβεIJKL eν

JFαβ
KL = 0 . (4.60b)

One can see that eq. (4.60a) is equivalent to the statement that

δS[g,Γ]

δΓ
= 0⇒ ∇g = 0 (4.61)

therefore in this approach the metric compatibility condition eq. (4.37) arises as the equa-

tion of motion obtained by varying the action with respect to the connection.

In deriving eq. (4.60a) we have utilized the fact that F [ω + δω] = F [ω] + D[ω](δω),

where D[ω] is the covariant derivative defined with respect to the unperturbed connection

ω as in eq. (4.48). The resulting equation of motion, eq. (4.60a), is then the torsion-free

or metric-compatibility condition which tells us that the tetrad is parallel transported by

the connection ω. This then implies that eq. (4.56) holds, i.e. Fµν
IJ ≡ RµνIJ . The second

equation of motion can be obtained by inspection, since F does not depend on the tetrad.

Already we see dramatic technical simplification compared to when we had to vary the

Einstein-Hilbert action with respect to the metric as in eq. (4.2).

We will digress at this point, much as we did in sec. 4.1, in order to show that eq. (4.60b)

is equivalent to Einstein’s vacuum equations. We first note that the volume form can be

written as

εµναβ =
1

4!
εPQRS e[µ

P eν
Qeα

Reβ]
S (4.62)

Contracting both sides with eνJ we find that

εµναβ e
ν
J =

1

4!
εPQRS e[µ

P eν
Qeα

Reβ]
SeνJ

= − 1

3!
εJPQR e[µ

P eα
Qeβ]

R (4.63)

where in the second line we have switched some dummy indices and relabelled others.

Inserting the right hand side of the above in eq. (4.60b) and using the fact that eq. (4.56)
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implies Fµν
IJ ≡ RµνIJ , we find:

δS

δeIµ
= εµναβ eν

JεIJKLRαβ
KL

= − 1

3!
εJPQR εIJKL e

[µ
P e

α
Q e

β]
R Rαβ

KL

= δP[I δ
Q
K δ

R
L] e

µ
P e

α
Q e

β
RRαβ

KL

= eµ[I e
α
K e

β
L]Rαβ

KL

=
(
eµI e

α
Ke

β
L + eµKe

α
Le

β
I + eµLe

α
I e
β
K

)
Rαβ

KL

= eµIR+ eβIRαβ
µα + eαIRαβ

βµ

= eµIR− 2eβIRβ
µ = 0 (4.64)

In the first step we have used the result in eq. (4.63). In the second step we have used the

fact that the contraction of two epsilon tensors can be written in terms of anti-symmetrized

products of Kronecker deltas. In the third and fourth steps we have simply contracted some

indices using the Kronecker deltas and expanded the anti-symmetrized product explicitly.

In the fifth and sixth steps we have made use of eq. (4.54) and the definition of the Ricci

tensor as the trace of the Riemann tensor: Rβ
µ =

∑
αRαβ

αµ. Contracting the last line of

the above with eνI and using the fact that gµν = eIµe
J
ν ηIJ we find

Rµν −
1

2
gµνR = 0 . (4.65)

Thus the tetradic action in the first-order formulation - where the connection and tetrad

are independent variables - is completely equivalent to classical general relativity.

4.5.4 Palatini Hamiltonian & Constraints

Up to this point we have been discussing classical approaches to GR. The Palatini and ADM

approaches reproduce Einstein’s original formulation of GR, but as mentioned in sec 4.4,

one would hope that they provide a formulation amenable to canonical quantisation. We

can perform a 3 + 1 split of the Palatini action, eq. (4.58) and obtain a hamiltonian which,

once again, is a sum of constraints. However, while the resulting formulation appears

simpler than that in terms of the metric variables, there are some second class constraints

which when solved [24, Section 2.4] yield the same set of constraints as obtained in the

ADM framework. Thus, the Palatini approach does not appear to yield any substantial

improvements over the ADM version as far as canonical quantization is concerned. To

proceed to a quantum theory, we must transition to a description of gravity in terms of

the Ashtekar variables.

5 First steps to a theory of Quantum Gravity

As discussed in the previous section, we wish to attempt to canonically quantise GR, which

means turning the Hamiltonian, diffeomorphism and Gauss constraints into operators and

replacing Poisson brackets with commutation relations. This procedure is easier said than
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done, however. In a practical sense one must be careful with the ordering of operators,

and hence constructing appropriate commutation relations is not as easy as one might at

first hope. We shall discuss the way forward in outline, before turning to a more detailed

discussion of each step. Firstly we simplify the constraints by adopting a complex-valued

form for the connection and tetrad variables. These are the Ashtekar variables. Next one

performs a 3 + 1 decomposition to obtain the Einstein-Hilbert-Ashtekar Hamiltonian Heha
which turns out to be a sum of constraints. We have already seen that these constraints

all equal zero, and so when treated as operators they should act upon a state of quantum

spacetime, |Ψ〉 to yield Heha|Ψ〉 = 0. This condition does not force a particular choice

of basis for |Ψ〉 upon us, but it does admit a choice built from objects we are already

familiar with - Wilson loops. These loops are then allowed to intersect, to yield area and

volume operators of the spacetime. As a result, the states of quantum spacetime come to

be represented by graphs whose edges are labelled by representations of the gauge group

(for GR this is SU(2)). Throughout, the notion of background independence23, which is

central to General Relativity, is considered sacrosanct.

The reader interested in the history behind the canonical quantization program, with

further mathematical details, is referred to [23].

5.1 Ashtekar Formulation: “New Variables” for General Relativity

We have already discussed the first-order form of GR above. Now let us turn our attention

to Ashtekar’s complex-valued version of this formalism. We begin with tetradic GR whose

action is written in the Palatini form. This action is equivalent to the usual Einstein-Hilbert

action on-shell, i.e. for configurations which satisfy Einstein’s field equations, as shown

in subsection 4.5.3. For dealing with spinors, a formalism defined in terms of connections

and tetrads is more useful than one defined in terms of the metric, as shown above. When

we perform the ADM splitting of the Palatini action, we switch from variables defined in

the full four-dimensional spacetime to the three-dimensional hypersurfaces Σt. Hence the

tetrads at each point become “triads”, eIµ → eia where µ→ a ∈ {1, 2, 3}, I → i ∈ {1, 2, 3},
and the spin connection is likewise restricted, to become Γia = ωajkε

jki. The phase space

variables of the Palatini picture (eia,Γ
i
a) are the intrinsic metric of the spacelike manifold

Σ and a function of its extrinsic curvature respectively, similarly to the situation we noted

in sec. 4.2. Unfortunately in this case the Hamiltonian constraint is still a complicated

non-polynomial function and canonical quantization does not appear to be any easier in

this formalism.

Ashtekar made the remarkable observation that the form of the constraints simplifies

dramatically24 if instead of the real connection ωµ
IJ one works with a complex, self-/anti-

23It is important to mention one aspect of background independence that is not implemented, a priori,

in the LQG framework. This is the question of the topological degrees of freedom of geometry. On general

grounds, one would expect any four dimensional theory of quantum gravity to contain non-trivial topological

excitations at the quantum level. Classically, these excitations would correspond to defects which would

lead to deviations from smoothness of any coarse-grained geometry.
24for the detailed derivation of these constraints starting with the self-dual Lagrangian see for e.g. [21,

Section 6.2]
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self-dual connection (this means that the connection is equal to ±1 times the dual con-

nection, which is defined in an analogous manner to the dual field strength of eq. (3.22)).

At the heart of the formulation of general relativity as a gauge theory lies a canonical

transformation from the triad and connection to the “new” or Ashtekar variables;

eia →
1

γ
eia , Γia → Aia = Γia + γKi

a (5.1)

where γ is the so-called Immirzi parameter, Aia is the Ashtekar-Barbero connection, and

Ki
a = κabe

bi with κab the extrinsic curvature of Σ.

It’s standard practice to rewrite the triads as “densitised triads”, denoted ẽ, and defined

by

ẽia = eia
√
h (5.2)

so that the new variables we actually work with are ( 1
γ ẽ

i
a, A

i
a). Both Aia and ẽia admit

SU(2) rotations with respect to the internal indices (and hence the choice of densitised

triads is non-unique). We can therefore treat the Ashtekar formulation of gravity as an

SU(2) gauge theory. This is consistent with our previous discussion about the choice of

gauge group for gravity (sec. 4.5.2), as SU(2) is a subgroup of SL(2,C).

Given this choice of variables, the constraints simplify to

H = εijk ẽ
a
i ẽ
b
jF

k
ab (Hamiltonian constraint) (5.3a)

Gi = Daẽ
a
i (Gauss constraint) (5.3b)

Ca = ẽbiF
i
ab −AiaGi (Diffeomorphism constraint) (5.3c)

if we choose γ = −i. This makes quantisation feasible, although not necessarily easy. The

phase space configuration and momentum variables are the three dimensional triad ẽa
i and

the spatial connection Aia. The second class constraints which were present in the Palatini

framework must now vanish due to the Bianchi identity and the diffeomorphism constraint

becomes a polynomial quadratic function of the momentum variables - in this case the

triad. We thereby obtain a form for the constraints which is polynomial in the coordinates

and momenta and thus amenable to methods of quantization used for quantizing gauge

theories such as Yang-Mills. The resulting expression for the Einstein-Hilbert-Ashtekar

hamiltonian of GR is

Heha = NaCa +NH+ T iGi = 0 (5.4)

where Ca, H and Gi are the vector, scalar and Gauss constraints respectively. The terms

Na
i and N are the shift and lapse, while T i is a lie-algebra valued function over our spatial

surface which encodes the freedom we have in choosing the gauge for the gauge connection.

As in 4.3 we can calculate the Poisson brackets between these constraints and the canonical

variables. Doing so verifies the intuition gained from 4.3. The Poisson brackets of a function

f with the Hamiltonian and diffeomorphism constraints gives:

{f,H} = £N~nf , {f, ξaCa} = £~ξ
f , (5.5)
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implying that as expected H and Ca generate time-evolution and spatial diffeomorphism

respectively. Introducing the gauge degrees of freedom has also led to the introduction of

a third constraint Gi, for whose Poisson bracket we have

{f, T iGi} = −ẽaiDaT
i , (5.6)

implying that Gi is the generators of gauge rotations.

It is instructive to compare the above form of the constraints to their metric counter-

parts in eq. (4.28a) which are reproduced below for the reader’s convenience:

H =

(
−
√
h(3)R+

1√
h

(πabπab −
1

2
π2)

)
Ca = 2Dbπ

ab

The price to be paid for this simplification is that the theory we are left with is no longer

the theory we started with - general relativity with a manifestly real metric geometry. The

connection is now a complex connection. However the new concoction is also not too far

from the original theory and can be derived from an action. That this is the case was

shown independently by Jacobson and Smolin [26] and by Samuel [27]. They completed

the analysis by writing down the Lagrangian from which Ashtekar’s form of the constraints

would result:

S± [e,A] =
1

4κ

∫
d4x±Σµν

IJ
±Fµν

IJ (5.7)

Here ±F is the curvature of a self-dual (anti-self-dual) four-dimensional connection ±A

one-form, which we will discuss more in the next subsection. The field ±Σ is the self-dual

(anti-self-dual) portion of the two-form ẽI ∧ ẽJ . The Palatini action is then simply given

by the real part of the self-dual (or anti-self-dual) action,

SP = Re[S±] . (5.8)

5.2 Loop Quantization

As noted above, the program of Loop Quantum Gravity involves the following steps;

1. Write GR in connection and tetrad variables (in first order form).

2. Perform a 3 + 1 decomposition to obtain the Einstein-Hilbert-Ashtekar Hamiltonian

Heha which turns out to be a sum of constraints.

3. Obtain a quantized version of the Hamiltonian whose action on elements of the phys-

ical space of states yields Heha|Ψ〉 = 0.

4. Identify an appropriate basis for the physical states of spacetime.

The first two steps have been thoroughly covered. So now, after a fairly lengthy digression,

we are ready to return to the task mentioned in sec. 4.4, rewriting the constraints in

operator form, and identifying the physical states of quantum gravity. The first part of

this process was completed in eqs. (5.3a)-(5.3c).

The following exposition only gives us a bird’s eye view of the process of canonical

quantization. The reader interested in the mathematical details of and the history behind

the canonical quantization program is referred to [23].

– 44 –



5.3 Canonical Quantization

To find solutions of the equations of motion we want to find states Ψ[A] such that they are

acted upon appropriately by the constraints. This means that they satisfy

Ĥ|Ψ〉 = 0

Ĉa|Ψ〉 = 0

Ĝi|Ψ〉 = 0

The Gauss constraint tells us that Ψ[A] should be gauge-invariant functions of the con-

nection. The diffeomorphism constraint is telling us that Ψ[A] should be invariant under

diffeomorphisms of the paths along which the connection lies. These constraints taken

together do not impose a particular choice of Ψ[A] upon us, but they do admit Wilson

loops as one possible, and particularly convenient, choice.

Let us consider solutions of the form Ψ[A] =
∑

λ Ψ[λ]Wλ[A]. A given state will there-

fore be a sum of loops. These loops may in general be knotted, and hence topologically

distinct from each other. Such states will satisfy the Gauss constraint, as Wilson loops

are gauge-invariant. They will also satisfy the diffeomorphism constraint. In fact, diffeo-

morphism invariance actually helps us reduce the number of basis states, thereby avoiding

a potentially awkward problem. In a theory with a fixed background and a well-defined

metric any tiny change in the shape of a Wilson loop will lead to a different holonomy, since

parallel transport is path-dependent. If different loops are taken to be the orthonormal

basis states, this means that each deformation of a loop results in a new state, orthonormal

to every other loop. But in a diffeomorphism-invariant theory it is not possible to distin-

guish between any two loops that may be smoothly deformed into each other, and hence

the space of loops consists of only a single member of each topological equivalence class.

Now we must ask whether Wilson loops satisfy the hamiltonian constraint. Firstly

we observe that the triads (or tetrads when we are working in four dimensions) are the

conjugate momenta to the connection. In usual quantum mechanics the operator for the

momentum corresponds to derivation with respect to the position coordinate, p → p̂ =

−i~ ∂
∂q . Similarly the quantum operator for the triad (or tetrad!) is given by the derivative

with respect to the connection, hence ea
i → −i~ ∂

∂Aai
. The action of Ĥ on a Wilson loop is

therefore

ĤWλ[A] = εijk
δ

δAia

δ

δAjb
F kabWλ[A] . (5.9)

The derivatives pull out factors of λ̇. Then since F kab = −F kba it follows that the sum-

mation over indices of the curvature yields zero, hence F kabλ̇
aλ̇b = 0

This loop basis gives us a picture of spacetime at the smallest scale, consisting of

closed paths carrying representations of SU(2). It now remains to interpret the loop basis

in terms of physical observables.

6 Kinematical Hilbert Space

The allowed loop states that spacetime is composed of can take several forms. They may

consist of simple closed loops. These loops may be linked through each other. They may
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Figure 9: States of quantum geometry are given by arbitrary graphs whose edges are

labelled by group elements representing the holonomy along each edge. These graphs can

take pretty complicated forms.

also be knotted, and hence classified by knot invariants. And the loops may intersect,

creating vertices at which three or more Wilson lines meet. Historically the importance of

all these possibilities has been considered, and continues to be assessed. We will simply

take the view that a general loop state can have all of the properties listed above. It is

therefore valid to consider a loop state to be a graph or network Γ with edges pi labelled

by elements of some gauge group (generally SU(2) or SL(2,C) in LQG)

ΨΓ = ψ(g1, g2, . . . , gn) (6.1)

where gi is the holonomy of A along the ith edge. Pictorially, we can imagine something

like figure 9. In general we expect there to be an ensemble {Γi} of spin-networks which

corresponds to a semiclassical geometry {M, gab} in the thermodynamic limit25.

We now wish to identify operators corresponding to physical observables of the space-

time. These operators should be based upon the physical structure of the graphs under

consideration. It is worth noting at this point that in the Hamiltonian approach to quantum

gravity that we have pursued there is an ambiguity as to whether we choose the connec-

tion or the frame fields as the configuration variables. In fact either choice is permissible,

but the physical interpretation of connections as configuration variables and frame fields

as conjugate momenta is more straightforward, and as we shall see it allows us to write

operators that generate discrete areas and volumes.

The inner-product of two different states on the same graph can be defined using the

Haar measure on the group

〈ΘΓ|ΨΓ〉 =

∫
Gn
dµ1 . . . dµnΘ(g1, . . . , gn)Ψ̄(g1, . . . , gn) (6.2)

For e.g. L2(G) - the space of square integrable functions on the manifold of the group G -

constitutes the kinematical space of states for a single edge.

For further details and discussion the reader is referred to [28, 29, 30, 31, 32, 33].

25when the number of degrees of freedom N →∞, the volume V →∞ and the number density N/V → n

where n is bounded above
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6.1 Area Operator

The area operator in quantum geometry is defined in analogy with the classical definition of

the area of a two-dimensional surface S embedded in some higher dimensional manifold M .

In the simplest case S is a piece of R2 embedded in R3, however in general both S and the

higher-dimensional manifold may have some curvature. To make use of notation developed

above, and without loss of generality, we will presume S is embedded in a three-dimensional

manifold Σ obtained by foliating four dimensional spacetime (see sec. 4.2). To each point

p ∈ S we can associate a triad or “frame field” i.e. a set of vectors {~e1,~e2,~e3} which form a

basis for the tangent space Tp at that point. In abstract index notation this basis can also

be written more succinctly as {eai}p where a, b, c ∈ {1, 2, 3} index the vectors and i, j, k . . .

label the components of each individual vector in the active or “chosen” coordinate system.

The indices i, j, k . . . are necessary because if S is curved (i.e. the gauge connection Aa is

non-zero) the basis at two distinct points in S need not be the same, and hence a given

vector ~ea will have different components at different points.

The area of a two-dimensional surface S embedded in Σ is given by

AS =

∫
d2x
√

2h (6.3)

where 2hab is the metric on S, induced by the three-dimensional metric hab on Σ, and 2h

is its determinant, consistent with eq. (2.21). Given an orthonormal triad field {eai} on

Σ, we can always apply a local gauge rotation to obtain a new triad basis {e′ai}, such that

two of its legs - a “dyad” {e′xi, e′yj} - are tangent to the surface S and e′z
k is normal to

S. Then the components of the two-dimensional metric 2hAB (A,B ∈ {x, y} are purely

spatial indices) can be written in terms of the dyad basis {eAI}26 as

2hAB = eA
IeB

JδIJ (6.4)

The above expression with all indices shown explicitly becomes

2hAB :=

(
hxx hxy
hyx hyy

)
=

(
ex
Iex

J ex
Iey

J

ey
Iex

J ey
Iey

J

)
δIJ (6.5)

Now, the determinant of a 2× 2 matrix 2hAB takes the well-known form27

det(2hAB) =
∑
i1,i2

h1 i1h2 i2ε
i1 i2 = h11h22 − h12h21 (6.6)

26I, J ∈ {0, 1} label generators of the group of rotations SO(2) in two dimensions. They are what is left

of the “internal” su(2) degrees of freedom of the triad when it is projected down to S.
27This is a special case of the determinant for an n × n matrix Aij which can be written as det(A) =∑
i1...in∈P A1 iiA2 i2 . . . An inε

i1i2...in where the sum is over all elements of the permutation group P of the

set of indices {im} and εi1i2...in is the completely anti-symmetric tensor.
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For an orthornormal triad εijkez
k = ex

iey
j . Therefore in terms of the dyad basis {eAI},

adapted to the surface S, the expression for the determinant becomes

det(2hAB) =
(
ex
iex

jey
key

l − exieyjeykexl
)
δijδkl

=
(
εikmε

jl
n − εijmεkln

)
ez
mez

n δijδkl

= εikm εikn ez
mez

n

= δmn ez
mez

n (6.7)

where we have used the fact that εijm δij = 0 and also chosen to write the contraction of

two completely anti-symmetric tensors in terms of products of Kronecker deltas.

Thus the classical expression28 for the area becomes

AS =

∫
S
d2x

√
~ez · ~ez (6.10)

where ~ez · ~ez ≡ ezmeznδmn. With the classical version in hand it is straightforward to write

down the quantum expression for the area operator. In the connection representation, the

classical vierbein (tetrad) plays the role of the momenta. Since the quantum operator for

the vierbien is given by ea
j → −i~ δ

δAaj
we find that

ÂS =

∫
S
d2x

√
δjk

δ

δAzj

δ

δAzk
(6.11)

In order to determine the action of this operator on a spin-network state, let us recall the

form of the state ΨΓ from eq. (6.1),

ΨΓ = ψ(g1, g2, . . . , gn)

where gl is the holonomy along the lth edge of the graph. Let the edges of the graph Γ

intersect the surface S at exactly m locations, {P1, P2, . . . Pm}. For the time being let us

ignore the cases when an edge is tangent to S. We will also ignore the possibility that if

the loops intersect, creating vertices, such a vertex happens to lie on S. Then, evidently,

the action of eq. (6.11) on the state ΨΓ will give us a non-zero result only in the vicinity

of the punctures29. Thus

ÂSΨΓ ≡
Pm∑
p=P1

√
δij

δ

δAzi(p)

δ

δAzj(p)
ΨΓ (6.12)

28This is only valid for the case when Σ is a three-dimensional manifold. In a general n-dimensional

manifold, the area is a tensor

Aµν
jk = e[µ

jeν]
k (6.8)

In order to extract a single number - the “area” - from this tensor we project onto a two-dimensional surface

spanned by the vectors {ui, vj}
A[S] = e[µ

jeν]
kuivj (6.9)

29Since the connection is defined only along those edges and nowhere else!
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We have written the connections with an explicit dependence on position p to emphasise

that at the lth puncture, the operator will act only on the holonomy gl. We write the

holonomies (compare eq. (3.30)) in the form

gλ[A] = P exp

{∫ λ1

λ0

dxna(x)AaIt
I

}
(6.13)

where γ is the curve along which the holonomy is evaluated, x is an affine parameter along

that curve, the tI are generators of the appropriate symmetry group as noted in section 3.1,

and na is the tangent to the curve at x. Then recognising that the functional derivative of

the holonomy with respect to the connection takes the form

δ

δAaI
gλ[A] = na(x)tIgλ[A] (6.14)

it follows easily that

δ

δAaI
ψ(g1, . . . , gk, . . . , gn) = nat

Iψ(g1, . . . , gk, . . . , gn) (6.15)

where na is the unit vector tangent to the edge at the location of the puncture. Now,

recall that the tI in the above expression is nothing more than the Ith generator of the Lie

group in question. For SO(3), these generators are the same as the angular momentum

operators: tI ≡ JI Thus the effect of taking the derivative with respect to the connection

is to act on the state by the angular momentum operators. This gives us

δ

δAaI

δ

δAbJ
ψ = nanbJ

IJJψ (6.16)

Performing the contractions over the spatial and internal indices, noting that nana = 1,

we finally obtain

ÂSΨΓ ≡
∑
k

√
δij ĴiĴjΨΓ =

∑
k

√
J2ΨΓ (6.17)

where Ĵi is the ith component of the angular momentum operator acting on the spin

assigned to a given edge. J2 is the usual Casimir of the rotation group - that is, it is the

element
∑

aXaX
a where the Xa are the basis of the relevant Lie algebra and the Xa are

the dual basis defined with respect to some invariant mapping of the basis and dual basis to

the scalars. The basic example of a Casimir element encountered at undergraduate level is

the squared angular momentum operator L2 = L2
x +L2

y +L2
z. Casimir operators commute

with all elements of the Lie algebra. The action of J2 upon a given spin state gives us

J2|j〉 = j(j + 1)|j〉 (6.18)

This gives us the final expression for the area of S in terms of the angular momentum label

jk assigned to each edge of Γ which happens to intersect S,

ÂSΨΓ = l2p
∑
k

√
jk(jk + 1)ΨΓ (6.19)

where l2p (a unit of area given as the square of the Planck length) is inserted in order for

both sides to have the correct dimensions.
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6.2 Volume Operator

We have found a way of assigning quantised areas to graph states. It is natural to expect

that these areas would lie on the boundaries of volumes, and to search, therefore, for a

volume operator analogous to the area operator found in sec. 6.1. Similarly to the two-

dimensional case, we find that the volume of a region of space S is given by

V =

∫
S
d3x
√
h =

1

6

∫
S
d3x

√
εabcεIJKe

a
Ie
b
Je
c
K (6.20)

Replacing the tetrads by their operator equivalents gives us the following expression for

the volume operator :

V =
1

6

∫
S
d3x

√
εabcεIJK

δ

δAaI
δ

δAbJ
δ

δAcK
(6.21)

We have already discussed in the previous section that the effect of acting on a spin-

network state with the operator corresponding to the tetrad has the effect of multiplying

the state by the angular momentum operator:

na
δ

δAai
ΨΓ = Ĵ iψ (6.22)

Consequently the action of the volume operator on a given state can be expressed as

V̂ ΨΓ =
1

6

∫
S
d3x

√
εabcεijknanbncĴiĴj Ĵk ΨΓ (6.23)

Now, since the operator’s action is non-zero only on the vertices v of the graph Γ, the

integral in the above expression reduces to a sum over a finite number of vertices v ∈ Γ

which lie in S ∩ Γ:

V̂ ΨΓ =
1

6

∑
v∈S∩Γ

√
εabcεijknanbncĴiĴj Ĵk ΨΓ (6.24)

In the literature one finds two forms of the volume operator. These are the Rovelli-

Smolin (RS) and Ashtekar-Lewandowski versions. The RS [33] version is

V̂ RS
S ΨΓ = γ3/2l3p

∑
v∈S∩Γ

∑
i,j,k

∣∣∣∣ iCreg8
εabcε

ijknanbncĴiĴj Ĵk

∣∣∣∣1/2 ΨΓ (6.25)

where εabc is the alternating tensor.

The AL [30] version is

V̂ AL
S ΨΓ = γ3/2l3p

∑
v∈S∩Γ

∣∣∣∣ iCreg8
εv(n

a, nb, nc)εabcε
ijknanbncĴiĴj Ĵk

∣∣∣∣1/2 ΨΓ (6.26)

Here εv(n
a, nb, nc) ∈ −1, 1, 0 is the orientation of the three tangent vectors at v to the three

curves/edges meeting at v. The key difference between the two version lies in this term.

The RS operator does not take into account the orientation of the edges which come into
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(a) Volume around node in classical ge-

ometry. Edges are labelled by vectors of

the form ax̂+ bŷ + cẑ ∈ R3

(b) Volume operator in quantum geome-

try. Edges are labelled by elements of the

form ασx + βσy + γσz ∈ sl(2,C)

Figure 10: In order to calculate the volume around the vertex we must sum over the

volume contained in the solid angles between each unique triple of edges. Classically this

volume can be determined by the usual prescription ~a · (~b×~c), where ~a,~b,~c are the vectors

along each edge in the triple. In quantum geometry these vectors are replaced by irreps of

SU(2) but the basic idea remains the same.

the vertex. This fact is taken into account in the AL version, and it allows us to speak

of a phase transition from a state of geometry at high-temperature (T > Tc)where the

volume operator averages to zero for all graphs (which are “large” in some suitable sense)

and a low-temperature (T < Tc) state where a geometric condensate forms and the volume

operator gains a non-zero expectation value for states on all graphs. The key point here

is that the AL version takes into account the “sign” of the volume contribution from any

triplet of edges meeting at a vertex. Given any such triplet of edges eI , eJ , eK , by flipping

the orientation of any one edge we flip the sign of the corresponding contribution to V̂ AL
S . If

we take the orientation of an edge as our random variable for the purposes of constructing

a thermal ensemble, then it is clear that in the limit of high-temperature these orientations

will flip randomly and the sum over the triplets of edges in V̂ AL
S will give zero for most

(if not all) graph states. As we lower the temperature the system begins to anneal and

for some temperature T = Tc the system should reach a critical point where the volume

operator spontaneously develops a non-zero expectation on most (if not all) graph states.

Note that;

1. Since the result of the volume operator acting on a vertex depends on the signs

ε(eI , eJ , eK) of each triplet of edges, a simple dynamical system would then consist

of a fixed graph with fixed spin assignments (je) to edges but with orientations that

can flip, i.e. je ↔ −je (much like a spin).

2. The Hamiltonian must be a hermitian operator. This fixes the various term one

can include in it. We must also include all terms consistent with all the allowed

symmetries in our model.
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3. The simplest trivalent spin-network has one vertex with three edges, e.g. a vertex of

the hexagonal lattice. One can generalize the action of the volume operator on graphs

which have vertices with valence v (number of connecting edges) greater than 3. (The

volume operator gives zero on vertices with v ≤ 2 so these are excluded). To do so we

use the fundamental identity which allows to decompose the state describing a vertex

with v ≥ 4 into a sum over states with v = 3. One example of the decomposition of

a four valent vertex into two three-valent vertices is in the following figure;

Figure 11

4. This model can help us understand how a macroscopic geometry can emerge from

the “spin” or many-body system described by a Hamiltonian, which contains terms

with the volume and area operators, on a spin-network.

6.3 Spin Networks

This discussion leaves us with a simple mental picture of spin-networks. Briefly, they are

graphs with representations (“spins”) of some gauge group (generally SU(2) or SL(2,C) in

LQG) living on each edge. The links of this network correspond with cross-sectional areas,

and the vertices where three or more links meet correspond with discrete volumes. The

values of area and volume are determined by the spin labels on the relevant links. Since

each link corresponds with the parallel transport of spin from one vertex to another, it is

necessary to ensure that angular momentum is conserved at vertices, and so an intertwiner

is associated with each vertex. For the case of a four-valent vertex we have four spins:

(j1, j2, j3, j4). More generally a polyhedron with n faces represents an intertwiner between

the edges piercing each one of the faces. There is a simple visual picture of the intertwiner

in the four-valent case.

Picture a tetrahedron enclosing the given vertex, such that each edge pierces precisely

one face of the tetrahedron. Now, the natural prescription for what happens when a surface

is punctured by a spin is to associate the Casimir of that spin J2 with the puncture. The

Casimir for spin j has eigenvalues j(j + 1). These eigenvalues are identified with the area

associated with a puncture.

In order for the edges and vertices to correspond to a consistent geometry it is im-

portant that certain constraints be satisfied. For instance, for a triangle we require that

the edge lengths satisfy the triangle inequality a + b < c and the angles should add up

to ∠a + ∠b + ∠c = κπ, with κ = 1 if the triangle is embedded in a flat space and κ 6= 1

denoting the deviation of the space from zero curvature (positively or negatively curved).
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(a) Labelling of edges by group elements (b) Labeling of edges by group represen-

tations

Figure 12: States of quantum geometry are given by arbitrary graphs whose edges are

labelled by group elements representing the holonomy along each edge. The Peter-Weyl

theorem allows us to decompose these states in terms of spin-network states, where edges

are now labelled by group representations (angular momenta).

In a similar manner, for a classical tetrahedron, now it is the sums of the areas of

the faces which should satisfy “closure” constraints. For a quantum tetrahedron these

constraints translate into relations between the operators ji which endow the faces with

area.

For a triangle, giving its three edge lengths (a, b, c) completely fixes the angles and

there is no more freedom. However, specifying all four areas of a tetrahedron does not fix

all the freedom. The tetrahedron can still be bent and distorted in ways that preserve the

closure constraints. These are the physical degrees of freedom that an intertwiner possesses

- the various shapes that are consistent with a tetrahedron with a given set of face areas.

6.4 Spin-Foams

In LQG the kinematical entities describing a given state of quantum geometry are spin-

networks. The dynamical entities - i.e. those that encode the evolution and history of spin-

networks - are known as spin-foams. If a spin-network describes a d-dimensional spacelike

geometry, then a spin-foam describes a possible history which maps this spin-network into

another one. In order to determine the transition amplitudes between two different states

of quantum-geometry whose initial and final states are given by spin-networks Si and Sf ,

one must sum over all possible spin-foams which interpolate between the two spin-network

states. When we perform the sum over all allowed histories we find that the resulting

amplitude depends only on the boundary configuration of spins. This is holography. The

holographic principle boils down to saying that the state of a system is determined by the

state of its boundary. Therefore, although the point is not made as often is it possibly

should be, LQG embodies the holographic principle in a very fundamental way. A spin-

foam corresponds to a history which connects two spin-network states. On a given spin-

network one can perform certain operations on edges and vertices which leave the state in

the kinematical Hilbert space. These involve moves which split or join edges and vertices
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and those which change the connectivity. There are two basic transformations which the

transitions between network states can be built from. These are the “2-to-2” move, in which

an adjacent pair of trivalent vertices in a network exchange one incoming link each, and

the “1-to-3” move, in which a single trivalent vertex splits into three vertices, in analogy

to the “star-triangle transformation” used in the analysis of electrical circuits (see fig. 13).

The inverse moves are also possible, of course, and the reader should easily recognize that

the 2-to-2 move is its own inverse, while the inverse of the 1-to-3 move shrinks a trio of

vertices down to form a single vertex.

Figure 13: The 2-2 and 1-3 moves (left). The spin networks composing spatial hypersur-

faces undergo a succession of such evolution moves as time passes (centre). In spin-foams,

the links of a spin-network sweep out sheets in spacetime, such as the shaded region (right).

One can “formally” view a spin-foam as a succession of states {|Ψ(ti)〉} obtained by

the repeated action of the scalar constraint

|Ψ(t1)〉 ∼ exp−iHehaδt|Ψ(t0)〉
|Ψ(t2)〉 ∼ exp−iHehaδt|Ψ(t1)〉 . . . (6.27)

and so on [34, 35]. It is not our intention to discuss spin-foams in great detail here. Hope-

fully the preceding material has sufficiently familiarized the reader with the notation and

concepts of LQG that they will be able to read other, more specific discussions of spin-foams

easily.

7 Applications

Ultimately, the value of any theory is judged by its relevance for the real world. Unfortu-

nately, due to the small length scales involved, direct tests of models of quantum gravity

are not easy to perform. However one can try to reproduce well-known results from other

physical theories as a preliminary consistency test for newer theories. In this section,

we will consider how LQG can be applied to the calculation of black hole entropy, and

cosmological models.

While the question of black hole entropy is, as yet, an abstract problem, it is concrete

enough to serve as a test-bed for theories of quantum gravity. In addition to the Bekenstein

area law (mentioned in sec. 1), by investigating the behavior of a scalar field in the curved

background geometry near a black hole horizon it was determined [36] that all black holes
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behave as almost perfect black bodies radiating at a temperature inversely proportional to

the mass of the black hole: T ∝ 1/MBH . This thermal flux is named Hawking radiation

after its discoverer. These properties of a black hole turn out to be completely independent

of the nature and constitution of the matter which underwent gravitational collapse to

form the black hole in the first place. These developments led to the understanding that a

macroscopic black hole, at equilibrium, can be described as a thermal system characterized

solely by its mass, charge and angular momentum.

Bekenstein’s result has a deep implications for any theory of quantum gravity. The

“Bekenstein bound” refers to the fact that eq. (1.1) is the maximum number of degrees

of freedom - of both, geometry and matter - that can lie within any region of spacetime

of a given volume V . The argument is straightforward [37]. Consider a region of volume

V whose entropy is greater than that of a black hole which would fit inside the given

volume. If we add additional matter to the volume, we will eventually trigger gravitational

collapse leading to the formation of a black hole, whose entropy will be less than the

entropy of the region was initially. However, such a process would violate the second law of

thermodynamics and therefore the entropy of a given volume must be at a maximum when

that volume is occupied by a black hole. And since the entropy of a black hole is contained

entirely on its horizon, one must conclude that the maximum number of degrees of freedom

Nmax that would be required to describe the physics in a given region of spacetime M, in

any theory of quantum gravity, scales not as the volume of the region V (M), but as the

area of its boundary [38, 37] Nmax ∝ A(∂M).

In view of the independence of the Bekenstein entropy on the matter content of the

black hole, the origin of eq. (1.1) must be sought in the properties of the horizon geometry.

Assuming that at the Planck scale, geometrical observables such as area are quantized such

that there is a minimum possible area element a0 that the black hole horizon, or any surface

for that matter, can be “cut up into”, eq. (1.1) can be seen as arising from the number

of ways that one can put (or “sew”) together N quanta of area to form a horizon of area

A = kNa0, where k is a constant. In this manner, understanding the thermal properties

of a black hole leads us to profound conclusions:

1. In a theory of quantum gravity the physics within a given volume of spacetime M
is completely determined by the values of fields on the boundary of that region ∂M.

This is the statement of the holographic principle.

2. At the Planck scale (or at whichever scale quantum gravitational effects become

relevant) spacetime ceases to be a smooth and continuous entity, i.e. geometric

observables are quantized.

In LQG, the second feature arises naturally - though not all theorists are convinced

that geometry should be “quantized” or that LQG is the right way to do so. One can

also argue on general grounds that the first feature - holography - is also present in LQG,

though this has not been demonstrated in a conclusive manner. Perhaps this paper might

motivate some of its readers to close this gap!

Let us now review the black hole entropy calculation in the framework of LQG.
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7.1 Black Hole Entropy

The ideas of quantum geometry allow us to give a statistical mechanical description of a

black hole horizon. This is analogous to the statistical mechanical description of entropy

for a gas, or some other system composed of many smaller parts, and can be illustrated by

a toy model involving tossed coins.

Suppose we toss N fair coins in succession, and record both the order of each series of

heads and tails (this is called a microstate, since it keeps track of what each “particle” in

the system does) and the total number of heads and tails that occur, ignoring the order

(this is called the macrostate). In general, several microstates will correspond to a given

macrostate. For instance, if N = 4, there is only one way to create a macrostate with

zero heads (TTTT), or with four heads (HHHH), for the macrostate with three heads

(and hence, one tail), there are four microstates (HHHT, HHTH, HTHH, and THHH),

and similarly for the macrostate with one head and three tails. And for the macrostate

with two heads and two tails there are six microstates. The number of microstates y as

a function of the number of heads in the macrostate, x, follows a Gaussian distribution,

which has the general form

y = Ae−B(x−µ)2 (7.1)

where µ = N/2 and A and B are scaling constants. Taking the natural logarithm of both

sides we find that

(x− µ)2 = − 1

B
ln(

y

A
) (7.2)

We identify the left-hand side with the entropy of the specified macrostate, remembering

that in general different macrostates will have different entropies30. The right-hand side

is proportional to the logarithm of the number of microstates allowed in that macrostate.

If we were interested in calculating the entropy of a gas, rather than tossing coins, the

macrostates would correspond to particular values of pressure and temperature, while the

microstates correspond to the positions and momenta of individual molecules.

In general there are two ways to calculate the entropy associated with a given random

variable x.

1. Using Shannon’s formula. Let us say that we sample our random variable from some

given ensemble, from which we draw N samples. The variable x takes values in the

set {xi} where i = 1, 2, . . . n), then the entropy associated with our lack of knowledge

of the variable x is given by:

S(x) = −
n∑
i=1

p(xi) ln p(xi) (7.3)

where p(xi) is the probability that the random variable takes on the value xi. If in

the N samples on which the entropy is based, the ith value xi occurs ki times (with

30For a hand-waving argument as to why this should be the entropy, consider a simplified gas in which

each molecule has just two speeds, vmin (tails) and vmax (heads). Then the variable x is related to the

average speed of the gas molecules, which when squared is related to their energy, and this may be related

to entropy by the equation dS = dQ/T at constant T .
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the constraint that
∑

i ki = N), then we have the usual frequentist definition for the

probability associated with that value:

p(xi) =
ki
N

The definition of the Shannon entropy (7.3) is equivalent to the definition of the

Gibbs entropy in statistical mechanics.

2. Using the statistical mechanics method, or its more general version, Jaynes’ formalism

[39]. This is based on the maximum entropy principle, according to which, in the

absence of any prior information about a given random variable the least unbiased

assumption one can make is that the variable satisfies a probability distribution which

possesses the maximum possible entropy. This assumption leads us to the usual

Boltzmann form of the probability. For a given value of the random variable xi,

the associated probability distribution must satisfy the maximum entropy criterion

(wherein (7.3) is maximized) and also the usual axioms of probability theory

n∑
i=1

pi = 1 (7.4a)

〈f(x)〉 =
n∑
i=1

pif(xi) (7.4b)

where f(x) is any function of x. The unique probability function which satisfies these

criteria is found to be (see for e.g. [40, Sec. 3.2]):

pi = e−λ−µxi (7.5)

where λ, µ are Lagrange multipliers required for enforcing the constraints given in

(7.4) 31 λ, µ can be identified with the chemical potential and the inverse temperature,

respectively associated with the random variable x. Using (7.5) we can write down

the partition function

Z(µ) =
n∑
i=1

e−λ−µxi (7.6)

given which we can evaluate the usual thermodynamic quantities such as expectation

values, free energy and the entropy in x:

〈f(x)〉 = −∂ lnZ(µ)

∂µ
(7.7a)

F (T ) = −kT lnZ(T ) (7.7b)

S = −∂F
∂T

(7.7c)

where the inverse “temperature” is given by λ = 1/kT .

31The quantity being extremized has the form L = −
∑n
i=1 {p(xi) ln p(xi)− λp(xi)− µf(xi)p(xi)}.
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In the case of quantum geometry, the microstates correspond with the assignments of

area to the discrete “pieces” of a surface (such as the event horizon of a black hole). Hence

for each macroscopic interval of area [A+ δA,A− δA], entropy S is proportional to the log

of the number of ways in which we can puncture the sphere to yield an area within that

interval.

Figure 14: A spin-network corresponding to some state of geometry in the bulk punctures

a black-hole horizon at the indicated locations. Each puncture yields a quantum of area

∝
√
j(j + 1) where j is the spin-label on the corresponding edge. The entropy of the

black-hole - or, more precisely, of the horizon - can be calculated by counting the number

of possible configurations of punctures which add up to give a macroscopic value of the

area lying within some finite interval (A,A+ δA)

The state of a quantum surface is specified by a sequence of N integers (or half-integers

depending on the gauge group) {ji, . . . , jN}, each of which labels an edge which punctures

the given surface. The area of the surface is given by a sum over the Casimir at each

puncture:

A = 8πγl2p

N∑
i=1

√
ji(ji + 1) (7.8)

The eigenvalues of the operator ji are of the form ki/2, where ki ∈ Z. Thus, the eigenvalues

of the area operator are of the form

Ai = 4πγl2p
√
ki(ki + 2) = 4πγl2p

√
(ki + 1)2 − 1 (7.9)

In addition to (7.9) the integers {kI} must also satisfy a so-called projection constraint,

which is discussed later in this section.

The task at hand is the following; given an interval [A + δA,A − δA], where A is a

macroscopic area value and δA is some small interval (δA/A � 1), and the number N of

edges which puncture the surface, determine the allowed the number N(M) of sequences of

integers {ki, . . . , kN}, such that the resulting value for the total area falls within the given

interval

M =
A

4πγl2p
=
∑
i

√
ki(ki + 2) ∈ [A+ δA,A− δA] . (7.10)

There are various approaches to this problem. We summarize two of these - the simple

argument of Rovelli’s [41] and the number theoretical approach of [42, 43].
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7.1.1 Rovelli’s Counting

We want to compute the number of sequences N(M), where each sequence {ki} satisfies

M =
A

4πγl2p
=
∑
i

√
ki(ki + 2)

Let us first note the following set of inequalities:∑
i

√
k2
i <

∑
i

√
ki(ki + 2) ≡

∑
i

√
(ki + 1)2 − 1 <

∑
i

√
(ki + 1)2 (7.11)

Let N+(M) denote the number of sequences such that
∑

i ki = M and N−(M) denote the

number of sequences such that
∑

i(ki+1) = M). Then the above set of inequalities implies

that [41]

N−(M) < N(M) < N+(M) (7.12)

Computing N+(M) boils down to counting the number of partitions of M , i.e. the num-

bers of sets of ordered, positive integers whose sum is M . As noted in [41], this can be

solved by observing that if (k1, k2, . . . , kn) is a partition of M , then (k1, k2, . . . , kn, 1) and

(k1, k2, . . . , kn + 1) are partitions of M + 1. All partitions of M + 1 can be obtained in this

manner and therefore we have N+(M + 1) = 2N+(M), which implies that N+(M) = C2M ,

where C is a constant.

7.1.2 Number Theoretical Approach

This approach consists of two steps;

A. Determining allowed sequences. This involves solving the BP (Brahmagupta-Pell)

equation32. For now, we will work in units where 4πγl2p ≡ 1. Thus for a given set of

N punctures on a quantum horizon, the total area can be written as

A =

N∑
i=1

Ai =
N∑
i=1

√
(ki + 1)2 − 1

For each possible value of k, let gk be the number of punctures which have that

eigenvalue. So, we can write

A =

kmax∑
k=1

gk
√

(k + 1)2 − 1

32It is well-known that the name of “Pell’s Equation” was the result of Leonhard Euler’s misidentification

of John Pell with the mathematician Lord Brouckner. If we gave Euler a second chance to name the

equation, he might have called it “Brouckner’s equation”. This equation had previously been intensively

studied by the Indian mathematicians Brahmagupta and Bhaskara around the 5th century B.C. and 12

century A.D. respectively. However, Brouckner and Euler are to be forgiven for not having knowledge of

the existence of this earlier work. The authors hereby take the liberty of correcting this historical wrong

associated with the naming of this equation, by adding the prefix “Brahmagupta” to the presently accepted

name “Pell’s Equation”.
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with gk = 0 if no puncture has spin k/2. As shown in Appendix G, the square root

of any integer can be written as the product of an integer and the square-root of a

square-free integer. Since k ∈ Z⇒ (k + 1)2 − 1 ∈ Z, therefore we can write√
(k + 1)2 − 1 = yk

√
pk

for some yk ∈ Z and pk ∈ A, where A is the set of square-free integers. This implies

that the area eigenvalue can be written as an integer linear combination of square-

roots of square-free numbers:

A =

imax∑
i=1

yi
√
pi

leading us to the condition that

kmax∑
k=1

gk
√

(k + 1)2 − 1 =

imax∑
i=1

yi
√
pi

As a first step towards solving the general case, let us first try to determine the

solution of the above equation for a single area eigenvalue ki/2:√
(ki + 1)2 − 1 = yi

√
pi

knowing which we will be able to solve the general equation. Here the unknown

variables are ki, yi. The pi are the known square-free numbers. Setting xi = ki + 1

and squaring both sides we obtain

x2
i − piy2

i = 1

This is commonly known as Pell’s equation, or perhaps more appropriately as the

Brahmagupta-Pell equation. A method for obtaining its solutions is given in Ap-

pendix H.

B. Determining the number of valid ways of sprinkling labels from an allowed sequence

onto the edges. This can be mapped to one of the simpler examples of NP-complete

problems in the field of computational complexity - the Number Partitioning Problem

[44, 45].

The relevance of the NPP for black hole entropy arises as follows. The counting of

states of a horizon for a non-rotating black hole boils down to determining the number

of ways in which we can choose spin-labels ki from a given sequence {k1, ..., kN} (where

the allowed sequences are determined by solving the Brahmagupta-Pell equation) to

each of the i = 1...N edges puncturing the horizon, such that
∑
ki = 0.

More generally the case where
∑
ki = m (m > 0), corresponds to a horizon with

angular momentum m. This is equivalent to the statement of the NPP, where given

an arbitrary but fixed sequence of (positive) integers A = {ai, ..., aN}, one asks for

the number of ways NA in which we can partition A into two subsets A+ and A−,
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such that the difference of the sum of the elements of each subset is minimized:∑
A+

ai −
∑

A−
ai = m. For the BHE problem m is given by

∑
k+
i −

∑
k−i = m.

As shown in [42] this problem can be mapped to a non-interacting spin-system [46]

as follows. Consider a chain of N spins each of which can be in an up | ↑〉 state or

a down | ↓〉 state. If ai belongs to A+ (A−) then we set the ith spin to up (down).

Consequently the constraint A+ −A− = m can be expressed as the condition that

m−
N∑
i=1

aiSi = 0 (7.13)

where Si ∈ {+1,−1} are the possible eigenvalues of σz. The problem of partitioning

A is then equivalent [46] to determining the ground state of the Hamiltonian

H = m−
N∑
i=1

ajσ
j
z (7.14)

where σjz is the Pauli spin operator for the jth spin. Any eigenstate of H with zero

energy corresponds to a solution of the NPP for the set A.

7.2 Loop Quantum Cosmology

One of the first avenues to follow when approaching old problems with new tools is to

select the simplest possible scenarios for study, in the hope that the understanding gained

in this arena would ultimately lead to a better understanding of more complex systems and

processes. In classical GR this corresponds to studying the symmetry reduced solutions33 of

Einstein’s equations, such as the FLRW cosmologies and their anisotropic counterparts, and

various other exact solutions such as deSitter, anti-deSitter, Schwarzschild, Kerr-Newman

etc.34 which correspond respectively to a “universe” (in this very restricted sense) with

positive cosmological constant (Λ > 0), a universe with Λ < 0, a non-rotating black hole

and a rotating black hole (both in asymptotically flat spacetimes35). In each of these cases

the metric has a very small number of local degrees of freedom and hence provides only a

“toy model”. Of course, in the real world, the cosmos is a many-body system and reducing

its study to a model such as the FLRW universe is a gross simplification. However, via

such models, one can obtain a qualitative grasp of the behavior of the cosmos on the largest

scales.

33That is, the solutions of the EFEs possessing strong global symmetries which reduces the effective local

degrees of freedom to a small number.
34We refer the reader to the extremely comprehensive and well-researched catalog of solutions to Einstein’s

field equations, in both metric and connection variables, presented in [47]. A somewhat older, but still

valuable, catalog of exact solutions is given in [48].
35A metric with a radial dependence is considered asymptotically flat if it approaches (in a well-defined

sense) a flat Minkowski metric as r →∞.

– 61 –



7.2.1 FLRW Models

The simplest quantum cosmological model is that which corresponds to the Friedmann

metric whose line-element is given by36

ds2 = −N(t)2dt2 + a(t)2

(
1

1− kr2
dr2 + r2dΩ2

)
(7.15)

where the only dynamical variable is the scale factor a(t) which depends only on the

time parameter; r =
√
x2 + y2 + z2 is the radial dimension of the spatial slices; dΩ2 =

dθ2 + sin2 θdφ2 is the angular volume element and k = −1, 0,+1 determines whether our

spatial slices are open (k = −1), flat (k = 0) or closed (k = 1). For this metric we

can perform the 3 + 1 decomposition and write down the action in terms of the various

constraints. By comparing this metric with the general form given in eq. (4.15), we see

that N(t) is the lapse function and the shift vanishes Na = 0. This implies that the

diffeomorphism constraint Daπ
ab must also vanish.

Inserting this metric into the the EFE (2.12) gives us the vacuum Friedmann-LeMaitre-

Robertson-Walker equations which describe the dynamics of homogenous, isotropic space-

times: (
ȧ

a

)2

+
k

a2
=

8πG

3a2
Hmatter(a) (7.16)

where Hmatter is the Hamiltonian for any matter fields that might be present. This equation

gives us the Hamiltonian constraint for the FLRW metric. This can be seen by starting

from the Lagrangian formulation where

SEH =
1

16πG

∫
dt d3x

√
−gR[g] (7.17)

The Ricci scalar R[g] for the FLRW line-element (7.15) is

R = 6

(
ä

N2a
+

ȧ2

N2a2
+

k

a2
− ȧṄ

aN3

)
(7.18)

Substituting the above into the SEH we obtain

S =
V0

16πG

∫
dtNa(t)2R =

3V0

8πG

∫
dtN

(
−aȧ

2

N2
+ ka

)
(7.19)

From this equation we can identify the momentum pa conjugate to the (only) degree of

freedom - the scale factor a(t):

pa =
∂L

∂ȧ
= − 3V0

4πG

aȧ

N2
(7.20)

Since the action does not contain any terms depending on Ṅ , we have pN = 0, implying

that the lapse function N(t) is not a dynamical degree of freedom. We can now write down

36The following discussion is taken from [49, Section 4].
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the Hamiltonian for the system in the usual manner: H =
∑

i piq̇i − L = paȧ − L, which

gives:

H = N

[
4πG

3V0

p2
a

2a
− 3V0ka

8πG

]
(7.21)

It is clear from the form of this expression that this Hamiltonian will become divergent

as a → 0. Changing from metric to connection variables will allow us to alleviate this

problem.

7.2.2 Connection Variables

For isotropic spacetimes, the triad and extrinsic curvature take the form [50, Section IV]:

eai = a(t)2δai Ki
a = ȧa2δia (7.22)

In variables adapted to the particular form of the metric (7.15), the connection |p̃| and

triad c̃ are expressed as:

|p̃| = ã2 =
a2

4
; c̃ = Γ̃ + γ ˙̃a =

1

2
(k + γȧ) (7.23)

where γ is the Immirzi parameter. These components satisfy the commutation relations:

{c̃, p̃} =
8πγG

3
V0 (7.24)

The factors of V0 can be absorbed into the definition of the variables to give us:

c = V
1/3

0 c̃ p = V
2/3

0 p̃ (7.25)

In terms of these the Hamiltonian constraint (7.21) becomes:

H = − 3

8πG

(
(c− Γ)2

γ2
+ Γ2

)√
|p|+Hmatter(p) = 0 (7.26)

where Γ = V
1/3

0 Γ̃

7.3 Semiclassical Limit

The graviton propogator has a robust quantum version in these models. Its long-distance

limit yields the 1/r2 behavior [51] expected for gravity and an effective coarse-grained

action given by the usual one consisting of the Ricci scalar plus terms containing quantum

corrections.

8 Discussion and recent developments

Any fair and balanced review paper on LQG should also mention at least a few of the

many objections its critics have presented. A list of a few of the more important points of

weakness in the framework and brief responses to them follows:
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1. LQG admits a volume extensive entropy and therefore does not respect the Holographic

principle: This criticism hinges upon the description of states of quantum gravity as

spin-networks which are essentially spin-systems on arbitrary graphs. However, spin-

networks only constitute the kinematical Hilbert space of LQG. They are solutions

of the spatial diffeomorphism and the gauss constraints but not of the Hamiltonian

constraint which generates time-evolution. This criticism is therefore due to a (per-

haps understandable) failure to grasp the difference between the kinematical and the

dynamical phase space of LQG.

In order to solve the Hamiltonian constraint we are forced to enlarge the set of states

to include spin-foams which are histories of spin-networks. In a nutshell then, as we

mentioned in sec. 6.4, the kinematical states of LQG are the spin-networks, while the

dynamical states are the spin foams. The amplitudes associated with a given spin-

foam are determined completely by the specification of its boundary state. Physical

observables do not depend on the possible internal configurations of a spin-foam but

only on its boundary state. In this sense LQG satisfies a stronger and cleaner version

of holography than string theory, where this picture emerges from considerations

involving graviton scattering from certain extremal black hole solutions.

2. LQG violates the principle of local Lorentz invariance/picks out a preferred frame of

reference: Lorentz invariance is obeyed in LQG but obviously not in the exact manner

as for a continuum geometry. As has been shown by Rovelli and Speziale [52] the

kinematical phase space of LQG can be cast into a manifestly Lorentz covariant form.

A spin-network/spin-foam state transforms in a well-defined way under boosts and

rotations. Similarly in quantum mechanics one finds that a quantum rotor transforms

under discrete representations of the rotation group SO(3).

3. LQG does not have stable semiclassical geometries as solutions - geometry “crumbles”

- CDT simulations e.g. [20] show how a stable geometry emerges. As mentioned in

sec. 4.1, this involves calculating a sum over histories for the geometry of spacetime,

between some initial and final state. The stability of the spacetimes studied in such

simulations appears to be dependent on causality - that is, spacetime geometries

develop unphysical structures in the Euclidean case, which are controlled when there

is a well-defined past and future, as is the case in LQG. The question of exactly how

similar CDT and LQG are to each other is a matter of continuing investigation.

4. LQG does not contain fermionic and bosonic excitations that could be identified with

members of the Standard Model : The area and volume operators do not describe the

entirety of the structures that can occur within spin networks. LQG or a suitably

modified version which allows braiding between various edges will exhibit invariant

topological structures. Recent work [53, 54] has been able to identify some such

structures with SM particles. In addition, in any spin-system - such as LQG - there

are effective (emergent) low-energy degrees of freedom which satisfy the equations of

motion for Dirac and gauge fields. Xiao-Gang Wen and Michael Levin [55, 56] have

investigated so-called “string-nets” and find that the appropriate physical framework
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is the so-called “tensor category” or “tensor network” theory [57, 58, 59]. In fact

string-nets are very similar to spin-networks so Wen and Levin’s work - showing that

gauge bosons and fermions are quasiparticles of string-net condensates - should carry

over into LQG without much modification.

5. LQG does not exhibit dualities in the manner String Theory does: Any spin-system

exhibits dualities. A graph based model like LQG even more so. One example of

a duality is to consider the dual of a spin-network which is a so-called 2-skeleton

or simplicial cell-complex. Another is the star-triangle transformation, which can

be applied to spin-networks which have certain symmetries, and which leads to a

duality between the low and high temperature versions of a theory on a hexagonal

and triangular lattice respectively [60].

6. LQG doesn’t admit supersymmetry, wants to avoid extra dimensions, strings, ex-

tended objects, etc: Extra dimensions and supersymmetry are precisely that - “ex-

tra”. Occam’s razor dictates that a successful physical theory should be founded on

the minimum number of ingredients. It is worth noting that at the time of writing

of this paper, results from the LHC appear to have ruled out many supersymmetric

extensions of the standard model. By avoiding the inclusion of extra dimensions and

supersymmetry, LQG represents a perfectly valid attempt to create a theory that is

consistent with observations.

7. LQG has a proliferation of models and lacks robustness: Again a lack of extra baggage

implies the opposite. LQG is a tightly constrained framework. There are various

uniqueness theorems which underlie its foundations and were rigorously proven in

the 1990s by Ashtekar, Lewandowski and others. There are questions about the role

of the Immirzi parameter and the ambiguity it introduces however these are part and

parcel of the broader question of the emergence of semi-classicality from LQG (see

Simone Mercuri’s papers in this regard).

8. LQG does not contain any well-defined observables and does not allow us to calculate

graviton scattering amplitudes: Several calculations of two-point correlation functions

in spin-foams exist in the literature [51] These demonstrate the emergence of an

inverse-square law.

As well as discussing criticisms of LQG, it is also fair to consider what role this theory

may have in the future. We would not have written a paper reviewing the formulation

and current status of LQG if we did not consider it an important and interesting theory -

one which we feel is probably a good representation of the nature of spacetime. However

it is wise to remember that most physical theories are ultimately found to be flawed or

inadequate representations of reality, and it would be unrealistic to think that the same

might not be true of LQG. Questions linger about the nature of time and the interpretation

of the hamiltonian constraint, among other things. What is the value then, in studying

LQG? Perhaps LQG will eventually be shown to be untenable, or perhaps it will be entirely

vindicated. As authors of this paper, we feel that the truth will probably lie somewhere in
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the middle, and that however much of our current theories of LQG survive over the next

few decades, this research program does provide strong indications about what some future

(and, we hope, experimentally validated) theory of “Quantum Gravity” will look like.
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A Conventions

Uppercase letters I, J,K, . . . ∈ {0, 1, 2, 3} are “internal” indices which take values in the

sl(2,C) Lorentz lie-algebra. Greek letters µ, ν, α, β ∈ {0, 1, 2, 3} are four-dimensional space-

time indices. Lowercase letters i, j, k, . . . from the middle of the alphabet will be used

for indices in a space of N dimensions, su(2) lie-algebra indices, etc. Lowercase letters

a, b, c, . . . ∈ {1, 2, 3} from the start of the alphabet are three-dimensional spatial indices.

A.1 Lorentz Lie-Algebra

The generators of the n-dimensional representation of the Lorentz Lie algebra can be writ-

ten in terms of the (n×n) Dirac gamma matrices {γI}, which satisfy the anticommutation

relations {
γI , γJ

}
= 2gIJ × 1n×n (A.1)

where gIJ is the metric tensor and 1n×n is the identity matrix.

For the case of n = 4, the matrices are given by

γ0 =

(
0 1

−1 0

)
, γi =

(
0 σi

σi 0

)
(A.2)

where i, j, k ∈ {1, 2, 3} and σi are the usual Pauli matrices, and in this case gIJ is equivalent

to ηIJ = diag(−1, 1, 1, 1), the usual Minkowski metric.

In terms of the {γµ}, the generators of the Lorentz group SO(3, 1) can be written as

[18]

T IJ =
i

4

[
γI , γJ

]
(A.3)

Note that, whereas in the above we have restricted ourselves to the case of 3+1 dimensions,

the expression for the generators of the Lorentz group goes through in any dimension, with

either Lorentzian or Euclidean metric [18, Section 3.2]. An so(3, 1)-valued connection can

then be written as

Aµ = Aµ
IJTIJ =

i

4
Aµ

IJ [γI , γJ ] (A.4)
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but by the antisymmetry of the gamma matrices, the above expression can be shortened to

Aµ = i
2Aµ

IJγIγJ , where we remember that the connection is antisymmetric in the internal

indices AIJ = −AJI .

B Lie Derivative

The Lie derivative £X of a tensor T is the change in T evaluated along the flow generated

by the vector field ~X on a manifold. When T is simply a function T ≡ f on the manifold,

the Lie derivative reduces to the directional derivative of f along X37:

£XT ≡ Xa∂af =
∂

∂γ
f(γ)

where γ co-ordinatizes the points along the curve genereted by X. When the connection

is torsion-free, we may replace ∂α with ∇α.

It can be shown [15] that:

£XT
µ1...µn
ν1...νm = Xα∇αTµ1...µnν1...νm −

n∑
i=1

T ...α...ν1...νm∇αX
µi +

m∑
i=1

Tµ1...µn...α... ∇νiXα (B.1)

where . . . α . . . is shorthand for an expression with α in the ith position and µ(s) or ν(s)

elsewhere, e.g. µ1 . . . µi−1 αµi+1 . . . µn. In particular the Lie derivative of a vector field Tµ

along a vector field Xν reduces to the commutator of the two vector fields:

£XT
µ = Xα∇αTµ − Tα∇αXµ ≡ [X,T ] (B.2)

In the case of a rank-2 tensor Tµν :

£XTµν = Xα∇αTµν + Tαν∇µXα + Tµα∇νXα (B.3)

Applying this to the metric tensor gµν we find the relation:

£Xgµν = ∇µXν +∇νXµ (B.4)

since the covariant derivative of the metric vanishes.

C ADM Variables

One would like to be able to determine the data required to embed the spatial hypersurfaces

Σ within the 4-manifoldM, given the spacetime metric gab & the unit time-like vector field

na normal to Σ. This data consists of the intrinsic & extrinsic curvature tensors (hab, kab).

As explained in the main text the object defined by 4.16 plays the role of the intrinsic

metric (or “curvature”) of Σ. The quantity kab is the extrinsic curvature of Σ determined

by the particular form its embedding inM. In order to define kab we first need to determine

the form of the covariant spatial derivative.

37this fact is related to the interpretation of the differential dx as a component of a 1-form, and the

derivative operator ∂x = ∂/∂x as a component of a vector field
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C.1 Covariant Spatial Derivative

The covariant spatial derivative Da on Σ acting on purely spatial object is given by [61,

Sec. 3.2.2.2]:

DaTb1...bi
c1...cj = ha

′
a hb1

b′1 . . . hbi
b′ihc1c′1 . . . h

cj
c′j
∇a′Tb′1...b′i

c′1...c
′
j (C.1)

where Tb1...bi
c1...cj is an arbitrary spacetime tensor. The spatial derivative of an arbitrary

vector field na can then be written as:

Danb = ha
chb

d∇cnd = (gb
d + nbn

d)ha
c∇cnd = ha

c∇cnb (C.2)

using the fact that nd∇cnd = 1/2∇c(ndnd) = (1/2)∇c(−1) = 0 because na is a unit vector

nana = −1.

There is nothing mysterious about C.2. It simply measures how the vector field na

changes from point to point as we move around the spatial manifold Σ. To help visualize

this one can think of an arbitrary configuration of the electric field E in three-dimensional

space 3Σ. For simplicity, if 3Σ is R3 and 2Σ ⊂ 3Σ is the surface z = 0, then the three-

dimensional derivative operator ∇ = (∂x, ∂y, ∂z) on R3 reduces to the two-dimensional

derivative D = (∂x, ∂y) on the xy plane. DaEb tells us how E changes as we move from

one point to another in 2Σ.

C.2 Extrinsic Curvature

The extrinsic curvature of a given manifold is a mathematical measure of the manner

in which it is embedded in a manifold of higher dimension. As illustrated in 8b, a two-

dimensional cylinder embedded in R3 has zero instrinsic curvature, but non-zero extrinsic

curvature. The normal at each point of the cylinder is a three-dimensional vector nb and

this vector changes as one moves around the cylindrical surface if the extrinsic curvature

of the surface is non-zero. Thus, the simplest definition for a tensorial quantity which

measures this change is given by:

kab = Danb = ha
chb

d∇cnd (C.3)

where Da is the covariant spatial derivative defined in C.1. This quantity turns out to

be symmetric. In order to see this ([61, Sec. 3.2.2.2]), note that given two spatial vector

fields Y a and Za, their commutator [Y, Z]a = Y b∇bZa − Zb∇bYa will also be spatial, i.e.

na[Y,Z]a = 0. This implies:

na[Y,Z]a = na(Y
b∇bZa−Zb∇bY a) = −ZaY b∇bna+ZbY a∇bna = Y aZb(∇bna−∇anb) = 0

using the fact that since naY
a = 0, na∇bY a = −Y a∇bna and similarly for the remaining

term. And since Y a, Za are purely spatial, this implies that (the spatial projection of)

∇anb = ∇bna.
Thus the extrinsic curvature of 3Σ can be written as:

kab =
1

2
(Danb +Dbna) (C.4)

– 68 –



C.3 Canonical Momentum in ADM Formulation

Recall that the time vector field is written in terms of the lapse N , shift Nµ and the normal

to the hypersurface nµ, so that tµ = Nnµ + Nµ (eq. (4.11)). We wish to write down the

explicit form of the Lie-derivative of a one-index Xa and two-index object hab, with respect

to a vector field va. Conveniently this is already present in equations (B.2)...(B.4)! As we

may expect, when a vector field is a sum of two (or more) vector fields (as for the time-

evolution field above), the Lie derivative with respect to that field decomposes into the sum

of Lie derivatives with respect to each of the components fields. So if Xa = ua + va + wa,

then £X [T ] = £u[T ] + £v[T ] + £w[T ], where T is the arbitrary tensor whose Lie derivative

we want to find. You can see this directly from eq. (B.1) by writing the field X as a sum

of other vector fields. When, T is a vector, then £XT = [X,T ] = [u, T ] + [v, T ] + [w, T ]

and so on ([A,B] is the commutator of two vector fields as in eq. (B.2)).

There are two steps involved in deriving the form of the canonical momentum. First

is to prove the identity (4.25). The second is to use that result to perform the functional

derivative of the Einstein-Hilbert Lagrangian LEH w.r.t. the ḣab to obtain eq. (4.26).

First, we wish to show that £~thab = 2Nkab + £ ~Nhab, which we can do by finding a

suitable expression for £~thµν , and then restricting the indices to the range µ, ν → a, b ∈
{1, 2, 3}. So, since tµ = Nnµ + Nµ, using the above mentioned additive property of Lie

derivatives, we have £~thµν = £N~nhµν + £ ~Nhµν . The second term is present unchanged in

eq. (4.25). Now it remains to be shown that 2Nkab = £N~nhab.

In the following we follow the treatment of [61, Sec. 3.2.2.2]. First we show that £~nhab =

2kab. Using the definition of the Lie derivative, we have:

£~nhab = nc∇chab + ha
c∇bnc + hb

c∇anc
= nc∇c(gab + nanb) + ha

c∇bnc + hb
c∇anc

= nc∇c(nanb) + (ga
c + nan

c)∇bnc + (gb
c + nbn

c)∇anc
= nc∇c(nanb) +∇bna +∇anb
= nan

c∇cnb + nbn
c∇cna + ga

c∇cnb + gb
c∇cna

= (ga
c + nan

c)∇cnb + (gb
c + nbn

c)∇cna
= ha

c∇cnb + hb
c∇cna

= Danb +Dbna = 2kab (C.5)

where in the second and third lines we have used the expression for the spatial metric in

terms of the four-metric and the unit normal to Σ. In the third line the term containing

nc∇anc is zero. In the third and fourth lines metric compatibility (∇agbc = 0) is used to

commute the 4-metric through the spacetime derivative. In the fifth line we have again

used metric compatibility to write ∇anb as ga
c∇cnb, etc. .

For the last step we have need which finally yields:

£~nhab = Danb +Dbna = 2kab (C.6)
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All this algebra is not necessary if one notes that the Lie derivative of a metric tensor

is given by B.4, which we restate for convenience:

£~nhab = ∇µnν +∇νnµ

Now, note that the above equation holds true only when the derivative operator ∇µ is

compatible (∇µhµν = 0) with the metric hab whose Lie derivative we wish to determine.

Hence we should use the correct notation D for the spatial derivative operator instead of

∇. Then we have:

£~nhab = Danb +Dbna = 2kab (C.7)

which, by definition C.4, is twice the extrinsic curvature of 3Σ. Given this expression we

proceed as follows:

2kab = £~nhab = nc∇chab + hac∇bnc + hbc∇anc

=
1

N
(Nnc∇chab +Nhac∇bnc +Nhbc∇anc)

=
1

N
(Nnc∇chab + hac∇b(Nnc) + hbc∇a(Nnc))

=
1

N
£~t− ~Nhab =

1

N

(
£~thab −£ ~Nhab

)
=

1

N
ha

chb
d
(
£~thcd −£ ~Nhcd

)
=

1

N

(
ḣab −DaNb −DbNa

)
(C.8)

where in the first line we have used C.4 alongwith the definition B.3 of the Lie derivative.

In the second we have multiplied & divided by the scale factor N . In the third we have

used the fact that nchac = 0 to move N inside the derivative operator. In going from

the third to the fourth, we have used the relationship between the lapse, shift and time-

evolution fields: Nna = ta−Na, followed by B.3 (in reverse) and then used the linearity of

the Lie derivative. In the fifth we have, in the words of Bojowald [61], “smuggled in” two

factors of h knowing that kab is spatial to begin with. In the sixth, the spatial projection

ha
chb

d£thcd = ḣab is identified as the “time-derivative” of the spatial metric. We leave the

remaining step (to show that ha
chb

d£ ~Nhcd = DaNb +DbNa ) as an exercise for the reader.

To summarize, we have:

kab =
1

2N

[
£~thab −D(aNb)

]
=

1

2N

[
ḣab −D(aNb)

]
(C.9)

Now, the Einstein-Hilbert Lagrangian is given by:

LEH = N
√
h
[

(3)R+ kabkab − k2
]

The first term does not contain any dependence on kab or Na and so its derivative w.r.t.

ḣab vanishes. For the remaining two terms we have:

δLEH

δḣef
= N
√
h

[
kab

δkab

δḣef
+ kab

δkab

δḣef
− 2k

δk

δḣef

]
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here k = habkab. k
ab can be written as hachackbd:

δLEH

δḣef
= N
√
h

[
kab

δkab

δḣef
+ kabh

achbd
δkcd

δḣef
− 2 k hab

δkab

δḣef

]
(C.10)

From (C.9) we have:
δkab

δḣef
=

1

2N
δeaδ

f
b (C.11)

Inserting this into the previous expression we have:

δLEH

δḣef
= N
√
h

[
kab

1

2N
δeaδ

f
b + kabh

achbd
1

2N
δecδ

f
d − 2 k hab

1

2N
δeaδ

f
b

]
=
√
h
[
kef − khef

]
= πef (C.12)

which is identical to (4.26) as desired.

D Duality

The notion of self-/anti-self-duality of the gauge field Fαβ is central to understanding both

the topological sector of Yang-Mills theory and the solutions of Einstein’s equations in the

connection formulation. As discussed in sec. 3.2, the use of multivectors and k-forms can

be very helpful for understanding duality. Let us review these concepts.

D.1 Multivectors and Differential Forms

A vector is a directed line segment with a magnitude which is interpreted as a length. One

way to form the product of two vectors u and v is the dot product u · v, which is a scalar

that is maximised when the vectors are parallel. We can also form the wedge product, u∧v,

which is a directed surface spanned by u and v (the direction being both an orientation

in space and a preferred direction of rotation around the boundary of the surface), with

a magnitude interpreted as the area of the surface. This area is called a bivector, and its

magnitude is maximised when u and v are perpendicular (and zero when they are parallel).

The wedge product of three non-coplanar vectors is a trivector, which is a parallelipiped

with a direction (a preferred directed path around the edges of the parallelipiped) and

a magnitude interpreted as its volume. The wedge product of k vectors (assuming they

are not parallel, coplanar, etc.) will in general be called a multivector, being an oriented

parallelipiped in k dimensions, with a magnitude given by its enclosed volume. A scalar

may be regarded as a 0-vector. We can define the Clifford product of multivectors as

uv = u · v + u ∧ v (D.1)

If u and v are ordinary vectors, then if u and v are perpendicular uv = u ∧ v since in

this case u · v = 0. Hence when dealing with orthonormal basis vectors we may adopt the

notation eiej = ei ∧ ej = eij , and likewise eiejek = ei ∧ ej ∧ ek = eijk, etc. Conversely if u

and v are parallel then uv = u · v since in this case u ∧ v = 0, hence eiei = ei · ei = 1.
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The importance of multivector quantities in physics can be seen if we consider the

case of four-dimensional Minkowski spacetime, where the scalar product is taken using

the metric ηµν . Hence e0e0 = −1, and e1e1 = e2e2 = e3e3 = +1. In this case the basis

vectors are isomorphic to the Dirac gamma matrices, γµ, and the reader can verify that

they satisfy {eµ, eν} = 2ηµν , the defining relation of the Dirac matrices (see eq. (A.1)).

Since this anticommutator is formed by taking Clifford products of the eµ, the gamma

matrices are said to generate a representation of a Clifford algebra.

Differential forms and multivectors can be seen to correspond closely. A bivector and

a 2-form both define a plane. A trivector and a 3-form both define a volume, etc. However

as mentioned in sec. 3.2, multivectors can be easier to visualise, as the magnitude of a

k-form is a density, while the magnitude of a multivector is a k-dimensional volume. It can

therefore often be easier to think of how the wedge products and duals of k-forms behave

by visualising them as multivectors.

Duality is a notion that emerges naturally from the construction of the space of multi-

vectors, and likewise from the construction of the space ⊕nk=0
nΛk of differential forms on a

n-dimensional manifold M . Let nΛk denote the subspace consisting only of forms of order

k in n dimensions e.g. in three dimensions the space of two-forms 3Λ2 is spanned by the

basis
{
dx1 ∧ dx2, dx2 ∧ dx3, dx3 ∧ dx1

}
where {x1, x2, x3} is some local coordinate patch -

i.e. a mapping from a portion of the given manifold to a region around the origin in R3.

Now one can show [62, 15] that nΛk = nΛn−k, i.e. the space of k-forms is the same

as the space of (n − k)-forms. Thus any k-form Fa1a2...ak , defined on an n dimensional

manifold, can be mapped to an (n− k)-form (?Fa1a2...an−k). This is accomplished with the

completely antisymmetric tensor εx1...xn on M :

(?F )a1...an−k =
1

(n− k)!
εa1...an−kan−k+1...anF

an−k+1...an (D.2)

This expression may appear daunting, but as suggested we can make its meaning

clearer by examining duality with multivectors. Consider the case of three dimensions.

The antisymmetry of the wedge product means that the unit trivector eijk = eiejek picks

up a factor of−1 each time the order of any two of its factors is swapped, hence eijk = −eikj ,
etc. and so the unit trivector is a geometrical representation of the antisymmetric tensor

εijk. Multiplying a vector by the unit trivector yields a bivector, and multiplying a bivector

by the unit trivector yields a vector (Figure 15). To see why, consider the familiar cross

product. Any two, non-degenerate, vectors a, b ∈ R3 span a two-dimensional subspace of

R3. Using these two vectors we construct a third vector c = a× b, where the components

of c are given by ci = εijka
jbk. This construction is taught to us in elementary algebra

courses, but never quite seemed to make complete sense because it seemed to be peculiar

to three-dimensions. The product a × b is a vector which is perpendicular to the plane

defined by the vectors a and b. But this plane is the same one that the wedge product a∧ b
lies in. If we take the Clifford product of a∧ b with the unit 3-vector, e1∧ e2∧ e3 = e123 we

are left with a vector that is perpendicular to the plane of a∧ b, and which equals −(a× b).
Why? Because the components of the vector (bivector) parallel with components of the

unit trivector yield scalars, leaving only the components perpendicular to a ∧ b, as we can
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Figure 15: The unit trivector e123 allows us to explore duality in three dimensions. When

we take the Clifford product, indicated here by (·+∧), of the unit trivector with a vector,

the part of e123 parallel to the vector yields a scalar factor via the dot product, and a

factor of zero via the wedge product part. This leaves us with a bivector perpendicular

to the original vector (left). Likewise the Clifford product of e123 with a bivector yields

a vector (right). In each case the bivector and vector are dual to each other, since each

spans the directions the other doesn’t. Duality is therefore an extension of the concept of

orthogonality. For a four-dimensional object, the dual would be taken with e1234, the dual

of a vector would be a trivector, and the dual of a bivector would be another bivector.

see by expanding the Clifford product in full

(e1 ∧ e2 ∧ e3)(a ∧ b) = (e123)((a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3))

= (e123)((a1b2 − a2b1)e12 + (a1b3 − a3b1)e13 + (a2b3 − a3b2)e23)

= (a1b2 − a2b1)e12312 + (a1b3 − a3b1)e12313 + (a2b3 − a3b2)e12323

= (a1b2 − a2b1)(−e3) + (a1b3 − a3b1)e2 + (a2b3 − a3b2)(−e1)

= −a× b (D.3)

where in the second-last line we have used ei ∧ ej = −ej ∧ ei to rearrange the basis vector

terms, so as to eliminate extra terms by using eiei = ei · ei = 1. We also find that the

wedge product of a and b has components (a ∧ b)ij = a[ibj].

This allows us to view the cross product as a three-dimensional special case of a

procedure that can be performed in any number of dimensions. This procedure is “forming

the dual”. We can say that the cross product of two vectors is the dual of the wedge product,

(a × b) = ?(a ∧ b). In the language of differential forms this procedure is described by

eq. (D.2), and utilises the antisymmetric tensor εa1a2...an . In the language of multivectors,

it involves taking the Clifford product with the unit multivector e1e2 . . . en = e12...n.

From now on we will speak of k-forms, rather than k-forms and/or multivectors. But

their equivalence, and the geometric interpretation arising from this, should be kept in

mind.

D.2 Spacetime Duality

From the discussion in sec. D.1, it should be obvious that in four dimensions the dual of

any two-form is another two-form

?Fαβ =
1

2
εαβ

µνFµν (D.4)

(compare this with eq. (3.22), and as noted there, the quantity defined on the plane between

any pair of spacetime axes is associated to the quantity defined on the plane between the
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other two spacetime axes). It is due to this property of even-dimensional manifolds that

we can define self-dual and anti-self-dual k-forms, where a form is self-/anti-self-dual if:

?F = ±F (D.5)

Given an arbitrary 2-form Gµν its self-dual part G+ and anti-self-dual part G− are

given by

G+ =
G+ ?G

2α
G− =

G− ?G
2β

where α and β are constants we have introduced for later convenience. We can check that

? (G± ?G) = ±(G± ?G) (D.6)

because ?? = 1 in a Euclidean background. In other words ?G+ = G+ and ?G− = −G−,

which is precisely the definition of (anti-)self-duality. Thus any 2-form can always be

written as a linear-sum of a self-dual and an anti-self-dual piece

G = αG+ + βG− ? G = αG+ − βG−

The above results hold for a Euclidean spacetime. For a Lorentzian background we

would instead have ?? = −1 and the dual of a two-form is given by:

? Fαβ =
i

2
εαβ

γδFγδ (D.7)

and the statement of (anti-)self-duality becomes

? F = ±iF (D.8)

with the self-dual and anti-self-dual pieces of a two-form G given by G+ = (G + ?iG)/2α

and G− = (G− ?iG)/2β

D.3 Lie-algebra duality

The previous section discussed self-duality in the context of tensors with spacetime indices

Tαβ...γδ.... In gauge theories based on non-trivial Lie-algebras we also have tensors with

lie-algebra indices, such as the curvature Fµν
IJ of the gauge connection Aµ

IJ where I, J

label generators of the relevant Lie algebra.. The dual of the connection can then be defined

using the completely antisymmetric tensor acting on the Lie algebra indices, as in:

? Aµ
IJ =

1

2
εIJKLAµ

KL (D.9)

D.4 Yang-Mills

Let us illustrate the utility of the notion of self-duality by examining the classical Yang-

Mills action:

SYM =

∫
R4

Tr [F ∧ ?F ]
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Varying this action with respect to the connection gives us the equations of motion:

dF = 0 ; d ? F = 0

which are satisfied if F = ± ? F , i.e. if the gauge curvature is self-dual or anti-self-dual.

Thus for self-/anti-self-dual solutions the Yang-Mills action reduces to:

S±YM = ±
∫
R4

Tr [F ∧ F ]

which is a topological invariant of the given manifold and is known as the Pontryagin index.

Here the ± superscript on the r.h.s. denotes whether the field is self-dual or anti-self-dual.

D.5 Geometrical interpretation

Given any (Lie-algebra valued) two-form F Iab (where I, J,K . . . are Lie-algebra indices) we

can obtain an element of the Lie-algebra by contracting it with a member of the basis of the

space of two-forms: {dxi ∧ dxj} where xi denotes the ith vector and not the components

of a vector. The components are suppressed in the differential form notation as explained

in the preceding sections. The resulting lie-algebra element is

ΦI = F Iab dx
a ∧ dxb

and ΦI is the flux of the field strength through the two-dimensional surface spanned by

{dxa, dxb}.
We can also define

?ΦI = ?F Iab dx
a ∧ dxb =

1

2
εab

cdF I cd dx
a ∧ dxb

which implies that ?ΦI
ab = 1

2εab
cdΦI

cd, i.e. the flux of the field strength through the ab

plane is equal to the flux of the dual field through the cd plane.

D.6 (Anti) Self-dual connections

When we say that the connection is (anti-)self-dual, explicitly this means that

AIJµ = ± ? AµIJ = ± i
2
εIJKLAµ

KL (D.10)

Let us now show the relation between the (anti-)self-dual four-dimensional connection and

its restriction to the spatial hypersurface Σ. We begin by writing the full connection in

terms of the generators {γI} of the Lorentz lie-algebra: ±A := AIJµ γIγJ and expanding

the sum (see [50, Section 2] and A.1):

AIJµ γIγJ = Ai0µ γiγ0 +A0i
µ γ0γi +Aijµ γiγj

= 2A0i
µ γ0γi +Aijµ γiγj

= 2A0i
µ

(
σi 0

0 −σi

)
+ iAjkµ ε

ijk

(
σi 0

0 σi

)
(D.11)
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In the second line we have used the fact that AIJµ is antisymmetric in the internal indices

and that the gamma matrices anticommute. In the third we have used the expressions

for the gamma matrices given in Appendix A.1 to expand out the matrix products. This

allows us to write the last line in the above expression in the form

A = AIJµ γIγJ = 2i

(
Ai+µ σi 0

0 Ai−µ σi

)
(D.12)

where:

Ai+µ =
1

2
εijkAjkµ − iA0i

µ (D.13a)

Ai−µ =
1

2
εijkAjkµ + iA0i

µ (D.13b)

For I = 0, J ∈ {1, 2, 3}, using the definition of the dual connection, we find that

Aµ
0i =

i

2
ε0ijkAµ

jk

and so we may rewrite these expressions as

Ai+µ =
1

2

(
εijk + ε0ijk

)
Ajkµ (D.14a)

Ai−µ =
1

2

(
εijk − ε0ijk

)
Ajkµ (D.14b)

E Path Ordered Exponential

From eq. (3.26) we see that the effect of a holonomy of a connection along a path λ (for

either an open or closed path) in a manifold M is defined as

ψ|(τ=1) = P
{
e
∫
λ igdτ

′Aµnµ
}
ψ|(τ=0) = Uλ ψ|(τ=0) (E.1)

The exponential can be formally expressed in terms of a Taylor series expansion:

e−
∫
γ dτ

′Aµnµ = 1 +

∞∑
n=1

1

n!

{∫ σ1

σ0=0

∫ σ2

0
. . .

∫ σn=1

0
dτ1dτ2 . . . dτn A(σn)A(σn−1) . . . A(σ1)

}
(E.2)

where for the nth term in the sum, the path λ is broken up into n intervals parametrized

by the variables {τ1, τ2, . . . , τn} over which the integrals are performed. The path ordering

enforces the condition that the effect of traversing each interval is applied the order that

the intervals occur. The interested reader is referred to pgs. 66 - 68 of [63].

F Peter-Weyl Theorem

The crucial step involved in going from graph states with edges labelled by holonomies to

graph states with edge labelled by group representations (angular momenta) is the Peter-

Weyl theorem . This theorem allows the generalization of the notion of Fourier transforms

to functions defined on a group manifold for compact, semi-simple Lie groups.

Given a group G, let Dj(g)mn be the matrix representation of any group element g ∈ G.

Then we have (see Chapter 8 of [64]):
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Theorem F.1. The irreducible represenation matrices Dj(g) for the group SU(2) satisfy

the following orthonormality condition∫
dµ(g)D†j(g)mnD

j′(g)n
′
m′ =

nG
nj
δj
′
jδ
n′
nδ
m′
m (F.1)

Here nj is the dimensionality of the jth representation of G and nG is the order of the

group. For a finite group this is simply the number of elements of the group. For example,

for Z2, nG = 2. However a continuous or Lie group such as SU(2) has an uncountable

infinity of group elements. In such cases nG corresponds to the “volume” of the group

manifold.

This property allows us to decompose any square-integrable function f(g) : G → C in

terms of its components with respect to the matrix coefficients of the group representations:

Theorem F.2. The irreducible representation functions Dj(g)mn form a complete basis

of (Lebesgue) square-integrable functions defined on the group manifold.

Any such function f(g) can then be expanded as

f(g) =
∑
j;mn

fj
mnDj(g)mn (F.2)

where fj
mn are constants which can be determined by inserting the above expression for

f(g) in F.1 and integrating over the group manifold. Thus we obtain∫
dµ(g)f(g)D†j(g)mn =

∑
j′;m′n′

∫
dµ(g)fj′

m′n′Dj′(g)m′n′D
†
j(g)mn

=
∑

j′;m′n′

fj′
m′n′ nG

nj
δj
′
jδ
n′
nδ
m′
m (F.3)

which gives us

fj
mn =

√
nj
nG

∫
dµ(g)f(g)D†j(g)mn (F.4)

G Square-Free Numbers

According to the fundamental theorem of arithmetic, any integer d ∈ Z, has a unique

factorization in term of prime numbers:

d =
N∏
i=1

pmii

where {p1, p2, . . . , pN} are the N prime-numbers which divide d, one or more times. mi is

the number of times the prime number pi occurs in the factorization of d. Thus, we have:

√
d =

N∏
i=1

p
mi/2
i
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We can partition the set {mi} into two sets containing only the even or odd elements

respectively

{mi} ≡ {me
j} ∪ {mo

k}

where j ∈ 1 . . . ne, k ∈ 1 . . . no, and ne + no = N . This gives:

√
d =

(
ne∏
i=1

p
mei
2
i

) no∏
j=1

p
moj
2
j


Since each of the me

i = 2aei and mo
j = 2bj + 1, for some ai, bj ∈ Z, we have:

√
d =

(
ne∏
i=1

p
aei
i

) no∏
j=1

p
moj
j

√√√√ no∏
k=1

pk = A
√
B

It is evident that since the third term in the product has no repeating elements, its square-

root
√
B cannot be an integer (i.e. the presence of repeating elements would lead to an

expression like
√
X ·X). Such an integer B, in therefore known as a square-free integer.

Thus any integer d can be written as the product of a square-free integer (B) and another

(non square-free) integer C = A2 such that d = C ×B.

H Brahmagupta-Pell Equation

Around the 7th century A.D. the Indian mathematician Brahmagupta, demonstrated the

Brahmagupta-Fibonacci Identity,

(a2 + nb2)(c2 + nd2) = (ac)2 + n2(bd)2 + n[(ad)2 + (bc)2] + 2acbdn− 2acbdn (H.1)

= (ac+ nbd)2 + n(ad− bc)2 (H.2)

where we have added and subtracted 2acbdn from the l.h.s. on the first line. The above goes

through for all n ∈ Z. Given any pair of triples of the form (xi, yi, ki), where i = 1, 2, which

are solutions of the Diophantine equation x2
i − ny2

i = k2
i , we can construct a third triple

(x3, y3, k3), which is also a solution of the same equation, by applying the Brahmagupta-

Fibonacci identity to the first two pairs

(x2
1 − ny2

1)(x2
2 − ny2

2) = (x1x2 − ny1y2)2 − n(x1y2 − x2y1)2 (H.3)

which tells us that x3 = x1x2 − ny1y2, y3 = x1y2 − x2y1 and k3 = k1k2. One can easily

check that the triple {x3, y3, k3} is also a solution of the Diophantine equation.

When we apply the restriction that ki = 1, the Diophantine equation x2
i − ny2

i = k2
i

reduces to the Brahmagupta-Pell equation,

x2
i − ny2

i = 1

and given two pairs of solutions {(xi, yi), (xj , yj)} to the BP equation (for the same fixed

value of n), we can generate a third solution given by (xk, yk) = ((xixj − nyiyj), (xiyj −
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xjyi)). More generally given any solution (x0, y0;n) to the BP equation, one can generate

an infinite set of solutions (xi, yi;n) by repeatedly applying the BF identity to the starting

solution

(x1, y1) = (x0, y0)2

(x2, y2) = (x0, y0)(x1, y1)

...

(xn, yn) = (x0, y0)(xn−1, yn−1) (H.4)

Here, the pair (x0, y0;n) is referred to as the fundamental solution.

H.1 Quadratic Integers and the BP Equation

We are familiar with solutions of equations of the form

x2 +Bx+ c = 0

This is the quadratic equation from beginning algebra courses, which has as solutions

x± =
−B ±

√
B2 − 4c

2

when the discriminant B2 − 4c is negative, the roots of the equation are imaginary or

complex numbers

x± =
−B ± id

2
∈ C

where d = |B2 − 4c| and i =
√
−1. When {B, c} ∈ Z, the solutions of the quadratic

equations can be characterized as elements of the field of quadratic integers Q(
√
d), which

is an extension of the familiar field of rational numbers Q. Such numbers have the form

z = a+ ωb

where {a, b} ∈ Z, ω =
√
d if d mod 4 ≡ 2, 3 and ω = 1+

√
D

2 otherwise (if d mod 4 ≡ 1).

d ∈ A, where A is the set of square-free integers.

It is at this point that one makes a connection to the square-free quadratic extension

of the field of rationals Q(
√
n) and its integral subset Z(

√
n), by noting that any solution

(xi, yi;n) of the BP equation can be represented as a quadratic integer:

(xi, yi;n)⇒ zni = xi + yi
√
n ∈ Z(

√
n)

The consistency of this representation is enforced by the fact that the multiplication law

for two quadratic integers zi, zj ∈ Z(
√
n) is the same condition satisfied when multiplying

two pairs of solutions of the BP equation to obtain a third pair, i.e. , if zi = xi+yi
√
n and

zj = xj + yj
√
n are two members of Z(

√
n), then their product zk = zi × zj = xk + yk

√
n

is given by:

xk = xixj + nyiyj (H.5)

yk = xiyj + xjyi (H.6)

which is identical to the multiplication law satisfied by pairs of solutions of the BP equation.
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I Kodama State

The Kodama state is an exact solution of the Hamiltonian constraint for LQG with positive

cosmological constant Λ > 0 and hence is of great importance for the theory. It is given by

ΨK(A) = N e
∫
SCS (I.1)

where N is a normalization constant. The action SCS [A] is the Chern-Simons action for

the connection AIµ on the spatial 3-manifold M , given by

SCS =
2

3Λ

∫
YCS

where

YCS =
1

2
Tr

[
A ∧ dA+

2

3
A ∧A ∧A

]
with dA ' ∂[µA

I
ν] being the exterior derivative. Consistent with our discussion of bivectors

and k-forms in sec. D.1 the wedge product ∧ between two 1-forms P and Q is:

P ∧Q ' P[aQb]

For identical one-forms the wedge product gives zero. That is why for the Chern-

Simons action to have a non-zero cubic term the connection must be non-abelian. Let us

write the various terms in the Chern-Simons density explicitly;

A ∧ dA ≡ Ai[p∂qA
j
r]TiTj A ∧A ∧A ≡ Ai[pA

j
qA

k
r]TiTjTk

where p, q, r . . . are worldvolume (“spacetime”) indices, i, j, k . . . are worldsheet (“internal”)

indices and Ti are the basis vectors of the lie-algebra/internal space.

Taking the trace over these terms gives us

YCS =
1

2
Tr

[
Ai[p∂qA

j
r]TiTj +

2

3
Ai[pA

j
qA

k
r]TiTjTk

]
The trace over the lie-algebra elements gives us:

Tr [TiTj ] = δij Tr [TiTjTk] = fijk

where fijk are the structure constants of the gauge group.

J 3j-symbols

The Wigner 3j-symbol is related to the Clebsch-Gordan coefficients through:(
j1 j2 j3
m1 m2 m3

)
≡ (−1)j1−j2−m3

√
2j3 + 1

〈j1,m1; j2,m2|j3,m3〉

where the (ji,mi) are the orbital and magnetic quantum numbers of the ith particle.

| j1,m1; j2,m2〉 is the state representing two particles (or systems) each with their separate
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angular momentum numbers. | j3,m3〉 represents the total angular momentum of the

system. Classically we have two systems with angular momentum ~L1 and ~L2, then the

angular momentum of the combined system is: ~L3 = ~L1 + ~L2.

In quantum mechanics, however, the angular momentum of the composite system can

be any one of a set of possible allowed choices. Whether or not the angular momentum

of the composite system can be specified by quantum numbers j3,m3 is determined by

whether or not the Clebsch-Gordan coefficient is non-zero.

K Regge Calculus

Regge showed in 1961 that one could obtain the continuum action of general relativity

“in 2+1 dimensions” from a discrete version thereof given by decomposing the spacetime

manifold into a collection of tetrahedral simplices [65, 66]. When many such tetrahedra

are joined together, curvature of the resulting discrete manifold is represented by positive

or negative deficit angles (for instance, a plane 2D surface can be tiled with equilateral

triangles, with six such triangles meeting at each vertex. If one attempted to increase the

number of degrees round a given vertex by fitting a seventh triangle in, the only way it

could be accommodated would be by curving the resulting surface).

Si =

6∑
a=1

li,aθi,a (K.1)

is the Regge action for the ith tetrahedron. Here the sum over a is the sum over the edges

of the tetrahedron. li,a and θi,a are the length of the edge and the dihedral deficit angle,

respectively, around the ath edge of the ith tetrahedron.

The Regge action for a manifold built up by gluing such simplices together is simply

the sum of the above expression over all N simplices

SRegge =
N∑
i=1

Si

It was later shown by Ponzano and Regge [67] that in the ji � 1 limit, the 6-j symbol

corresponds to the cosine of the Regge action [68]{
j1 j2 j3
j4 j5 j6

}
∼ 1

12πV
cos

(∑
i

jiθi +
π

4

)
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