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Quanta of Geometry
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In the construction of spectral manifolds in noncommutative geometry, a higher degree Heisenberg
commutation relation involving the Dirac operator and the Feynman slash of real scalar fields
naturally appears and implies, by equality with the index formula, the quantization of the volume.
We first show that this condition implies that the manifold decomposes into disconnected spheres
which will represent quanta of geometry. We then refine the condition by involving the real structure
and two types of geometric quanta, and show that connected manifolds with large quantized volume
are then obtained as solutions. When this condition is adopted in the gravitational action it leads
to the quantization of the four volume with the cosmological constant obtained as an integration
constant. Restricting the condition to a three dimensional hypersurface implies quantization of
the three volume and the possible appearance of mimetic dark matter. When restricting to a two
dimensional hypersurface, under appropriate boundary conditions, this results in the quantization
of area and has many interesting applications to black hole physics.

PACS numbers: 02.40.Gh,02.40.Ky,04.60.-m,04.70.-s

Introduction.—In noncommutative geometry a geo-
metric space is encoded by a spectral triple (A,H, D)
where the algebra A is the algebra of functions which
interacts with the inverse line element D by acting in
the same Hilbert space H, where D is an unbounded
self-adjoint operator. There is, in the even case, an addi-
tional decoration given by the chirality operator γ = γ∗,
γ2 = 1, Dγ = −γD [1]. For a compact spin Riemannian
manifold M the algebra A is the algebra of functions on
M , the Hilbert space H is the Hilbert space of L2-spinors
and the operator D is the Dirac operator. This oper-
ator theoretic data encodes not only the geometry (the
Riemannian metric) but also the K-homology fundamen-
tal class of M which is represented by the K-homology
class of the spectral triple. Among the operator theoretic
properties fulfilled by the special spectral triples coming
from Riemannian geometries, one of them called the ori-
entability condition asserts that, in the even dimensional
case, one can recover the chirality operator γ as an ex-
pression of the form

γ =
∑

a0[D, a1] · · · [D, an], (1)

where the aj ∈ A and the formal expression is a totally
antisymmetric Hochschild cycle that represents the (ori-
ented) volume form dv of the manifold [2]. Our goal in
this letter is to study a quantized form of the orientabil-
ity condition. It was observed in [2] that in the particular
case of even spheres the trace of the Chern character of
an idempotent e, i.e. e2 = e, leads to a remarkably sim-
ple operator theoretic equation which takes the form (up
to a normalization factor 1

2n/2n!
)

〈Y [D,Y ] · · · [D,Y ]〉 =
√
κ γ (n terms [D,Y ]) (2)

Here κ = ±1 and Cκ ⊂ Ms(C), s = 2n/2, is the Clifford
algebra on n+ 1 gamma matrices Γa, 0 ≤ a ≤ n[12]

Γa ∈ Cκ,
{

Γa,Γb
}

= 2κ δab, (Γa)∗ = κΓa

We let Y ∈ A ⊗ Cκ be of the Feynman slashed form
Y = Y aΓa, and fulfill the equations

Y 2 = κ, Y ∗ = κY (3)

When we write [D,Y ] in (2), we mean [D⊗1, Y ]. Finally
〈〉 applied to a matrix Ms of operators is its trace.
Note that here the components Y a ∈ A but it is true

in general that (3) implies that the components Y a are
self-adjoint commuting operators.
As shown in [2] for even n, equation (2), together

with the hypothesis that the eigenvalues of D grow as
in dimension n, imply that the volume, expressed as
the leading term in the Weyl asymptotic formula for
counting eigenvalues of the operator D, is “quantized”
by being equal to the index pairing of the operator D
with the K-theory class of A defined by the projection
e = (1 +

√
κY )/2.

In this letter we shall take equation (2), and its two
sided refinement (4) below using the real structure, as a
geometric analogue of the Heisenberg commutation rela-
tions [p, q] = i~ where D plays the role of p (momentum)
and Y the role of q (coordinate) and use it as a start-
ing point of quantization of geometry with quanta cor-
responding to irreducible representations of the operator
relations. The above integrality result on the volume is
a hint of quantization of geometry. We first use the one-
sided (2) as the equations of motion of some field theory
on M and describe the solutions as follows. (For details
and proofs see [3]).
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Theorem 1 Let M be a spin Riemannian manifold of
even dimension n and (A,H, D) the associated spectral
triple. Then a solution of the one-sided equation exists
if and only if M breaks as the disjoint sum of spheres
of unit volume. On each of these irreducible components
the unit volume condition is the only constraint on the
Riemannian metric which is otherwise arbitrary for each
component.

Each geometric quantum is a sphere of arbitrary shape
and unit volume (in Planck units).
It would seem at this point that only disconnected ge-

ometries fit in this framework but this is ignoring an es-
sential piece of structure of the NCG framework, which
allows one to refine (2). It is the real structure J , an
antilinear isometry in the Hilbert space H which is the
algebraic counterpart of charge conjugation. This leads
to refine the quantization condition by taking J into ac-
count as the two-sided equation[13]

〈Z [D,Z] · · · [D,Z]〉 = γ Z = 2EJEJ−1 − 1, (4)

where E is the spectral projection for {1, i} ⊂ C of the
double slash Y = Y+ ⊕ Y− ∈ C∞(M,C+ ⊕C−). It is the
classification of finite geometries of [4] which suggested to
use the direct sum C+ ⊕C− of two Clifford algebras and
the algebra C∞(M,C+ ⊕ C−). It turns out moreover
that in dimension 4 one has C+ = M2(H) and C− =
M4(C) which is in perfect agreement with the algebraic
constituents of the Standard Model. One now gets two
maps Y± : M → Sn while, for n = 2, 4, (4) becomes,

det
(

eaµ
)

= Ω+ +Ω−. (5)

with Ω± the Jacobian of Y± (the pullback of the volume
form of the sphere).
In the next theorem the algebraic relations between

Y±, D, J , C±, γ are assumed to hold.

Theorem 2 Let n = 2 or n = 4.
(i) In any operator representation of the two sided

equation (4) in which the spectrum of D grows as in
dimension n the volume (the leading term of the Weyl
asymptotic formula) is quantized.
(ii) Let M be a compact oriented spin Riemannian

manifold of dimension n. Then a solution of (5) exists
if and only if the volume of M is quantized to belong to
the invariant qM ⊂ Z defined as the subset of Z

qM = {deg(φ+) + deg(φ−) | φ± : M → Sn,

|φ+|(x) + |φ−|(x) 6= 0, ∀x ∈ M, (6)

where deg is the topological degree of the smooth maps
and |φ|(x) is the Jacobian of φ at x ∈ M .

The invariant qM makes sense in any dimension. For
n = 2, 3, and any M , it contains all sufficiently large
integers. The case n = 4 is more difficult but for our

purposes it will suffice to know that qM contains arbi-
trarily large numbers in the two relevant cases M = S4

and M = S3 × S1.

Quantization of four-volume.—We now specialize to a
four dimensional Euclidian manifold and for simplicity
consider only one set of maps, as this does not effect the
analysis, and write

Y = Y AΓA, A = 1, 2, ..., 5, (7)

where Y A are real and ΓA are the Hermitian gamma
matrices satisfying

{

ΓA,ΓB
}

= 2δAB. The condition
Y 2 = 1 implies

Y AY A = 1, (8)

thus defining the coordinates on the sphere S4. Notice
that Y A are functions on the Euclidian manifold M4

which depend on the coordinates xµ. The Dirac operator
on M4 is

D = γµ

(

∂

∂xµ
+ ωµ

)

, (9)

where γµ = eµaγ
a and γ1γ2γ3γ4 = γ, and ωµ is the con-

nection, so that [D,Y ] = γµ ∂Y A

∂xµ ΓA. Using the properties
of gamma matrices one can check that the condition (2)
reduces to

det
(

eaµ
)

=
1

4!
ǫµνκλǫABCDEY

A∂µY
B∂νY

C∂κY
D∂λY

E .

(10)
Integrating over the volume of the manifold we find that

V =
∫

1
4! ǫ

µνκλǫABCDEY
A∂µY

B∂νY
C∂κY

D∂λY
Ed4x

=

∫

det
(

eaµ
)

d4x = 8π2

3 n.

(11)
By Theorem 1 this number n is the number of compo-
nents when using the one-sided equation (2) but using (4)
one gets the sum of the degrees of the maps Y± : M → Sn

[5]. Thus, we conclude that in noncommutative geome-
try the volume of the compact manifold is quantized in
terms of Planck units. This solves a basic difficulty of the
spectral action [1] whose huge cosmological term is now
quantized and no longer contributes to the field equa-
tions.

Gravitational action and cosmological constant.—Let
us study consequences of the four volume quantization for
Einstein gravity. For simplicity we shall utilize one set of
maps Y A (x) since most of the details of what follows do
not change when two sets Y A

± (x) are used instead. First
we consider Euclidian compact spacetime and implement
the kinematic constraints (8) and (10) in the action for
gravity through Lagrange multipliers. This action then
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becomes

I = −1

2

∫

d4x
√
gR +

1

2

∫

d4x
√
gλ′

(

Y AY A − 1
)

+

∫

d4x
λ

2

(√
g − ǫµνκλ

4!
ǫABCDEY

A∂µY
B∂νY

C∂κY
D∂λY

E

)

,

(12)

where 8πG = 1. Notice that the last term is a four-
form and represents the volume element of a unit
four-sphere and can be written in differential forms
as - 1

4!
λ
8Tr (Y dY ∧ dY ∧ dY ∧ dY ) and is independent of

variation of the metric. Taking into account the con-
straints (8) and (10), variation of the action with respect
to the metric gives

Gµν +
1

2
gµνλ = 0, (13)

whereGµν = Rµν− 1
2Rgµν is the Einstein tensor. Tracing

this equation gives

λ = −1

2
G, (14)

and as a result equations for the gravitational field be-
come traceless

Gµν − 1

4
gµνG = 0. (15)

Using the Bianchi identity these equations imply that
∂µG = 0, and hence

G = 4Λ, (16)

where Λ is the cosmological constant arising as a constant
of integration (compare to [6]). Variation of the action
with respect to Y A does not lead to any new equations
because the last term in equation (12) is a topological
invariant if Y AY A = 1.
One immediate application is that, in the path inte-

gration formulation of gravity, and in light of having only
the traceless Einstein equation (15), integration over the
scale factor is now replaced by a sum of the winding num-
bers with an appropriate weight factor. We note that for
the present universe, the winding number equal to the
number of Planck quanta is of the order of 1061 [7]
Three-volume quantization and mimetic matter.—In

reality spacetime is Lorentzian and generically has one
noncompact dimension corresponding to time. There-
fore, the condition for the volume quantization is literally
non-applicable there. However being implemented in the
Euclidian action it leads nevertheless to the appearance
of the cosmological constant as an integration constant
even in the Lorentzian spacetime. To show this let us
first make a Wick rotation and then decompactify M4 to
R×S3. With this purpose we set Y 5 = ηX and one of
the coordinates x4 = ηt and take the limit η → 0. In this

limit equation (8) becomes Y aY a = 1, a = 1, · · · , 4,
and the constraint (10) turns to

√
g = lim

η→0

(

1

4!
κ4ǫµνκλǫABCDEY

A∂µY
B∂νY

C∂κY
D∂λY

E

)

=
1

3!
ǫµνκλǫabcd (∂µX)Y a∂νY

b∂κY
c∂λY

d. (17)

The Lorentzian action for the gravity is

I = −1

2

∫

d4x
√−gR+

1

2

∫

d4x
√−gλ′ (Y aY a − 1)

+

∫

d4x
λ

2

(√−g − 1

3!
ǫµνκλǫabcd (∂µX)Y a∂νY

b∂κY
c∂λY

d

)

.

(18)
The equations of motion in this case are the same as be-
fore and the cosmological constant arises as a constant
of integration. The variable X in (18) is a priori unre-
stricted. We will show now that the requirement of the
volume quantization of S3 in the mapping M4 → R×S3

leads to the following normalization condition for this
variable,

gµν∂µX∂νX = 1. (19)

Let us consider the 3 + 1 splitting of space-time, so that

ds2 = hij

(

dxi +N idt
) (

dxj +N jdt
)

−N2dt2 (20)

whereN
(

xi, t
)

andN i
(

xi, t
)

are the lapse and shift func-
tions respectively and

√−g = N
√
h. (21)

Considering a compact hypersurfaces Σ defined by the
condition t = const and taking

∂iX = 0, ∂tX = N, (22)

which satisfy (19) we have (for details see [3])

(

N
√
h
)

Σ
=

1

3!
N

(

ǫijkY a∂iY
b∂jY

c∂kY
dǫabcd

)

, (23)

and therefore
∫

Σ

√
hd3x = n(

4

3
π2), (24)

where n is the winding number for the mapping Σ → S3.
Thus we have shown that (19) implies quantization of
the volume of compact 3d hypersurfaces in 4d spacetime.
This condition can be understood as a restriction of the
maps Y A (x) along directions orthogonal to the hyper-
surface Σ, to be length preserving. To incorporate this
condition in the action (18) we add to it the term

+

∫

d4x
√−gλ′′ (gµν∂µX∂νX − 1) (25)
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which corresponds to mimetic dark matter [10],[11].
Thus the resulting action describes both dark matter and
dark energy. Both substances arise automatically when
the kinematic 4d and 3d compact volume quantization in
noncommutative geometry is incorporated in the gravity
action. We note that the same field X could be used
when we consider two different set of maps Y A

+ (x) and
Y A (x) from Σ to S3.
Area quantization and black holes.—We can determine

the conditions under which the area of any compact 2d
submanifold of the 4d manifold must also be quantized.
One can show (see ([3] for details) that by writing Y 4 =
ηX1, Y 5 = ηX2 and rescaling the coordinates transverse
to the 2d hypersurface Σ as xα → ηxα, we get

√

(2)g = det (eai ) =
1

2!
ǫijǫABCY

A∂iY
B∂jY

C , (26)

provided that the area preserving condition on the hy-
persurface

det
(

gµν∂µX
a∂νX

b
)

|Σ = 1, (27)

is satisfied, where A, ... = 1, 2, 3 and xi are coordinates on
the hypersurface . Hence, the area of a two dimensional
manifold is quantized

S =

∫

√

(2)gd2x

=

∫

1

2!
ǫµνǫABCY

A∂µY
B∂νY

Cd2x = 4πn, (28)

where n is the winding number for the mapping of
two-dimensional manifold to the sphere S2, defined by
Y AY A = 1.
This can have far-reaching consequences for black holes

and de Sitter space. In particular, the area of the black
hole horizon must be quantized in integers of the Planck
area (see also [8]). Because the area of a black hole of
mass M is equal to

A = 16πM2, (29)

this implies mass quantization

Mn =

√
n

2
(30)

As it was shown in [9] Hawking radiation in this case can
be considered as a result of quantum transitions from
the level n to the nearby levels n− 1, n− 2, ... As a result
even for large black holes Hawking radiation is emitted in
discrete lines and the spectrum with the thermal envelope
is not continuous. The distance between the nearby lines
for large black holes is of order

ω = Mn −Mn−1 ≃ 1

4
√
n
=

1

8M
, (31)

and proportional to Hawking temperature, while the
width of the line is expected to be at least ten times less

than the distance between the lines [9]. Note that taking
the minimal area to be α larger than the Planck area
changes the distance between the lines by a factor α2.
Thus area quantization can be experimentally verified if
evaporating black hole will be discovered.

Applying the same reasoning to the event horizon in
de Sitter universe we find that the cosmological constant
in this case must be quantized as

Λn =
3

n
. (32)

It is likely that this quantization can have drastic con-
sequences for the inflationary universe, in particular, in
the regime of self-reproduction.
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