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Gravitation in terms of observables
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In the 1960’s, Mandelstam proposed a new approach to gauge theories and gravity

based on loops. The program for gauge theories was completed for Yang–Mills

theories by Gambini and Trias in the 1980’s. Gauge theories could be understood as

representations of certain group: the group of loops. The same formalism could not

be implemented at that time for the gravitational case. Here we would like to propose

an extension to the case of gravity. The resulting theory is described in terms of loops

and open paths and can provide the underpinning for a new quantum representation

for gravity distinct from the one used in loop quantum gravity or string theory. In it,

space-time points are emergent entities that would only have quasi-classical status.

The formulation may be given entirely in terms of Dirac observables that form a

complete set of gauge invariant functions that completely define the Riemannian

geometry of the spacetime. At the quantum level this formulation will lead to a

reduced phase space quantization free of any constraints.

I. INTRODUCTION

There exists a renewed interest in the description in terms of observables of gauge theo-
ries and gravity. Recently, Giddings and Donnelly [1] proposed explicit constructions that
extend the observables associated to gauge theories to the case of gravitation for weak fields.
They note that an important feature of the resulting quantum theory of gravity is the al-
gebra of observables, that becomes non-local. Observable-based techniques are also used in
several modern developments attempting to extract information from quantum gauge the-
ories [2]. The most ambitious attempt to describe gravity intrinsically without coordinates
was proposed by Mandelstam in the 1960’s [3]. The approach did not flourish because the
intrinsic description loses completely the notion of space-time point, and becomes difficult
to recover it even classically. Paths that end in the same physical point in this description
cannot be easily recognized. In the 1980’s Gambini and Trias [4] showed that gauge theories
arise as representations of the group of loops in certain Lie groups. The complete geomet-
ric structure of gauge theories can be recovered from identities obeyed by the infinitesimal
generators of the group of loops. The possibility of extending this description to the grav-
itational case did not appear possible due to the issues we mentioned with Mandelstam’s
approach. In this paper we will show how to extend the notion of the group of loops and
its representations which arise in gauge theories to the gravitational case. This leads to a
complete classical description of gravitation without coordinates. The metric is everywhere
referred to local frames parallel transported starting from a given point. In such frames it
takes the Minkowskian form. The geometrical content of the theory is completely recovered
by relations between reference frames obtained by parallel transport along paths that differ
by an infinitesimal loop and is given by the Riemann tensor. Although the construction is
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based on loops, it differs from the one underlying the usual loop representation of gauge
theories and gravity. In the loop representation the objects constructed are gauge invariant
whereas in the present construction the objects are both gauge invariant and space-time
diffeomorphism invariant. That is, the objects are Dirac observables. This leads to a theory
that does not involve diffeomorphisms and may allow to bypass at the quantum level the
LOST-F [5] theorem that leads to a discrete structure in the Hilbert space of ordinary loop
quantum gravity and conflicts with the differentiability of the group of loops. The latter is
crucial to recover the kinematics of gauge theories and gravity in this context.

The organization of this paper is as follows: In section II we make a brief review of
the group of loops on differential manifolds. In section III we introduce gauge theories as
representations of the group of loops. In section IV we recall the Mandelstam approach, in
terms of intrinsic paths, to gravity and discuss some of its problems. In section V we extend
the loop techniques to intrinsic paths. In section VI we show that an intrinsic description of
gravity arises as a representation of the group of loops in the Lorentz group. In section VII
we establish the relation between the intrinsic and coordinate descriptions. In section VIII
we show that the intrinsic and coordinate representations of gravity are equivalent at the
classical level but they are not equivalent at the quantum level. In section IX we present
an intrinsic path dependent Lagrangian formalism for arbitrary path dependent fields. In
section X we analyze the relation between path dependence and diffeomorphisms. In section
XI we show how to extend the Hamiltonian techniques to intrinsic paths. Finally in section
XII we present some concluding remarks.

II. THE GROUP OF LOOPS: A BRIEF REVIEW

A. Holonomies and the definition of loops

We will briefly review some notions of the group of loops. For a more extensive treatment
see [4, 6].

We start by with a set of parametrized curves on a manifold M . We assume they are
continuous and piecewise smooth. There is no real need to have the curves parameterized
but we do it to fix ideas. A curve p is a map

p : [0, s1] ∪ [s1, s2] · · · [sn−1, 1] → M (2.1)

that is smooth in each closed interval [si, si+1] and continuous in the whole domain. Given
two piecewise smooth curves p1 and p2 where the end point of p1 is the same as the beginning
point of p2, the composition curve p1 ◦ p2 is given by:

p1 ◦ p2(s) =
{

p1(2s), for s ∈ [0, 1/2]
p2(2(s− 1/2)) for s ∈ [1/2, 1].

(2.2)

The curve traversed in the opposite orientation (“opposite curve”) is given by

p−1(s) := p(1− s). (2.3)

We also consider closed curves l, m, ..., that is, curves which start and end at the same
point o. We call Lo the set of all such closed curves. The set Lo is a semi-group under the
composition law (l, m) → l ◦ m. The identity element (“null curve”) is defined to be the
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constant curve i(s) = o for any s and any parametrization. However, we do not have a group
structure, since the opposite curve l−1 is not a group inverse in the sense that l ◦ l−1 6= i.

Holonomies are given by the parallel transport around closed curves. The parallel trans-
port around a closed curve l ∈ Lo is a map from the fiber over o to itself given by the path
ordered exponential,

HA(l) = P exp

∫

l

Aa(y)dy
a. (2.4)

The holonomy HA is an element of the group G and the product denotes the right action
of G. The main property of HA is

HA(l ◦m) = HA(l)HA(m). (2.5)

A change in the choice of the point on the fiber over o from o to o′ induces the transformation

H ′
A(l) = g−1HA(l)g, (2.6)

where g is the holonomy of a path joining o to o′.
In order to transform the set Lo into a group, we need to introduce a further equivalence

relation, the idea is to identify all curves yielding the same holonomy. These equivalence
classes we will from now on call loops. We will denote them with Greek letters, to distin-
guish them from the individual curves of the equivalence classes. Several definitions of this
equivalence relation have been proposed. The simplest one is that the curves yield the same
holonomy for any connection. Related to it is that two curves that differ by a retraced path
(“tree”) are equivalent since retraced paths (paths that go out and back along the same
curve) do not contribute to the holonomy. There are other possible definitions but we will
not discuss them here (see [6] and [7, 8] for details).

With any of the definitions one can show that the composition between loops is well
defined and is again a loop. In other words if α ≡ [l] and β ≡ [m] then α ◦β = [l ◦m] where
by [] we denote the equivalence classes.

With the equivalence relation defined, it makes sense to define an inverse of a loop. Since
the composition of a curve with its opposite yields a tree (see figure 1) it is natural, given a
loop α, to define its inverse α−1 by α ◦α−1 = ι where ι is the set of closed curves equivalent
to the null curve (thin loops or trees). α−1 is the set of curves opposite to the elements of
α. We will also denote inverse loops with an overbar α−1 ≡ α.

We will denote the set of loops base-pointed at o by Lo. Under the composition law given
by ◦ this set is a non-Abelian group, which is called the group of loops.

We have relations between holonomies of composed loops

H(α ◦ β) = H(α)H(β), (2.7)

and that inverses are mapped to each other,

H(α−1) = (H(α))−1. (2.8)

We will define a set of differential operators acting on functions of loops that are related
to the infinitesimal generators of the group of loops: the loop and connection derivatives.
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FIG. 1: Curves p and p′ differ by a tree. The composition of a curve and its inverse is a
tree.
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FIG. 2: The infinitesimal loop that defines the loop derivative.

B. The loop derivative

Given Ψ(γ) a continuous, complex-valued function of Lo we want to consider its variation
when the loop γ is changed by the addition of an infinitesimal loop δγ base-pointed at a
point x connected by a path πx

o to the base-point of γ, as shown in figure 2. That is,
we want to evaluate the change in the function when changing its argument from γ to
πx
o ◦ δγ ◦ πo

x ◦ γ. In order to do this we will consider a two-parameter family of infinitesimal
loops δγ. Notice that no matter what path π one chooses, the added path is infinitesimal
due to the invariance of loops under re-tracings —additions of trees— and therefore induces
an infinitesimal deformation of γ. Since spacetimes look flat at sufficiently small regions δγ
may be described in a particular coordinate chart by the curve obtained by traversing the
vector ua from xa to xa + ǫ1u

a, the vector va from xa + ǫ1u
a to xa + ǫ1u

a + ǫ2v
a, the vector

−ua from xa + ǫ1u
a + ǫ2v

a to xa + ǫ2v
a and the vector −va from xa + ǫ2v

a back to xa as
shown in figure 2. We will denote these kinds of curves with the notation δuδvδu δv.

For a given π and γ a loop differentiable function depends only on the infinitesimal vectors
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FIG. 3: The extended path defining the Mandelstam derivative, πE = πx
o ◦ δu

ǫ1u
a and ǫ2v

a. We will assume it has the following expansion with respect to them,

Ψ(πx
o ◦ δγ ◦ πo

x ◦ γ) = Ψ(γ) + ǫ1u
aQa(π

x
o )Ψ(γ) + ǫ2v

aPa(π
x
o )Ψ(γ)

+1
2
ǫ1ǫ2(u

avb + vaub)Sab(π
x
o )Ψ(γ)

+1
2
ǫ1ǫ2(u

avb − vaub)∆ab(π
x
o )Ψ(γ). (2.9)

where Q,P, S,∆ are differential operators on the space of functions Ψ(γ). If ǫ1 or ǫ2 vanishes
or if u is collinear with v then δγ is a tree and all the terms of the right-hand side except
the first one must vanish. This means that Q = P = S = 0. Since the antisymmetric
combination (uavb − vaub) vanishes in any of these cases, ∆ need not be zero. That is, a
function is loop differentiable if for any path πx

o and vectors u, v, the effect of an infinitesimal
deformation is completely contained in the path dependent antisymmetric operator ∆ab(π

x
o ),

Ψ(πx
o ◦ δγ ◦ πo

x ◦ γ) = (1 + 1
2
σab(x)∆ab(π

x
o ))Ψ(γ), (2.10)

where σab(x) = 2ǫ1ǫ2(u
[avb]) is the element of area of the infinitesimal loop δγ. We will call

this operator the loop derivative.
Loop derivatives do not commute. One can show that,

[∆ab(π
x
o ),∆cd(χ

y
o)] = ∆cd(χ

y
o)[∆ab(π

x
o )], (2.11)

where we have introduced in the right hand side the loop derivative of functions of open
paths from which it is immediate to show that

∆ab(π
x
o )[∆cd(χ

y
o)] = −∆cd(χ

y
o)[∆ab(π

x
o )]. (2.12)

Given a function of an open path Ψ(πx
o ), a local coordinate chart at the point x and a

vector in that chart ua, we define the Mandelstam derivative by considering the change in
the function when the path is extended from x to x+ ǫu by the infinitesimal path δu shown
in figure 4 as

Ψ(πx
o ◦ δu) = (1 + ǫuaDa)Ψ(πx

o ). (2.13)

One can derive a Bianchi identity, based on the fundamental idea that “the boundary of
a boundary vanishes” and constructing a tree that circles a box (see ref. [4]) . The result is,

Da∆bc(π
x
o ) +Db∆ca(π

x
o ) +Dc∆ab(π

x
o ) = 0. (2.14)
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FIG. 4: The path that defines the connection derivative. We assume that the point o is in
the same coordinate patch as x.

There is also a Ricci identity,

[Da, Db]Ψ(πx
o ) = ∆ab(π

x
o )Ψ(πx

o ). (2.15)

This is the analogue of the usual commutator of covariant derivatives and its relation to the
Yang–Mills curvature.

C. The connection derivative

One can introduce a differential operator with properties similar to those of the connec-
tion or vector potential of a gauge theory, this allows for a better contact with the usual
formulation of gauge theories.

Let us consider a covering of the manifold with overlapping coordinate patches. We

attach to each coordinate patch P i a path π
yi0
o going from the origin of the loop to a point yi0

in P i. We also introduce a continuous function with support on the points of the chart P i

such that it associates to each point x on the patch a path πx
yi
0

. Given a vector u at x, the

connection derivative of a continuous function of a loop Ψ(γ) will be obtained by considering

the deformation of the loop given by the path π
yi0
o ◦ πx

yi
0

◦ δu ◦ πyi0
x+ǫu ◦ πo

yi
0

shown in figure 4.

The path δu goes from x to x+ ǫu. We will say that the connection derivative δa exists and
is well defined if the loop dependent function of the deformed loop admits an expansion in
terms of ǫua given by

Ψ(πx
o ◦ δu ◦ πo

x+ǫu ◦ γ) = (1 + ǫuaδa(x))Ψ(γ), (2.16)

where we have written πx
o to denote the path π

yi
0

o ◦ πx
yi
0

and similarly for its inverse.
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γ

δ u i
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x πo

x+ u

o

δ γ ε

FIG. 5: Generating a finite loop using the infinitesimal generators combining (2.18) and
(2.19).

One can show the following relation between the connection and the loop derivatives,

∆ab(π
x
o ) = ∂aδb(x)− ∂bδa(x) + [δa(x), δb(x)], (2.17)

again reminiscent of expressions in ordinary Yang–Mills theory. The loop derivative defined
by (2.17) automatically satisfies the Bianchi identities.

The usual relation between connections and holonomies in a local chart in a gauge theory
can also be written in this language, it is given by the path ordered exponential,

U(γ0) = P exp

(
∫

γ0

dyaδa(y)

)

, (2.18)

where U(γ0)Ψ(γ) = Ψ(γ0 ◦ γ). This again is reminiscent of the familiar expression for gauge
theories, which yields the holonomy in terms of the path ordered exponential of a connection.
Through a second path ordered integral it could be expressed in terms of the loop derivative,
embodying the usual non-Abelian Stokes theorem and illustrated in figure 5.

The relation between the connection and the loop derivative can be derived in the fol-
lowing way. Consider a deformation going from πx to πx+ǫ given by the displacement vector
field along the path π defined as follows: Let πx be given by xα(λ) such that xα(λf ) = xα end
point of π, and πx+u be given by x′α(λ) such that x′α(λf) = xα+ ǫα. Then the displacement
field connecting both paths will be given by x′α(λ) = xα(λ) + ǫβwα

β (λ) for all λ belonging to
[0, λf ] and w

α
β (λf) = δαβ . From this relation and the definition of the derivatives we get

δµ(π
x) =

∫ λf

0

∆αβ(π
x(λ))ẋα(λ)wβ

µ(λ)dλ. (2.19)

Once one attaches to each point of an open region in the manifold a given path πx
o , the

connection derivative is an ordinary function δµ(x) = δµ(π
x
o ). The substitution of (2.19) for

the family of paths πx
o into (2.18) embodies the general form of the non Abelian Stokes’

theorem allowing to write an arbitrary loop deformation as a ”surface” integral of loops
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derivatives.

III. KINEMATICS OF YANG-MILLS THEORIES AS REPRESENTATIONS OF

THE GROUP OF LOOPS

We would like to show how the kinematical structure of gauge theories emerges from the
group of loops. We consider a map of the group of loops onto some gauge group G,

H : L0 → G, (3.1)

i.e.,
γ −→ H(γ), (3.2)

such that H(γ1)H(γ2) = H(γ1 ◦ γ2).
Let us consider a specific Lie group, for instance SU(N), with N2−1 generators X i such

that TrX i = 0 and
[X i, Xj] = C ij

k X
k, (3.3)

where C ij
k are the group’s structure constants.

Let us compute the action of the connection derivative in this representation. We use the
same prescriptions as in the previous section

(1 + ǫuaδa(x))H(γ) = H(πx
o ◦ δu ◦ πo

x+ǫu ◦ γ) = H(πx
o ◦ δu ◦ πo

x+ǫu)H(γ). (3.4)

Since the loop πx
o ◦ δu ◦ πo

x+ǫu is close to the identity loop (with the topology of loop space)
and since H is a continuous, differentiable representation,

H(πx
o ◦ δu ◦ πo

x+ǫu) = 1 + iǫuaAa(x), (3.5)

where Aa(x) is an element of the algebra of the group, in our example of SU(N). That is,
Aa(x) = Ai

aX
i. Therefore, we see that through the action of the connection derivative,

δa(x)H(γ) = iAa(x)H(γ). (3.6)

Following similar steps one obtains the action of the loop derivative,

∆ab(π
x
o )H(γ) = iFab(x)H(γ), (3.7)

where Fab is an algebra-valued antisymmetric tensor field.
From equation (2.17) we immediately get the usual relation defining the curvature in

terms of the potential,

Fab(x) = ∂aAb(x)− ∂bAa(x) + i[Aa, Ab]. (3.8)

We also have that,

H(η) = P exp

(

i

∮

η

dyaAa(y)

)

, (3.9)

yielding the usual expression for the holonomy of the connection Aa.
In this framework, matter fields can be included considering open paths. For more details
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see [6].
Finally, the usual form of the Ricci identity,

[Da, Da] = iFab, (3.10)

can be obtained directly from the previous expressions, in particular (2.15).
This construction allows to recover any gauge theory with local symmetries associated to

a fiber bundle structure. The extension of this construction to gravity is not trivial. In the
language of fiber bundles it requires the introduction of a soldering form connecting the fiber
to the manifold [9]. This is not the approach we will take in this paper. In the forthcoming
sections we will develop a formalism that exploits the properties of the group of loops to
construct an intrinsic description of the Riemannian geometry.

IV. BRIEF REVIEW OF MANDELSTAM’S 1962 PROPOSAL FOR

QUANTIZING THE GRAVITATIONAL FIELD

Mandelstam starts with a critique of the usual approaches to quantizing the gravitational
field, which consider c-number coordinates and q-number metrics and distances. The diffeo-
morphism invariance of a theory of quantities like the distances that are partially quantized
through the metric could be problematic. He is interested in formulating an approach that is
coordinate independent and therefore only framed in terms of q-number physical quantities
without any ambiguity associated with coordinate conditions, and all distances that appear
in the theory will be physical distances. He focuses on paths on the manifold constructed
by starting from a reference point (for instance infinity in an asymptotically flat situation)
and constructing a reference frame at the reference point (from now on we call it “the ori-
gin”). He then specifies a second point, not by using coordinates, but by considering a path
from the origin to the new point. To construct the path he chooses a vector defined in
the local reference frame at the origin and parallel transports infinitesimally such reference
frame along the vector. At the next point another vector is chosen and so on. For instance,
one could move a certain distance along the geodesic the x direction taking the reference
frame along this path, then another distance along the y direction defined with respect to
the reference frame obtained at the end of the first transport. He wishes to describe the
gravitational field in terms of these paths and therefore without referring to a description
of the manifold in terms of coordinates defined on an open set of the manifold and their
transformations. With the information available about the paths in this intrinsic framework
one cannot say if two paths have led to the same point just by the specification of the paths.
However, the question can be answered with a knowledge of the Riemann tensor. If all phys-
ical measurements (e.g. all gauge invariant functions of all fields) at the ends of the paths
are the same or differ by a Lorentz transformation we can say that they ended in the same
point. It is clear that this is not a useful way to distinguish paths in practice. Notice that
the construction is such that all along the paths the metric is Minkowskian even though the
space-time is not necessarily flat. To have a completely invariant description of the process,
the paths are parameterized by the invariant distance traversed (or the proper time in the
case of timelike paths).

To flesh out the above ideas, consider two paths π1 and π2 such that, after a portion of
π2 common to both paths (that we shall call π3) has been traversed, they differ by a small
area σµν . Two vectors parallel transported along the paths will differ after passing it by an
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amount

daλ =
1

2
σµνRµνλ

σ (πz
3) aσ. (4.1)

Mandelstam denotes with x, y, or z the end points of the path π in the intrinsic framework.
That is, the components of the end point, given by xα are the total displacement along the
each of the unit vectors of the parallel transported reference frame eα. The above expression
is valid in the reference frame defined by the path, we denote this by making the components
of tensors like the Riemann tensor explicitly path dependent.

The vectors defining the reference frame also get rotated and this difference is responsible
for the path dependence of the field variables. So both vectors and the path are rotated.
If we think of the paths as curves on the manifold, the direction of the portion of the path
π2 following π3 will be rotated with respect to the original portion of π1 by an amount pro-
portional to the Riemann tensor at z. In this framework quantities become path dependent
for two reasons: the path determines the point where we the quantity is observed and in
the case of coordinate dependent quantities it also determines the reference frame chosen to
describe them. The variation of a vector field in a weak gravitational field when one moves
along a path like the one described above will be given by,

δzAµ(x, π1) =
1

2
σκλRκλµ

ν(z, π3)Aν(x, π1)−
1

2
σκλRκλτ

ν(z, π3) (x− z)τ
∂Aµ(x, π1)

∂xν
(4.2)

The first term is due to the rotation of the reference frame. The second term represents the
effects of the change of the path. The above expression is only valid in the linearized case, it
ignores higher corrections in the curvature and assumes that points x and z are on the same
flat patch in which one can set up coordinates such that quantities like (x − z)τ behave as
vectors and one can compute a derivative without a non-trivial connection. In the general
case of a strong gravitational field there would be terms with higher order powers in the
curvature all along the path and one does not have a closed form for the deformation at the
end of π3. In particular it would be very difficult to determine the displacement of the end
points under arbitrary deformations. We conclude from this analysis that paths ending at
the same physical point cannot be easily recognizable in the intrinsic notation. Teitelboim
[10] made some progress on this point but only for infinitesimally close paths. Furthermore,
as the previous analysis shows, the end points of two different paths like π1 and π2 defined
intrinsically could be the same without implying that both paths end at the same physical
point. Another related important obstacle for a practical implementation of this intrinsic
formalism is that the previous analysis show that close loops in the manifold will be very
difficult to recognize in the intrinsic notation and therefore the groups of loops will not be
of any practical use.

V. A NEW INTRINSIC DESCRIPTION

At the end of the previous section we have sketched some of the obstacles faced by the
Mandelstam formulation. Here we will tackle these issues. In first place we will refine the
intrinsic description of the paths in such a way that “trees”, that is, closed paths from the
base point o equivalent to the null path that do not contribute to holonomies, could be easily
recognized. Finally we will introduce a technique allowing to assign to each physical point
intrinsically described paths that end at this point. These conditions will allow applying
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the loop techniques to the intrinsic description of gravitation. In particular they will allow
to recognize closed loops in M and to recognize paths ending at the same physical point.

Let us start by a path in a manifold M whose geometry is given. We shall assume
that all the paths start at the same point o of M . If the manifold is asymptotically flat
we shall choose o at infinity. Otherwise we pick any point. We will describe paths in M
intrinsically in terms of a Lorentz reference frame in o. Given a reference frame F in o
a path is described as follows: Starting from the origin we parallel transport an invariant
distance ds the reference frame with “velocity” vα(0) to a new point d1x

α such that the
displacement is d1x

α = vα(0)ds. Starting at these point we proceed to a new point moving
further the reference frame with velocity vα(ds) and displacement d2x

α = vα(ds)ds. All
the displacements are given in terms of invariant distances and the parallel transported
reference frame. The intrinsic description of the path πx may be therefore described by
xα(s) such that vα(s) = dxα/ds and xα = xα(sf ) is the end point. We will say that a
path is reducible if it contains a portion xα(s) with s0 < s < s1 such that for any point
s in this interval vα(s) = −vα(s1 + s1 − s). The construction is such that portions of the
path followed forward and back along the same curve —following a tree— were excluded of
the final description of the path given in the frame F by xα(s). We are here considering
irreducible paths under the equivalence by trees. It will be convenient in certain occasions
to use a generic parametrization xα(λ). The invariant distance may be always recovered by

considering ds =
√

ηαβdxαdxβ.

A. The group of loops in the gravitational case.

We have already noticed that in the Mandelstam construction paths ending at the same
physical point cannot be easily recognized. They may be identified only indirectly by noticing
that all the physical fields defined at the end of two paths πx1 and πx2 are related by a Lorentz
transformation. Furthermore this difficulty implies that closed loops in physical space will
appear as open in intrinsic notation and that there will be hidden relations between path
dependent fields ending on different points in intrinsic notation that extend the Eq. (4.2) to
the case of strong gravitational fields. Without a satisfactory solution to this problem, the
approach proposed by Mandelstam cannot be used in practice.

This difficulty can be solved as follows: given an intrinsically described path πx that
arrives to some physical point in M , we are going to show here how to identify other
intrinsic paths π

′x′

that arrive at the same physical point1. This identification will allow
solving the above mentioned problems and applying the loop calculus techniques summarized
in the first sections. Let us start by learning how to describe intrinsically closed paths that
correspond to the infinitesimal generators of the group of loops, the loop derivatives. The
corresponding holonomies associated with these paths determine the Lorentz transformation
connecting the reference frame F given initially at o with the frame obtained at the end
of the closed path. Recall that the infinitesimal loop added by the loop derivative using
the standard notation of section II on a differential manifold M is given by πx

o δγπ
o
x with

1 Notice that x and x
′ will be different in general, the intrinsic total displacements do not have any relation

with the end point in strong gravity. We use this notation only for labeling points along a given path. Also

notice that the information about the intrinsic total displacement is redundant because it is contained in

the information that defines the path π, as we noted in the introduction of this section.
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δw

δu

o’ o

πo
x

πx
o

FIG. 6: The path described in the text: the initial and final point would have the same
intrinsic coordinate (that is why both paths are labeled by o and x) but would correspond

to two different end points of the manifold, o and o′.

δγ obtained traversing the curve δuδwδuδw. However, if we describe this loop using the
intrinsic description given above in terms of displacement vectors referred to a local system
of reference parallel transported from the origin o to each point of the path after following
the closed loop δγ the reference system will be rotated and a vector at x before the rotation
will be rotated by an amount δvρ = δuαδwβRαβ

ρ
σv

σ. This rotation as we have discussed
implies that if one attempts going back to the origin following πo

x with the same prescription
given to reach x in reverse order we will end up in a different point of the manifold as shown
in figure 6.

In order to go back to the origin along the original path in M we need to take into
account the Lorentz rotation suffered by the reference system after following the closed
path, then instead of considering as the intrinsic initial displacement vα(s)ds followed in the
opposite direction we consider (−vα(s)− δuρδwσRρσ

α
β(π

x
0 )v

β(s))ds. With this prescription
we are now following in the opposite sense the path of M that corresponded to the intrinsic
description πx

o , but now as the parallel transported reference frame was rotated, the intrinsic
displacements needed to keep track of this rotation were rotated in the opposite sense. It is
important to remark that when one is back at the origin one ends up with a reference frame
F ′ rotated with respect to the original one. Vector components V β with respect to F will
be related with vector components with respect to F ′ by a Lorentz transformation given by
the holonomy,

H(πx
0 ◦ δγ ◦ Λ(δγ)π0

x)
α
β = δαβ + δuρδwσRρσ

α
β(π

x
0 ), (5.1)

where Λ(δγ)πo
x is the retraced rotated path described in the text above.

Also notice that we have followed a closed path in the manifold M but the final intrinsic
coordinate will be different from the vanishing-initial one. The intrinsic path associated to
the infinitesimal generator of the group of loops may be represented in compact notation as
π ◦ δγ ◦Λ(δγ)π. It will be convenient in order to keep track of the order of infinitesimals to
introduce a parameter ǫ with dimensions of length, much smaller than the length associated
with the curvature of space-time such that δu = ǫu and δw = ǫw.

Note that the paths ǫuǫwǫuǫw are only closed for infinitesimal loops, for finite ones they

are not closed. In order for it to close one has to consider ǫuǫwǫuǫw(1) where w(1) is given
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in the appendix. The holonomy induced by both paths coincides at order ǫ2 but differs
by terms (Rǫ2)

2
with R the typical scale of the curvature of space-time. The proposed

description is therefore correct for closed paths with finite ǫ if Rǫ2 ≪ 1, which always holds
for classical gravity for sufficiently small ǫ. In the quantum case ǫ cannot be made smaller
than the Planck length ℓPlanck and Rℓ2Planck could be of order one; for instance, in the region
of a black hole corresponding to the classical singularity. This indicates that at those scales
the notion of curvature, and consequently the notion of point is completely lost.

In the appendix the path that must be followed to close an intrinsic loop is constructed.
The result that is convenient to keep in mind in what follows is that,

w(1)µ = wµ +
1

6
Rµ

αργw
αuρwγǫ2 +

1

2
Rµ

αργu
αuρwγǫ2. (5.2)

It is important to point out that once one has identified closed infinitesimal paths one
has everything needed in order to describe generic closed paths —loops— and in terms of
them to define a notion of point. The notion of closed path that is proposed stops being
valid when the notion of point does. This will occur in the deep quantum regime.

Having defined intrinsic descriptions for the infinitesimal generators of the group of loops
and the associated holonomies we can compute the holonomies corresponding to finite defor-
mations by using the group of loops and considering the product of infinitesimal generators.
Notice that in order to compute the product we need to refer the second path to the parallel
transported reference frame along the first one. In compact notation, for the product of two
infinitesimal generators, we need to consider the closed path,

π1 ◦ δγ1 ◦ Λ (δγ1)π1 ◦ Λ (δγ1) π2 ◦ Λ (δγ1) δγ2 ◦ Λ (δγ2) Λ (δγ1)π2 (5.3)

to which corresponds the infinitesimal holonomy H = H1H2. Notice that though the group
of loops can be defined in an arbitrary differential manifold (as we showed in section 2)
without reference to its geometry, the intrinsic loop description depends on the geometry.
Taking into account the way we have proceeded to compute the product of infinitesimal
generators, given two loops γ1 and γ2 with origin o described in intrinsic notation, one
can define a product γ1 · γ2 given by following γ1 and taking into account the rotation of
the reference frame at o following Λ(γ1)γ2. This last object representing the loops whose
intrinsic displacements are rotated by Λ from the original components. We have explicitly
that γ1 · γ2 = γ1 ◦ Λ(γ1)γ2, and one can easily convince oneself that intrinsic loops form
a group. The generalized Stokes’ theorem allows to obtain the holonomy for an arbitrary
loop as a product of infinitesimal Lorentz transformations associated to the infinitesimal
generators. With this definition of the group of loops one can recognize two paths ending
at the same physical point. Two paths π and π′ end at the same point if there exists a loop
gamma such that the open paths γ · π = π′.

The fact that the intrinsic description depends on the geometry now implies that the
criterion used to recognize that two paths end in the same point does so too. Therefore in
an eventual quantum treatment the notion of point only acquires meaning when quantum

fluctuations can be neglected. We do not include in π the information about the intrinsic
coordinates of its end point because these coordinates may take arbitrary values for the
same physical end point and do not add relevant information. If the manifold is not simply
connected besides the infinitesimal generators one needs information about at least one
holonomy of a loop γ connecting paths π and π′ ending at the same physical point such that
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γ is a generator of the homotopy group. The equivalence class of paths that end in the same
physical point may be represented by any of the paths that end in that point.

x x+  wε
u

N

u
N-1

u
N-2

w

w(1)

w(2)

w(3)

π

ο

u
N

−

u
N-1

−

u
N-2

−

w(N)

ο’

π’

FIG. 7: The holonomy associated with the connection derivative.

B. Connections and finite loops

We are now going to compute the holonomy associated to a connection derivative, as in
(3.5). The latter goes from path πx

o ◦ ǫw to the path w(N) ◦ π′
o′ as shown in figure 7, where

o is the origin. It is computed considering a partition ǫu1 · · · ǫuN of the path π and taking
the product of loop derivatives,

πx−ǫuN
o ◦ ǫuN ◦ ǫw ◦ ǫuN ◦ ǫw(1) ◦ ǫw(1) ◦ Λ1ǫuN−1 ◦ Λ1ǫw(2) . . . (5.4)

where Λ1 = Λ
(

ǫuN ◦ ǫw ◦ ǫuN ◦ ǫw(1)
)

and πx−ǫuN
o is the portion of π going from o to

x− ǫuN . This corresponds to the transformation,

(

δηγ + ǫ2uαNw
βRαβγ

η
(

πx−ǫuN
o

)) (

δρη − ũαN−1w̃
(1)βǫ2Rαβη

ρ
(

πx−ǫuN−ǫuN−1

o

))

× · · · (5.5)

and taking into account that the variables with a tilde are Lorentz transformed from the
initial ones (e.g. ũα = Λ1

α
βu

β) we get,

(

δηγ + ǫ2uαNw
βRαβγ

η
(

πx−ǫuN
o

)) [

δρη + ǫ2
(

δνσ − uκNw
βǫ2Rκβσ

ν
(

πx−ǫuN
o

))

×
× uσN−1

(

δλµ − ǫ2uχNw
τRχτµ

λ
(

πx−ǫuN
o

))

w(1)µRνλη
ρ
(

πx−ǫuN−ǫuN−1

o

)]

. . . , (5.6)
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and observing that the corrections introduced by w(1), . . . , w(N) grow with the square of the
proper distance to the end point x as shown in the appendix,

Hγ
ν
(

ǫu1 ◦ . . . uN ◦ ǫw ◦ ǫuN ◦ . . . ◦ ǫw(N)
)

= δνγ + ǫwρAργ
ν (F, πx

o ) , (5.7)

with,

Aργ
ν (F, πx

o ) =

∫ sf

0

dsẏα (s)Rαργ
ν
(

πy(s)
o

)

+
1

6

∫ sf

0

ds”

∫ s”

sf

ds′
∫ s′

sf

dsRρ(βα)
µ
(

πy(s)
o

)

ẏβ (s) ẏα (s′)Rµδγ
ν
(

πy(s”)
o

)

ẏδ (s”) (5.8)

where the integral is along π and Aργ
ν are the Lorentz intrinsic components of the spin

connection that depends on the path π referred to the frame F . We add the dependence
on F explicitly in the connection since in further usage we will use other frames to which
the specification of the paths are referred to. It is important to remark that at order ǫ the

quantities ũ and w̃ are equal to u and w. The loop ǫu1 ◦ . . .◦ ǫuN ◦ ǫw◦ ǫuN ◦ . . .◦ ǫu(1) ◦ ǫw(N)

connects the path π ◦ w referred to the frame F with the path ǫw(N) ◦ πo ′ referred to the
frame F ′ that differs from F by the Lorentz transformation (5.7). Both paths end at the
same physical point.

The previously defined connection derivative is a particular example of connections relat-
ing two neighboring paths. But more generally, one can define a connection derivative for
each tangent vector in the path manifold. If a path πx

o is defined by uα(λ) = dxα(λ)/dλ in
the intrinsic frame parallel transported to the point xα(λ), the tangent at πx

o in the manifold
of intrinsic paths may be described by the vector field wα(λ) as shown in figure 8.

We are now going to compute the holonomy associated to the following connection deriva-
tive, going from the path πx

o ◦w to the path π′
o as shown in figure (8), where o is the origin.

Let us introduce the tangent vector at each point xα(λ) at πx
o , given by uα(λ). The invariant

length s goes from 0 at o to sf at x and ds =
√

ηαβuαuβdλ. The path π′
o admits a descrip-

tion in terms of displacements ǫwα(λ) referred to the frame transported to the point λ of
the path πx

o . Different displacements ǫwα(λ) with the same final value wα(λf) = wα defined
different connection derivatives.

It is easy to see that [10] that the frame transported up to λ by πx
o and from there

along w(λ) till P differs from the one transported along π′
o by the infinitesimal Lorentz

transformation,
Λα

β = δαβ + Ωα
β (λ) , (5.9)

with,

Ωα
β (λ) =

∫ λ

o

ǫRγδ
α
β (λ

′) uγ(λ′)wδ(λ′)dλ′. (5.10)

We can also compute u′(λ) in terms of u(λ) and w(λ) as,

u′α = Λα
βu

β(λ) + ǫ
dwα

dλ
, (5.11)

which allows to define intrinsically the path π′
o by u′α(λ) = dx′α(λ)/dλ. The connection
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derivative of a path dependent vector field Bβ(π) stems from,

Bβ
(

πx
o ǫw(λ)π

′o
x+ǫwπ

)

= (1 + ǫwαδα (π
x
o ))B

β(π) = Λβ
σ (λf)B

σ (π) , (5.12)

and,
δα (π

x
o )B

β (γ) = Aα
β
σ (π

x
o )B

σ (γ) , (5.13)

with ǫwαAα
β
σ (π

x
o ) = Ωβ

σ (λf).
As a consequence, choosing displacement vectors wβ(λ) = wαEβ

α(λ) such that the evalu-
ation of Eβ

α in λf is Eβ
α = δβα one gets,

Aα
β
σ (π

x
o ) =

∫ λf

o

Rγδ
β
σ (λ

′) uγ (λ′)Eδ
α (λ

′) dλ′ =

∫ sf

o

Rγδ
β
σ (y) ẏ

γEδ
α (y) ds, (5.14)

with dyα = uα (λ) dλ and therefore the integral is along πx
o referred to the frame F . Notice

that the connection derivative is not unique and would require to include the information
about Eβ

α(λ) for 0 ≤ λ ≤ λf with the fixed boundary condition Eβ
α(λf) = δβα. The complete

notation would therefore be Aα
β
σ (F, π

x
o , [Eα]), where [Eα] defines the tangent vector basis

to the path πx
o .

πo
x

o

x εw

u(λ)

u’(λ)

π’oP
w(λ)

FIG. 8: The path defining the connection derivative.

We are now in the position to compute the holonomy associated to a closed finite path
that extends the path ordered exponentials (2.18) and (3.9) to the gravitational case. This
relationship allows to obtain HN

α
β as a path ordered exponential. The construction that

follows can be done with the connection (5.7) or the ones stemming from the connection
(5.15) associated to figure 8.

To obtain a closed path in intrinsic gravity is non-trivial but crucial for identifying physical
points in the manifold. The idea is to construct them by composition of paths associated
to connections like those in figures 7 and 8. We wish to define the path of figure 9 in
intrinsic notation as a loop referred to the parallel transported frame F , omitting the ǫ’s

is γ = πx ◦ w1 ◦ . . . ◦ wN ◦ π ◦ Σ
(n)

oo′
N
. The idea is to obtain it as a product of infinitesimal
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u1

u2

u3

un

w1 w2 wN

w
(n)

1

- - -

Σ

πx πy

o o’N

x

w
(n)

2 w
(n)

N
Σ(n)
-

y

πN

oy

FIG. 9: The path γ = πx ◦ Σ ◦ πN ◦ Σ(n) used in the construction of the holonomy
associated to closed finite path.

deformations that we organize in brackets,

γ =
(

πx ◦ w1 ◦ π ◦ w1
(n)

)

|F
(

w
(n)
1 ◦ πy1 ◦ w2 ◦ πy2 ◦ w2

(n)Λ2w1
(n)

)
∣

∣

∣

F1

×
(

Λ2w
(n)
1 ◦ w2 ◦ πy2 ◦ w3 ◦ πy3 ◦ w(n)

3 ◦ Λ3w2
(n) ◦ Λ3Λ2w1

(n)
)
∣

∣

∣

F2

× · · ·
(

Σoop ◦ πyp ◦ wp+1 ◦ πyp+1 ◦ wp+1
(n) ◦ Σop+1o

)
∣

∣

Fp
· · · (5.15)

with Σoop = ΛpΛp−1 · · ·Λ2w
(n)
1 ◦ Λp . . .Λ3w

(n)
2 ◦ · · ·Λpw

(n)
p−1 ◦ w

(n)
p and where the subscript Fp

means the frame rotated by Λp · · ·Λ1 of F and Λp the infinitesimal Lorentz transformation
induced by the closed path πp−1 ◦ wp ◦ πp ◦ wp

(n) (notice the change in notation for Λ’s).
The equation for γ leads to an expression very similar to (3.9) for the holonomy,

Hα
β =

(

δαβ1
+ ǫwρ

1Aρ
α
β1
(F, π)

)

(

δβ1

β2
+ ǫwρ

2Aρ
β1

β2
(F1,Σoo1π)

)

· · ·

×
(

δ
βp

βp+1
+ ǫwρ

p+1Aρ
βp

βp+1

(

Fp,Σoopπ
)

)

· · · (5.16)

that is,

H(γ) = P exp

(

i

∫

Σ

dyαAα

(

Fy,Σooyπ
y
oy

)

)

. (5.17)

We therefore recover the intrinsic version of the non-Abelian Stokes’ theorem. A similar
technique may be applied to the extended connection derivatives defined in (5.14) and (5.15)
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and represented in figure 8.
The idea is to obtain γ = πx

oΣπ
N , as shown in figure 10, as a product of infinitesimal

deformations that we organize in brackets,

γ = (πx
o δw1π

y1
1 ) (πy1

1 δw2π
y2
2 ) . . .

(

πyp
p δwpπ

yp+1

p+1

)

(5.18)

πx

ο

π1

πy

πN

y

w1

wN

w2
Σ

FIG. 10: The path γ = πx ◦ Σ ◦ πN used in the construction of the holonomy associated to
closed finite path.

Where πy1
1 is the path defined by uα1 (λ) referred to the frame parallel transported along

πx
o ◦ δw1 and,

uα1 (λ) = (δαβ + Ω1
α
β(λ)) u

β(λ) + δ
dwα

1 (λ)

dλ
, (5.19)

and wα
1 = wα

1 (λf) and

Ω1
α
β(λ) = δ

∫ λ

0

Rγδ
α
β(λ

′)uγ(λ′)wδ
1(λ

′)dλ′. (5.20)

Analogously, π
yp
p is the path given by the tangent vector uαp given by,

uαp (λ) = (δαβ + Ωp
α
β(λ)) u

β
p−1(λ) + δ

dwα
p

dλ
, (5.21)

with,

Ωp
α
β(λ) = δ

∫ λ

0

Rγδ
α
β(λ

′)uγp−1(λ
′)wδ

p−1(λ
′)dλ′, (5.22)

and wp = wp(λf).
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These relations may be written as follows,

uα(λ, µ)− uα(λ, µ− dµ) = Ωα
β(λ, µ)u

β(λ, µ)dµ+
dwα(λ, µ)

dλ
dµ, (5.23)

and,

Ωα
β(λ, µ) =

∫ λ

0

Rγσ
α
β(λ

′, µ)uγ(λ′, µ)δwσ(λ′, µ)dλ′, (5.24)

and therefore,
duα(λ, µ)

dµ
= Ωα

β(λ, µ)u
β(λ, µ) +

dwα(λ, µ)

dλ
, (5.25)

which can be solved by iteration. Let us denote by u(0), u(1), u(2) the order of iteration
computed, we have,

uα(0)(λ, µ) = uα(λ, 0), (5.26)

uα(1)(λ, µ) = uα(λ, 0) +

∫ µ

0

dwα(λ, µ′)

dλ
dµ′, (5.27)

with,

duα(2)
dµ

= Ω(1)
α
βu

β

(1) +
dwα(λ, µ)

dλ

=

∫ λ

0

Rγδ
α
β(λ

′, µ)uγ(1)(λ
′, µ)wδ(λ′, µ)dλ′uβ(1)(λ, µ) +

dwα(λ, µ)

dλ
, (5.28)

and with Rγδ
αβ(λ′, µ) = Rγδ

αβ(π(1)(µ)), with π(1)(µ) defined by xα(1)(λ, µ) such that

∂λx
α
(1)(λ, µ) = uα(1)(λ, µ) and

uα(2)(λ, µ) =

∫ µ

0

dµ′

{
∫ λ

0

dλ′Rγσ
α
β

(

x(1)(λ
′, µ′)

)

uγ(1)(λ
′, µ′)wσ(λ′, µ′)uβ(1)(λ, µ

′)

}

+uα(1)(λ, µ) (5.29)

and by iteration we determine uα(λ, µ) for sufficiently weak fields.
The expression for γ leads to,

Hα
β = (δαβ1

+ δwρ
1Aρ

α
β1
(πx

o ))
(

δβ1
β2

+ δwρ
2Aρ

β1
β2
(πy1

1 )
)

. . .
(

δβp
β + δwρ

pAρ
βp

β(π
yp−1

p−1 )
)

. . .
(5.30)

that is,

H(γ) = P exp

(

i

∫

Σ

dyαAα(π
y)

)

, (5.31)

and in this case the intrinsic version of the non-Abelian Stokes’ theorem takes the standard
form. The loop gamma connects the path πx

o ◦ Σ with πN , and noticing that w2 is referred
to the frame transported along π1, etc., we get Σ = δw1 ◦ Λ1δw2 ◦ . . . ◦ Λ1Λ2 . . .ΛN−1δwN

with Λp
α
β = δαβ + Ωp

α
β and Ωp given by equation (5.22) .
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VI. PATH DEPENDENT FIELDS

From the previous analysis it is easy to consider fields with tensor, spinor or internal
components. One can start by giving the fields for arbitrary paths at each point φ(A,I)(π)
where the index A represent the Lorentz tensor or spinor components and I the internal
components. Having recognized the closed loops γ, the fields transform under changes of
the reference path by representations of the group of loops. For instance for a vector field
with internal group SU(N) in some representation,

Aα
I(π

′) = H(γ)αβH (γ)I
JAβ

J(π), (6.1)

if π′ = γ ◦ Λ(γ)π = γ · π, which guarantees that π′ and π end at the same point on M .
H(γ)αβ is a holonomy associated with the Lorentz group and H(γ)I

J a holonomy associated
with the internal group. The path-dependent fields like Aβ

J depend on the paths π referred
to the frame F chosen as a reference at o. Analogous relations hold for any matter field
and should be compared with the corresponding relation in Mandelstam notation (4.2) that
cannot even be written explicitly in the case of strong fields.

The notion of covariant derivative of path dependent fields can be introduced using the
Mandelstam derivative. Its meaning for gauge theories was analyzed in sections II y III,
defined by (1 + ǫuβDβ)A

α
I(π

z) = Aα
I(π

z+ǫu
E ). Where πz+ǫu

E is the path extended in the
direction u whose components are given with respect to the frame at the end point z. It
compares the field parallel transported from z + ǫu to z with the field at z and therefore
gives us the component of the space time covariant derivative with respect of the intrinsic
basis parallel transported along π. πE is the extended path shown in figure (3) but now the
extension is given in terms of the intrinsic components of u in the frame parallel transported
up to z.

A. Symmetries of the path dependent Riemann tensor

As we mentioned in section II one can derive a Bianchi identity by considering a tree
that follows the edges of a cube and noticing that “the boundary of a boundary vanishes”.
If this construction is done at the end point of π one gets

([Dβ[Dγ , Dδ]] + [Dγ [Dδ, Dβ]] + [Dδ[Dβ, Dγ]])Aα(π) = D[βRγδ]α
ǫ (π)Aǫ (π) = 0 (6.2)

which implies that the path dependent Riemann tensor satisfies the Bianchi identity. In
the intrinsic formalism we are developing, a scalar satisfies φ(π) = φ(π′) if π′ = γ · π and,
applying the same construction with a scalar we get,

([[Dα, Dβ]Dγ] + [[Dβ, Dγ], Dα] + [[Dγ, Dα], Dβ])φ(π) = R[αβγ]
δDδφ(π) = 0. (6.3)

Since by construction the Riemann tensor is antisymmetric in the first two and the last two
indices, the above identities imply the remaining algebraic identities of Riemann’s tensor
are all satisfied.

In what follows, as an application of the techniques developed up to now, we will show
that the Riemann tensor has the expected tensorial transformation under changes of path.
So we consider a one form along a path with a small closed loop and then add a second
path with another small loop. The first one will give rise to a rotation of the form given by
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the Riemann tensor. The second deformation will change the frame of the Riemann tensor,
which will therefore be Lorentz transformed. The paths are shown in figure (11). Let us
start by computing,

Aα

(

δγ1 · δγ2 · δγ1 · π
)

−Aα (δγ2 · π) (6.4)

where Aα is a path dependent intrinsic description of a one form, δγ1 =
(

π1 ◦ δu1 ◦ δw1 ◦ δu1 ◦ δw1 ◦ Λ (δγ1x)π1
)

F
, with δγ2 similarly defined for π2. Notice that

we have slightly changed the notation in that δγi include the path πi now. We also have
that δγ1 =

(

π1 ◦ δw1 ◦ δu1 ◦ δw1 ◦ δu1 ◦ Λ
(

δγ1x
)

π1
)

F1
where F1 is the frame rotated with Λ

of F . Therefore the variation of the Riemann tensor under a change of path is given by,

σηρ
2 δRηρα

β (π2)Aβ (π) =
[(

δα
β + (σ̃)ηρ2 Rηρα

β (δγ1 · π2)
)

−
(

δα
β + σηρ

2 Rηρα
β (π2)

)]

Aβ (π) ,
(6.5)

where

σηρ
i =

1

2
ǫ2 (δuηi δw

ρ
i − δuρi δw

η
i ) (6.6)

and the components of σ̃ηρ
2 are rotated with Λ(δγ1). In order to compute δRηρα

β (π2), that

π

Α(π)

π1

π2

δγ2

δγ1

FIG. 11: The path used to show the Lorentz transformation of the Riemann tensor.

represents the variation of R under the deformation π2 → δγ1 · π2 we note that (7.5) can be
rewritten as,

[

(

δα
λ + σµν

1 Rµνα
λ (π1)

)

(

(σ̃)δρ2 Rδρλ
γ (π2)

)(

δγ
β − σµ′ν′

1 Rµ′ν′γ
β (π1)

)

−σδρ
2 Rδρα

β (π2)
]

Aβ (P ) = σηρ
2 δRηρα

β (π2)Aβ (π) , (6.7)

and taking into account that

(σ̃)ρσ2 = σρσ
2 + σµν

1 Rµνǫ
ρ (π1) σ

ǫσ
2 + σµν

1 Rµνǫ
σ (π1) σ

ρǫ
2 , (6.8)

we see that (7.5) can be rewritten as,

δRηρα
β (π2) =

[

ωα
λ (π1)Rηρλ

β (π2)− ωλ
β (π1)Rηρα

λ (π2)

+ωη
γ (π1)Rγρα

β (π2) + ωρ
γ (π1)Rηγα

β (π2)
]

(6.9)

with ωα
λ (π1) = σµν

1 Rµνα
λ (π1) and R suffers a Lorentz transformation under a change of

paths.
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B. Equations of motion

To illustrate the equations of motion we consider a gravitating scalar field,

(

ηαβDαDβ −m2
)

φ (π) = 0 (6.10)

Rαλβ
λ (π)− 1

2
ηαβη

γρRγλρ
λ (π) = κTαβ (π) , (6.11)

with

Tαβ (π) = Dαφ (π)Dβφ (π)−
1

2
ηαβη

µνDµφ (π)Dνφ (π)−m2φ2 (π) ηαβ , (6.12)

and κ = 8πG. Notice that all tensor components are Lorentzian components in the local
frame, therefore the metric is the Minkowski one. Recall that in the intrinsic description
the physical points are associated with classes of paths that differ by loops. Although scalar
fields are only point dependent and φ(π) = φ(γ ·π), the information about points is given in
terms of a path. The intrinsic description of the paths ensures that φ(π) is a diffeomorphism
invariant physical observable.

VII. RECOVERING THE STANDARD COORDINATE DEPENDENT

DESCRIPTION

A. Going from the intrinsic to coordinate description

We have shown that the intrinsic description allows to recognize when open paths lead
to the same point. Let us consider an assignment of reference paths that define normal
coordinates at each point of a region U sufficiently small around a point P to which we have
arrived following a geodesic that starts at o. That is P is intrinsically defined following a
geodesic starting at o given by by zα(s) = suα, where uα is a vector in the frame F . The
point P corresponds to s = sP . A point Q of U is given by zα(Q) = sPu

α+sQv
α with vα the

vector components relative to the frame parallel transported to P of the tangent at P of the
geodesic that joins Q with P . The construction is possible locally since we assume that there
exists a unique geodesic at U from P to Q. The quantities xa(Q) ≡ za(Q) − sPu

a define
a chart that maps the points of U to a region of R4. It is possible to define charts xa(Q)
diffeomorphic to x. The intrinsic construction allows to associate to each Q, in addition to
its coordinates xa(Q) the coordinates of the local frame transported from o to that point

eaα

(

πQ
R

)

with πQ
R the above mentioned path going from o to P and from there to Q.

The frames transform under changes of path πQ
R → π′Q as,

eaβ
(

π′Q
)

= Hβ
α (γ) eaα

(

πQ
R

)

= Hβ
α (γ) eaα (x(Q)) , (7.1)

with Hα
β the Lorentz transformation associated with the holonomy along the closed loop γ

is such that π′Q = γ · πQ
R , and under diffeomorphisms xa → xa(x), we have that,

ebα (x
′) =

∂x′b

∂xa
eaα (x) . (7.2)
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The metric in this system of coordinates can be specified as usual in terms of tetrads,

gab (x) = ηαβeaα (π
x
R) e

b
β (π

x
R) , (7.3)

and is independent of the reference path. Since the tetrads are obtained by parallel transport
from the origin, and taking into account the definition of the Mandelstam derivative, the
intrinsic construction implies immediately that

Dαe
b
β (π

x
R) = 0. (7.4)

Defining,
∇ae

b
β (x) ≡ eαaDαe

b
β (π

x
R) , (7.5)

we have that ∇ae
b
β (x) = 0 and we recover the usual covariant derivative since it compares

the tetrad at x + dx with the parallel transported one at that point. As a consequence
∇ag

bc (x) = 0 and the connection is metric compatible.

To show that the torsion is zero we consider a scalar field φ (x) = φ (πx
R) = φ

(

πQ
R

)

. We

have that φ
(

πQ
R

)

= φ
(

π′Q
)

for any path π arriving at Q, and taking into account (7.5), we

have that,

D[aDb]φ (π) =
1

2
∆αβ (π)φ(π) = 0 (7.6)

and therefore the connection is torsion free.
By construction, we have at P that eaα

(

πP
R

)

= eaα (P ) = δaα and for Q, using well known
results for normal coordinates we have that,

eaα (xQ) = eaα

(

πQ
R

)

= δaα +
1

3
Ra

bαc

(

πP
R

)

xbxc +O
(

s3Q
)

, (7.7)

recalling that at second order in Riemann coordinates the Riemann tensor is evaluated at
the origin P where intrinsic and Riemann components coincide.

Although the Riemann tensor identities follow from the intrinsic ones given in VIa from
the metricity and torsion freedom of the connection, it is immediate to obtain the identities
in terms of coordinates from the intrinsic ones taking into account (7.4), and the discus-
sion presented in section VIa, and recalling that at P the tetrad components in Riemann
coordinates reduce to the identity.

B. Relating intrinsic and coordinate descriptions of paths and local frames

Let γa(λ) such that γa(0) = xao, the coordinates of o, and γ(1) = xa. We need to
determine eα

a(λ = 1) = eα
a(γ(λ = 1)) and in general eα

a(λ) = eα
a(γ(λ)) and the intrinsic

components of γa(λ), let us call them ya(λ).
Using that,

dλγ̇a∇aeα
b = dλγ̇a

(

∂a + Γad
b
)

edα = 0, (7.8)

it follows that,
eα

c(λ+ dλ) = (δcd − dγaΓad
c (γ(λ))) eα

d = 0, (7.9)
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which implies that,

eα
c(λ) = P

(

exp

(

−
∫ λ

0

dλ′γ̇a(λ′)Γa

)) c

d

eα
d(0), (7.10)

and for eα
d(0) = δdα one gets the explicit form of the parallel transported local frame along

gamma,

eα
c(λ) = P

(

exp

(

−
∫ λ

0

dλ′γ̇a(λ′)Γa

)) c

α

, (7.11)

and the intrinsic coordinates are

dyα
dλ

= γ̇c(λ)eα
c(λ), (7.12)

yα(λ) =

∫ λ

0

γ̇c(λ′)eαc(λ
′)dλ′. (7.13)

Knowing the geometry, the metric in M , allows to determine the intrinsic coordinates
associated to any given curve γ.

The inverse correspondence allows to associate to each path π, yα(λ) and each system
of coordinates, the components of the frame parallel transported along π and the curve in
coordinates γa(λ) that corresponds to the intrinsic path yα(λ),

eα
a(λ) ≡ eα

a
([

yβ
]

, λ
)

, (7.14)

γ̇a = ẏαeα
a(λ) = ẏαeα

a ([y], λ) , (7.15)

γa(λ) =

∫ λ

0

dλ′ẏαeα
a ([y], λ) + xao , (7.16)

γa(0) = xao. (7.17)

Notice that at the quantum level the local frames in (7.16) will be promoted to operators.
If one describes the path in terms of the intrinsic functions yα(λ), the corresponding path
in a given system γa will also be given by quantum operators, and therefore the notion of
point will only emerge in a semiclassical regime.

The assignment ∀yα(λ) allows to compute the metric,

gab ([y], λ) = ηαβeα
a ([y], λ) eβ

b ([y], λ) = gab (γ(λ)) . (7.18)

If the assignment of frames eα
a ([y], λ) for two different curves satisfies γa(λ) = γa1 (λ1).

That implies,
∫ λ

0

dλ′ẏαeα
a ([y], λ′) =

∫ λ1

0

dλ′ẏα1 eα
a ([y1], λ

′) , (7.19)

we have that eα
a ([y], λ) = Λα

βeaβ ([y1], λ1) with Λα
β a Lorentz transformation.

VIII. NON-LOCALITY OF THE OBSERVABLE ALGEBRA

Here we would like to analyze the non-locality of the observable algebra in the linearized
case. For that we defined a coordinate system in terms of reference paths for instance using
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geodesics. In fact it is known [11] that in the linearized case one may cover an arbitrary
large region of spacetime. It is important to remark that here we are not using the second
order approximation for Riemann normal coordinates because we are not assuming that we
are working in a region of constant curvature.

A. From intrinsic gravity to linearized gravity

Given such a coordinate system, we may now proceed as we did in section 5 and assign to
each point x in V a spin connection, in the non-holonomic description given by the tetrads
eaα(π

x
R),

Aµαβ (x) = Aµαβ (F, π
x
R) , (8.1)

where πx
R is the reference path defined above.

Analogously,
Rµναβ (x) = Rµναβ (π

x
R) . (8.2)

In the linear approximation we can drop the second term in (5.8),

Aργν (x) = Aργν (π
x
R) =

∫ sf

si

dsẏα (s)Rαργν

(

π
y(s)
R

)

, (8.3)

neglecting the correction of A quadratic in R. Taking into account that the R’s satisfy,

Rα[ργν] (π) = 0, (8.4)

one gets
Aργν (x) + Aνργ (x) + Aγνρ (x) = 0, (8.5)

and from ∂[µRαβ]γν = 0, we get that,

Rαβγν = ∂αAβγν − ∂βAαγν . (8.6)

Finally, the symmetry Rαβγν = Rγναβ leads to,

Aραβ = hρα,β − hρβ,α. (8.7)

As in the case of gauge theories, under a change of path,

A′
µαβ (x) = Aµαβ (π

′x) = Aµαβ (x) + Λαβ,µ, (8.8)

with
Λαβ,µ + Λµα,β + Λβµ,α = 0, (8.9)

and therefore
Λαβ = ξα,β − ξβ,α, (8.10)

and
δhµα = ξµ,α + ξα,µ, (8.11)

and the components of the Riemann tensor are invariant under these transformations.
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Recalling the relationship of spin connections with the tetrads in a linear theory one gets,

gµν = ηµν + hµν . (8.12)

These relations also hold for any assignment of reference paths which satisfies the above
mentioned conditions. That is: i) the end point intrinsic coordinates defined by their total
intrinsic displacement along the parallel transported system of coordinates coincide with the
coordinates of the local chart in V ; and ii) any portion of a reference path is also a reference
path.

It is important to emphasize that the intrinsic formulation of linearized gravity also
differs from the path dependent description of gauge theories given in sections 2 and 3.
Small differences depend on the intrinsic description of the paths and would disappear if
one defines paths in a flat manifold and considers the linearized theory as another gauge
theory. For instance (7.1) would be different in the case of ordinary (non-intrinsic) paths in
the flat background manifold.

One should however recall that only the intrinsic theory is given in terms of physical
observables. As we shall see a description in terms of observables is always non-local.

B. Non-locality

In the case of gauge theories it is always possible to define local gauge invariant ob-
servables, for instance Tr

(

FαβF
αβ
)

. However, when gravity is included the observables are
always non-local. For example, a scalar field φ (x) is not observable due to its dependence
on diffeomorphisms but φ (π) is since it refers to a specific field at an intrinsically defined
point and depends on a non-ambiguous measuring procedure.

If one fixes paths, for instance using geodesics as in the previous section, the gauge is
completely fixed and the scalars are observable,

φ (x) = φ (πx
R) . (8.13)

It is clear that in an eventual quantization, quantum fluctuations in the geometry through-
out the path will change the arrival point and therefore the value of the measured field.

For instance, if xν (π) are the Riemann normal coordinates of the end point of a path
π that differs from πx

R by an infinitesimal spatial deformation at y, an intermediate point
of πx

R, we have that the coordinates of the end point (in the linearized case, to keep things
simple) change as,

xν (π) = xν − 1

2
σαβRαβλ

ν (πy
R) (x0 − z)λ . (8.14)

In this formulation, the components of the Riemann tensor can be considered functions
of points given by the reference path,

Rµνλρ (x) = Rµνλρ (π
x
R) . (8.15)

As we mentioned, in linearized gravity these quantities are gauge invariant and therefore
observables of the theory. We will see the non-locality of the theory emerge in the example
of the linearized case by noting that non-vanishing Poisson brackets between variables at
spatially separated points emerge. The observables will therefore obey a non-local algebra.
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o

y

x

πR

FIG. 12: The path πR with an infinitesimal deformation at the point y.

The Poisson brackets between Riemann tensors of linearized gravity were computed by
De Witt some time ago.

[Rµνστ (x) , Rαβγδ (x
′)] =

i

4
(ηµαησγ + ηµγησα − ηµσηαγ)∆ (x, x′),ν,τ,β,δ + Permutations

(8.16)
where ∆ (x, x′) is the odd homogeneous propagator of massless fields in flat space-times,
and the permutations are the fifteen ones compatible with the symmetries of the Riemann
tensor.

The variation of a scalar field under a change of path like we have for a the spatial
deformation σab (we use Latin indices for spatial components), is given by,

δφ (π, P ) = φ (π)− φ (πR) = −1

2
σklRklµ

ν (πy
R) (x− y)µ ∂νφ (πR) . (8.17)

It can be easily checked from (8.16) that it does not have vanishing Poisson bracket with
the components of the Riemann tensor in y spatially separated from the region of definition
of δφ. What we have shown for the variation δφ holds for the field itself: given that for an
arbitrary path π that ends in x one has that φ(π) = H(π)φ(x) with

H(π) = P exp

(
∫

π

dyαAα (π
y
R)

)

, (8.18)

and that,

Aραβ (π
y
R) =

∫ y

πR

dzγRραβγ (π
z
R) , (8.19)

the Poisson bracket of φ (π) with the components of the Riemann tensor at a point y of the
path π is non-vanishing. We therefore see that the intrinsic description of linearized gravity
will depart from that of ordinary field theories in a fixed background.

In contrast to what happens in ordinary field theory, gauge invariant observables in the
presence of gravity cannot be localized in well defined regions of space-time and therefore one
does not have a definition of subsystems stemming from commuting sub-algebras. Donnelly
and Giddings have discussed gravitational non-locality for a different set of gravitational
observables in references [1].

It should be noted that at a classical level commuting subalgebras are possible by con-
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sidering observables dependent on non-intersecting paths. At a quantum level however, this
is clearly impossible since given the paths π and π′ through their intrinsic description it is
not possible to know if they have or do not have intersections or common parts when the
geometry fluctuates and is not uniquely determined.

IX. THE ACTION IN TERMS OF PATH DEPENDENT FIELDS

Teitelboim was the first to note that the usual action of fields could be expressed as an
action of path dependent fields, by gauge fixing using Fadeev–Popov terms. Although his
proposal is very suggestive, he does not present a proof of the equivalence with the ordinary
action. We will provide a proof for an arbitrary Lagrangian,

L (Rαβγ
ρ (π) , φ (π) , ψ (π)) . (9.1)

The quantity L is a scalar and therefore is independent of π. Let us recall that for scalar
quantities π only provides the intrinsic description of the point in the manifold M where it
is being evaluated. L, given in terms of path dependent quantities, does not refer to any
local chart and its invariances under diffeomorphisms.

If we describe π through the path in the frame parallel-transported from o, xα(λ) with
uα = dxα/dλ the action S is given by S =

∫

LDx with,

Dx = Πλ,αdx
α(λ)δ(π − π′

R)∆FP (πR). (9.2)

We are considering a standard path integral integration, the product on λ represents the
limit for N going to infinity of Πi for partitions of the interval [0, λf ] in N portions. In
the above expression πR is a reference path associated to each point of the manifold M ,
δ(π − πR) fixes a path for each point and ∆FP is the Fadeev–Popov determinant for that
choice of path. The Lagrangian L is a Lorentz scalar and takes the same value for all paths
π that reach the end of πR and is therefore independent of π. The choice of reference paths
is equivalent to a gauge fixing.

Let us show the equivalence with the usual action in Riemann normal coordinates in a
neighborhood U of a point o1. We consider paths πU and πU

R from o1 to P with P and
arbitrary point in U . The path dependence will be restricted to the region in which the
normal coordinates are defined so we have that,

πR = πo1
oR ◦ πU

R , (9.3)

π = πo1
oR ◦ πU , (9.4)

and πo
R a fixed reference path from o to o1. The paths from o1 to P are called πU

R and are
geodesics and take the form xα = uαλ. If we identify za = xα and the metric is locally flat
at o1 we choose Riemannian coordinates centered in o1. Let πU be a path given by xαπ(λ)
arbitrary such that xα(0) = 0. If wα(λ) are the infinitesimal displacements referred to the
reference path that goes from xαπR

to xαπ(λ) and u
α
π = dxαπ/dλ, one has taking into account

(5.20) and (5.21),

uαπ(λ) = Λα
β(λ)u

β +
dwα

dλ
, (9.5)
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with,

Λα
β(λ) = δαβ + Ωα

β(λ) = δαβ +

∫ λ

0

dλ′Rγδ
α
β(λ

′)wδ(λ′)uγ(λ′). (9.6)

If we impose the gauge conditions duαπ/dλ = d2xαπ/dλ
2 = 0,

0 =
duαπ(λ)

dλ
= Rγδ

α
β(λ)u

γwδ(λ)uβλ+
d2wα(λ)

dλ2
, (9.7)

where uγ, uβ are constant vectors that define the geodesic reference path πR , we get the
equation that allows to compute the Fadeev–Popov determinant. In order to do that we
note that,

δ (xαπ(λ)− xαR(λ)) = δ

(
∫ λ

0

Ωα
β(λ

′)uβλ′dλ′ + wα(λ)

)

(9.8)

and,
δ (π − πR) = Πλ,αδ (x

α
π(λ)− λuα) , (9.9)

where wα(λ = 0) = wα(λ = λf) = 0 since both paths go from o1 to P .
Let us note that it can be written as,

δ (xαπ(λ)− xαR(λ)) = δ
(

Mα(λ)
δ(µ)w

δ(µ)
)

. (9.10)

where α and δ are Lorentz indices and (λ) and (µ) continuous indices. The quantityMα(λ)
δ(µ)

can be computed by first integrating (9.7) for wα with boundary conditions that vanish for
λ = 0 and λ = λf , i.e. w

α(0) = wα(λf) = 0,

wα(λ) +

∫ λ

0

dλ′
∫ λ′

0

dλ”Rγδ
α
β(λ”)u

γ(λ”)wδ(λ”)uβ(λ′)

− λ

λf

∫ λf

0

dλ′
∫ λ′

0

dλ”Rγδ
α
β(λ”)u

γ(λ”)wδ(λ”)uβ(λ′). (9.11)

With this, in a sufficiently small region U , allowing the second order approximation for
Riemann coordinates, we have that,

Mα(λ)
β(µ) = δαβ δ(λ− µ) +Rγβ

α
δ(0)u

γuδ

×
[

∫ λ

0

dλ′
∫ λ′

0

dλ”δ(λ”− µ)− λ

λf

∫ λf

0

dλ′
∫ λ′

0

dλ”δ(λ”− µ)

]

= δαβ δ(λ− µ) +Rγβ
α
δu

γuδ
[
∫ λ

0

Θ(λ′ − µ)dλ′ − λ

λf

∫ λf

0

dλ′Θ(λ′ − µ)

]

= δαβ δ(λ− µ) +Rγβ
α
δu

γuδ
[

(λ− µ)− λ

λf
(λf − µ)

]

. (9.12)

In order to compute the determinant we use that,

det(I + L) = exp (Tr ln(I + L)) , (9.13)



30

and that in this case we also have that Rλ2f ≪ 1, therefore,

det(I + L) = 1−
∫ λf

0

Rγβ
β
δu

γuδ(λf − λ)
λ

λf

= 1−Rγβ
β
δu

γuδ
(

λfλ
2

2
− λ3

3

)
∣

∣

∣

∣

λf

0

1

λf

= 1−Rγβ
β
δu

γuδ
λ2f
6

= 1−Rcb
bd (πo1

oR) z
czd, (9.14)

with za = uaλf . Recall that in normal coordinates we have that,

gmn = ηmn −
1

3
Rmanbz

azb, (9.15)

so for the determinant of the metric we have that,

√
−g =

√

1− 1

3
ηmnRmanbuaubλ

2
f

= 1− 1

6
ηmnRmanbz

azb. (9.16)

And therefore,
Dx = Πα,λdx

α
π(λ)δ(π − πR)∆FP = Πadz

a
√
−g, (9.17)

and we recover the Einstein–Hilbert action in the coordinate system defined by the πR.

X. DIFFEOMORPHISM INVARIANCE FROM THE PATH DEPENDENT

ACTION

Let us start with the action for pure gravity,

∫

DxηβδRβγδ
γ(π) =

∫

Πα,λdx
α(λ)δ(π − πR)∆FP (πR)η

βδRβγδ
γ(π), (10.1)

with πR the reference paths in one to one correspondence with points of an open set of
the manifold. The assignment of reference paths must satisfy suitable continuity condi-
tions in order to ensure that gab(x(πR)) = gab(πR) = ηµνe

µ
a(πR)e

ν
b (πR) is continuous and

differentiable.
We shall see that a change in the reference paths πR → π′

R induces diffeomorphisms in
the usual action associated to the path dependent one. In order to do this, consider the
reference paths πR associated to the normal coordinates we used in the previous section and
infinitesimal changes of such paths induced by infinitesimal deformations.

In intrinsic notation we go from,

πR : xαR(λ) = uαλ λ ∈ [0, λf ] (10.2)

to the deformed reference path shown in figure 13 that includes an small deformation at the
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point of the original path labeled by λ1

π′
R : uαλΘ(λ1 − λ) + (uαλ1 + (λ− λ1) u

α
1 )Θ(λ− λ1)Θ(λ1 + ǫ− λ)

+ (uαλ1 + ǫuα1 + uα2 ) Θ(λ1 + 2ǫ− λ)Θ(λ− λ1 − ǫ)

+ (uαλ1 + (λ1 + 3ǫ− λ)uα1 + uα2 ) Θ(λ1 + 3ǫ− λ)Θ(λ− λ1 − 2ǫ)

+ (uαλ1 + (λ1 + 4ǫ− λ)uα2 )Θ(λ1 + 4ǫ− λ)Θ(λ− λ1 − 3ǫ)

+uαλΘ(λ− λ1 − 4ǫ) (10.3)

o

x
λ2

λ1

εu1

εu2

uα

FIG. 13: The deformed reference path

In Riemann normal coordinates the path πR ends in xaR = λfu
a, whereas for π′

R the end
point in Riemann coordinates is,

x′aR = λfu
a + ωa

bu
b(λf − λ1)

= xaR + ωa
b

(

xbR − xb1R
)

, (10.4)

with ωa
b = ǫ2uα1u

β
2Rαβ

a
b and x

b
1R = λ1u

b. Let us recall that up to second order in the typical
size of the region covered by the Riemann coordinates, R is constant and we also have that
Rαβ

a
b = Rαβ

γ
σδ

a
γδ

σ
b .

The passage from πR to π′
R therefore induces the following coordinate transformation,

xa → x′a = xa − ξa(x), (10.5)

with ξa = −ωa
b(x

b − xb1). Since we have that,

gab(πR) = ηαβe
α
a (πR)e

β
b (πR) = gab(x), (10.6)

in normal coordinates,

g′ab(x
′) = gab(π

′
R) =

∂xc

∂x′a
∂xd

∂x′b
gcd(πR), (10.7)
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and therefore,

g′ab(x) =
∂xc

∂x′a
∂xd

∂x′b
gab(x+ ξ(x))

= gab(x) +
∂ξc

∂xa
gcb +

∂x′d

∂xb
gad + ξc∂cgab, (10.8)

where g′ab(x) = gab(π
′
R, x) and the end point of π′

R has Riemann normal coordinates x. So
in the end,

gab(π
′
R, x)− gab(πR, x) = Lξgab(x) = ∇aξb +∇bξa. (10.9)

Since ∂aξ
a = −ωa

a = 0, we have that,

√

−g(π′
R, x)−

√

−g(πR, x) = ξc∂c
√

−g(πR, x) = Lξ

√

−g(πR, x). (10.10)

Although we are not going to present this computation explicitly, one can evaluate
√

−g(π′
R, x), by reproducing the calculation of the Fadeev–Popov determinant for the path

π′
R, which is straightforward to obtain staring from πR and noting that the integral in λ in

equation (9.11) acquires an additional term δRγδ
α
β for λ > λ1.

XI. CANONICAL PATH DEPENDENT ANALYSIS

A. The scalar field case

A path dependent scalar field φ(π) is such that φ(π′) = φ(π) if π′ = γ · π with γ a
closed loop. Indeed, its description is frame independent at the end of π and the path only
fulfills the role of identifying the point inM where the field is evaluated without introducing
coordinate systems.

The equation of motion for a massless scalar field in a Riemannian manifold is,

ηαβDαDβφ(π) = 0, (11.1)

and follows from the action,

S =
1

2

∫

Duπ∆FP (π)δ(π
′ − π)ηαβDαφ(π

′)Dβφ(π
′). (11.2)

Let π = πR be an arbitrary assignment of reference paths.
By definition of the Mandelstam derivative we have that (see figure 14),

(1 + ǫuαDα)φ (π
x
R) = φ

(

πx+ǫx
RE

)

, (11.3)

where πRE
represents the extended path.

Since the scalar field in x+ ǫu takes the same value for any path with that final point we
have that,

uαDαφ (πR) = uαeα
a (πR) (∂aφ (πR))|πx

R
= ua∂aφ (π

x
R) , (11.4)
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x xa+εua

xo

πx
R

πx+εu
R

πx+εu
RE

FIG. 14: The path in the Mandesltam derivative

where eaα is the frame transported along πR,

Dαφ (πR) = eα
a (πR) ∂aφ (π

x
R) . (11.5)

As a consequence, the action,

S = −1

2

∫

DuπR
∆FP (πR) δ (π

′ − πR) η
αβeα

a (πR) eβ
b (πR) ∂aφ (x (πR)) ∂bφ (x (πR)) ,

= −1

2

∫

dx
√−ggab(x)∂aφ∂bφ. (11.6)

Its invariances with respect to φ yield,

gab∇a∇bφ(x) = ηαβeα
aeβ

b∇a∇bφ = ηαβDαDβφ (π
x
R) = 0, (11.7)

where we have used equation (7.5).
Let us proceed to the canonical formulation. In the first place we note that although φ(π)

is independent of the path π that arrives at the point x, its canonical conjugate momentum
depends of the notion of time used and therefore of the frame transported to x along π.
It should be pointed out that the canonical framework is not well suited for the intrinsic
formulation since it assumes that the surface can be foliated and that the topology is fixed.
These are two hypotheses that are not natural in the intrinsic approach. It will, however,
allow us to carry out a first approach towards quantization.

We can start with a manifoldM = Σ×R with coordinates adapted and introduce a geom-
etry in M à la ADM, for example. In order to introduce intrinsic reference paths arriving to
each point ofM adapted to a foliation Σt, we introduce a platform through o, a three dimen-
sional hypersurface Ω such that Σt ∩Ω is two dimensional. We also introduce a congruence
of curves in Σt such that γ (t, u, v, w0 = 0) are points on Σt ∩ Ω and that γ (t = t0, 0, 0, 0)
is the origin of the intrinsic description. Given a point t1, x1 with xi1 = γi (t1, u1, v1, w1) in
Σt1 we define reference paths πR starting in o, γ(t, 0, 0, 0) with γ(t1, 0, 0, 0) = o1. From o1
we go to x′1 = γ(t1, u1, v1, 0) through the path γ(t1, λu1, λv1, 0) with λ ∈ [0, 1] and through
γ(t1, u1, v1, w) to γ(t1, u1, v1, w1). Its intrinsic description will depend on the geometry. If
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o

o1

Ω
Σt

Σt1

FIG. 15: The foliation of the manifold.

we use a 3 + 1 ADM notation, we have that,

gij = 4gij, N =
(

√

−4g00
)−1

, Ni =
4g0i, (11.8)

gijgjk = δjk,
4g00 = −

(

N2 −N iNi

)

, N i = gijNj , (11.9)

4g0i =
N i

N2
, 4g00 = − 1

N2
, 4gij = gij − N iN j

N2
, (11.10)

det4g = −Ndetg,
√

−4g = N
√
g, (11.11)

nµ = −Nδ0µ, 4gµνnµnν = −1. (11.12)

Recalling that the action for φ(x) = φ (πx
R) is,

S = −1

2

∫

dx
√
−ggAB∂Aφ∂Bφ,

= −1

2

∫

dxN
√
g

[

− 1

N2
(∂0φ)

2 + 2
N i

N2
∂0φ∂iφ+

(

gij − N iN j

N2

)

∂iφ∂jφ

]

, (11.13)

the canonical momentum is

Pφ =

√
g

N
∂0φ− N i

N

√
g∂iφ. (11.14)

We can then proceed to do the Legendre transform and obtain the Hamiltonian,

H = Pφ∂0φ− L

=
NP 2

φ√
g

+ PφN
i∂iφ− 1

2

√
g

N

(

NPφ√
g

+N i∂iφ

)

+
N i√g
N

∂iφ

(

NPφ√
g

+N i∂iφ

)

+
1

2

(

gij − N iN j

N2

)

∂iφ∂jφ
√
g

=
NP 2

φ

2
√
g
+ PφN

i∂iφ+
1

2

(

gij∂iφ∂jφ
)

N
√
g. (11.15)
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From it we get the equations of motion

∂0φ =
NPφ√
g

+N i∂iφ, (11.16)

∂0Pφ = −∂i
(

PφN
i
)

− ∂i
(

gij∂jφN
√
g
)

. (11.17)

The Poisson brackets are,

{φ(x), Pφ(y)}t = {φ(πx), Pφ(π
y)}

t
= δ(x, y), (11.18)

{φ(x), φ(y)}t = {Pφ(x), Pφ(y)}t = 0. (11.19)

From (11.14,11.16) we get the brackets of the time derivatives,

{φ(x), ∂0φ(y)} =
N√
g
δ(x, y), (11.20)

{∂0φ(x), Pφ(y)} = N i∂iδ(x, y). (11.21)

But we really are interested in the Poisson brackets for arbitrary paths described intrin-
sically. Let us first consider paths that start from o in Σt and have the same end point than
that of πx. In order to do that we will use the technique of going from paths in coordinate
systems to intrinsic paths and vice-versa. It will allow us to recognize paths that end in x.

Let π given by yα(λ) that corresponds to γa(λ) with γµ(x) = xa, that is,

∫ 1

0

dλẏα(λ)eα
a ([y], λ) = xa, (11.22)

and π′ given by y′α(λ),
∫ 1

0

dλẏ′
α
(λ)eα

a ([y], λ) = ya. (11.23)

The Poisson brackets satisfy

{φ(π), Pφ(π
′)} = δ3 (γa(1), γ′a(1)) = δ3(xa, ya), (11.24)

with

γa(λ) =

∫ λ

0

dλ1ẏ
α(λ1)eα

a ([y], λ1) . (11.25)

The advantage of this kind of relation is that it is easily generalizable to the case of
quantum gravity where the eα

a are operators.
If we consider π extended to the future region defined along the time component of the

local basis eα
a ([y], 1), we have that,

D0φ(π) = e0
a∂aφ(π), (11.26)

{D0φ(π), φ(π
′)} = −e0

0N√
g
δ (γa(1), γ′a(1)) . (11.27)
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XII. CONCLUDING REMARKS

We presented an intrinsic framework for the formulation of gravitational theories including
general relativity in terms of paths. We solved the problem of defining what is a space-time
point, that was unsolved in the original proposal on the subject by Mandelstam. The relation
of the fields for two paths that arrive at the same point is now under control.

In the intrinsic description of gravity a physical point is given by the equivalence class of
paths that differ by loops that may be defined by the repeated action of the loop derivative.
In the quantum theory, a fluctuation of the geometry in any region of space-time will change
that equivalence class, that is, some of the paths that led to that point will fail to arrive to
it. This will induce fluctuations in the points that must be considered as emergent objects
of an underlying structure of paths. The fluctuations of the space-time points will be more
important in a quantum region like near where black holes have their classical singularities.

Close to a region with big quantum fluctuations the fields will stop being local, in partic-
ular scalar fields associated to nearby points will not commute, irrespective of the separation
being space-like or time-like. Note that the non-locality is also in time, which makes the
causal structure of events become fuzzy. The question remains of what happens at the hori-
zon of a black hole, since although for large RSchwarzschild/ℓPlanck the effects will be small, the
horizon amplifies non-localities.

The intrinsic description naturally operates with space-time paths. However, even if
one considers spatial paths one could end up in points that are in the future of where one
started. This will require special care at the time of quantization, as was already observed
by Mandelstam.

The whole construction is locally Lorentz invariant but there may be a distortion of the
invariance, unrelated to the ones due to granular descriptions of space-time, due to the
fluctuation of the points.

Further studies of the quantization are needed to understand the non-local effects induced
by time-like paths. In a forthcoming paper we will discuss the Poisson algebra of path
dependent fields including gravity and its quantization.
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Appendix

To understand the effects of curvature on finite closed paths one needs to take into account
that for the infinitesimal generator or the loop derivative to close a loop after going along
a path ǫuǫwǫu|| with u, v unit vectors, instead of traversing w|| one needs to go along a

different path, which we call w(1). To compute it, we consider normal coordinates around an
arbitrary point of the manifold o that can be considered at the end of a path. The geodesics
emanating from o are given in normal coordinates by xµ(s) = aµ1s (the xµ are the normal
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coordinates). The metric at o is η and, the Christoffel symbols and metric nearby are given
in normal coordinates in terms of the Riemann tensor computed at o as,

Γµ
αβ = −1

3
(Rµ

αβγ +Rµ
βαγ) x

γ , (13.1)

gµν(x) = ηµν −
1

3
Rµανβx

αxβ. (13.2)

o
u w

u||

P

w(1)

xu

πy

xv

Q

FIG. 16: The geodesics discussed in the appendix.

We compute u(s) by transporting along ǫw and w transported along ǫu,

wαuβ ;α = wα
(

∂αu
β + Γβ

αρu
ρ
)

= 0, (13.3)

wα∂αu
β =

duβ

ds
= −wαΓβ

αρu
ρ =

1

3
Rβ

αργw
αuρwγs, (13.4)

d2uβ

ds2
=

1

3
Rβ

αργw
αuρwγ. (13.5)

Therefore,

uβ(s) = uβ(0) +
1

6
Rβ

αργw
αuρwγs2, (13.6)

uβ|| = uβ(0) +
1

6
Rβ

αργw
αuρwγǫ2, (13.7)

wβ

|| = wβ(0) +
1

6
Rβ

αργu
αwρuγǫ2, (13.8)

where uβ|| is u parallel transported along ǫw and is shown in figure (16) and wβ

|| , not shown in

the figure is w parallel transported along ǫu. The vectors u, w, u||, w|| do not form a closed

loop. To close it we need to compute w(1) which differs by terms of order ǫ3 from w||.
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In Riemann coordinates an arbitrary geodesic not necessarily going through o is given by,

xµ(s) = aµ0 + aµ1s+
1

3
Rµ

αβρa
ρ
0a

α
1a

β
1s

2. (13.9)

Let us consider the geodesic xµ in figure 10 and let us determine the coordinates of the
point P , end point of u||, and Q, end point of u,

xµP = ǫwµ − ǫuµ +
ǫ3

6
Rαρβ

µuαwβwρ − ǫ3

3
Rβρα

µwρuαuβ, (13.10)

xµQ − xµP = −ǫwµ − ǫ3

6
Rαρβ

µuαwρwβ +
ǫ3

3
Rβρα

µwρuαuβ, (13.11)

where the vector w(1)µ in Riemann coordinates is given by,

ǫw(1)µ = −ǫwµ +
ǫ3

3
Rαρβ

µuβuαwρ +
ǫ3

6
Rαρβ

µuαwρwβ, (13.12)

and notice that w(1) is not a unit vector.
We therefore see that w(1) differs from w|| by terms of order ǫ3 times the curvature. In

the intrinsic notation we need to write w(1) in the parallel transported basis to P given by,

eα
µ (P ) = δα

µ +
1

3
Rραβ

µuβwρǫ2 +
1

6
Rραβ

µuβuρǫ2. (13.13)

Therefore ǫw(1) in intrinsic notation takes the form,

ǫw(1)α = −ǫwα +
ǫ3

6
Rγρβ

αuβuγwρ − ǫ3

6
Rγρβ

αuγwρwβ (13.14)
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