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Combinatorial Quantum Gravity: Emergence of Geometric Space form Random Graphs
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We review and extend the recently proposed model of combinatorial quantum gravity. Contrary to previous

discrete approaches, this model is defined on (regular) random graphs and is driven by a purely combinatorial

version of Ricci curvature, the Ollivier curvature, defined on generic metric spaces equipped with a Markov

chain. It dispenses thus of notions such as simplicial complexes and Regge calculus and is ideally suited to

extend quantum gravity to combinatorial structures which have a priori nothing to do with geometry. Indeed,

our results show that geometry and general relativity emerge from random structures in a second-order phase

transition due to the condensation of cycles on random graphs, a critical point that defines quantum gravity non-

perturbatively according to asymptotic safety. In combinatorial quantum gravity the entropy area law emerges

naturally as a consequence of infinite-dimensional critical behaviour on networks rather than on lattices. We

propose thus that the entropy area law is a signature of the random graph nature of space-(time) on the smallest

scales.

INTRODUCTION

Ultraviolet (UV) fixed points of statistical mechanics mod-

els define renormalizable quantum field theories via the Wil-

son renormalization group [1]. Here we review the evidence,

first presented in [2], that quantum gravity is defined by an

UV fixed point for a graph model [3]. The asymptotic safety

scenario [4] would thus be realized on networks, rather than

traditional statistical mechanics models.

In the traditional discrete approach to quantum gravity [5]

a smooth background is assumed, which is then approximated

by piecewise flat geometries on which curvature is computed

by Regge calculus [6]. In [2], instead, one of us first posited

that the fundamental structures on Planckian scales are not

smooth but, rather, graphs, on which even notions like Regge

curvature are lost. Random graphs are generic metric spaces.

When equipped with a Markov chain, like a probability mea-

sure, a purely combinatorial notion of Ricci curvature, first in-

troduced by Ollivier [7–9], can be defined on such structures.

This was used in [2] to define a model of purely combinatorial

quantum gravity. This approach was subsequently pursued in

[10], where a modified version of the Ollivier curvature was

introduced.

Albeit in a simplified model, we will provide strong evi-

dence that geometric space emerges from random graphs at a

second-order phase transition driven by a combinatorial ver-

sion of the Einstein-Hilbert action and corresponding to the

condensation of elementary loops on the graphs. In the ge-

ometric phase the combinatorial Einstein-Hilbert action be-

comes its standard continuum version. One notable result is

that, in this model, the entropy of quantum space automati-

cally follows an area law. The posited critical point on graphs

could thus be the origin of the famed area law for the entropy

in quantum gravity. Note that a relation between geometry

and the density of triangles (the so-called clustering coeffi-

cient [3]) has been also noted in the network literature [11].

In the simplified model considered here we will be dealing

with squares but the general case can also be treated [12].

THE OLLIVIER CURVATURE AND THE

COMBINATORIAL EINSTEIN-HILBERT ACTION

The continuum Ricci curvature is associated with two (in-

finitely) close points on a manifold, defining a tangent vector.

It can be thought of as a measure of how much (infinitesimal)

spheres around these points are, on average, closer (positive

Ricci curvature) or more distant (negative Ricci curvature)

than the two points at their centres. Its combinatorial version,

the Ollivier curvature [7–9], is a discrete version of the same

measure. Consider two vertices i and j = i + ei j separated

by edge ei j on a graph. The Ollivier curvature compares the

Wasserstein (or earth-mover) distance W
(

µi, µ j

)

between two

uniform probability measures µi, j on the unit spheres around i

and j to the distance d(i, j) on the graph and is defined as

κ(i, j) = 1 −
W

(

µi, µ j

)

d(i, j)
. (1)

The Wasserstein distance between two probability measures

µ1 and µ2 on the graph is defined as

W (µ1, µ2) = inf
∑

i, j

ξ(i, j)d(i, j) , (2)

where the infimum has to be taken over all couplings (or trans-

ference plans) ξ(i, j) i.e. over all plans on how to transport

a unit mass distributed according to µ1 around i to the same

mass distributed according to µ2 around j without losses,

∑

j

ξ(i, j) = µ1(i) ,
∑

i

ξ(i, j) = µ2( j) . (3)

The Ollivier curvature is very intuitive but, in general not

easy to compute and work with. Fortunately, it becomes much

simpler for bipartite graphs [9], which have no odd cycles.

Since the Ollivier curvature of an edge depends only on the

triangles, squares and pentagons supported on that edge (a

discrete form of locality) [8] and there are no triangles and

pentagons on bipartite graphs, one can use for all practical
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purposes the simpler version of the Ollivier curvature for bi-

partite regular graphs [9]:

κ(i, j)= −1

d

[

(2d − 2) − |N1( j)|

+
∑

a

(|La( j)| − |Ua(i)|) × 1{|Ua(i)|<|La( j)|}
]

+
, (4)

where N1(i) denotes the set of neighbours of i which are on

a 4-cycle supported on (i j), 1 denotes the indicator function

(1 if the corresponding condition is satisfied, 0 otherwise) and

the undescript “+” denotes z+ = Max(z, 0) so that the Ollivier

Ricci curvature for bipartite graphs is always zero or negative.

The definition of U and L is as follows: suppose that R(i, j) is

the subgraph induced by N1(i)∪N1( j) and R1(i, j)...Rq(i, j)are

the connected components of R(i, j). Then Ua(i) = Ra(i, j) ∩
N1(i) and La( j) = Ra(i, j) ∩ N1( j) for a = 1 . . . q.

Equipped with a combinatorial version of Ricci curvature

we can now formulate a purely combinatorial version of the

Einstein Hilbert action. First we define the combinatorial

Ricci scalar as

κ(i) =
∑

j∼i

κ(i, j) , (5)

where ∼ denotes the neighbours of i on the graph. Then we

obtain the combinatorial Einstein-Hilbert action simply as

S EH = −
1

g

∑

i

κ(i) , (6)

where the sum runs over all the vertices of the graph and g is

a coupling constant with dimension 1/action. This expression

for the Ollivier curvature still looks forbidding. However, as

we will show in a moment, it will become extremely simple

on the physical configuration space.

CONFIGURATION SPACE AND COMBINATORIAL

QUANTUM GRAVITY

To fully specify a combinatorial quantum gravity model we

need, in addition to the action, a configuration space over

which to sum in the partition function. The configuration

space in our simplified model consists of all random bipar-

tite graphs. There is, however a further restriction that must

be taken into account. As mentioned above we will model

the emergence of geometry by the condensation of elemen-

tary loops on the graphs. We have thus to remind ourselves

that even the Bose condensation of point particles is not well

defined in absence of interactions, because of the infinite com-

pressibility of the condensate. In exactly the same way, the

condensation of “non-interacting” loops is unstable, since it

leads to crumpling and disconnected graphs (baby universes).

We will thus follow the same route as for point particles and

introduce, as the simplest stability mechanism, a hard-core

condition for elementary loops. However, while for point par-

ticles the meaning of a hard core condition is unequivocal, for

loops we must define what exactly we have in mind. The def-

inition we will use is that elementary squares on the graphs

will be allowed to share one edge but not more. Note that

two squares can share two edges without being identical: it is

exactly these configurations that we exclude.

When the hard-core condition is implemented, the Ollivier

combinatorial curvature becomes really simple. Indeed, it is

easy to convince oneself that the second term in (4), involving

the sum of connected components of a subgraph, only con-

tributes for squares that share 2 edges. Indeed, for an iso-

lated square |N1| = 1 for all vertices on the square. If an edge

supports Ns squares which do not share another edge, then

|N1(i)| = |N1( j)| = Ns and |Ua(i)| = |La( j)| since all the ver-

tices within N1(i) and N1( j) are disconnected because of the

absence of triangles in a bipartite graph and all the vertices of

N1(i) are disconnected from those in N1( j) since, by assump-

tion, the edge does not support two different squares. The

Ollivier combinatorial curvature reduces thus simply to

κ(i, j) = −1

d

[

(2d − 2) − Ns(i j)
]

+ , (7)

where Ns(i j) is the total number of squares supported on edge

(i j). The full model of combinatorial quantum gravity can

thus be specified as

Z =
∑

CF

exp















− 1

g~

∑

i

κ(i)















, (8)

where CF denotes the configuration space of random regular

bipartite graphs with squares satisfying the hard-core condi-

tion and κ(i) given by (5) and (7).

THE CLASSICAL LIMIT AND THE MEAN FIELD ACTION

The classical limit ~ → 0 corresponds to the weak cou-

pling limit of small g. In the quantum regime ~g ≫ 1 the

Boltzmann probability becomes uniform over all configura-

tion space of random regular bipartite graphs. Random regu-

lar bipartite graphs are locally tree-like, with very sparse short

cycles governed by a Poisson distribution with mean (2d−1)l/

for cycles of length l on 2d-regular graphs [13]. The quantity

(2d − 2), instead, is the number of squares supported on an

edge in a Zd lattice. The combinatorial Einstein-Hilbert ac-

tion (6) thus favours the formation of squares on the graph

until the amount corresponding to a Zd lattice is reached, af-

ter which it vanishes. The number of squares based on an

edge, however, can be larger than (2d − 2) even for graphs

with hard core squares, indeed it can reach up to (2d − 1).

This is the maximum that the “mean field” version of the ac-

tion (7) without subscript + [2] would favour in the classical

limit. It can be shown, however, that configurations attaining

this maximum split into large quantities of disconnected baby

universes while the classical limit of the exact action avoids

this fate and approaches a regular Zd lattice [12]. The hard

core condition is thus sufficient to stabilize space.
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On a Zd lattice the optimal coupling for the Wasserstein dis-

tance between the two vertices at the extremities of an edge is

the translation along the lattice links connecting the unit balls

around the two vertices. As derived in [7], the Ollivier curva-

ture then becomes the average of the sectional curvatures of

the planes defined by the original edge and each of the links

defining the unit ball around one of the vertices. If we as-

sign a length ℓ to each link of the lattice and scale this as

ℓ = ℓ0N−1/d, with ℓ0 a renormalization constant related to the

Planck length, we obtain the formal continuum limit

1

~g

∑

i

κ(i)→ 1

2(d + 2)ℓd−2
0

N1−2/d

~g

∫

dVol R . (9)

Both sides do of course vanish since the Zd lattice is Ol-

livier flat and the Euclidean space Rd it approximates is Ricci

flat. However, this formal continuum limit shows, first, that

the combinatorial Einstein-Hilbert action goes over into the

continuum Einstein-Hilbert action and, secondly, that this re-

quires a scaling of g~ ∼ N1−2/d. We will return to this all-

important scaling below. For the moment let us retain that

the the combinatorial quantum gravity model has the correct

formal continuum limit.

Having established that the hard-core condition is sufficient

to stabilize space and obtain the correct (formal) continuum

limit we can adopt the simpler mean field action expressed in

terms of the total number of squares provided we explicitly

exclude configurations with more than (2d − 2) squares per

edge. To this end we compute

∑

i

κ(i)= −(4d − 4)N +
1

d

∑

i

∑

ei

Ns (ei)

=
−8

d

[

d(d − 1)

2
N − Ns

]

, (10)

which gives the final result

S
m f

EH
=

4d − 4

g
N
[

1 − ζ] , (11)

where ζ = 2Ns/(d(d − 1)N) (0 ≤ ζ ≤ 1) is the density of

squares.

A CONTINUOUS NETWORK PHASE TRANSITION AND

THE ENTROPY AREA LAW

Let us consider the free energy of the model (divided by the

“temperature” ~g)

F =
4d − 4

~g
N
[

1 − ζ] − S (N) , (12)

where S (N) is the entropy of the graphs. In traditional statis-

tical mechanics models the degrees of freedom, typically (but

not necessarily) living on the vertices of a lattice, interact with

a fixed number of their neighbours. As a consequence, both

the energy and the entropy are extensive quantities, scaling

like the volume N (number of vertices of the lattice). Phase

transitions, thus, show up when the external intensive param-

eter temperature T (or coupling constant in case of quantum

phase transitions) crosses a critical value Tc where energy and

entropy exactly compensate. This is not so in the statistical

mechanics of networks [14]. On networks, interactions are

represented by edges. Each vertex can thus interact with a

number of other vertices that diverges in the limit N → ∞:

contrary to traditional statistical mechanics models on lattices,

network are infinite-dimensional. Moreover, there is no a pri-

ori notion of locality on networks. On random graphs, e.g.,

there can be an edge between any two vertices. As explained

in detail in [3], the infinite-dimensionality of networks has

the consequence that the phase structure of networks is de-

termined by critical functions of N rather than critical values,

e.g.

phase 1 if limN→∞

(

T (N)

Tc(N)

)

= 0 ,

phase 2 if limN→∞

(

T (N)

Tc(N)

)

= ∞ . (13)

When the temperature (or the coupling in the quantum case)

is chosen to scale exactly as the critical function,

limN→∞

(

T (N)

Tc(N)

)

= t , (14)

the phase transition appears typically as a traditional one in

terms of the rescaled coupling t, one phase appearing for t < tc
and the other for t > tc with the difference that energy, entropy

and free energy need not be extensive quantities anymore but

can have a different scaling in terms of the volume N (see e.g.

the mean field solution of the two-star model in [14]).

This is exactly what seems to be realized in the present

model of combinatorial quantum gravity. The formal contin-

uum limit (9) is well-defined only if the coupling ~g scales as

~g ∼ N1−2/d. And remarkably, exactly when this scaling is

chosen, the order parameter ζ = 2Ns/(d(d−1)N) representing

the density of squares collapses onto an N-independent func-

tion suggestive of a traditional second-order phase transition,

as shown in Fig. 1 for the case d = 4.

Second order phase transitions are characterized by the di-

vergence of the correlation length at the critical point. We

can define a correlation length also on graphs. To this end

we define the local order parameter ζ(i) = 2Ns(i)/(d(d − 1))

characterizing the density of squares at each vertex i and we

compute the correlation function

C (d(i j)) =
< (ζ(i) − ζ̄)(ζ( j) − ζ̄) >

σ(i)σ( j)
, (15)

as a function of the graph distance d(i j) between vertices.

Here ζ̄ denotes the expectation value whereas σ(i) is the stan-

dard deviation of ζ(i). Expressing, as usual, this correlation

function as

C (d(i j)) = exp

(

−d(i j)

ξ

)

, (16)
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FIG. 1. Monte Carlo simulation of the average number of squares

for d = 4 and N = 300, N = 400 and N = 500 as a function of

the rescaled coupling ~g/
√

N. Random regular graphs with sparse

squares Ns ∼ Poisson (600.25) and logarithmic distance scaling at

large values of the coupling constant turn into Z4 lattices with the

maximum number of squares Ns = 6N and power-law distances

when gravitation becomes weak.The horizontal lines correspond to

the expected number of squares for random regular graphs of the cor-

responding volume N.
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FIG. 2. The correlation length in units of the graph diameter, aver-

aged over different graph sizes as a function of the rescaled coupling

G = ~g in Fig. 2 for the case d = 3.

defines the correlation length ξ. The correlation length in units

of the graph diameter, averaged over different graph sizes, is

plotted as a function of the rescaled coupling G = ~g in Fig. 2

for the case d = 3.

Remarkably, this plot indeed shows the typical behaviour

of the correlation length at a second order phase transition,

the divergence being of course cut-off by finite size effects.

This second order phase transition, if confirmed by further

studies, marks the emergence of geometric space, in the form

of flat tori locally isomorphic to Zd from random regular

graphs as a consequence of the condensation of the short-

est cycles, squares. This critical point would provide a non-

perturbative definition of quantum gravity according to the

asymptotic safety scenario [4], in which the critical value

Gc ≃ 400 (d = 4) (see Fig.1) of the rescaled coupling

~g/N1−2/d defines Newton’s gravitational constant via the re-

lation GNewton = (3/4π)Gcℓ
2
0
/~.

A further important consequence of this second-order phase

transition is derived from the expression (12) of the free en-

ergy. As explained above, the scaling ~g ∼ N1−2/d is exactly

the critical function of the graph model. The existence of a

second-order phase transition with this scaling would imply

the existence of a balance critical value between energy and

entropy, which would further imply that, with this scaling, en-

ergy and entropy have themselves the same scaling behaviour

with the volume N. This immediately leads to the scaling be-

haviour S (N) ∼ N2/d for the entropy of the graphs, in both

phases of course. Since N represents the volume, this scal-

ing law is a combinatorial version of the entropy area law in

quantum gravity [15].
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