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ABSTRACT

There ought to exist a reformulation of quantum theory which does not depend on classical

time. To achieve such a reformulation, we introduce the concept of an atom of space-

time-matter (STM). An STM atom is a classical non-commutative geometry, based on an

asymmetric metric, and sourced by a closed string. Different such atoms interact via en-

tanglement. The statistical thermodynamics of a large number of such atoms gives rise, at

equilibrium, to a theory of quantum gravity. Far from equilibrium, where statistical fluctu-

ations are large, the emergent theory reduces to classical general relativity. In this theory,

classical black holes are far-from-equilibrium low entropy states, and their Hawking evap-

oration represents an attempt to return to the (maximum entropy) equilibrium quantum

gravitational state.
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It is a consequence of the Einstein hole argument that there must exist a reformulation of

quantum theory which does not refer to a classical space-time manifold [1]. The search for

such a reformulation is the most pressing amongst all the foundational problems of quantum

theory, and naturally leads to a candidate quantum theory of gravity [2]. Considering that

non-commutativity in phase space is the essence of quantum theory, the natural analogue for

commuting space-time in the sought for reformulation is the geometry of non-commuting

coordinates, in the spirit of Connes’ non-commutative geometry. We propose here that

physical laws are invariant under general coordinate transformations of non-commuting co-

ordinates. This helps us to construct a non-commutative classical gravity theory, from which

emerges the sought-for reformulation of quantum theory without classical time.

When coordinates are non-commuting, anti-symmetric objects such as (dt̂ dx̂−dx̂ dt̂) are

non-vanishing, and contribute to the line element. Hence, we build the non-commutative

gravity theory by starting from a classical (commuting) gravity-torsion theory based on an

asymmetric metric Φµν ≡ gµν + ψµν and the asymmetric connection [3]

Γ̃ σ
µν = Γ σ

µν + S σ
µν (1)

The symmetric part of the connection (the Christoffel symbols) is related to the symmetric

part of the metric as usual, and we define the anti-symmetric part of the connection (i.e.,

the anti-symmetric torsion tensor) from the anti-symmetric part of the metric:

Sµνσ = ψ[µν,σ] =
1

3
(ψµν,σ + ψσµ,ν + ψνσ,µ) (2)

The gravity-torsion part of the action is the (dimensionless) Einstein-Hilbert action for

an asymmetric metric and asymmetric connection

Sg =
1

16πL2
p

ˆ
d4x
√
−Φ R(Γ̃) (3)

The only fundamental constants are the square of the Planck length, and the speed of

light. Newton’s gravitational constant G and Planck’s constant ~ will emerge subsequently.

It can be shown [3] that the vacuum field equations arising from this action do not admit

spherically symmetric solutions, and that the matter source must be an extended object

which also possesses a spin vector ξµ (note we are summing over the discrete, infinitesimal

parts of the extended object):

SM =
∑
n

[
mnc

2

ˆ
dτn

√
dxµn

dτn

dxνn
dτn

gµν +
c2

2

ˆ
dτn ξ

µ
n

dxνn
dτn

(2ψµν + gµν)

]
(4)
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III. Level THREE : CLASSICAL GRAVITATIONAL DYNAMICS

ds2 = gμνdxμdxν Torsion Gravity 
Asymmetric Metric: Φμν = gμν + ψμν

CM
CST

ds2 = gμνdxμdxνQFT

CST

II. Level TWO : QFT ON CLASSICAL CURVED SPACE-TIME

Space-time with Torsion 
Asymmetric Metric: Φμν = gμν + ψμν

0. Level ZERO : NON-COMMUTATIVE TORSION GRAVITY

THERMODYNAMICS OF ATOMS

I. LEVEL ONE : QUANTUM GRAVITY

ATOMS OF SPACE-TIME-MATTER

STM FLUID

STM FLUID

ATOMS

ATOMS

Quantum Gravity 
Asymmetric Operator Metric

Non-commutative Geometry 
Asymmetric  Metric

STD

SL

FIG. 1. The four layers of gravitational dynamics. Level III: A torsion gravity theory (classical)

with an asymmetric metric, coupled to strings, to which classical general relativity is an excellent

approximation in the macroscopic realm (matter dominating over spin). Note CM: Classical Me-

chanics; CST: Classical Space-Time. Level 0: Non-commutative torsion gravity (classical). In the

microscopic realm, torsion becomes significant, and one has to introduce non-commutativity in the

space-time geometry. Each space-time-matter (STM) atom is a non-commutative torsion gravity;

STM atoms interact with each other through entanglement. Level I is quantum field theory with-

out classical time (candidate quantum gravity). It arises from doing statistical thermodynamics

(STD) on the STM atoms of Level 0. The transition from Level I to Level III is via spontaneous

localisation (SL). This causes the emergence of classical space-time and classical general relativity,

while also explaining the quantum-to-classical transition and providing a falsifiable solution to the

quantum measurement problem. Level II: Quantum field theory on a classical space-time (a hy-

brid of Levels I and III): matter is quantum but space-time geometry is classical. We explain in

the essay the conditions under which such a hybrid description is valid. Figure taken from [2].
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The spin couples to torsion, as expected. For macroscopic sources, mass dominates spin,

torsion is negligible, and the theory reduces to classical GR. Remarkably, this matter action

above is the low energy limit of the world-sheet action for a closed string [3]

SM =
1

L2
1

ˆ √
−γ d2χ+

1

L2
2

ˆ
ψµν dσ

µν , (5)

which includes a Nambu-Goto part and a Kalb-Ramond part. We call the theory described

by the action S ≡ Sg + SM

S =
1

16πL2
p

ˆ
d4x
√
−ΦR(Γ̃) +

1

L2
1

ˆ √
−γ d2χ+

1

L2
2

ˆ
ψµν dσ

µν , (6)

(commutative) torsion-gravity. This is the theory at Level III in our Level diagram in Fig.

1. Its field equations can be derived by varying w.r.t. the metric, and the string evolves

according to a geodesic equation which follows from the field equations.

Our fundamental theory at Level 0, from which quantum theory without classical time

will emerge, is the non-commutative analogue of the above (commutative) torsion-gravity

theory. In Connes’ non-commutative geometry (NCG), the coordinates {xµ} are encoded

within the quantum algebra on Hilbert space H. The infinitesimal dx is replaced by a

compact operator ε, the integral
ffl
ε of an infinitesimal is the coefficient of the logarithmic

divergence in the trace of ε. The Riemannian line-element ds =
√
gµνdxµdxν is replaced by

the operator dŝ = fermion propagator, i.e. the inverse of the Dirac operator D [4].

The algebra A of the operator coordinates, along with the Hilbert space and the Dirac

operator, define the spectral triple {A,H, D} which is the essence of NCG. In NCG, we no

longer have the Riemannian manifold of space-time as a fundamental entity, but rather, it is

an approximate, derived concept, constructed out of the D−1. This means that we no longer

consider the configuration - or coordinate - space description as fundamental; indeed the

spatial points {x} no longer have any meaning outside of the spectra of the corresponding

operator in our algebra (such as x̂). This, of course, leads to new notions of distances,

derivatives, and integrals. In particular, we have the method of Dixmier traces, used to

compute quantised integrals inside
ffl

.

In the spirit of NCG, the torsion-gravity action (6) is replaced by the NCG torsion-gravity

action of the type

SNCG =
1

L2
pl

 
geom

dŝ2 +
1

L2

 
matter

dŝ2 (7)

(where we have assumed L1 = L2). In the Riemannian limit, when the coordinates become

commuting, this action reduces to the action (6). We call action (7) an atom of space-time-

matter (STM). Thus, we do not make any distinction between matter (i.e. the elementary

particle/closed string) and the non-local space-time geometry it ‘produces’. The STM atom
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is a primordial unit of structure, as if to say that the matter unit carries its own space-

time geometry and is a universe in itself. The distinction between matter and space-time

geometry is only an emergent concept. The full Hilbert space is populated by a large

number of STM atoms, each carrying its own NCG space-time. This is depicted as Level

0 in Fig. 1. Various atoms interact via entanglement - say |1a〉 and |1b〉 are two states of

the first atom, and similarly |2a〉 and |2b〉 for the second atom, then the entangled state

|1a〉 |2a〉+ |1b〉 |2b〉 represents interaction, including the gravitational interaction of the two

space-time geometries. We will see below that when a very large number of STM atoms are

entangled, that leads to the emergence of classical space-time.

The non-commutative action in principle implies a set of operator field equations which

relate the closed string to its curvature-torsion. In NCG, according to the Tomita-Takesaki

theory, there is a one-parameter group of inner automorphisms of the algebra A of the

coordinates - this serves as a ‘god-given’ (as Connes puts it) time parameter with respect to

which non-commutative spaces evolve. This Connes time τ has no analog in the commutative

case, and we employ it to describe evolution. An STM atom evolves geodesically in Connes

time. The evolution is non-linear; it is non-unitary (because the asymmetric metric is

not necessarily self-adjoint), yet it is norm-preserving because the evolution is geodesic.

These are precisely the features required for spontaneous collapse in models of objective

wave vector reduction. But unlike the ad-hoc noise introduced in collapse models, here the

desired GRW/CSL type evolution is natural to an STM atom in non-commutative geometry.

As we explain below, from here the physics of spontaneous collapse is emergent at Level I.

In the spirit of the theory of trace dynamics, one can use the above non-commutative

action to define canonical configuration and momentum dynamical variables, and from there

a trace Hamiltonian. It is expected that the theory admits a conserved Adler-Millard charge

C̃, this being the sum of the [q, p] commutators over all the bosonic degrees of freedom,

minus the sum over anti-commutators {q, p} of the fermionic degrees of freedom. Like in

ordinary classical dynamics, Hamilton’s equations of motion can be worked out as well. In

this regard, the NCG of an STM atom resembles the matrix mechanics of trace dynamics

[5], but with the space-time manifold replaced by the non-local non-commutative space of

NCG.Thus the rules of calculus in this matrix dynamics are those of NCG.

Assuming that one is observing the dynamics of the STM atoms over length scales much

larger than Planck length, one constructs the statistical thermodynamics of a large number

of STM atoms, taking us to Level I. An entropy function and a partition function are

constructed, and maximising the entropy yields the theory at thermodynamic equilibrium.

The thermal bath with which the STM atoms are assumed to be in equilibrium requires

an absolute time parameter to be specified, and we assume that to be Connes time. Since

there is no classical space-time at this level, we do not consider this as a violation of Lorentz

invariance. Once Lorentz invariance emerges at Level III, non-commutativity is lost, and
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hence so is Connes time.

The full Hamiltonian is the sum of Hamiltonians of individual STM atoms, and at thermo-

dynamic equilibrium, the conserved Adler-Millard charge is equipartitioned over all degrees

of freedom, with the equipartitioned constant value per every degree of freedom assumed

to be equal to the Planck constant ~. Thus in ~ we have the third fundamental constant

of the theory, after Planck length and speed of light; then Newton’s gravitational constant

G is defined as G ≡ L2
pl c

3/~. As in trace dynamics, the canonical thermal averages of the

dynamical variables obey the standard commutation relations of quantum field theory, and

they also obey the Heisenberg equations of motion. We have arrived at Level I.

In the functional Schrödinger picture, at equilibrium, one gets a Wheeler-DeWitt like

equation, for the state Ψi of the gravitational (i.e. with asymmetric metric) and coupled

matter degrees of freedom of the i-th STM atom:

i~
δΨi

δτ
= Hi Ψi (8)

One is still in the same Hilbert space as that of Level 0, but we now have a coarse-grained

view of this Hilbert space. We are observing the approximate equations satisfied by the

STM atoms, in thermodynamic equilibrium, and these are indeed the equations of quantum

gravity. Quantum gravity is an emergent phenomenon, arising from an underlying non-

commutative classical dynamics operating in the Hilbert space, at the Planck scale. As

before, one can make entangled states from solutions of the Wheeler-deWitt like equations

for different STM atoms. This is also the sought for quantum theory without classical time.

Just as in trace dynamics [5] statistical fluctuations around thermodynamic equilibrium

play an extremely significant role also in this theory. These fluctuations prevent the equipar-

titioning of the Adler-Millard charge, and result in departures from quantum theory and

from quantum gravity. The effect of fluctuations on the averaging of C̃ can be represented

as stochastic corrections to its ensemble average. This consequently results in stochastic

modification of the emergent Heisenberg equations of motion. Equivalently, the Wheeler-

deWitt like functional Schrödinger equation gets endowed with stochastic corrections, be-

cause the fluctuations come from corrections to the Adler-Millard charge. While the STM

Hamiltonians for different atoms decouple from each other, the fluctuations couple different

STM atoms, because the corrections to C̃ depend on all the atoms, and not necessarily in a

separable way. Thus the stochastic Wheeler-deWitt like equation takes the non-linear form

i~
δΨ(q1, q2, ...)

δτ
=

([∑
i

Hi(qi)

]
+K(Ψ, q1, q2, ...)

)
Ψ(q1, q2, ...) (9)

where K represents stochastic corrections (depending on Ψ and naturally including an anti-

self-adjoint part). This non-unitary, non-linear stochasticity, a reflection of the underlying
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theory at Level 0, results in spontaneous localisation, taking us from Level I to III.

Spontaneous localisation has previously been proposed as a mechanism for explaining the

quantum-to-classical transition in quantum theory, and to provide a falsifiable solution to the

quantum measurement problem [6, 7]. However, we note here that the idea of spontaneous

localisation has much greater significance apart from its resolution of the measurement

problem. A relativistic generalisation of spontaneous localisation, as in (9), suggests that

space-time in itself results from this collapse of the wave function, and the solution of the

measurement problem is merely a special case of this phenomenon [8, 9]. The process

operates as follows.

Consider a state Ψ of N STM atoms in the Hilbert space at Level I, labeled by the space-

time operator coordinates x̂in of various such atoms. Thus we have Ψ = Ψ(τ, x̂i1, x̂
i
2, ...., x̂

i
N).

At random τ time, the fermionic part of the n-th atom undergoes spontaneous localisation

to some random eigenvalue xin of its operator coordinate. The bosonic part of the STM

atom stays uncollapsed. Macroscopic states are those which involve entanglement of many

STM atoms - these undergo extremely rapid spontaneous collapse, and are responsible for

the emergence of classical Lorentzian space-time. The classical field equations at Level III

arise as follows. Upon spontaneous collapse, each STM atom obeys the field equations

of commutative torsion gravity as described above in Section II. The average space-time

produced by many STM atoms is the average of the individual space-times of many STM

atoms. The metric, connection, and curvature are all averaged, e.g. the curvature scalar R of

the emergent classical space-time is the average of the curvature scalars Rn of the individual

atoms: R =< {Rn} >. With this assumption, the field equations of the emergent universe

are the same as the equations of classical torsion-gravity, with the matter source now being

given by energy-momentum coming from Eqn. (4), the sum over n now representing the

sum over many particles. When spin can be neglected, these reduce to the field equations of

classical general relativity. Uncollapsed objects stay on Level I – this means that fluctuations

are not significant for them. For such one or more STM atom(s), dynamics is described by

the Wheeler-deWitt like equation (without fluctuations). There is no background space-

time, nor a gravitational interaction, but entanglement is possible.

Level II describes quantum field theory on a classical curved space-time background, and

in particular on a Minkowski background. Strictly speaking, the quantum fields of Level II

ought to be described at Level I, because as we have reasoned earlier, one cannot funda-

mentally have matter as quantum and simultaneously space-time as classical. Except when

we make appropriate approximations and assumptions at Level I. These approximations are

as follows: a) The curvature produced by the STM atoms at Level I is ignorable b) In the

resulting operator space-time, the anti-symmetric part of the metric is now suppressed, so

that one is left only with an operator Minkowski space-time. Since every STM atom now has

an associated Minkowski space-time, it is assumed that together these individual Minkowski

7



space-times are equivalent to a global Minkowski operator space-time. Thus we have quan-

tum field theory on an operator Minkowski space-time. In analogy with the Stueckelberg

many-particle approach to relativistic quantum field theory, we can equivalently describe

this system as relativistic quantum mechanics on an operator space-time [8, 9].

Suppressing the operator nature of coordinate time enables the transition from Level

I to Level II. Notably though, the operator nature of time is responsible for the novel

phenomenon of quantum interference in/of time, for which we have argued that there is

experimental evidence [9–11]. The operator nature of spatial coordinates at Level I is now

interchanged for the operator nature of the canonical variables of quantum fields at Level

II.This is the justification for the conventional quantisation conditions when one goes from

Level III to Level II. When the operator nature of time is suppressed, Connes time τ is

interchanged for coordinate time, while going from Level I to Level II. The transition from

level II to Level III takes place via a GRW-type non-relativisitic spontaneous localisation

[8]. In particular, such localisation also solves the quantum measurement problem.

In the absence of non-gravitational interactions, spontaneous localisation from Level I to

III results in the formation of black holes. Being away from thermodynamic equilibrium,

these are states of [relatively] low entropy. Via Hawking evaporation, a black hole attempts

to return back to the maximum entropy thermodynamic equilibrium state of Level I. In our

picture, the formation of classical black holes and the emergence of the space-time manifold

and of classical general relativity are far from equilibrium processes. Eventually, over astro-

nomical periods, Hawking radiation takes the universe back to the quantum equilibrium of

Level I. And the inter-play between equilibrium and fluctuations continues in Connes time.
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