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Modern developments in quantum gravity suggest that the Standard Model (SM) degrees of
freedom are not unique; that a typical low energy effective theory should include a large assortment
of hidden sector degrees of freedom. It is therefore puzzling that cosmological constraints from
BBN and CMB reveal that the early universe was almost entirely dominated by the SM, when the
inflaton φ could have decayed into many sectors. Furthermore, the SM possesses an instability at
high scales that would be catastrophic during or just after inflation, and yet no new physics has
been seen to alter this. In this work we propose the following explanation for all of this: the hidden
sectors are in fact entirely natural; this means all unprotected masses are pushed up to high scales
and project out of the spectrum, while only massless (or protected) degrees of freedom remain, and
so the inflaton can only reheat these sectors through higher dimension (and suppressed) operators.
On the other hand, the SM possesses a special feature: it includes a light Higgs H, presumably
for life to exist, and hence it allows a super-renormalizable coupling to the inflaton φH†H, which
allows rapid decay into the SM. We show that this naturally (i) removes the instability in the Higgs
potential both during and after inflation, (ii) explains why the SM is dominant in the early universe,
(iii) allows dark matter to form in hidden sector/s through subsequent dynamics (or axions, etc),
(iv) allows for high reheating and baryogenesis, and (v) accounts for why there so far has been no
direct detection of dark matter or new physics beyond the SM.

Introduction.—The Standard Model (SM) of particle
physics and gravity has so far passed all experimental
tests in the laboratory and solar system. Its structure has
internal theoretical consistency with the laws of quantum
mechanics and relativity, far beyond any theory previ-
ously established, such as the Fermi theory or the theory
of elementary massive W-bosons. With the inclusion of
the Higgs particle and the graviton, it provides for the
first time a unitary theory up to the Planck scale, and it
is an open question at what scale it first breaks down.

On the other hand, from the top down point of view,
there is currently no understanding why the SM has the
particular set of degrees of freedom that it does. In fact
our leading theory of quantum gravity, string theory, sug-
gests there should be many hidden sectors; new degrees of
freedom beyond the SM involving new gauge groups and
various new types of particles (e.g., see [1, 2]). Further-
more, astronomical tests reveal to us new physics beyond
the SM, including dark matter, the need for a baryon
asymmetry, and the need for early universe inflation.

The existence of dark matter appears at first sight to
be in accord with such top down expectations; namely
one can imagine that the dark matter arises out of one
or more of these hidden sectors. This is an idea that
we will discuss more later in this letter. However, this
idea of many hidden sectors seems to be in great tension
with the following observational fact: Both big bang nu-
cleosynthesis (BBN) and cosmic microwave background
radiation (CMB) measurements tell us that the early uni-
verse was in fact almost entirely dominated by the SM
light degrees of freedom (photons, neutrinos, etc). The
current bound is that any new particles constituted < 4%
(at 95% confidence) the total energy of the early universe.
If there are in fact many hidden sectors, including those
that provide dark matter, etc, this seems quite puzzling.

In terms of the SM’s own internal consistency, there is

in fact a sub-Planckian scale at which it may be break-
ing down, giving us the first need for new physics. As
is well known, if we take the SM and run its coupling
up to high scales using the known renormalization group
(RG) equations, then there is a potential problem with
the Higgs H’s self-coupling λ (the coefficient of the quar-
tic term ∆L = −λ (H†H)2). At two-loops the running
of λ = λ(E) is given as the solid lines in Fig. 1. The
coupling goes negative for energies E & 1010−11 GeV,
depending on the top mass. This means that the cor-
responding effective Higgs potential Veff(h) ≈ λ(h)h4/4
turns over and goes negative at high scales too.

It is known that this turn over in the potential renders
the lifetime of our electroweak vacuum only meta-stable,
with a lifetime that is much longer than the current age
of the universe. However, this can have disastrous con-
sequences during the early universe, especially during or
just after cosmic inflation, since the Higgs field can ex-
hibit fluctuations that take it to the unfavorable side of
the potential. During inflation, there are de Sitter fluc-
tuations in the Higgs ∼ Hinf/(2π), which places a bound
on the inflationary Hubble scale of Hinf . 109 GeV, as
we determined in the context of eternal inflation recently
[3–5], with earlier estimates including Refs. [6–8]. Even if
this condition is satisfied during inflation, there are still
potential problems in the post-inflationary era; if there
are non-negligible couplings between the inflaton and the
Higgs, such as ∆L = −κφH†H−c φ2H†H, this can lead
to large parametric resonance that can again cause the
Higgs field to fluctuate to the unfavorable side [9–11].
The trilinear term ∼ φH†H seems especially dangerous
because it will cause the Higgs field to become tachyonic
as φ oscillates, leading to explosive fluctuations in H.

The traditional solution to the above is to assume
the Hubble scale of inflation is small and the coupling
of the Higgs to the inflaton is small to avoid the post-
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inflationary disaster. However, low scale inflation ar-
guably requires more fine-tuning of the inflationary po-
tential, especially since the bound Hinf . 109 GeV has to
be satisfied all the way back to very early times. More-
over, the need to have a small coupling between the infla-
ton and the Higgs only exacerbates the problem we men-
tioned earlier: it makes it difficult to efficiently reheat
the visible SM sector, relative to many possible hidden
sectors, and therefore we are left with the central puzzle
as to why the early universe was dominated by the SM.

In this letter, we point out that there is a very rea-
sonable framework that resolves all of these issues. We
allow for naturally large couplings between the inflaton
and the Higgs, including the trilinear coupling ∼ φH†H,
and point out that for large couplings, there is a tree-
level correction to the Higgs potential that can remove
the instability altogether for reasonable values of the in-
flaton mass, and for any scale of inflation. Furthermore,
we assume all the hidden sectors have entirely natural pa-
rameters: if unprotected masses are allowed for hidden
sector particles, we push their mass to very high scales,
heavier than the inflaton, and therefore can project out
of the spectrum. While massless (or very light particles,
such as axions with an approximate shift symmetry or
Dirac fermions with an approximate chiral symmetry)
can remain. This exploits the idea that the SM may be
very special; the idea is that it is the only sector that
exhibits a light scalar particle, the Higgs (presumably
for life to exist in our sector [12]), and hence permits a
super-renormalizable coupling to the inflaton ∼ φH†H,
while all natural hidden sectors would primarily only cou-
ple to the inflaton through higher dimension operators
∼ φGiµνG

µν
i , etc. As we show, this naturally produces

much colder hidden sectors, explaining why the SM is
dominant in the early universe. Furthermore, dark mat-
ter can readily form from hidden sectors at later times
due to strong coupling effects, as outlined by some of us in
Ref. [13], or possibly by axions, etc. We also comment on
how this framework can potentially accommodate baryo-
genesis immediately after inflation and accounts for why
we have yet to see any new physics beyond the SM.

Inflaton Couplings.—For a real scalar inflaton φ, we
write down all possible Lorentz invariant interactions. In
the SM the Higgs is special in that it possesses a dimen-
sion 2 operator H†H, related to the Higgs mass term.
For the hidden sector, we assume that all couplings are
natural, hence all bare masses are assumed to be taken
towards some high unification scale. This implies they ef-
fectively project out of the spectrum and are produced by
the inflaton in negligible quantities. This leaves dimen-
sion 4 kinetic terms for massless (or nearly massless due
to some symmetry) particles as the most relevant. The
leading interactions with the SM and the hidden sector
are therefore dimension 3 and dimension 5 operators, re-
spectively

∆L = −κφH†H −
∑
i

φ

4Mi
Tr[GiµνG

µν
i ] + . . . (1)

where Gi represents some hidden sector gauge bosons.
We also anticipate dimension 5 couplings to hidden sec-
tor fermions ∼ φ ψ̄ /∂ ψ, but this does not lead to rapid
decay of inflaton, due to helicity suppression, and so it
is not as important. For vector-like fermions, a small
Dirac mass may be possible by appealing to an approxi-
mate chiral symmetry; however, the dimension 4 Yukawa
coupling ∼ y φ ψ̄ ψ will then be small too. The coeffi-
cient κ will be constrained shortly by the requirements
of unitarity and cosmic stability, while the scale Mi rep-
resents some high mass scale, perhaps on the order of the
Planck mass MPl (≡ 1/

√
8πG). More generally, we can

lift these coefficients to be function of φ, as κφ → f(φ),
φ/Mi → fi(φ), which may be important during inflation
when the inflaton has very large field values, perhaps of
order MPl. However in the post-inflationary era, as φ red-
shifts, these leading terms will be of most importance.

Avoiding Instability.—To avoid the instability problem
we can correct the effective Higgs potential by exploit-
ing the direct coupling between the Higgs and the infla-
ton. One possibility would be to use the quartic coupling
∆L = −c φ2H†H, which leads to a loop correction to
the running of λ of the order ∆λ ∼ c2/(4π)2, requiring
c & O(1) to cure the problem. However, this is highly
problematic because this also leads to a correction to the
inflaton self-coupling ∼ λφ φ

4 of similar size. Since any
reasonable model of inflation has extremely small self-
interactions to give rise to small density fluctuations, this
would require significant fine-tuning.

In this work, we instead make use of the above trilinear
interaction, which is much more promising. At tree-level
the inflaton can mediate an exchange between a pair of
Higgses. The t-channel diagram is given in Fig. 3(a). By
summing over all 3 channels, we have a contribution to
the hh→ hh scattering amplitude of

δA = κ2

[
1

s−m2
φ

+
1

t−m2
φ

+
1

u−m2
φ

]
. (2)

We evaluate this at s = t = u = −E2, and it provides
a negative contribution to λ as we flow from the UV
into the IR (attractive interaction). We can incorporate
this into the running of the self-coupling λ by adding the
following contribution to the beta-function

βλ =
dλ

d lnE
= βSM

λ +
κ2E2

(m2
φ + E2)2

, (3)

where βSM

λ is the beta-function of λ in the pure SM. By
fixing λ to its observed value at low energies λ ≈ 0.13,
this provides a positive correction to the effective λ as
we flow to high energies E & mφ. We used the SM beta
functions at 2-loops, solving for the evolution of Higgs
self-coupling, the top quark Yukawa coupling, and the 3
gauge couplings. For sufficiently large values of κ and for
sufficiently small values of mφ, this can prevent the self-
coupling and the effective potential going negative. An
example of the effect on running is given by the dashed
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FIG. 1. Running of the Higgs self-coupling λ versus energy
(in units of GeV). The red curve is for mtop = 172.5 GeV, the
green curve is for mtop = 172.9 GeV, and the blue curve is
for mtop = 173.3 GeV. The solid curves are for the SM with
no coupling to the inflaton, which runs negative, exhibiting
an instability at high scales. The dashed curves are for the
SM with a nonzero trilinear coupling to the inflaton ∆L =
−κφH†H, with mφ = 1011 GeV and κ = 0.6mφ, which no
longer runs negative, removing the instability.

curves in Fig. 1. A similar idea with other kinds of (non-
inflationary) scalars was presented in Ref. [14] (connec-
tions to axions was described in Ref. [15]).

If the trilinear coupling κ is too large then the Higgs
self-coupling increases to such large values that the the-
ory violates unitarity at high scales. To determine the
unitarity bound, the scattering amplitude A can be de-
composed in partial waves al as

A = 16π
∑
l

(2l + 1) al Pl(cos θ). (4)

For the l = 0 partial wave, we have the unitarity bound
Re[a0] ≤ 1/2. For hh → hh scalar scattering, we use
the renormalized λ(E) at some energy scale E, giving
A = 6λ(E). Hence we have the unitarity bound

λ(E) ≤ 4π

3
(unitarity) (5)

Since the self-coupling can grow with energy due to the
trilinear coupling κ, this puts an upper bound on κ. For
concreteness, we can demand that our theory remain uni-
tary up to the Planck scale MPl = 2.4× 1018 GeV. In the
upper-left region of Fig. 2 this condition is violated.

On the other hand, if the trilinear coupling κ is too
small, then the Higgs self-coupling still runs negative.
This means the instability in the Higgs potential persists,
which can have disastrous effects during or after inflation.
In the lower-right region of Fig. 2 this problem occurs.

In the colored regions of Fig. 2 neither of the above
problems occur. The allowed region is sensitive to the
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FIG. 2. Allowed region for the parameters in the model: the
vertical axis is the trilinear coupling κ (in units of mφ) and
the horizontal axis is the inflaton mass mφ (in units of GeV).
The red region is for mtop = 172.5 GeV, the green region
is for mtop = 172.9 GeV, and the blue region is for mtop =
173.3 GeV. In the lower-right region the trilinear coupling κ
is so small that the Higgs potential still exhibits an instability.
In the upper-left region the trilinear coupling κ is so large that
the theory violates unitarity below the Planck scale MPl.

value of the top mass mtop. To make this figure we
have fixed all other parameters to the central best-fit
values: Higgs mass is mh = 125.1 GeV, strong cou-
pling is αs(mZ) = 0.1181, electromagnetic coupling is
α(mZ) = 1/127.9, and weak angle is sin2 θw = 0.23122.
For the top mass we have explored the favored region
based on recent data, namely

mtop = 172.9± 0.4 GeV. (6)

(the contribution from all lighter SM fermions is neg-
ligible). We note that for the central value of the al-
lowed top mass 172.9 GeV, the inflaton mass can be as
large as mφ ∼ 1012 GeV if we push κ towards its upper
value allowed by unitarity κ ∼ 1mφ. If the top mass is
taken towards its lower value allowed by current data,
then the inflaton mass can be even higher, approaching
∼ 1013 GeV. The latter is near its preferred value in some
of the simplest inflation models, such as chaotic inflation.

We note that since κ . mφ, the renormalization of
the inflaton’s mass ∆m2

φ ∼ κ2/(4π)2 is small, and so no
additional fine-tuning is introduced in the inflaton sector.

Dark Radiation Relic Abundance.—In the beginning
of the post-inflationary era of “preheating”, the Higgs
field may undergo parametric resonance as the inflaton
oscillates coherently about its minimum [16]. Since we
are including the ∼ κφH†H interaction, this may be
quite explosive. (In the literature, this resonance is of-
ten avoided by demanding that the (maximum) Floquet
exponent µF ≈ κφamp/(2mφ) . Hubble, which implies
κ . m2

φ/(MPl). But this suppresses the decay into SM.)
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However, since there is no true instability remaining in
our potential, a resonance is harmless; it quickly leads to
fragmentation of the inflaton condensate, and then the
system approaches more standard incoherent behavior.

At this time, perturbative processes will become im-
portant, including the decay of the inflaton into Higgs
particles and hidden sector gauge bosons γi, etc, with
rates (see Fig. 3 (c) & (d))

Γ(φ→ hh) =
gh

32π

κ2

mφ
, (7)

Γi(φ→ γi γi) =
gi

128π

m3
φ

M2
i

, (8)

where gh is the number of components of the Higgs, which
in the SM is gh = 4, and gi is the number of dark bo-
son helicities, e.g., for SU(Ni), we have gi = 2(N2

i − 1).
Since we assume κ ∼ mφ (recall Fig. 2) and since Mi

is assumed to be near some high scale, such as MPl, we
can be sure that the decay into the Higgs is fastest. The
Higgs will then interact with itself and the rest of the
SM and thermalize. This thermalization will be rapid
and occur at the time treh ∼ 1/Hreh ∼ 1/Γ(φ→ hh). Us-
ing the Friedmann equation in a radiation dominated era
H2

reh = g∗π
2T 4

reh/(90M2
Pl), gives the standard estimate for

the reheat temperature Treh ≈ 0.5
√

ΓMPl. For κ ∼ mφ,
we obtain

Treh ∼ 0.1
√
mφMPl. (9)

For the central top mass, we need mφ . 1012 GeV, giv-
ing Treh . 1014 GeV. This allows for such high reheat
temperatures that new particles may be produced with
renormalizable couplings to the SM. In particular, this
may allow for baryogenesis in the visible sector to occur.

In order to determine the abundance of the hidden
sectors, we need to determine the inflaton abundance and
in turn the dark radiation abundances. The Boltzmann
equation for the inflaton’s occupancy number fφ(p) is

ḟφ(p) + 3Hfφ = Γ̃(p)(feq(p)− fφ(p)) + . . . , (10)

where Γ̃(p) is the decay rate for a particle of momen-
tum p. It is related to the ordinary decay rate Γ by
Γ̃(p) = Γχ(p, T )/γ(p), where γ(p) = mφ/Eφ(p) is the
Lorentz factor from time dilation and χ(p, T ) ≥ 1 is a
factor that accounts for Bose enhancement. We are in-
cluding both the forward and backward processes of 1
inflaton into 2 Higgses (since coupling to dark radiation
is suppressed), as depicted in Fig. 3 (c), while the “+. . . ”
indicates other processes, such as 2 inflatons into 2 Hig-
gses, as depicted in Fig. 3 (b), etc. It is easy to check
that these rates are much larger than Hubble, ensuring
thermal equilibrium of the inflaton with the SM for all
temperatures. This implies that for T � mφ its abun-

dance becomes Boltzmann suppressed nφ ∝ e−mφ/T .
On the other hand, the dark sectors are expected to

never be in thermal equilibrium with the SM or the in-
flaton. For Mi near the Planck scale, it is clear that the

(a) (b)

(c) (d)

FIG. 3. Some relevant processes in this letter. The dashed
lines represent the Higgs, solid lines represent the inflaton,
and wiggly lines represent hidden sector particles, such as hid-
den gauge bosons. (a) gives a tree-level correction to Higgs
self-coupling λ, (b) & (c) allow Higgs and inflaton to ther-
malize during reheating, and (d) allows inflaton to decay into
hidden sector particles.

production rate (from decays or annihilations) of dark
radiation is always much smaller than Hubble. The de-
cay rate was given earlier in Eq. (8). Since it is given
by 2 inverse powers of Mi, while Hubble is only given
by 1 inverse power on MPl, it readily follows that it is
smaller in the regime of interest T & mφ (before the in-
flaton abundance plummets exponentially). Production
from annihilations Γann = neq〈σv〉 can be estimated (for
T & mφ) as Γann(hh → γi γi)/H ∼ κ2MPl/(TM

2
i ) and

Γann(φφ → γi γi)/H ∼ T 3MPl/M
4
i . The former is maxi-

mal at T ∼ mφ and is moderately sub-dominant to the
decay process φ→ γi γi (since κ . mφ), while the latter
is maximal at high temperatures. If we push Mi to be
somewhat close to MPl and T ∼ Treh, then this ratio is
parametrically ∼ (mφ/MPl)

3/2, which is extremely small.
Although it is out of equilibrium, the hidden sector will

be produced by inflaton decay. We would now like to de-
termine the final energy density of dark radiation. Since
the inflaton is in thermal equilibrium with the SM, and
its number density is changing over time, we can deter-
mine the final energy density of dark radiation produced
from decays as

ρi(t) =
mφ Γi
a4(t)

∫ t

0

dt′ nφ(t′) a4(t′), (11)

where nφ is the number density of inflatons (we can ig-
nore any Bose enhancement factors here, because the in-
jection energy ∼ mφ turns out to be much higher than
the dark temperature). We switch the time variable to
temperature, using dt′ = dT ′(dt′/dT ′) = −dT ′/(T ′H ′)
(using a ∝ 1/T ). We use the Bose-Einstein distribution
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nφ ∼
∫
d3k/(eEk/T − 1) and the Friedmann equation to

obtain the following result for the ratio of energy densi-
ties of dark species to the SM thermal bath at late times

ρi
ρSM

=
5
√

5π2

7
√

2 g
3/2
∗

ΓiMPl

m2
φ

. (12)

Using the SM value for the number of relativistic degrees
of freedom g∗ = 106.75 and the decay rate in Eq. (8), we
obtain the relative amount of total dark radiation as

ρd
ρSM

≈ 2.5× 10−5
∑
i

gi
mφMPl

M2
i

. (13)

We see that if Mi is pushed to some high scale (such as
Planck scale, or even a little lower), we have ρd � ρSM,
even if the number of degrees of freedom in the hid-
den sectors is huge. For illustration, if we take Mi =
1017 GeV, mφ = 1012 GeV, then we can still have O(105)
dark degrees of freedom and still maintain ρd/ρSM <
0.001 at very early times.

Also, if we let gi∗ be the number of effective degrees
of freedom in ith dark sector (gi∗ = gi + 7ni/8, where
gi is number of light bosons and ni is number of light
fermions), then we determine the ratio of temperatures
of the ith dark sector to visible sector to be

ξi ≡
Ti
T
≈ 0.006

(
gimφ

gi∗ 1012 GeV

)1/4(
MPl

Mi

)1/2
. (14)

Constraint From BBN and CMB.—To compare this to
constraints from BBN and CMB, we need to track the
evolution down to temperatures T ∼ 1 MeV and below.
If there is strong dynamics, some (or most) of the dark
degrees of freedom can confine and convert their entropy
into the remaining massless degrees of freedom. We call
the number of degrees of freedom g̃i∗ at BBN after any
possible confinement, and for the (dominant) visible sec-
tor we use notation g∗(= 106.75) and g̃∗(= 10.75).

As is well known, at the time of BBN, the SM pre-
diction for the effective number of neutrino species is
Neff ≈ 3.046 (slightly larger than 3 due to a small cou-
pling during e+e− annihilation). Hidden sectors con-
tribute the additional amount [13]

∆Neff =
4

7

∑
i

ξ4i g̃i∗

(
gi∗ g̃∗
g̃i∗ g∗

)4/3
, (15)

The current bound on the number of additional mass-
less species is [18] ∆Neff < 0.30 (95% confidence), which
translates into the bound on the additional energy den-
sity of ∆ρ/ρSM < 4% (95% confidence), as mentioned in
the introduction. By using the result in Eq. (14), we have
ξi ∼ 10−2, and so the BBN bound is readily satisfied even
for a very large number of particles in hidden sectors.

Discussion: (i) Dark Matter.—Although the tempera-
tures and hence energy densities of the dark sectors are
small at early times, this framework still readily allows
for the formation of dark matter. If one or more dark

sectors include chiral fermions and undergo confinement,
then massive degrees of freedom can emerge, such as dark
baryons etc, as outlined by some of us in Ref. [13]. This
can lead to dark matter as a thermal relic, with abun-
dance

Ωd ≈
∑
i

ξi
0.26

(18 TeV)2〈σiv〉
. (16)

So although it is suppressed by a factor of the ratio of
temperatures ξi ∼ 10−2, or so, this can still readily pro-
duce the observed dark matter abundance Ωd ≈ 0.26,
by either (a) exhibiting strong dynamics at the scale
Λi ∼ 101−2 TeV/

√
ξi, or (b) compensating by exploiting

many sectors.
For pure Yang-Mills hidden sectors, glueballs can form

with relic abundance Ωi ∼ ξ3i (Λi/(10 eV)) for SU(Ni)
with Ni ∼ 3 [17]. If one had ξi ∼ 1, then this would
be highly problematic, since one would need Λi . 3 eV
to avoid over closure, but this leads to huge scattering
cross sections σsc ∝ 1/Λ2 in galaxies, which is clearly
ruled out. However, if we take our result from eq. (14)
with ξi ≈ 0.006, we can have Λi ∼ 50 MeV, which is
marginally compatible with bullet cluster constraints,
suggesting interesting deviations from CDM.

Other possibilities for dark matter include axions
through the misalignment mechanism. Depending on pa-
rameters, hidden sector axions could over close the uni-
verse, so we must forbid such parameters in this scenario.

(ii) Isocurvature.—We note that in this framework,
since both the visible and dark sectors all arise from the
decay of the same inflaton φ, the model predicts that the
primordial fluctuations are adiabatic. This is in accord
with all current observations [18]. If the dark matter
arises from axions, then non-trivial bounds may apply.

(iii) Lightness of Higgs.—In this framework the light-
ness of the Higgs is accepted; we do not require a direct
dynamical resolution to the hierarchy problem. Instead
it is assumed that the smallness of the electroweak scale
(and hence the Higgs mass) is due to environmental se-
lection effects; namely, if the electroweak scale were sig-
nificantly larger, then all nuclei would decay [12], and
observers would not be present. This explanation for
the lightness of the electroweak scale has been criticized
(e.g., [19]) by noting that an alternative for the small-
ness of the electroweak scale could have been provided
by technicolor. This appears to be just as conducive to
observers and would occur much more readily in some
landscape scenario, since technicolor does not appear to
suffer from any fine-tuning.

However, our framework provides a new perspective
on this issue; the Higgs provides a unique opportunity
for the inflaton to decay into the SM by the dimension
3 operator ∼ φH†H, thus predominantly populating the
visible sector (also see Ref. [20]). On the other hand, this
opportunity would be lost in a Higgs-less model like tech-
nicolor. Hence it is plausible that in any universe with
technicolor, while the electroweak scale may be naturally
small, there would be a relatively huge abundance of dark
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radiation. This leads to its own environmental problems
by wiping out small scale structure [21], but this problem
is avoided in a universe with a light Higgs.

(iv) Inflaton mass and top mass.—We can compare
our findings for the preferred inflaton mass, Fig. 2, to
expectations from inflationary predictions. The squared-
amplitude of fluctuations from inflation is known to be
P ≈ H2

inf/(8π
2M2

Plε), with measured value P ≈ 2× 10−9.
In the simplest models of chaotic inflation, V = m2

φφ
2/2,

this requires an inflaton mass of mφ ∼ 1013 GeV, which is
slightly high compared to what is allowed in Fig. 2. How-
ever, such models predict a large tensor-to-scalar ratio,
so lower values of Hinf are required by constraints on pri-
mordial B-modes. In simple models this is (though not
always) correlated with lower values of the inflaton mass.
This is then nicely compatible with the required values
from Fig. 2 in order to stabilize the Higgs potential.

We note that if the top mass were considerably higher,
then very low inflaton masses would be required to avoid
the instability, which seems unsatisfying. While if the top
mass were considerably lower, then we would not want a
trilinear coupling κ that were so large, because it would
exacerbate the unitarity problems. Hence in some sense,

the observed value of top mass is optimal in this scenario.
(v) Lack of new physics at low energies.—In summary,

we have found an extremely minimal scenario that ap-
pears to accommodate all of the central features of our
universe; vacuum and Higgs stability, the domination of
the SM in the early universe, inflation, dark matter, and
possibly baryogenesis too by allowing for high reheating.
It does so by positing only that our sector is atypical, pre-
sumably for life to exist, giving us a light Higgs, while all
the other hidden sectors are entirely natural. This pre-
vents large direct couplings of the inflaton to light par-
ticles in hidden sectors and it suggests that new physics
may only enter at very high scales associated with infla-
tion. So this framework accounts for why there has so
far not been any direct detection of dark matter or new
physics beyond the SM in colliders or precision tests.
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