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We show that our Universe lives in a topological and non-perturbative vacuum state full of a
large amount of hidden quantum hairs, the hairons. We will discuss and elaborate on theoretical
evidences that the quantum hairs are related to the gravitational topological winding number in
vacuo. Thus, hairons are originated from topological degrees of freedom, holographically stored
in the de Sitter area. The hierarchy of the Planck scale over the Cosmological Constant (CC) is
understood as an effect of a Topological Memory intrinsically stored in the space-time geometry. Any
UV quantum destabilizations of the CC are re-interpreted as Topological Phase Transitions, related
to the desapparence of a large ensamble of topological hairs. This process is entropically suppressed,
as a tunneling probability from the N- to the 0-states. Therefore, the tiny CC in our Universe is a
manifestation of the rich topological structure of the space-time. In this portrait, a tiny neutrino
mass can be generated by quantum gravity anomalies and accommodated into a large N-vacuum
state. We will re-interpret the CC stabilization from the point of view of Topological Quantum
Computing. An exponential degeneracy of topological hairs non-locally protects the space-time
memory from quantum fluctuations as in Topological Quantum Computers.

Introduction: topological aspects of the cosmological
stabilization. In our recent works, we elaborated on the
holographic stabilization of the Cosmological Constant
(CC) from the large entropy content in vacuo. The CC
problem is re-thought considering a holographic decoher-
ence induced by a large ensamble of dynamical quantum
hairs, dubbed hairons [1, 2]1. All CC quantum instabili-
ties are suppressed as

e−S ∼ e−N ,
where S is the Universe entropy and N is the number of
hairons. We will elaborate on this picture and on the mul-
titude of inter-related questions: what are the hairons?
How are they originated from? What is the mechanism
behind the quantum information storage and memory in
space-time?

In this paper, we explore a curious and potentially in-
sightful relation of the N with the gravitational instan-
tons and the quantum gravity topological sector. We
show that the entropic solution of the CC problem is also
related to a topological protection against CC-Planckian
mixings. Intriguingly, this corresponds to the Topolog-
ical Phase Transitions interpolating vacuum states with
different gravitational topological winding numbers.

Let us consider the topological sector of gravity:

S =

∫
EG , (1)

where

EG = dCG, CG = ΓdΓ− 3

2
ΓΓΓ ,

∗ andrea.addazi@lngs.infn.it
1 See also Ref.[3] for further considerations on the relation among

quantum gravity and the CC

EG = RR̃ . (2)

The EG is a topological term; its integral provides for
the winding integer N :

SN = N . (3)

There is a multitude of deep relations among the topo-
logical action, the CC, the Planck scale and the winding
number:

SN =
1

αG(ΛN )
=
M2
Pl

ΛN
∼ N . (4)

An Euclidean action as Eq.4 also corresponds to the
entropy of the thermodynamical space-time system:

S = log Ω ∼ N , (5)

where Ω is the configuration space. This is leading us to
a simple identification of the topological winding number
and the entropic content of the space-time. In this sense,
the space-time entropy is re-interpreted as a topological
index.

Therefore, a so tiny CC, as the one observed in our
Universe (around Λ ∼ 10−123M2

Pl), would correspond to
the

N̄ ∼ 10123

vacuum eigenvalue of the |N̄〉 (see [1, 2]).
Rephrased in this way, the quantum stability issue of

the CC appears as a problem of why the |N̄〉 eigenstate
would not spontaneously flow to the |0〉, in turn corre-
sponding to the UV divergent case as Λ = M2

Pl/N →∞
(N → 0). To compute the quantum bubble diagrams
would be re-thought, not only as an integral on the mo-
menta, but also as a divergent series of the topological
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winding number. Indeed, a particle with a momenta p
would probe a number of hairons as N ∼M2

Pl/p
2, i.e. the

UV momentum corresponds to a IR topological number
divergence.

Therefore, the spontaneous flow of the CC from the IR
to the UV corresponds to the disapparence of N winding
numbers, costing N-entropic units:

〈0|N〉 . (6)

This transition thermodinamically costs as an exponen-
tial suppression, i.e. as the Eq.1. This process is also
interpreted as a quantum tunneling, related to an N-
instanton. Thus, the quantum destabilization of the
CC would cross several orders of magnitude, rendering
it probabilistically forbidden as

P(N → 0) ∼ e−Λ/M2
Pl ∼ e−10123

. (7)

This is offering a simple re-interpretation of the CC
problem. When the theoretical physicist calculates the
vacuum to vacuum correlator,

〈0|Φ(x)Φ(x)|0〉 (8)

of any SM fields indicated here as Φ, he/she finds a disap-
pointing result: quantum field theories typically predict
quartic UV divergences. However, this correct result is
typically misunderstood and misleadingly interpreted as
an instability of the CC state. Indeed, a possible insta-
bility crossing from the IR to the UV domains is passing
from a non-trivial correlator

〈N |Φ(x)Φ(x)|0〉 . (9)

Rephrased in this way, quantum instabilities would work
into the system for re-turning from a completely disorder
to a fully ordered state. Indeed,

〈N |Φ(x)Φ(x)|0〉 = e−N 〈0|Φ(x)Φ(x)|0〉 . (10)

where

e−N = e−S =
1

Ω(N)
,

and Ω(N) is the probability configuration volume.
Therefore, any quantum fluctuations cannot destabi-

lize a maximal entropic state because of the large entropic
barrier. The high entropy state can reach the UV domain
only through an exponentially suppressed tunneling.

On the other hand this is naturally leading to the con-
cept of an emerging CC as a thermal effect of a large
number of hairons accumulated in vacuo:

Thairons ∼
√

Λ ∼ 1√
N
MPl . (11)

It is certainly interesting that the number of hairons
scales as the Topological winding number. Indeed, this is
a signal that the entropic protection from CC-Planckian

mixings is deeply related to the topological space-time
properties. In other words, the |0〉 and the |N〉 have an
inequivalent topological structure that can never be inter-
polated by a trivial geometric deformation on the space-
time manifold. The |N〉 and the |0〉 can be transformed
each others through a N-instanton with a multi-spherical
topology. In other words, the dictionary among the N
and the 0-vacuum states and the instanton topology is
as follows:

〈0|N〉 : S4 →tunneling→ S2×S2× ....×S2 =

N∏
n=0

(S2)n .

(12)
The 0 − N quantum transition has a precise topologi-
cal and geometrical sense, corresponding to a topological
phase transition of the space-time. As we will see, this is
related, in the real (non-euclidean) space-time, to grav-
itational topological defects puncturing the space-time
boundary. In other words, the N labels the space-time
defects. This also implies that the fundamental tempera-
ture in vacuo, providing for the CC, is emerging as a topo-
logical effect from a large N of gravitational defects. On
the other hand, Eq.17 corresponds to a first order phase
transition of the gravitational susceptibility in vacuo as

〈RR̃〉N=0 → 〈RR̃〉N . (13)

As we will see, this fact is leading to several potential
breakthroughs towards our understanding of space-time
memory and CC stabilization.

Dynamical Relaxation. Let us now promote the N to
a dynamical field, as

N → ϕ(x) , (14)

where ϕ(x) is the relaxon field. This corresponds to

ϕ(x) =
M2
Pl

Λ(x)
, (15)

where Λ is thought as dynamical. If ϕ(x) evolves as a
runaway field to the asymptotic infinite, then the CC will
dynamically flow to the large-N -vacua. This mechanism
is understood as Topological Phase Transitions among
the different topological vacuum states labelled by the
winding number. The relaxation mechanism can be spe-
cialized in a cosmological set-up. Indeed, Eq.15 in CC
corresponds to the Hubble rate of the Universe. Consid-
ering a scalar field in cosmology, provoking the expansion
of the Universe, it would be related to the Hubble rate
as

ϕ =
1

H2
=

1
1
2 φ̇+ V (φ)

, (16)

where the other φ field is a Dynamical DE scalaron. If
the potential drives the scalar field φ to zero, then ϕ will
run-away to a an asymptotic attractor point. This is in-
terpreted as the dynamical generation of N-quanta, topo-
logically stored in every Planckian volume and, therefore,
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appearing out with the space-time expansion. This pro-
cess would be spontaneous since related to the entropic
attractor

S = ϕ(t) =
M2
Pl

Λ(t)
, (17)

In other words, scenarios where the φ tends to relax to
zero are probabilistically favored. Indeed, for maximiz-
ing the entropy, the ϕ field increases without any upper
bound. Such a phenomena is interpreted as a dynami-
cal proliferation in time of the number of hairons, corre-
sponding to the CC screening effect 2.

What is the topological meaning of such a relaxation
mechanism? The N winding number was promoted to a
dynamical field; the fact that the ϕ increases up to in-
finity is interpreted as a spontaneous increasing of the
topological complexity of the space-time. Such a phe-
nomena corresponds to a spontaneous cascade of topolog-
ical transmutations. This process asymptotically tends
to accumulate an infinite number of gravitational defects
in space-time. In other words, the ϕ can be interpreted
as a topological order mean field.

Dark Energy and Neutrino mass. The Cosmological
Relaxation mechanism can be related to the generation
of neutrino masses from gravitational anomalies [7].

Indeed gravitational instantons induce anomalous
terms that can dynamically break the UA(1) axial sym-
metry, generating a neutrino mass term from the neutrino
current anomaly:

∂µJ
µ
5 = EG . (18)

If the vacuum state would be empty of the N-quanta,
then, paradoxically, the anomalous term would be diver-
gent

〈0|EG |0〉 ∼ limN→0ΛN →∞ . (19)

Reversing this argument, this may be a hint that we do
not live in a trivial vacuum state, otherwise the neutrino
would be affected by a new hierarchy problem. Fortu-
nately, this is exactly the same issue just solved above
for the CC. Therefore, in N-state of our Universe, corre-
sponding to the observed Hubble rate, the lightest neu-
trino mass is

m4
ν ∼ G−1

N ΛN ∼
1

N
M4
Pl ∼ 10−123M4

Pl ∼ (1 meV)4 .

(20)
In this sense, also the neutrino mass hierarchy is un-

derstood as a manifestation of the topological memory
storage in space-time. On the other hand, the dynami-
cal DE mechanism would relate the CC flow to zero to a

2 An alternative axion-inspired approach can be found in Ref.[5].
Another self-adaptive holographic mechanism was suggested in
Ref.[6].

dynamical neutrino mass. This also means that the neu-
trino mass is generated and stabilized as an environmen-
tal and thermal effect in the quantum criticality point.

Coherent state portrait. It exists a general duality
among instantons and solitons (see for example Refs.[4]).
The gravitational vacuum state storing hairons can be
interpreted as a gravitational solitonic state, while the
corresponding gravitational instantons as a tunneling of
a soliton from nothing.

The soliton can be viewed as a coherent state of N -
hairons, in turn related to the topological winding num-
ber. The solitonic quantum state can be expressed as a
tensor product of coherent states [8, 9]:

|S〉 =
∏
⊗k

|αk〉 (21)

where

|αk〉 = e−
1
2 |αk|2

∞∑
nk=0

αnk

k√
nk!
|nk〉 . (22)

where |nk〉 are number eigenstates of hairons with mo-
mentum k .

The mean occupation number is defined as

N =

∫
k

Nk =

∫
k

α∗kαk , (23)

where

N̂k = âkak → Nk = 〈S|â†kak|S〉 . (24)

An intrinsic energy scale of the soliton can be obtained
as

E =

∫
k

|k|Nk . (25)

Considering any hairons as Planckian, a Universe-size
soliton corresponds to

E =
√
NMPl . (26)

Within this picture, the enucleation of the hairon soli-
tonic state 3 is

〈0|S〉 = e−N . (27)

This transition amplitude is related to the solitonic
synthesis from nothing, in turn dual to a gravitational
instanton solution. Thus, the instantonic language can
be rephrased in terms of the coherent state formalism.

Cosmological Phase Transitions and Criticality. Now,
we move on the analogy among gravitational solitons

3 To be more accurate, there would also be a factor 1/2 in the
exponential, essentially not important in our discussions.
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with other known critical systems. As remarked by Kib-
ble and Zurek, topological defects can appear in the early
Universe or in condensed matter system around a criti-
cal temperature Tc [10–14]. An important example of
this phenomena is the notorious Berezinskii-Kosterlitz-
Thouless transition (BKT transition) [15]. It is related to
a phase transition in the two dimensional XY models, in
turn well describing a certain class of 2D systems in con-
densed matter – including a large class of thin disordered
superconductors. Around a critical temperature Tc, the
BKT transition is related to the the transition from a
pair to an unpaired couple of vortices and anti-vortices.
Indeed, in the 2D XY models, the (anti)vortices are topo-
logically stable structures. The production of vortices
becomes thermodynamically efficient around the Tc. In
other words, for T < Tc, the bounded vortex-antivortex
system has a lower energy and entropy than the two de-
couple ones.

QCP

…

Mass gap

T

Exp[N]

FIG. 1. The de Sitter space-time lives on a topological quan-
tum critical point with an exponential degeneracy. The mass
gap among the N-states flows to zero around the critical tem-
perature Tc ∼

√
Λ, where Λ is the CC. The degeneracy cor-

responds to the hairon number N on the same ground state.

The critical temperature is understood as the saddle
solution of the free-energy as

F = E − TS → Tc . (28)

Now, we will rise a similar question in the arena of
quantum gravity. Is there any critical temperature re-
lated to a topological phase transition?

We will see that the answer is yes and it is exactly
related to the Hawking temperature. Indeed, the min-
imal possible F for a thermodynamical system with a
fixed internal energy – in the BH case its own mass –
corresponds to the maximal entropy. In turn, the en-
tropy is maximized if all the information is re-organized
in a BH holographic state. The topological defects men-
tioned above are here replaced by gravitational solitons
and instantons.

Indeed, in the case of BHs and de Sitter, the partition
function is dominated by the euclidean action

SN = βĒ =
β2

L2
Pl

= N (29)

as follows

Z =
∑

exp(−βE) ' exp(−N +O(1/
√
N)) . (30)

The free-energy is extremized on the saddle solution
Eq.59, corresponding to

F = 〈E〉BH/2 = TcS ∼ βc ∼
√
NLPl , (31)

where 〈E〉 ∼MBH is the BH internal energy, correspond-
ing to the BH mass (here we omit the numerical pre-
factors, as inessential for our discussions while GN = 1).
This is related to the Holographic entropy and temper-
ature of the de Sitter space-time. This means that a
Universe on a de Sitter phase lives on a state of critical-
ity. On the other hand, Eq.31 does not correspond to a
global minima, the F derivative is negative on the critical
temperature

dF

dTc
= − 1

T 2
c

. (32)

The fact that both the free-energy and its derivative
diverge for Tc → 0 can be interpreted as the evidence
that the zero CC corresponds to a state of super quan-
tum criticality and a first order phase transition. Indeed,
Eq.32 is also related to the divergence of the heat capac-
ity of de Sitter space-time.

In analogy with the phase transition theory and critical
phenomena, one would imagine that this corresponds to
a divergence of the correlation length

ζ ∼ (T − Tc)−ν , (33)

where ν is a critical exponent. This is certainly self-
consistent with the (A)dS/CFT approach, as the system
is around a conformal critical point. We will see later
that this fact has a precise topological entanglement en-
tropy interpretation. Such a phenomena is related to the
emergence of topological order around the critical tem-
perature Tc. From the macroscopic space-time portrait,
this corresponds to a high degeneracy of the ground state.
Microscopically, this is related to a long-range quantum
entanglement. The Black Hole is viewed as a highly de-
generate and fully entangled N-state as typically happen-
ing in topological systems 4.

4 Similar ideas were proposed in the Gravitational Bose-Einstein
condensate approach, where the degeneracy is understood as a
large number of gapless Bogoliubov modes [21–23]. It is certainly
possible that our approach would be a dual portrait capturing the
same quantum critical phenomena from the topological prospec-
tive.



5

In the sense of topological phase transitions, the en-
tropy assumes the role of a topological index of the space-
time complexity: the entropy is related to the space-time
Euler characteristic or the genus, in turn related to the
topological winding number. Indeed, the entropy phase
transition is intimately related to the jump of the gravi-
tational susceptibility

〈RR̃〉N=0 → 〈RR̃〉M=N .

How we will see in next sections, this fact has an in-
terpretation in a BH portrait from topological quantum
computing.

In the case of de Sitter, a dynamical system with the
ϕ→∞ would correspond to a walking critical tempera-
ture as Tc → 0. When the criticality is reached, this can
dynamically walk to increase the degeneracy in vacuo.

FIG. 2. A space-like section of the dS3 bulk is shown. Grav-
itational Wilson lines or Semiclassical Wormholes intersect
the horizon providing topological hairs (black stars). They
can have braids or fusions (black dots).

From the scattering processes, the BH topological
phase transition is dynamically reached from localizing
a transplanckian CM energy into an impact parame-
ter of b ≤ RS = 2GN ECM ∼ T−1

c , where RS is the
Schwarzschild radius (here we preferred to re-insert GN ).
Aspects of scatterings are considered in another paper in
preparation.

Hairons as Punctures on the Horizon. We now elabo-
rate on the idea that holographic hairons correspond to
bulk defects. A possibility, inspired by the Loop Quan-
tum gravity approach (see Refs.[16, 17]) is that hairons
are topological punctures on the BH or de Sitter horizons
generated by Gravitational Wilson lines in the Bulk ge-
ometry. From the semiclassical approach, conversely, this
can be related to gravitational quantum tunnels punctur-
ing the BH horizon [18–20]. A third vision of the phenom-
ena is in terms of gravitational coherent states ramifying
in the bulk by means of the duality among instantons
and coherent wave functions.

The action would correspond to a topological sector
coupled with the puncture contribution:

N = SE =

∫
∆/{

∏N
p=1{p}}

(ΓdΓ +
2

3
Γ2) . (34)

where ∆ is the continuous space-time Horizon and
∏
p{p}

is the ensamble of points puncturing the horizon.
Now, an interesting question is as follows. Let us sup-

pose to have a quantum state of hairons as

|h1, ...., hN 〉 . (35)

What is the hairon spin-statistics? Are they bosons or
fermions? What happens to the Eq.35 under permuta-
tional operations acting on hairon fields?

Naively one would think that, since we are in 3 + 1
dimension, the permutation of a couple of hairons would
just give a ±1 corresponding to boson or fermion statis-
tics. However, we will show a simple argument to con-
vince the reader that this is not what is happening in our
case: the hairons have an anyon statistics as happening
in 2D topological materials [24–28, 32] 5.

To fix our idea, let us start from comparing the ha-
iron picture with what happens to the case of two nor-
mal point-like particles and hairons. In 3D, one path γ2,
encircling the first particle can be always continuously
deformable to another path γ1 that does not encircle the
second particle. In other words, the path can be de-
formed in such a way to pass just behind the second par-
ticle. On the other hand, the γ1 loop can be contracted
to just a point. This corresponds to the condition, on the
wave function of the system, as

|ψ(γ2)〉 = |ψ(γ1)〉 = |ψ(0)〉 . (36)

Eq.36 means to relate the wave function of the double
circling path to the one with no any circling as

|ψ(γ2)〉 = R2|ψ(0)〉, R2 = 1 . (37)

Thus, we can have only to cases, corresponding to bosons
and fermions:

RB=+1,F=−1 = ±1 .

However, for hairons, this is expected to be not true: a
path circulating around one hairon cannot be contracted
without crossing the gravitational Wilson lines or the
gravitational instantons having the hairon punctures as

5 It is possible that such an effect may be testable considering
topological scatterings of Standard Model particles on space-time
anyons. These effects may percolate into effective tiny violations
of the Spin Statistics in the SM sector, testable in underground
experiments with high precision [29–31].
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edge states. Therefore, in our case, R would have a more
general form 6 as

R = eiT . (38)

In general, the R transformation can be related to abelian
or non-abelian structures, in turn corresponding to T as
just a phase number or a matrix. In the case of quan-
tum gravity, we would expect a non-abelian nature of
anyonic hairons, for two motivations: i) from the alge-
braic prospective, gravity is more similar to non-abelian
Yang-Mills theories rather than QED: if reformulated as
a gauge theory, it would correspond to a SO(3, 1) local
group; ii) non-abelian anyons are related to an exponen-
tial degeneracy of quanta populating the lowest energy
level, compatible with the criticality condition envisaged
in the case of Black Holes as well as for their exponen-
tially enhanced memory storage eN . In a de Sitter space-
time, the energy levels (to not be confused with the CC
levels) correspond to

E2
N = NM2

Pl (39)

with a degeneracy of

SN ∼ eN .

The next level is at N − 1, therefore the level splitting is

∆2
N−N−1 = M2

Pl . (40)

The degeneracy of any next level is scaling as the N-
number. By the way, this also offers a Fermi Golden
Rule explanation of why transitions from the N-level to
the zero one are exponentially disfavored as dressed by
the density state factor

ρ1/ρN ∼ e−N . (41)

It is worth to remark that the R-transformation does
not change the ground state Eq.39 of the system, com-
patible with the exponential degeneracy.

Elaborating on the duality among gravitational instan-
tons and gravitational Wilson lines, puncturing the hori-
zon, we wish to propose a possible vision of how black
holes as well as the de Sitter Universe may store quan-
tum informations. The punctures on the Horizon can
correspond to several different world-lines. As we said
before, punctures may be re-interpreted as our hairons.
The puncture corresponds to a sort of gravitational de-
fect in the bulk geometry, very much in analogy with the
Ahranov-Bohm effect. Therefore, the BH can elaborate
and store information in a large number of possibilties
provided by the different braids on the hairon world-
lines. This picture is inspired by topological quantum

6 Let us remark that R may also be no-unitary, as well as T
non-hermitian if we consider non-abelian non-unitary groups as
SO(3, 1) or SU(1, 1)

computers, tipically storing qu-bits with several differ-
ent possibilities of braiding the anyons (see Ref.[33] for
a complete review on these subjects). The idea is that
information infalling inside a black hole is computed as a
series of braidings. Hairons are non-abelian anyons that
obey to non-Abelian braiding statistics. In space-time,
Quantum information is stored in states with multiple
hairons, which have a topological degeneracy and braids.

Let us consider the system of N non-abelian anyons in
the ground degenerate state: |Ψn(z1, z2, ..., zN )〉 , where
zj are the hairon coordinates and n = 1, ..., D labels for
a D-dimensional protected subspace. We can consider
the γ-path around the zj , winding one anyon around an-
other. Let us consider the following transformation on
the hairon state:

|Ψn(z1, z2, ..., zN )〉 →
D∑
m=1

Wnm(γ)|Ψ(z1, z2, ..., zM )〉 ,

(42)
where

W (γ) = P exp

∮
γ

Γ · dz , (43)

where P represents the path ordering. W is nothing but
a Gravitational Wilson line.

The W transformation can be viewed as

W = F−1R2F , (44)

where F is describing the Fusion among hairons into a
new hairon. At this point of the discussion, this equiv-
alence may be not clear, but we wish to shine light on
these aspects in the following. In our portrait, the hairon
evolutions are limited by these three rules: i) they can
be created or annihilated, in pairwise fashion; ii) hairons
can be fused to generate other hairons; iii) hairons can be
exchanged as in Eq.42. The F(usion) in a collective non-
local property of the hairons, as intrinsically non-local is
the nature of the Wilson-lines.

a b

c

n = | ab; c,n >

a b

c

= < ab; c,n |n

=

a b

c

a

c

b

v

a b

e

c

d d

a b c

= v’

e’

FIG. 3. A diagramatic representation of the anyon states.

In the following, we will elaborate on the topological
quantum operations.

First of all, the hairons, or gravitational anyons, can
interact to form a new one; the non-abelian interaction
of them is related to a non-abelian product as

a⊗ b =
∑
c

N c
abc (45)
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a b

c

n = | ab; c,n >

a b

c

= < ab; c,n |n

=

a b

c

a

c

b

v

a b

e

c

d d

a b c

= v’

e’

FIG. 4. A diagrammatic representation of the F(usion) oper-
ation is displayed.

a b

c

n = | ab; c,n >

a b

c

= < ab; c,n |n

=

a b

c

a

c

b

v

a b

e

c

d d

a b c

= v’

e’

FIG. 5. A diagrammatic representation of the R operation is
displayed.

where

a⊗ b = b⊗ a, a⊗ 1 = a . (46)

The fusion processes correspond to a vector space de-
noted as N c

ab, dubbed topological Hilbert spaces (see
Fig.3). A complete orthogonal basis describing the anyon
system reads as

{|a, b, c, µ〉; µ = 1, ..., N c
ab} (47)

The R and F transformations acting on the hairon di-
agrams have simple pictorial representations as in Fig.
4-5. The two diagrams correspond to the state transi-
tions:

|(ab)c; ec; d〉 =
∑
f

(F dabc)ef |a(bc); af ; d〉 , (48)

|(ba)c; ec; d〉 =
∑

Rfabδe,f |(ab)c; ec; d〉 , (49)

where δ is the Kronecker delta function and f spans all
possible out-results of a, b.

This is suggesting an information computation through
hairon/anyon exchanges. A topological computation can
be initiated as a sequence of hairons and then, perform-
ing a sequence of particle exchanges, the hairon world-
lines will trace out braids! In these processes also fusions
are possible and in principle the final state can end with
a complete annihilation process, but, indeed, with an en-
tropic cost.

Such a computational system can also be dually re-
interpreted as a neural network computation in the bulk,

where hairons are the neural centers interconnected by
gravitational synapsis extending on the bulk geometry
(see Ref.[34] for recent attempts on similar research di-
rections).

The computational operations of the gravitational
anyons form a braid group related to the N-punctures
on the horizon as BN (See for example Ref.[35]). As we
mentioned, any braid is related to F and R operations as

B = F−1RF ∈ BN (50)

The generators of BN can be viewed as clockwise inter-
changes of the ith with the i + 1th lines. Let us denote
this generator as σi. The inverse operation σ−1

i corre-
sponds to a counter-clockwise rotation of ith and i+1th.
The generators satisfy the following algebraic conditions:

σiσjσi = σjσiσj , if |i− j| = 1 , (51)

σiσj = σjσi, if |i− j| > 1 . (52)

These relations are nothing but related to the notorious
Yang-Baxter equations.

This can be defined as

BN = {σ1, ...., σN |σiσi+1σi = σi+1σiσi+1, σiσj = σjσi} .
(53)

The Braids provide for Logical gates as a basis for
space-time quantum computation.

The abelianization of this group is a homomorphism
mapping every σi to 1:

h : BN → Z (54)

which also related with the winding number, in turn con-
tributing to the space-time entropy.

Now, we wish to visualize the BH topological compu-
tation in terms of the quantum computing language. In
doing it, we need to identify the information computing
in terms of the (|0〉,|1〉) qu-bit basis.

Motivated by the multi-instantonic picture, we con-
sider pairs of gravitational flux and anti-flux units as
|α, α−1〉. This can be visualized as the two edge points of
a Wilson line puncturing the horizon. Let us consider two
fluxon pairs |α, α−1〉 and |β, β−1〉. We can realize a ba-
sic gate by winding counterclockwise the |α, α−1〉 around
the |β, β−1〉. This operation transforms the first fluxon
state as

|α, α−1〉 → |βαβ−1, βα−1β−1〉 . (55)

By means of this definition, we can identify a computa-
tional basis as follows:

|0〉 = |α, α−1〉, |1〉 = |βαβ−1, βα−1β−1〉 . (56)

This is not the only possible basis choice, but it is cer-
tainly a simple one. Indeed the single isolated α appears
as identical to the βαβ−1 as non-locally next to each
others. In this case, the states in Eq.56 do not have any
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Time

FIG. 6. The topological quantum computing of space-time
through gravitational anyonic braids.

quantum superposition. In other words, quantum mem-
ory is protected by decoherence induced by the environ-
ment since non-locally stored as a phase effect induced
by the fluxon-antifluxon entanglement.

An initial |N̄〉 state corresponds to a sequence of qu-
bits; for example as

|0, 1, 0, 1, 1, ..., 〉 ≡ |α, α−1〉⊗ |βαβ−1, βα−1β−1〉⊗ ...⊗ ...
(57)

The dimensionality of this state is related to the total
transition amplitude mediating the complete annihila-
tion of all fluxon pairs into nothing. This amplitude is
interpolated by the many Fusion processes as dictated by
Eq.45:

Nβ
ααα...α =

∑
{βi}

Nβ1
ααN

β2

αβ1
Nβ3

αβ2
...Nβ

αβN
(58)

= 〈β|(Nα)N |α〉 ,

where |α〉 corresponds to |N̄〉 and |β〉 to |0〉 topological
states.

The Nα matrix has eigenstates and eigenvalues and it
can be diagonalized by means of them as

Nα = |v〉Dα〈v|+ ...+ (59)

where

|v〉 =
1

D
|Dα〉, |D|2 =

∑
α

D2
α . (60)

The Dα are quantum dimensions controlling the single
annihilations of qu-bites in vacuo. Therefore,

Nβ
ααα...α ∼ DN

α /D
2 + ... . (61)

This is related to the single annihilation probabilities as

p(αᾱ→ 0) = (Dα/D)2 ∼ N−2 , (62)

And an annihilation of N pairs correspond to

p(N pairs→ 0) < e−N , (63)

where we used the Stirling approximation, having in-
cluded an identical particle factor N !. This provides a
topological computing interpretation of why the CC state
with a large N cannot flow to the UV nothing state |0〉.
The lower dimensional case: punctures and gravita-

tional instantons. It is instructive to consider the 2 + 1
gravitational case. In this contest, we will show a cor-
respondence of gravitational instantons with the entropy
content of de Sitter space-time (see also Ref.[20] elabo-
rating on this case).

Let us start considering a Wick rotation of the de Sitter
space-time as

ds2
E =

(
1− r2

l2

)
dt2E +

(
1− r2

l2

)−1

dr2 + r2dθ2 , (64)

where β = 2πl and 0 ≤ tE ≤ β. Eq.64 can be rewritten
as a metrico of a S3 sphere:

ds2
E = sin2 ρdt2E + l2dρ2 + l2 cos2 ρ dθ2 , (65)

where r = l cos ρ. The physics of a 2+1 quantum gravity
sector can be captured by a double Chern-Simons gauge
theory with a gauge group SU+(2)×SU−(2). Each ± chi-
ral sector has a connection which is a linear combination
of the spin connection ωa and the triad ea:

Aa± = ωa ± 1

l
ea . (66)

The de-Sitter background can be recast from a class of
non-trivial connections characterized by two real param-
eters γ, β:

A3
± = γ cos ρ

(
dθ ∓ β

l
dx0
)
, (67)

A2
± = ±dρ , (68)

A1
± = −γ sin ρ

(
dθ ∓ β

l
dx0
)
. (69)

The dS3 corresponds to the γ = 1 case. On the other
hand, the ratio of the two parameters is fixed as a re-
quirement that any no conical singularities of holonomies
are present at the horizon (on ρ = 0):

β = 2πlγ−1 . (70)

In the next, we will focus on the + chirality, having
in mind a specularity of the the negative sector. The
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Euclidean action implementing the boundary condition
reads as

SE [A, β] = SB + Sρ=π/2 + Sρ=0 , (71)

SB =
N

4π

∫
M

εklTr(iAk∂0Al −A0Fkl)d
3xE , (72)

Sρ=π/2 = −Nβ
4πl

∫
ρ=π/2

Tr(Aφ)2dx0
Edθ, (73)

Sρ=0 = −N
2

∫
ρ=0

A
(3)
φ dx0

Edθ , (74)

compatible with

Aa0 |ρ=0 = −2πδa3 . (75)

The euclidean action contains a term on the bulk with
a topology M = Σ × S1, with S1 is the compactified
euclidean time with periodicity dictated by τ = β−1.
Above, we defined the topological winding number N
emerging out as

N ∼ l2/L2
Pl . (76)

The other two terms are on the ρ = 0, π/2 boundaries.
The corresponding partition function has a saddle

semiclassical solution on the special class of connections
considered:

ZA(β) =
1

N

∑
γ

Exp
(
− 1

16G
βγ2 +

1

4G
πγl
)
, (77)

where N is the normalization factor.
In other words, the partition function is dominated by

the sum over γ, at β fixed. The saddle point of Eq.77
lies on

γβ = 2πl , (78)

which corresponds to the classical γ-point avoiding for
conical singularities at the horizon. Indeed, the γ
parametrizes the deficit angle of a conical singularity lo-
cated at the extreme point ρ = π/2 (r = 0).

Eq.77 is interpreted as associating energy levels and
degeneracy factors labelled by γ:

Eγ =
γ2

16G
, (79)

ρ(γ) = exp
(πγl

4G

)
. (80)

For γ = 1, the de Sitter entropy is recast as

S=
πl

4G
∼ N+ +N− ∼ N (81)

having consider the sum on the ±-chiralities. The en-
tropy is related to the degeneracy factor in Eq.80.

This result can be compared with the semiclassical
limit of the exact result, computed in terms of spin-
network representations

ZA(β) =

N∑
2s

d−1qs(s+1)/N sinh[2π(s+ 1/2)]

sinhπ
f(q,N, s) ,

(82)

f(q,N, s) =

+∞∑
n=−∞

qNn
2+(2s+1)ne2πNn , (83)

d =

∞∏
n=1

(1− qn)(1− qneiθ)(1− qne−iθ) , (84)

q = e−β/l, θ = −2πi .

From the semiclassical identification we obtain

n =
γ

2
− 1

2N
− s

N
, (85)

where n, s are discrete numbers. This means that γ is
quantized.

This result offers a series of reinterpretations as a hint
towards a confirmation of the topological hairon portrait:

(i) the euclidean dS-metric is re-obtained as a the con-
tinuous limit of a discrete series of conic singularities 7.
The conic singularities are saddle solutions related to a
class of non-trivial connections, i.e. to gravitational in-
stantons. In other words, the Euclidean dS Hubble hori-
zon is effectively emerging as a sum on a large number of
horizonless geometries.

(ii) The dS-entropy is recast and it is proportional to
the instantonic topological number. The degeneracy fac-
tor is exponentially growing as the topological winding
number. On the other hand, the CC is quantized as the
inverse of the topological number.

(iii) There is a correspondence among spin-network
representations and gravitational instantons, sustaining
the intepretation of the puncture-instanton correspon-
dence. This can also suggest that the space-time topolog-
ical computation is related to the spin-network dynamics
in the bulk in the deep non-perturbative quantum gravity
regime.

It is worth to remark that in the special case of 2 + 1
quantum gravity on de Sitter all these considerations can
be related to the Schwarzian quantum mechanical model
on the circular time boundary. In turn the Schwarzian

7 This fact was envisaged in our previous works in Refs. [36–38].
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model is related to the IR conformal limit of the Sachdev-
Ye-Kitaev model (SYK) [40]. This leads to a dual reinter-
pretation of hairon fields as SYK fields non-locally cou-
pled through a gaussian set of random matrices.

Entanglement entropy and Topological order. The
topological phase transitions, the emergence of a topolog-
ical order around the space-time quantum criticality, the
long-range entanglement, the exponential degeneracy of
the ground state, the exotic anyon statistics of punctures,
the entropic holographic scaling...All these analogies of
space-time and topolological materials point out towards
the definition of a Topological entanglement entropy of
the BH and de Sitter geometries. In a topologically or-
dered two-dimensional disk, Kitaev, Preskill, Levin and
Wen found that the von Neuman entanglement entropy
holographically scales as

S(ρ) = αL− γ + ... (86)

where L is the boundary length, in the limit of L → ∞
[41, 42]. Eq.90 provides a measure of the entanglement
of the interior and exterior degrees of freedom related to
the density operator as

S(ρ) = −trρ log ρ . (87)

The α coefficient depends on particular aspects of short
wave length modes close to the boundary. On the other
hand, γ is interpreted as a universal constant dependent
by the feature of the ground state entanglement. Such a
term corresponds to the so dubbed topological entangle-
ment entropy, depending by the total dimension of the
system as

γ = logD ∼ logN . (88)

In our case, we may conjecture that this formula may be
generalized to a higher dimensional case as

S(ρ) = αA− γ + ... ∼ N − log N + ... , (89)

by means of the topological order on the boundary area
A. Indeed, in this case, the γ scales as the log of a con-
figuration space D that is as N . By means of the ther-
modynamical definition of entropy, we arrive to

S = −∂F
∂T

=
∂

∂T
(T logZ) ∼ N − log N . (90)

This relates the topological entanglement entropy to the
winding number as

N ∼ eγ . (91)

The high proliferation of N states is connected to a pos-
itive topological entanglement entropy. This is another
way to visualize that a changing of BH entropy corre-
sponds to an alteration of the topological order in vacuo.

Final remarks. In this paper, we explored the connec-
tions among the HN paradigm and gravitational topo-
logical properties of the vacuum state. We showed that
quantum hairs stored in space-time are intimately related
to the topological winding number. The CC corresponds
to a maximal entropic vacuum state, where the infor-
mation storage is critically enhanced. Within this pic-
ture, the de-Sitter space-time lives in a critical conformal
phase, where the critical temperature is exactly related
to the CC. Around the critical temperature, there is a
Topological Phase Transition of the space-time geome-
try. Indeed, the CC is stabilized by the maximal en-
tropic and topological content of the Universe vacuum
state: a IR to UV destabilization is exponentially sup-
pressed. Then, we elaborated on the topological mean-
ing of hairon fields. We realized that they can be in-
terpreted as punctures on the space-time boundary from
gravitational Wilson lines or Wormholes crossing the dS-
bulk. The hairon spin statistics is neither fermionic nor
bosonic: hairons are gravitational non-abelian anyons.
This is caused by the topological complexity of the bulk
as a Wilson line network. Such a topological picture is
potentially insightful for our understanding of the space-
time and the Black Hole information storage. It explains
why the space-time has an exponentially enhanced mem-
ory and a area law, symptomatically suggesting that a
large number of quantum hairs are in a degenerate en-
tangled ground state. As in topological quantum com-
puters, the effect of any fluctuations or noise, potentially
creating or destroying any new qu-bits, is exponentially
suppressed. This offers a quantum information portrait
of the CC stabilization mechanism: the gravitational vac-
uum topology provides a cosmological defense of the CC
memory. Any CC-Planck scale mixings, corresponding
to a massive attack to the Universe Memory, are highly
suppressed as a non-local topological protection of the
hairon/anyon entangled state.

[1] A. Addazi, arXiv:2004.08372 [hep-th].
[2] A. Addazi, arXiv:2004.07988 [gr-qc].
[3] A. Addazi, EPL 116 (2016) no.2, 20003

doi:10.1209/0295-5075/116/20003 [arXiv:1607.08107
[hep-th]].

[4] A. Addazi, Int. J. Geom. Meth. Mod. Phys. 14
(2016) no.01, 1750012 doi:10.1142/S0219887817500128
[arXiv:1607.02593 [hep-th]].

[5] S. Alexander, J. Magueijo and L. Smolin, Symme-
try 11 (2019) no.9, 1130 doi:10.3390/sym11091130
[arXiv:1807.01381 [gr-qc]].

[6] C. Charmousis, E. Kiritsis and F. Nitti, JHEP
1709 (2017) 031 doi:10.1007/JHEP09(2017)031
[arXiv:1704.05075 [hep-th]].

[7] G. Dvali and L. Funcke, Phys. Rev. D 93 (2016)
no.11, 113002 doi:10.1103/PhysRevD.93.113002

http://arxiv.org/abs/2004.08372
http://arxiv.org/abs/2004.07988
http://arxiv.org/abs/1607.08107
http://arxiv.org/abs/1607.02593
http://arxiv.org/abs/1807.01381
http://arxiv.org/abs/1704.05075


11

[arXiv:1602.03191 [hep-ph]].
[8] G. Dvali, C. Gomez, L. Gruending and

T. Rug, Nucl. Phys. B 901 (2015) 338
doi:10.1016/j.nuclphysb.2015.10.017 [arXiv:1508.03074
[hep-th]].

[9] A. Addazi and A. Marciano, Eur. Phys. J. C 79
(2019) no.4, 354 doi:10.1140/epjc/s10052-019-6820-6
[arXiv:1801.04083 [hep-th]].

[10] T. Kibble, J. Phys. A 9, 1387 (1976).
[11] T. Kibble, Phys. Rept. 67, 183 (1980).
[12] W. Zurek, Nature 317, 505 (1985).
[13] W. Zurek, Acta Phys. Polon. B 24, 1301 (1993).
[14] W. Zurek, Phys. Rept. 276, 177 (1996), cond-

mat/9607135.
[15] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6 (1973)

1181. doi:10.1088/0022-3719/6/7/010
[16] C. Rovelli, Phys. Rev. Lett. 77 (1996) 3288

doi:10.1103/PhysRevLett.77.3288 [gr-qc/9603063].
[17] A. Ashtekar, J. Baez, A. Corichi and

K. Krasnov, Phys. Rev. Lett. 80 (1998) 904
doi:10.1103/PhysRevLett.80.904 [gr-qc/9710007].

[18] A. Addazi, P. Chen, A. Marciano and Y. S. Wu,
arXiv:1707.00347 [hep-th].

[19] P. Chen, M. Sasaki and D. H. Yeom, Eur. Phys. J. C
79 (2019) no.7, 627 doi:10.1140/epjc/s10052-019-7138-0
[arXiv:1806.03766 [hep-th]].

[20] A. Addazi and A. Marciano,
doi:10.1142/S0219887820500073 arXiv:1905.06673
[hep-th], accepted in IJGMMP.

[21] G. Dvali and C. Gomez, Phys. Lett. B 719 (2013)
419 doi:10.1016/j.physletb.2013.01.020 [arXiv:1203.6575
[hep-th]].

[22] G. Dvali, D. Flassig, C. Gomez, A. Pritzel and
N. Wintergerst, Phys. Rev. D 88 (2013) no.12, 124041
doi:10.1103/PhysRevD.88.124041 [arXiv:1307.3458 [hep-
th]].

[23] G. Dvali and C. Gomez, Eur. Phys. J. C 74 (2014) 2752
doi:10.1140/epjc/s10052-014-2752-3 [arXiv:1207.4059
[hep-th]].

[24] J.M. Leinaas, and J. Myrheim, Nuovo Cimento 37B, 1
(1987).

[25] G.A. Goldin, R. Menikoff, and D. H. Sharp, J. Math.

Phys. 22(8), 1664 (1981).
[26] F. Wilczek, Phys. Rev. Lett. 49, 957 (1982),

doi:10.1103/PhysRevLett.49.957.
[27] Y. S. Wu, Phys. Rev. Lett. 52 (1984) 2103.

doi:10.1103/PhysRevLett.52.2103
[28] Y.S. Wu, Phys. Rev. Lett. 73 (1994) 922.
[29] A. Addazi, P. Belli, R. Bernabei and A. Marciano,

Chin. Phys. C 42 (2018) no.9, 094001 doi:10.1088/1674-
1137/42/9/094001 [arXiv:1712.08082 [hep-th]].

[30] A. Addazi and R. Bernabei, arXiv:1901.00390 [hep-ph],
accepted in IJMPA.

[31] A. Addazi and R. Bernabei, Mod. Phys. Lett. A 34
(2019) no.29, 1950236. doi:10.1142/S0217732319502365

[32] F.D.M. Haldane: Phys. Rev. Lett. 67 (1991) 937.
[33] C. Nayak, S. H. Simon, A. Stern, M. Freedman

and S. Das Sarma, Rev. Mod. Phys. 80 (2008)
1083 doi:10.1103/RevModPhys.80.1083 [arXiv:0707.1889
[cond-mat.str-el]].

[34] G. Dvali, Fortsch. Phys. 66 (2018) no.4, 1800007
doi:10.1002/prop.201800007 [arXiv:1801.03918 [hep-th]].

[35] J. Frohlich and F. Gabbiani, Rev. Math. Phys. 2:3, 251-
353 (1990).

[36] A. Addazi, Int. J. Mod. Phys. A 32 (2017) no.16, 1750087
doi:10.1142/S0217751X17500877 [arXiv:1508.04054 [gr-
qc]].

[37] A. Addazi, Int. J. Geom. Meth. Mod. Phys. 13
(2016) no.06, 1650082 doi:10.1142/S0219887816500821
[arXiv:1603.08719 [gr-qc]].

[38] A. Addazi, Springer Proc. Phys. 208 (2018) 115
[arXiv:1510.05876 [gr-qc]].

[39] A. Kitaev and S. J. Suh, JHEP 1805 (2018) 183
doi:10.1007/JHEP05(2018)183 [arXiv:1711.08467 [hep-
th]].

[40] A. Kitaev and S. J. Suh, JHEP 1805 (2018) 183
doi:10.1007/JHEP05(2018)183 [arXiv:1711.08467 [hep-
th]].

[41] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96 (2006),
110404 doi:10.1103/PhysRevLett.96.110404 [arXiv:hep-
th/0510092 [hep-th]].

[42] M. Levin and X.-G. Wen, Phys. Rev. Lett., 96, 110405
(2006), arXiv:cond-mat/0510613 (2005).

http://arxiv.org/abs/1602.03191
http://arxiv.org/abs/1508.03074
http://arxiv.org/abs/1801.04083
http://arxiv.org/abs/gr-qc/9603063
http://arxiv.org/abs/gr-qc/9710007
http://arxiv.org/abs/1707.00347
http://arxiv.org/abs/1806.03766
http://arxiv.org/abs/1905.06673
http://arxiv.org/abs/1203.6575
http://arxiv.org/abs/1307.3458
http://arxiv.org/abs/1207.4059
http://arxiv.org/abs/1712.08082
http://arxiv.org/abs/1901.00390
http://arxiv.org/abs/0707.1889
http://arxiv.org/abs/1801.03918
http://arxiv.org/abs/1508.04054
http://arxiv.org/abs/1603.08719
http://arxiv.org/abs/1510.05876
http://arxiv.org/abs/1711.08467
http://arxiv.org/abs/1711.08467
http://arxiv.org/abs/hep-th/0510092
http://arxiv.org/abs/hep-th/0510092
http://arxiv.org/abs/cond-mat/0510613

	Holographic Naturalness and Topological Phase Transitions
	Abstract
	 References


