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Abstract

I show that general relativity emerges from loop quantum gravity, in a relational description of
gravitation field in terms of coordinates defined by matter. Local Dirac observables and coherent
states are constructed for an explicit evaluation of the dynamics. The dynamics of large scales
conforms with general relativity, up to the corrections near singularities.

1 Introduction

Loop quantum gravity provides a microscopic description of spacetime. However, the large
scale classical limit of the theory has been a major challenge, mainly for two reasons. First,
diffeomorphism symmetry forbids physical external coordinates, making it difficult to extract
local Dirac observables from the quantum theory. Second, the coherent states in the theory
have been poorly understood.

In this letter, I propose a model that faithfully captures the full theory and overcomes
both obstacles. The local Dirac observables are defined with respect to internal coordinates
provided by the matter fields. The states minimizing the uncertainty of the local Dirac
observables are then taken to be the coherent states. Moreover, the evolution of the ex-
pectation values of the observables for the coherent states are explicitly calculated. Lastly,
the model uses the matter coordinates to compare the evolution to the dynamics in general
relativity, and shows that they are consistent up to explicit corrections near singular regions
of spacetime. Details will appear in [12].

2 Loop Quantum Gravity

Loop quantum gravity [1][2] is based on general relativity in Hamiltonian formalism, using
Ashtekar’s conjugate variables {Ea

i (X), Ajb(X)}(a, b = x, y, z; i, j = 1, 2, 3; X ≡ (x, y, z)).
The E fields specify the spatial orthonormal frames, while the connection fields A specify
the intrinsic and extrinsic curvatures of a spatial slice. Four-dimensional diffeomorphism
symmetry is split into spatial and temporal symmetries. For a specific time slicing, the
action is invariant under spatial diffeomorphisms and local spatial rotations of the frames; the
action is also invariant under changes of time slicing. Consequently, the theory is governed
by momentum, Gauss, and Hamiltonian constraints.

Following the loop quantization procedure, quantum states called knot states are ob-
tained. Each knot state is a functional of the A fields and is specified by the following
information (fig.1): 1) an oriented differential topological graph with the edges connected
to the nodes; 2) an SU(2) representation jn assigned to each edge; 3) a generalized Clebsh-
Gordan coefficient (intertwiner) in assigned to each node, to contract invariantly with the
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Figure 1: An example of knot states.

SU(2) representations from the adjacent edges. The knot states solve the momentum and
Gauss constraints and form a basis for knot space.

The operators in knot space can be constructed using the flux and holonomy operators
[3]: {∫

S

Êa
i dsa ≡ F̂i(S)

}
,

{
ˆP exp[

∫
e

Ajb(τj)
k̄
l̄ de

b] ≡ ĥ(e)k̄l̄

}
(2.1)

Here, {S} and {e} are topological surfaces and curves defined relatively to the graph of every
state in knot space. Acting on a knot state, the flux operators insert the SU(2) generators
into the edges cut through by the surfaces, while the holonomy operators either add new
edges to the state or change the representations of the existing edges.

Two ingredients are needed for the dynamics in the classical limit – local degrees of
freedom, and the corresponding coherent states that solve Hamiltonian constraints. These
would be extremely difficult if dealing with a pure gravitational system. Instead, my model
localizes the flux and holonomy operators using physical coordinates and frames defined by
matter. The localized flux and holonomy operators serve as the local degrees of freedom,
whose coherent dynamics will be compared to general relativity.

3 The model

Consider a system of gravitational fields and a set of N uncharged fermion fields. Loop
quantization of the system [4] leads to the new knot states, whose intertwiners are now
functions of the fermion fields at the nodes. The new knot states span the new knot space
K ′, and the operators in K ′ are now composites of the flux, the holonomy, and also the
fermion field operators acting on the nodes {n}.

Suppose that a set of operators containing the scalar {φ0(n), φ1(n), φ2(n), φ3(n)}, current

{Ĵ iI(n), Û ī
Ī
(n)} and conjugate current { ˆ̄J Ii (n), ˆ̄U Ī

ī (n)} operators can be constructed from the
fermion fields operators (I = 1, 2, 3; Ī = 1, 2). Under such a setting, we consider the subspace
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K of K ′ satisfying the conditions: (1) K contains only the knot states with an identical
graph of six edges to each node, with a locally cubic lattice structure; (2) every state |s〉 in

K satisfies (φ̂1, φ̂2, φ̂3)(n)|s〉 = (x, y, z)(n)|s〉, (Ĵ iI
ˆ̄J Ij )(n)|s〉 = δij|s〉 and (Û ī

Ī
ˆ̄U Ī
j̄ )(n)|s〉 = δ īj̄|s〉

for any node n. Here the quantity (x, y, z)(n) assigned to n is the eigenvalue of (φ̂1, φ̂2, φ̂3)(n)
acting on |s〉, and adjacent eigenvalues are assigned to adjacent nodes. Given such conditions,
we can view the scalar and current operators as providing physical coordinates and frames
to K through their eigenvalues1.

In K, the spatially localized flux and holonomy operators can be written out simply as
[12]:{

F̂ (SX,∆X)I ≡ Ĵ(X)iIF̂ (SX,∆X)i

}
,
{
ĥ(eX,∆X)ĪJ̄ ≡

̂̄U(X + ∆X)Īī ĥ(eX,∆X)īj̄Û(X)j̄
J̄

}
. (3.1)

Here the nodes are identified with their spatial coordinates X, and ∆X refers to the coordi-
nate gap across a specific edge. The surface SX,∆X cuts through the edge of the graph that
connects X to X+ ∆X, at the end point X, and is oriented in the ∆X direction. The curve
eX,∆X is identical to the edge going from X to X + ∆X. As a notation, set eX,∆X,∆Y to
be the minimal square loop on the graph with the outgoing and incoming edges assigned by
∆X and ∆Y . Notice that all of the invariant components are expressed using the current
frames.

The flux operators can be further localized. Note that any node X is shared by eight
cubes, each with eight nodes and twelve edges. The operator F̂ (SX,∆X)I picks up the four

cubes among them that contain the edge eX,∆X . Utilizing the coordinates, F̂ (S
(n)
X,∆X)I is

defined to pick up the nth cube among the four (n = 1, 2, 3, 4). These operators satisfy [12]:

4∑
n=1

F̂ (S
(n)
X,∆X)I = F̂ (SX,∆X)I[

ĥ(eZ,∆Z,∆Y )J̄K̄ , F̂ (S
(n)
X,∆X)I

]
=

1

2

[
ĥ(eZ,∆Z,∆Y )J̄K̄ , F̂ (SX,∆X)I

]
(3.2)

if eZ,∆Z,∆Y lies in the nth cube, otherwise the commutator vanishes. The sets {F̂ (S
(n)
X,∆X)I}

and {ĥ(eX,∆X)Ī
J̄
} constitute the spatially local operators in the model.

The Hamiltonian constraint operator in the model, with which the localized Dirac ob-
servables must commute, has the gravitational term [3]:

Ĥg(N) = C
∑
X

N(X)
6∑

i,j,k=1

sgn (∆Xi,∆Xj,∆Xk)
(
ĥ(eX,∆Xi,∆Xj

)− ĥ−1(eX,∆Xi,∆Xj
)
)Ī
J̄(

ĥ−1(eX,∆Xk
)
)L̄
Ī
·
[(
ĥ(eX,∆Xk

)
)J̄
L̄
, V̂ (X)

]
(3.3)

where Immirzi parameter is set to be i, and

V̂ (X) =

[
6∑

l,m,n=1

sgn (∆Xl,∆Xm,∆Xn) ε̂PQRF̂ (SX,∆Xl
)P F̂ (SX,∆Xm)QF̂ (SX,∆Xn)R

] 1
2

(3.4)

1This is the quantum analog of using massless scalar fields to define harmonic coordinates; see [5] [6] for
a related use of fields to determine coordinates.
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In standard loop quantum gravity [3], the holonomy operators in the Hamiltonian constraint
are taken over infinitesimal triangle loops. In the model, the holonomy operators in Ĥg

are taken over minimal square loops existing in the graph. As a result, the standard loop
quantum gravity is graph changing while the model is graph preserving. That is the only
difference between the two.

The full Hamiltonian operator for the model is Ĥ(N) = Ĥg(N)+ l2pĤt(N), with Ĥt(N) =∑
X N(X)P̂φ0(X)2, where Pφ0 is the effective conjugate momenta to φ0. I will approximate

the system by ignoring the matter back reaction, and will consider only the pure gravitational
dynamics. Moreover, φ0 is translated by Ĥt(N), while φ1, φ2 and φ3 commute with the
constraint; this condition is equivalent to a choice of the physical coordinates.

The model uses group average method [7] [8] [12] to solve the Hamiltonian constraint.
Set P̂ to be the group average operator using (i~l2p)−1Ĥ(N) as the generators and summing

over all N(X). For every state |s〉 in K there is a state P̂|s〉 in Kdistr, where Kdistr is the
distributional extension of K. With a proper inner product, P̂K ≡ K is the physical Hilbert
space of quantum spacetimes which solves the Hamiltonian constraint. On the other hand,
for each spatially localized operator Ô(X) on K there is an operator P̂Ô(X)Π̂T ≡ Ô(X,T )
on K, where Π̂T is the projection operator onto the eigenstates of φ̂0 with eigenvalues in
a small range around T . Finally, we identify the local Dirac observables in K to be [12]

{F̂ (S
(n)
X,∆X , T )I} and {ĥ(eX,∆X , T )Ī

J̄
}.

4 Dynamics

The next step is to identify the coherent states, on which the dynamics of the observables can
be calculated. With the local Dirac observables at hand, we pick a state |S〉 ∈ K coherent

in {F̂ (S
(n)
X,∆X , T0)I}, {ĥ(eX,∆X , T0)Ī

J̄
}, and also {P̂φ0(X,T0)}. Notice that the coherency is

established around clock time T0, the moment when the quantum spacetime |S〉 is expected
to be classical . Through the coherent state |S〉, the clock time derivatives of the local Dirac
observables can be calculated at T0 [12]:

d

dT

∣∣
T0
〈Ô(X,T )〉 = 〈 1

i~l2p
P̂

[
Ô(X), Ĥ

(
1

〈P̂φ0(T0)〉

)]
Π̂T0〉+ εT

(
∼ ∆φ0∆Pφ0

)
(4.1)

where εT is the correction due to quantum fluctuations of the clock field. Setting Ô to be
the flux and holonomy observables, a long calculation leads to a result of the form [12]:

d

dT

∣∣
T0
〈F̂ (S

(n)
X,∆X , T )I〉 = ΦF

({
〈F̂ (S

(n)
Z,∆Z , T0)K〉

}
,
{
〈ĥ(eZ,∆Z , T0)K̄L̄ 〉

})
+εF (∼ ∆F∆h, 〈[F, F ]〉) + εT

d

dT

∣∣
T0
〈ĥ(eX,∆X , T )ĪJ̄〉 = Φh

({
〈F̂ (S

(n)
Z,∆Z , T0)K〉

}
,
{
〈ĥ(eZ,∆Z , T0)K̄L̄ 〉

})
+εh (∼ ∆F∆h) + εT

(4.2)

The ΦF and Φh are obtained by explicitly evaluating the commutators in (4.1), then sub-
stituting the operators in the result by their expectation values. The substitution brings in
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Figure 2: An illustration of S̄
(n)
X,∆X and ēX,∆X in R3. The solid lines represent a part of the

embedded graph.

further quantum corrections εF and εh. Moreover, the Φ terms are expected to dominate in
large scales with coherent states, since the quantum fluctuations are small compared with
the expectation values.

The final step of the model is to relate to the classical equations of motions for the E and
A fields. Using the spatial coordinates on the nodes, we may smoothly embed the graph of
|S〉 into R3. The embedding naturally induces a cell decomposition of R3, with embedded
edges being the 1-skeletons and each face bounded by four embedded edges. Also, restrict the
state |S〉, the embedding and cell-decomposition such that any two adjacent cells are almost
congruent parallelepipeds. After specifying the above, we pick a fitting algorithm mapping
the values of {〈F̂ (S

(n)
Z,∆Z , T )K〉, 〈ĥ(eZ,∆Z , T )K̄

L̄
〉} to the values of {Ea

I (X,T ), AJb (X,T )} in R3,
that contains the following rules:∫

S̄
(n)
X,∆X

Ea
I (T )dsa ≡ 〈F̂I(S(n)

X,∆X , T )〉

P exp

[∫
ēX,∆X

AJb (T )(τJ)K̄L̄ de
b

]
≡ 〈ĥ(eX,∆X , T )K̄L̄ 〉 (4.3)

The embedded S̄
(n)
X,∆X and ēX,∆X are as shown in fig.2. Notice that each S̄

(n)
X,∆X is set to be a

quarter segment of a face from the cell decomposition. To explore large scale limits, choose
the state such that the corresponding E and A fields are almost constant within a single cell.
Set S̄ to be any (oriented) union of the faces from the cell decomposition, and ē any union
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of embedded edges. Then, with a typical value of |∆X| ≡ d equation (4.2) leads to [12]:

d

dT

∣∣
T0

∫
S̄

Ea
I (T )dsa =

{∫
S̄

Ea
I dsa, H

(
1

〈P̂φ0(T0)〉

)}
(T0)

+ Φholo
F (S̄)(∼ |A|d) + ΦQG

F (S̄)(∼ ~l2p) + εF (S̄) + εT (S̄)

d

dT

∣∣
T0
P exp

[∫
ē

AJb (T )(τJ)K̄L̄ de
b

]
=

{
P exp

[∫
ē

AJb (τJ)K̄L̄ de
b

]
, H

(
1

〈P̂φ0(T0)〉

)}
(T0)

+ Φholo
h (ē)(∼ |A|d) + ΦQG

h (ē)(∼ ~l2p) + εh(ē) + εT (ē)

(4.4)

where the H(N) is exactly the classical Hamiltonian constraint:

H(N) =

∫
d3XN

Eb
BE

d
D√

detE
εBDN

(
∂bA

N
d − ∂dANb + εNKLAKb A

L
d

)
(4.5)

The equations hold for any embedding, cell decomposition, and fitting algorithm specified
above.

Each equation in (4.4) has the Poisson bracket, Φholo, and ΦQG adding up to the corre-
sponding Φ term in (4.2), and it also has the quantum correction ε terms. The Poisson brack-
ets conform exacly with general relativity, with the shift functions equal to zero. The Gholo

terms are the holonomy corrections due to the nonlinear contributions from the holonomies,
which appear because of the discretized structure of space. The ΦQG terms are the quantum
geometry corrections due to Thiemann’s regularization of the inverse volume factors, which
signify the removal of the initial singularity [9][10] in the quantum theory.

General relativity will emerge if the following conditions hold for the state |S〉. First, |A|d
everywhere must be small such that the holonomy corrections are small, with |A| being the
norm of the A fields. When the A fields are finite, the nodes must be embedded in R3 tightly,
so the space would appear continuous for the observer. When the A fields become singular,
this condition cannot hold and the corrections would take over. Second, ~l2p must be small
compared with d2, so that the quantum geometry corrections and the quantum fluctuation
corrections are small. When the space has a large volume, the measurements must be made
in large scales. When the spatial volume becomes absolutely small the corrections become
dominant.

5 Conclusions

I have shown that loop quantum gravity recovers the local dynamics of general relativity
with the appropriate coherent state |S〉. The holonomy and quantum geometry corrections
are the trademarks of loop quantum gravity, and they are also explicitly formulated in the
model in terms of E, A, and d. The stability of the emergence of general relativity with
respect to the clock time is under investigation [11] [12].
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In contrast to the fundamental symmetries, it is remarkable that emergent diffeomor-
phism symmetry in the model is broken by the corrections near singularities or in small
scales. Therefore it would be of great interests to study the cosmological implications of
the model, and would be instructive to the study of loop quantum cosmology from the full
theory’s perspective.
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