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I describe a possible perspective on the current state of loop quantum gravity, at the light of the
developments of the last years. I point out that a theory is now available, having a well-defined
background-independent kinematics and a dynamics allowing transition amplitudes to be computed
explicitly in different regimes. I emphasize the fact that the dynamics can be given in terms of a
simple vertex function, largely determined by locality, diffeomorphism invariance and local Lorentz
invariance. I emphasize the importance of approximations. I list open problems.

I. INTRODUCTION

Significant developments in the last years have modi-
fied the state of the art in quantum gravity. The merge of
the canonical and the covariant frameworks has yielded
a rather well-developed background-independent theory,
with a reasonable kinematics and an intriguing dynam-
ics, where physical transition amplitudes can be explicitly
computed and compared with the classical theory. Here
is an account of the state of this theory, as I understand
it today.

I present the theory without “deriving it from classical
GR” or other “quantization procedures”.1 As empha-
sized by Vincent Rivasseau [1], a formulation of quantum
field theory that remains meaningful in the background-
independent context, is as a generating function for am-
plitudes associated to a combinatorial structure, as in the
definition of QED in terms of Feynman-graphs. The am-
plitudes define the dynamics by assigning probabilities
to processes described in terms of a Hilbert space. I use
this language here.

I emphasize in particular the fact –pointed out by Eu-
genio Bianchi [2]– that the dynamics of the theory has
a very simple and natural definition, largely determined
by general physical principles. It is given by a natural
immersion of SU(2) representations into SL(2,C) ones.
A simple group theoretical construction (Eq. (45) below)
appears to code the full Einstein equations.2

I mention below some possible alternatives in the

∗Unité mixte de recherche (UMR 6207) du CNRS et des Universités
de Provence (Aix-Marseille I), de la Méditerranée (Aix-Marseille
II) et du Sud (Toulon-Var); laboratoire affilié à la FRUMAM (FR
2291).
1 In my opinion, after many years of attempts to “quantize general

relativity”, it is time to leave the ladder behind, and start taking
seriously what the various “quantization procedures” have pro-
duced. It is especially so since large overlaps have appeared
between the results of the different quantizations techniques
(canonical, path integral and others; see Section II F, below).
I expect that it is now going to be more productive to study the
theory and its consequences, in order to asses its viability, rather
than keep trying to “derive” the theory.

2 Note added in proofs: For a much simpler and straightforward
presentation of the dynamics of the theory, which does not re-
quire the full intertwiner space machinery, see [? ].

definition of the theory. These are written in smaller

characters.3

I take responsibility for the presentation, but the results reported
below are due to a number of people, including: Emanuele Alesci,
Abhay Ashtekar, John Barrett, Eugenio Bianchi, Florian Conrady,
You Ding, Bianca Dittrich, Richard Dowdall, Jonathan Engle,
Winston Fairbairn, Cecilia Flori, Laurent Freidel, Kristina Giesel,
Henrique Gomes, Frank Hellmann, Wojciech Kaminski, Marcin
Kisielowski, Kirill Krasnov, Etera Livine, Jurek Lewandowski,
Elena Magliaro, Leonardo Modesto, Daniele Oriti, Roberto Pereira,
Alejandro Perez, Claudio Perini, Lee Smolin, Simone Speziale,
Thomas Thiemann, and Francesca Vidotto.

I am particularly indebted with Daniele Oriti for a sharp critical
reading of these notes and numerous inputs.

II. HILBERT SPACE AND OPERATORS

The kinematics of a quantum theory is given by a
Hilbert space carrying an algebra of operators that have
a physical interpretation in terms of observables quanti-
ties of the system considered. These are defined in this
section.

A. Hilbert space

The Hilbert space H on which the theory is defined is
the direct sum of “graph spaces”

H̃ =
⊕

Γ

HΓ (1)

factored by an equivalence relation H = H̃/∼. The sum

3 I do not view alternatives as problems, I view them as opportu-
nities. In quantum gravity we are not in the embarrassment of
riches: we do not have numerous complete and consistent theo-
ries. In fact, we haven’t any. The theory described here, too, in
spite of the various results it yields, is incomplete: a list of open
problems is in Section V. At the present state of our knowledge,
worries about under-determinacy of the theory are, in my opin-
ion, ill-judged. Rather than worrying whether this theory might
have alternatives, or continuing to sketch new very incomplete
models, we better ask if we have at least one complete consistent
theory. This is hard enough, and, in my opinion, is today the
relevant scientific question, and the one likely to be fruitful.
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(1) runs over the abstract graphs Γ. An abstract graph
Γ is defined by a set of L links l, a set of N nodes n,
together with two functions assigning a source node s(l)
and a target node t(l) to every link l. The graph Hilbert
space HΓ is defined to be

HΓ = L2[SU(2)L/SU(2)N ] (2)

where the L2 measure is the Haar measure and the action
of SU(2)N on the states ψ(Ul) ∈ L2[SU(2)L] := H̃Γ is

ψ(Ul)→ ψ(Vs(l)UlV
−1
t(l)), Vn ∈ SU(2)N . (3)

These are the ‘local SU(2) gauge transformations’ of the
theory.
H is obtained by factoring H̃ by the equivalence rela-

tion ∼, defined as follows. If Γ is a subgraph of Γ′ then
HΓ can be naturally identified with a subspace of HΓ′ .
Two states are equivalent if they can be related (possibly
indirectly) by this identification, or if they are mapped
into each other by the discrete group of the automor-
phisms of Γ (maps from links to links and from nodes to
nodes that preserve the source and target relations).

This completes the construction of the Hilbert space
of the theory.

Comments. This is the “combinatorial H”. An alternative stud-
ied in the literature is to consider embedded graphs in a fixed three-
manifold Σ –namely collections of lines l embedded in Σ that meet
only at their end points n– and to define Γ as an equivalence class
of such embedded graphs under diffeomorphisms of Σ. This choice
defines the “Diff H”. A further alternative is to do the same but
using extended diffeomorphisms [3]. This choice defines the “Ex-
tended Diff H”. With these definitions a graph is characterized
also by its knotting and linking. (If Σ is chosen with non-trivial
topology, also by the homotopy class of the graph). In addition,
with the first of these alternatives graphs are characterized by mod-
uli parameters at the nodes as well (extended diffeos factor away
these moduli [3]). Neither knotting or linking, nor these moduli,
have found a physical meaning so far, hence I tentatively prefer the
combinatorial definition.

The space Diff H is non-separable, leading to a number of com-
plications in the construction of the theory. The combinatorial H
considered here and the extended-Diff H are separable.

Another option is to restrict the theory to graphs Γ where all
nodes are four valent. (The valence of a node n is the number of
links for which n is the source plus the number of links for which
it is the target.) I do not take this option here, although several
of the results in the literature refer to the theory restricted in this
manner.

B. Gravitational field, area, volume and holonomy
operators

The gravitational field gµν has the dimensions of an
area.4 The dimension of the Ashtekar’s electric field E

4 This follows from ds2 = gµνdxµdxν and the fact that it is rather
unreasonable to assign dimensions to the coordinates of a general
covariant theory: coordinates are functions on spacetime, that
can be arbitrarily nonlinearly transformed.

(the densitized inverse triad), is also an area. It is con-
venient to fix units where the area

8πγ ~G = 1 (4)

where γ, the Immirzi-Barbero parameter is a positive
real number, G is the Newton constant. The following
operators are defined on HΓ.

Notice that the operators are defined on the individual spaces
HΓ, not on H. This is a departure from textbook quantum theory.
Later I will explain how these operators can nevertheless be used
in the same manner as standard quantum operators.

First, the gravitational field operator ~Ll = {Lil}, i =
1, 2, 3 is the generator of the left SU(2) action in HΓ.5

As will become more clear later, ~Ll is interpreted as
the operator corresponding to the flux of Ashtekar’s
electric field, or the flux of the inverse triad, across “an
elementary surface cut by the link l”.

It is convenient to define also “links with reversed orientation”
l−1. That is s(l−1) = t(l) and t(l−1) = s(l). The generator of the

right SU(2) action ~Rl ≡ Ul~LlU
−1
l is then associated to the link

with reversed orientation: ~Ll−1 = ~Rl. It follows then immediately
from (3) that ∑

l∈n

~Ll = 0 (5)

where the notation l ∈ n indicates all oriented links l such that
s(l) = n.

The area operator depends on a “surface” cutting the
links l1, ..., lS . In the combinatorial context, a “surface”
Σ is a collection of (possibly repeated) links l of Γ. The
area operator is defined as

AΣ =
∑
l∈Σ

√
LilL

i
l. (6)

Its eigenvalues are (in units (4))

AΣ =
∑
l∈Σ

√
jl(jl + 1), (7)

where jl are half integers. This expression gives the
“spectrum of the area” of the theory.

The operator can be generalized to surfaces “cutting a node”.
This is not strictly necessary in the combinatorial context, as far
as I can see.

The volume operator depends on a “region”. In the
combinatorial context, a “region” R is a collection of
nodes n. The volume operator is given by

VR =
∑
n∈R

Vn. (8)

5 Li
l̂
ψ(Ul) ≡ dψ(Ul(t))/dt where Ul̂(t) = etτiUl̂ and Ul(t) = Ul

∀l 6= l̂. I use the notation Ll = Lilτi where τi is a basis in su(2),

say τi = i
2
σi, where σi are the Pauli matrices.
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For a trivalent node n, Vn = 0. For a four-valent node n,

V 2
n =

2

9
|εijk LilaL

j
lb
Lklc | (9)

where la, lb, lc are any three (distinct) of the four links
of n.6 The choice of the triple is irrelevant, as it follows
easily from (5).

As pointed out by Thomas Thiemann and Cecilia Flori [5], the
definition of the vertex operator for higher valent nodes given in
the literature, is unsatisfactory. It is not difficult to define a volume
operator for general n-valent nodes, which reduces to the one on
(n − 1)-valent nodes when one of the links has zero spin; but this
can be done in numerous way, and a fully satisfactory choice is still
missing. On this, see [6]. This does not affect what follows.

Finally, the holonomy operator is the multiplicative

operator Ul associated to each link l. The operators ~Ll
and Ul form a closed algebra.

C. Spin network basis

Spin networks states are a convenient basis in H. The
Peter Weyl theorem states that L2[SU(2)L] can be de-
composed into irreducible representations

H̃Γ = L2[SU(2)L] =
⊕
jl

⊗
l

(H∗jl ⊗Hjl). (10)

Here Hj is the Hilbert space of the spin-j representa-
tion of SU(2), namely a 2j + 1 dimensional space, with
a basis |j,m〉,m = −j, ..., j that diagonalizes L3. The
star indicates the adjoint representation, but since the
representations of SU(2) are equivalent to their adjoint,
we can forget about the star.7 For each link l, the two
factors in the r.h.s. of (10) are naturally associated to
the two nodes s(l) and t(l) that bound l, because under
(3) they transform under the action of Vs(l) and Vt(l),
respectively. We can hence rewrite the last equation as

H̃Γ =
⊕
jl

⊗
n

H̃n (11)

where the node Hilbert space H̃n associated to a node
n includes all the irreducible Hj that transform with Vn
under (3), that is8

6 The factor 2/9 = 23/3!2 gives the volume of a tetrahedron with
faces having areas and normals determined by Ll; see Section
II F below. In [4], Kristina Giesel and Thomas Thiemann give
an argument for a different factor, corresponding to the volume
of a cube. I am still confused about this factor. This has no effect
on what follows.

7 The star does not regard the Hilbert space itself: it specifies a
way it transforms under SU(2).

8 More precisely, H̃n = (
⊗
l∈s(n)H∗l )⊗ (

⊗
l∈t(n)nHl) where s(t)

and t(n) are the sets of the links for which n is, respectively, a
source or a target.

H̃n =
⊗
l∈n

Hjl . (12)

The SU(2) invariant part of this space

Hn = InvSU(2)[H̃n]. (13)

under the diagonal action of SU(2) is called the “inter-
twiner space” of the node n. A moment of reflection
shows that

HΓ =
⊕
jl

⊗
n

Hn. (14)

Thus, a basis in H is labelled by three sets of “quantum
numbers”. An abstract graph Γ up to its automorphisms;
a coloring jl of the links of the graph with irreducible
representations of SU(2) different from the trivial one9

(j = 1/2, 1, 3/2, 2, ...); and a coloring of each node of
Γ with an element vn in an orthonormal basis10 in the
intertwiner space Hn. The states |Γ, jl, vn〉 labelled by
these quantum numbers are called “spin network states”.

D. Physical picture

Spin network states are eigenstates of the area and
volume operators. A spin network state can be given
a simple geometrical interpretation. It represents a
“granular” space where each node n represents a “grain”
or “chunk” of space. The volume of each grain n is
vn. Two grains n and n′ are adjacent if there is a
link l connecting the two, and in this case the area
of the elementary surface separating the two grains is
8πγ~G

√
jl(jl + 1).

|Γ, jl, vn〉

FIG. 1: “Granular” space. A node n determines a “grain” or
“chunk” of space.

9 Because states with j = 0 are already included in the Hilbert
spaces associated to subgraphs, thanks to the equivalence rela-
tion ∼.

10 The operator Vn is well defined on the finite dimensional space
Hn because it is SU(2) invariant and commutes with the areas.
It is convenient to choose a basis in Hn that diagonalizes it, and
I do so here.
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This physical picture admits variants. In the case Γ is the two-
skeleton dual to a triangulation of a 3d space, one can view the
individual grains as flat tetrahedra. In some cases, namely for
some states, these tetrahedra can be viewed as forming a 3d Regge
geometry. (For this, matching conditions between the length of tri-
angles must be satisfied [7].) In the general case, one can associate
them a “twisted geometry” [7].

Such geometrical pictures are helps for the intuition, but there
is no microscopic geometry at the Planck scale and these pictures
should not be taken too literally in my opinion. They are choices
of classes of continuous geometries interpolating finite sets of geo-
metrical data. It is clear that many such choices are possible. They
are analogous to choices of interpolating functions to visualize or
describe sets of data points [? ]. For instance, we can interpolate
a set of data points by means of an interpolating polynomial, or a
piecewise linear function, or a piecewise constant functions... As we
will better see below, these choices have strict analogs for quantum
geometry.

These geometrical pictures can play a very useful role in various
situations, but what the theory is about is expectation values of
physical observables, not mental pictures of the geometry of indi-
vidual states.

The states in H can be viewed as describing quantum
space at some given coordinate time. A more useful in-
terpretation, however, and the one I adopt here, is as
describing the quantum space surrounding a given finite
4-dimensional region R of spacetime.

This second interpretation is more covariant and will
be used below to define the dynamics. That is, states in
H are not interpreted as “states at some time”, but rather
as “boundary states”. In the non-general-relativistic
limit, therefore, H must be identified with the tensor
product H∗out ⊗ Hin of the initial and final state spaces
of conventional quantum theory.

Notice that the theory “knows” about the dimension-
ality of space only via the fact that the relevant group
is SU(2). A remarkable theorem by Penrose, indeed,
the spin-geometry theorem [? ], ensures that the spin-
networks constructed from the representations of this
group determine a three dimensional geometry. This the-
orem is the basis of the construction above.

E. Coherent states and holomorphic representation

The relation between quantum states and the classical
theory is clarified by the construction of coherent states.
These are particularly valuable in the present context,
where the relation with the classical theory is more indi-
rect than usual. Various classes of coherent states have
been studied. Here I describe the “holomorphic” coher-
ent states, developed by a number of people [8–12] and re-
cently discussed in detail by Bianchi-Magliaro-Perini [13],
as well as the “semi coherent” states of Livine-Speziale
(LS) [14].

Holomorphic states are labelled by an element Hl of
SL(2,C) for each link l. They are a special case of Thie-
mann’s complexifier coherent states [10–12]. They are
defined by

ψHl(Ul) =

∫
SU(2)N

dgn
⊗
l∈Γ

Kt(gs(l)Hlg
−1U−1

l ). (15)

Here t is a positive real number and Kt is the (analytic
continuation to SL(2,C) of) the heat kernel on SU(2),
which can be written explicitly as

Kt(g) =
∑
j

(2j + 1)e−j(j+1)t Tr[Dj(g)] (16)

where Dj is the (Wigner) representation matrix of the
representation j.

The SL(2,C) labels H` can be given two related inter-
pretations. First, we can decompose each SL(2,C) label
in the form

H` = e2itE` U` (17)

where U` ∈ SU(2) and E` ∈ su(2). Then it is not hard
to show that U` and E` are the expectation values of the
operators U` and L` on the state ψH`

〈ψH` |U` |ψH`〉
〈ψH` |ψH`〉

= U` ,
〈ψH` |L` |ψH`〉
〈ψH` |ψH`〉

= Ei` , (18)

and the corresponding spread is small.11

Alternatively, we can decompose each SL(2,C) label
in the form

H` = ns,` e
−i(ξ`+iη`)

σ3
2 n−1

t,` . (19)

where n ∈ SU(2). Let ~z = (0, 0, 1) and ~n = D1(n)~z.
Freidel and Speziale discuss a compelling geometrical
interpretation for the (~ns, ~nt, ξ, η) labels defined on of
each link by (19) [7] (see also [15–17]). For appropriate
four-valent states representing a Regge 3-geometry with
intrinsic and extrinsic curvature, the vectors ~ns, ~nt
are the 3d normals to the triangles of the tetrahedra
bounded by the triangle; ξ is the extrinsic curvature at
the triangle and η is the area of the triangle divided by
8πγG~. For general states, the interpretation extends to
a simple generalization of Regge geometries, that Freidel
and Speziale have baptized “twisted geometries”.

Freidel and Speziale give a slightly different definition of coherent
states [18]. The two definitions converge for large spins, but differ
at low spins. It would be good to clarify their respective properties,
in view of the possible applications in scattering theory (see below).

Of great use are also the Livine-Speziale (LS) “semi-
coherent” states. They are defined as follows. The con-
ventional magnetic basis |j,m〉 with m = −j, ..., j, in Hj

diagonalizes L3. Its highest spin state |j, j〉 := |j,m = j〉

11 Restoring physical units, ∆U` ∼
√
t and ∆E` ∼ 8πγ~G

√
1/t. If

we fix a length scale L �
√
~G and choose t = ~G/L2 � 1, we

have then ∆U` ∼
√
~G/L and ∆E` ∼

√
~GL, which shows that

both spreads go to zero with ~.
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is a semiclassical state peaked around the classical con-

figuration ~L = j~z of the (non commuting) angular mo-
mentum operators. If we rotate this state, we obtain a

state peaked around any configuration ~L = j~n. The state

|j, n〉 = Dj(n)|j, j〉 =
∑
m

Dj
jm(n)|j,m〉, (20)

is a semiclassical state peaked on ~L = j~n = jD1(n)~z.

The states (20) are generally denoted as

|j, ~n〉 := |j, n〉. (21)

where ~n = Dj(n)~z. I find this notation confusing. The problem
is of course that there are many different n (many rotations) that
yield the same ~n, therefore the state |j, ~n〉 is not defined by this
equation. The common solution is to choose a “phase convention”
that fixes a preferred rotation n̂ for each ~n. For instance, one may
require that D1(n̂) leave ~z × ~n invariant. I would find it clearer,
even after such a phase convention has been chosen, to still add a
label to the notation (21), say for every rotation nφ that leaves ~n
invariant,

|j, ~n, φ〉 := |j, nφn̂〉 = eijφ |j, n̂〉. (22)

The reason is that this phase has a physical interpretation: it codes
the extrinsic curvature at the face.

LS states are states in Hn, where n is v-valent (unfor-
tunate notation: here n indicates a node, not an SU(2)
element as above), labelled by a unit vector ~nl for each
link l in n, defined by

|jl, ~nl〉 =

∫
SU(2)

dg
⊗
l∈n

Djl(g)|jl, ~nl〉. (23)

The integration projects the state on Hn. These states
are not fully coherent: they are eigenstates of the area,
and the observable conjugated to the area (which is re-
lated to the extrinsic curvature) is fully spread.

Remarkably, in [13] it is shown that for large ηl the
holomorphic states are essentially LS states which are
also wave packets on the spins. That is

〈jl, ~nl|ψHl〉 ∼
∏
l

e
− jl−j

0
l

2σl eiξljl (24)

where ~n and ~̃n are identified with the ~n in s(l) and t(l)
respectively and where 2jl + 1 = ηl/tl and σl = 1/(2tl).
Thus, the different coherent states that have been used
in the covariant and the canonical literature, and which
were long thought to be unrelated, are in fact essentially
the same thing.

In summary, the Hilbert space HΓ contains an (over-
complete) basis of “wave packets” ψHl = ψ~nl,~n′l,ξl,ηl , with
a nice interpretation as discrete classical geometries with
intrinsic and extrinsic curvature.

These states define a natural holomorphic represen-
tation of HΓ [9, 19]. In this representation, states are
represented by holomorphic functions on SL(2,C)L

ψ(Hl) = 〈ψHl |ψ〉. (25)

F. Derivation and relation with SL(2,C)

Above I have presented the kinematics of the theory
without deriving it from known physics. Remarkably,
there are a number of distinct derivations that converge
to this construction. Such convergence provides supports
the credibility of this kinematics. I mention here the main
ones of these derivations. This will also allow me to in-
troduce a structure, the map fγ , that plays an important
role below.

1. Canonical quantization. The strongest reason for
taking the kinematical picture described above se-
riously, in my opinion, is that it is the result of a
rather conventional quantization of the phase space
of general relativity [20–22]. If we start from the
phase space of general relativity in the Ashtekar
formulation, choose a Poisson algebra of observ-
ables, represent it in terms of operators on a Hilbert
space, and factor away the relevant gauge invari-
ances, we obtain the Hilbert space and the opera-
tors constructed above.

The algebra of observables to choose is formed
by holonomies Uγ of the Ashtekar connection A
around closed loops γ, and fluxes of the Ashtekar
electric field E across surfaces. The Poisson algebra
of these operators can be represented by operators
acting on a space S of functionals ψ[A] of the con-
nection. The space S is formed by (limits of sums of
products of) functionals that depend on the value
of A on graphs.

The key gauge invariance is 3d coordinate transfor-
mations, which plays three major roles. First, it is
the main hypothesis for a class of theorems stat-
ing that the resulting representation is essentially
unique [23, 24]. Second, it “washes away” the lo-
cation of the graph Γ in Σ, so that all the Hilbert
subspaces associated to distinct but topologically
equivalent graphs in Σ end up identified. Depend-
ing on the particular class of coordinate transfor-
mations one allows in the classical theory, one ends
up with the different versions of the Hilbert space
mentioned above. Third, this gauge invariance re-
solves the difficulties that have plagued the previ-
ous attempts to use a basis of loop states in con-
tinuous gauge theories.

The other gauge invariance of the canonical the-
ory is formed by the local SU(2) transformations,
which gives rise to (3).

2. Polyhedral quantum geometry. The idea of poly-
hedral quantum geometry is to describe “chunks”
of quantum space by quantizing the space S̃ of the
“shapes” of the geometry of solids figures (tetrahe-
dra, or more general polyhedra) [25–28]. This space
can be given a rather natural symplectic structure
as follows. Take a flat tetrahedron, for simplic-
ity. Its shape can be coordinatized by the four



6

normals ~Ll, l = 1, 2, 3, 4 to its faces, normalized so

that |~Ll| = al is the area of the face l. A nat-

ural SO(3) invariant symplectic structure on S̃ is

ω =
∑
l εijk L

i
l dL

j
l ∧ dLkl , or, equivalently, by the

Poisson brackets

{Lil, L
j
l′} = δll′ ε

ij
k L

k. (26)

A quantum representation of this Poisson algebra
is precisely defined by the generators of SU(2) on

the space H̃n given in (12) (for a 4-valent node n).

The operator corresponding to the area al = |~Ll| is
the Casimir of the representation jl, therefore the
space “quantizes” the space of the shapes of the
tetrahedron with areas jl(jl+ 1). Furthermore, the
normals of a tetrahedron satisfy

~C :=
∑

l
~Ll = 0. (27)

The Hamiltonian flow of ~C, generates the rotations
of the tetrahedron in R3. By imposing equation
(27) and factoring out the orbits of this flow, the

space S̃ reduces to a space S which is still symplec-
tic. In the same manner, imposing the operator
equation (27) strongly on H̃n gives the space Hn
given in (13).

The construction generalizes to polyhedra with
more than 4 faces. Then the shape of an ensem-
ble of such polyhedra, with the same area and op-
posite normals on the shared faces12, is quantized
precisely by the Hilbert space H defined above.

What is the relation with gravity? The central
physical idea of general relativity is of course the
identification of gravitational field and metric ge-
ometry. Consider a polyhedron given on a (say,
piecewise linear) manifold. A metric geometry is
assigned by giving the value of a metric, or a triad
field ei = eiadx

a, namely the gravitational field.
Consider the quantity

Eil := εijk

∫
l

ej ∧ ek. (28)

Observe that on the one hand this is precisely the
flux of the densitized inverse triad Eia across the
face l of the polyhedron:

Eil =

∫
l

naE
ai , (29)

where na is the normal to the face; on the other
hand, in locally flat coordinates it is the normalized

12 The area and the normals match, but not the rest of the geometry
of the face, in general. Thus, we have “twisted geometries”, in
the sense of Freidel and Speziale.

normal ~nl to the face l, multiplied by the area:

Eil =

∫
l

naE
ai =

∫
l

ni = nilal = Lil. (30)

Therefore the quantized normals ~Ll of simplicial
quantum geometry can be interpreted as the quan-
tum operator giving the flux of the Ashtekar elec-
tric field, and we recover again the full kinematics
of the previous section.

3. Covariant lattice quantization. A third possibility
is to discretize general relativity on 4d lattice with
a boundary, and study the resulting Hilbert space
of the lattice theory. This is close in spirit to lat-
tice gauge theory. The difference is diffeomorphism
invariance: in general relativity the lattice is a “co-
ordinate” lattice, and coordinates are gauges. Thus
for instance there is no analog of the QCD lattice
spacing a. More precisely, the physical dimensions
(lengths, areas, volumes) of the cells of the lattice
are not fixed, as in lattice gauge theory, but are
determined by the discretized field variables them-
selves.

The (double covering of the) local gauge group of
the covariant theory is SL(2,C) and the boundary
space that one obtains on the boundary of the lat-
tice theory is

HSL(2,C)
Γ = L2[SL(2,C)L/SL(2,C)N ]. (31)

where Γ is the two-skeleton of the boundary of the
lattice. The states in this Hilbert space ψ(Hl), Hl∈
SL(2,C), can be seen as wave functions of the
holonomies Hl = P exp

∫
l
ω of the spin connection

ω, along the links l. The corresponding generators
J of the Lorentz group must therefore represent the
conjugate momentum of ω. Since the dynamics of
general relativity can be coded into the Holst action

S =

∫
[(e ∧ e)∗ +

1

γ
(e ∧ e)] ∧ F [ω] (32)

these momenta are (the projection on the boundary
of spacetime of)

J = e ∧ e+
1

γ
(e ∧ e)∗. (33)

It is easy to show that an SL(2,C) algebra element
J has the form (33) iff there is a gauge in which

its rotation and boost components13 ~L and ~K are
related by

~K = −γ~L. (34)

13 That is Li = 1
2
εijkJ

jk and Ki = J0i
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This relation is sometime denoted the “simplicity
constraint”.14 I will return to this important rela-
tion shortly.

The map f . The relation between the SU(2)
Hilbert spaceHΓ defined in (10) and the Lorentzian
Hilbert space (31) is important for what follows.
There exists a natural immersion of the first into
second. To see it, consider again the Peter-Weyl
decomposition to write

H̃SL(2,C)
Γ = L2[SL(2,C)L] (35)

=
∑

(pl,kl)

⊗
l

(H∗(pl,kl) ⊗H(pl,kl)).

Here (p ∈ R, k ∈ Z+) are the labels of the SL(2,C)
unitary irreducible representations. Now, fix an
SU(2) subgroup of SL(2,C). Then each Lorentz
irreducible decomposes into a sum of SU(2) irre-
ducibles

H(p,k) =

∞⊕
j′=k

Hj′ (36)

The first term of this sum Hj′=k ⊂ H(p,k), namely
the lowest-spin irrep, plays a key role below. Con-
sider the map

Yγ : H̃Γ → H̃SL(2,C)
Γ (37)

defined by sending each SU(2) irreducible of H̃Γ

to the j′ = k subspace of the Lorentz irreducible
(p = γj, j)

Yγ : Hj 7−→ Hj ⊂ H(p=γj, k=j). (38)

The image of this linear map Yγ is the subspace

of H̃SL(2,C)
Γ obtained by restricting the sum (35) to

the irreducibles where

pl = γjl, kl = jl, (39)

and restricting each SL(2, C) irreducible to its (fi-
nite dimensional) minimum weight subspace j′l =
kl = jl.

Now, one can then show by explicit calculation [29,
30] that

〈ψ| ~K + γ~L|φ〉 = 0. (40)

for any ψ and φ in the image of Yγ . In other words,
the image of Yγ is a subspace of L2[SL(2,C)L]
where the constraints (34) are implemented weakly.

14 In general, the “simplicity constraints” are the relations J must
satisfy in order to have the form (33). Equation (34) is a version
of these.

But this is precisely the relation that constrains J
to be of the form (33)!

In other words: the image of the natural map (38)
is a subspace where the equation that constrains the
momentum J to the form it has in general relativity
holds weakly.

This image is the correct subspace for defining
the quantum theory corresponding to classical GR.
One can also verify [29–31] that the geometrical op-
erators defined in the covariant theory are sent to
the corresponding ones of the canonical theory by
Yγ .

Restricting Yγ to SU(2) invariant states (namely to
HΓ) and composing it with the projection PSL(2,C) :

H̃SL(2,C)
Γ → HSL(2,C)

Γ on the SL(2,C) invariant
states, defines the map

fγ = PSL(2,C) ◦ Yγ : HΓ → HSL(2,C)
Γ (41)

from SU(2) spin networks to SL(2,C) spin net-
works. The covariant theory lives on the image of
this map. Once again, therefore, we recover the
kinematics given in the previous section.15

This concludes the description of the kinematics of the
theory. It is time to move up to the dynamics.

III. TRANSITION AMPLITUDES

In a general covariant quantum theory, the dynamics
can be given by associating an amplitude to each bound-
ary state [33, 34]. Therefore, the dynamics is given by a
linear functional W on H. The modulus square

P (ψ) = |〈W |ψ〉|2 (42)

is the probability associated to the process defined by
the boundary state ψ. This is described in detail, for
instance, in the book [22].

How is W defined? As pointed out by Eugenio Bianchi
in his Nice lectures [2], the form of W is largely deter-
mined by general principles: Feynman’s superposition
principle, locality, diffeomorphism invariance, crossing
symmetry, and local Lorentz invariance. Let us discuss
these principles and their consequences, one by one.

1. Superposition principle. Following Feynman, we
expect that the amplitude 〈W |ψ〉 can be expanded
in a sum over “histories of states”

〈W |ψ〉 =
∑
σ

W (σ), (43)

15 fγ is injective [32].
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where W (σ) is an amplitude associated to an ap-
propriate sequence of states σ, bounded by ψ. Re-
call that in conventional quantum mechanics ex-
pressions like the above one can be derived by in-
serting resolutions of the identity in the evolution
operator, as well as from perturbation theory, as
in QED, where scattering amplitudes can be com-
puted by summing amplitudes of processes with a
finite number of vertices.

2. Locality. We expect that the amplitude W (σ) can
be built in terms of products of elementary ampli-
tudes Wv associated to local elementary process, as
the vertices in QFT

W (σ) ∼
∏
v

Wv. (44)

Let us, therefore, focus first on the amplitude Wv

of a single elementary process. This will be inter-
preted as an elementary vertex, in the same sense in
which the QED vertex is the elementary dynamical
process that gives an amplitude to the boundary
Hilbert space of two electrons and one photon.

3. Diffeomorphism invariance. I use this expression
here in a very loose sense, to denote the following.
Recall that in the canonical quantum theory the
diffeomorphism invariant dynamics is generated by
the hamiltonian constraint. This is a density, and
therefore, loosely speaking, acts only where there
may be volume; that is on the nodes of ψ. Thus
Wv must be associated to processes that transform
nodes into nodes.16

Given a spin network state |ψ〉 = |Γ, jl, vn〉, we
can visualize the elementary process that has ψ has
boundary state as a single vertex (a point), directly
connected by edges (lines) to the nodes of Γ and by
faces (surfaces) to the links of Γ.17 See figure 2.

16 The fact that the canonical Hamiltonian constraint does not act
if there are no nodes is the key result that sparked the inter-
est in loop quantum gravity [35, 36]. In my opinion it is the
founding technical result in the loop representation. Because
of diffeomorphism invariance, there is nothing physical between
node and node. In Einstein’s words, if you remove the gravita-
tional field, what remains is not empty space: it is nothing at
all.

17 The standard terminology is nodes and links for the graphs of the
spin networks; and vertices, edges and faces for the two-complex
of the spinfoams.

FIG. 2: Graphical representation of the elementary vertex,
for a boundary spin network with Γ formed by the complete
graph with 4 nodes (a tetrahedron).

The amplitude of this elementary process will be a
function Wv(jl, vn). This function determines the
theory

4. Crossing symmetry. It is a well know property of
standard QFT that the vertex amplitude does not
depend on which states are considered as “in” and
which are considered as “out”. Assume the same is
true in gravity.

Finally, let me come to the essential ingredient:

5. Lorentz invariance. Since classical general relativ-
ity has a local Lorentz invariance, we expect the
individual spinfoam vertex to be Lorentz invariant
in an appropriate sense. Since the Hilbert space
HΓ defined above has no hint of SL(2,C) action,
there should be a map from it to a Lorentz covari-
ant language that characterizes the vertex. How?

Well, we have just constructed such a map in the
previous section: it is the map fγ , which depends
only on a single parameter γ.

I am now ready to define a vertex amplitude that sat-
isfies these requirements.

A. The LQG vertex

A simple vertex amplitude that satisfies the above re-
quirements is

〈Wv|ψ〉 = (fγψ)(1l). (45)

Here fγ is the map defined in (38) and (41), which takes
an SU(2) spin network to an SL(2,C) spin network. The
right hand side is the evaluation of the SL(2,C) spin
network, that is the value (fγψ)(Hl = 1l), of the spin
network state (in the ψ(Hl) representation) when Hl is
equal to the identity for each l.

The vertex amplitude (45) has been found indepen-
dently by different research groups [14, 31, 37–40], fol-
lowing quite distinct research logics; the different vertices
have only later been recognized as the same. The pre-
sentation I have given here does not follow any of the
original derivations, and is taken from [2].
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Quite astonishingly, the simple and natural vertex am-
plitude (45) seems to yield the Einstein equations in the
large distance classical limit, as I will argue below. A nat-
ural group structure based on SU(2) ⊂ SL(2,C) appears
to turn out to code the Einstein equations.

The incredulity called by the surprise for this claim is
perhaps tempered by two considerations. The first is that
the same happens in QED. The simple vertex amplitude

〈W |ψAe1(p1), ψBe2(p2), ψγµ(k)〉 = (46)

= e γABµ δ(p1+p2+k)

yields the full complexity of the interacting Dirac-
Maxwell equations. In other words, QED, with its fan-
tastic phenomenology and its 12 decimal digits accurate
predictions, is little more that momentum conservation
plus the Dirac matrices γABµ , which, like fγ , are essen-
tially Clebsch-Gordan coefficients.

The second consideration is that general relativity is
BF theory plus the simplicity constraints. BF theory
means flat curvature. Hence in a sense GR is flat
curvature plus simplicity conditions (34). The map fγ
implements the simplicity conditions, since it maps the
states to the space where the simplicity conditions hold
(weakly); while the evaluation on Hl = 1l codes (local)
flatness.

The last observation does not imply that the theory describes
flat geometries, for the same reason for which Regge calculus de-
scribes curved geometries using flat 4-simplices. In fact, there is a
derivation of the vertex (45) which is precisely based on Regge cal-
culus, and a single vertex is interpreted as a flat 4-simplex [31, 38].

In this derivation one only considers 4-valent nodes and 5-valent
vertices. On the other hand, the resulting expression naturally gen-
eralized to an arbitrary number of nodes and vertices, and therefore
defines the dynamics in full LQG. This fact was nicely emphasized
in [40].

The vertex amplitude (45) gives the probability am-
plitude for a single spacetime process, where n grains of
space are transformed into one another. It has the same
crossing property as standard QFT vertices. That is, it
describes different processes, obtained by splitting differ-
ently the boundary nodes into “in” and “out” ones. For
instance if n = 5 (this is the case corresponding to a
4-simplex in the triangulation picture), the vertex (45)
gives the amplitude for a single grain of space splitting
into four grains of space; or for two grains scattering into
three, and so on. A picture of the vertex of Figure 2 in-
terpreted as a 1 to 3 transition, with the future upward,
is in Figure 3.

More precisely, the vertex 〈Wv|ψ〉 gives an amplitude
associated to the spacetime process defined by a finite
region of spacetime, bounded by a 3d region described
by the state ψ: there is no distinction between “in” and
“out” states.

The amplitude (45) can be written explicitly as [19]

FIG. 3: The transition between a single grain of space to three
grains of space.

Wv(Ul) ≡ 〈Wv |Ul〉 (47)

=

∫
SL(2,C)N

dg̃n
∏
`

P (Ul , gs(l)g
−1
t(l))

where

P (U, g)=
∑
j

(2j+1) Tr
[
D(j)(U)Y †γD

(γj,j)(g)Yγ
]
. (48)

The integral is over SL(2,C)N ; it implements the projec-
tion PSL(2,C). The measure is dg̃n = δ(g1)dgn; the delta
function avoids the divergence and does not spoil gauge
invariance [41].

The same amplitude takes a more manageable form
when written in terms of coherent states. First, it is easy
to show that in terms of LS states, it reads

Wv(jl, ~nl, ~n
′
l) =

∫
dg̃n

⊗
l

〈~nl|gs(l)g−1

t(l)|~n
′
l〉(γj,j) (49)

The scalar product is taken in the irreducible SL(2,C)
representation H(γj,j) and |~nl〉 is the coherent state |j, ~nl〉
sitting in the lowest spin subspace of this representation.

Second, the form of the vertex in the holomorphic basis
defined by the coherent states (15) can be obtained com-
bining the definition (45) of the vertex and the definition
(15) of the coherent states. This gives [19]

Wv(Hl) ≡ 〈Wv |ψH`〉 (50)

=

∫
SL(2,C)N

dg̃n
∏
`

P (Hl , gs(l)g
−1
t(l))

where

P (H, g)=
∑
j

(2j+1) e−j(j+1)t Tr
[
D(j)(H)Y †γD

(γj,j)(g)Yγ
]
.

(51)
Here D(j) is the analytic continuation of the Wigner ma-
trix from SU(2) to SL(2,C) and Yγ is defined in (38).
This is the “holomorphic” form of the vertex amplitude.
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B. Spinfoams

By bringing together equations (43), (44) and (45) we
have the full amplitude associated to a boundary spin
network state. This can be expressed as the “spinfoam
sum”

〈W |ψ〉 =
∑
σ

∏
f

d(jf )
∏
v

Wv(σ). (52)

The sum18 is over spinfoams σ bounded by the spin net-
work ψ. A spinfoam is a two-complex colored with rep-
resentations on the faces and intertwiners on the links.
A two-complex is a collection of faces f meeting at edges
e, in turn meeting at vertices v. The coloring of a face f
is a SU(2) representation jf . The coloring of an edges e
is given by an element ie chosen among a basis of vectors
in He = InvSU(2)[

⊗
f∈eHjf ], where the sum is over the

faces f bounded by e.
If we “cut a spinfoam with a 2d-surface”, we obtain

a spin network: the intersection of the edges e with the
surface gives the nodes n of the spin network and the
intersection of the faces f with the surface gives the links
l of the spin network, with their respective colorings.

In particular, an S3 surface surrounding a vertex v of
σ defines a spin network ψv. The vertex amplitude of the
vertex v of σ is defined to be

Wv(σ) := 〈Wv|ψv〉. (53)

This is “local”, in the sense that it depends only on the
spins and intertwiners surrounding the vertex.

The amplitude of a spinfoam is the product of the
amplitudes Wv of the single vertices, times the product
of face amplitudes, needed to obtain the proper inner
product when gluing boundary spaces [? ]. This gives
the dimension of the SU(2) representation coloring the
face: d(jf ) = (2jf + 1).

Alternative choices for the face amplitude have been considered
in the literature. In the Euclidean case, where SL(2,C) is replaced
by SO(4), there is a natural alternative which is the dimension of
the SO(4) irreducible into which the representation j is mapped
by Yγ . I suspect that this choice is incompatible with the natural
requirement that the Hilbert-space contraction of the amplitudes
of two spinfoams along a common boundary be the same as the
amplitude of the composed spinfoam.

A simple modification of the theory is to multiply the vertex by a
constant λ. This comes naturally if one derives (52) from a group
field theory [42]: then λ is the coupling constant in front of the
group-field-theory interaction term. The physical interpretation of
the constant λ is debated [42, 43].

The expression (52) fully defines a quantum field
theory of gravity. All that remains to do is to extract
physics from this theory, and show that it gives general

18 Note added in proofs: With a slight modification of the ampli-
tude, the sum can be shown to be equivalent to the limit in which
the foam is infinitely refined [? ].

relativity in some limit.

(The last paragraph is an over-statement.)

C. The euclidean theory

Before describing how to use the above definition of
the dynamics, it is useful to introduce also “euclidean
quantum gravity”, which is the theory obtained from the
one above by replacing SL(2,C) with SO(4). The rep-
resentations of SO(4) are labelled by two spins (j+, j−).
The theory is the same as above with the only difference
that (39) is replaced by

j± =
|1± γ|

2
(54)

and fγ maps Hj into the lowest spin component of Hj±

if γ > 1, but to the highest spin component of Hj± if
γ < 1 (the case γ = 1 is ill defined.) All the rest goes
through as above. The vertex amplitude can be written
in the simpler form

Wv(jl, ~nl, ~n
′
l) =

∫
dg±n

⊗
l

∏
i=±
〈~nl|gis(l)(g

i
t(l))

−1|~n′l〉2j
i

(55)
where now the integration is over SU(2)N × SU(2)N ∼
SO(4)N and the scalar product is in the fundamental
representation of SU(2).

D. Transition amplitudes

The predictions of the theory are in the transition
amplitudes. Given a boundary state, the formalism de-
fined above can be used to define transition amplitudes,
namely to associate probabilities to boundary states (pro-
cesses). We are particularly interested in processes in-
volving (background) semiclassical geometries. Since the
formalism is background independent, the information
about the background over which we are computing am-
plitude must be fed into the calculation. This can only
be done with the choice of the boundary state.

Consider a three-dimensional surface Σ with the topol-
ogy of a three sphere. Let (q, k) be the three-metric and
the extrinsic curvature of Σ. The classical Einstein equa-
tions determine uniquely whether or not (q, k) are physi-
cal: that is, whether or not there exist a Ricci-flat space-
time M (a solution of the Einstein equation) which is
bounded by (Σ, q, k).19 The quantum theory will assigns

19 This is the analog of the following formulation of dynamics.
Given coordinate and momenta q0, p0, qt, pt at t=0 and at a
final time t, dynamics is fully captured by the conditions the
quadruplet (q0, p0, qt, pt) must satisfy in order to bound a phys-
ical trajectory. For a free particle, for instance, these are
pt = p0 = m(qt − q0)/t.
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an amplitude to any semiclassical boundary state peaked
on a given boundary geometry (q, k), and we expect this
amplitude to be suppressed if (Σ, q, k) does not bound a
solution of the Einstein equations.

Now, a consider a boundary state in the holomorphic
representation — this can be given an interpretation as
a classical geometry, as discussed above. Choose a (nor-
malized) holomorphic coherent state ψHl determined by
a discrete geometry Hl that approximates (g, k) in a suit-
able approximation. Then, if q, k is a solution of the Ein-
stein equations, we must expect that, within the given
approximation

P (ψHl) = |〈W |ψHl〉|2 ∼ 1. (56)

Next, if we modify the state ψHl with field operators
E1, ..., En, then the amplitude

WHl(E1, ..., En) = 〈W |E1...En|ψHl〉. (57)

can be interpreted as a scattering amplitude between the
n “particles” (quanta) created by the field operators over
the spacetimeM. (The possibility of using the notion of
“particle” in this context is discussed in detail in [44].)
Since we know how to write the gravitational field op-
erator (the triad), we can in principle compute graviton
n-point functions in this way.

IV. EXPANSIONS

There is no physics without approximations. The full
sum (52) is intractable, as far as we can see. It can
be compared to the full perturbation expansion in QED.
(But see [42].) We need some appropriate way to com-
pute approximate transition amplitudes, as we do in for
instance order by order in perturbative QED, or on a
finite lattice in QCD.

What approximations can be effective in the
background-independent context of quantum gravity? I
consider here three expansions that naturally present
themselves.

1. Graph expansion

Consider the component HΓ of H. Notice that because
of the equivalence relation defined in Section II, all the
states that have support on graphs smaller than (sub-
graphs of) Γ are already contained in HΓ, provided that
we include also the j = 0 representations. Therefore if
we truncate the theory to a single Hilbert space HΓ for a
given fixed Γ, what we loose are only states that need a
“larger” graphs to be defined. Let us therefore consider
the truncation of the theory to a given graph.20

20 The analog in QFT is to truncate the theory to the sector of Fock
space with a number of particles less than a finite fixed maximum

What kind of truncation is this? It is a truncation of
the degrees of freedom of general relativity down to a
finite number; which can be interpreted as describing the
lowest modes on a mode expansion of the gravitational
field on a compact space. Strictly speaking this is neither
an ultraviolet nor an infrared truncation, because the
whole space can still be large or small. What are lost are
not wavelengths shorter that a given length, but rather
wavelengths k times shorter the full size of space, for
some integer k.

It is reasonable to expect this truncation to define a vi-
able approximation for all gravitational phenomena such
that the ratio between the largest and the smallest rele-
vant wavelengths in the boundary state is not large. For
instance, conventional cosmology is based on a trunca-
tion of general relativity to a single degree of freedom,
the scale factor. Similarly, the scattering amplitude of
modes with wavelength λ is dominated by the physics of
the degrees of freedom with wavelength of the order of λ.
And so on. The approximation can then be improved by
taking a larger graph.

Notice that fixing the boundary graph does not mean
that we are taking the approximation in which the dy-
namics does not change the graph. The bulk two complex
can still be arbitrary.

Finally, notice that the graph expansion resolves the
problem given by the fact that the operators of the theory
are defined on HΓ rather than on H.

2. The vertex expansion

A natural expansion of (52) presents itself: the expan-
sion in the number N of vertices of σ.

In which regime is this expansion useful? We have
a hint of this from the Regge interpretation of the ver-
tex amplitude: if we derive the vertex amplitude from a
Regge discretization of general relativity, a single vertex
corresponds to a flat 4-simplex. It is therefore natural to
expect that cutting the theory to small N defines an ap-
proximation valid around flat space, and where relevant
wavelengths are not much shorter than the bounded scat-
tering region R.

Notice the similarity of this expansion with the stan-
dard perturbation expansion of QED. In both cases, we
describe a quantum field in terms of interactions of a fi-
nite number of its “quanta”. In the case of QED, these
are the photons. In the case of LQG, these are the
“quanta of space”, or “chunks of space”, described in Sec-
tion II D. In the QED case, individual photons can have
small or large energy; in the quantum gravity case, the
quanta of space can have small or large volume. In the
case of QED, one should be careful not to take the photon

number. Notice that virtually all calculations in perturbative
QED are performed within this truncation.
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picture too literally when looking a the semiclassical limit
of the theory. For instance, the Feynman graph for the
Coulomb scattering of two electrons is given in Figure 4.
But Figure 4 does not provide a viable picture of the con-
tinuous electric field in the scattering region. Similarly,
if we compute a transition amplitude between geometries
at first order in the vertex expansion, we should not mis-
take the corresponding spinfoam for a faithful geometri-
cal picture of the gravitational field in the corresponding
classical spacetime.

FIG. 4: Electromagnetic scattering of two electrons at first
relevant order in QED.

An important observation regards radiative correc-
tions. The QED perturbative expansion is viable be-
cause the effect of all the radiative corrections due to the
higher frequency modes can be absorbed into the renor-
malization of a few parameters. Does the same happen
in LQG? For the moment, this is not known. Prelim-
inary calculations are encouraging: they indicate finite
radiative corrections of the vertex and logarithmic cor-
rection for the “self energy” [45]21, but these results are
preliminary.

Potential divergences in the theory all infrared, not
ultraviolet, because there is no short-scale geometry (sub
Planckian geometry) in the theory.

3. The large distance expansion

Finally, a useful approximation can be taken by choos-
ing the boundary to be large. This means that the bound-
ary state must be peaked on a boundary geometry which
is large compared with the Planck length. In particular,
we can chose holomorphic boundary states ψHl where
ηl � 1 in each Hl.

The analysis of the vertex (49) as well as that of its
euclidean analog (55) in this limit has been carried out
in great detail for the 5-valent vertex, by the Notting-
ham group [27, 28, 46, 47]. The remarkable result of this
analysis is that in this limit the vertex behaves as

Wv ∼ eiSRegge (58)

where SRegge is a function of the boundary variables
given by the Regge action, under the identifications of

21 When [45] was written, the choice of the face amplitude was still
very unclear. I find remarkable that later independent arguments
point towards the most favorable choice (dj ∼ j).

these with variables describing a Regge geometry. The
Regge action codes the Einstein equations’ dynamics.
Therefore this is an indication that the vertex can yield
general relativity in the large distance limit. More
correctly, this result supports the expectation that the
boundary amplitude reduces to the exponential of the
Hamilton function of the classical theory.

In fact, what is shown in [46] is that Wv ∼ eiSRegge+e−iSRegge .
Concern has been raised by the fact that two terms appear in this
sum. In my opinion this concern is excessive. When sandwiched
between coherent boundary states that define a semiclassical ge-
ometry, only one of the terms in survives [19]. This is because of
the ubiquitous mechanism of phases cancellations between propa-
gator and boundary state in quantum mechanics. See [48] for a
discussion of this mechanism. Therefore the existence of different
terms in (58) does not affect the classical limit of the theory.

On the other hand, I think that the amplitude of the theory
should include different terms. This appears clearly in the three
dimensional Ponzano Regge theory [49] as well as in low dimen-
sional models [50], and can be viewed as related to the fact that
the classical dynamics does not distinguish propagation “ahead in
(proper) time” or “backward in (proper) time”, in a theory where
coordinate time is an unphysical parameter.22

A. What has already been computed

Using the approximations discussed above, a few tran-
sition amplitudes have already been computed in the
(Euclidean) theory.

1. n-point functions

The two point function of general relativity over a
flat spacetime has been computed by Bianchi, Magliaro
and Perini in [51], following the earlier attempts in
[48, 52–55] and using the Euclidean theory rather that
the Lorentzian one (that is, using (55) instead than (49)),
and has been shown to converge to the free graviton prop-
agator of quantum gravity in the large distance limit.

The calculation has been performed to first order in
the vertex expansion, on the complete graph with five
nodes Γ5, and to first order in the large-distance expan-
sion. The boundary state ψL has been chosen as the

22 It is sometime argued that the presence of the two terms follows
from the fact that one has failed to select the “positive energy”
solutions in the course of the quantization. However, such choice
makes only sense in the context of the specific strategy for quan-
tization which consists in considering complex solutions of the
classical equations and then discarding solutions with “negative
energy”. This strategy is not available here, because of the ab-
sence of a preferred time, or a preferred energy. But there are
other quantization strategies that are available: we quantify the
real solution space and keep all solutions. In other words, the
physical scalar product is determined by all real solutions of the
Wheeler DeWitt equation with the proper symplectic structure,
not by a “positive energy sector” of the complex solutions.
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coherent state determined by the (intrinsic and extrin-
sic) geometry of the boundary of a regular 4-simplex23 of
size L.

Γ5 =

q
qq q

q �
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��

Q
QQ�

��

C
C
CC
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B

ll

�
�
��

��B
B
B

�
�

#
##

c
cc

. (59)

The quantity computed is

W abcd
mn = 〈W |~Lna · ~Lnb ~Lmc · ~Lmd|ψL〉 (60)

−〈W |~Lna · ~Lnb|ψL〉〈W~Lmc · ~Ljmd|ψL〉.

where m,n, a, b... = 1, ..., 5 label the nodes of Γ5. The re-
sulting expression can be compared with the correspond-
ing quantity

W abcd(xm, xn) = 〈0|gab(xn)gcd(xm)|0〉 (61)

−〈0|gab(xn)|0〉〈0|gcd(xm)|0〉.

in conventional QFT, where gab(x) is the gravitational
field operator.

In this way, it is clear that n point functions in gravity
can be computed order by order.

2. Cosmology

The transition amplitude between two homogeneous
and isotropic coherent states in quantum cosmology has
been computed in [56]. The calculation is: (i) in the ap-
proximation where the theory is truncated on the graph
formed by two copes of the graph ∆∗2; ∆∗2 is the “dipole”
graph formed by two nodes connected by four links [57]

∆∗2 = r r p
and (ii) at first order in the large distance expansion and
in the vertex expansion. The spinfoam considered has
therefore the form r r

r r
t

23 This approximates flat space. More precisely, the quantity com-
puted can be interpreted as the graviton two-point function un-
der the condition that the state of the gravitational field is de-
scribed by this spin network at large wavelength. In other words,
what is assumed is not the full state of the gravitational field,
but only the value of some of its variables. Intuitively, this can
be seen as the translation into the theory of a finite number of
macroscopic geometrical measurements that measure flat space.

Homogenous isotropic states depend on two variables, p
and c, at each ∆∗2. These represent (the square of) the
radius a and the extrinsic curvature of closed universe
(or ȧ). They enter the definition of the holomorphic co-
herent states via a complex combination z ∼ c+ ip. The
resulting transition amplitude turns out to be

W (z, z′) ∼ zz′e−
z2+z′2

2t~ . (62)

This amplitude reproduces the correct Friedmann dy-
namics in the sense that it satisfies a quantum constraint
equation which reduces to the (appropriate limit of the)
Friedmann hamiltonian in the classical limit [56].

V. OPEN PROBLEMS

The theory is far from being complete. Here are some
of the open problems that require further investigation.

1. Compute the propagator (60) in the Lorentzian
theory, extending the euclidean result of [51].

2. Compute the three point function and compare it
with the vertex amplitude of conventional pertur-
bative quantum gravity on Minkowski space.

3. Compute the next vertex order of the two point
function, for N = 2.

4. Compute the next graph order of the two point
function, for Γ > Γ5.

5. Understand the normalization factors in these
terms, and their relative weight. Find out under
which conditions the expansion is viable.

6. Study the radiative corrections in (52) and their
possible (infrared) divergences, following the pre-
liminary investigations in [45]. In particular, the
sum can be split into a sum over two complexes
and a sum over labelings (spin and intertwiners)
for a given two complex. The potential divergences
of the second are associated to “bubbles” (nontriv-
ial elements of the second homotopy class) in the
two complex. Classify them and study how do deal
with these.

7. Use the analysis of the these radiative corrections
to study the scaling of the theory.

8. In particular, how does G scale?

9. Study the quantum corrections that this theory
adds to the tree-level n-point functions of classical
general relativity. Can any of these be connected
to potentially observable phenomena?

10. Is there any reason for a breaking or a deforma-
tion of local Lorentz invariance, that could lead to
observable phenomena such as γ ray bursts energy-
dependent time of arrival delays, in this theory?
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11. Compute the cosmological transition amplitude in
the Lorentzian theory, extending the euclidean re-
sult of [56]. Compare with canonical Loop Quan-
tum Cosmology [58, 59].

12. The possibility of introducing a spinfoam-like ex-
pansion starting from Loop Quantum Cosmology
has been considered by Ashtekar, Campiglia and
Henderson [43, 60? , 61]. Can the convergence
between the two approaches be completed?

13. Find a simple group field theory [42] whose expan-
sion gives (52).

14. Find the relation between this formalism and the
way dynamics can be treated in the canonical the-
ory. Formally, if H is the Hamiltonian constraint,
we expect something like the main equation

HW = 0 (63)

or WP = 0 where the operator P is given by
〈W |ψ⊗φ〉 = 〈ψ|P |φ〉, since P is formally a projec-
tor on the solutions of the Wheeler de Witt equa-
tion

Hψ = 0. (64)

Can we construct the Hamiltonian operator in
canonical LQG such that this is realized?

15. Is the node expansion related to the amount of
boundary data available? How?

16. Where is the cosmological constant in the theory?
It is tempting to simply replace (45) with a corre-
sponding quantum group expression

〈Wv|ψ〉 = Evq(fψ). (65)

where Evq is the quantum evaluation in SL(2,C)q.
Does this give a viable theory? Does this give a
finite theory?

17. How to couple fermions and YM fields to this for-
mulation? The kinematics described above gener-
alizes very easily to include fermions (at the nodes)
and Yang Mills fields (on the links). Can we use the
simple group theoretical argument that has selected
the gravitational vertex also for coupling these mat-
ter fields?

In conclusion, the theory looks simple and beautiful
to me, both in its kinematical and its dynamical parts.
Some preliminary physical calculations have been per-
formed and the results are encouraging. The theory is
moving ahead fast. But we do not yet know if it really
works, and there is still very much to do.
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