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Lorentz covariance of loop quantum gravity
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The kinematics of loop gravity can be given a manifestly Lorentz-covariant formulation: the con-
ventional SU(2)-spin-network Hilbert space can be mapped to a space K of SL(2,C) functions,
where Lorentz covariance is manifest. K can be described in terms of a certain subset of the
“projected” spin networks studied by Livine, Alexandrov and Dupuis. It is formed by SL(2,C)
functions completely determined by their restriction on SU(2). These are square-integrable in the
SU(2) scalar product, but not in the SL(2,C) one. Thus, SU(2)-spin-network states can be rep-
resented by Lorentz-covariant SL(2,C) functions, as two-component photons can be described in
the Lorentz-covariant Gupta-Bleuler formalism. As shown by Wolfgang Wieland in a related paper,
this manifestly Lorentz-covariant formulation can also be directly obtained from canonical quanti-
zation. We show that the spinfoam dynamics of loop quantum gravity is locally SL(2,C)-invariant
in the bulk, and yields states that are preciseley in K on the boundary. This clarifies how the
SL(2,C) spinfoam formalism yields an SU(2) theory on the boundary. These structures define a
tidy Lorentz-covariant formalism for loop gravity.

I. INTRODUCTION

General relativity (GR) has a local Lorentz symmetry.
Here we discuss the Lorentz covariance of loop quantum
gravity (LQG) in the spinfoam and canonical formalisms.

The state space HSU(2) of canonical LQG is defined in
a fixed gauge, thus manifest local Lorentz covariance is
broken. The lack of manifest Lorentz covariance has been
often pointed out as an unpalatable feature of canonical
LQG. Is LQG consistent with the local Lorentz invari-
ance of GR? Can we reformulate the LQG kinematics
in a manifestly Lorentz covariant language? Recent de-
velopments in spinfoam theory bring new light to this
question.

A spinfoam definition of the LQG dynamics has been
fast developing in the last few years [1–7] and is summa-
rized in [8]. The theory is built in an SL(2,C)-covariant
formalism and determines transition amplitudes between
boundary states. Here we observe that the boundary
states of the spinfoam theory can be represented as func-
tions on SL(2,C), but these functions are not square in-
tegrable with respect to the Haar measure on SL(2,C).
Rather, they span a generalized linear subspace, K. Fur-
thermore, they satisfy a kind of analyticity property:
they are fully determined by their restriction on SU(2).
Hence the space K, which does not carry an SL(2,C)-
covariant scalar product, is instead isomorphic to the
Hilbert space of the SU(2) spin networks, HSU(2).

This observation clarifies how the SL(2,C)-covariant
dynamics provides amplitudes for the canonical theory,
based on SU(2). But it also provides a way to give
a Lorentz-covariant description to the canonical states.
In fact, the isomorphism between HSU(2) and K equips
boundary states with natural covariance properties: con-
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ventional SU(2) spin networks can be represented as
functions on SL(2,C), in a form where their transfor-
mation properties under a local Lorentz transformation
are manifest, providing an elegant answer to the question
we have started from, and restoring manifest Lorentz co-
variance in canonical quantum gravity.

The tools which makes this link possible are the “pro-
jected” spin networks introduced by Livine [9] and de-
veloped by Alexandrov and Livine [10–12], precisely
with the aim of providing a manifestly Lorentz-covariant
framework for LQG. In particular, in [13], Dupuis and
Livine study a map f that sends a SU(2) spin networks
into (a certain class of) projected spin networks. The
space K defined by the LQG spinfoam amplitudes satis-
fies the simplicity constraints and is in the image of this
map [12, 13]. Furthermore, in a paper appearing in par-
allel with this one [14], Wieland shows that the space K
can also be obtained directly from a canonical quantiza-
tion of general relativity, by using the original self-dual
Ashtekar connection as a variable in the Holst action with
real Barbero-Immirzi parameter (on this, see also [12]).

The fact that SL(2,C) functions describe states of
canonical LQG, but there is no SL(2,C)-covariant scalar
product on the space where they live, is reminiscent
of the Gupta-Bleuler formalism [15, 16], where the two
physical photons can be described in a Lorentz-covariant
language, but without positive-definite Lorentz-covariant
scalar product. The fact that K is not a proper subspace
of HSL(2,C) is also reminiscent of loop cosmology, where
the state space is taken to be defined by a Bohr compact-
ification of the real line [17]. Functions in K are of the
same kind: discrete linear combinations of distributions.

Altogether, these observations show that LQG admits
a manifestly Lorentz-covariant formulation, and behaves
under Lorentz transformations as expected from classical
GR. Like classical GR, the theory is invariant under local
Lorentz transformation in the bulk and is covariant under
local Lorentz transformation in the boundary.

http://arxiv.org/abs/1012.1739v1
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II. DUPUIS-LIVINE MAP

Let ψ(h) be a function on SU(2). Following Dupuis

and Livine [13], consider a map f : ψ 7→ ψ̃ from func-
tions on SU(2) to functions on SL(2,C), as the integral
transform

ψ̃(g) =

∫

SU(2)

dh K(g, h) ψ(h), g ∈ SL(2,C) (1)

defined by the kernel

K(g, h) =
∑

j

d2j

∫

SU(2)

dk χp(j),j(gk) χj(kh). (2)

Here j ∈ N/2, dj = 2j + 1, χj(h) is the spin-j SU(2)
character and χp,k(g) is the SL(2,C) character in the
(p, k) representation.1 Finally, p(j) is the assignment of
a positive real number p for each j, which we call the
“degree” of the map.
It is not hard to show that

(fψ)
∣

∣

SU(2)
= ψ. (6)

Therefore the image of f is formed by a linear subspace
of the space of functions on SL(2,C), denote it K, char-
acterized by the property

ψ̃(g) =

∫

SU(2)

dh K(g, h) ψ̃(h). (7)

We call the functions satisfying this property “projected”
functions of degree p(j).
Notice that these functions satisfy a sort of analytic-

ity property: they are determined by their restriction on

SU(2). The space of these functions is therefore linearly
isomorphic to a space of functions on SU(2). If we define
the components of ψ on the Peter-Weyl basis,

ψjmn =

∫

SU(2)

dhDj
mn(h)ψ(h), (8)

where Dj
mn(h) are the Wigner matrices; then, (1) can be

rewritten

ψ̃(g) =
∑

jmn

dj ψjmnD
p(j),j
jm,jn(g), (9)

1 SL(2,C) unitary representation in the principle series are deter-
mined by the two quantum numbers, p ∈ R and k ∈ N/2, of the
two Casimirs C1 and C2,

C1 ≡ (1/2)JIJJIJ = |~L|2 − | ~K|2 = p2 − k2, (3)

C2 ≡ (1/4)ǫIJKLJIJJIJ = 2 ~K · ~L = 2pk, (4)

where JIK , I,K = 0, ...,3 are the generators of SL(2,C). Here ~L

are the generators of SU(2) ⊂ SL(2,C) and ~K the generators of
the corresponding boosts. That is, letting i, j, k = 1, 2, 3,

Li = −
1

2
ǫijkJ

jk, Ki = J0i. (5)

where Dp,k
jm,j′n are the matrix elements of the (p, k) rep-

resentation in the |(p, k); j,m〉 basis that diagonalizes L2

and Lz of the canonical SU(2) subgroup.
An important aspect of these functions is that

the space K spanned is not a proper subspace of
L2[SL(2,C)]. This can be better seen by introducing
in L2[SL(2,C)] the generalized basis |p, k, j,m, j′,m′〉,
defined by

〈g|p, k, j,m, j′,m′〉 = Dp,k
jm,j′m′(g). (10)

The basis vector are orthogonal,

〈p̃, k̃, j̃, m̃, j̃′, m̃′|p, k, j,m, j′,m′〉 (11)

=
δ(p− p′)

(p2+k2)
δkk̃δjj̃δj′ j̃′δmm̃δm′m̃′ .

The key point is that p is a continuous label. Therefore
normalizable states can be obtained only by integrating

in p,

|ψ〉 =
∑

k...m′

∫

dp(p2+k2)ψkjmj′m′(p)|p, k, j,m, j′,m′〉

with ψkjmj′m′(p) square integrable in p. But for |ψ〉 to
be in K it must be of the form

ψkjmj′m′(p) =
δ
(

p− p(k)
)

(p2 + k2)
δjkδj′k ψjmm′ (12)

which is not square integrable in p. In other words, the
fixed relation between the continuous variable p and the
discrete variable k forces the states in K to be a discrete
linear combinations of distributions.
It follows that the SL(2,C) scalar product is not well

defined on K. Instead, a scalar product is naturally de-
fined by the linear isomorphism between K and a space of
functions on SU(2). This amounts essentially in replac-
ing the Dirac delta in (11) with a Kroneker delta (and
adjusting the measure factor). That is, since

f |j,m,m′〉 = |p(j), j, j,m, j,m′〉;

and in L2[SU(2)]

〈j̃, m̃, m̃′|j,m,m′〉 =
δjj̃
dj
δmm̃δm′m̃′ ,

we can define on K the well-behaved scalar product

〈p(j), j, j̃, m̃, j̃, m̃′|p(j), j, j,m, j,m′〉 =
δjj̃
dj
δmm̃δm′m̃′ ,

(13)
instead of the diverging SL[2,C] one (11).2

2 The reduction of p to a discrete label echos the Bohr compacti-
fication of the real line used in loop cosmology [17].
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III. FIXING THE DEGREE

All that we said above is valid for an arbitrary degree
p(j) of the Dupuis-Livine map. Let us now select, once
and for all, the degree to be

p(j) = γj (14)

where γ is a positive real parameter. We still refer to
K as the space of projected functions with this degree,
which is now spanned by Dγj,j

jm,jn(g).
The interest in this space K comes from the fact that

this space implements the linear simplicity constraints of
general relativity [1, 18, 19]. At the classical level, these
can be written in the time gauge as

~K + γ~L = 0. (15)

From this expression we can extract the following gauge-
invariant part,

2γC1 − (γ2 − 1)C2 = 0. (16)

One can then show [1, 18, 19] that for all ψ̃ and ψ̃′ be-
longing to K, the condition (16) is satisfied strongly,

(

2γC1 − (γ2 − 1)C2

)

|ψ̃〉 = 0, (17)

and (15) weakly,

〈ψ̃| ~K + γ~L|ψ̃′〉 = 0 (18)

in the limit j 7→ ∞.3 Here the scalar product is the one
determined by the SL(2,C) Haar measure.
That is, K is a linear subspace of L2[SL(2,C)] where

equations (17) and (18) hold. The first condition imposes
p = γk, and the second one fixes k = j, the minimal spin
of the canonical SU(2) subgroup. These are the linear
simplicity constraints used in the new spin foam models
for quantum general relativity [1, 18].
At the classical level, these constraints guarantee that

the full covariant dynamics can be encoded in the SU(2)
Ashtekar-Barbero connection [22, 23], Ai = ωi + γω0i,
where ωi = − 1

2ǫ
i
jkω

jk and ωIJ is the full SL(2,C) con-
nection. Indeed, let

ω = ωIKJIK = ω0iKi + ωiLi (19)

be an SL(2,C) algebra element. If the condition (15)
between generators holds, we have

ω|K = (ωi + γω0i)Li ≡ AiLi. (20)

At the quantum level, the correspondence (20) is lost
since the connection is not a well-defined operator by

3 It is also possible to satisfy the condition (18) for all spins [12, 19],
if one chooses p = γ(j+1), but this would violate the cylindrical
consistency of the spin foam amplitude [20, 21].
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FIG. 1: A two-complex with one bulk vertex.

itself. Only the holonomy, namely the exponential of
the connection along a finite path, is. Therefore (20) is
replaced by the relation between the SL(2,C) holonomy
g and the SU(2) holonomy h induced by (1),

g|K = Dγj,j
jm,jn(g) =

∫

SU(2)

dh K(g, h) Dj
mn(h). (21)

This relation guarantees that the SL(2,C) holonomy is
fully determined by its restriction to SU(2).4

After these preliminaries, we are now ready to get to
our main subject.

IV. TRANSITION AMPLITUDES

Following [8, 26], the transition amplitudes of LQG can
be written in the form

ZC(hl) =

∫

SL(2,C)

dgve

∫

SU(2)

dhef (22)

×
∑

j
f

∏

f

dj
f
χγj

f
,j
f





∏

e∈∂f

g
ǫef
ef





∏

e∈∂f

χj
f(hef )

Here C is a combinatorial two-complex with vertices v,
edges e and faces f , bounded by a graph Γ = ∂C with
nodes n and links l (See Figure 1). Inside the SL(2,C)
characters, ǫef is a sign, and the quantity gef is defined
by

gef =

{

gesehefg
−1
ete

for internal edges,
hl∈SU(2) for boundary edges.

(23)

For the rest of the definition, see [8].
Notice that in this definition the SU(2) elements only

enter inside the SL(2,C) characters. It follows that
ZC(hl) is in fact the restriction to SU(2) of the function
on SL(2,C) defined by

Z̃C(gl) = same as (22, 23) with hl replaced by gl. (24)

Our first result is the following.

4 For a discussion on the splitting Ai = ωi + γω0i at the discrete
level, see also [24, 25].
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Theorem 1 Z̃C(gl) is a projected function with degree

p(j) = γj in each of its entries. Equivalently:

(⊗lf)ZC = Z̃C . (25)

This can be shown by an explicit computation, inserting
(22) into the definition of projected functions (1). The
computation is straightforward, although somewhat te-
dious, and we omit the details. The key reason for which
the result holds is that the hl are directly sandwiched
between the variables hef and he′f , where f is the face
bounding l and e and e′ are the edges bounding the two
nodes that bound l. (Recall that there is no g integra-
tion at the boundary nodes.) The integrations over hef
and he′f , amount to projections on the j = k SU(2) sub-
space of the SL(2,C) representation, thus trivializing the
integrals in the definition of f .
As a consequence of this theorem, the SU(2)-invariant

boundary space HLQG is naturally mapped into the
SU(2)-invariant tensor product of spaces K at each link:

ψ[Γ,jl,in](hl) = ⊗lD
jl(hl)⊗ in

7→ ψ̃[Γ,jl,in](gl) = ⊗lD
γjl,jl(gl)⊗ in,

where in are SU(2) intertwiners, and contraction over
the magnetic indices is tacitly assumed.

V. LORENTZ COVARIANCE

The point of our main interest is the restoration of
manifest local Lorentz covariance of the boundary space.
In classical general relativity, spacetime is assumed to be
a pseudo-Riemannian manifold, and a Minkowksi metric
is defined on the tangent space of each spacetime point.
The Lorentz group SO(3, 1) is the symmetry group of
Minkowski space, and in this sense the dynamics of gen-
eral relativity is locally Lorentz invariant. The symme-
try is manifest in the tetrad formalism, where the grav-
itational field is described by a one form with values in
Minkowski space, and the GR action is invariant under
local Lorentz transformations in this space.
In the physical theory, then, SL(2,C) represents the

covering group of the part connected to the identity,
SO0(3, 1), of the group of the local Lorentz transforma-
tion, while SU(2) represents the covering group of the
SO(3) group of rotations of the physical space defined by
a certain Lorentz frame. If we view SU(2) and SL(2,C)
as groups of matrices, then SU(2) is naturally a subgroup
of SL(2,C). Let us call xo this canonical embedding:
xo(h) = h. From the point of view of physics, on the
other hand, there is no preferred embedding of the ab-
stract group SU(2) into the abstract group SL(2,C). If
we select a unit timelike vector x ∈ H3, namely a local
Lorentz frame, then the subgroup SO(3)x ⊂ SO0(3, 1)
that leaves x invariant defines the group of rotations
of physical space. The canonical embedding as matrix
groups, xo, simply corresponds to a special choice of vec-
tor. Hence, there is an H3-worth of isomorphisms, which

we also denote by x, of SU(2) into SL(2,C): one per
each possible state of motion of an observer at a space-
time point. Calling SU(2)x the image of x, we have the
embeddings

hx = x(h) ∈ SU(2)x ⊂ SL(2,C). (26)

Fixing a reference vector, say xo = (1, 0, 0, 0) in some
coordinates, each x defines a Lorentz transformation Λx

which is a pure boost and sends xo to x. Clearly,

hx = ΛxhΛ
−1
x . (27)

Furthermore, one can also consider more general em-
beddings h→ hxx′ , of the form

hxx′ = ΛxhΛ
−1
x′ , (28)

where x and x′ may be different. Such embeddings are
motivated if we view h as the parallel trasport between
two points, and Λx, Λx′ as gauge transformations. The
image SU(2)xx′ of this map is a subgroup only if x = x′.
Given one of these embeddings from SU(2) into

SL(2,C), we have immediately a map from functions on
SL(2,C) to functions on SU(2), simply obtained restrict-
ing the former to the image of the map.
The Dupuis-Livine map is also defined for such arbi-

trary embeddings h 7→ hxx′. We have

fxx′ : ψ 7→ ψ̃xx′ , (29)

with

ψ̃xx′(g) =

∫

SU(2)

dh Kxx′(g, h) ψ(h), (30)

and the kernel given by

Kxx′(g, h) =
∑

j

d2j

∫

SU(2)

dk χγj,j(gkxx′) χj(kh).

Here we have already fixed the degree of the map that is
relevant for quantum general relativity.
As before, one can easily check the projection property

(fxx′ψ)
∣

∣

SU(2)
xx′

= ψ. (31)

The image of fxx′ is formed by a linear subspace Kxx′ of
the space of functions on SL(2,C) characterized by the
property

ψ̃xx′(g) =

∫

SU(2)

dh Kxx′(g, h) ψ̃xx′(hx′x). (32)

These functions are determined by their restriction on
SU(2)x′x, and the space of these functions is still iso-
morphic to L2[SU(2)]. They have the form

ψ̃(g) =
∑

jmn

djψjmn D
p(j),j
jm,jn(Λ

−1
x′ gΛx). (33)
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Notice now that the transition amplitudes (22) are
defined in terms of the embedding xo of SU(2) into
SL(2,C). But we have observed that from the point of
view of physics the two groups are abstract groups and
there is no preferred embedding. Disregarding this fact
leads to a formulation of the theory in which a certain
Lorentz gauge has been chosen at each point. Let us in-
stead look for a formulation where the covariance under
the choice of this gauge is left explicit. For this, pick a
unit timelike vector xe at each edge of the 2-complex,
and generalize the definition of the transition amplitudes
(22) to the form

Z̃C,xe
(gl) = same as (22) with gef given by

gef =

{

gese(hef )xe
g−1
ete

for internal edges,
(hl)xs(l)xt(l)

for boundary edges.

It is then immediate to derive our second result.

Theorem 2 Z̃C,xe
(gl) is independent from all xe where

e is a bulk edge.

This follows trivially from the fact that all Λx group ele-
ments can be reabsorbed into the SL(2,C) integrations.
This is a simple but important result, because it shows
explicitly that the dynamics of the theory is Lorentz in-
variant in the bulk.
Hence, the transition amplitudes depend only on the

x’s on the boundary edges. Since there is one of these
per each node n of the boundary graph, it is convenient
to write Z̃C,xe

(gl) in the form Z̃C,xn
(gl).

Finally, we can study the covariance properties of the
amplitude.

Theorem 3 Under a local Lorentz transformations on

the boundary, the transition amplitudes transform in the

following way

Z̃C,Λnxn
(gl) = Z̃C,xn

(ΛslglΛtl), (34)

where sl and tl are the source and target of the link l.

The result is a direct consequence of the transformation
properties of projected spin networks. This is the cor-
rect covariance property of the SL(2,C) holonomy under
gauge transformations.

VI. CONCLUSION

We have studied the covariance properties of the LQG
transition amplitudes under local Lorentz transforma-
tions. We have shown that the amplitudes are invariant
under local gauge transformations in the bulk (Theorem
2). On the boundary, there exists a manifestly Lorentz
covariant formalism, given by a certain class of the “pro-
jected spin networks” of Livine and Alexandrov.
The Dupuis-Livine map that sends LQG boundary

states into projected spin networks trivializes for the

transition amplitudes, in the sense that these amplitudes
are in fact naturally defined as SL(2,C) functions that
satisfy the condition defining the relevant class of pro-
jected spin networks (Theorem 1). It follows immediately
that the transition amplitudes transform properly under
local gauge transformations on the boundary (Theorem
3).

The restriction to a special class of projected spin net-
works is motivated by the simplicity constraints of gen-
eral relativity, that in the spinfoam amplitude are im-
plemented as a restriction on the labels of irreducible
representations. Remarkably, the same space K can be
obtained from a canonical quantization, as discussed by
Wieland in a paper that is appearing in parallel with this
one [14]. Wieland’s results can be interpreted as follows.
Start from the Holst action

S[e, ω] =

∫

[(e ∧ e)∗ +
1

γ
(e ∧ e)] ∧ F [ω] (35)

and fix the time gauge obtained demanding that the re-
striction of e to the boundary satisfies ne = 0, where n is
a scalar with values in Minkowski space. The momentum
conjugate to ω is immediately read out of the action:

π = (e ∧ e)∗ +
1

γ
(e ∧ e). (36)

In the time gauge, it satisfies

K := nπ = (e∧ e)∗, L := −nπ∗ = −
1

γ
(e∧ e)∗, (37)

where K and L are its electric and magnetic components
in the time gauge. The linear simplicty constraint (15)
follows immediately. Notice that SL(2,C) has a natural
complex structure and we can define the complex vari-
ables Π = K + iL and Π = K − iL. Then (15) can
be interpreted as a reality condition. If we quantize the
theory in terms of SL(2,C) cylindrical functions, then
π becomes the SL(2,C) generator, and we can impose
(15) simply by chosing a scalar product whith respect
to which this reality condition is realized. On the space
of functions on SL(2,C), the scalar product (13) is pre-
cisely a solution to this problem, and defines K. Thus the
same K we have derived here from the spinfoam ampli-
tudes can also be obtained via straightforward canonical
quantization of the Holst action, using the old idea of im-
plementing the reality conditions as the conditions that
determines the scalar product (see e.g. [27]).

In summary, the dynamical diffeomorphism invariant
quantum field theory defined by the transition ampli-
tudes (22) appears to be fully consistent with the local
Lorentz invariance of general relativity.

—

We thank Thomas Krajewski and Abhay Ashtekar
for very useful conversations, and Wolfgang Wieland for
sharing his results with us before publication.
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