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Abstract. Loop Quantum Gravity provides a natural truncation of the infinite degrees of
freedom of gravity, obtained by studying the theory on a given finite graph. We review
this procedure and we present the construction of the canonical theory on a simple graph,
formed by only two nodes. We review the U(N) framework, which provides a power-
ful tool for the canonical study of this model, and a formulation of the system based on
spinors. We consider also the covariant theory, which permits to derive the model from a
more complex formulation, paying special attention to the cosmological interpretation of
the theory.
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1 Introduction to few-nodes models

It's a long way to quantum gravity, and the way is not unique. We do not yet have a complete
quantization of the gravitational field. Different proposals have been explored, and we are
assisting to the convergence of some of them into a unique coherent picture, that takes the
name of Loop Quantum Gravity (LQG) [1, 2, 3].

The state space of LQG, H g, admits subspaces that are determined by graphs I', whose
physical meaning we discuss below. In [4] the idea was put forward to study the truncation
of the full quantum theory on a very simple graph: a graph formed by only two nodes. This
truncation, it was argued, can be sufficient to study cosmology. The idea has since been de-
veloped in various directions. First, the physical approximation involved in this truncation
has become more clear. Second, the relation between the degrees of freedom captured by this
“dipole” graph and the degree of freedom of Bianchi XI has been clarified.

More importantly, the “dipole” truncation has proven to be a natural context for developing
the U(N) formalism, a powerful mathematical language for controlling the mathematical struc-
ture of the quantum states of geometry, especially in the homogeneous and isotropic context,
and to suggest the form of the Hamiltonian.

Finally, the “dipole” graph has represented the starting point for deriving cosmological am-
plitudes from the covariant spinfoam theory, opening the way to the use of richer graphs.

In this article we review these different directions of research opened by the study of the
“dipole” graph. We begin, below, by discussing the physical meaning of the graph. We discuss
the original Hamiltonian quantization of dipole in the context of cosmology in Section 2, then
the U(N) formalism in Section 3, and finally the spinfoam application in Section 4.
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1.1 Why graphs?

We can give different interpretations to the graphs underlying the states of LQG, following the
different ways of deriving the theory.

Discrete gravity (1961).  First, there was Regge calculus, namely the idea of approximating
spacetime with a triangulation. The triangulation can be generalized to a generic cellu-
lar decomposition, or to a cellular decomposition subjected to some specific restrictions
[5, 6, 7]. On a fixed spacelike surface, Regge calculus induces then a 3d cellular decompo-
sition. The graph we are considering is the dual graph of this 3d cellular decomposition,
obtained by taking a point (a “node”) inside each cell, and connecting it to the node in an
adjacent cell by a link, puncturing the shared face of the 3d cellular decomposition.

Spinnetworks (1971). The orthonormal basis that diagonalizes the Area and Volume opera-
tors in Loop quantum Gravity is the spinnetwork basis |T, j;, V) [8, 9, 10]. These states are
labelled by a graph I' and two quantum numbers coloring it: a spin j at each link ¢ and
a volume eigenvalue v at each node n. The Hilbert space on a single graph precisely the
Hilbert space of a SU(2) Yang-Mills theory on a given lattice. The introduction of spin-
networks is due to Penrose [11]. A spinnetwork is a graph where every link carries an
irreducible representations of SU(2) (or more generally a compact Lie group) and every
node an intertwiners between adjacent representations. Penrose’s “spin-geometry” theo-
rem connects the Hilbert space on a spinnetwork with the description of the geometry of

the cellular decomposition.

Holonomies (1986) In the canonical quantization of General Relativity (GR), in order to
implement Dirac quantization, it’s convenient to choose the densitized inverse triad Ei
(Ashtekar’s electric field) and the Ashtekar-Barbero connection Al as conjugate variables
[12], and then use the flux of E and the the holonomy &, = P exp| f,y Al], namely the
parallel transport operator for A along a path <, as fundamental variables for the quan-
tization. In the quantum theory, all relevant physical objects (partial obsevables [13]), for
instance the operators for area and volume, have support only on these paths and their
intersections. This define a graph, dual to a cellular decomposition of physical space.

The common point of these different derivations is 3d coordinate gauge invariance, that has
important consequences!. This invariance is the reason for the use of abstract graphs: it re-
moves the physical meaning of the the location of the graph on the manifold. Therefore the
graph we are considering is just a combinatorial object, that codes the adjacency of the nodes.
Each node describe a quantum of space, and the graph describes the relations between differ-
ent pieces of space. The Hilbert subspaces associated to distinct but topologically equivalent
embedded graphs are identified [16, 17] , and each graph space hr contains the Hilbert spaces of
all the subgraphs.

1.2 Doing physics with few nodes

The full LQG Hilbert space can be defined as a limit of graph spaces for a finer and finer
refinement of the graph I'.

Higg = lim hr where Hr = L?[su(2)t/su(2)" . 1)
—00

1The 3d coordinate gauge invariance is the fundamental assumption of the LOST theorem [14, 15], that states
the uniqueness of the representation in the LQG Hilbert space.
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Figure 1. To each node of a spinnetwork we can associate a “quantum of space”.

Here L the number of oriented links of I', n is the number of nodes, and the group quotient is
given by the gauge transformations at the nodes on the group elements on the links as in lattice
gauge theory.

In order to compute physical quantities, we work in i instead of the full H; g, in the same
spirit of Quantum Field Theory when one considers the Fock space for N particles, instead of
infinite particles. This approach to LQG is called graph expansion, and relies on the invariance
under diffeomorphism, that we have just discussed above.

Truncating the theory to a given fixed I' corresponds to disregarding the states that need a
“larger” graph to be defined, while all states that have support on graphs “smaller” than I" are
already contained? in fr.

As the connection with Regge calculus shows, choosing a graph corresponds to choosing an
approximation for the system that we want to describe. In fact, discretizing a continuous ge-
ometry by a given graph is nothing but coarse graning the theory. The discreteness introduced
by this process is different from the fundamental quantum discreteness of the theory®. In LQG
area and volume have a discrete spectrum because of the quantization.

Therefore the theory admits two different expansion: the graph expansion and the semi-
classical expansion (1.2). The first is obtained by a refinement of the graph, the second by a
large-distance limit [3].
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Figure 2. Continuous and classical limits in LQG.

Continuous limit We are considering a discretized system with the further properties to be
diff-invariant system. This lead to a peculiarity while taking the continuum limit, as dis-
cussed in [18]. In a theory like lattice QCD, this limit is achieved by sending the lattice
spacing to zero and the coupling constant to its critical value. Here instead we just refine

2Notice that we have to include also the j = 0 representations.

3This is analogue to the case of an electromagnetic field in a box: the modes of the field are discrete and allow
a truncation of the theory, but quantum discreteness is something else: it is given by the quantized energy of each
mode.
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the graph, because the dynamics is not affected by the size of the discretization since co-
ordinates are unphysical. This has an important consequence: the discretization becomes
nearly exact, the number of nodes behaves as an effective expansion parameter and the
system may approach a regime where the theory is topological (Ditt-invariance regime
[19]). This is the case of homogeneous and isotropic geometries [20, 21, 22, 23].

Classical limit The fundamental discreteness of the theory is washed away when the large-
distance limit of the theory is taken. This corresponds to considering large spins, namely
j — oo. The classical theory is therefore recovered and the quantum parameters 7 and
v (the Barbero-Immirzi parameter) disappear. Different ways to take the semi-classical

limit, such that the quantum corrections would be under better control, are under study
[24].

The classical continuous theory of General Relativity is recovered once both limits are taken.
In quantum theory, these expansions have provided interesting insights on the full theory. (This
will be addressed further while addressing the covariant theory in Sec. 4.)

The point of view that we are presenting in this review is that we may not necessarily be
obliged to deal with very complicated graph in quantum gravity. Interesting physics can arise
even by considering a simple graph, with few nodes, and comparing our results with classical
discrete gravity (Regge calculus).

Notice that, in Regge calculus, few nodes are already enough to capture the qualitative be-
havior of the model. This is true for FLRW cosmologies. It has in fact been proven numerically
[25] that the dynamics of a closed universe, with homogeneous and isotropic geometry, can be
capture by 5, 16 and 600 nodes (these numbers give regular triangulations of a 3-sphere) and
the only difference is given by the scaling: having more tetrahedra, the growth is faster.

=

o=
|

Figure 3. On the left, a 4d building block of spacetime and, on the right, the evolution of 5, 16 and 500 of
these building block (dashed lines), modeling a closed universe, compared whit the continuous analytic
solution (solid line) [25]. The qualitative behavior of these universes, coded in the rate of change of the
volume, is the same.

This review focuses on the construction of the theory when the graph is particularly small.
In fact, we use here a minimal graph, given just by 2 nodes.
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Figure 4. The “dipole” graph I'; is given by 2 nodes and 4 links. It is dual to a triangulation of a 3-sphere,
where 2 tetrahedra are glued together by identifying their faces.

1.3 The cosmological interpretation

The graph expansion can be put in correspondence with a mode expansion of the gravitational
field on a compact space [4, 26]. The truncation of the theory on a graph provides a natural cut
off of the infinite degrees of freedom of general relativity down to a finite number. Choosing
a graph, we disregard the higher modes of this expansion. Therefore the truncation defines an
approximation viable for gravitational phenomena where the ratio between the largest and the
smallest relevant wavelengths in the boundary state is small.

To understand the nature of this approximation, we can refer again to numerical lattice QCD.
The number of lattice sites concretely needed for a numerical calculation is determined by
the ratio between the smallest and largest wavelenghts involved in the phenomenon studied.
Notice that this is neither an ultraviolet nor an infrared truncation, because the whole physical
space can still be large or small. What is lost are not wavelengths shorter than a given length,
but rather wavelengths k times shorter than the full size of physical space, for some integer k.

But the most striking example, where this kind of approximation applies, is given by cos-
mology itself. Modern cosmology is based on the cosmological principle, that says that the
dynamics of a homogeneous and isotropic space approximates well our universe. The pres-
ence of inhomogeneities can be disregarded in a first order approximation, where we consider
the dynamics as described on the scale of the scale factor, namely the size of the universe. Thus
our approximation depends on the scale factor, it is not just a large scale approximation: it de-
pends on the ratio between the scale factor and the interaction that we want to consider. If we
consider the dynamics of the whole universe, this ratio gives 1, and an unique degree of free-
dom is concerned. We can then recover the full theory adding degrees of freedom one by one.
We obtain an approximate dynamics of the universe, with a finite number of degrees of free-
dom. Postulating less symmetry, allows to add more degrees of freedom. So one can recover
the full theory adding the degrees of freedom one by one. The specific choice of the truncation
depends on the phenomena considered and the approximation desired.

In other words, working with a graph corresponds to choosing how many degrees of free-
dom we want to describe. A graph with a single degree of freedom is just one node: in a certain
sense, this is the case of usual Loop Quantum Cosmology [27]. To add degrees of freedom, we
add nodes and links with a coloring. These further degrees of freedom are a natural way to
describe inhomogeneities and anisotropies [4, 26], present in our universe. When we ask the
graph to give a reqular cellular decomposition, node and links become indistinguishable, and
we obtain back the unique FLRW degrees of freedom.

The easiest thing that can be done is to pass from n = 1 to n = 2 nodes. We choose
to connect them by L = 4 links, because in this way the dual graph will be two tetrahedra
glued together, and this can be viewed as the triangulation of a 3-sphere (Fig.1.3). Note that we
are not obliged to chose a graph corresponding to a triangulation, but this turn out to be very
useful when we want to associate an intuitive interpretation to our model.

In order to understand how this can be concretely use to do quantum gravity and quantum
cosmology, we need to place on the graph the SU(2) variables.
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2 The Hamiltonian dipole

In this section we review the original dipole construction, and the relation between its variables
and those of the cosmological models.

2.1 LQG phase space

Loop Quantum Gravity is a general covariant quantum field theory, where the 3d coordinate
gauge invariance is reflected in the choice of SU(2) as fundamental group. Let us start by
associating the group element i, € SU(2) and a su(2) algebra element E, = Ei1; where {1; | i =
1,2,3} is a basis in su(2) to the links ¢ of a given graph T

The cotangent boundle of SU(2)" and its natural symplectic structure give the phase space
of the theory: I, and E, are phase space variables with the conventional Poisson brackets struc-
ture of a canonical lattice SU(2) Yang-Mills theory, that is*

{hg, hg/} = 0, {Elg, hgl} = 5@(/ Tihg, {Eé, E]g/} = — 5/[ €ijkE]E . (2)

As in lattice QCD, a quantum representation of the observable algebra (2) is provided by the
Hilbert space Haux = L2[SU(2)L,dhy] where dhy is the Haar measure. The operators h, are
diagonal and the operators E; are the left invariant vector fields on each SU(2). The operators
E, 1 turn then out to be the right invariant vector fields. These operators satisfy® the

Gauge constraint G, = ZE( ~ 0 Vil en, 3)
l

that can be seen as a closure condition on the cell dual to the node n.

The states that solve the gauge constraint (3) are labeled by SU(2) spinnetworks on the graph
I'. A basis of these is given by states |jy, t,), where £ = 1,...,L and n = 1, ..., N range over the
links and the nodes of the graph. These are defined by

Spinnetwork states i(he) = (heljortn) = @ 1109 (hy) - @ 1 4)

where I10) (U) are the matrix elements of the spin-j representation of SU(2) and “-” indicates
the contraction of the indices of these matrices with the indices of the intertwiners ¢,, dictated
by the graph I'. For details, see [28, 1, 2].

Operators for area and volume can be constructed in terms of E,. For each link £ we can
associate the area of the face punctured by the link in the dual cellular decompositon

Area Ay = VEE; = 8my3\/je(je + 1) (5)

where 7 is the Barbero-Immirzi parameter, and for each node we can associate the volume of
the cell on which the node # is sitting. The expression for a generic n-valent node is available
but complicate [29], while in the simplest 4-valent case the expression becomes just
1
Volume2 Vnz = 1 Z Tr [EgEg/Eg//] =Tr [EgEg/Egl/]. (6)
" en

where we have chosen the links {/, ¢/, "} to have positive orientation. Notice that the sum
over the four unordered triplets of distinct links drops because of (3). The total volume will be

“Here we have assumed ¢ # ¢~1. If ¢/ = ¢!, the Poisson brackets are obtained using the equations /1, 1 =
U[land the algebra element E;-1 = — hzl Eohy..

SNotice that these variables transform properly under internal gauge transformations. In fact we can write
G[A] :== 2Y, Tr[A,Gy,] where A, € su(2), the infinitesimal gauge transformation of hy is éhy = {hy, G[A]} =
Auhy — hyAy, where (n1,n,) are respectively the source and the target of of the link ¢.
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just Vi =} V,; Vn C I'. The dynamics is governed by the Hamiltonian constraint. Recall that
the Hamiltonian constraint for General relativity can be written as [2]:

| = C+C,, )

— 3., oij paipbj pk 2 3 iThj i Kl

Corav = /53 dBx el ETEY FY — 2(1 4 97) /53 &’x E"EY K K]

where K'is the extrinsic curvature, and where we have set the lapse equal to the total 3-volume.

Let us concentrate for the moment on the first term. If the discretization is appropriately chose

before the quantization, we can write the first term of the Hamiltonian constraint by approx-
mating the strength tensor F fb with the holomy hy such that

C=) C, with Cy= ) TrlhwEsE)] ~0. (8)
n

en

This form was suggested in the early day of LQG [30] and is nowadays exploited in loop cos-
mology [27, 31].

To complete our construction, at each node we couple a scalar field ¢, with conjugate mo-
mentum py,, that work as a family of multifingered “clock” variables [32, 33, 34, 35]. We need
to introduce this physical clock because otherwise we would not be able to keep track of evo-
lution in a background-independent manner. The introduction of a scalar field provides also a
simplified manner to model the matter content of the universe. The generalization to a more
realistic description is straightforward: here we will choose an ultra-local scalar field, but one
can add the spacial derivative terms in the Hamiltonian of the matter field, and the description
of Yang-Mills and fermion fields is particularly well-adapted to this formalism [28, 1, 2].

Therefore the total Hamiltonian constraint is

Cot =Y. Y (Tr [ EpEg) + Coy 447G pén> ~ 0, )
" (fen

where G is the Newton constant, determining the matter-gravity coupling. With a scalar
field, the Hilbert space becomes Hayx = Ly[SU(2)%,dhy] ® L,[R"], with a (generalized) basis
lje, Vn, ¢n) and the states can be written in the form

W(er vu, Pu) = (o, Vi, Pul)- (10)

In this basis the operator ¢, is diagonal while py, = —i%.

2.2 Dipole cosmology

Consider the simple case obtained by taking n = 2 and the natural triangulation of the a three-
sphere S® obtained by gluing two tetrahedra by all their faces, as in Fig.1.3. This represents a
finite dimensional truncation of LQG and describes the Bianchi IX Universe plus six inhomo-
geneous degrees of freedom [26]. The gravitational variables are (h, E;), £ = 1,2,3,4. We have
two Hamiltonian constraints, whose algebra is naturally closed given the simplicity of the sys-
tem considered. The SU(2) symmetry structure enters twice in our description: not only in the
discretization of the Ashtekar-Barbero variables, but also in order to add the inhomogeneities.

The gravitational Hilbert space is L2[SU(2)*/SU(2)?] and a basis of spinnetwork states that
solve the gauge constraint is given by the states |j;, tn) = |1, j2, /3, ja, 11,12). The action of one
gravitational Hamiltonian constraint on a state gives

Cliestn) =Y Covrljor tn) (11)
I
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where, each term of the sum comes from one of the terms in the sum in ¢ and ¢’ in (8). More
explicitly, we have

sl . € . 0 .,
Cizlji jo jarjarti i2) = Y C]ef,llll; i1+ 52t 503 Jas 1, 13), (12)
0=+

because the operator Ujp = UyU, ! in (8) multiplies the terms IT'' (U;) and T172(Uy) and
Uty (U) = m/2(W I (U) = ¢, 102U + c 10712 (). (13)

12
Jel1l2

theory from (8) (and from the Hamiltonian that makes use of the “Thiemann’s trick” with some
more algebra). In a different notation, in terms of the wave function components, we can write

The matrix elements C; > can be computed with a straightforward exercise in recoupling

CoGio) = X Crrp(je+5m), (14)

€/=0,+1

where C]ij;: vanishes unless €, = 0 for two and only two of the four j’s. The scalar field variables

are ¢1, . Taking these into account leads to the wave functions ¢ (jy, tn, ¢n), and (9) gives the
dynamical equations

84)% a(P% ¢ ](/ bn, 47” - K eryl® [ln w ] (P” ’
2 az
(le/](]ér n,Pn) = ¢2¢(]€r‘nr¢n) (16)

The coefficients C can be computed explicitly from recoupling theory. They vanish unless two
€/’s are zero. Equations (15,16), defined on Hilbert space H, = Ly[SU(2)*/SU(2)?] ® Ly[R?]
define a quantum cosmological model which is just one step out of homogeneity.

2.2.1 Born-Oppenheimer approximation and LQC

We now ask if and how LQC is contained in the model defined above. The state space H;
contains a subspace that could be identified as a homogeneous universe. This is the subspace
Hhom - H, spanned by the states |}, ], ], ], L, Lj, ¢, p) where Lj is the eigenstate of the volume
that better approximates the volume of a classical tetrahedron whose triangles have area j.
However, the dynamical equations (15,16) do not preserve this subspace. This is physically
correct, because the inhomogeneous degrees of freedom cannot remain sharply vanishing in
quantum mechanics, due to Heisenberg uncertainty. Therefore it would be wrong to search
for states that reproduce LQG exactly, within this model. In which sense then can a quantum
homogeneous cosmology make sense?

The answer should be clear thinking to the meaning of the cosmological principle, that is at
the base of every cosmological model. The cosmological principle is the hypothesis that in the
theory there is a regime where the inhomogeneous degrees of freedom do not affect too much
the dynamics of the homogeneous degrees of freedom, and that the state of the universe hap-
pens to be within such a regime. In other words, the homogeneous degrees of freedom can be
treated as “heavy” degrees of freedom, in the sense of the Born-Oppenheimer approximation,
and the inhomogeneous one can be treated as “light” ones. Let us therefore separate explicitly
the two sets of degrees of freedom. This can be done as follows.
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First, change variables from the group variables i, € SU(2) to algebra varables A, € su(2),
defined by exp A; = h;.® Following what is done in Loop Quantum Cosmology [32], let us fix a
fiducial su(2) element wy € su(2) for each link ¢. We choose for simplicity a fiducial connection
normalized as |wy| = 1, and such that the four vectors wy are normal to the faces of a regular
tetrahedron centered at the origin of su(2) ~ R3. Our variables can be decomposed into

Ay =cwy+ay, E, = p wy +eyp. (17)

In order to fix this decomposition uniquely, we impose the following conditions: p has to be

determined by the total volume V = p*/2, and ¢ should be its conjugate variable so that
8
{e,r}t = §7T’YG- (18)

The variable c can then be identified at the classical level with the scalar coefficients multiplying
rispectively the extrinsic and intrinsic curvature, namely we have ¢ ~ yd 4 1 asin LGC, where 4
is the time derivative of the scale factor. We also define AV = V, — Vj,so that V; , = %(V +AV).
In the quantum theory, E, turns out to be a left invariant vector field, call it L,, so that (17) yields
the decomposition

d -
L, = (Ugg + Ly. (19)

where L,c = 0. Inserting this decomposition into the Hamiltonian constraint (8) gives
al cwy—ayp ,—CwWy —a a T a T
C, = Z Tr (e e =% (| wp— + Ly wy=—+ Ly ||. (20)
(et dc ac

Let us now decompose this constraint into two parts, the first of which depends only on the
homogeneous variable c. This can be done keeping only the first term of the expansion of the
exponentials in a, and a,, and only the V term in the volume term. That is, we write

1

Cp = Ch "+ G (1)
where
Co= ) Tr |ee ¥ wg,i C(Jgi . (22)
et ac oc

The interpretation of this spilt is transparent: C"" gives the gravitational energy in the ho-
mogeneous degree of freedom, while Ci"* gives the sum of the energy in the inhomogeneous
degrees of freedom and the interaction energy between the two sets of degrees of freedom.
Finally, we write the homogeneous variable ¢ = ¢1 + ¢p and ¢_ = ¢p1 — ¢».

Following Born and Oppenheimer, let us now make the hypothesis that the state can be
rewritten in the form

¢(u€/ (Pn) = ¢hom (C, (,b) ¢inh(cl (P} ay, (Pf)/ (23)

where the variation of ;,;, with respect to ¢ and ¢ can be neglected at first order. Here ¢y,
represents the quantum state of the homogeneous cosmological variables, while ;,;, repre-
sents the quantum state of the inhomogeneous fluctuations over the homogeneous background

®This is only a convenient rewriting of the holonomies, not really a return of the connection as main variable.
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(¢, ¢). Inserting the Born-Oppenheimer ansatz (23) into (??), and taking N; = N, we have the
equation

K 02 K 92 - ..
E lPinh wwhom + E ¢’hom W@ljinh - ¢inhch0m¢hom - thqjhomlpinh =0. (24)
Dividing by on i,y this gives
2 ~ 9? -
g a??lphom o Choml/)hom _ _% Wlpmh + Cznhlphomlpinh (25)
ll)hom l/)hom lpinh l/)homl/)inh '

Since the left hand side of this equation does not depend on the inhomogeneous variables,
there must be a function p(c, ¢) such that

K 82 ~hom
E @whom -C lphom - Pl;l]hom = O/ (26)

K 82 Cinhwhomwinh
5 8472_ ¢1nh + ¢hom

The second equation is the Schrédinger equation for the inhomogeneous modes in the back-
ground homogeneous cosmology (¢, ¢), where p(c, ¢) plays the role of energy eigenvalue. The
tirst equation is the quantum Friedmann equation for the homogeneous degrees of freedom
(¢, ¢), corrected by the energy density p(c, ¢) of the inhomogeneous modes [?]. At the order
zero of the approximation, where we disregard entirely the effect of the inhomogeneous modes
on the homogeneous modes, we obtain

K 02
E wlphom

= Oinp- (27)

= Cr" iy om. (28)

Let us now analyze the action of the operator C"*", defined in (22). Notice that ¢ multiplies the
generator of a U(1) subgroup of SU(2)%. Therefore it is a periodic variable ¢ € [0,47]. We can
therefore expand the states ¢y, (c, ¢) in Fourier sum

Prom(c, ) =Y p(u, ¢) /2 (29)
13

where y is an integer. The basis of states (c |u) = ¢'*“/? in the gravitational sector of the ,,,’s
state space satisfies

pilu) = kuilu) (30)
—4sin®*(c/2)|u) = |p+2)—2[u)+|u—2) (31)

3
which we shall use below.” Here k = (8"6(; 1),

The homogeneous Hamiltonian constraint (22) can be rewritten as

~ hom _ J d 1 h
é — Tr [eC%% p=CW (9, — 2 = ZChom 32
t K%t r[e e wfwg]acac 2 ( )

This can be rewritten as [26]

~ 82
Chom (};Tr [(cos %]1 + 2sin %wg)(cos %]1 — 2sin %wg/)wg/wg] 52
17 02
= z(cosc - 1)$. (33)

"The explicit relation between these states and the states in the inhomogeneous-model state-space is not straight-
forward, and will be investigated in detail elsewhere.
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The action of this operator on the states {y,,,, (i, ¢) is therefore easily computed
17
& 12 nom (1 + 2, 8) = 12 Prom (11, @)1 $om (1 — 2,)]. (34)

Bringing everything together, the full equation (45) reads

Chom ¢hom (Z), 47) =

2

P)
C () Yrom (1 +2,¢) + CO(1) Yrom (1, @) + C~ (1) Yrom (1 — 2, ¢) + aszsbhom(ﬂ, ¢) = 0. (35)

where the coefficient take the simple form C*(u) = —3C%(u) = %

Equation (??) has the structure of the LQC dynamical equation. Thus, LQC appears in the
zero order Born-Oppenheimer approximation of a Loop Quantum Gravity quantization of a
finite number of degrees of freedom of the gravitational field, truncated according to the ap-

proximation dictated by the cosmological principle.

Bounce It is easy to see that, given the periodicity in c in the gravitational part of the Hamil-
tonian constraint, the model we have presented leads to a bounce. A first study of this has been
presented in [36]. In fact, the total Hamiltonian for the system reads

17
H = Hy+ Hyy = - (cos(c —a) = 1) + [plp, (36)

where p = p(t) is the matter energy density. Studying the equations of motion we obtain a
modified Friedmann equation of the form

(- () rfe-t)

Here p., playing the role of the critical density at which the bounce occurs, is defined as p, =
17/(3p) [36]. We notice that such a density depends on p, giving rise to incompatibility with
a proper classical limit of the model [37]. This is a situation already found in the old models
of LQC and we know it depends on a naive regularization of the Hamiltonian constraint. In
LQC there is a preferred regularization, that corresponds with the so-called ji-scheme [38]: the
critical density is a constant in this way, and its value depends on the minimal are gap provided
by LQG, i.e. the minimal eigenvalue given by (5). Atthe moment we write, the implementation
of this kind of regularization in the dipole model is under study.

2.2.2 Anisotropies and inhomogeneities

In the previous treatment we have performed the Bohr-Oppenheimer approximation in such
a way to extract the heavier degree of freedom, given by the homogeneous and isotropic one
coded in the scale factor. On the other hand, we have already mentioned that, using the dipole
graph as the base of our model, we are in a natural situation to accommodate more that a single
degree of freedom. In fact, the Hilbert space of the dipole graph contains 6 degrees of freedom.
These should code information about the presence of anisotropy and inhomogeneity, but haw
can we relate them to a classical interpretation? In classical General Relativity, the maximal
amount of anisotropy that a system with the topology of a 3-sphere can have, is described by
the Bianchi IX model. This is usually carachterized by three scale factors a; = a 1(t), which
identify three independent directions in the time evolution of the Cauchy surfaces. In the con-
nection formalism, we have to consider three different connections ¢; = ¢;(t) and momenta
pr = pi1(t). Therefore the basic variables (17) in our model takes the form

hy = exp (clwén) , E; = plwlT. (38)
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Notice that here the holonomies (38) are simply group elements taken on the links of the dipole,
without any specific orientation. The connection components are summed over and they are
thus independent on the I-direction. This differs from the situation in the LQC Bianchi IX
model [39], where the basic holonomies /i1 are computed along paths parallel to the three axis
individuated by the anisotropies.

The anisotropies of the Bianchi IX model requires only three degrees of freedom. The re-
maining large-scale gravitational degrees of freedom captured by the dipole dynamics are nec-
essarily inhomogeneous. Recall that in Sec. 1.3 we introduced the idea that these degrees of
freedom can be added one by one as the terms of an expansion in modes. Therefore we consider
here an expansion of the gravitational fields in tensor harmonics: the lowest modes should be
the ones captured by the dipole dynamics. Luckily a similar mode expansion around Bianchi
IX has been already studied by Regge and Hu using Wigner functions [40]. The Wigner func-
tions D/, (g(x)) determine a basis of functions of the symmetry-group of the model. Recall that
we can use group elements g(x) to coordinatize the physical space that has the S® topology.

Let us adapt this formalism to the first order variables we use. We start with the triads.
We write a generic perturbed triad Ef(x, t) as the sum of the background triad e; field and a
perturbation.

Ej(x, 1) = €1(x) + 91 (x, 1) €f(x) . (39)

We write this as a sum of components of definite j and a« quantum numbers

Wiy(x, t) Z tp where Z 1,11]““ J o (g(x)) (40)

o'=—j

The same can be done for the connection
wh(x) = @h(x,t) = wh(x) + ¢ (x, 1) wW)(x). (41)

Expanding this in components of definite j and « quantum numbers gives

=Y opn(xt),  where  gji(x 2: @it () Dl (8(x)) . (42)
]tX

a'=—j

The (q)]li 2 (0), 1/) i a,( )) are the time-dependent expansion coefficients that capture the inhomo-
geneous degrees of freedom. They, are given by matrices in the internal indices I, ], labeled
by the spin j that runs from j = 1/2 to all the semi-integers numbers, and the corresponding
magnetic number «.

We want to have the inhomogeneities determined by namely nine degrees of freedom coded
in @l (t),yl(t). This is achieved by assuming that the matrices (q)ﬁa,(t), ¥ (1)) are diagonal

joa!
in the internal indices I, ] and it is different from zero only for lowest nontrivial integer spin

j = 1 and for, say, « = 0. That is, we restrict to the components

otha(t) =T k(t). ¢l () =8Ypl(t)  wherea = ~1,0,1. (43)

The Gauss constraint reduces further the degrees of freedom to six, which is the number of
degrees of freedom captured by the dipole variables. Therefore, we can interpret the six extra
degrees of freedom of the dipole model (beyond anisotropies), as a description of the diagonal
part of the lowest integer mode of the inhomogeneities In this way the variables of the dipole
model can be connected to the quantities (¢L(¢), pL(t)).

In order to complete the connection with the dipole variables, let us consider the fiducial-

algebra elements w}. these are perturbed as well, and as a consequence the 1-forms @! no
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longer satisfy the Maurer-Cartan structure equation 2dw! — € K w! A wX = 0. At first order, for
a generic perturbation, let us define

8 1 ] A~ I jaa!

cu} = Z/feI]Kw]/\wK = w}—l—/f el ik At = w}+ E q)]%,(t) 4)/1?2‘ (44)

joa!
where (])JI(]IQ‘E =/ f el jk Di v @ A wh. In particular, if we restrict to the diagonal j = 1, = 0
case,

@f = wf+ o () ¢, where  ¢f, = /f e' jk Dy ! A" (45)

are fixed coefficients. Then the relation with the dipole variables can be written as

I

h(c!, pl) = exp (c d)éﬁ) exp <1x w,{n) , (46)

which replaces (38). Similarly, we can write

- /g (¢ + Y1) eqped A dx® = EL 42 A iy el kS APt =Ef+2Y 9o}, 47)

joa!
In particular, if we restrict to the diagonal j = 1, « = 0 case,
B = Ei+29i ¢pa (48)

Notice that now the Gauss constraint do not vanish identically. It can be split into two parts:
the homogeneous and the inhomogeneous terms

Gl = Zp(”wén + 29 Z(])fr/“ ~0. (49)
7 7

The first part is the constraint which appears within the Bianchi IX framework and vanishes
identically because of the Stokes theorem. The second gives three conditions on the inhomoge-
neous perturbations to the electric fields E,.

3 The U(N) framework

A number of technical problems are still open in the canonical framework for LQG. Among
these is to determine a form of the dynamics with a fully satisfactory semiclassical limit (but
see the recent developments in [41]), and the difficulty of identifying a homogeneous sector
yielding the Loop Quantum Cosmology (LQC) formalism. A novel point of view on these
problems has been developed in a number of recent papers [42, 43, 44]. This is based on the
identification of a U(N) symmetry in the Hilbert space of LQG intertwiners with N legs and
fixed total area. In this Section we illustrate the basis of this approach, called the U(N) frame-
work, and we introduce the simplest non-trivial system where this approach prove useful. This
system is again based on a 2-node graph as in the previous Section, but now with an arbitrary
number L of links. The relevant symmetry will be given by the group U(N), where N = L
[45, 46, 47]. This framework allows us to introduce a specific dynamics for the 2-node graph
and a convincing definition of homogeneity and isotropy. In this sense, the U(N) framework
may prove a useful tool for addressing the problems mentioned above.

The U(N) framework has been developed in various directions. Recently, it was given a nice
interpretation in terms of spinors, where intertwiner spaces can be reinterpreted as the product
of the quantization of spinors model [48]. Other directions of research are the definition of
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coherent states [44], the reinterpretation of this framework in terms of holomorphic functions
[46, 48], and the study of the simplicity constraints which appear in the spinfoam models [49].
In this review we focus on the basis of the U(N) framework, the complete treatment of the
2-node model and the possibility of understanding it as a classical system written in terms of
spinors.

3.1 Introduction to the U(N) framework

The U(N) symmetry defines a framework to investigate the structure of the Hilbert space of
the intertwiners, which are the building blocks of spinnetwork states.

We consider first the space of N-valent intertwiners: the space of SU(2) invariant tensors
of N spins (SU(2) representations). Such intertwiners can be thought dually as a region of 3d
space with a (topologically) spherical boundary punctured by the N legs of the intertwiners.
The boundary surface is made of N elementary patches, whose areas are determined by the
spins carried by the intertwiner legs.

The Hilbert space of the intertwiner space for the group SU(2) is defined as

H Inv[V' @ .. @ VIN], (50)

LN =

where Vi are the irreducible representation spaces associated to the spin jy, .., jx-

The key idea of the U(N) formalism is to consider the space formed by all the intertwiners
with N legs and fixed total sum of the spin numbers | =} ; j; (related with the total area of the
boundary surface). That is

HE\P = @ HJEMJ'N' (51)
Yiji=]

It can be shown that the intertwiner space ’Hg) carries an irreducible representation of U(N)

[43]; and the full space Hy = D) HU) can be endowed with a Fock space structure with
creation and annihilation operators compatible with the U(N) action [44]. In the following, we
review the basics of this construction.

The first step to arrive to the U(N) framework is to make use of the well known Schwinger
representation of the su(2) algebra. This representation consists on describing the generators
of 51(2) in terms of a pair of uncoupled harmonic oscillators. We introduce 2N oscillators with
operators a;, b; with i running from 1 to N (a pair of uncoupled harmonic oscillators for each
leg of the intertwiner), satisfying

[a;,af] = [bi,b]] = &;5,  [a;,bj] = 0. (52)

The local su(2) generators acting on each leg i are defined as quadratic operators

1 _
Ji = E(afai —blb)), JF=alt, ] =ab!, E = (ala;+0blb).
The J;’s constructed in this way satisfy the standard commutation relations of the su(2) algebra
while the total energy E; is a Casimir operator

Ui ==+ US 7 1=2],  [E.Ji]=0. (53)

The operator E; is the total energy carried by the pair of oscillators a;, b; and gives 2j;, namely
twice the spin, of the corresponding SU(2)-representation. Indeed, we can easily express the
standard SU(2) Casimir operator in terms of this energy

- Ei (E _E .
i = 2<2+1> = Z(El—FZ). (54)
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In LQG the spin j; is related to the area associated to the leg i of the intertwiner. Notice that in
this context the most natural ordering of the area operator is the one given by the Casimir E; /2.

Our goal is to construct operators acting on the Hilbert space of intertwiners. In other words,
we look for operators invariant under global SU(2) transformations generated by | = ¥; J..
The key result, which is the starting point of the U(N) formalism, is that we can identify
quadratic invariant operators acting on pairs of (possibly equal) legs i, j [42, 43]

Eij = El;-rtlj + b;l-b], E:; = Eji/
Fj = (aibj —ajbi),  Fi = —F; (55)

These operators E, F, F* form a closed algebra:

[Eij, Eni] = O6xEi — duEy, (56)
[Eij, Ful = 6aFx —0uFy,  [Ey, F§] = 0uFy — 6Fy,

[Fi, Bl = 6wEij — 6uExj — 0iEii + 63 Exi + 2(8idj — 8udj),

[Fj Fa] = 0,  [F,Ej]=0. (57)

The commutators of the E;; operators form a u(N)-algebra (hence the name of the U(N) frame-
work). The diagonal operators are equal to the energy on each leg, E;; = E;. The value of the
total energy E = ), E; gives twice the sum of all spins 2 x ) ; j;, i.e twice the total area.

The E;j-operators change the energy /area carried by each leg, while still conserving the total
energy, while the operators F;; (resp. F, ) decrease (resp. increase) the total area E by 2

[E,Ejl =0,  [E Fjl = —2F; [EF}]=+2F (58)

This suggests to decompose the Hilbert space of N-valent intertwiners into subspaces of fixed
area

Hy =@y (@, Vi = B @ v [, vi] = PH, (59)
]

{ii} JEN Y, ji=]

where V/i denote the Hilbert space of the irreducible SU(2)-representation of spin j;, spanned

by the states of the oscillators a;, b; with fixed total energy E; = 2j;.
()

It was proven in [43] that each subspace H ' of N-valent intertwiners with fixed total area

J carries an irreducible representation of U(N) generated by the 1?1]) operators. The operators
J

E;j allow to navigate from state to state within each subspace Hy’. On the other hand, the
operators Fjj, F allow to go from one subspace ’H( ! to the next ’H(I D thus endowing the
full space of N -Valent intertwiners with a Fock space structure with creation operators F;]f and

annihilation operators F;;.

Finally, the whole set of operators E;j, Fjj, Fl j satisfy quadratic constraints [45]:

- E

Vi, j, ZEikEkj = Ei]' (2 + N — 2) , (60)

k
E E
> FiEj=Fj -, Y ExFi = F} <2 +N-— 1) , (61)
k k
E E

;Ekjl-"ik =F; (2 — 1) , ;FikEkj =F; <2 +N-— 2> , (62)

up|

Y FiFg = Ej <
k Z 2

E
+ 1> . Y RFL = (Eij +26;) (2 +N- 1) . (63)
k
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As already noticed in [45] and extended in [46], these relations look a lot like constraints on the
multiplication of two matrices E;; and F;;. We will explore this fact at the end of this section,
but first we discuss the 2-node model from the U(N) perspective.

3.2 Hilbert space for the 2-node model

We are going to establish the main steps to construct the Hilbert space of the 2-node model. In
this case, we need to deal with two intertwiner spaces of N legs each, as shown in fig.5.

Figure 5. The 2-node graph: the two nodes « and f are linked by N = L links.

Naming the two nodes a and B, we have two intertwiner spaces attached respectively to

« and B with operators E.(?‘),P.(fx) and E(ﬁ ),P.(‘ﬁ ). The total Hilbert space of these uncoupled
P ij ij ij i P p

intertwiners is the tensor product of the two spaces of N-valent intertwiners

Hor = Hn @ Hy = DH 0 1Y = @ Hipp @My . (64)
JuTp (e}

This space carries two decoupled U(N)-actions, one acting on the intertwiner space associated
to the node « and the other acting on . However, the two intertwiner spaces are not indepen-
dent. There are matching conditions unique SU(2) representation, thus the spin on that link
must be the same seen from « or Bie. ji = ]lﬁ . This translates into the fact that the oscillator
energy for a on the leg i must be equal to the energy for § on its i-th leg

&=tE"-f —o (65)

Obviously, this set of conditions is stronger than requiring that the total area of « is the same as
B, even though this is a necessary condition. Then, the Hilbert space of spinnetwork states on
the 2-node graph is much smaller than the decoupled Hilbert space Hg»

29 — (a) (B)
H= {69} Hi i @M (66)
Ji

In order to define consistent operators acting on 2H, we have to check that they commute (at
least weakly) with the matching conditions &;, in addition to the condition that they need to
be invariant under global SU(2) transformations. It is possible to construct such operators
deforming consistently the boundary between « and . We introduce the following operators,
mixing actions on the two nodes as required

@ _ @) p(B) _ L @tpB)
e;=EVEY,  f=FVEP,  fi=FEOEPT 67)



Learning about quantum gravity with a couple of nodes 17

and we check that they commute with the matching conditions
Vi, j, k, [5](, 61']'] = [gk/ ﬂ]] = 0. (68)

CallingE =) ; Ef“) =),E l.(ﬁ ) the operator giving (twice) the total boundary area on our Hilbert
space *H satisfying the matching conditions, the operators ¢;;’s preserve the boundary area
while the f;;’s will (as it is expected by construction) modify it

[Erej] =0, [E fil = =2fi,  [E fi]=+2f;. (69)

More precisely, the operator e;; increases the spin on the i-th link by +1 and decreases the spin
of the j-th link. The operator f;; decreases both spins on the links i and j, while its adjoint i‘;

increases both spins by 1. These operators generate the deformations of the boundary surface,
consistently with both the SU(2) gauge invariance and the matching conditions imposed by
the graph combinatorial structure. They are natural building blocks for the dynamics of spin
network states on the 2-node graph.

3.3 Symmetry reduction and cosmological analogies

We now consider a symmetry reduction in our simple model that yields a homogeneous and
isotropic sector. More specifically, we look for states in the Hilbert space 2 invariant under
a “global” U(N) symmetry generated by a generalization of the matching conditions &, and
which takes into account operators E;; acting on both nodes of the graph. Let us explain here
the construction of the generators of this new U(N) symmetry and its action.

The matching conditions & break the U(N)-actions on both nodes « and B. Nevertheless,
we can see that the & generate a U(1)N symmetry and that they are part of a larger U(N)
symmetry algebra. We introduce the operators

_ t

& =EY —EP = B — (EF)". (70)
It is straightforward to compute their commutation relations and check that these operators
form a u(N) algebra

[Eij, Eal = o€ — duij- (71)

The diagonal operators are exactly the matching conditions & = & and generate the Cartan
abelian sub-algebra of u(N).

These &;;’s generate U(N) transformations on the two intertwiner system. By construction,
they act in Hgp as (U, U) with the transformation on B being the complex conjugate of the
transformation on a.

Two remarks are in order when computing the commutator between the matching condition
and these new u(N) generators,

On the one hand, we notice that the operators &;; are not fully compatible with the matching
conditions and they do not act on the 2-node Hilbert space >#. Thus they do not generate a
non-trivial U(N)-action on 2H. On the other hand, we can look for vectors in 24 which are
invariant under this U(N) action, &;|¢) = 0 for all i,j. In particular, they will satisfy the
matching conditions (given by the special case i = j).
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Following this line of thought, we introduce the subspace of spin network states which are
invariant under this U(N)-action

a J
ZHZ‘HU = ITZZ)U(N) [ZH] = ITZUU(N) [7‘[@2] = ITZUU(N) @ H% ) 029 'Hg\]ﬁ) . (73)
]tX/]/S
Now taking into account that the spaces ’H%) are irreducible U(N)-representations [43], re-
quiring U(N)-invariance imposes that the two representations for the two nodes are the same,

Jo = Jp, but furthermore there exists a unique invariant vector in the tensor product H %) QH %).
We will call this unique invariant vector |J) and we will construct it explicitly in terms of the
operators ¢;; and f;; in the next section.

It is important to notice that imposing U(N)-invariance on our 2-node system, we obtain a
single state |]) for every total boundary area |

Z%inv = @ C |]> (74)

JeN

We define these |]) states as the homogeneous and isotropic states of the model. The physical
motivation behind this definition is that U(N) invariance is restricting our system to states
which are not sensitive to area-preserving deformations of the boundary between « and f.
They are isotropic in the sense that all directions (i.e. all links) are equivalent and the state only
depends on the total boundary area, and they are homogeneous in the sense that the quantum
state is the same at every point of space, i.e. at both nodes « and B of our 2-node graph.

This allows to realize the reduction at the quantum level to the isotropic/homogeneous
subspace by a straightforward U(N)-group averaging. This opens the possibility of applying
this logic to Loop Quantum Cosmology, which is based on a symmetry reduction at the classical
level and a quantization 4 Ia loop of this reduced phase space. As it will be explained in the next
section, the dynamics that we propose for the U(N) invariant sector has also strong analogies
with the evolution operator used in LQC.

3.4 Dynamics for the 2-node model

In this section, we will define a consistent dynamics based on the U(N) invariance, restricting
ourselves to the subspace of homogeneous/isotropic states described previously. In particular,
such dynamics will automatically be consistent with the matching conditions.

3.4.1 The algebra of U(N) invariant operators

Before proposing a Hamiltonian operator for this system, we explore here the different U(N)-
invariant operators that we can construct. The most obvious one is the total boundary area
operator E itself. It is defined as E = E®) = E(#) on the space 2H of spin network states sat-
isfying the matching condition. It is direct to check that it commutes with the u(N) generators

(£, E®] = [EZ_(]{"), EW] =0 = —[E](Z.’g), EW)] = [&;, EP). (75)
This total area operator is clearly diagonal in the basis |]),

E]) = 2]1])-
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Now, we need operators that could create dynamics on the space 2H,,, by inducing transitions
between states with different areas. To this purpose, we use the operators e;j, fij (eq. 67) and
introduce the unique linear combinations that are U(N)-invariant

e=Y e = ZEZ.(;‘) EP,  f= Y fi= ZFi(ja)Fi(jﬁ)' (76)
ij ij ij ij

They obviously commute with the matching conditions since each operator ¢;; and f;; does. An
important feature of these new operators, is that they are quadratic in E and/or F separately,
so in this case their action is the same in both nodes. This actually ensure that the matching
conditions hold.

It is convenient, for computational purposes, to introduce a shifted operator ¢ = e + 2(E +
N —1). Then, using the quadratic constraints (61-63) satisfied by the operators E;; and F;;, we
can show that ¢, f and f' form a simple algebra

e fl = “2(E+N+1)f,
Gf] = 2/f(E+N+),
£fT] = 4E+N)E. (77)

Written as such, it resembles to a s/, Lie algebra up to the factors in E, which is an operator and
not a constant®.

We can use f' as a creation operator. Thus we introduce the states

]
T = £1110) = (Zﬂ;‘“”ﬂﬁﬁ”) 0), 78)
ij

where the index un stands for un-normalized. Since both the operator f' and the vacuum state
|0) are U(N)-invariant, it is clear that the states |]),, are also invariant under the U(N)-action.
Moreover, it is easy to check that they are eigenvectors of the total area operator:

E |]>un =2] |]>un/

so that they provide a basis for our Hilbert space 2H,;,, of homogeneous states. It is possible
also to work with normalized states defined as

B 1
~ 2N(+1)!/Dny;

1) T uns (79)

in terms of the dimension Dy,; of the intertwiner space 'H%) [43] (see [45] for details).
The action of all ¢, f, fT operators over these normalized states is always quadratic in J:

ely = 20+H)(N+]=1)1]),
I = 2JU+ DN+ DN+ -2) ] - 1),
I = 2/U+DU+DN+D(N+] -1 []+1). (80)

8This is very similar to the sl algebra Eé“), Féw, Fi(“) * defined in [44] and used to build the U(N) coherent states.
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From here, we see that it is possible to introduce renormalized operators that truly form a
sl algebra. We define the new operators:

, 1 5 1
B \/E+2(N—1)e\/E+2(N—1)'

x = 1 1

o \/E+2(N—1)f\/E+2(N—1)'
B 1 1

A = E+2(N—1)f+ E+2(N—1) (81)

Notice that the inverse square-root is well-defined since E + 2(N — 1) is Hermitian and strictly
positive as soon as N > 2. These operators are still U(N )-invariant since E is invariant too and
we also have the Hermiticity relations, Z' = Zand X' = X, . Moreover, it is direct to compute
the action of these renormalized operators on our |]) basis states.

To conclude, we can extract two important points

e The algebraic structure of the U(N)-invariant space >H,,, of homogeneous states forms
an irreducible unitary representation of s/(2,R). The basis vectors |]) can be obtained by
iterating the action of the creation/raising operator f (or X, ) on the vacuum state |0).

e This algebraic structure does not depend at all on the number of links N. Therefore,
while working on homogeneous states, N might have a physical meaning but it is not
a relevant parameter mathematically. On the other hand, we expect it to become highly
relevant when leaving the U(N)-invariant subspace and studying inhomogeneities.

3.4.2 The Hamiltonian

In order to study the dynamics on this 2-node graph we propose the simplest U(N)-invariant
ansatz for a Hamiltonian operator

H = e+ (of +af). (82)

As explained above, the operator ¢ does not affect the total boundary area, [E, ¢] = 0, while the
operators f and f' respectively shrink and increase this area, [E, f] = —2f and [E, f1] = +2f.
The coupling 7 is real while ¢ can be complex a priori, so that the operator H is Hermitian.
We can relate this Hamiltonian operation to the action of holonomy operators acting on all the
loops of the 2-node graph [45]. From this point of view, our proposal is very similar to the
standard ansatz for the quantum Hamiltonian constraint in LQG [50] and LQC (e.g. [51, 52]).
This Hamiltonian is quadratic in | and we can give its explicit action on the basis states of

2 .
Hinv~

HJ) = o2/J(+DN+T-1D)(N+]-2)[]-1)
2+ D(N+]- D]

+02,/(J+ DT +2)(N+ NN +] - 1) +1), (83)

the details of the spectral properties of this Hamiltonian can be found in [45]. We observe in
the spectral analysis that it presents three dynamical regimes depending on the value of the
couplings that can be put in the same footing as the three regimes in LQC given by the sign of
the cosmological constant [45].

The ansatz given above is the most general U(N)-invariant Hamiltonian (allowing only ele-
mentary changes in the total area), up to a renormalization by a E-dependent factor. Therefore,
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we can also propose renormalized Hamiltonian operators based on the renormalized operators
considered in the previous section. For instance, we can define

_ 1 o 1
- VE+2(N-1) E+2(N-1)

= N2+ (0X_+0Xy) € sly. (84)

We remark the fact that we study the action of these Hamiltonian operators, H and h, on the
U(N)-invariant space 2H,,,; nevertheless they are generally well-defined on the whole space of
spinnetwork states 2H. Also, that the dynamics on the homogeneous sector does not depend
mathematically on the parameter N giving the number of links of the graph, as it does not
appear in the action of the renormalized Hamiltonian h.

The main characteristic of h is that it is an element in the Lie algebra s/, and its coefficients
are linear in the variable | at leading order. Thus we know its spectral properties from the
representation theory of sl;. The important point to underline here is that the three coupling
regimes for the renormalized Hamiltonian h are exactly the same as for the original Hamilto-
nian H. This is very similar to the interplay between the evolution operator ©® and the gravita-
tional contribution to the Hamiltonian constraint Cgrav (see e.g. [51]) in LQC. At the end of this
section, we will obtain the classical counterpart of these Hamiltonians and we will be able to
solve the equations of motion for h exactly.

3.5 Classical setting: formulation of the 2-node model in terms of spinors

One of the most interesting aspects of the U(N)-framework is that it can be rewritten in terms
of spinors rather straightforward [46, 48]. This fact is natural in this setting because the opera-
tors in the U(N)-formalism can be seen as the quantization of a classical spinorial model. This
relationship may lead us to a better understanding of the geometrical meaning of the spinnet-
work states in LQG and can also help us in the quest of a well defined semi-classical limit for
the full theory.

Another remarkable point is the direct relation with the work by L. Freidel and S. Speziale so
called “twisted geometries” [53, 54]. Within this point of view, it was shown that the classical
phase space of loop gravity on a given graph can be understood as a classical spinor model
unravelling the connection between spinnetworks and the discrete geometry, mainly the Regge
theory. This could be a key ingredient in order to shed light about the physical meaning of the
spinfoam approach which treats the dynamics of the spinnetworks.

In this section we present the main elements allowing the recast of the U(N)-framework in
terms of spinors, showing how this is related with the usual SU(2) intertwiners in LQG. First
of all, we define the classical spinor phase space. Later on, we propose a classical theory based
on an action principle which actually gives us that phase space. After this classical step we per-
form the quantization, choosing a specific polarization based on certain spinorial holomorphic
functionals and we will find that we obtain the correct intertwiner Hilbert space. Finally, we
will discuss some interesting topics about the dynamics in our 2-node model using spinors and
some points of contact with LQC.

3.5.1 Spinors and notation

In this part, we introduce the spinors and the related useful notations that we will be using in
the rest of the section [44, 49, 54, 46, 48]. Given a spinor z

A=) @=(2 ),
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it is well known that there is a geometrical 3-vector V(z), defined from the projection of the
2 x 2 matrix |z)(z| onto Pauli matrices ¢, (taken Hermitian and normalized so that (¢;)? = )

12)(z] = % (el2)1+7(z) - 7). (85)

It is straightforward to compute the norm and the components of this vector in terms of the
spinors
V(z)| = (z|z) = |2°)2 + |21, VE= 22227, vE=2R(2%"), VY=23(2%"). (86)

Also, it is 1mportant to notice that the spinor z is entirely determined by the corresponding
3-vector V(z) up to a global phase. We can give the reverse map

o JIVIEHVE V| + VZ i(9—0) V|- V= _w
=e s tanf = v (87)

where ¢/ is an arbitrary phase.
We can also introduce the map duality ¢ acting on spinors

0 _ 51
c @) = < Zﬁ > ¢ =-1L (88)

This is an anti-unitary map, (¢z|cw) = (w|z) = (z|w), and we will write the related state as

Z=clz),  [zlw] = (zfw).

This map ¢ maps the 3-vector V(z) onto its opposite

12][2] = % (=21~ V()-7). (89)

Finally considering the setting necessary to describe intertwiners with N legs, we consider
N spinors z; and their corresponding 3-vectors V(z;). Typically, we can require that the N
spinors satisfy a closure condition, i.e that the sum of the corresponding 3-vectors vanishes,
Y, V(z;) = 0. Coming back to the definition of the 3-vectors V(z;), the closure condition is
easily translated in terms of 2 x 2 matrices

Ylzal = AL with A(z) = 12 (2i]2i) = Z|V 2| (90)

N

This further translates into quadratic constraints on the spinors

ZZ?Z} =0, E ‘Z?‘Z =
1

1

= A(z). (91)

In simple terms, it means that the two components of the spinors, z? and z!, are orthogonal
N-vectors of equal norm. In order to simplify the notation, let us introduce the matrix elements
of the 2 x 2 matrix }; |z;)(zi]

Cab =) 22! (92)
i

Then the unitary or closure conditions are written very simply

Coo—C11 =0, Co1 =C10=0. (93)
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3.5.2 Phase space and quantization

We are ready now to describe the phase space in terms of spinors. This will provide us with
the suitable arena to proceed with the quantization [48, 46].
Then, we first introduce a simple Poisson bracket on our space of N spinors

{zf, Z]b} =i (S“héij, (94)

with all other brackets vanishing, {z?,z;-’} = {zf,z?} = 0. This is exactly the Poisson bracket
for 2N decoupled harmonic oscillators.

We expect that the closure conditions generates global SU(2) transformations on the N
spinors. In order to check that, we have to compute the Poisson brackets between the vari-
ous components of the C-constraints :

{Coo — C11,Co1} =—2iCo1, {Coo — C11,C10} =+2iC10, {Ci0,Co1} = i(Coo — C11), (95)
{TI‘C,COO — Cn} = {TI‘C,COl} = {TI'C,C]Q} =0. (96)

These four components C,;, do indeed form a closed u(2) algebra with the three closure condi-
tions Cop — C11, Co1 and Cyp forming the su(2) subalgebra. Thus we will write C for these three
su(2)-generators with C* = Cyp — C11 and C* = Cy9 and C~ = Cp1. The three closure condi-
tions C will actually become the generators ] at the quantum level, while the operator Tr C will
correspond to the total energy/area E.

Now, let us define matrices M and Q in the following way

Mij = (zilzj) = (z]zi), Qij = (zjlzi] = [zilzj) = —[zj]zi)-
with

2 = ( VA
VA

and u;; elements of a unitary matrix. It is possible to write this matrices as:

) , A=TrM/2

M= AUAUTY,

Q = AUA/U, (97)

where U is a unitary matrix UTU = L.

It is easy to show that indeed (up to a global phase) these matrices are the most general ones
satisfying M = Mt, 'Q = —Q and the classical analogs to the quadratic constraints satisfied
by the operators E and F. On the other hand there is a fundamental point in this construction
which is that the unitarity condition on the matrices U is equivalent (with the presented defi-
nition of the spinors in terms of the unitary matrix elements) to the closure conditions on the
spinors.

Now, we can also compute the Poisson brackets of the M;; and Q;; matrix elements:

{Mij, Mg } = i(6k;Miy — 6 My;),
{Mij, Qu} = i(6;x Qi1 — 631Qix),
j j j
{Qij, Qu} =0,
{Qij, Qu} = i(6sMyj + 6 My — 6 My — 6iyMyj), (98)
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which reproduces the expected commutators (56) up to the i-factor. We further check that these
variables commute with the closure constraints generating the SU(2) transformations

{C, My} = {C,Qi} =0.
Finally, we look at their commutator with Tr C

{Tr C, M,‘j} =0, {TI‘ C, Q,‘j} = {ZMkk, Qi]‘} = +2i Qi]', (99)
k

which confirms that the matrix M is invariant under the full U(2) subgroup and that Tr C acts
as a dilatation operator on the Q variables, or reversely that the Q;; acts as creation operators
for the total energy/area variable Tr C.

So far, we have been able to characterize the classical phase space associated to the spinors
z; and the variables M;;, Q;;. Then we can now proceed to the quantization. In order to do that,

we introduce the Hilbert spaces H}Q) of homogeneous polynomials in the Q;; of degree |

%EQ) = {PePlQ]l P(pQy) = p/ P(Qy), Yo € C}. (100)

These are polynomials completely anti-holomorphic in the spinors z; and of order 2].

One can prove that these Hilbert spaces H}Q) are isomorphic to the Hilbert space ’Hg\p of
N-valent intertwiners with fixed total area J. To this purpose, we will construct the explicit
representation of the operators quantizing M;; and Q;; on the spaces ”H}Q) and show that they
match the actions of the U(N) operators E;; and F;]r. which we described earlier. Our quantiza-
tion relies on quantizing the z; as multiplication operators while promoting z; to a derivative
operator

d

24— za o0 —

Z; = Z; X, z; = 872?’ (101)
which satisfies the commutator [2,Z] = 1 as expected for the quantization of the classical

bracket {z,z} = i. Then, we quantize the matrix elements M;; and Q;; and the closure con-
straints following this correspondence:
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k

It is straightforward to check that the C,, and the ]\711-]- respectively form a u(2) and a u(N) Lie
algebra, as expected

Cap Ced] = 6adCep — 0cCat,  [Myj, Myg] = 0ijMy — 6yMyj,  [Cap, My] = 0. (103)
which amounts to multiply the Poisson bracket 95 and 98 by —i. Then, we first check the action
of the closure constraints on functions of the variables Q;; :

5Ql] = 0/ (TI' C) Ql] = 2Qijr

vP e 1Y = Pj[Qy], CP(Qj) =0, (TrC)P(Qy) = 2 P(Qy), (104)
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so that our wavefunctions P € ’H;Q) are SU(2)-invariant (vanish under the closure constraints)
and are eigenvectors of the Tr C-operator with eigenvalue 2].
Second, we check that the operators M and (Tr C) satisfy the same quadratic constraints

on the Hilbert space 7—[ (1 e assuming that the operators acts on SU(2)-invariant functions
vanishing under the closure constraints) that the u(N)-generators E;;

(T O) ZMW ZMM%=J%<“?D+N—§, (105)
k
which allows us to get the value of the (quadratic) U(N)-Casimir operator on the space ’H}Q):
o — ([T ()
ZMikMki = (TI' C) ((1‘2) + N—Z) = 2](]—|—N - 2)
ik

Thus, we can safely conclude that this provides a proper quantization of our spinors and M-
variables, which matches exactly with the u(N)-structure on the intertwiner space (with the
exact same ordering)

—

H§Q> ~H), M;=E; (TC)=E. (106)

Now, turning to the Qij—operators, it is straightforward to check that they have the exact
same action that the Fi‘; operators, they satisfy the same Lie algebra commutators (56) and the
same quadratic constraints (61-63). Clearly, the simple multiplicative action of an operator @,-j
send a polynomial in IP;[Q;;] to a polynomial in IP;;1[Q;j]. Reciprocally, the derivative action
of éi]‘ decreases the degree of the polynomials and maps Py 1[Q;;] onto P;[Q;].

Finally, let us look at the scalar product on the whole space of polynomials IP[Q;]. In order

to ensure the correct Hermiticity relations for ]\7Il~j and Qij, Q_l-j, it seems that we have a unique
measure (up to a global factor)

Vo.p PO (oly) = [Tz =0 90y v(Qy). (107)

Then it is easy to check that we have ]\712; = ]\7Ij1~ and Q:f] = Q_i]- as wanted.

It is easy to see that the spaces of homogeneous polynomials IP;[Q;;] are orthogonal with
respect to this scalar product. The quickest way to realize that this is true is to consider the op-

erator (Tr C), which is Hermitian with respect to this scalar product and takes different values
on the spaces IP;[Q;;] depending on the value of J. Thus these spaces IP;[Q;;] are orthogonal to
each other.

This concludes our quantization procedure thus showing that the intertwiner space for N
legs and fixed total area | = ) ; j; can be seen as the space of homogeneous polynomials in the
Qjj variables with degree J. This provides us with a description of the intertwiners as wave-

functions anti-holomorphic in the spinors z; constrained by the closure conditions’.

%It is also possible to present an alternative construction [46], which can be considered as “dual” to the repre-
sentation defined above. It is based on the coherent states for the oscillators, thus recovering the framework of the
U(N) coherent intertwiner states introduced in [44] and further developed in [49].
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3.5.3 Action principle

It is possible to write an action principle for the previous Poisson bracket structure in terms of
the spinors. In order to be consistent, we have to take into account the closure constraint, but
also the matching conditions coming from the gluing of several intertwiners together. Further-
more, we propose an interaction term (a Hamiltonian) for this model.

Once we know that the Hilbert space of LQG can be described as the quantization of the
phase space in terms of spinors (with the construction explained above) [48], it is interesting
to present explicitly the correspondence between the standard formalism of loop (quantum)
gravity and the spinor formulation provided by the reconstruction of the SU(2) group element
g¢ in terms of the spinors [54].

Considering an link ¢ with the two spinors at each of its end-nodes z,y) , and zy(y) ¢, there
exists a unique SU(2) group element mapping one onto the other. More precisely

|Zs0),e)(Zec0),0| = 125(0),0) [Ze00) 0]

g = (108)
\/<Zs(é),€|zs(£),£> (Zi(0),01210),0)
is uniquely fixed by the following conditions
o 1Z¢00),0) _ |Z5(0),¢] g 1Z¢(0),4] _ e | g esUQ),
\/<Zt(€),€|zt(€),f> \/<Zs(z),z|25(f),£> (zu(0)012800),0) (Zs(0),012s(0),0)
(109)

thus sending the source normalized spinor onto the dual of the target normalized spinor.

Starting from this point, it is possible to construct objects in terms of the matrices M and Q
that are SU(2) invariant and satisfying the matching conditions [46]. The expression of these
objets (dubbed as “generalized holonomies” for their close relation with the usual holonomy
operators in LQG) is:

MU = Hrl‘—lriQ—g,ifl + (T=rii)rMi_y + ria(L—r)M_ + (T—ris) (1= 1) Q44
1

= H<€riilzvnez‘71 |g1_rizvi13i>' (110)
1
with r; = 0,1; and Mj”/k, Q}’,k the corresponding operators for the node v of a given loop of a
generic graph I (Fig.6) and acting on the links j and k. These objects will be the building blocks
for the interaction term of our model.

Using all these ingredients, we want to write an action principle for this formalism. We
should keep in mind that the spinnetwork states on a given graph I" are V intertwiner states —
one at each node v— glued together along the links e so that they satisfy the matching conditions
on each link. Consequently the phase space consists with the spinors z,, (where e are links
attached to the node v, i.e such that v = s(¢) or v = #({)) which we constrain by the closure
conditions C? at each node v and the matching conditions on each link e. The corresponding
action reads

Solzo,] = /dt Yo Y (—izoelOnzor) + (2ol Aolzor)) + )00 (<Zs(€),€’Zs(£),é> - (Zf(z),e\zt(z),e>) ’
7

v elvede

(111)

where the 2 x 2 Lagrange multipliers A, satisfying Tr A, = 0 impose the closure constraints
and the Lagrange multipliers p, € R impose the matching conditions. All the constraints are
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Figure 6. The loop £ = {/1,(,..,¢,} on the graphT.

first class, they generate SU(2) transformations at each node and U(1) transformations on each
link e.

We can analogously describe this system parameterized by N, x N, unitary matrices U° and
the parameters A,. The matrix elements U, refer to pairs of links ¢, f attached to the node v.

As it was mention before, the closure conditions are automatically encoded in the requirement
that the matrices U are unitary. Of course, we still have to impose the matching conditions

M?gi’) — Még) = 0 on each link e where the matrices M? = A, UAUY~! are functions of both A,
and U?. So in this case, the action!‘reads

STy, UP] = / dty” (—i)\UTr urAd, Ut — Tr@, (uruet — 1[)) + ¥ po(MD — My, (112)
v l

where the p, impose the matching conditions while the N, x N, matrices ©, are the Lagrange
multipliers for the unitarity of the matrices U°.

This free action describes the classical kinematics of spinnetworks on the graph I'. Now,
we are going to add interaction terms to this action. Such interaction terms are built with the

generalized holonomy observables M{Eri}. With this construction, the closure and matching
conditions are trivially satisfied. Our proposal for a classical action for spinnetworks with non-
trivial dynamics is thus

Sty =Sb+ [at Y i MY, (113)

i LAri}

where the ’)/gi} are the coupling constants giving the relative weight of each generalized holon-
omy in the full Hamiltonian. We will study in more detail this classical action principle in the
specific case of the 2-node graph in the following section.

3.5.4 Effective dynamics for the 2-node graph

Let us particularize to the 2-node graph the action principle proposed before for a general
graph. Then, the action for this model, including a general interaction term is

S[U*, UP,A] = So[u®, UuP,A] + / ar Y [y @yl +y Qb+ MMt |, 1
7

19This action is invariant under the action of SU(2) x U(N, — 2) at every node, which reduces the number of
degrees of freedom of the matrices U to the spinors z, ; which are actually the two first columns of those matrices.
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with

So[U*, UP, A] E/dt (—i A [Tr U A3, U + Tr uﬁAanuﬁf] +Y pi [(umu“)ﬁ - (uﬁAuﬁ*)ﬁD :

(115)

where A = A, = Ag, due to the matching conditions, and the 7’s are coupling constants satis-
tying

in order to have a real Hamiltonian.

At this point one can look for the classical counterpart of the quantum Hamiltonian for the
homogeneous and isotropic sector imposing a global U(N) symmetry. After this, the action
depends just on two conjugated variables A = Tr M /2 and ¢. Due to the symmetry reduction
and the matching conditions, ¢ relates the unitary matrix (or spinor) in the node & with the one

at p: U* = ¢ up. Finally, the expression for the action for the reduced sector is
Sino[A, @] = —2 / dt (Aancp — A2 (70 — it V’e’Zi‘P)) , (116)

with the Hamiltonian H = A?(7? — 27 cos(2¢)).
This Hamiltonian corresponds with the quantum Hamiltonian H that we have considered
before. As we did also there, we can introduce the renormalized Hamiltonian

1
A
that is still SU(2) and U(N) invariant.
The equations of motion coming from the new Hamiltonian h are simply given by
¢ = 9° —2vcos(2¢),
oA = —4yAsin(2¢). (118)

We can solve exactly these differential equations. First we solve for ¢(t) analytically and then
the following expression for A in terms of ¢ solves the equations of motions

H = A(y° — 2y cos(2¢9)), (117)

N = €
Y —2ycos(2¢)
where € = + is a global sign. Let us point out that the equation of motion for A only determines
it up a global numerical factor. Then we should remember that A is the total area and we always
constrain it to be positive. Moreover this is the equation of a conic with radial coordinate given
by A, polar coordinate 2¢ and eccentricity 2/ yo.
The solutions!!for ¢(t), depending on the different values for the parameters 7 and <y are

(27 =1 tan (t/(19)7 = 47?)

(119)

Elliptic region (|7°| > 2|v|) : ¢(t) = — arctan (120a)
(7°)? — 47
42 — (+0)2
Hyperbolic region (|7°| < 2|y|): ¢(t) = — arctan =) (120b)
(27 +1°) tanh (/492 = (77)?)
1
Parabolic regionI (7% = 27) : ¢(t) = — arctan <4’Yt> , (120c)
Parabolic regionII (1° = —27): ¢(t) = —arctan (49t) . (120d)

1We have chosen the most convenient constants of integration due to the fact that this constants are just transla-
tions in the temporal variable
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Let us give a brief description of these solutions (fig. 7). First, we notice that we get the same
solution A(t) for the two cases I and II of the parabolic region by taking € = + in case I and € =
— in case II. In the elliptic case, we have a system in which the area A has an oscillatory behavior.
While in the other two regimes the area shrinks under evolution, reaches a minimum value and
then increases until infinity. As it was pointed out in [45, 46], the quantum Hamiltonian of this
2-node model is mathematically analogous to the gravitational part of the Hamiltonian in LQC.
Following this analogy, we can interpret the results obtained here as the classical analogous of
the quantum big bounce found in LQC.

A WL
N2

s
20(1) At
00F
2
p 250
“‘,o*
h

os 1o IS
2 3 3 H

-2 -1

Figure 7. We plot the behavior of ¢(t) and A(t) (given by the equations 119 and 120) in the three
different regimes for ¢ = 1 and respectively 7° = 4 (elliptic regime), 7° = 1 (hyperbolic regime) and
finally 4° = 2 (parabolic regime). In the first column, we give the polar plots constructed by taking as
polar coordinates (2¢, A(¢)). The second column gives for ¢(t) and the third one A(t). We observe in

those plots the periodical behavior of A (interpreted as the total area of the model) as a function of time
in the elliptic case and a behavior analogous to a cosmological big bounce in the other two cases.

4 The covariant few-node model

So far we have presented the use of the 2-nodes graph in the canonical theory, seeing how this
can be used as a truncation of the full theory to a finite number of degrees of freedom, and we
have seen different techniques to impose homogeneity and isotropy on this system in order to
obtain the description of a FLRW universe. On the other hand, in our description we can not
break free from the ambiguities in the definition of the dynamics: there is no agreement about
the form of the Hamiltonian constraints used. We hope that the works presented in this review
could add new insights to this question.

The dynamics of Loop Quantum Gravity, however, admits also a covariant formulation in
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terms of transition amplitudes, which appears to be far less subject to ambiguities. The fun-
damental object is a general covariant path integral, interpreted as a sum over geometries. In
this section we review calculation of the transition amplitude between homogeneous isotropic
states on a regular graph. This calculation was first performed in the context of the 2-node
model [55] and extended to the case with a cosmological constant in [56], but was later ex-
tended to an arbitrary regular graph in [57]. Here we give directly the general case with a
cosmological constant on an arbitrary regular graph.

4.1 Brief introduction to spinfoam theory

The transition amplitudes are obtained by summing over all the possible spinfoams. A spinfoam
is a 4-dimensional simplicial 2-complex C colored with spins j ¥ and intertwiners i,, associated,
respectively, to the faces f and the edges e i.e. the 3-cells. This is the object that encodes
the quantum geometry (Penrose’s spin-geometry theorem). Here we take the sum over the
coloring jr and iy, the product of “face amplitude” [, d(j) and a product of vertex amplitudes
[T, Av(je, i), that reads [58, 59, 60, 61, 62, 5]:

Ze = Y TT4Gs) TTA0(ig,ve)- (121)

jpie f

The vertex amplitude Ay (jf, ve) = (jf, ve| Ay) is written in a basis of intertwiners that diag-
onalizes the volume, and we indicate with v, the corresponding quantum number, which we
take to be the eigenvalue (for simplicity of notation we disregard the eventual degeneracy).
Thus the vertex amplitude is a function of the spins j; and of the intertwiners adjacent to the
vertex v.

We can include the cosmological constant by considering a simple modification of (121)
based on the form of the cosmological-constant term in the Hamiltonian constraint. In the
canonical theory, the cosmological constant appears as an additive term to the gravitational
Hamiltonian constraint, which multiples the 3-volume element. When deriving a path integral
formulation of quantum theory a la Feynman by inserting resolutions of unity into the evo-
lution operator, a potential term appears simply as a multiplicative exponential, because the
potential is diagonal in the position basis. The cosmological constant term is diagonal in the
spin-intertwiner basis. It is therefore possible to insert the cosmological constant “potential” as
a multiplicative term along the spinfoam evolution, that is in between 4-cells, which is to say on
3-cells. The coupling is therefore very simple, and consists in weighting edge amplitudes with
an exponential term which depends on the volume and the cosmological constant. Therefore
we obtain

Ze =) [1@i+1)]Te™™ [TAu(r ve), (122)

jfr"e f

where A is related to the cosmological constant A and eigenvalue of the volume v, associated
to an edge e. The amplitude is written in a basis of intertwiners that diagonalizes the volume,
so that the term with v, in the exponential is well defined.

Incorporating this term into the covariant dynamics of Loop Quantum Gravity (see [63, 64]
and references therein) is important in order to check the semiclassical limit. Einstein equation
admits only the trivial flat solution in absence of matter for A = 0. Recovering flat space is
interesting, but is still weak evidence for the full classical limit. Since at the moment the cou-
pling of matter in Spinfoam is not yet completely understood, the inclusion of the cosmological
constant became essential to check the good semiclassical limit of the Spinfoam theory beyond
the trivial flat solution.
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4.1.1 Coherent states

We want to study the semiclassical behavior of this transition amplitude. In in the Hilbert
space Hr it is possible to define an overcomplete basis of semiclassical states, obtained as a
superposition of spinnetwork states. These are coherent states, functions of SU(2) and labelled
by a SL(2,C) element H, for each link. They take the form!? [65, 67, 82]

— -1 -1
Yr, (he) = /Su(z)ngn [T (5o e g0y He - (123)

leT

They are defined by an integral on SU(2), so that the stases are gauge invariant, and by the
heat kernel K; on SU(2) (h, € SU(2)), analytically continued to SL(2,C). This is a function
concentrated on the origin of the group, with a spread of order 1/t in j. Its explicit form is'3

Ki(h) = Y (2f + 1)e” MU Tr [DI ()] (124)

J

where D/(h) is the Wigner matrix of the spin-j representation of SU(2). The states (123) are
gauge-invariant semiclassical wave packets. The integral in (123) projects (“group averages”)
on the gauge invariant states. If Hy is in the SU(2) subgroup of SL(2, C), the heat kernel peaks
each hy on Hy. The extension of Hy to SL(2,C) has the same effect as taking a gaussian function
P(x) = e(x=20)2/2 o o(x=%0)2/24ipo¥ for o complex z, = x, + ip,; that is, it adds a phase which
peaks the states on a value of the variable conjugate to /,. Thus, the states (123) are peaked on
the variables 1, as well as on their conjugate momenta.
We can decompose each SL(2,C) label in the form

Hy=DV(Ry,, ) e 2 DO(R;! ). (125)

)
where R; € SU(2) is the rotation matrix that rotates the unit vector pointing in the (0,0,1)
direction into the unit vector 7, and D) (Rgp,) is its representation j. & = {o;},i = 1,2,3 are the
Pauli matrices.

There is a compelling geometrical interpretation for the (7, 7i;, ¢, ) labels of each link [53,
83, 84]. The two vectors 7i; and 7; represent the normals to the face ¢, in the two polyhedra
bounded by this face. The complex number z, codes the intrinsic and the extrinsic geometry at
the face. More precisely the imaginary part of z, is proportional to the area of the face of the
cellular decomposition dual to the link ¢. The real part of z; is determined by the holonomy
of the Ashtekar connection along the link [85]. For general states, the interpretation extends to
a simple generalization of Regge geometries, that Freidel and Speziale have baptized “twisted
geometries” [86].

These state, that we use to concretely compute the transition amplitude, should be inter-
preted!* as describing the quantum space surrounding a given 4-dimensional finite region of
spacetime. We talk therefore of “boundary states”, that can be thought here as “in” and “out”
states in the transition amplitude.

12 As shown in [65], these states: (i) are the basis of the holomorphic representation [66, 67], (ii) are a special
case of Thiemann’s complexifier’s coherent states [68, 69, 70, 71, 72, 73, 74, 75, 76, 77], (iii) induce Speziale-Livine
coherent tetrahedra [78, 79, 80] on the nodes, and (iv) are equal to the the Freidel-Speziale coherent states [53, 81]
for large spins.

BWe choose a parameter ¢ with the dimension of an inverse action, and put 7 explicitly in the definition of the
coherent states, in order to emphasize the fact that the small ¢ limit is the classical limit, and to keep track of the
corresponding dependence on 7. The factor 2 is for later convenience.

14They can also be viewed as describing quantum space at some given coordinate time, but this interpretation is
less covariant.
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Figure 8. Transition amplitude between two states defined on a “dipole” graph. We consider only the
first order in the vertex expansion, i.e. there is only one vertex in the bulk (spinfoam edges are drawn
with thicker lines).

4.1.2 Vertex amplitude

The transition amplitude (121,122) can be expressed as a vertex expansion. The first nontrivial
term of this expansion involves just a single vertex. In what follows we concentrate on the
evaluation of the transition amplitude in the first order of the vertex expansion. Therefore the
vertex amplitudes A,(H/), one for each vertex v in the bulk of the spinfoam, become for us just
A(H/). We evaluate it in the basis of the coherent states [87, 88, 89, 90, 91], so that the expression
(Aln,) = W(H,) reads
N-1 L ‘ .
W(H,) = /S . [1dGx TT X j1ye 2tictietgitve Ty [D(]f)(Hg)YJr D<Wé‘>(cg)y] . (126)
’ n=1 =1 j,

The amplitude is Lorentzian, with an integration over the SL(2,C) elements G, associated to
the edges (see Fig.4.1.2). Notice that the integration is over all the G, but one, in order to
avoid a redundancy that makes the amplitude diverge [88]. We take the product over each

link ¢ and the sum over the coloring of these links, i.e. on the spins j,. DU (H;) is simply
3

DO)(Ry,, ) DU (e~%) DW(R;! ). Ge = Gy)Gy(j, is the product of the SL(2,C) group ele-
ments at the source and target nodes, extremals of each oriented link ¢, and D(ieie )(Gg) is its
representation matrix. Finally, Y is a map from the representation (j) of SU(2) to the repre-
sentation (yjy, jo) of SL(2,C). The first has has dimension 2j+1 while the second has infinite

dimension. These matrices with different dimensions are glued by the map Y. In other words

y: O UG
7, m) |G vi)s j,m) (127)

whose matrix elements are given by ((j, vj); /', m" | Y | j,m) = 8,0k Omm-
In the base of the coherent states the amplitude takes the convenient form (126) that we
exploit for the calculation in cosmology.

4.2 Homogeneous and isotropic geometry

We want to evaluate the vertex amplitude (126) for the homogeneous and isotropic case [55,
56, 92, 57]. This corresponds to restrict the study to regular graphs, i.e. graphs where the
distribution of the degrees at the nodes is uniform (this condition is trivially satisfy when we
work with the dipole). The requirement of homogeneity and isotropy fixes 7, i, as the normals
to the faces of the geometrically regular cellular decomposition dual to the graph, and implies
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that all the z, elements in Hy are equal: z; = z. Furthermore, on a homogeneous isotropic
space the real part of z is the sum of two terms [93] Rez = 6(yK +T') , where K and T are
the scalar coefficients of respectively the extrinsic curvature and the spin connection, that enter
in the definition of the Ashtekar-Barbero connection written in the homogeneous gauge. On
a compact space, I' = 1, and 0 and is the angle between two 4d normals of the two adjacent
polyhedra (the isotropy requires that this is the same for every coupe of normals) and K is
proportional to the time derivative of the scale factor. Finally, all the cells are equal and we can
write v, in the cosmological constant term as the volume v, of a regular cell with faces having
unit area, times ]%

With these assumptions, any homogeneous isotropic coherent state on any regular graph is
described by a single complex variable z, whose imaginary part is proportional to the area of
each regular face of the cellular decomposition (and it can be put in correspondence with the
total volume) and whose real part is related to the extrinsic curvature [53]. We denote ¢y, (,)
this state, and ¢y, (; /) = Pn,(z) ® P, () the state on two copies of the regular graph, obtamed
tensoring the “in” and “out” homogeneous isotropic states.

Before studying further our transition amplitude, let us consider the vertex expansion. We
consider the classical Hamilton function of a homogeneous isotropic cosmology: this results in
a difference between two boundary terms. With the cosmological constant A it gives

2 /A
v /Te = 3V 3 (@~ ) (128)

where a is the scale factor and 4 its time derivative. Therefore at the first order in 71 the quantum
transition amplitude factorizes:

SH—/dt aaq +A %)

W (agn, ain) = e# 51 (timin) = W (ag) W (ain) (129)
The same happens for the spinfoam amplitude

(WP, (24 20)) = W (Zfin, Zin) = W (Zfin) W (2in) (130)

with W(z) = W(H;), where now (126) edpends only on a single z trough Hy(z).

Notice that this factorization is at the origin of the no-boundary condition of Hartle and
Hawking. Therefore, at the first order in the expansion, we can study W(z) instead of W (2, Zin)
and interpret it as the “wave function of the universe”.

We are interested in this quantity in the large volume limit, that correspond to take the
imaginary part of z is large. Let us consider separately the real and the imaginary part of z.

When the imaginary part of z is large we find that the Wigner matrix in the trace gives

DU)(e~2%) Ze =M m) (m (131)

For Imz >> 1 (large area) in this sum the term m = j dominates, therefore
DU (%) ~ e [j) (132)

where [) is the the eigenstate of L3 with maximum eigenvalue m = j in the representation j.
Inserting this result into (126) we obtain

/HdG HZ 2j,+1)e =2t (j+1)— l)\Vo]z lzz]é<]£’D]£( ) D(W‘]@)(GK)YD ( )W)_
=1 j

(133)
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The action of the matrix DU)(R;; ) on the highest weights states is precisely the definition of the
coherent states |i), so We can write

N1 L . L3 .
:/ HdGn H Z(2j£+1)e*2th]l(]é‘+1)*I)Wo]2*lzé]i<ﬁt(€)’ y’rD(w,J/)(Gé)y‘ﬁs(m. (134)
n=1 (=1 ]'(

We can now study the SL(2,C) integral in (134) (without fixing the j). Let us rewrite the
previous expression as

=3 H,_] 1) e~ 2thie (et 1) —idvyj3— ZZ]// HdG H iy | YDA (G)Y [fiyy)) . (135)
{je} 1=

Since the gaussian sums in the first line peak the j,’s over large values, the integral in the second
line can be computed in the large spin regime, where it can be evaluated using saddle point
methods. The computation of the integral in (135) can be written in a spinor base, as the one
introduced in [90] and gives

N-1 L o L .
| TT4GATT (| Y DHANG)Y [my)) = H [T e 4 (136)
n=1 /=1 (=1

where H is the Hessian of the logarithm of the integrand in (136) [90] and 6 is a constant de-
termined by the normals on the faces: it is the intrinsic curvature on the faces, coming from the
spin connection in the Ashtekar connection. We can define a new variable Z := z — 6, so that
the real part of Z is exactly the extrinsic curvature.

We can now compute the sum that appears in the amplitude

L s
= ZH H 2] +1 zth][ ][+1) l/\Vo]z_lZ][ (137)
{iy =1

by approximating it with a Gau551an integral peaked on j; ~ j,. We expand around jj so that

the new term is iAv,j ]2 ~ iAv,] ]0 + 3iAv, ]0% 0j. The first term is a constant that can be reabsorbed
in the normalization and the second contributes to the phase. The value of the peak of the
gaussian j, is determined by the stationary point where the real part of the exponent in (137)
vanishes. This gives a condition on the imaginary part of Z (associated to the area), that for
large (j > 1) is

jo ~ ImZz/4th . (138)

The imaginary part of (137) is a phase that suppress the amplitude everywhere but where the
argument is zero or a multiple of 271. This gives the condition

Re = 3Av,j? . (139)
that, together with the condition (138), becomes

1
ReZ = —3Av,j2 = —3Avo/ ImZ/4th. (140)

This expression yields the Friedmann equation: recall that ReZ ~ @ and ImZ ~ 4 so that,
squaring the previous equation, we obtain

AN
(a> -2 (141)
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where A = 27 A%v2 /16 th. The same result can be obtained by a different technique: the tran-
sition amplitude results to be annichilated by a Hamiltonian constraint. In the classical limit,
this is

1 L
(24 3Av0jd )? + (24 3Avojd )2 =0 (142)
1
that gives i4ImZ (ReZ + 3Avyj3) =0. (143)

Notice that wedon’t obtain the curvature term k/a? in the full Friedmann equation

.\ 2
<”) _A_ K (144)

a 3 a2

This is because of the approximation taken in the evaluation of the gaussian sum. Since we ask
for large j, namely for a large distance regime, the curvature term is neglected being a higher
order in j. Finding a way to relax this approximation is an urgent issue in spinfoam cosmology:
the higher order in j would in fact provide us also the first quantum corrections.

4.3 Graph indipendence and 2-node model

As mentioned above, Spinfoam Cosmology was introduced in [55] with a calculation based on
the dipole graph with 4 links. This choice was dictated by simplicity and by the fact that this
graph, already studied in the canonical context, has a compelling interpretation being a trian-
gulation of the 3-sphere. But the computation above shows that, studying the large distance
limit the results for the dipole are the same as for other regular graph. (We emphasize the fact
that numerical investigation shows that the large j convergence is very fast, and the asymptotic
regime is already essentially reached with j ~ 3.) Let us discuss the terms in (137) that carry a
dependence on the graph used.

At the stationary point the Hessian H give a contribution Nr that depends on the graph I
trough its numbers of links L and nodes N, and a characteristic term j, 3 that is independent
of the graph. This is the norm squared of the Livine-Speziale coherent regular cell of size j,
[78] (recently calculated for the Lorentzian signature [90]). Notice that since we have fixed the
normals, degenerate contributions are not allowed (being these present, we would have had
further terms ~ j; ).

The volume v, depends on the graph used. On the other hand, such a cosmological-constant
term has been introduced as an edge amplitude. This edge amplitude can be viewed as a
redefinition of the vertex. Possible normalization ambiguities, coming from the introduction of
this term, can therefore be absorbed in the vertex amplitude [84].

The transition amplitudes that we are dicussing are in fact not normalized. The arbitrary
normalization of the vertex amplitude is fixed by cylindrical consistency [84]. We find that
the dependence on the number of nodes enters only in the term Nr in (147), and it can be
counterbalanced by normalizing appropriately the amplitude. This implies that this result can
be obtained also in the 2-node model, with the only caveat that Nt would be the one for 2
nodes.

Let us consider now the number of links. In the semiclassical limit the expression of the
amplitude can be given in the form

L
W(z) = <2joﬁ eéfr«) 1]\{{ (145)
(o]

Here the information about the semiclassical dynamics is coded in the kernel of the exponential,
that does not depends on the number of links.
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Using this and (138), we conclude

LZZ

W(2) = Nzt -3¢ 2 (146)
where N = (4x)L/2 (ﬁ)L_3 Nr. Finally, inserting into (130) we have
Zin, Zfin) = Zin Zfin )~ e_ﬁ 2+, X
W N’ F79 e ) (147)

This is the transition amplitude between two cosmological homogeneous isotropic coherent
states, with an arbitrary number of nodes N and a number L of links such that the graph is
regular (i.e. every node has the same valency).

The result of this calculation is that the support of the transition amplitude, obtained trough
the conditions on the real and the imaginary part of Z that yields the Friedmann equation, is
not sensitive to the number of links or the number of nodes of the graph used.

4.3.1 Covariant U(N) framework

In Section 3, we have illustrated the power of the U(N) framework, for instance for the imple-
mentation of homogeneity and isotropy in the 2-node model. Is it possible to use this technique
in the covariant theory illustrated in this Section? Work in this directions is still under devel-
opment. A first step that has been recently proposed in [94], where U(N) coherent states are
defined on the dipole (Fig.3.2) and a simple SU(2) transition amplitude between these states is
studied. This is an interesting research direction that deserves further studies. In particular, the
next step should be to include in the picture the full Lorentzian spinfoam dynamics of general
relativity.

5 Summary

We have reviewed a number of constructions in Loop Quantum Gravity, based on the idea of
truncating the Hilbert space of the theory down to the states supported on a simple graph with
two nodes [4].

The restriction of the full LQG Hilbert space to a simple graph is a truncation of the degrees
of freedom of the full theory. It defines an approximation where concrete calculations can be
performed. The approximation is viable in physical situations where only a small number of
the degrees of freedom of General Relativity are relevant. A characteristic example is cosmol-
ogy.

The 2-node graphs (dipole) with 4 links defines the simplest triangulation of a 3-sphere
and can accommodate the anisotropic degrees of freedom of a Bianchi IX model, plus some
inhomogeneous degrees of freedom, which can be seen as the lowest modes in a spherical-
harmonic expansion, following a technique introduced by Regge and Hu. In this context, a
Bohr-Oppenheimer approximation provides a tool to separate heavy and light degrees of free-
dom, and extract the FLRW dynamics. This way of deriving quantum cosmology from LQG
is different from the usual one: in standard loop quantum cosmology, the strategy is to start
from a symmetry-reduced system, and quantize the single or the few degrees of freedom that
survive in the symmetry reduction. Here instead we consider a truncated version of the full
quantum theory of gravity, in the LQG framework, and look for a “cosmological sector” inside
the theory.

In Section 3 we have stepped up to a 2-node graphs with arbitrary number of links. This
system provides an immediate application of the U(N) formalism [45]. This formalism is based
on the observation that the LQG Hilbert space of intertwiners with N-legs and fixed area is
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an irreducible representation of the group U(N) [43]. The relation is made explicit using the
Schwinger representation of SU(2). Furthermore, the full state space of N-leg intertwiners can
be endowed with a Fock-space structure, with annihilation and creation operators F;; and F;]r-.

In the 2-node graph context, one can define operators ¢;; and f;;, that are SU(2) invariant
and consistent with the matching conditions between the intertwiners (ensuring that the spin
number of one leg is the same seen from both nodes). The system has a U(N) global symmetry,
given by a generalization of the matching conditions. The space of the states invariant under
this symmetry is homogeneous and isotropic. This construction defines the homogeneous and
isotropic configurations via a symmetry reduction at the quantum level, and may shed further
light on the relation between Loop Quantum Cosmology and Loop Quantum Gravity. In par-
ticular, the construction leads to the definitions of a non-trivial consistent Hamiltonian operator
for the homogeneous/isotropic sector, which has intriguing mathematical analogies with the
operators used in LQC.

We have also reviewed the classical spinor system whose quantization yields the Hilbert
space of intertwiners of LQG [46, 48]. This framework permits the construct of the classical
counterpart of the U(N) Hamiltonian for the 2-node model, defining an effective classical dy-
namics for this system. The equations of motion of this classical system can be solved, and the
resulting dynamics shows analogies with the results of LQC.

In Section 4 we switched to the covariant, or spinfoam, definition of the dynamics. Here
the dynamics isnot defined by a Hamiltonian, but rather directly by a transition amplitude
between two states of the quantum geometry. At the first order in the vertex expansion, this
amplitude factorizes and defines a “wave function of the universe” a la Hartle-Hawking. In
the classical limit, the amplitude turns out to be peaked on the solutions of Einstein equations,
that is, In presence of isotropy and homogeneity, of the Friedmann equation [55].The model
can include the presence of the cosmological constant [56]. This is obtained by inserting a “face
amplitude” term into the spinfoam amplitude and can be seen as an effective way to include A.
It is generally thought that at the fundamental level the cosmological constant should emerge
in a quantum deformed version of the spinfoam theory. Such a quantum deformation should
hopefully results in a term that match with the one that we have heuristically introduced.

The amplitude for homogeneous isotropic states was first computed using the dipole graph,
but, remarkably, the classical limit of the amplitude turns out to be independ on the (regular)
graph chosen [57]. This result supports the viability of the approximation taken by restricting
the theory to a single graph. States of large regular graphs include in principle inhomoge-
neous quantum fluctuations, beyond perturbations techniques as usually utilized in quantum
cosmology.

In closing, we point out three directions where the techniques reviewed here might turn out
to be useful to better understand loop cosmology.

First, the U(N) symmetry provides an elegant way to impose inhomogeneity and anisotropy
and so far the attention has focused on the U(N)-invariant states. Can we go beyond this sec-
tor? Indeed, the action that defines the full classical kinematics and dynamics of spinnetwork
states on the 2-node graph is a non-trivial matrix model defined in terms of the unitary matri-
ces U* and UP, with quartic interaction terms. It would be very interesting to see what kind of
anisotropy does our model describe in the context of loop cosmology.

Second, the relation between the different dynamics defined by standard LQC, by the hamil-
tonian of the U(N) framework and by the spinfoam amplitude need to be compared in detail.
For this, in particular, he analysis of the spinfoam amplitude should be developed beyond the
semiclassical limit.

Finally, all the analysis reviewed here is in the context of pure gravity, and disregard the
presence of matter. The coupling of fermions and Yang-Mills fields is simple and natural in
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the Hilbert space of Loop Quantum Gravity at the kinematical level. In the U(N) approach
there is a direct formulation of this coupling in spinor phase space before quantization. In
the spinfoam approach, the dynamical coupling with fermions and Yang-Mills fields has been
defined recently in [95] and has not yet been much studied. Including matter couplings is
clearly essential for understanding the quantum dynamics of cosmology.
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