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Abstract. We review the relation between loop quantum gravity on a fixed graph and
discrete models of gravity. We compare Regge and twisted geometries, and discuss discrete
actions based on twisted geometries and on the discretization of the Plebanski action. We
discuss the role of discrete geometries in the spin foam formalism, with particular attention
to the definition of the simplicity constraints.

Contents
1 Introduction 1
2 Regge calculus 3
2.1 Arearangle Regge calculus . . . . . . . .. oL Lo 4
2.2 On the choice of variables . . . . . . . . . . . .. .. .. ... ... 5
2.3 On the quantum theory . . . . . . . . .. . . 5
3 Canonical LQG and discrete geometries 6
3.1 Twisted geometries . . . . . . . . .. L 6
3.2 Spinors and twiStors . . . . . .. ... e 8
3.3 Covariant theory and simplicity constraints . . . . . . .. ... ... ....... 9
3.4 Final remarks and the special case of 241 dimensions . . . . .. ... ... ... 12
4 The Holst phase space:
continuum and discrete interpretations 13
4.1 Some descriptive analysis . . . . . . .. ... L 14
4.2 Some methodological details . . . . . . . . ... oL Lo 15
5 Discretized actions and path integrals 18
5.1 Hamiltonian formalism and recursion relations . . .. .. ... ... ....... 18
5.2 Covariant theory . . . . . . . . . . 20
5.2.1 Geometrical quantization . . . . . ... ... Lo 21
5.2.2 Semi-classical regime . . . . . . .. ... 25
5.3 Lagrangian methods . . . . . . . .. ... L L 26
6 Conclusions 26

1 Introduction

The success of lattice gauge theories suggests that a discrete formulation of general relativity can
play a major role in understanding the quantum theory. A discretized path integral is indeed
the starting point of approaches to quantum gravity such as quantum Regge calculus [1] and
(causal) dynamical triangulations [2]. In both cases, general relativity is discretized using Regge
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calculus [3]. A useful alternative is to consider discrete actions based on connection variables.
This has been considered in the literature [4, 5], and it is one of the main rationales behind
the construction of spin foam models [6]. It requires a suitable discretization of the connection
variables, and in particular of the simplicity constraints needed to single out the metric degrees
of freedom. The action of general relativity based on connection variables allows a reformulation
of general relativity as a topological theory plus so-called “simplicity constraints”, which play an
essential role. Our first goal is to review the various discretizations of the simplicity constraints
which appeared in the literature.

One advantage of a discrete path integral based on connection variables is the possibility of
interpreting its boundary states as the spin network states of Loop Quantum Gravity (LQG).
This brings to the foreground the question of finding a discrete geometric interpretation for spin
networks, a program started long ago by Immirzi [7], and finally solved with the introduction
of twisted geometries [8], a suitable generalization of Regge geometries. Our second goal is to
review the relation between LQG and these two different discrete geometries.

Regge geometries can be recovered from twisted geometries imposing suitable shape matching
conditions, which guarantee the continuity of the piecewise-flat metric. Such conditions are not
present in the canonical formulation of LQG, although evidence exists that they are imposed
dynamically, as we review below in Section 5. It has been further argued in [9] that these condi-
tions can be naturally introduced in the canonical framework as a discretization of the secondary
simplicity constraints. We will also review this proposal and the way these discretizations are
used to define connection-variable based path integrals.

In an effort to organize the review logically rather than historically, we will focus first on the
canonical theory, and leave the path integral for a later stage. We begin in Section 2 with a brief
overview of Regge calculus, where the fundamental variable is the metric, and its discretization
furnished by the edge lengths of a triangulation of spacetime. This will allow us to appreciate the
peculiarities of working with the connection as the fundamental variable. For instance, instead
of edge lengths, one typically ends up with discretizations involving other geometric quantities,
such as areas and angles.

Next, in Section 3 we review the relation between LQG on a fixed graph and twisted geome-
tries. LQG is a continuous theory of quantum gravity, defined as a projective limit/direct sum
over graphs. Truncating the theory to a given graph captures only a finite number of degrees of
freedom, and these in turn may be used to describe a discretization of general relativity. Indeed,
from the viewpoint of LQG, there is a priori no need to interpret this set as discrete geometries.
The usual description of the truncated Hilbert space involves in fact continuous, albeit finite,
degrees of freedom. This is the traditional interpretation of distributional holonomies and fluxes
[10, 11, 12], and more recently an alternative but analogously continuous interpretation has
been proposed in [13, 14]. On the other hand, it has been shown that the same holonomies and
fluxes describe certain discrete geometries, more general than the one used in Regge calculus,
called twisted geometries [8]. They correspond to a collection of flat polyhedra, which define
in general discontinuous piecewise flat metrics and extrinsic curvature [15, 16]. In the special
case of a triangulation, if one further imposes suitable shape-matching conditions, continuity of
the metric is ensured and a Regge geometry is recovered. Imposing analogue shape-matching
conditions on an arbitrary graph extends a notion of Regge geometry to arbitrary cellular de-
compositions. However, while the first can be described in terms of edge lengths, the latter must
be described using areas and angles. The resulting picture of a relation between spin networks
and (the quantization of) discrete geometries has proved very useful to understand the spin foam
dynamics, and found applications in different contexts such as calculations of n-point functions,
cosmological and black hole models.

In this initial part, there is no mentioning of simplicity constraints. Indeed, we are dealing
with ordinary SU(2) LQG, in which the simplicity constraints are already solved at the classical,
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continuum level. The constraints enter the picture if we consider a covariant version of LQG,
in which the spin network states are based on the entire Lorentz group. In the rest of Section
3 we describe this formulation and how the simplicity constraints can be discretized. Their
implementation leads to a notion of covariant twisted geometry, where the polyhedra have
Lorentzian curvature among them. This material paves the way for subsequent discussions
concerning the path integral action.

In Section 4 we review the construction of [9]. One starts with the Holst action, and discretizes
it in terms of holonomies and fluxes. The variables are parametrized in way motivated by Regge
calculus. The procedure allows to study the shape-matching condition as part of discretized
secondary simplicity constraints, and perform a full reduction in which the shape-matching
conditions are imposed, obtaining a definition of Regge phase space, which has been further
developed in [17, 18]. The comparison of the approaches of Sections 3 and 4 offers a deeper
understanding of the relation between the space of discrete connections and Regge calculus, as
well as a different perspective on the simplicity constraints.

Finally in Section 5 we review the role of discretized actions in constructing spin foam models.
This is a rapidly evolving research area, and we content ourselves with reviewing some of the
main ideas and the different discretization schemes proposed in the literature. Emphasis is put
on the role of the primary simplicity constraints, on the use of intuition from discrete geometries
in the way they are realized in the spin foam path integral, and on the emergence of the shape
matching conditions in the large spin limit.

2 Regge calculus

A discrete version of general relativity was provided by Regge in 61 [3]. Spacetime is triangulated
with a simplicial manifold A, and as fundamental metric variables, one assigns the lengths of
all the edges, /.:

M = A, I — Le.

The assignment induces a piecewise-linear flat metric on A: each tetrahedral 3-cell is flat, and
its boundary triangles and edges are also flat. The curvature is all concentrated in a notion of
deficit angle associated with each triangle ¢, and representing the failure of the sum of dihedral
angles in the 4-simplices o around ¢, to give 27

er(le) =2m =Y 07 (Le). (1)

oct

All aspects of this discrete geometry can be reconstructed from the edge lengths. The dihedral
angles, such as the 6f appearing above, between an n — 2-dimensional hinge h between two
n — l-simplices within o, can be written as

n o V2@ v )

and the volumes of the n-simplices in terms of the Caley matrices,
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If one further specifies Cartesian coordinates on a 4-simplices, a flat metric can be explicitly
written as

, 1 ov:

Coming to the dynamics, the action principle for Regge calculus is built through the direct
discretization of the Ricci scalar in terms of deficit angles, and reads

Sr(te) =Y Alle)er(Le). (4)

teA

If a boundary is present, the boundary term has the same form, with the 27 in the definition
(1) replaced by . Like the continuum Einstein-Hilbert action, (4) is unbounded: since 27[1 —
n4(t)/2] < ¢ < 2m, where ny4(t) is the number of 4-simplices around ¢, we have that

2k Aot < S < 2mAsot, (5)

with &k = 1 —maxyea{n4(t)}/2. However, notice that one-sided boundedness can arise for special
configurations.
The equations of motion are then

> e(t) cotal(£) = 0. (6)

t€e

Here the triangles are those sharing the edge e, and ! is the 2-dimensional dihedral angle
within ¢, opposite to e. The action, and the corresponding Regge equations, provide second-
order accurate approximations to general relativity [19]. That is, one assigns initial data with a
unique solution, then compares the obtained edge lengths ¢, with those given by the appropriate
geodesics of the continuum solution. Analytic and numerical results show that the difference
between the two goes like the square of the typical length, thus smoothly to zero in the continuum
limit.

An important issue concerns the symmetries of (4). These have been studied in the literature
[20, 21], and are the object of a dedicated research plan by Dittrich and her group [22, 23, 18, 24]
(see also [25]). We refer the reader to the recent review [24], and mention here only some minimal
facts. The natural invariance under diffeomorphisms of general relativity is destroyed by the
discretization: generically, there are no displacements of the lengths which will preserve the
metric, and only trivial relabelings remain. In this sense, the edge lengths are perfect gauge-
invariant observables. However, a notion of gauge invariance can re-emerge in the form of
(possibly local) isometries of the discrete metric. The typical example is the case in which
the edge lengths describe a patch of flat spacetime. In this case, the action is invariant under
bounded vertex displacements preserving the flatness. This somewhat accidental symmetry
actually plays an important role to assure that we recover diffeomorphism invariance in the
classical continuum limit: as the number of simplices is increased, with fixed boundary data,
which we assume inducing a unique classical solution with typical curvature scale r, we hit a
point where the average curvature is approximately zero, thus vertex displacements is always a
symmetry in the continuum limit.

We conclude this quick overview of Regge calculus with some remarks, which will be useful
to keep in mind while moving on.

2.1 Area-angle Regge calculus

Motivated by LQG and spin foams, one can consider taking the areas of the triangles as funda-
mental variables, instead of the edge lengths. This was proposed in [26, 27], and some attempts
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have been pursued in the literature [28, 29, 30]. Notice that a generic triangulation has more
triangles than edges, and even when the number match the same area configuration can corre-
spond to different edge sets [28], thus constraints among the areas are needed to guarantee that
a unique set of edge lengths is reconstructed. The difficulty with this idea is that the required
constraints are non-local in the triangulation, and no general form is known. A solution to this
problem has been found using a formulation in terms of areas and angles [31]. Increasing the
number of fundamental variables allows to render the needed constraints local. They can be
written explicitly, and the unique reconstruction of edge lengths proved. The constraints are of
two types: the closure constraints, say C, local on the tetrahedra, and the gluing, or shape-
matching constraints, say C?7,, local on each pair of edges within a simplex o. Using suitable
Lagrange multipliers, the resulting action reads [31]

S[AL TN 1l =D Aver(9) + D N CT(A )+ > > 12 Coi(9). (7)
t T

o ee'eo

2.2  On the choice of variables

Taking the lengths as fundamental variables is very natural, due to the automatic rigidity of
the simplices: specifying the edge lengths always specifies a unique n-simplex. Furthermore,
the formulas for its geometry are quite simple, see the above expressions. There are however
some drawbacks with this choice, which become more evident when trying to quantize the
theory. The first one is that the edge lengths are a much larger set than piecewise-linear flat
metric. To ensure that one is really recovering a Riemannian (or pseudo-Riemannian) metric,
triangle inequalities need to be imposed. These guarantee the positivity of (space-like, for
Lorentzian signature) simplicial volumes. While this might be simple to deal with in the classical
setting, such conditions need to be additionally imposed in a path integral formulation, making
it cumbersome to handle.

A second drawback is that the geometry is very rigidly Riemannian. There is, for instance,
no room for torsion. On the other hand, a number of approaches to quantum gravity, including
LQG, permit the presence of torsion, typically sourced by fermions. Modifications of Regge
calculus to include torsion have been considered in the literature [4, 32, 33, 34].

2.3 On the quantum theory

The Regge action is taken has starting point for quantum Regge calculus [35, 1] and, restricted
to the sub case when all the edge lengths are the same (the relevant variable then become
just the number of simplices) in (causal) dynamical triangulations [2]. Both are path integral
approaches, and have obtained quite interesting results, including evidence on the existence of
the continuum limit. On the other hand, the dynamical content of such continuum limit are still
insufficiently known, which partly motivates the search for alternative discretization schemes.
Two specific difficulties of these approaches related to the choice of variables are the following.
The first, is the absence of a Hilbert space for the boundary states of the path integral. The
second concerns the cumbersome positive-metric conditions and the ambiguities of the path
integral measure. See e.g. [36, 37] on the measure for quantum Regge calculus.

A possible answer to the above questions is provided by the discrete geometric interpretation
of LQG on a fixed triangulation. As we show below, the alternative description provided by
LQG can dispense of the triangle inequalities by implementing them automatically, it allows for
torsion, it has a well-defined Hilbert space and a prescription for the path integral measure.
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3 Canonical LQG and discrete geometries

Historically, a precise link between Loop Quantum Gravity and discrete Regge calculus has come
up at the dynamical level, when it was realized that spin foams on a fixed triangulation approxi-
mate in the large spin limit exponentials of the Regge action. A preliminary, yet incomplete link
was first established for the Barrett-Crane model, and a more robust result holds for the EPRL
model [60]. In the last few years, it has been shown that the connection can be established
already at the kinematical level [8, 15, 16]. The existence of a connection between LQG and
Regge calculus had been envisaged long ago [5, 38] and in particular in the work of Immirzi
[39, 7, 40]. There is however one catch with respect to earlier expectations: Regge calculus is
too rigid to accommodate for all the degrees of freedom carried by a spin network. The precise
correspondence between LQG on a fixed graph and discrete geometries requires a generalization
of Regge geometries.

To understand the nature of this generalization, let us first briefly review the structure of
LQG on a fixed graph. In Ashtekar-Barbero variables, the phase space of general relativity is
described by the conjugated pair { A’ (z), E]b(y)} = 7(55-(52(5(3) (x,y). The key ingredient of LQG is
a specific smearing of this algebra [41, 11, 8, 14]. One introduces an oriented graph and its dual.
Then, the connection is integrated along the links of the graph, so to obtain a notion of parallel
transport, or holonomy, g; = P exp fl A. The conjugated field, the densitized triad, is smeared
along surfaces of the dual graph. However, the correct smearing depends on the connection, in
order to ensure that the final variable transforms nicely under gauge transformations. We denote
this covariant flux by X;, and refer the reader to the cited literature for details. The fact that
the smeared triad field depends also on the connection means that it does not commute with
itself any longer. In fact, the Poisson brackets among the smeared variables on a given link are
those of the phase space of a rotor, T*SU(2) ~ R? x SU(2), parametrized by the pair (g, X). In
particular, X acts as the right-invariant vector field, and its conjugated X = —g~ X g, associated
with inverting the orientation of the graph, as the left-invariant one. Therefore, the smearing
process has introduced a notion of discrete phase space Pr, associated with the graph, and given
by the Cartesian product Pr = x;T*SU(2). This phase space can be quantized via the familiar
representation of the holonomy-flux algebra on the Hilbert space Hr = Lo[SU(2)%, dutaar)-

In the rest of this Section, we will review the interpretation of Pr in terms of discrete geome-
tries. But first of all, we stress that such an interpretation is a choice, not mandatory for the
physical understanding of the theory. Indeed, what is usually done, and perfectly legitimate, is
to view the classical degrees of freedom described by Pr in terms of continuous, albeit singular,
configurations, where the metric is zero outside of the graph and its dual. Recently [13, 14], it
has been shown that also a somewhat “dual” continuous interpretation holds, where the connec-
tion is zero outside of the graph, and the triad is piecewise flat, but not piecewise-linear flat.!
On the other hand, it is possible to interpret the space in terms of discrete geometries. This
interpretation has proved instrumental in many aspects of LQG, especially in the understanding
of the spin-foam dynamics, but also in cosmological and black hole aspects.

3.1 Twisted geometries

The truncation of the theory to a fixed graph can be interpreted as a discrete geometry. The
necessary step to do so is a different parametrizationpf Pr. On each link, we trade the holonomy-
flux pair (g, X) for two unit vectors in R, N and N, plus a real number p and an angle &:

(X7g)'_> (N7N7107§) : X:pN, g:ne&%ffl. (8)

"Namely, this continuous interpretation can be visualized as a Regge-like geometry in which the links are not
straight, but arbitrarily curved.
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Here n = n(N) is a Hopf section for the bundle SU(2) ~ S? x S!, thus N = n7en~!, 7; are
the SU(2) generators in the fundamental representation, with e = 279, and we have been using
implicitly the standard isomorphism between the su(2) algebra and R3. See [8] for more details.
The interpretation of the new variables is the following. Each 3-cell is taken to be flat, and
equipped with an (arbitrary) orthonormal reference system. The two quantities /V; and N, are
interpreted as the two (normalized) normals to the face (dual to) [, in the two reference frames
associated to the two cells bounded by I. The quantity |p;| is the area of the face [ and the
quantity & is related to the extrinsic curvature of the complex at [. Such areas and normals
define a certain notion of discrete geometry, as we now review.

As a first step, recall that one is interested in gauge-invariant quantities. That is, quantities
satisfying the SU(2) Gauss constraint,

Gn =) X;=0. (9)

len

The constraints are first class, and define gauge transformations on the constraint surface. Im-
posing (9) at each node and dividing by its action give the reduced, gauge-invariant phase space
Sr = Pr//GY, where N is the number of nodes of the graph. When the closure condition (9)
holds, each configuration of areas and normals around a node defines a unique convex polyhe-
dron (up to rotations and translation). This is the content of an old theorem due to Minkowski.
We invite the interested reader to see [16] for details on the space of shapes of polyhedra and
on the explicit reconstruction procedure.

Next, the graph provides a notion of connectivity between the various polyhedra reconstructed
in this way around each node. Gluing the polyhedra together is however non-trivial: in fact,
adjacent polyhedra share a face with a unique area, |p;|, but with a different shape; the induced
lengths and angles are in general different in the frames defined by the two polyhedra. Hence,
the metric reconstructed in this way can be discontinuous across the faces. In this sense, LQG
defines a more general notion of discrete geometry than the one used in Regge calculus. Part
of this generalization is the possibility of using arbitrary cellular decompositions, and not just
triangulations. This is a desirable feature. But the real novelty is the possibility of discontin-
uous metrics, which is a consequence of trading the link lengths for areas and normals.? Such
discontinuity might appear appalling at first, but it can be argued for: after all, standard Regge
calculus is torsion-free, whereas the kinematical phase space of loop quantum gravity should
carry room for torsion. In any case, shape-matching, or gluing, conditions that reduce a twisted
geometry to a Regge geometry can be given explicitly, see [31] for the case of a triangulation,
and [16] for the general case. These are not present in the kinematical formulation of LQG, but
appear to be automatically implemented in the semiclassical analysis of spin foams, as necessary
conditions for the existence of the saddle point approximation, thus explaining the emergence
of standard Regge calculus in the asymptotics.

In this geometric picture, the angles & carry a notion of discrete extrinsic geometry among
the polyhedra. To clarify this point, consider first the special case when the shape-matching
conditions hold, that is equivalent to say, the (X, g) variables come from a Regge geometry.
Let us further simplify things by choosing a common frame for the adjacient tetrahedra, so
that we have a unique normal, say N. Then one can show [15] that g = ¢V, where v is the
Immirzi parameter and 6 the usual dihedral angle. The general situation of independent frames
can be realized through an additional contribution g; — ¢;I" where I' € SU(2) is the rotation
that rotates the first reference frame into the second. Without loss of generalization, we can
parametrize I' = nf, !, where i, = 2(N)e®™. Multiplying ¢; from the right by T’ we get

g =n 0= 7=l (10)

2The fact that using areas as fundamental variables would have led to discontinuities was anticipated in [29].
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Comparison with (8) tells us that & = v — .. Notice that o depends on the choices of section
but also on the SU(2) frames in each cell. This shows up in explicit constructions, e.g. [42].

In the general case, without additional shape-matching conditions, & still carries extrinsic
geometry, but also the normals N and N. Hence, the relation between ¢ and the usual dihedral
angle becomes undetermined. Some of these aspects will be clarified further below in Section
4, where it is shown that prior to imposing the shape-matching conditions, the usual notion of
dihedral angle associated to a triangle has an additional dependence on the side of the triangle,
thus making it impossible to be direct associated to &;.

Summarizing, there exists a precise relation between spin networks and discrete geometries.
A spin network quantizes a classical space, Sr, whose points are usually parametrized as a
distributional assignment of holonomies and fluxes, but that equivalently define a collection
of adjacent flat polyhedra, with extrinsic geometry among them. From the viewpoint of the
quantum theory, the relevance of the above construction concerns the interpretation of coherent
states on a fixed graph, that can be then visualized as a collection of polyhedra describing a
twisted geometry. This interpretation of coherent states has found many applications in the
literature, from n-point functions calculations to cosmological models.

3.2 Spinors and twistors

A beautiful aspect of this description is that it can be derived from a much simpler system, that is
an assignment of spinors, (27, z), on the source and target nodes of each link [43]. Each spinor is
then equipped with canonical Poisson brackets. The result is a phase space of spinors associated
to the graph, x;C*, of dimension 8L. Although not necessary for the geometric interpretation
per se, this description will turn out to be useful below, when discussing the covariant version of
the discrete geometries. Hence, we briefly introduce now the spinorial formalism, referring the
reader to the lectures [44] for details.

The relation between the spinorial and the twisted geometries/holonomy-flux phase spaces is
once again a symplectic reduction: on each link, we introduce a scalar constraint imposing the
matching of the norms of the two spinors,

Hy = (z|2) — (#1]21) = 0. (11)

We then have C*//H ~ T*SU(2) [43]. The result is just a classical version of the Schwinger
representation of the angular momentum. In the reduced phase space, the fluxes and holonomies
are parametrized as follows,

BN [l o )
NERIEE

The closure condition (9) reads

X = <zS|g\zS>, (12)

G = 3" |z el — glala)l =0, (13

ecn

Therefore, the collection of polyhedra of gauge-invariant spin networks described previously
descends from an assignement of a spinor on each half-link, satisfying the area matchings on the
links and the closure conditions on nodes. The phase space structure of such a spinor network
is captured by the following action,

Srls") = /dT Y il M0r ) Y @u(F12) — (D)) + Y0 D (10l (14)
l l

v esv
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where the scalars ®; and the traceless matrices 6, are the Lagrange multipliers for area-matching
and closure constraints respectively. Finally, the two spinors on each link can also be interpreted
in terms of a twistor, and the area-matching condition (11) as the condition of vanishing helicity.
See the lectures [44] and the original works [43, 45, 46] for details and applications.

3.3 Covariant theory and simplicity constraints

Thus far, we have dealt with canonical LQG in real variables. We now wish to discuss the
covariant picture, that is the initial Lorentzian phase space, and its reduction to the SU(2)
one via the imposition of the simplicity constraints. The interest is to show that a relation to
discrete geometries can be established already at the Lorentzian level, and that accordingly,
the simplicity constraints acquire a geometric interpretation. The latter is consistent with the
original construction by Barrett and Crane [47], and places it into a more general framework,
where, for instance, arbitrary cellular decompositions can be considered, and not just simplicial
ones.

In the following, we assume a certain familiarity of the reader with the fact the theory can be
formulated in covariant terms via the Holst action, and that the SU(2) holonomy-flux algebra
is the result of a specific phase space reduction. The basics of this reduction will be presented
below in Section 4, and full details appear in the parallel review [48]. For the sake of this
section, all we need to keep in mind is the following: (i) the initial variables are a connection in
the Lorentz algebra SL(2,C), w!’, and its conjugated field II;; (ii) the action contains (primary
and secondary) simplicity constraints, whose imposition gives the SU(2) theory. In particular,
the primary simplicity constraints single out a metric from II, whereas the secondary ones —
which notably lead to the second class nature of the system — are the compatibility equation
between metric and SL(2,C) connection, and are solved by the Ashtekar-Barbero connection.

Consider then the same smearing procedure as before, but applied this time to the covariant
phase space {w!/(2), 1%, (y)} = 047, 686®) (2, y). Introducing again holonomies G; and fluxes
JZI 7 along the links, one is led to a classical phase space PV = x;T*SL(2,C). Just to acquaint
the reader with the latter, we recall that a quantization of the space and its natural Poisson alge-
bra is realized by the Hilbert space La[SL(2,C)¥, dipaar] and its representation of the SL(2,C)
holonomy-flux algebra. An orthonormal basis is given by covariant spin networks, which appear
in the literature on covariant LQG [49] and projected spin network [50, 51].

The space can be parametrized in terms of spinors, and given an interpretation as covariant
twisted geometries [52, 53, 54]. To do so, we need this time four spinors per link, or alternatively
two twistors. The initial space is thus x;C®, with spinors (t*,u*, t!, u?) for the source and target
nodes, equipped with canonical brackets. The parametrization of the covariant holonomy-flux
algebra in terms of the spinors reads

B L) el O T
Vsl (wlt)
Here the left-right generators are related to rotations and boosts as JELR .= (j +iK )/2, and the

generators built with the target spinors are the left-invariant vector fields. One can also write
down a group element decomposition like in (8), which now takes the form

T 1 s|=,,8 7l 1 S| 2|48
o= Leles, TR = L), (15)

G =nT,eETae tnt (16)

Here n are the same Hopf sections as before, and T, matrices in the triangular subgroup of
SL(2,C). We refer the reader to [53] for details.
The constraint reducing C® to T*SL(2,C) is a complex version of the area-matching,

M = (ult) = (alt), (17)
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which generate U (1)® 2 C shifts on the spinors leaving (15) invariant. On the reduced 12d space,
a lengthy but simple computation [53] shows that the coordinates (15) satisfy the Poisson-algebra
of T*SL(2,C), with J and J again right- and left-invariant vector fields, and G in the defining
right-handed representation (0,1/2). By taking the hermitian conjugate GT, or alternatively
by exchanging the spinors for their duals and vice-versa, one gets a left-handed representation
(1/2,0).

Gauge-invariant quantities further satisfy the SL(2,C) closure constraints,

Y JE=Y JR=0. (18)
len len

We define a twistor network as the generalization to the Lorentzian case of a spinor network: a
set of twistors, or bi-spinors |tls’t>, |uls’t>, satisfying both the matching (17) and SL(2,C) closure
constraints, and up to the corresponding C* and SL(2, C)N transformations. The phase space
structure of the gauge-invariant phase space, S’ is thus captured by the following action,

ettt = / ar " —ilupo.47) — i
1
+>(wilt) — Wilt)) + DD (#10u]uf)
!

v esdv

up) (19)

A reduction to the previous SU( ) case is obtained if we identify the canonical SU(2) subgroup
of unitary matrices, via GT = G~ and J= = J®. This is achieved if we set |u) = |t) := |z) and
|ty = |t) := |Z). Then, (15) reduce to (12), and the area matching (17) to (11).

A geometric interpretation of the twistor networks is obtained doubling up the SU(2) picture
of a collection of polyhedra. We now have a pair of spinors, (uy,t;), for each face around a node
n, and accordingly a bivector JI/ = (J%, J®) via (15). The bivector represents the two-normal
to the face embedded in Minkowski spacetime, in the frame of n. The chiral closure conditions
together with Minkowski’s theorem imply the existence of two polyhedra, corresponding to the
right- and left-handed sectors.

The geometric interpretation becomes more interesting if one includes the simplicity con-
straints. This turns out to identify the right- and left-handed polyhedra, and leads to a notion
of covariant twisted geometries, a collection of 3d polyhedra with arbitrary SL(2,C) curvature
among them. In the continuum theory, the simplicity constraints are unambiguous. See [48] for
a review, and also [55, 56] for discussions. On the other hand, when working at the level of the
truncated theory, one needs to adapt them to the graph. This procedure introduces ambiguities,
and different realizations of the constraints are possible. In particular, much depends on the
details of the variables used. Here we review what happens when using the covariant holonomy-
flux algebras, either in the standard parametrization or in the spinorial one. Different procedures
exist in the literature, associated to other variables, and will be reviewed below in Sections 4 and
5. Consider first the primary simplicity constraints, that only involve algebra elements. Their
role is to impose the conditions for the existence of a reconstruction theorem, by which the
bivectors satisfying them and the closure constraint allow to reconstruct a (unique, up to global
SL(2,C) and translations) flat 4-simplex in R*. This was shown initially in [57, 47, 58], and
reviewed more recently in [59, 60], where following [61], a linear version of the initially quadratic
constraints were used. Finally, a third form of the constraints has also appeared, which exploits
the spinorial parametrization to achieve a holomorphic factorization. We give a formulation of
the three possibilities in a way that applies to arbitrary cellular decompositions.

Quadratic constraints. On the space of SL(2,C) invariants, we have

- S 0
JE. J]R = %0 gL . JjL7 Vi, 4, v = tan 2 (20)



Discreteness and LQG 11

where v is the Immirzi parameter. This form is closest to the continuum formulation, and
it is the one originally used (with v = 0) in the Barrett-Crane model. An important aspect
of (20) is that they do not Poisson-commute with themselves, since for both left and right
sectors,

{(Ji- Jj Ji- iy = Ji - Ty A (21)

Therefore, although the initial continuum primary simplicity constraints Poisson-commute,
their discrete counterpart does not so, and in fact, the brackets do not even close to form
a genuine algebra. The discretization, and more precisely the non-commutativity of the
fluxes, renders them a second class system. There is only a subset that still Poisson-
commute, given by the gauge-invariant, ”diagonal” part of the constraints (i = j),

(JF)? = e (T])?, (22)
or equivalently

M;=J? -~ K?+2cot0K;-J; = 0. (23)

Linear constraints. The linear form of the constraint was introduced in [61], and it states
that the combination (J; — v J;)rs has a unique (timelike) normal for all 7,

NI(Ji_'y*JZ')]J:(). (24)

This constraint is more familiar in the literature in the time gauge N7 = (1,0,0,0), where
it takes the form

— —

Ci = K; +~J; =0. (25)

Being linear, it reproduces only one of the two sets of solutions of the quadratic constraints.
The second set is obtained inserting % in the scalar product, or equivalently through the

flip v +— —1/7.

Holomorphic constraints. A third version of the constraints has been introduced in [62, 52].
Observe first that both (20) and (24) can be immediately written in the spinor formalism
using (15). If we do so, we notice that the linear constraints are quadratic in the spinor
components, but are not holomorphic with respect to their natural complex structure,
a fact which manifest itself in the non-commutativity (21). This suggests a solution to
the long-standing issue of unclosedness of the simplicity constraints brackets, by seeking a
new parametrization which realizes a holomorphic-antiholomorphic splitting. This can be
achieved taking the following constraints, manifestly holomorphic,

Cij = [talty) — ¢[usluz) = 0. (26)

As shown in [62, 52|, (26) imply the quadratic constraints and thus also the linear ones.
Their key property is that they Poisson commute with each other,

{Cefa Cgh} =0, (27)

while of course {Ccf,Cyn} # 0. This is the key property of such holomorphic simplicity
constraints, which has important applications at the quantum level. Notice that because
of the Pliicker relations, there are only 2N — 3 independent constraints per node. Nev-
ertheless, they can all be imposed harmlessly since they commute. Observe also that the
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distinction between diagonal and off-diagonal constraints, familiar from the quadratic ver-
sion (20), now disappears, with the advantage of a proper algebra and a clear holomorphic
factorization.

The primary constraints can be added to (19). It is natural to choose the holomorphic ones.
We obtain a notion of simple twistor networks, with action

Siiimple[tls,t’u;,t] tl aul /dT Z Z v, f< tl |tf [Ul |Uf>) (28)

v e, fov

with W, ¢ a suitable Lagrange multiplier. The role of the simplicity constraints is then to identify
the right- and left-handed sectors as in (24), up to a y-dependent phase. This identifies a unique
polyhedron around each node, with the face bivectors all lying in the same 3d spacelike surface,
plus a timelike normal, N , encoded in the spinors. The role of the Immirzi parameter is to
determine the true area blvector as B = (I—vx)J!/. This information can be effectively traded
for a single spinor |z}') per half-link, and one pure boost A,, € SL(2,C)/SU(2) per node, such that
[ty = Aplz") and |ul) = (A,)"12") [52]. In other words, a simple twistor network describes a
covariant twisted geometry: a collection of closed 3d polyhedra with arbitrary SL(2, C) curvature
among them.

Finally, there are also the secondary constraints. These include a relation between the densi-
tized triad and the connection, which in the continuum implements the compatibility condition
on the spatial slide. The solution provided by the Ashtekar-Barbero connection can be argued
to be realized by the reduction G = g of the group element. See [63, 15]. Upon doing so, (28)
reduces to (14), and we immediately recover SU(2) LQG. Alternatively, notice that if we use the
SL(2,C) gauge invariance at the nodes, we can gauge-fix all the boosts to the identity. This also
reduces (28) to (14). This alternative is reminiscent of the fact that second class constraints can
be thought of as gauge-fixing conditions. On the other hand, it has been argued in [63] that an
alternative reduction should exist, amounting to implement at the discrete level the alternative
continuum solution proposed by Alexandrov. Such an alternative solution could be related to
the Dittrich-Ryan discretization procedure which we review in the next Section.

The simple twistor networks are very interesting from the perspective that they contain the
same information as a normal spinor network for SU(2), but allow to describe its natural embed-
ding into a SL(2, C)-invariant structure, through the introduction of non-trivial time-normals
living at each vertex of the graph I'. They provide a classical version of the simple projected
spin networks [52], which form the boundary Hilbert space of EPRL/FK spin foam models
[51, 15]. In particular, even without the explicit implementation of the secondary constraints,
these special class of spin network have the remarkable property to be entirely determined by
their restriction to the SU(2) subgroup. See more on them below in Section 5.

3.4 Final remarks and the special case of 2+1 dimensions

The above discussion has highlighted a key difference between LQG and Regge calculus. While
truncating the theory on a fixed graph can be interpreted as a discretization of general relativity,
this discretization is more general than Regge calculus, even when the graph is taken to be a
triangulation: Holonomies and fluxes carry more information than what can be encoded in a
Regge geometry. This is not in contradiction with the fact that the Regge variables and the
LQG variables on a fixed graph both provide a truncation of general relativity: simply, they
define two distinct truncations of the full theory. More details of this discrepancy will become
clear in the next Section, where we review a simplicial discretization of the Holst action in

3The distinction is however only apparent, because upon inclusion of the secondary constraints, the complete
set is second class already in the continuum.
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terms of a different parametrization of the holonomy-flux variables, which allows a direct Regge
interpretation of the simplicity constraints, and to see the emergence of Regge geometries if one
further imposes the shape matching conditions.

But before going there, to better understand the physics behind these different truncations,
let us briefly consider a case where the difference disappears: this is what happens in 2+1 dimen-
sions. In this case, the Regge picture and the connection picture coincide. The Regge picture is
again described by an assignment of edge lengths, defining a piecewise-linear 2d metric. There-
fore, the configuration space on a given triangulation has dimensions E. On the connection side,
the (covariant) configuration space SU(2)/SU(2)" has dimensions 3(L — N) = 3(F — ), where
x is the Euler characteristic of the surface. In turn, this graph is dual to the 2d triangulation,
for which the relation 2E = 3V holds. Hence, 3(L — N) = E which coincides with the Regge
configuration space. Furthermore, SU(2)/SU(2)¥ itself is parametrized by the moduli space
of flat connections up to punctures. In other words, there is a unique correspondence between a,
punctured Riemann surface and a piecewise-linear flat metric, see e.g. [64]. A simple counting
shows that this argument breaks down in higher dimensions, consistently with the result that
the space of gauge-invariant gauge connections of LQG is larger than Regge phase space.

4 The Holst phase space:
continuum and discrete interpretations

As mentioned earlier, Regge calculus is the prototypical example of a discrete geometrical theory.
A Regge geometry is a metric structure specified on a simplicial manifold. Moreover, quantum
Regge calculus has many of the desirable features that one would wish for a quantum theory
of gravity: most notably, it defines a quantum measure over discrete metrics. Of course, this
definition is not completely satisfactory, from a formal point of view, but even more so, for the
limited evidence of a correct continuum limit (see however [65]). Among other things, explicit
background independence is lost and it is difficult to quantify precisely the subsequent effects.
Note, however, that a basis for the boundary Hilbert space is given by abstract spin networks.
These encode both the boundary (discrete) manifold and the dynamical degrees of freedom
thereon. These degrees of freedom inherited from a parameterization of the underlying classical
phase space by 3d discrete metric geometries. Importantly, this reflects one common viewpoint
in lattice quantizations: from the outset, they should mimic as closely as possible the character
of the corresponding continuum theory. Moreover, one might think of spin foam in this vein, that
is, as a discrete quantization mechanism attempting capture the physical character of gravity
(and thus ameliorate certain negative aspects of quantum Regge calculus). If one applies this
philosophy to the Holst phase space of 3d continuum geometries, one would obtain a phase space
of 3d discrete geometries, upon which one can reconstruct a metric. In brief, one has once again
the Regge geometry phase space.

On the other hand, spin foams may be viewed as a concrete implementation of the Hamil-
tonian constraint of Loop Quantum Gravity. Loop quantum gravity is a canonical quantization
mechanism starting from the Holst phase space. Upon quantization (and implementation of all
but the Hamiltonian constraint), one finds that a basis for the boundary Hilbert space is given
by embedded spin networks. While these embedded spin networks capture certain aspects of
the ambient smooth 3-manifold (within which they are embedded), the graph structure and the
dynamical degrees of freedom are superficially identical to those occurring in the discrete formu-
lation above. Thus, the hope emerged that were one to dispense with the ambient 3-manifold,
one could use techniques from the discrete theory to implement the Hamiltonian constraint, find
the physical state space and define a suitable inner product. In other words, one could define a
quantum gravity measure in this fashion. We shall see later that modern spin foam models are
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remarkably successful in performing this task.

However, we have also spent some time in Section 3 describing the phase space at root of
the quantum states attached to a particular graph in loop quantum gravity. Interestingly, this
phase space does not coincide with that of Regge geometries but with the rather larger one of
twisted geometries. In this Section, we shall review a discretization procedure that highlights
how the shape matching conditions can be seen as part of the secondary, second class, simplicity
constraints.

4.1 Some descriptive analysis

Our modus operandi is to discretize Holst’s theory in its phase space formulation. Thus, we
discretize the spatial hypersurface along with the phase space variables, the symplectic structure
and constraint set.

In passing from the continuum to the discrete, we set ourselves an initial task: to devise a
discrete constraint set which reduces the initial phase space to that of twisted geometries; and
to devise another that reduces it to that of Regge geometries.

Result: We find that both constraint sets are devisable, that the constraints have a similar
functional form to their continuum counterparts and finally that the twisted geometry constraints
form a subset of the Regge geometry constraints.

Thus we pass through the phase space of twisted geometries on our way to the phase space of
Regge geometries.

An added boon of this discrete phase space approach is that we potentially have access to
the symplectic structure on the reduced phase space via the Dirac bracket. The importance
of the reduced symplectic structure stems from very general considerations in path integral
quantization, where it determines the quantum measure pu:

zZ = /Mreduced phase space e_sreduced phase space (29)

Our second task was to compute this symplectic structure explicitly, both for the twisted geom-
etry constraint set and for the Regge geometry constraint set.

Results:

e For the twisted geometry constraint set, we found that the reduced symplectic structure
coincided with that inspired by loop gravity [8].

e For the Regge geometry constraint set, we found that the reduced symplectic structure
coincided with that inspired by Regge calculus [18].

Following on form this, one can give a definition to two possible scenarios:

=S wiste — =S egge
thisted = /Ntwisted e twisted or ZRegge - /NRegge e~ “Regee | (30)

A quantum dynamical theory of twisted geometries is realized by the modern spin foam models
of Section 5, while quantum Regge calculus provides one possible quantum dynamics for Regge
geometries.

Hidden inside these statements lies another interesting issue: the significance of the Immirzi
parameter in such approaches to quantum gravity. The twisted geometry symplectic structure
is Immirzi parameter dependent, while the Regge geometry symplectic structure has no such
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dependence. Thus, our analysis exposes the fact that we have an important decision to make
in discretizing Holst’s theory. On the one hand, if we are inspired by loop (quantum) gravity,
we arrive at the phase space of twisted geometries and expect the Immirzi parameter to play a
significant role in our resultant quantum theory (at least at the outset). On the other hand, if
we are inspired to reproduce in our discrete theory the metric character of the continuum theory
(at the outset), then we arrive at the phase space of Regge geometries and do not expect the
Immirzi parameter to play any role in the quantum theory.

We note that the issue of Immirzi parameter significance has also raised its head in the
continuum. To a certain extent, they are related. In the continuum, as we shall see in a moment,
one passes from the initial phase space to the phase space of 3d geometrical configurations by
reducing with respect to a set of constraints (known as the simplicity constraints). One can
deal with these simplicity constraints in two ways. In the first, known as the loop gravity
mechanism, one solves them explicitly. In doing so, one arrives at a theory on the reduced phase
space that is Immirzi parameter dependent. In the second, known as the covariant loop gravity
mechanism, one constructs the reduced symplectic structure via the Dirac matrix. This leads
to a theory on the reduced phase space that is Immirzi parameter independent. Classically,
these two processes are totally equivalent, the results of which are just two parameterizations
of the same theory. However, as one can see, it raises questions as to the ultimate significance
of the Immirzi parameter in the quantum theory. Upon quantization, the Immirzi parameter
labels a 1-parameter family of non-unitarily equivalent loop quantum gravity theories and so
plays an important role in the theory. In fact, it also facilitates the very act of quantization.
Unfortunately, in passing to an Immirzi parameter free parameterization, covariant loop gravity
renders the basic fields highly non-commutative (classically) and thus makes quantization a
highly-involved topic.

In comparing this to our discrete analysis, one might be tempted to view the Regge-to-Twisted
geometries correspondence as the discrete analog of the covariant loop gravity-to-loop gravity
relationship. There are certainly many similarities. However, Regge and Twisted geometries are
phase spaces of genuinely different sizes and characteristics.

We present now a very general description of the reduction process.

4.2 Some methodological details

We will consider the following action principle:

SHolst[e, w] = /M tTsi(2,0) <*(e Ae) A\ Flw] + i (eNe)A F[w]) ) (31)

The first term is just the Einstein-Cartan action for general relativity, to which it is equivalent
assuming invertibility of the tetrad. The coupling constant v coincides with the Immirzi pa-
rameter [66, 67, 68]. The term it multiplies is topological, and vanishes on-shell in the absence
of torsion, thus making v classically irrelevant for pure gravity. On the other hand, while one
can only say that it might be relevant in the quantum gravity, it is certainly ubiquitous in LQG,
where it enters the kinematical spectra of geometric operators as well as the covariant, spin
foam description of the dynamics. Moreover, it has been recently shown to have a non-trivial
renormalization flow [73, 74, 75].

To arrive at a phase space formulation, one performs a 3 + 1 splitting of the spacetime
manifold M = R x 3. We shall present here a brief digest of this structure for both continuum

4Tt does play a role if a source of torsion is present, like fermions [69, 70], although its effect is masked by
non-minimal couplings [71, 72].
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manifolds ¥ and discrete manifolds As:

CONTINUUM DISCRETE
SPATIAL MANIFOLD: by A3
PHASE SPACE: | (w(Z),11(Z)) (My, Xy)

{My, Xy} = CMy
(X;, X5} = CX;

SYMPLECTIC STRUCTURE: | {w,II} =§

GAUSS: g G
PRIMARY SIMPLICITY: P P
SECONDARY SIMPLICITY: S St or Sg, ST C Sg

For purposes of succinctness, we have suppressed all mathematical details. However, let us
explain the scheme of the above table. In the continuum theory, the initial phase space is
parameterized by the spatial components of an sl(2,C) connection w along with its conjugate
momenta, which are certain components of an s[(2, C) bi-vector field II, at each point of . They
have the conventional symplectic structure, but they are subject to a system of constraints: the
Gauss constraints G encode the local SL(2,C) invariance; the primary simplicity constraints P
encode that II ~ e A e; while the secondary simplicity constraints S ensure that the primary
simplicity constraints are preserved under evolution. In fact, if one gauge-fixes the boosts, one
can give these simplicity constraints a more geometrical description. In that case, the primary
simplicity constraints force the bi-vector to be a spatial triad field; while the secondary simplicity
constraints S ensure that the spatial connection is that one compatible with this triad. We have
left out the 4-diffeomorphism constraints as we shall not deal with them in the following.

In the discrete theory, the initial phase space is parameterized by an SL(2,C) matrix My
and an sl(2,C) bi-vector Xy attached to each triangle f of As, as illustrated in Fig. 1. In

Xy My

L

Figure 1. Illustration of the discrete bi-vector and discrete connection.

particular, M can be viewed as the parallel transport matrix mapping between the reference
frames attached to each tetrahedron in Asz. One can arrive at the discrete symplectic structure
via a rather transparent discretization method [76, 14]. One finds that it is the one compatible
with the algebraic structure on T*SL(2,C), of which each pair (M, X¢) form a representation.
The discrete Gauss constraints G once again ensure SL(2, C) invariance. The discrete primary
simplicity constraints P ensure that we can construct a discrete metric geometry for each tetra-
hedron. Meanwhile, the discrete secondary constraints S ensure that the metric geometries
constructed in adjacent tetrahedra are compatible at their intersection (that is, at their shared
triangle). One finds that there is a subset of discrete secondary simplicity constraints Sp C Sg,
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which slightly relax this discrete metric compatibility and lead to the twisted geometries set out
earlier.

Reduction type a: twisted geometry phase space Here, we reduce by the constraint
set: Cr = {G, P, Sr}. Since we are reducing by the discrete Gauss constraints, we arrive at a
gauge-invariant phase space. Thus, we found a convenient parameterization via gauge invariant
quantities as exemplified in (33).

VARIABLE | LABEL DIAGRAM

AREA | Ay

3D-DIHEDRAL ANGLE e

4D-DIHEDRAL ANGLE | 0y

The reduced symplectic structure on the phase space is defined via:

{30 ={,) - {Cery[{er.erd] Her ) (34)

where {Cr,Cr} is the Dirac matrix. We state its form here for the basis parameters:

{'7'}T Af ¢e 9f {'a'}twisted Af ¢e Hf

A f 0 0 (*) A f 0 0 Y (*)
de | 0 y(x) (%) Pe 0 () ()

0 | () () () Oy 1(x) (%) ()

In the above table, we have also described the corresponding symplectic structure {-, - }1yisteq 0N
the twisted geometries phase space. To do so, we constructed analogous geometrical quantities
from the twisted geometries basis. To aid comparison, we have given them the same labels.
The marks (x) denote that corresponding entries have identical functional form. As one can see,
the only apparent difference is the precise power of the v-dependence. However, this difference
stems from a rather subtle issue: how one deals with the SL(2,C) Gauss constraint. In our
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case, to arrive at {-, -}, we reduced by parameterizing the gauge orbits using SL(2, C)-invariant
quantities. To get to twisted geometries (via the loop gravity mechanism), one utilizes a 2-
step approach. One cuts the boost part of the orbits using a gauge-fixing condition and then
one parameterizes the rotation part using SU(2)-invariant quantities. One finds that the 6;
constructed in the twisted geometries basis is affected by boosting along the orbit (remember
the dependence on the choice of section). Thus, the manifestly SL(2,C)-invariant definition for
s and the manifestly SU(2)-invariant definition for 6 are slightly different quantities. Thus,
we argue that the phase space, at which one arrives after reducing by Cr, is identical to that of
twisted geometries/loop gravity up to this difference in choice of parameterization.

As a final remark, let us set out the tell-tale signs that this phase space does not describe
Regge geometries. Obviously, it is larger than one would expect. Moreover, from the A; and
¢e, one can reconstruct, within each tetrahedron, a set of six edge-lengths. However, for two
tetrahedra sharing an edge, one does not find that they assign it identical edge-lengths. In
the basis given above, this ambiguity manifests itself in the definition of §; (not the one we
just mentioned but yet another). Although an SL(2,C)-invariant quantity, 6 is not truly the
geometric 4d-dihedral angle. (There are several non-equivalent SL(2, C)-invariant definitions on
this phase space.) To say it in yet another fashion, we do not possess a discrete spin connection.

Reduction type b: Regge geometry phase space: Here we reduce by the constraint set
Cr = {G, P,Sg}. One finds a particularly appropriate basis for the reduced phase space is given
by the parameters Ay and 6y. The reduced symplectic structure on the phase space is defined
via:

{3r =} — - Cr}[{Cr CRY] {Cr, } (36)

and the only non-trivial commutation relation is:

{Ap,0r}r=1. (37)

The areas and 4d-dihedral angles are canonically conjugate pairs.

We should remark on a number of issues at this stage. First of all, for generic triangulations,
the number of edges is less than the number of triangles. Thus, it is in fact a subset of all pairs
(Ay, 6y) that parameterize the reduced phase space. On this phase space, one can show explicitly
that the various definitions of the 4d-dihedral angle, which were inequivalent on the twisted
geometries phase space, are now equivalent. Another effect is that there is an unambiguous
definition for the length of each edge. Finally, note the absence of the Immirzi parameter, the
ramifications of which we have commented extensively at the outset.

5 Discretized actions and path integrals

Thus far, we have reviewed different aspects of discretizing connection variables for gravity, and
their relation to LQG and Regge calculus. In this Section, we will review some aspects of these
relations at the dynamical level.

5.1 Hamiltonian formalism and recursion relations

When talking about dynamics, the immediate problem concerns the fate of diffeomorphism
symmetry. The experience with Regge calculus shows that the symmetry is broken, and can
only be recovered in the continuum limit. This can be shown at the classical level, but for the
quantization the situation is much more complicated. Traditional approaches include quantum
Regge calculus [1] and (causal) dynamical triangulations [2]. More recently, it has been proposed
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by Dittrich and collaborators to improve the Regge action in such a way as to make it carry an
exact notion of diffeomorphism invariance. Obtaining such a perfect action for 4d gravity is an
extremely challenging problem, but progress might be achievable in a perturbative approach,
e.g. [77, 37, 24].

In a canonical formulation, the broken diffeomorphism symmetry leads to pseudo-constraints
instead of proper constraints. Contrary to the latter, pseudo-constraints are proper equations of
motion, in which the canonical data of two consecutive steps are (very weakly) coupled to each
other [78, 79, 21, 22, 23, 80]. A priori, we see here an important tension with LQG, where an
exact Hamiltonian constraint is always present. The tension vanishes in the flat case, because in
this case exact constraints reappear in discrete gravity. The exact form of such constraints can
be found using the covariant Regge action as guiding principle. Along these lines, in [22, 80, 18]
a canonical formalism for discretized gravity which exactly reproduces the dynamics as defined
by the discrete action was introduced. A discrete evolution scheme for Regge calculus is defined
using tent moves. Tent moves are a way of evolving locally a triangulated hypersurface such
that the triangulation (that is the adjacency relations) of the resulting new hypersurfaces does
not change [22, 80]. The consistency of these ideas with LQG restricted to a fixed graph has
been examined e.g. in [81, 82, 83]. In [81], the authors built a new Hamiltonian for 3d gravity
inspired from the flatness constraint on a triangulation in Regge calculus. In this context, the
flatness equation becomes the statement that holonomies around the plaquettes p are trivial.
Projecting the curvature onto the components of the triad, they get an Hamiltonian, labeled by
a given plaquette p and a vertex v in the cycle which bounds p. This Hamiltonian has a nice
geometrical interpretation in terms of discrete geometries and dihedral angles of flat simplices,
and reads

H, p := sin ¢y, sin ¢p,; (oS Py, — €08 Oyt ) - (38)

In this expression, the ¢ and © angles are 2d and 3d dihedral angles associated with a flat
tetrahedron, so functions of the lengths. p are the momenta conjugated to the lengths. We
see that the meaning of the Hamiltonian is to impose that the conjugated momenta coincide
with the flat dihedral angles, thus it asks for an embedding in flat 3-space. The quantization
of this Hamiltonian produces difference equations of order 2 when written in the spin network
basis. The difference equations naturally come from the representation theory of the local group
considered (SU(2) in the 3d case). On triangular plaquettes of the triangulation, the quantum
equation ﬁv, ¢ = 0 is the Biedenharn-Elliott identity, a recurrence relation which defines the
6j-symbol. The 6j-symbol is also the Ponzano-Regge spinfoam amplitude and the B-E identity
thus encodes the symmetry at the quantum level which makes the model topological.

A similar situation can be realized also in 4d flat models, such as BF theory [82]. As the
6j-symbol is the physical state of a tetrahedron, the 15j-symbol is the physical state of the BF
theory on the boundary of a 4-simplex. Recursion relations for the 15j-symbol were derived in
[84] from the (regularized) 4-2 Pachner move. These recursion relations are difference equations
contributing to the symmetries implementations. In [82], these equations have been interpreted
as coming from the quantization of a flatness constraint and shown to be a reformulation of
the flat model for topological BF theory from the Hamiltonian perspective. Projecting the
flatness constraint on the flux variables, one obtains a Hamiltonian on twisted geometries which
is simply the standard relation between the 3d and 4d dihedral angles within a flat 4-simplex.
By restriction to the Regge-geometric sector, the Hamiltonian reduces to a constraint introduced
in [9].

The same classical model can be described using the spinor networks introduced before,
adding to (14) a suitable version of the Hamiltonian constraint on a fixed graph. In these terms,
the equivalent of H, j is a more fundamental Hamiltonian based on the fundamental represen-
tation of SU(2) [83] and which can be written in terms of spinors z;. The quantum version is
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then built out of bosonic operators acting on nodes and creating, destroying or exchanging spins
1/2 between two (half-)lines meeting on a node.

A non-flat case where some contact holds as well concerns symmetry-reduced models. In the
case of the simplest class of non-trivial graphs for spinor networks, i.e. graphs with two vertices
s and ¢ joined by an arbitrary number N of links, the authors of [85, 86] defined the dynamics
of the ’homogeneous cosmological’ sector. This sector corresponds to the U(N)-invariant sector
where there exists a global phase ¢ such that VI 2} = ei‘bzlt. Its corresponding phase space is a
reduced phase space with two parameters: A represents the total boundary area of the surface
separating the two vertices and ¢ is its dynamical conjugate variable. e® defines the SU(2)
holonomy living on the edges between the two vertices and ¢ thus encodes the curvature. The
action defining the dynamics is given by

S|, 6] 1= —2 / dt [AM CN2(40 — ye2is fy*e*W’)} (39)

where 7%, 4 are coupling constants. The equations of motion can be solved exactly [45] and they
show that the dynamics can be interpreted as describing homogenous and isotropic cosmology.
Moreover, this classical setting is easily quantized and the corresponding Hamiltonian [86] shows
certain analogies with (the effective dynamics of) loop quantum cosmology.

5.2 Covariant theory

A complete match between discrete Hamiltonians and LQG is obstructed by the fact that solu-
tions to the Hamiltonian constraint are likely to require a superposition of graphs, or an arbitrary
fine one. In this optic, we can consider the dynamics on a fixed graph as an approximation, and
again postpone the test of diffeomorphism symmetry to a later stage, when the way the dynamics
changes with the graph comes under control. Accordingly, we now review the covariant studies
of the dynamics. The spacetime manifold is discretized via a simplicial decomposition, or more
in general via a cellular decomposition, and approximate the path integral on it. Because we
want to use connection variables, the procedure needs an appropriate action. The more standard
procedure is to start with the path integral of general relativity reformulated as a topological BF
gauge theory for the Lorentz group SO(3,1) (or SO(4) in the Euclidean case) plus constraints,
given by the Plebanski’s action®:

Spi[B,w, A = /M (B4~ % B)"” A Frslw] + MCalB), (40)

By simplicity’s sake, we focus on the Euclidean theory and then w is a so(4)-valued 1-form
and F[w] is its strength tensor, B is a so(4) valued 2-form and (xB)!/ = Llelf, BEE is its
Hodge dual. The constraints C,[B], enforced by the Lagrange multipliers A\, are the so-called
simplicity constraints. They constrain the B-field to come from a tetrad field e in such a way
that we recover general relativity in its first order formalism formulated in term of tetrad and
Lorentz connection (31). These simplicity constraints turn the non-physical BF theory into 4d
gravity. They are second class constraints and modify non-trivially the path integral [88, 89].
The spinfoam framework is based on a discretized space-time manifold build from 4-cells
glued together. Once again for simplicity’s sake and to be in the context of Regge calculus, we
consider here only 4d triangulations made of 4-simplices glued together. We use equivalently

5The Plebanski’s action is currently at the heart of the spinfoam models. However, there exists a different
approach based on the MacDowell-Mansouri action, which writes general relativity as a BF theory for the gauge
group SO(4,1) (or SO(5) in the Euclidean case) with a non-trivial potential in the B-field which breaks the
symmetry down back to the Lorentz group [87]. Although this is a very interesting proposition, it has not yet led
to a definite proposal for a spinfoam model.
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the triangulation A or its dual complex A*, the spinfoam 2-complex. Triangles (€ A) are dual
to faces (€ A*) both denoted f. Tetrahedra (€ A) are dual to links (€ A*) both denoted t.
4-simplex are dual to the spinfoam vertices both denoted v. Both the B-field and the Lorentz
connection are discretized. The B-field is a 2-form and is naturally discretized on the triangles
f € A and the Lorentz connection w is discretized as holonomies living on the spinfoam edges
t. Then, the simplicity constraints C,[B] can be discretized: Co[B] — C[B¢] = Cy. In all the
models constructed, the specific way the simplicity constraints are discretized and quantized
plays a key role. Two different ways to proceed can be distinguished:

1. The discretized primary simplicity constraints are turned to quantum operators, acting
on the Hilbert space associated with the boundary of each 4-simplex, or 4-cell: C; — Cy.
This approach, which can be viewed as a geometrical quantization, is detailed in the next
section.

2. The discretized simplicity constraints are included in a discrete constrained BF action.
This alternative method is more briefly described in the section 5.3.

The (primary) simplicity constraints, Cy can be imposed on a given tetrahedron ¢. Then
each triangle f of t is characterized by its associated Bjg-variable. The bivectors satisfy a
closure constraint »_ et B]Ic‘] = 0 as well as the discretized simplicity constraints. As already
mentioned in the section 3.3, there exists three different realizations of the simplicity constraints.
Their geometrical interpretation is more transparent in the linear formulation: the simplicity
constraints come from the fact that all the faces of a given tetrahedron ¢ lay in the same
hypersurface. More precisely, in the case with an Immirzi parameter, it is the special combination
(Bf — v Bf)!/ which has a unique normal for all f € ¢ and this constraint becomes (24) at
the quantum level (in fact there will be a sign difference due to the positive signature of Spin(4)

gauge group) .

5.2.1 Geometrical quantization

Let us now tackle the quantization step and review the different proposals to implement the
simplicity constraints at the quantum level. In this approach, the construction of the so-called
spinfoam amplitude is based on the local spinfoam ansatz. That is the spinfoam amplitude
is built from the product of local amplitudes associated to the vertices, edges and faces of the
given 2-complex and only depending on the local representations and intertwiners living on those
cells. For a given 2-complex o with boundary do and a boundary spin network state g, the
spinfoam amplitude associated to o, A[o, 1], consists in a sum over all possible representations
and intertwiners living in the bulk and consistent with the boundary spin network:

Alo, Yool = Y [T Arlis) [T Acliv poe [ [ Avlirzvr irsol (41)

Jfit f t

where the representations and intertwiners j; , i; for faces and edges on the boundary f and ¢
€ Jo are fixed and given by our choice of boundary state ¥y, .

The key ingredient is the vertex amplitude A,[j,4;] which contains all the dynamical informa-
tion of the spinfoam model. The proposals reviewed in this section focus solely on the definition
of this amplitude. It is computed by the evaluation at the identity of the boundary spinnetwork
of the 4-simplex dual to the given vertex v. The effort is to determine the authorized repre-
sentations and intertwiners to respectively label the edges and nodes of the boundary graph.
It is at this stage that the simplicity constraints come into the game directly at the quantum
level: they restrict the allowed representations and intertwiners. It is worth to precise that at
this time there is no definite answer on how to implement simplicity constraints which should
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reintroduce the local degrees of freedom at the quantum level.
Then usually, the face weight A¢[j¢, 4] is given by the dimension of the representation associated
to the given face f whereas there is an ambiguity on the definition of the edge amplitude A5, i].

The quantization procedure for a given tetrahedron ¢, is very simple: an irreducible repre-
sentation (jf,jf) € N/2 x N/2 of the gauge group Spin(4) is associated to each triangle ¢ and
the bivectors ng‘] are quantized as the so(4) Lie algebra generators .J J{J acting in that repre-
sentation. More precisely in presence of a non-null Immirzi parameter, the symplectic structure
on T*Spin(4) inherited from the Holst-Palatini action is such that the canonical momenta X
of the holonomies® are deformed by the Immirzi parameter: f = By + % * By « DBy =

’Y2

72-1
of spin(4), JJ{J.The closure constraint becomes }_ s, BJ{J =0 = D JJ{J = 0 and requires
that the quantum states of the tetrahedron are Spin(4)-intertwiners between the representations
attached to the tetrahedron triangles. The primary simplicity constraints become operators
which only involve algebra elements and can be realized in three different ways as recalled in
section 3.3.

(- % *x X ). The quantization step is simply to replace Efc‘] with the canonical generators

The quadratic formulation, Vf, f’ € t, eUKLJ;JJ[fL = 0, is the original formulation (with-
out Immirzi parameter). They are the discretized and quantized version of the classical
simplicity constraints of the continuum Plebanski’s action (40). Working in this section
with the Euclidean gauge group Spin(4), let us recall that they translate into conditions on
the Casimir operators on the intertwiners states (see (20)). Naturally the first attempt was
to impose strongly all the quantum simplicity constraints. That is to look for intertwiner

states [¢) such that:
ek IRE ) =0 Y, f (42)

The spin labels are then constrained to be simple i.e. jf = jJ]E2 Vf. Once the spins (jf,jf)
are specified there exists a unique intertwiner satisfying all constraints (42), the Barrett-
Crane intertwiner |¢)) = igc [90]. These restrictions can be implemented at the level of
the partition function” and one gets the well-known Euclidean Barrett-Crane model [47]
(for the Lorentzian equivalent model see [58]).

However, the uniqueness of the Barrett-Crane intertwiner, igg seems to freeze too many
degrees of freedom of the 3d space geometry especially when considered from the point
of view of loop quantum gravity or from the spinfoam graviton calculations [91, 92, 93].
Since the uniqueness of the Barrett-Crane intertwiner is a consequence of the imposition
of the simplicity constraints, this suggests that the way simplicity constraints are imposed
should be modified. Indeed, the algebra of theses simplicity constraints does not close
reflecting the fact that at the continuum level the simplicity constraints correspond to
second class constraints. (21) means that higher and higher order constraints are generated
by computing further commutators. That means that by imposing strongly the quadratic
constraints on the intertwiner state i), we are actually also imposing all these higher
order corrections.

5Indeed, to determine the symplectic structure we have to remember that the configuration variables are the
holonomies variables Gy carried by each link. The link carrying Gy is the link between the two dual vertices of
the tetrahedra ¢ and t'. G parallel transports the tetrahedron t to the tetrahedron t’.

"In particular, considering a single 4-simplex v or its dual boundary graph, Barrett-Crane intertwiners ipc are
attached to each dual vertex (i.e. tetrahedron) and simple representations to each dual link (i.e. triangle). The
vertex amplitude is then defined as the evaluation of this boundary spinnetwork at the identity and the obtained
result is the 10j symbol.
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To remedy this issue, it was proposed to solve the crossed simplicity constraints weakly,
either by using some coherent state techniques [94, 95, 96] or by using a Gupta-Bleuler-like
method [59, 61, 97]. The weak sense means in this context that one requires that <1/1\5 lp) =
0 for any allowed boundary spinnetwork states. These two approaches were shown to lead
to the same spinfoam amplitudes [96, 95], the EPRL-FK spinfoam amplitudes, apart from
some subtle cases [98]. The EPRL-FK models rely on the linear reformulation of the
simplicity constraints.

The linear formulation allows to distinguish a geometrical and a ”non-geometrical” sectors
or to introduce very easily the Immirzi parameter in the theory. In presence of a non-
null Immirzi parameter, the expression of the linear simplicity constraints are given by
NI(xJp —~71J¢) 17 = 0 which the Euclidean formulation equivalent to (24) where the J’s
are now Spin(4) generators. The gauge-fixed version of these constraints J_} — 7*1[? =0
involves in the Riemmanian case ff = %(J_% + J_;]?) and K §= %(J_% - J_}?) This formu-
lation is at the root of the construction of the EPRL-FK models. The diagonal simplicity
constraints however remain under their quadratic form and are still imposed strongly. In
presence of a non-zero Immirzi parameter, they restrict the allowed Spin(4) representations
of each f to y-simple representations (up to an ordering ambiguity): V f, jf = p? j}%, v f.
In the EPR(L) approach, the linear simplicity constraint (25) is employed to implement
weakly the cross-simplicity constraints using a Gupta-Bleuler-like method [61, 97]. That
is, one looks for an Hilbert space Hs, subspace of the Hilbert space associated to the
tetrahedron ¢, such that the matrix elements of the cross simplicity constraints all vanish

Vo, ¥, (W JF - JE|g) = p* (W] JF - TF|4). (43)

The strategy is to use the set of linear simplicity constraints (25) to form a ”master”
constraint, which selects a subspace of the Hilbert space associated to the tetrahedron,
the ”extremum” subspace: Hs = ®;1c:1 ’ka ekP with k the quantum number associated

to the SU(2) Casimir J? and where ¢ = +1 when v < 1 and € = —1 when v > 1.
Then, the weak imposition of the closure constraint promotes Hs to the intertwiner space
Ks = Invgy(e)[Hs]. Finally, to get a Spin(4) spin network, a group averaging on Spin(4)
is performed. The vertex amplitude is obtained as usual by evaluating the boundary spin
network of a given 4-simplex labelled with v-simple representations and intertwiners taking
in 5. We get the EPRL vertex amplitude:

. R AL =] ;
Auli il = > 15](2valf)15ﬂ(| 5 |va1§) Dtco fif im0 (44)

i if'}

where the 155 are the standard SU(2) Wigner symbols and f;ﬁ ,r are the fusion coefficients
t %t

obtained by contracting SU(2) intertwiners i; and Spin(4) intertwiners (i, if*) (for further
details see [59]).

It was also proposed to solve the cross-simplicity constraints weakly by some coherent state
method. The aim is the same as the one of the method detailed above. That is the weak
imposition of the cross simplicity constraints. The idea proposed in [94] and developed in
[95, 96] is to look for semi-classical states such that the simplicity constraints are solved in
average, minimizing the uncertainty of these operators. The result obtained is the same
as the EPRL one for v < 1 but it is different for v > 1. The latter case gives the so-called
FK model.

In order to have a geometrical control on the bivectors at the quantum level, the authors
of [94] proposed to work with the following SU(2) coherent states labeled with an SU(2)
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representation j and a unit vector n: |4, n) = g |7, 7) with g € SU(2), |j, j) being the highest
weight vector of the standard su(2) basis. |j, ) describes in average a 3-vector with norm
7 and direction n. Its coherence property comes from the fact that the uncertainty is
minimal [94].

Then, 4-valent® coherent intertwiners are defined by tensoring four such SU(2) coherent
states and group averaging this tensor product in order to get an intertwiner:

g g} = / dg gt @by |j.ig) = / dg@h_1g9(hs) lis. if) (45)
SU(2) SU(2)

where the labels are four spins ji,- -, j4 and four unit 3-vectors 7y, --- ,7n4. The norm of
these intertwiners is peaked on configurations satisfying the closure constraint Z?‘:l Jfhyp =
0. Moreover, they form a overcomplete basis of the 4-valent intertwiner space. Then a
bivector can be described by the tensor product of SU(2) coherent states | jj%, fL}]? Y®\4 ]}5, fz?}

where the expectation values of the spin(4) generators are the two 3-vectors j»®al %, The
simplicity constraints imply that jf/jf = (y+1)/|1 = 7|. Then two cases can be distin-
guished: either v < 1 and then fz]fi = ﬁ? and we recover the EPRL model, either v > 1
and then Rl = —'fz]@ and we get the FK model. The expression of the vertex amplitude can
then be written in terms of the coherent states. This expression in terms of the coherent

states allows us to perform its semi-classical analysis (see section 6).

One drawback with the previous constructions is that the states are not properly defined
as actual (strong) solutions of a set of constraints. In particular, they do not come from
an actual Gupta-Bleuer procedure with an holomorphic/antiholomorphic factorization of
the constraints in term of creation and annihilation operators. This means that we cannot
define the EPRL-FK states through a simple algebraic equation.

In the contrary, the holomorphic simplicity constraints (26) do come from such a factor-
ization of the quadratic simplicity constraints (20) and allows us to take into account the
simplicity constraints by performing a true Gupta-Bleuer procedure.

The holomorphic formulation relies on the spinorial framework developed in the context of

LQG (see section 3.3) at the classical level. Working here with the gauge group Spin(4), a
vertex (before implementation of the simplicity constraints) is characterized by two sets of
spinors {Z;L} and {z;’R} satisfying independently the closure constraint. The quantization
is straightforward and the spinor components are promoted to annihilation and creation
operators

T I I (i B L B (Lt s T
0T (zF/7)1 pL/m ) “f @ ) Or -

with [ay, a}] = [by, b}] = 1 and [ay, bs] = 0 for all f. The holomorphic simplicity con-
straint operators for the gauge group Spin(4) are then

Ve, f, ﬁeLf = pQﬁelji ie. Ve, f, afb]]—? — a]chf = pz(afb? — a?bf), (47)
where we have dropped the index v and p? := Iz—j' These constraints all commute with

each other, and can therefore be diagonalized simultaneously. This can be done by means
of a new class of coherent intertwiners, |{zs}),, labeled only by the set of spinors {z;},
which have been defined as solution of all the holomorphic simplicity constraints in [99].

8Since, we are working with a 4d triangulation, we are only interested in 4-valent intertwiner to build boundary

spinnetworks. Indeed, the dual of a tetrahedron of A is a 4-valent vertex.
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Their relation to the LS coherent intertwiners used in the definition of the EPRL-FK
models is explicitly known.

A spinfoam model solving exactly the holomorphic simplicity constraints can be defined
[62, 100]. Its vertex amplitude given by the evaluation of the coherent spin network on the
boundary 4-simplex graph obtained by gluing these coherent simple intertwiners |{zy}),:

_ b))
L lhtL< )

2r,5(f) t(f\r.s(f))p R —11R
pAu(2}) = /[dht]5 e2ren Pl Ihy) eIy~ e

8
nlzs s Piiples (48)

The full spinfoam amplitude is obtained by gluing these vertex amplitudes and integrating
over the spinors with a Gaussian measure. Unlike in the EPRL-FK spinfoam model, we
do not have simple representations satisfying jf = jﬁ, but with Gaussian wave-packets
peaked on this relation, and all the constraints are treated on the same footing.

5.2.2 Semi-classical regime

The contact between these spin foam models and discrete gravity is clear: on each triangulation,
or more in general cellular decomposition, the path integral is realized as a sum over histories
of discrete 4-geometries associated with the triangulation. Only, these are twisted geometries,
represented by areas and angles, and they lack a priori the shape-matching conditions discussed
earlier. It is then remarkable that precisely these conditions are imposed as saddle point equa-
tions from the integrals over the group variables. That is, the dominant configurations in the
large spin limit correspond to Regge geometries, correctly weighted by exponentials of the Regge
action.” Therefore we see that, although a precise matching with Regge geometries is lost at
the kinematical level, it re-emerges dynamically on each fixed triangulation, providing evidence
of the correct semiclassical behaviour of the theory. The models can be also generalized to a
2-complex of arbitrary valence [104, 105], thus providing transition amplitudes for any abstract
spin network.10

Although the relation to Regge calculus on a fixed triangulation is a palatable feature, it
not enough to guarantee the existence of the continuum limit. Much more work is needed to
test the formalism. On the one hand, there are technical details on the definition of the models
that still require some thought. Among these, one that has been often raised in the literature
concerns the measure in the path integral. This is turn is related to the specific structure of
the continuum simplicity constraints. As reviewed earlier, there are also secondary simplicity
constraints, which are of second class. These are not directly implemented in the EPRL-FK
models. Rather, the philosophy is that imposing the primary ones at all times might be sufficient.
This is supported by the following fact. At the canonical level, the secondary constraints ensure
that the simplicity of the B field holds under time evolution. But one can show that if the
primary simplicity constraints and the closure constrains are satisfied on each tetrahedron in
the boundary of a flat 4-simplex, the secondary simplicity constraints are automatically satisfied
[61, 95]. This is what is done in the EPRL model. However, the derivation relies crucially on
the flatness of the 4-simplex, and at the quantum level, the secondary constraints could undergo
non-vanishing fluctuations, and the above treatment might fail. An alternative is to implement
them as restriction on the group element variables, consistently with their second class nature.
This point has been argued by Alexandrov, and more recently in [106, 48, 107]. Nonetheless, the
EPRL construction does lead to a meaningful and non-trivial restriction of the wave functional
dependence on the connection [108].

9More precisely, by cosines of the Regge actions. Various ways to deal with the presence of both terms have
appeared in the literature [101, 102, 103].
0The asymptotic formula, and its relation to Regge calculus, have still not been studied in this case.
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Technical details aside, the key point is the behaviour of the quantum corrections and of
possible divergences. Only a systematic study of higher orders and graph-changing corrections
can really test the formalism.

5.3 Lagrangian methods

The approach in which one first quantizes and then imposes the simplicity constraints, has the
advantage of leading to a tractable expression, which is manifestly a state sum and a transition
amplitude for spin networks, thus realizing the original rationale to introduce the models [109].
On the other hand, away from the large spin semiclassical limit, the action that appears in the
path integral does not have an obvious interpretation as a discrete gravity action. For instance,
the shape-matching conditions that allow one to recover the Regge action, only appear in the
saddle point approximation. An alternative procedure is to insist on a spin foam in which the
action is ab initio a discretization of the gravitational action. This approach has been studied in
[55, 110, 111], and more recently in [112]. We refer the interested reader to the review appearing
in this same volume.

6 Conclusions

The last few years have seen a number of interesting developments in loop quantum gravity,
based on taking seriously an interpretation in terms of discrete geometries of the truncation of
the theory to a fixed graph. This interpretation becomes particularly useful in the study of
certain spin foam models, notably the EPRL model, where the large spin limit is dominated
precisely by exponentials of the Regge action. The interpretation has helped sheding light on the
use of coherent states, on the definition and implementation of the simplicity constraints, and
brought to surface a number of intriguing new ideas, such as spinor and twistor tools [44], and
U(N) symmetries [113]. The hope is that some of these ideas and tools can also help show the
way to understanding the complete dynamics of the theory, beyond the single graph truncation.

References

[1] H. W. Hamber, Quantum Gravity on the Lattice, Gen.Rel.Grav. 41 (2009) 817-876
(0901 .0964].

[2] J. Ambjorn, J. Jurkiewicz and R. Loll, Lattice quantum gravity - an update, PoS LAT-
TICE2010 (2010) 014 [1105.5582].

[3] T. Regge, General relativity without coordinates, Nuovo Cim. 19 (1961) 558-571.

[4] M. Caselle, A. D’Adda and L. Magnea, Regge calculus as a local theory of the poincare
group, Physics Letters B 232 (1989), no. 4 457 — 461.

[5] V. Khatsymovsky, Continuous time Regge gravity in the tetrad connection variables,
Class.Quant.Grav. 8 (1991) 1205-1216.

[6] A. Perez, The spin foam approach to quantum gravity, Living Reviews in Relativity (to
appear).

[7] G. Immirzi, Quantizing Regge calculus, Class.Quant.Grav. 13 (1996) 2385-2394
[gr-qc/9512040].

[8] L. Freidel and S. Speziale, Twisted geometries: A geometric parametrisation of SU(2)
phase space, Phys. Rev. D82 (2010) 084040 [1001.2748].



Discreteness and LQG 27

[9]

[10]

[11]

B. Dittrich and J. P. Ryan, Phase space descriptions for simplicial 4d geometries,
Class. Quant. Grav. 28 (2011) 065006 [0807 .2806].

C. Rovelli, Quantum gravity. Cambridge University Press, 2004. Published in Cambridge
Monographs on Mathematical Physics, pages 1-480, year 2004.

T. Thiemann, Modern canonical quantum general relativity. Cambridge University Press,
2001.

A. Ashtekar and J. Lewandowski, Background independent quantum gravity: A Status
report, Class.Quant.Grav. 21 (2004) R53 [gr-qc/0404018|.

E. Bianchi, Loop Quantum Gravity a la Aharonov-Bohm, 0907 .4388.

L. Freidel, M. Geiller and J. Ziprick, Continuous formulation of the Loop Quantum Gravity
phase space, 1110.4833.

C. Rovelli and S. Speziale, On the geometry of loop quantum gravity on a graph, Phys.Rev.
D82 (2010) 044018 [1005.2927].

E. Bianchi, P. Dona and S. Speziale, Polyhedra in loop quantum gravity, Phys.Rev. D83
(2011) 044035 [1009.3402].

B. Dittrich and J. P. Ryan, Simplicity in simplicial phase space, Phys.Rev. D82 (2010)
064026 [1006.4295].

B. Dittrich and P. A. Hoehn, Canonical simplicial gravity, 1108.1974.

L. C. Brewin and A. P. Gentle, On the convergence of Regge calculus to general relativity,
Class. Quant. Grav. 18 (2001) 517-526 [gr-qc/0006017].

R. M. Williams, Recent progress in Regge calculus, Nucl.Phys.Proc.Suppl. 57 (1997) 73-81
[gr-qc/9702006].

B. Dittrich, Diffeomorphism symmetry in quantum gravity models, Adv.Sci.Lett. 2 (2008)
[0810.3594].

B. Bahr and B. Dittrich, (Broken) Gauge Symmetries and Constraints in Regge Calculus,
Class. Quant. Grav. 26 (2009) 225011 [0905.1670].

B. Bahr and B. Dittrich, Improved and Perfect Actions in Discrete Gravity, Phys.Rev.
D80 (2009) 124030 [0907 .4323].

B. Dittrich, How to construct diffeomorphism symmetry on the lattice, 1201 .3840.
C. Rovelli, Discretizing parametrized systems: the magic of Ditt-invariance, 1107.2310.

C. Rovelli, The Basis of the Ponzano-Regge- Turaev- Viro-Ooguri quantum gravity model in
the loop representation basis, Phys. Rev. D48 (1993) 2702-2707 [hep-th/9304164].

J. Makela, On the phase space coordinates and the Hamiltonian constraint of Regge calcu-
lus, Phys.Rev. D49 (1994) 2882-2896.

J. W. Barrett, M. Rocek and R. M. Williams, A Note on area variables in Regge calculus,
Class. Quant.Grav. 16 (1999) 1373-1376 [gr-qc/9710056].

C. Wainwright and R. M. Williams, Area Regge calculus and discontinuous metrics,
Class. Quant.Grav. 21 (2004) 4865-4880 [gr-qc/0405031].



28

M. Dupuis, J. Ryan and S. Speziale

[30]

[31]

[32]

[33]

[34]

[35]

[36]

37]

[38]

[39]

J. Makela and R. M. Williams, Constraints on area wvariables in Regge calculus,
Class.Quant.Grav. 18 (2001) L43 [gr-qc/0011006].

B. Dittrich and S. Speziale, Area-angle variables for general relativity, New J.Phys. 10
(2008) 083006 [0802.0864].

I. Drummond, Regge-Palatini Calculus, Nucl.Phys. B273 (1986) 125.

C. Holm and J. D. Hennig, Regge calculus with torsion, Group Theoretical Methods in
Physics 382 (1991) 556-560.

J. Schmidt and C. Kohler, Torsion degrees of freedom in the Regge calculus as dislocations
on the simplicial lattice, Gen.Rel.Grav. 33 (2001) 1799-1808 [gr-qc/0103111].

R. Williams, Quantum Regge calculus, Published in In *Oriti, D. (ed.): Approaches to
quantum gravity® 360-377 (2009).

H. W. Hamber and R. M. Williams, On the measure in simplicial gravity, Phys. Rev. D59
(1999) 064014 [hep-th/9708019).

B. Dittrich and S. Steinhaus, Path integral measure and triangulation independence in
discrete gravity, Phys.Rev. D85 (2012) 044032 [1110.6866]. 36 pages, 7 figures, references
updated, some typos and mistakes corrected.

P. A. Renteln and L. Smolin, A Lattice Approach To Spinorial Quantum Gravity,
Class. Quant.Grav. 6 (1989) 275-294.

G. Immirzi, Regge calculus and Ashtekar variables, Class.Quant.Grav. 11 (1994) 1971
1980 [gr-qc/9402004].

G. Immirzi, Quantum gravity and Regge calculus, Nucl. Phys.Proc.Suppl. 57 (1997) 65-72
[gr-qc/9701052].

A. Ashtekar, A. Corichi and J. A. Zapata, Quantum theory of geometry III: Noncommuta-
tivity of Riemannian structures, Class. Quant.Grav. 15 (1998) 2955-2972 [gr-qc/9806041].

E. Magliaro, A. Marciano and C. Perini, Coherent states for FLRW space-times in loop
quantum gravity, Phys.Rev. D83 (2011) 044029 [1011.5676].

L. Freidel and S. Speziale, From twistors to twisted geometries, Phys.Rev. D82 (2010)
084041 [1006.0199].

M. Dupuis, S. Speziale and J. Tambornino, Spinors and Twistors in Loop Gravity and
Spin Foams, 1201.2120.

E. F. Borja, L. Freidel, I. Garay and E. R. Livine, U(N) tools for Loop Quantum Gravity:
The Return of the Spinor, Class.Quant.Grav. 28 (2011) 055005 [1010.5451].

E. R. Livine and J. Tambornino, Spinor Representation for Loop Quantum Gravity,
1105.3385.

J. W. Barrett and L. Crane, Relativistic spin networks and quantum gravity, J.Math.Phys.
39 (1998) 3296-3302 [gr-qc/9709028].

S. Alexandrov, M. Geiller and K. Noui, Spin Foams and Canonical Quantization,
1112.1961.



Discreteness and LQG 29

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

S. Alexandrov and E. R. Livine, SU(2) loop quantum gravity seen from covariant theory,
Phys.Rev. D67 (2003) 044009 [gr-qc/0209105].

E. R. Livine, Projected spin networks for Lorentz connection: Linking spin foams and loop
gravity, Class. Quant.Grav. 19 (2002) 5525-5542 [gr-qc/0207084].

M. Dupuis and E. R. Livine, Lifting SU(2) Spin Networks to Projected Spin Networks,
Phys.Rev. D82 (2010) 064044 [1008.4093|.

M. Dupuis, L. Freidel, E. R. Livine and S. Speziale, Holomorphic Lorentzian Simplicity
Constraints, 1107 .5274.

E. R. Livine, S. Speziale and J. Tambornino, Twistor Networks and Covariant Twisted
Geometries, 1108.0369.

W. M. Wieland, Twistorial phase space for complex Ashtekar variables, 1107 .5002.

M. P. Reisenberger, Classical Fuclidean general relativity from ’left-handed area = right-
handed area’, Class. Quantum Grav. 16 (1998) 1357 [gr-qc/9804061].

S. Speziale, Bi-metric theory of gravity from the non-chiral Plebanski action, Phys.Rev.
D&2 (2010) 064003 [1003.4701].

J. C. Baez and J. W. Barrett, The Quantum tetrahedron in three-dimensions and four-
dimensions, Adv.Theor.Math.Phys. 3 (1999) 815-850 [gr-qc/9903060].

J. W. Barrett and L. Crane, A Lorentzian signature model for quantum general relativity,
Class.Quant.Grav. 17 (2000) 3101-3118 [gr-qc/9904025].

J. Engle, R. Pereira and C. Rovelli, Flipped spinfoam vertex and loop gravity, Nucl.Phys.
B798 (2008) 251-290 [0708.1236].

J. W. Barrett, R. Dowdall, W. J. Fairbairn, F. Hellmann and R. Pereira, Lorentzian spin
foam amplitudes: Graphical calculus and asymptotics, Class. Quant. Grav. 27 (2010) 165009
(0907 . 2440).

J. Engle, R. Pereira and C. Rovelli, The Loop-quantum-gravity vertex-amplitude,
Phys.Rev. Lett. 99 (2007) 161301 [0705.2388].

M. Dupuis and E. R. Livine, Holomorphic Simplicity Constraints for 4d Spinfoam Models,
Class.Quant.Grav. 28 (2011) 215022 [1104.3683|.

S. Alexandrov, The new vertices and canonical quantization, Phys. Rev. D82 (2010) 024024
[1004.2260].

M. Carfora, C. Dappiaggi and A. Marzuoli, The Modular geometry of random Regge tri-
angulations, Class.Quant.Grav. 19 (2002) 5195-5220 [gr-qc/0206077].

H. W. Hamber and R. M. Williams, Gauge invariance in simplicial gravity, Nucl.Phys.
B487 (1997) 345-408 [hep-th/9607153|.

S. Holst, Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action,
Phys.Rev. D53 (1996) 59665969 [gr-qc/9511026].

J. Barbero G., Real Ashtekar variables for Lorentzian signature space times, Phys.Rev.
D51 (1995) 5507-5510 [gr-qc/9410014].



30

M. Dupuis, J. Ryan and S. Speziale

[68]

[69]

[70]

[71]

[72]

73]
[74]

[75]
[76]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

G. Immirzi, Real and complex connections for canonical gravity, Class.Quant.Grav. 14
(1997) L177-L181 [gr-qc/9612030].

A. Perez and C. Rovelli, Physical effects of the Immirzi parameter, Phys. Rev. D73 (2006)
044013 [gr-qc/0505081].

L. Freidel, D. Minic and T. Takeuchi, Quantum gravity, torsion, parity violation and all
that, Phys.Rev. D72 (2005) 104002 [hep-th/0507253].

S. Mercuri, Fermions in Ashtekar-Barbero connections formalism for arbitrary values of
the Immirzi parameter, Phys.Rev. D73 (2006) 084016 [gr-qc/0601013)].

S. Alexandrov, Immirzi parameter and fermions with non-minimal coupling,
Class. Quant.Grav. 25 (2008) 145012 [0802.1221].

J.-E. Daum and M. Reuter, Renormalization Group Flow of the Holst Action, 1012.4280.

D. Benedetti and S. Speziale, Perturbative quantum gravity with the Immirzi parameter,
JHEP 1106 (2011) 107 [1104.4028].

D. Benedetti and S. Speziale, Perturbative running of the Immirzi parameter, 1111.0884.

T. Thiemann, Quantum spin dynamics (QSD): 7. Symplectic structures and contin-
uum lattice formulations of gauge field theories, Class.Quant.Grav. 18 (2001) 3293-3338
[hep-th/0005232].

B. Bahr, B. Dittrich and S. He, Coarse graining free theories with gauge symmetries: the
linearized case, New J.Phys. 13 (2011) 045009 [1011.3667].

R. Gambini and J. Pullin, Consistent discretization and canonical classical and quantum
Regge calculus, Int.J.Mod.Phys. D15 (2006) 1699-1706 [gr-qc/0511096].

R. Gambini and J. Pullin, Classical and quantum general relativity: A New paradigm,
Gen.Rel.Grav. 37 (2005) 16891694 [gr-qc/0505052]. Fifth prize of the Gravity Research
Foundation 2005 essay Competition.

B. Dittrich and P. A. Hohn, From covariant to canonical formulations of discrete gravity,
Class.Quant.Grav. 27 (2010) 155001 [0912.1817].

V. Bonzom and L. Freidel, The Hamiltonian constraint in 3d Riemannian loop quantum
gravity, Class.Quant.Grav. 28 (2011) 195006 [1101.3524].

V. Bonzom, Spin foam models and the Wheeler-De Witt equation for the quantum /-
simplex, Phys.Rev. D84 (2011) 024009 [1101.1615].

V. Bonzom and E. R. Livine, A New Hamiltonian for the Topological BF phase with spinor
networks, 1110.3272.

V. Bonzom, E. R. Livine and S. Speziale, Recurrence relations for spin foam vertices,
Class. Quant. Grav. 27 (2010) 125002 [0911.2204].

E. F. Borja, J. Diaz-Polo, L. Freidel, I. Garay and E. R. Livine, New tools for Loop
Quantum Gravity with applications to a simple model, 1201.5470.

E. F. Borja, J. Diaz-Polo, I. Garay and E. R. Livine, Dynamics for a 2-vertex Quantum
Gravity Model, Class.Quant.Grav. 27 (2010) 235010 [1006.2451].



Discreteness and LQG 31

[87]

[38]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]
[103]
[104]

[105]

[106]

L. Freidel and A. Starodubtsev, Quantum gravity in terms of topological observables,
hep-th/0501191.

E. Buffenoir, M. Henneaux, K. Noui and P. Roche, Hamiltonian analysis of Plebanski
theory, Class. Quant.Grav. 21 (2004) 5203-5220 [gr-qc/0404041].

S. Alexandrov, E. Buffenoir and P. Roche, Plebanski theory and covariant canonical for-
mulation, Class.Quant.Grav. 24 (2007) 2809-2824 [gr-qc/0612071].

M. P. Reisenberger, On relativistic spin network vertices, J. Math. Phys. 40 (1999) 2046
2054 [gr-qc/9809067).

E. Bianchi, L. Modesto, C. Rovelli and S. Speziale, Graviton propagator in loop quantum
gravity, Class.Quant.Grav. 23 (2006) 6989-7028 [gr-qc/0604044].

E. Alesci and C. Rovelli, The Complete LQG propagator. 1. Difficulties with the Barrett-
Crane vertez, Phys.Rev. D76 (2007) 104012 [0708.0883].

E. Alesci and C. Rovelli, The Complete LQG propagator. I1I. Asymptotic behavior of the
vertex, Phys.Rev. D77 (2008) 044024 [0711.1284].

E. R. Livine and S. Speziale, A New spinfoam vertex for quantum gravity, Phys. Rev. D76
(2007) 084028 [0705.0674].

E. R. Livine and S. Speziale, Consistently Solving the Simplicity Constraints for Spinfoam
Quantum Gravity, Europhys.Lett. 81 (2008) 50004 [0708.1915].

L. Freidel and K. Krasnov, A New Spin Foam Model for 4d Gravity, Class.Quant.Grav.
25 (2008) 125018 [0708.1595].

J. Engle, E. Livine, R. Pereira and C. Rovelli, LQG vertex with finite Immirzi parameter,
Nucl. Phys. B799 (2008) 136-149 [0711.0148].

J. Engle and R. Pereira, Coherent states, constraint classes, and area operators in the new
spin-foam models, Class. Quant.Grav. 25 (2008) 105010 [0710.5017].

M. Dupuis and E. R. Livine, Revisiting the Simplicity Constraints and Coherent Inter-
twiners, Class.Quant.Grav. 28 (2011) 085001 [1006.5666].

M. Dupuis and E. R. Livine, Holomorphic Simplicity Constraints for 4d Riemannian Spin-
foam Models, 1111.1125.

C. Rovelli, Graviton propagator from background-independent quantum gravity,
Phys.Rev. Lett. 97 (2006) 151301 [gr-qc/0508124].

J. Engle, A proposed proper EPRL vertex amplitude, 1111.2865.
C. Rovelli and E. Wilson-Ewing, Discrete symmetries in covariant lqg, to appear.

W. Kaminski, M. Kisielowski and J. Lewandowski, Spin-Foams for All Loop Quantum
Gravity, Class.Quant.Grav. 27 (2010) 095006 [0909.0939].

Y. Ding, M. Han and C. Rovelli, Generalized Spinfoams, Phys.Rev. D83 (2011) 124020
[1011.2149).

M. Geiller and K. Noui, Testing the imposition of the Spin Foam Simplicity Constraints,
1112.1965.



32 M. Dupuis, J. Ryan and S. Speziale

[107] S. Alexandrov, Degenerate Plebanski Sector and its Spin Foam Quantization, 1202 .5039.

[108] C. Rovelli and S. Speziale, Lorentz covariance of loop quantum gravity, Phys.Rev. D83
(2011) 104029 [1012.1739].

[109] M. P. Reisenberger and C. Rovelli, 'Sum over surfaces’ form of loop quantum gravity,
Phys.Rev. D56 (1997) 3490-3508 [gr-qc/9612035].

[110] V. Bonzom, Spin foam models for quantum gravity from lattice path integrals, Phys.Rev.
D&0 (2009) 064028 [0905.1501].

[111] V. Bonzom and E. R. Livine, A Lagrangian approach to the Barrett-Crane spin foam
model, Phys.Rev. D79 (2009) 064034 [0812.3456].

[112] A. Baratin and D. Oriti, Group field theory and simplicial gravity path integrals: A model
for Holst-Plebanski gravity, 1111.5842.

[113] E. F. Borja, J. Diaz-Polo and 1. Garay, U(N) and holomorphic methods for LQG and Spin
Foams, 1110.4578.



