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Abstract. In the Ashtekar-Barbero formulation of canonical
general relativity based on an SU(2) connection, Lorentz
covariance is a subtle issue which has been the focus of some
debate. Here we present a Lorentz covariant formulation
generalising the notion of a foliation of spacetime to a field of
local observers which specify a time direction only locally. This
field spontaneously breaks the local SO(3,1) symmetry down
to a subgroup SO(3); we show that the apparent symmetry
breaking to SO(3) is not in conflict with Lorentz covariance.
We give a geometric picture of our construction as Cartan
geometrodynamics and outline further applications of the
formalism of local observers, motivating the idea that observer
space, instead of spacetime, should serve as the fundamental
arena for gravitational physics.

1. Introduction

In first order formulations of general relativity one has a notion of local
Lorentz invariance, which can be thought of as one way of implementing
the equivalence principle .

It is crucial to understand the fate of this gauge symmetry in attempts
to quantise gravity, both theoretically and with regard to a possible
phenomenology of quantum gravity (including matter). There are strong
experimental constraints on many possible types of violation of Lorentz
covariance and any proposed theory of quantum gravity must prove itself
consistent with such constraints.
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In Hamiltonian formulations, in particular the Ashtekar-Barbero
connection formulation [2, [3], the issue of Lorentz covariance has been the
focus of some debate, since the Ashtekar-Barbero formulation naturally
uses the gauge group SU(2) or SO(?))E7 instead of the full Lorentz group.
The use of this smaller gauge group is connected to the appearance of
second-class constraints in previous attempts to maintain full Lorentz
covariance. Here we show how to avoid second class constraints and stay
Lorentz covariant by introducing a field of local observers. Details are
given in the paper [7].

2. Canonical First Order General Relativity

Starting from the Lorentz covariant Palatini-Holst action for vacuum
general relativity without cosmological constant

1
Sle,w] = %/ﬁabcde“/\eb/\RCd[w], (1)
where Kgpeq 1s an SO(3, 1)-invariant bilinear form on s0(3, 1),

Rabed = %Gabcd + %(nacnbd - nadnbc) s (2)
one can perform the usual canonical analysis and find that the 18
momenta ﬂéb conjugate to the spatial components of the connection wfb
are expressible in terms of only 12 tetrad components ef. This leads to
second class constraints, which provide an obstacle to quantisation and
usually require introducing new variables which are harder to interpret in
terms of spacetime geometry.
In Holst’s analysis [§] leading to the well-known Ashtekar-Barbero
formulation of canonical gravity, one deals with this issue by explicit
symmetry breaking to SO(3): Imposing ‘time gauge’ €? = 0 and defining

Aab _ wab + %Eabcdde, (3)

only the so(3) part of A (the Ashtekar-Barbero connection) has
nonvanishing conjugate momentum, and one avoids second class
constraints. However, this comes at the price of losing Lorentz symmetry
which is broken explicitly by the gauge choice.

2 The covering group SU(2) is required if one wants to include spinors. We
consider pure gravity; the symmetry groups we discuss arise as the isometry
groups of real manifolds or the stabilisers of points in them, and can be taken
to be real-valued matrix groups. By expressions such as SO(3,1), we mean the
connected component preserving orientation and time orientation.



In our formalism we replace time gauge by a condition involving a field
of internal observers y which specifies a time direction locally, and leads to
a spontaneous breaking of symmetry from SO(3,1) to a subgroup SO(3),
depending on y(x) at each spacetime point z.

3. General Relativity with Local Observers

For a given spacetime manifold with metric g or frame field e, we define
a field of observers as a unit future-directed timelike vector field u. Using
the frame field we can map it to a spacetime scalar y = e(u) valued
in the velocity hyperboloid H®> = SO(3,1)/SO(3). But such a field of
internal observers can be defined without specifying the metric, and is
hence suitable for a framework in which the metric arises dynamically as
a solution to the equations of motion.

Our formalism for generalised canonical gravity builds on the following
variables:

e a field of internal observers g, valued in H> C R3!, thought of as
giving a local notion of time direction,

e a nowhere-vanishing 1-form @, thought of as non-dynamical and
generalising the normal to a foliation (if @ A di = 0, @ is of the
form @ = N dt) — one can always reduce to the case of a foliation by
choosing an appropriate ,

e an Rg—valued ‘triad’ 1-form FE, where Rg is the subspace of R3!
orthogonal to y (this generalises time gauge).

The spacetime coframe field is then simply given by
e=FE+uy (4)

analogous to how one reconstructs the spacetime metric in the ADM
formulation using lapse and shift. As is usual in first order gravity, we
must require e to be nondegenerate. The field of internal observers y
defines a field of spacetime observers by y = e(u), and one finds that
E(u) = 0 so that F is actually spatial.

Similarly, we define spatial and temporal parts of the spin connection,

w=0Q+aE (5)

Substituting @) and (B into the Palatini-Holst action () gives us a
generalised Hamiltonian formulation of vacuum general relativity in terms
of an action depending on y, F,Q and = that we give in [7]. Up to this
stage everything is Lorentz covariant — we have just changed variables in
the action.



The role of the field of internal observers y is to give us a local
embedding of SO(3) into SO(3,1). The embedding can be freely changed
by applying a Lorentz transformation y — 3y = Ay; allowing those
Lorentz transformations instead of thinking of y as fixed restores Lorentz
covariance.

The spatial connection €2 can be projected to its so(3), part €. Then
under a local Lorentz transformation

Q= Q =A"QA+ 7, (A dA), (6)

where 7,/ is a projector onto s0(3),, and dt = d — @ A £, is a spatial
exterior derivative. Therefore, if one only applies SO(3), transformations
which leave y invariant, € transforms as an SO(3), connection, while if
one allows for transformations that rotate the local internal observer y to
', the transformed connection € is in s0(3),,. This is as it should be.

To understand the dynamical structure of this formalism, we focus
on the term in the action that determines the symplectic structure in
Hamiltonian general relativity,

1
S:%//@abcdd/\E“/\Eb/\fquCd—l--.- (7)

Since E A E is valued only in s0(3),, only half of the components of 2
have nonvanishing conjugate momentum. The number of independent
components of F matches the number of conjugate momenta, and no
second-class constraints arise — but we did not find it necessary to impose
any gauge fixing such as the time gauge employed in Holst’s analysis.

One can make the splitting of s0(3,1) into a rotational subalgebra
50(3), and a complement p, explicit by choosing local bases J# and B$®
(depending on y). Then

Al =0 + KT, (8)

is conjugate to (E A E)!, where Q and K are the s0(3), and p, parts of Q2.
@) is the Ashtekar-Barbero connection, and our formalism is dynamically
equivalent to the Ashtekar-Barbero formulation: It has the same phase
space variables, subject to the same constraints that define the dynamics.
In the form (8) manifest Lorentz covariance is lost; it can be recovered by
viewing s0(3), and p, not as fixed (isomorphic) representations of SO(3),
but as subspaces of s0(3, 1) specified by the field y.

4. Cartan Geometrodynamics

Situations of spontaneous symmetry breaking in gravitational theories are
geometrically best understood in terms of Cartan geometry [11]. A well-
known example is the MacDowell-Mansouri formulation [9] of gravity with



cosmological constant (we take A > 0 but A < 0 is analogous) in terms of
the SO(4, 1) invariant action

_ 3 ab cd\ e
Sym = 327G A /€abcde (F ANF ) Yy, (9)

where F is the curvature of an SO(4,1) connection A. The field y takes
values in de Sitter spacetime SO(4,1)/SO(3,1) C R*!; it breaks the
symmetry at each point in spacetime to the subgroup SO(3,1), leaving
y invariant. Fixing y = (0,0,0,0,1) in the action breaks the symmetry
explicitly.

The Lie algebra so(4,1) splits into a subalgebra so(3,1), and a
complement t,; identifying the so0(3, 1), part of A with the spin connection
w and the t, part with a coframe e,

w \/ge
A= n , (10)
—\/;e 0
the action (@) reduces to the Einstein-Hilbert-Palatini action with a
cosmological term.

Cartan geometry is about infinitesimally approximating the geometry
of a curved manifold by a homogeneous spacetime G/H (in this case
de Sitter spacetime) which generalises the tangent space RP'? used in
(pseudo-)Riemannian geometry. The Cartan connection A relates the
model spacetimes tangent to different points of the manifold — for a
model spacetime of non-zero curvature, A is flat if the manifold is
(locally) isomorphic to the model spacetime. This naturally introduces
a cosmological constant into gravity, given by the curvature scale of the
model spacetime.

Our reformulation of the Ashtekar-Barbero formalism for canonical
gravity is best interpreted as describing the geometry of space as Cartan
geometrodynamics: The so(3), connection Q (or, alternatively, the
Ashtekar-Barbero connection) and the triad E can be assembled into a

Cartan connection L
Q F
— 1
A ( o o ) , (11)

taking values in the Lie algebra of the Euclidean group iso(3) if we
consider a vanishing cosmological constant (I is an (unspecified) length
scale put in for dimensional reasons). The appearance of the group
ISO(3) is understood as follows: Spacetime is infinitesimally modelled on
Minkowski spacetime, with isometry group ISO(3,1). At a given point in
spacetime, picking an observer in the model Minkowski spacetime gives a
notion of ‘space’ in the model spacetime as the maximal totally geodesic



hypersurface orthogonal to this observer — in the construction above, we
referred to this as the subspace Ri orthogonal to an observer y. This
breaks the symmetry to ISO(3), the isometry group of Rg. Picking a point
in Rg tangent to the spacetime point then breaks the symmetry further
to SO(3), giving the splitting ([IIJ). For a more detailed discussion of the
geometry behind Cartan geometrodynamics we refer to [5].

5. Summary and Outlook

We have given a reformulation of canonical general relativity in first order
form which uses local observers that define a local notion of time. These
give an embedding of the rotational subgroup SO(3) into the Lorentz group
that allows to reconstruct Lorentz covariance from the SO(3) Ashtekar-
Barbero formulation of canonical gravity. The geometry behind our
constructions is best understood in terms of Cartan geometrodynamics.
Since this formulation requires only a local choice of time direction not
necessarily related to a foliation of spacetime, it links the canonical and
covariant formulations of general relativity [6].

It would be important to understand the coupling of matter — which
would be necessary to investigate the possibility of physically observable
Lorentz violation — and the role of the field of internal observers there. So
far they have been treated like lapse and shift, as Lagrange multipliers.
Making the observer field dynamical could relate our framework to models
with dynamical reference frames, such as Brown-Kuchaf dust [4].

Similar constructions could also be useful in approaches to quantum
gravity where local Lorentz covariance is not manifest, such as Horava-
Lifshitz gravity, shape dynamics or causal dynamical triangulations.

Taking the idea of local observers one step further, it is natural to
consider the space of all possible choices of local observer — observer
space. In general relativity, this is the direct product of spacetime
with the local velocity space H? of normalised future-directed timelike
vectors, but we consider it as a seven-dimensional manifold in its own
right and study its geometry, both in general relativity and in more
general settings. This is the viewpoint adopted in the work [5], where
we show how the Cartan connection A specified by a frame field e and
a spin connection w as in (I{) gives a Cartan geometry on observer
space, with model space SO(4,1)/SO(3), the space of all observers in
de Sitter spacetime. Conversely, we investigate integrability conditions
that allow the reconstruction of an invariant spacetime starting from an
observer space Cartan geometry (i.e. a general Cartan geometry modelled
on SO(4,1)/S0(3)); intuitively, such a reconstruction is possible if the
connection is flat in the ‘velocity’ directions of observer space.

Different approaches to quantum gravity and quantum-gravity



phenomenology incorporate the idea that spacetime geometry is an

observer-dependent (or ‘momentum-dependent’), relative concept. From

the perspective of observer space, such ideas correspond to observer space

Cartan connections that are not flat in velocity directions, so that no

invariant spacetime can be reconstructed.

One example is the proposal of relative locality [I] which suggests that
‘spacetime’ and hence the notion of locality are observer-dependent, but
there is an invariant momentum space shared by all observers. In [5] we
find that the framework of relative locality corresponds to an observer
space connection that is flat in ‘spacetime’; not ‘velocity’ directions. For a
general observer space geometry, both ‘spacetime’ and ‘velocity space’ are
only defined relative to an observer.

It will be interesting to see whether other ideas, such as that of an
‘effective metric’ (g, )x (depending on a momentum scale k) that appears
in the asymptotic safety scenario for quantum gravity [10], can be discussed
in the framework of observer space geometry.
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