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Light speed variation from gamma ray burst GRB 160509A
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Abstract

It is postulated in Einstein’s relativity that the speed of light in vacuum is a constant for all observers. However,
the effect of quantum gravity could bring an energy dependence of light speed. Even a tiny speed variation, when
amplified by the cosmological distance, may be revealed by the observed time lags between photons with different
energies from astrophysical sources. From the newly detected long gamma ray burst GRB 160509A, we find evidence
to support the prediction for a linear form modification of light speed in cosmological space.
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At T0=08:59:07.16 UT on 9 May 2016, the Gamma-ray Burst Monitor (GBM) [1] onboard the Fermi Gamma-ray
Space Telescope (FGST) was triggered by photon flux from the gamma ray burst GRB 160509A [2] (hereafter all
times are measured relative toT0). About one day later, beginning at 13:15 UT on 10 May 2016, the Gemini North
Telescope on Mauna Kea observed the optical counterpart of GRB 160509A and revealed a single, well detected
emission line which is interpreted as [OII] 3727AA at a redshift ofz = 1.17 [3].

The light curves of the two brightest GBM trigger detectors combined (GBM NaI-n0 and NaI-n3, 8∼ 260 keV) [4]
are shown in Fig. 1. In the left panel Fig. 1a where photon events are binned in 1 second intervals, a main pulse lasts
about 20 seconds after a first dim short spike near trigger-time. In the right panel Fig. 1b, photon events near the peak
of the main pulse are binned in 0.064 s intervals to determinethe peak time of the main pulse asTpeak= 13.920 s.

GRB 160509A also triggered the Large Area Telescope (LAT) [5] onboard FGST and is located at (RA,Dec)=
(311.3, 76.1) (J2000) by LAT with a 90 % containment radius of 0.12 degrees (statistical only) [6]. A 51.9 GeV event
was observedTarrive = 76.506 s after the GBM trigger. This photon is located at (RA,Dec)= (310.3, 76.0) (J2000) so
the directional coincidence of this photon with GRB 160509Ais very significant. Several other photons with energy
higher than 1 GeV, within the 90 second time window and withina 12◦ region of interest (ROI) [7] are listed in
Table 1.

Table 1: Photons with energy higher than 1 GeV from GRB 160509A

Eobs / GeV tarri / s (RA,Dec)

51.9 76.506 (310.3, 76.0)
2.33 24.258 (313.2, 75.9)
1.85 87.039 (308.3, 73.9)
1.52 50.570 (328.8, 72.5)
1.26 49.155 (311.3, 75.8)

Photons are selected within the 90 second time window and within a 12◦ ROI. Eobs is the observed energy while
tarri is the arrival time of these photons with respect to the trigger of GBM.
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Figure 1: Light curves of the two brightest trigger detectors combined (GBM NaI-n0 and NaI-n3, 8∼ 260 keV) for
GRB 160509A. In the left panel (a), photon events are binned in 1 second intervals. In the right panel (b), photon
events are binned in 0.064 seconds intervals to determine the peak of the main pulse asTpeak= 13.920 s.

Amelino-Cameliaet al. [8, 9] first suggested to use the data of GRBs to test energy dependence of light speed.
For photons with energyE ≪ EPl, whereEPl =

√

~c5/G ≈ 1.22× 1019 GeV is the Planck scale, leading terms in a
Taylor series expansion of the classical dispersion relation are

v(E) = c

[

1− sn
n + 1

2

(

pc
ELV ,n

)n]

, (1)

wheren = 1 or 2 is usually assumed.sn = ±1 indicates whether the high energy photon travels slower (sn = +1)
or faster (sn = −1) than the low energy photon, andELV ,n represents thenth-order Lorentz invariance violation (LV)
scale to be determined by the data. Taking the expansion of the universe into consideration, one has the arrival time
lag due to light speed variance between two photons with energiesEhigh andElow respectively as [10, 11]

∆tLV = sn
1+ n
2H0

En
high − En

low

En
LV ,n

∫ z

0

(1+ z′)ndz′
√

Ωm(1+ z′)3 + ΩΛ

, (2)

wherez is the redshift of the GRB source.H0 = 67.3± 1.2 kms−1Mpc−1 is the Hubble expansion rate and [Ωm,ΩΛ] =
[0.315+0.016

−0.017, 0.685+0.017
−0.016] are cosmological constants [12].

Observed time lag consists of both∆tLV and the intrinsic time lag∆tin at the source of GRBs [13],

∆tobs= thigh − tlow = ∆tLV + (1+ z)∆tin. (3)

The factor (1+ z) is due to cosmological expansion. Without further assumptions about the intrinsic properties of
GRBs,∆tin varies for different photons.

We combine Eqs. (2) and (3) as
∆tobs

1+ z
= sn

Kn

En
LV ,n

+ ∆tin, (4)

whereKn is the Lorentz violation factor

Kn =
1+ n
2H0

En
high− En

low

1+ z

∫ z

0

(1+ z′)ndz′
√

Ωm(1+ z′)3 + ΩΛ

. (5)

We can see that if the energy-dependenceof light speed does exist, there would be a linear relation between∆tobs/(1+z)
andKn. Photons with same intrinsic time lag would fall on an inclined line in the∆tobs/(1+ z)-Kn plot, and we can
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Figure 2: The∆tobs/(1+z) versusK1 plot for high energy photon events. Events in gray were included in Ref. [16] and
the mainline (solid line) was fitted by the eight events on it.The slope was determined as 1/ELV ,1 = 2.78×10−18 GeV−1

with s1 = +1 and the intercept is∆tin = −10.7 s. GRB 160509A is denoted by the red mark and falls exactly onthis
mainline. Two dash lines have the same slope as the mainline and their intercepts are−0.47 s and−20.77 s respectively.

determine∆tin of them as the intercept of the line with theY axis. The slope of this line issn/En
LV ,n, from which we

can determineELV ,n.
With known redshiftz = 1.17 and high energy photons, GRB 160509A can help constrain the possible energy-

dependence of light speed. Here we follow the works in Refs. [14, 15, 16], where photons with energiesE > 10 GeV
and within the 90 second time window are adopted as high energy photons described in Eqs. (2) and (3), i.e.,Ehigh =

51.9 GeV andthigh = Tarrive = 76.506 s for GRB 160509A. On the other hand, low energy photons are received
constantly during the burst so a unified criterion fortlow is required for different GRBs. We also follow Ref. [16] and
settlow as the peak time of the main pulse (Fig. 1), which, as a benchmark of a large number of low energy photons,
naturally reflects the intrinsic property of GRBs. Sotlow = Tpeak= 13.920 s for GRB 160509A. Since photons arriving
at tlow have energies between 8∼ 260 keV,Elow is negligible compared withEhigh. So it is reasonable to setElow = 0
in Eqs. (2) and (5).

In Refs. [14, 15, 16], some previous GRBs with high energy photons were adopted and analyzed. In Ref. [14], four
events from GRBs 080916C, 090510 (short), 090902B and 090926A were analyzed and three events from long bursts
were found to fall on a same line. After that, in Ref. [17], allknown photon events then with energies greater than
10 GeV, with measured redshifts and within a 90 second windowwere published (11 events in total, four in Ref. [14],
six reconstructed in Pass 8 from aforementioned GRBs and another one from GRBs 100414A). Ref. [15] exhausted
all events satisfying above conditions at that time (aforementioned 11 ones and another one from newly detected
GRB 130427A, which was extensively discussed in Ref. [18]) and revealed a regularity that 5 out of 12 events fall
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Table 2: Data of high energy photon event from GRB 160509A

GRB z thigh (s) tlow (s) Eobs (GeV) Esource(GeV)
∆tobs
1+z (s) K1 (×1018 s · GeV)

160509A 1.17 76.506 13.920 51.9 112.6 28.812 14.2

Data of GRB 160509A.thigh andtlow denote the arrival time of the high energy photon event and the peak time of
the main pulse of low energy photons respectively, with the trigger time of GBM as the zero point.EobsandEsource

are the energy measured by Fermi LAT and the intrinsic energyat the source of GRBs, withEsource= (1+ z)Eobs.
K1 is the Lorentz violation factor with a unit of (s· GeV) forn = 1.

on the mainline. In these two works, the trigger time of GBM was set as the low energy photon arrival timetlow in
Eq. 3. More recently, in Ref. [16], the peak time of the main pulse of low energy photons was suggested to betlow.
With this more natural choice oftlow, a stronger regularity emerges with 8 out of 13 photon events(another event from
GRB 140619B was detected and included) falling on the same line in the∆tobs/(1+z)-K1 plot (see Fig. 1 in Ref. [16]),
so a linear form (n = 1) light speed variation was suggested at a scale ofELV = (3.60± 0.26)× 1017 GeV.

The corresponding data for the newly detected GRB 160509A energetic photon event are listed in Table 2 in
comparison with Table 1 in Ref. [16]. Now we can check the position of this GRB 160509A event to test the prediction
from Fig. 1 in Ref. [16]. The results are shown in Fig. 2, wherethe gray marks correspond to previously observed
energetic photon events [16] and the red mark is the newly observed GRB 160509A event. It is quite surprising that
this GRB 160509A event falls exactly on the mainline (solid line) and the slope of the mainline remains unchanged
as 1/ELV ,1 = 2.78× 10−18 GeV−1 with this additional point. In other words, GRB 160509A strongly supports the
conclusion in Ref. [16].

In Ref. [16], it was discussed that there may be other ways to draw parallel lines in Fig. 2 (see Fig. 3 therein).
But with the additional energetic event GRB 160509A, the distribution trend seems to be more significant and one
has more confidence to draw the mainline. Furthermore, it is interesting to notice that two events GRB 090902B
and GRB 160509A, which play an important role for directing the distribution trend, have identical intrinsic energy
Esource= 112.6 GeV, so it is very reasonable to assume that they have identical intrinsic properties at the GRB source,
and consequently they have identical intrinsic time lag∆tin. Therefore one should draw a line across them in the
∆tobs/(1+ z)-Kn plot where, as we have mentioned, the intercept of this line with theY axis indicates the intrinsic time
lag∆tin. It is remarkable that this line in fact coincides with the mainline in Fig. 2. This provides a supplementary
justification for the mainline as an indication of light speed variation.

Finally, we want to mention that GRB 160509A also supports some other minor conclusions or conjectures in
Refs. [14, 15, 16]. The minus sign of∆tin, as the intercepts of the lines in Fig. 2, suggests that some high energy
photons are emitted before the intensive pulse of low energyphotons at the source of GRBs. Furthermore, the average
intrinsic energyEsource = (1 + z)Eobs of photons on the three lines in Fig. 2 are 40± 4 GeV, 72± 28 GeV and
96± 37 GeV respectively (from up to down). Such regularity suggests a chronological order dependent on intrinsic
energy of photons, i.e., the higher intrinsic energy one photon has, the earlier it is emitted, for the three groups of
photons cataloged by the three lines in Fig. 2. Of course, these conjectures wait for more data to verify.

In conclusion, we analyzed the energetic photon event of a recently detected long GRB 160509A and find that this
event strongly supports the prediction for a linear form of light speed variationv(E) = c(1− E/ELV ) in cosmological
space at a scale ofELV = 3.60× 1017 GeV.
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