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A new ensemble interpretation of quantum mechanics is eghaccording to which the ensemble associated

to a quantum state really exists: it is the ensemble of alkylstems in the same quantum state in the universe.

Individual systems within the ensemble have microscopatest described by beables. The probabilities of
guantum theory turn out to be just ordinary relative freques probabilities in these ensembles. Laws for the
evolution of the beables of individual systems are giverhghat their ensemble relative frequencies evolve in
a way that reproduces the predictions of quantum mechanics.

These laws are highly non-local and involve a new kind ofratgon between the members of an ensemble
that define a quantum state. These include a stochasticgsrbgevhich individual systems copy the beables of
other systems in the ensembles of which they are a memberprobabilities for these copy processes do not
depend on where the systems are in space, but do depend astthmition of beables in the ensemble.

Macroscopic systems then are distinguished by being laxdeeamplex enough that they have no copies in
the universe. They then cannot evolve by the copy law, andehdp not evolve stochastically according to
guantum dynamics. This implies novel departures from guanhechanics for systems in quantum states that
can be expected to have few copies in the universe. At the samewe are able to argue that the centre of
masses of large macroscopic systems do satisfy Newtons law
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I. INTRODUCTION

In this paper we propose a novel interpretation of quanturchaeics that offers new answers to some basic questions abou
qguantum phenomena.

1. Why do microscopic systems have indefinite values of alakdes, while macroscopic systems have definite values?
2. What is the meaning of the probabilities in quantum prs/ic
3. If the quantum state is associated to an ensemble, wheteeamembers of the ensemble to be found?

This new interpretation is a theory of beables, and heneesdhe measurement problem by asserting that there is statal
of affairs in any quantum system given by the values of thélesa At the same time, we assert that the quantum statelgescr
an ensemble of individual systems.

Resolving the measurement problem by means of a theory bldmeecalls existing hidden variables theories such asetho
of deBroglie Bohm[dl, 2], Vink[3] and Nelsan[4]. However, vaspire to remove an awkward feature of those theories which i
that the dynamics of the beables of individual systems dgparnthe wavefunction. In the formulations of de Broglie, Boh
and Vink this is expressed by an equation which asserts lieaparticle moves in a quantum potential, which is built from
derivatives of the wavefunction. In Nelson’s stochastiorfolation of quantum theory the osmotic velocity dependghmn
wavefunction[4| 5]. This dependence of the dynamics ofviidldial beables on the wavefunction is a characteristic noost
mysterious feature of quantum theory.

This dependence is awkward because of a principle, whichamecall the principle of explanaory closuranything that is
asserted to influence the behavior of a real system in thedwudst itself be a real system in the univertteshould not be
necessary to postulate anything outside the universe taiexpe physics within the one universe where wellivehis means
that the wavefunction must correspond to something re&lémiorld. In the de Broglie-Bohm interpretation this is stid by
asserting that the wavefunction is itself a beable. Thisltef a dual ontology-both the particle and the wavefworctre real.

But this violates another principle, which is thdwhere in Nature should there be an unreciprocated acfitnis means that
there should not be two entities, the first of which acts orstreond, while being in no way influenced b3 iBut this is exactly
what the double ontology of deBroglie-Bohm implies, beeatle wavefunction acts on the particles, but the positidrikeo
particles play no role in the Schroedinger equation whidemeines the evolution of the wavefunction.

A class of interpretations called "statistical interptetas” aim to overcome the double ontology by asserting thatvave-
function corresponds to an ensemble of systems. But tHsdhbrt of satisfying the principle of explanatory closurdess
that ensemble really exists in the world. It is not sufficiEnposit that the wavefunction corresponds to an epistensemble
that is defined in terms of our ignorance of the world. Neitkat acceptable to imagine that there is a spooky way in which
"potentialities affect realities.” If the behavior of indilual systems is to depend on a wavefuction which corredgpom an
ensemble, then the principle of explanatory closure dem#rat each and every member of that ensemble be a physitairsys
in the universe.

But if the elements of the ensemble the quantum state repseseast, then perhaps the apparent influence of the wagstdumn
on the individual entities could be replaced and explaingdteractions between the elements of the ensemble. Bygaiaing
the influence of the quantum state on the individual systet@rins of a new kind of interaction posited to act between memb
of the ensemble that the quantum state represents, weydatitsf the principle of explanatory closure and the prireipl no
unreciprocated action.

In interpretations in which the ensemble is epistemic it ldowt make sense to posit interactions amongst member®of th
ensemble because it would mean that physical particledittiaguished member of the ensemble that are real- armtiteg
with shadows that reside only in our ignorance of their trugioms. It would be to have reality depend explicitly on pbiisy.

But if all the elements of the ensemble are real then ther® ibarrier to positing new kinds of interactions amongst them
These interactions are certainly non-local. But we alrdsale strong reason to assert that any theory of beablesfraiduces
guantum mechanics must be highly non-local.

This leaves us with one more question to answer: where do émhbars of the ensemble corresponding to the ground state
of the hydrogen atom reside? There is a simple, but novel @anthat can be given to this question: in the universe. That is
the ensemble corresponding to a hydrogen atom in its grotatd & the real ensemble of all the hydrogen atoms in thergfou
state in the universe.

The test of this general idea is whether a simple form can bpgsed for the interactions amongst the members of the
ensemble, that reproduces quantum kinematics and dynammidact, we will see that a simple form of the interactiors, i

1 This argument and its implications are developedin [8].
2 Einstein invoked this princniple in a 1921 talk where he otgd to “the postulation,” in Newtonian mechanics, "of anth{the spacetime continuum) which
acts without being acted upon.’ [9].
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which the members of the ensemble interact in pairs, suffidéss simple interaction is that the beables of systems én th
ensemble copy each other’s states, with a probability tapedds on the beables of the systems in the ensemble.
Let us now proceed to make these ideas more concrete. Téipiatation is based on several simple hypotheses:

A. Basic hypotheses

e Quantum mechanics applies to small subsystems of the geivdtrich come in many copies. Thus, it applies to hydrogen
atoms and ammonia molecules, but not to cats or people orrniverse as a whole. Quantum mechanics is hence an
approximation to an unknown cosmological theory.

e For each microscopic system, there is an ensemble of systeimes universe with the same constituents, preparation and
environment. A pure quantum state is a statistical desonif one of these ensembles. The elements of the ensemble
will be labeleds; wherel =1,...,N.

¢ Each individual microscopic systen, in the ensemble has two beables. The first is the value of sbsereables, which
will be denotedB. The possible values & are indexed by = 1,...P and are denotel,. The second beable is a phase
€'?. We then assert that the microscopic state of an individusiksy is the value of the pair of beablés,, €®).

e The beables evolve by a discrete and probabilistic ruler@isea probability in each unit time that each systgraopies
the beables of systemy. When this happens,

a—a, €9 -» (1)

The probability that this happen will be assumed to be a fanaif the beables of the two systems as well as the number
of systems with the same values®fn the ensemble. It does not depend on where the members ehtigenble are in
the universe.

e The phases also evolve continuously according to a law teatepends on the distribution of beables in the ensemble.

e We hypothesize that there is a procesphbase alignmenby which the phases of two systems with the same values of
B evolve to become equal. The dynamics as first posited belowerves the alignment of phases. After that | present a
model for the dynamic alignment of phases.

e Finally, we hypothesize that these ensembles are well myethe dynamics just described, so that the probability to
make a measurement of the beaBlen any member of the ensemble and get a particular vajyies given by the relative
frequency with which that value appears in the ensemble.

We will expand on the motivation for these hypotheses shatid then show how they may be expressed in a form that is
equivalent to quantum mechanics. But what we have said fiiguit to answer the questions with which we opened.

1. Microscopic systems have indefinite values of beablesewtéicroscopic systems have definite values, because micro-
scopic systems come in many copies, and so are subject toplyeue, in which they evolve stochastically by copying
the beables of members of the ensemble they share. Maciosgstems are those that have no copies, anywhere in the
universe, hence they are not subject to the copy dynamics.

2. The probabilities in quantum physics refer to ordinary tela frequencies in an ensemble of real, existing systems.

3. The members of the ensemble are to be found spread throuileouniverse.

B. Moreabout beables and interactions amongst members of an ensemble

Before we go on to develop the hypotheses just stated it wmilgiood to revisit some aspects of the motivation. We begin
with the similarities and differences to other theories eéibles.

This proposal shares with hidden variables theories suateBsoglie-Bohm,Vink and Nelson the idea that there are real
beables. It shares with Nelson also the idea that pure guestates correspond to ensembles of individual systems ek
it differs from all of these interpretations in asserting tmsemble be physically real, as well as in several othpeots.

First, it eliminates the need to pick the configuration spase beable. In what follows there is assumed to be a beable
observableB but its choice is inessential. That this is possible was shbw Vink[3], by giving a deBroglie-Bohm like
formulation for a general choice of beables. Indeed, somih@fformal development that follows was inspired by Vink’s
papet[3]. Whether there is a preferred choice for it is aecttfpr future work.
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Second, we eliminate the double ontology which requireslthéh the positions of the particles and the wavefunction be
beables. This can be criticized as an extravogent hypathekich makes the world as ontologically bizzare as inttgtions
such as many worlds that posit the reality of the quantune stat

However, the lesson of Nelson's formulation [4], is thateaplained inl[5], one cannot succeed in making the whole wave
function just a derived property of an ensemble, deriverhftioe values of configurations of individual systems. Givenform
of the wavefunction,

W(xt) = /plxt)er S 2

it is certainly appropriate to regard the probability dénpix,t) as a property of the ensemble and we will do so. But it is much
more challenging to regard the ph&&g,t) as derived from an ensemble. For one thing, the deterndmigtlution equation for

the position beable of deBrogle-Bohm theory has the velatgpend orS(x,t). But, if the rates of change of beables depend
on S(x,t) it seems that by our principle of explanatory closi8,t) must also be a beable, or must be determined by beables.
But then this contradicts our second principle of no unnexipted influence and we find ourselves in trouble.

To get out of trouble we take a new approach to this conundiifa.posit that each individual microscopic system has a
second beable, which is a phas®,. We also posit that the dynamics forces these to a class digeoations in which they
come to depend on the other bealBedlencee® — €%, wherea, is the value of the beabk&in the systen. Once that is the
case the information to determine the funct®,t) is to be found distributed in the phase beables of all theviddal systems
in the ensemble.

An interaction between the beables of individual systeras ithake up an ensemble that is described by the quantum state
may seem a strange and novel idea. But once we regard the meeailibe ensemble as all physically real, this is just anothe
interaction between systems in the universe. Certainlgethieteractions are highly non-local, but we already knamfithe
experimental tests of the Bell inequalities that any thedryeables that reproduces quantum theory must be highhtowah.
After all, at one time the idea of an interaction between the &d the planets seemed bizzare, because it was a nom@dtioal
at a distance.

Once one accepts this general idea, the next step is to askheodynamics of an individual system can depend on the
beables of other members of the ensemble in such a way tharélaéctions of quantum mechanics can be obtained. This
is accomplished in the next section. We will see that to m#tehquantum evolution in this picture there must be both a
stochastic and a continuous evolution rule. There is a sighprocess by whichne member of the ensemble can copy the
beables of another member of the ensemibleis stochastic process realizes an idea that the beabkesyftem we prepare
here becomes unpredictably shuffled up with the beabled tifeakimilarly prepared systems in the universe. Theress al
continuous evolution of the phase beables. Both the stticlaasl continuous evolution rules depend on relative fezapies in
the ensemble.

One motivation for the copy rule is the idea that space is agrgemt property, as suggested by several proposals fotuquan
gravity. If space is emergent, then so is locality. From tlésspective, two systems with the same constituents, agpas
and environment, but only distinguished by their locatiospace, may be more closely related than is usually thougteed,
we already know that quantum statistics allows us to givetaofi positions where hydrogen atoms in their ground statesoa
be found, but does not permit us to assert which hydrogen &damwhich position. If this extends to the level of the beshl
then distinct beable configurations may not be stably latatigh respect to distinct positions in space. The whole erde
of beable states of identical subsystems may then evolveveyahat is not captured by the usual local interactions. dopy
rule is a simple suggestion for this new kind of interacti@hjch has a simple realization that reproduces quantum amec
Other rules might be contemplated, but as we will see the oalpysuffices for our purposes.

What is nice about the copy rule is that it by itself gives bk tlynamics the beables need. Imagine making a series of
measurements of the bealdeof an atom you hold in your laboratory. The first measuremeag.i The second is different, it
is a;. The explanation is not that there was a process by wdjavolved toa; but thata; was copied from another version of
that atom somewhere in the universe. Evolution occurs Isecan subsequent observations you will be seeing beablésdcop
from the ensemble. This appears to be like motion as a coaseguof the rule that gives the probability for the copy pssce
Indeed, we will see in Section V that in an appropriate limitihichh can be ignored this can account for classical motion of
large bodies.

In the next section we put the hypotheses we stated aboveirtise mathematical form and impose several reasonable
physical assumptions on the evolution rules. In sectiorwBl show that a very simple form of the rules then leads to the
derivation of Schrodinger quantum mechanics. Section B5ents a model for phase alignment. This is a dynamics for the
phase€'® which has a set of degenerate zero energy solutions thaisienpoth phase alignment and Schrodinger dynamics.
There are however issues of the stability of these solutibas remain a subject for further work. In section V we raise
and resolve a question unique to this conception of quant@chanics, which is whether we can derive the fact that large
macroscopic bodies obey Newton’s laws, while respecties@sertion that their precise microscopic states may lygiepand
hence not part of a large ensemble. A list of open questiotieisubstance of section VI, and the conclusions are stated i
section VII.



Il. THE REAL ENSEMBLE FORMULATION OF QUANTUM MECHANICS
A. Kinematicsand dynamics of individual systems
The hypotheses we enunciated above become a formulatioimt@ngretation of quantum mechanics, when we give them a
precise instantiation.

e Kinematics: description of individual states The state of an individual microscopic systesn,consists of the pair of
beables(a,e®)

e Theensemble of similarly prepared states. This system is one dfl similarly constituted systems in the universe, which
have been prepared in the same state and are subject to theegtemal forces as they evolve. These are labeled by

I =1,...,N. The state of the ensemble is specified by the collection io$ g a (t),e'q’ )},

e Ensemble state variables. The individual system evolves partly by a stochastic prec&ecause of this, an observer
studying a particular member of the ensemble, cannot predtic certainty which beables she will measure if she makes
a measurement at a later time. She can predict probabiflitietifferent beables to be observed, which are derived from
relative frequencies for the states in the ensemble. Thévelfrequencien,(t) are defined to be the number of systems
in the ensemble which have beable vatuat timet. These are normalized tp,n, = N. We will also writea for the
state of thd 'th system andh; = ny, for the number of copies in the ensemble of the beables ofsyst.

e Dynamicsof individual systems There are two modes of evolution of the beables of a system.

Stochastic evolution rule. There is a stochastic evolution by means of which the systeoan copy the beables of the
systems?.
The rate by which systeiincopies the beables of systehis assumed to be of the form

P(lcopyd) = F(n,@,ny, @, a,ay) (3)

When this happens the properties of the systérnimherits the properties of systes so that
a —al, €7 ew 4)
We note that the rate a systémopies the state of systeidris determined entirely by the beables of the two systems

P(lcop)(]”b:aj,a:aq = F(na| a(pa|7na37(Pa]aa7 b) = F(na| a(pa| ) nag7(Pa])ab (5)

This defines the rates of copyifigna, , @, Na;, sy )ab as functions of the beables. We note that by definition thepzem
nents off,, must be all positive.

Continuous evolution rule. When this mixing up or copying of the individual states doeshappen, the phase evolves
continuously in a way that depends on the ensemble. This mawstthe general form

¢ :ZG(nla(ﬂ7nJ7(PJ7alan) (6)

e Evolution of the occupation numbeng
We define the occupation numbeng, to be the number of members of the ensemble in staidey evolve as follows

Ny = ZJ; Baay (1 — Baq ) [P(Icopyd) — P(Jcopyl )]
= Zz daaOba [P(IcOpYd) — P(Jcopyl)]
JZ v7a

= lc;anbna [Fab— Fod (7)

e Evolution of the probability densities
From this we can write down a law for the evolution of the ptubty densities, defined by

n
Pa= 1y 8)



These must evolve as[3]

Pa= Z (PbTb—a — PaTash) 9
b#a
whereT,_,5 are transition rates.
From (3) above we see that
Tbaa = F (na| ) (pa| ) naJ ) (paJ )abna (10)

This is because the probability to copy a beable valwell be proportional to how many members of the ensemble
presently have that value.

Phasealignment. There is a specialization of the evolution rules which we alve to make to derive quantum mechanics
from this general framework. This is that

¢ =@ (11)

ie the phases are functions of the varialdgsThis will be called phase alignment. This is a stable coouljtbecause
once set as an initial condition it is preserved by the eimfutule [8). This is because we have then

(.d = ZG(nap(PapnaJa(paJaalan)

%nbe(nap(Paunap(PapalvaJ)
= %G/(na.,cpal,nm,cpa],al,m) (12)

This implies that

P = ge/(na, @as Mo, B ) ab- (13)

WhereG/(nav (pa7 nba (po)ab = an(na| 7(pa| 7naJ ) (paJ 9 al 7a\])

In section V we will describe and study a more general evoifuliiw has solutions which achieve phase alignment, but in
this and the next section we assume the phases have beezdaldially.

B. Restrictionson the evolution rules

We can introduce some physical considerations which wakals to restrict the form of andG.

1. Good large N limit

First, we do not have any evidence the probabilities for tuanstates to evolve depend on the size of the ensemble of
similarly prepared systems. So we require ffiat, andG’ depend on ratio%. We can also posit that only relative phases are

relevant, so thaf,_,, andG’ depend ore(® %) These together give us
F (N, @, N5, @)apna = F’(E—'J,e'(‘pa' “®))ap (14)
and similarly forG'.
G'(Na, @a, Mo, @b )ab = G’(E—Z,e'(%""“))ab (15)

These equations assume all the>> 1. There can be additional terms that go away in the ligit-> 1



2. Time reversal invariance

It is easy to see that these forms are constrained by timesaiavariance.
To see the implications of this let us consider an ansatz;lwhill be sufficient to recover quantum theory.

q
F/(E’el(% “9)) g = (%) R (&%~ )y (16)
Np Ny
n na\’
/(D2 e, <—> (), (17)
Ny Np
Note thatg (€% ~®3)),, must be positive.
We have then, becauge = &2 Pa
b= 3 (B2 (€% ) (B (10 ) 18)
p Pa
Timereversal sendg — —t butpa — pa. Let us suppose it also sepd — @a. Then we have under time reversal
pas b= 3 ((B2)9pu (&880 (22 (&) ) (19)
p Pa

We have time reversal invariance if this returns the samatimufor p,. Recalling the positivity ofg (€ (@ %J))ab this can
only be solved iig = 5 1 and@, = —@,. We also have to impose

R (€@ By, — g (@ ®)), (20)
We have then
a3 VPis (% (€ %))ap— % (& ®));,) (21)

Insisting on time reversal invariance @fn (I3) then implies that

U(2)ab= U(Z)ab: (22)
However the power is not fixed by time reversal invariance.
I11. RECOVERY OF THE SCHROEDINGER EQUATION

Let us summarize where we are as a result of our ansatz’s pdusriposition of a good larghl limit and time reversal
invariance. We have two evolution equations

Pa = b; (PaFab— PoFba)
_ % /Paps (9{ (@0 ®)) g (@ <pa>)ba) (23)
Pa= wa+b;a<2—2)r 2 (% D)4 (24)

wherew, = Uaa and Ry, and U 5p Satisfy the properties above.
We can now expang;, and 4, in Fourier series.

RabSin' (N(@a — @) + 33p) (25)

Ms

K(eupa %)

n

a



(e ¥ = 3 RECOSn(Ga— ) + ) (29)

To preserve the positivity df,p and henceryp, we have

. . | sin(B) when that is positive
sin (e)_{ 0 otherwise (27)

Itis remarkable that just the first term with the further slifigationsR, = R andd} = &1, suffices to reproduce quantum
mechanics.

R (€(® D))o — RapSin' (a — @+ Sap) (28)

(€% ®)) .y — Ryp COYPa — @y + Sab) (29)

where Ryp = Rya are positive constantd,p are constant phases which are odd under time reverse and,
This gives us evolution rules

p= ; v/PaPbRabSin(@a — @ + Gab) (30)
b#a
w=ont 3 (72) Rucosan -+ 31)
b#£a b

It is easy to check that with the choice 0 —% this reproduces Schroedinger quantum mechanics. To see/¢hivrite the
general quantum state.

Ve
\/ﬁ eflsz/ﬁ
|L|J >— 2 (32)
V/Pye M
which clearly is a property of the ensemble and not of an iddial physical system. Here we have defined
S, = hgy (33)

Equations[(30) and_(B1) and hence the evolution rules wegabsire then equivalent to evolution via the Schroedinger
equation,

av .
|ﬁa =HY (34)
driven by the hermition Hamiltonian
~ E1 A1 ...
H=|[ A, 22 .. (35)
here we have set
Dap = Rap€®0R (36)

A. Final form of theevolution rules

The final form of our evolution rules is

1 .
P(lcopyd) = mRmaus'”+((ﬂ—(PJ+5a|aJ)+fu (37)
: 1
@ = Q =wy +J; ﬁ%a;cos((ﬂ_%‘i‘éab)‘f'@u (38)

It must be emphasized that we have derived a correspondemgeahtum mechanics only with the proviso that>> 1 and
n >> 1. When these are not satisfied other terms could come inevtiletion rules. | have added termag and®,; to indicate
these.



IV. A POSSIBLE APPROACH TO PHASE ALIGNMENT

The elimination ofS(x,t) as a function of beable variables, and hence as an ontolagitity in its own right, rests on the
postulation of a dynamics which achieves phase alignméris mMeans that the phases,originally assigned independently to
each member of the ensemble, become aligned so they deplgrahdhe value of the beable, ie

@ — Q. (39)

As we have shown, phase alignment is a fixed point of the dyceme have postulated if (B7]38). But is it an attractor?
My investigations of this question have so far been incogieu But this is not the only option. It may be that the eviolut
described in[{38) is an approximation to another dynamaalwhich achieves phase alignment. We now describe a pessibl
model for such dynamics. We shall see that it is easy to shattliis model has solutions which achieve phase alignmant, b
there remains an open question as to the stability of thdagats.

Consider the following dynamical system, put in Hamiltonfaist order form for simplicity.

_ - 1,0 2o
S—/mzrﬂm—anm—§w>—;m;aﬁm—%> (40)
|
where the model depends on a new parameter, the frequerey is defined by eq[(38), and the notatidre a means the
subsystend shares the beable value with
We find the momenta are given by

M =¢-Qi(qn) (41)
which satisfy the Poisson brackets
{@, 7} =9 (42)
with the Hamiltonian
H= wa+ﬁgwm+ifzm¥w—%> (43)
Z 2 2 Jeq
The Hamilton equations of motion follow from the Poissondiets and includé (41) and
. . 0Qk (@,n
it =~ 2sing — ) cosp — o) — 3 R0 (44)

Let us takef very large compared t@ and the components &, and consider this evolution in the approximation where the
second term can be neglected. Then we can approximate (4ehtdl phase differences as

T =—f2n(Q — @) +... (45)
where
— 1
Qo = n_l Jeza| ©® (46)

is the average value of the phases in the subensemble tmas $ha value of the beable with systénThe Hamiltonian in this
approximation is

H= Z[ +Lna - (47)

In this approximationy is driven to the minimum of the potential where

0= (48)

so the phases align to their average values for each valuedidable. Once there we have frdm] (44) the full equations of

motion.

(49)
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A solution to this is

=1 =0 (50)
This implies

@ =Qi(q.n) (51)

which recovers[(38), and hence the Schroedinger equatisatiisfied. Hence our model has a degenerate set of zero energy
solutions which achieves both phase alignmlent (48) and¢heo8dinger dynamics. What we are not, however, able to show
that the solutiong (48,50,b1) are stable.

We can get a bit more insight by solving the actibn] (40)1ipand writing it in terms of complex variables = €9 which

satisfyz'z =1

S = /dtzl (@ — Qi(@n) J;ISInzcn CPJ)]
= /dtz Z+1Q1(zn)Z) (2 —1Q(z n)z.)—f; > sir(a —(PJ)] (52)
Jeq

This shows that the Wallstrom objection[10] is not relevesre, because the theory depends on the phase'? rather than
on@ directly®.

Finally, we can note that when phase alignment is satisfredwhole system becomes a lagrangian system, with an action
principle given by

S= /dtz <pa((-Pa— Wa) — b; v/PaPbRab COPa — @ + 6ab)> (53)

This suggests that thm, and@, are conjugate quantities in the phase of the more genemaftlie which phase alignment is
satisfied.

V. THE CLASSICAL LIMIT

Once the conditions are met which are required to derive tygnamechanics, one can continue from there and consider
the effect of takingh — 0. This should allow us to recover classical mechanics amiadif quantum mechanics, in the usual
way. But notice that the same conditions we require to gehfyua mechanics, which are large numbers of copies and large
occupation numbers, are needed to recover classical miesttarough this route. This raises the question of whetietheory
described here can account for the fact that large macrasbogdies obey classical dynamics, when we assert that theyt
obey quantum mechanics. Can we still derive the classiazduaycs of large bodies, while still respecting the disimtthat
the exact quantum states of macroscopic bodies will oftamriigue? The following argument shows that it can.

To show this we can start from the action principle (53). Letansider a simple model of the translational degrees efltra
of the atoms in a body in one dimension, given by a one dimeasiarray of sites, with periodic boundary conditions, with
a=1,...P labeling the sites. Let us multiplf (53) bdyto define an actios. We also can define the energy = hw,, and
the Hamilton-Jacobi functio&, = hg,. We want to construct a coarse grained model of a macrosbogig so we choose the
transition rates to give nearest neighbor interactionfinee with lattice spaceing, —

Rab = 5 (Bab 1+ Ba 1) (54
We define the potential energy to be
R
V(a) = Eat (55)

3 Thanks to Antony Valentini for suggesting this was the case.
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The action[(5B) then becomes

. 1 5
5= / dty pa <s+ (082 -V (@) - Vo + O(a)) (56)
where the quantum potential is
R? 02,/p
0= 57)
Neglecting the quantum potential or, equivalently, taking 0, we have the following equations of motion
.1
p= aax(paxs) (58)
. 1 5
S= 5 (09 +V(a) (59)

We recognize[(38) as the conservation of probability, withrent velocityv = %OXS and [59) as the Hamilton-Jacobi equation.
Thus, we recover an ensemble of classical systems obeyardamilton-Jacobi equation.

Note that if classical mechanics is construed to be an ajppadion to quantum dynamics, and the latter is a probatailist
theory of real ensembles, then so must be the former. Thatyswe derive classical mechanics in the form of an ensemble of
systems whose probabilities evolve in a way that is drivethiyHamilton-Jacobi equation.

There appears to be a puzzle here. It seems that an ensemdgjeiizd to derive classical mechanics as an approximadion
the copy dynamics proscribed Hy {34,38). But we have argu@dhhacroscopic bodies have distinct quantum states. And ye
the derivation of classical dynamics depends on the bealglepation numbers being large. That is a consequence oathe f
that we derived classical mechanics as an approximationaotgm mechanics, and therefor require the same condftioits
validity. Is there a contradiction here?

The resolution of this apparent puzzle is that we can dehgelassical description of motion from a model, which is arse
grained description of the microscopic beables. Becauablbg really exist, there can be an exact or fine grained ig&sor
in terms of beables that is unique and, at the same time, ailggalid coarse grained beables description in which teite
occupation numbers are large. We can use the latter appatinimto study the coarse grained motion of the atoms in tlay.bo
All we have to do is show that beables representing the cageseed translational states of individual atoms in a msaopic
body satisfy Newton'’s laws. It then follows that the centfenass does as well. To accomplish this all we need is thatttmsa
can be described in terms of beables in such a way that théy ansembles with large occupation numbers. To do this, \we ca
employ coarse grained beables, which is the occupation atsmb boxes which are large in units of the atomic spacing.

But if we choose the coarse graining sufficiently coarse abttiere are many atoms of the body in each box, we are in the
domain of large occupation numbers, just from the atomsaioadtl in that macroscopic body. We can then use the ensemble
which is at hand, which is that consisting of the atoms in thekitself. That means that the copy dynamics can work wittén
atoms of the body, when we restrict attention to the beahkgsrépresent a coarse grained measure of translationelrmdb
do this we consider the above to be a coarse grained modelefsamble of atoms making up a body and we take the classical
limit for the motion of each atom.

There may be larger ensembles that our atoms are a part @l bt is needed for our purposes is that there be at least on
So long as there is an ensemble in which the occupation nigabetarge we will derive quantum mechanics, whether that is
subensemble of a larger ensemble or not.

While we have to chooseso the occupation numbers, are large, the validity of the semiclassical approximateguires
also that the wavelengths are long, so we can neglect terorslefh, particularly the quantum potential. Hence, we choose the
lattice spacing so that

na>>1  hlag,S<<1 (60)

In this approximationp describes the ensemble of particles that make up the body,cfavhich propagates classically. Thus,
the centre of mass of the body also behaves classically. r&truhis set of assumptions, we have recovered the facthtbat
centre of mass of large bodies made of many atoms propaga@siang to classical dynamics.

What we did is completely consistent with the principles thapproach to quantum mechanics is based on, both in the use of
beables and the insistence that all ensembles we invokéngsicplly real. But there is a a deeper level of explanatiissing,
which would be something analogous to a renormalizationgicalculation that connects the two levels of descriptidore
ambitiously, if we knew more about the fundamental theoryichv we assert quantum mechanics is an approximation to for
small subsystems of the universe, we might be able to botlerstahd the dynamics of unique systems in the universe and
justify the derivation of the copy rule when applied to ceagsained descriptions of their beables. What we can saysattége
is that the use of coarse grained models like this is ubigsito condensed matter physics and experience shows suaisnod
usually succeed when they capture the coarse grained fiespefinterest in an experiment.
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VI. ISSUESTHAT REQUIRE MORE INVESTIGATION

We have seen that the hypotheses introduced here have & seaptation which reproduces quantum mechanics. Nonethe
less, as with any novel idea, there are issues which willirequore thought.

e What exactly defines the ensemble that corresponds to theuquastate? We need it to correspond to the ensemble of
systems made from the same constituents, subject to thefeares, that also share the same pure quantum state. Is there
a precise characterization of these ensembles that doesfapto the concept of quantum state? Does it suffice to say
that these systems have the same constituents, prepaatda@nvironment?

Such a characterization of the ensembles only makes semsedntext in which quantum mechanics is asserted to be
an approximation to a different cosmological theory. The aEmacrosystems to initialize and define preparations of
microsystems as a primitive notion has in common with Bohesvpoint that quantum physics requires a distinction

between micro and macro systems. This demands that therenbe more fundamental theory that quantum theory
approximates for small subsystems of a universe.

e Arelated issue concerns the relationship between differ@arse grainings of the beables used to provide the enesmbl
from which a quantum theory may be derived. As we have sedreidiscussion of the classical limit, a system such as
a macroscopic body whose fine grained description is unicayebe coarse grained to yield an ensemble. The copy rule
can be applied to different coarse grained models of the sgstem yielding different quantum mechanical models. This
need not be a conceptual problem, so long as we take the vawtlantum mechanics is always an approximation to a
deeper theory. This accords with much of the practice of tymarield theory and statistical physics, which is to regard
all the theories in common use as effective theories whiethased on some degree of coarse graining of the degrees of
freedom. Because nothing on the derivation of the Schradiaguation depends on the size of the ensemble, apart from
the requirement that all the beable occupation numbersaage,| different models, based on different coarse gra#ing
will lead to different quantum mechanical descriptionsjchtare presumably related themselves by coarse graining. B
there are two very interesting questions for further ingedton here. First, can we work out the precise relatigmshi
between coarse graining the dynamics described here amskeagpaining the quantum dynamics? Second, could there be
real observable effects coming from corrections to quarghysics that will depend on the size of the ensemble?

e What about composite systems? Equally important, how anmetdhies of composite systems to be treated? A quark is
part of a quantum system which is a proton, it is also part ai@deaus, an atom, a molecule, a quantum gate. There are
ensembles connected with each of these. Are the beablesatesionly with the highest level of the hierarchy that i st
guantum mechanical, or can a single beable evolve with cespseveral systems it is a part of?

This issue is also crucial for understanding if this propoaa resolve classic issues in quantum theory such as detang
ment and Wigner's friend.

e Does the ensemble require a preferred simultaneity to difinde could embrace this, in common also with deBroglie-
Bohm and assert that the world of beables is one with a pegfewtion of simultaneity. Or we could explore the posdipili
that the ensemble is defined relativistially, for exampleetier to all identically constituted and prepared systemihé
whole spacetime. Recent research in general relativityrdnasaled that there is a preferred notion of simultaneisy th
may play a key role in simplifying the dynamics of the the@ily[

e What picks the beables? Do the beables change when the sigsrrmthrough a different filter? Or is there a single
preferred basis, ie momentum space?

e How is the connection between linear operators and obskewabn-diagonal in the beables established? Presumably as
in dBB probabilities computed in a single basis suffice butatild be good to clarify this.

e The mechanism of phase alignment just discussed is ad hozasmgrobably be improved on. In particular, the question
of the stability of the solution that leads to phase alignhag Schroedinger dynamics must be investigated.

e The nodes issue. This is the most serious problem of this Recall that we required for the recovery of quantum
mechanics that ath; >> 0. This fails at nodes of wavefunctions, which is fosuch thap(a) = n; = 0. It is easy to
see that the correspondence between the rules we so faggasil quantum mechanics also breaks down when there are
such beables.

For suppose in the initial state defined by the preparati¢in= 0) = 0 for somea = ap. Then it follows than,(t) = 0 for
all time, for there is nothing to copy. Indeed:

Na = ; (NbNaFab — NaNpFoa) = % v/NaNpRap SiN(@a — @ + Oap) = 0 (61)
b£a
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To get more insight into this situation, we should look at¢keond time derivative

Ny = %\/@haRabSin((Pa_(Po“‘esab)"'-"
Na
n . .
; ; \ /n—b\/nancRabRacsm((pa—(poJréab) SiN(@a — @+ Oap) + ...
bZacZa a

Z v/MoNcRabRacSIN(Pa — @ + Bayay) SIN(Pa — @ + Bab) (62)
b#ac#a

Notice that in the passage from the second to the third linenwkiply and divide byng, = 0. The conclusion is then
incorrect.

There are two kinds of responses we can make to this issue.

We assumed ahy andn, were large in arguing for the form that led to quantum thedfrthis viewpoint is correct that
guantum dynamics fails for systems that are in states tieat@que in the universe. As we indicated above, there could
be other terms that come in.

Nonetheless the problem is easy to address also within ttiertuules. All that is required is either 1) require that th
basis chosen for the beables is such thahgie- 0 or 2) add to the universe a small number of spectator stateadh
possible a so that no, = 0. 3) Insist on a tiny admixture to every state of a state witlmanon-vanishing such as the
ground state.

e Might deviations from quantum mechanics be observable?3bthis idea we would like to predict phenomena which
do not occur in conventional quantum mechanics. The nodas is a sign that there must be such phenomena. When a
guantum system is large and complex enough that it has alsleestites which are likely to have small occupation num-
bers in the universe, deviations from quantum mechanicbe@xpected. We note that it is likely that these violatealign
locality, as has been shown to be necessary with a largeaflass-local hidden variables theories out of equilibriin[

It would be interesting to determine if indeed the posdipitif faster than light signalling exists in this formulatiof
guantum mechanics for cases where quantum dynamics breaks d

e Is the mixing given by the copy rulé{B7) fast enough to actéonobservations? Might there be an observable process
of relaxation of a single systems outcomes to the ensemldéveefrequency and hence to the quantum mechanical
probability distributions?

e What theory is quantum mechanics an approximation to? T$teafisumption of this approach is that quantum mechanics
is an approximation to a different, cosmological theonyplagable only for small subsystems that come in many copies.
We then can aspire to discover the principles that this nihvesry is based on. A first goal will be search for principles
which could characterize such a theory that might be testibéxperiments where quantum mechanics is expected to fail
because the requirement that occupation numbers be laggkddown.

VIlI. CONCLUSIONS

Here we have proposed a new interpretation of quantum méashbased on a new concept of the distinction between a
microscopic and macroscopic systems. The distinctionas tticroscopic systems are those that come in vast numbers of
copies in the universe, while macroscopic systems are lmgamplex enough that they are unique. Only microscopiesyst
can satisfy the laws of quantum mechanics, because thosataweonsequences of the copy dynamics, and these dontant w
there are no systems to copy.

Hence, this proposal addresses the question as to why ntapiosystems do not have quantum properties. It is simgly th
if a system is sufficiently composite it has so many possitaltes that it has no copies within the universe. It is a merober
an ensemble of one. It is simply a fact that there are a vasbeuof hydrogen atoms in each of the low lying states witha th
Hubble scale. But there is only one you, and only one systemtical quantum mechanically to your cat Emily. This implie
that quantum mechanics must be an approximation to a cogimaldheory which is formulated in different terms.

As aresult of its limited domain of applicability, the prag@ we have made here may have striking consequences fai-expe
ment, for it proposes a new regime where quantum dynamiaddifal or receive corrections. Quantum dynamics shouild fa
both for systems that have no copies in the universe and &es)s in states that are unique in the universe. This leasask
whether it is possible to use the technology of quantum cdatjon to produce a device that can be put into unique, colere
guantum states, unlikely to exist anywhere else?
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Similarly, we should expect that the dynamics of systems nedes may be revealing of the underlying dynamics which
replaces quantum theory for individual systems.

More generally, the new distinction we have introduced leetvmicroscopic and macroscopic suggests an explorati@ fo
new regime of mesosccopic physics: those systems whiclikehg 1o come in a small numbers of copies in the universe. The
study of such systems should reveal evidence for the uridgtigws that quantum mechanics approximates.

This proposal also implicitly addresses speculation byestimeoretical cosmologists that the universe comes in amnitifi
number of copies which contain many exact and inexact cajigee Earth and each one of us[11]. Within the present pralpos
the fact that macroscopic bodies do not appear to satisfguperposition principle can be taken as evidence that tiverse
is finite so that we and other macroscopic bodies have no sofa the other hand, testing the limits of the applicabiity
guantum mechanics to mesoscopic systems like quantunitsiraay make it possible to do local measurements which could
determine whether there are any copies of them in the uriters

A number of queries and issues can be raised concerningrtipegal, some of which were discussed above. These need to
be better understood before the proposal made here can sielemd to be in final form.
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