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1. Origins

String theory was conceived partly by accident and partly by design. It arose in the

study of scattering amplitudes for hadronic bound states. Lacking a fundamental

formulation (that today is believed to be Quantum Chromodynamics), hadronic am-

plitudes were studied in the 1960’s using symmetry, consistency and some observed

properties such as the asymptotic rate of growth of cross-sections with energy. A

beautiful formula proposed in 1968[1, 2] embodied the expected properties of 4-point

amplitudes. The Veneziano formula eventually turned out to describe the scattering

of open relativistic strings. These were later generalised[3] in a way that is now

understood to describe closed-string scattering1.

The proposed hadronic amplitudes depended on the familiar Mandelstam vari-

ables

s ≡ (k1 + k2)
2, t ≡ (k1 − k3)

2, u ≡ (k1 − k4)
2 (1.1)

where ki are the momenta of the two incoming and two outgoing particles, and also

on a parameter α′ with dimensions of (length)2. α′ is phenomenologically defined as

the slope of “Regge trajectories”, approximately linear plots of the spin of different

hadronic resonances versus their (mass)2. A basic reason why Regge trajectories

should be linear was not known, nor was it clear what α′ means in fundamental

terms.

Over the next couple of years, Susskind[5] and independently Nambu[6] proposed

a way to understand the Veneziano formula, and thereby the strong interactions, from

a novel starting point. They postulated the existence of a “fundamental” relativistic

string to represent the confining flux between quarks. Quantising this string would

lead to physical excitations that could be identified with the baryonic and mesonic

states formed by bound quarks.

The world-sheet action2 describing a free string propagating in flat spacetime

can be written:

S =

∫

dσdt
√

− det(∂aXµ ∂bXµ) (1.2)

1Details on the early history of string theory, along with references, can be found in Ref.[4].
2For derivations and explanations of the results in this section, with references, see for example

Ref.[7].

– 2 –



where (σ, t) are the parameters labelling points on the string world-sheet, Xµ are the

space-time coordinates of the string and ∂a = (∂σ, ∂t). The integral is the invariant

area of the world-sheet in the pull-back of the flat Minkowski metric of space-time.

The action possesses reparametrisation invariance on the world-sheet and by a suit-

able gauge-fixing of this invariance it can be brought to the simpler form:

S = 1
2

∫

dσdt ∂aX
µ ∂aXµ (1.3)

subject to constraints. This action is conformally invariant at the classical level.

The first success of string theory was in explaining Regge behaviour. This follows

from the fact that the oscillator modes a†µn that create excitations of the string, being

Fourier modes of the string coordinate Xµ(σ, t), carry a spacetime index µ. Applying

a particular oscillator n times to the ground state |0〉 creates a state:

|µ1µ2 · · ·µp〉 = a†µ1
n a†µ2

n · · · a†µp

n |0〉 (1.4)

with n symmetrised spacetime indices. This means that the spin of the state is n.

At the same time the (mass)2 operator for a string is the number operator for these

oscillators in units of the string tension. Hence the above state has (mass)2 ∼ nT

with T being the string tension. Regge behaviour then follows immediately and we

see that the Regge slope is α′ = 1/T . Note that in units where ~ = c = 1, tension

indeed has dimensions of (length)−2 and hence α′ has dimensions of (length)2. It is

a fundamental constant of string theory.

Quantising the fundamental string carefully using different methods confirmed

the expectations: strings display Regge behaviour and the scattering amplitudes of

low-lying strings states are, at tree level, those postulated by Veneziano and Virasoro

along with their generalisations.

Some surprises also emerged. At the quantum level, conformal invariance of

the string world-sheet action turns out to have a quantum anomaly that vanishes

only in a spacetime of 26 dimensions. In the presence of the anomaly, standard

quantisation of the string is inconsistent (a mode describing scale fluctuations of the

world-sheet fails to decouple). Therefore string theory is, in particular, inconsistent

in four space-time dimensions.

There is also another problem. Even in 26 dimensions, the particle spectrum of

the string starts with a state of tachyonic (imaginary) mass. This arises from the

combined effect of the zero-point energies of infinitely many oscillators describing the

independent modes of the string. Tachyons are present in the spectrum of both open

strings, which are interpreted as carrying quarks at their ends, and closed strings,

which describe the quark-less sector of the theory of strong interactions – what we

would today call the glueball spectrum.

A tachyon in the particle spectrum of a theory does not necessarily mean the

theory is inconsistent. This is familiar in ordinary quantum field theory, where a mass
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term of the “wrong” sign (equivalent to making the mass imaginary) is interpreted

as an instability of the theory when expanded above a vanishing expectation value

of the field. Such theories are generally consistent when we expand the field about

its true (non-zero) vacuum expectation value. This phenomenon is well-understood

in quantum field theory, and is the basis of the Higgs mechanism crucial to the

Standard Model of particle physics. Unfortunately it is much harder to understand

explicitly in the context of string theory. Shifting a field by its own expectation value

in string theory requires knowledge of the “off-shell” dynamics of strings, which was

certainly not known at the time string theory was first studied. In the last decade or

so, however, more powerful techniques[8, 9] have taught us that the tachyonic string

theory described above (now known as the “bosonic string”) is indeed inconsistent,

because the analogue of the Higgs potential is unbounded below and the expectation

value of the field therefore “runs away” to infinity.

Analysis of the spectrum of open and closed strings reveals that while both

contain tachyons, both also contain conventional massless and massive particles. In

particular open strings produce a spin-1 massless particle while closed strings produce

a massless particle of spin 2 (spin is of course measured in units of ~). Such particles

do not have any obvious counterpart in the hadron spectrum. As we will see below,

this fact led to a radical new role for string theory: as a theory of fundamental

processes.

The consistency requirements of 26 dimensions as well as the presence of a

tachyon and a massless spin-2 particle proved rather discouraging for the string ap-

proach to hadronic physics. The focus of strong interactions therefore soon shifted,

with the quark model slowly becoming a reality and being described successfully

by a gauge field theory, quantum chromodynamics. In this period the string idea of

Susskind and Nambu remained a useful qualitative picture to model the force between

quarks. The fact that under normal conditions quarks are permanently confined fits

nicely with the notion that they are connected by strings of fixed tension, because

then increasing the inter-quark separation gives rise to a linearly growing potential

energy which is naturally expected to confine.

2. Superstrings

2.1 The fermionic string

A small group of physicists continued to think about strings in the 1970’s[4] although

by then the focus of particle physics had shifted to gauge theory. They investigated

the formalism of string theory with a view to addressing its negative features, pri-

marily the tachyon and the requirement of 26 dimensions. Also the original string

theory did not contain fermions in its spectrum, so the inclusion of fermions became

one of the goals.
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It was a natural step to introduce fermionic degrees of freedom on the string

world-sheet. These were to be thought of as “fermionic coordinates” ψ(σ, t) part-

nering the usual bosonic string coordinates Xµ(σ, t). A proper treatment of the

fermionic string took some time to evolve but by the end it was clear that some of

the excitations of this string were indeed fermions in space-time. Many remarkable

features emerged from this somewhat formal exercise. The world-sheet theory of the

fermionic string exhibited an entirely novel symmetry (at the time) called “super-

symmetry”, that related bosons to fermions. Moreover the particles that arose by

quantising this string were also related to each other by supersymmetry, but now in

space-time. The fermionic degrees of freedom modified the condition that had re-

quired 26 space-time dimensions in the original string theory. The required number

of dimensions was now 10 – still far from the real-world value of 4, but considerably

closer.

Space-time supersymmetry has an immediate and striking consequence. In su-

persymmetric systems the contributions of bosonic and fermionic degrees of freedom

to the zero-point energy cancel each other out. This result immediately implies the

absence of tachyons in the new “superstring” theory. Thus three distinct problems:

a very high critical dimension of 26, the presence of tachyons and the absence of

fermions, were all simultaneously solved by the advent of superstrings.

2.2 Gravity and gauge symmetry from superstrings

Given that the original motivation for string theory had been to explain the forces be-

tween quarks and the formation of hadrons, the advent of superstring theory seemed

to take the subject in an entirely new direction. It could not be applied to the strong

interactions for several “obvious” reasons: it was still not consistent in 4 spacetime

dimensions, and it had spacetime supersymmetry which is not a property of the

strong interactions at least at low energies. But the most undesirable property was

that, upon quantisation, the free closed superstring had a massless spin-2 excitation,

while the free open superstring had a massless spin-1 excitation. These were features

of the original bosonic string theory that, unlike the tachyon, did not go away by

introducing supersymmetry, and they seemed to have little to do with hadrons.

In quantum field theory, fields of integer spin very generally have a problem with

negative-norm states. The reason is that the norm of a state carrying vector indices

can only be Lorentz invariant if it is expressed in terms of the Minkowski metric. For

example a vector state |µ〉 or a tensor state |µν〉 will have norms proportional to:

〈µ|ν〉 ∼ ηµν

〈µν|ρσ〉 ∼ ηµρηνσ + · · ·
(2.1)

where in the second line there can be extra terms to reflect the symmetry/antisymmetry

of the state if any. Because ηµν has a negative component, the above formula always
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leads to a negative-norm state. As a consequence, unitarity of the theory becomes

problematic.

The solution to this problem is that fields of integer spin must have a local

invariance. This can project out the negative-norm states and restore unitarity. In

the case of spin-2, the local invariance is that of general coordinate transformations

and the resulting theory is general relativity. With this symmetry, unphysical modes

of a spin-2 particle that would have had null or negative norm decouple and the

particle is interpreted as a graviton. This line of thought motivated the suggestion

that a similar mechanism may hold for superstrings. If so, one could interpret the

spin-2 particle in the closed string spectrum as a graviton. Closed string theories

would then be theories of gravity. By the same token, since open strings have massless

spin-1 particles in their spectrum and these are consistent only in the presence of a

local gauge symmetry, one would expect that open strings describe gauge particles.

These rather audacious proposals could be subjected to very stringent tests. If

closed strings described gravity and open strings described gauge interactions, it

must be that the string-string interactions contain a tightly correlated set of terms

dictated by the symmetries of these interactions. For example, general coordinate

invariance predicts a unique interaction vertex among four gravitons at two-derivative

level (i.e. having two factors of momentum in the interaction). This is unique both

in its coefficient (once the propagator and three-point function are normalised) and

in its tensorial structure.

Now, unlike in quantum field theory where one is free to add any interaction one

likes (at least at tree level), in string theory there is a unique prescription[7, 10] to

compute scattering amplitudes for any fixed background. For four-point amplitudes

at tree level, this amounts to expanding the superstring analogue of the Virasoro

amplitude and keeping the leading term in the parameter α′. From this one reads

off the interaction term in an effective Lagrangian for the corresponding massless

particle. Remarkably this turns out to have exactly the structure predicted by general

relativity.

The expansion of the Einstein-Hilbert Lagrangian

√

|g|R (2.2)

in powers of the fluctuation field hµν defined by:

gµν = ηµν + hµν (2.3)

is well-known to contain infinitely many powers (hµν)
n, with definite index contrac-

tions, corresponding to contact interactions of n gravitons for every n. Therefore to

establish rigorously that general relativity is reproduced by the tree-level scattering

of closed strings, one would need to calculate n-point closed-string amplitudes for
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all n, a rather difficult task. Nevertheless every term that has been computed leads,

after performing allowed field redefinitions, to the correct expression in the expanded

Einstein-Hilbert action. So there can no longer be any doubt that closed superstrings

describe gravity3.

It is not just Einstein-Hilbert gravity that is described by strings, however. The

scattering amplitudes for closed strings have an expansion in powers of α′. Be-

cause α′ has dimensions of (length)2, these terms must have additional powers of

momenta, or in position space, derivatives. These higher-derivative terms too are

found to be general-coordinate-invariant. Since they can be neglected for sufficiently

slowly varying fields, the correct statement is that closed string amplitudes repro-

duce Einstein-Hilbert gravity for slowly varying fields, with calculable corrections

expressed in terms higher-order variations of the fields.

A very similar calculation for open strings reveals that to lowest order in α′ one

finds a non-Abelian gauge theory of Yang-Mills type, with its characteristic cubic

and quartic self-interactions. Again there are higher derivative corrections that are

suppressed for slowly varying fields. In the simplest (Abelian) case, an infinite subset

of these turns out to be in correspondence with the old non-linear electrodynamics

theory of Dirac and of Born and Infeld[10].

The more general non-Abelian calculation was initially performed using a some-

what ad hoc prescription, introducing matrices called “Chan-Paton factors” at the

ends of the open string. In the presence of such matrices, one automatically ob-

tained a U(N) gauge group for N × N matrices. The introduction of unoriented

open strings enabled one to realise orthogonal and symplectic groups as well. Much

later it became clear that these Chan-Paton matrices were labelling dynamical ob-

jects on which open strings end, or “D-branes”, about which we will say more below.

Thus the proposal that closed and open strings describe gravity and gauge theory

was convincingly supported by amplitude calculations. Because all known fundamen-

tal interactions fall into these two types, it is no surprise that string theory emerged

as a natural framework to describe the world.

2.3 Dilaton and the genus expansion

So far we have spoken only about tree amplitudes. In field theory, “tree level” refers

to the lowest order in an expansion in a coupling constant. In string theory, by

contrast, there is no parameter in the theory other than the dimensional constant

α′. Therefore “tree level” as discussed above refers simply to a computation where

the world-sheet has a tree-like configuration without any holes or handles. For a

3For bosonic strings, on ignoring the tachyon one finds that they also describe gravity in more

or less the same way. Now the tachyon can be meaningfully ignored at tree level, but once quantum

(loop) corrections are included then the tachyon renders the theory inconsistent. Hence we confine

our main remarks to the tachyon-free superstring.
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beautiful reason, this in fact turns out to be the lowest order in a “hidden” string

coupling.

This arises as follows. Along with a graviton, quantisation of the closed string

gives rise to a massless scalar particle called the dilaton[7, 10] denoted Φ. In pertur-

bation theory it turns out that this scalar has no potential, and is therefore the first

of many scalars in string theory (called “moduli”) that can take arbitrary vacuum

expectation values.

From the unique structure of string interactions one can infer that in tree dia-

grams the dilaton couples to the low-energy Lagrangian by an overall multiplicative

factor of e−2Φ. The vacuum expectation value 〈Φ〉 = Φ0 can be taken outside action

and gets identified with 1
g2

where g is a coupling constant, since that factor (in some

frame) is what multiplies the whole action of a field theory. Thus by virtue of the

dilaton VEV, string theory acquires a coupling constant:

g = eΦ0 (2.4)

Now if we compute scattering amplitudes on world-sheets of some higher genus

h > 0, it can be shown that the power of the dilaton VEV multiplying the action is

e(2h−2)Φ0 . It follows that world-sheets of genus h are weighted by g2h−2 and there-

fore the perturbation expansion of string theory is an expansion in world-sheets of

increasing genus:

+ + ...

Order 1 Order (g2)

In each order one has to sum over all surfaces of the given topology. This sum is subtle

for various mathematical and physical reasons, but has by now been thoroughly

investigated.

2.4 Quantum corrections

Once it was clear that superstring theory is consistent at tree level, it became ex-

tremely urgent to check for its consistency after introducing perturbative quantum

corrections, known in field theory as “loop” corrections[11, 12]. The rules for tree level

superstring amplitudes are particularly easy to extend to the next order in pertur-

bation theory, namely one-loop level corresponding to genus-one Riemann surfaces.

Here the proposal that closed strings describe gravity can receive its first test at the

quantum level.
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Einstein-Hilbert gravity suffers from ultraviolet divergences in every order of

perturbation theory. From this it follows that at least in a perturbation expansion the

theory is non-predictive. String theory could well turn out to have the same problem.

However, there are physical grounds for optimism. One may hope that the spatial

extent of the string (parametrised by α′) could provide an ultraviolet cutoff. Then

graviton scattering in superstring theory would have finite loop corrections. This

hope was dramatically realised with the computation of one-loop graviton amplitudes

in superstring theory, which indeed turned out to be ultraviolet finite.

In field theory, it is known that combining supersymmetry with gravity leads

to the theory of “supergravity” in which gauged or local supersymmetry is present.

Therefore just on symmetry grounds, one can show that the low-energy effective ac-

tion of superstring theories must correspond to a field theory of supergravity, possibly

coupled to supersymmetric matter (and augmented by higher-derivative corrections).

Now, important phenomenological work using supergravity theories was done in the

late 1970’s and early 1980’s(see for example Ref.[13]), ignoring the fact that – as field

theories – they were probably not ultraviolet complete. In a remarkable convergence

of streams of research, superstrings provided a sound justification for this work: the

interesting physical applications of supergravity at low energy could co-exist with an

ultraviolet-finite high-energy completion coming from string theory.

Thus superstring theory was understood to be, in 10 dimensions, a quantum

theory of gravity incorporating non-Abelian interactions and supersymmetry in a

unified framework. With gravity and non-Abelian gauge symmetry being undisputed

properties of nature, and supersymmetry also a likely property, superstring theory

exhibited the potential to answer all the important questions about fundamental

interactions that had remained unsolved for over half a century. Moreover it was a

theoretical formulation of unmatched beauty and power. However it was very far

away from being able to reproduce even gross properties of the real world such as

the observed gauge groups and parity-violating particle spectrum.

There were few people working on superstrings at the time this state of affairs

was reached. Particle theorists were more excited, and with good reason, over the

recent successes of the electro-weak theory as well as quantum chromodynamics.

Moreover, the calculational techniques of string theory as understood at the time

were unfamiliar and difficult to grasp. And of course gravity was totally irrelevant to

the particle-physics experiments which these theories could explain so convincingly.

2.5 Conformal invariance and the sigma-model approach

Stepping briefly out of historical sequence, we mention here a slightly different ap-

proach to studying strings that provides more direct evidence of the presence of

gravity and general coordinate invariance. In this approach, instead of studying

strings propagating in flat spacetime one writes down the world-sheet action for
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strings propagating in an arbitrary curved space-time, and more generally in arbi-

trary background fields. In the specific case of a nontrivial space-time with metric

gµν(X) (in some coordinate system), the world-sheet theory reduces to a non-linear

sigma-model in two dimensions, with Lagrangian:

L =
1

2
gµν(X)∂aX

µ∂aXν + · · · (2.5)

where as before Xµ(σ, t) is the position coordinate of the string and the world-sheet

derivative is ∂a = (∂t, ∂σ). The terms represented by + · · · are those which depend

on the fermionic coordinates of the superstring.

When gµν(X) is a non-trivial function of X , the above action describes an inter-

acting two-dimensional field theory in which the coordinatesXµ play the role of scalar

fields. Because it has no dimensional coupling4, this theory is classically conformal

invariant just like the one for strings propagating in flat space-time that we discussed

earlier. We already saw that conformal invariance is generically violated and renders

the theory inconsistent unless the dimension is critical. In the present case there are

additional sources of anomalies, so not only does anomaly-freedom fix the critical

dimension to a critical value (10 for superstrings) but it also imposes conditions on

the allowed metric gµν(X). Indeed, to first order in α′, a short calculation[14, 15]

reveals that the theory remains conformally invariant if:

Rµν = 0 (2.6)

Notice that this is Einstein’s equation in a vacuum! This resemblance is no co-

incidence. It has been convincingly argued[16, 17] that the condition for conformal

invariance imposed on the string sigma-model is equivalent to the equations of motion

of the effective low-energy field theory arising from the string theory. In particular

for backgrounds with non-trivial stress-energy, the conformal invariance condition

becomes the standard Einstein equation with the stress-energy on the right hand

side:

Rµν = 8πGN

(

Tµν +
1

2−D
gµνT

)

(2.7)

Thus, conformal invariance of the string world-sheet provides a new principle,

without an analogue in particle mechanics, to derive space-time actions. In particular

it shows that the low-energy effective action of closed string theory, to lowest order

in α′, is given by the Einstein-Hilbert action Eq. (2.2). This term is universal for all

superstring (and even bosonic string) theories. But from the next order in α′ there are

4This is potentially confusing because the coupling is really
√
α′ which multiplies each occurrence

of Xµ. The explanation is that from the space-time point of view both α
′ and X

µ are dimensional,

with
√
α′X

µ being dimensionless. But from the world-sheet point of view both α
′ and X are

classically dimensionless, this being true for Xµ by virtue of its identification with a scalar field in

2 dimensions.
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differences depending on whether one does or does not have supersymmetry. Some

corrections that arise in the bosonic string do not arise for the superstring[15, 18].

This has crucial consequences for the physics of the theory: in the superstring,

space-times that solve the equations of motion to lowest order in α′ can continue to

solve them when higher-order corrections are included. This is not so in the bosonic

string, where higher-order corrections rule out a large class of potentially interesting

solutions.

2.6 New insights about gravity: I

The developments reviewed above gave rise to several important insights into the

nature of quantum gravity. Many were properties of gravity that had already been

suspected or conjectured but for which string theory provided a concrete realisation

and/or tangible new evidence.

(i) It is possible to have a well-defined ultraviolet finite theory of gravity, with

the characteristic minimum size providing a UV cutoff. Even if the idea is not totally

new, string theory provides a precise mechanism and allows one to dissect precisely

how the cutoff works. The world-sheet of the string is a Riemann surface on which

certain diffeomorphisms called “modular transformations” act. While summing over

all surfaces, the dangerous ones for UV divergences are those that become very “thin”,

corresponding to high momentum flowing through. But a modular transformation

relates such “thin” surfaces to others that are not degenerating, so we never actually

reach infinitely thin surfaces, or equivalently infinitely high momenta.

(ii) Higher derivative terms are generic. Any effective action will have this prop-

erty, but in string theory one sees for the first time a concrete computation of these

terms given a particular space-time background.

(iii) Space-time is an option. Classical solutions are configurations that give a

conformal-invariant world-sheet, and these need not resemble space-time (for exam-

ple, a tensor product of “minimal” conformal field theories with total central charge

equal to the critical value but each component having central charge less than 1

would be a valid solution).

(iv) Gravity and gauge symmetry have a common origin. With closed and open

strings, the identical quantisation procedure yields respectively gravitons and gauge

bosons. Moreover gravitons arise by combining a “vector” state from the left- and

right- movers of the closed string, making them in some sense the “square” of gauge

fields. Present-day research on gluon and graviton amplitudes (see for example

Refs.[19, 20] has revealed more and more structures suggesting this “square” re-

lationship between gravity and gauge theory. A deep understanding of this could

revolutionise our understanding of the gravitational force.
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3. Structure and varieties of superstring theories

3.1 Five types of superstrings

String theories, like field theories, have supersymmetry generators that are organised

as spinors of the relevant local Lorentz group. Thus in 10 dimensions, a super-

symmetry generator (or “supercharge”) Qα is a real 16-component Majorana-Weyl

spinor of the local Lorentz group SO(9, 1). Now it was found (for details, see for

example Refs.[7, 12]) that string theory could accommodate either one or two such

spinor generators as a symmetry5, leading to type I and type II superstring theories

respectively.

It was also shown that type II theories can only have closed strings, because open-

string boundary conditions break supersymmetry6. Moreover, the two Majorana-

Weyl supersymmetries can correspond to a pair of spinors of opposite chirality or

the same chirality, leading to two physically inequivalent theories called type IIA

and type IIB. The latter is parity-violating, since both supercharges have the same

chirality.

In type I theories one has open strings which, via the Chan-Paton mechanism

discussed above, are associated to a gauge group7. The Chan-Paton mechanism is

able to accommodate only gauge groups of the unitary, orthogonal or symplectic

types. Thus, at least classically, one can have infinitely many type I superstring

theories in 10 dimensions, one for each choice of gauge group. Having one chiral

supercharge, they are all parity-violating in 10 dimensions.

An exotic way to achieve a “type I-like” theory is to match the left-moving sector

of the type II superstring to the right-moving sector of the bosonic string. This leads

to the so-called “heterotic” superstring theory[21]. Because it uses only half the

type II superstring, in a precise technical sense, it has half the supersymmetries

and therefore has N = 1 supersymmetry in 10 dimensions. For historical reasons

heterotic strings are not called “type I” because the latter terminology is reserved

for string theories having both open and closed string excitations about the vacuum.

As one would expect, the low-energy limits of type I/II string theories are type

I/II supergravity field theories in 10 dimensions. The field theories contain the mass-

less fields associated to the string. Because supersymmetry is so tightly constraining,

one can actually write out the entire low-energy action for type I/II strings at the

classical level and to lowest order in α′ purely on grounds of supersymmetry.

5The same is true in 10d field theory.
6Much later it was understood that there are actually sectors in type II theories that admit

open strings. The physical interpretation of these sectors is in terms of dynamical objects called

D-branes that we will discuss below.
7In a modern interpretation the presence of open strings is interpreted in terms of “condensed

D-branes in the vacuum”.
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Quantum mechanically, it is essential to check that the parity-violating string

theories are free of anomalies. Because anomalies do not depend on the ultraviolet

behaviour of a theory, the anomaly structure is the same for superstring theories and

for their low-energy supergravity field theories. A search was therefore launched in

the early days for possible anomaly-free supergravity theories (possibly coupled to

supersymmetric Yang-Mills theories) in 10 dimensions. Type IIA is trivially anomaly-

free, while type IIB supergravity theory was found[22] to be anomaly-free due to

non-trivial cancellations among a number of anomalous contributions.

Later Green and Schwarz[23] studied the type I case. They made the remarkable

discovery that there were precisely two anomaly-free field theories in 10 dimensions,

one with gauge group SO(32) and the other with the exceptional gauge group E8×E8.

On trying to match these with string theories they found that an open-and-closed

type I theory could be constructed to have gauge group SO(32). However, no such

theory with Chan-Paton factors can have the gauge group E8×E8. Heterotic strings,

however, can incorporate either of the two gauge groups. Thus at the end we have

five superstring theories in 10 dimensions: type IIA, IIB, type I (SO(32)), heterotic

(SO(32)), heterotic (E8 ×E8).

The “almost uniqueness” of superstring theory, including a tight restriction on

gauge groups in the type I case, was very exciting. A selection principle governing

the gauge groups that can occur in nature would be quite unprecedented. Such a

principle has never existed in four dimensional field theory, where the constraints

of anomaly freedom are still present but they restrict the representations that can

appear rather than the groups themselves.

The elegant classification into five distinct superstring theories was somewhat

tempered by the later discovery of non-supersymmetric strings that, like superstrings,

are tachyon-free and whose critical dimension is still 10. These theories were found

by extracting different space-time dynamics from a common world-sheet theory by

imposing different projections on it. These discoveries presaged the advent of duality,

which made it very clear that essentially all string theories are different vacua of a

common theory.

3.2 Tensors and Ramond-Ramond fields

In addition to the graviton, the ground state of the closed string contains a whole

supermultiplet of massless fields in 10 dimensions. With maximal or N = 2 super-

symmetry, this supermultiplet includes the graviton, the dilaton and several tensor

fields of the type Cµ1µ2···µp
that are totally antisymmetric in their indices (see for

example Ref.[12]). These are referred to as “p-forms”. Some of these p-forms are

special in the way that they arise from string quantisation and the nature of their

associated gauge invariance (a point that is too technical to discuss here). They

carry the name “Ramond-Ramond (RR) fields”. Type IIA strings have RR 1-form
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and 3-form fields while type IIB strings have RR 0-form (scalar), 2-form and 4-form

fields.

To illustrate the structure of the low-energy theory, we quote here the action

of type IIA supergravity keeping only the RR 1-form and ignoring the other tensor

fields and fermions:

Stype IIA =
1

(2π)7ℓ8s

∫

d10x
√

−‖G‖
[

e−2Φ
(

R + |dΦ|2
)

− 2

8!
|dA|2

]

(3.1)

where we have used the notation ℓs =
√
α′. Here Gµν ,Φ are the graviton and dilaton

while Aµ is the RR 1-form. We will return to this action in a subsequent section.

3.3 Perturbative dualities

String amplitudes possess the attribute of “channel duality” which can be sum-

marised as follows[4, 7]. In particle physics, two-particle to two-particle scattering

takes place in one of three ways, corresponding to the s, t and u channels (associated

to the three possible ways of connecting up four participating particles in a Feynman

diagram). However, in string theory the corresponding scattering process has just

one contribution, which embodies within it all three channels. This is a manifesta-

tion of the fact that string scattering is described via a world-sheet, which can be

smoothly deformed at will so that the process resembles any of the s, t or u-channel

processes for particle scattering.

Another duality in string theory arises naturally when the spacetime contains

non-contractible circles (a detailed review can be found in Ref.[24]). The string, being

an extended object, can wrap around a circle of radius R giving rise to a “winding

state” with energy:

E ∼ n
R

α′
(3.2)

where n is the winding number. But the spectrum of the theory also contains familiar

states of quantised momentum when the string propagates as a whole along the

compact direction. Such states have a typical energy:

E ∼ m

R
(3.3)

where m is the quantised mode number.

We see that for a large radius R of the circular direction, the winding states

are heavy due to their spatial extent, while the momentum states are light. But if

R is sufficiently small then the situation is reversed: winding states are light while

momentum states become heavy due to the uncertainty principle. In fact under

the replacement R → α′/R, the spectrum of winding and momentum states gets
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interchanged. Moreover it is known that all interactions of the string are preserved,

with winding and momentum states simply getting interchanged. Therefore

R → α′

R
(3.4)

is an exact symmetry of string theory. This symmetry is called “target-space duality”

or “T-duality” for short.

Both channel duality and T-duality are intrinsic and remarkable properties unique

to string theory.

3.4 Superstrings and 4d physics

As a starting point to describe the fundamentals of the real world in 4 space-time

dimensions, string theory had all the desirable properties one might want – partial

uniqueness, gauge and gravitational interactions, fermions and parity violation. But

one had to derive 4-dimensional physics, specifically the Standard Model at low

energies, from this structure.

It has long been known in field theory that gauge fields in four dimensions can

be obtained by compactifying a theory of pure gravity in higher dimensions. This

was the Kaluza-Klein mechanism, in which gauge fields arise as isometries of the

compactification manifold. However, it was shown by Witten[25] that a parity-

violating spectrum in four dimensions could not be obtained in this way by starting

with a purely gravitational theory in higher dimensions. Applied to string theory,

this ruled out type IIA and IIB string theories and focused attention on the type

I and heterotic versions which had non-trivial gauge groups in 10 dimensions. The

Type I open-closed string theory admitted only the SO(32) gauge group and it

gradually became evident that an anomaly-free compactification starting from this

gauge group, under quite general conditions, also failed to give parity violation in

4d.

That left only the E8 × E8 gauge group, which was realised exclusively in het-

erotic string theory. The low energy field theory of such a string, compactified to

4 dimensions on a suitable class of 6-dimensional manifolds, was shown in a classic

paper of Candelas, Horowitz, Strominger and Witten[26] to yield qualitatively cor-

rect phenomenological properties, including parity violation. The 6-manifolds with

favourable four-dimensional phenomenology were known as “Calabi-Yau” spaces.

This development sparked off an explosion of interest in string theory worldwide.

Subsequently a class of simplified compactification models were discovered[27]

that make use of “orbifolds” rather than smooth manifolds. Typically orbifolds

are singular limits of smooth manifolds. In appropriate orbifold limits the entire

curvature of a manifold can be concentrated at a discrete set of points while the rest

of the space is flat. This considerably simplifies the analysis of the spectrum and
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interactions. Of course such an approach will not work if the singular curvatures

give rise to singular answers for amplitudes. However it, emerged that under fairly

general conditions string propagation at a singularity is smooth, in part due to the

extended nature of strings.

In hindsight, despite the defining historical role played by the Candelas et al pa-

per, its central premise – that a realistic string theory incorporating and generalising

the Standard Model, plus gravity, was round the corner – has not proved to be cor-

rect. One of the fondest hopes implicit in this work, that of starting with an “almost

unique” theory and obtaining 4d physics via an “almost unique” compactification

dictated by elegant mathematical considerations, is now believed to be far from the

truth. One of the key issues unresolved issues of the time was how to deal with the

plethora of massless scalars, or “moduli” inherent in almost any compactification.

By the time this problem was effectively addressed, the scenario had changed consid-

erably, as we will see, with the discovery of many non-perturbative features of string

theory.

The study of string compactifications led to the discovery of a new and unex-

pected mathematical property[28] called “mirror symmetry”. This was the occur-

rence of pairs of 6-manifolds of Calabi-Yau type with a remarkable property: while

the members of the pair have little geometric resemblance to each other, strings

propagate in precisely the same way on both of them. The interchange of the two

“mirror” manifolds is an exact symmetry of string theory. Thus in the domain of

stringy quantum geometry (a concept yet to be completely unravelled), these man-

ifolds would be completely indistinguishable from each other. Besides the input

to mathematics, mirror symmetry provides a useful physical result. Upon varying

moduli, examples have been found where a particular manifold undergoes topology

change while its mirror remains smooth. This makes it clear that topology change

can be a perfectly smooth phenomenon in string theory. It is now understood that

mirror symmetry is a sophisticated version of T-duality, which has made it slightly

less mysterious.

3.5 New insights about gravity II

Despite the absence of compactification schemes that could reproduce the real world,

some remarkable new properties of space-time emerged from these investigations.

Most of the illuminations stemmed from T-duality, described above. By relating

short (sub-string-scale) distances to long distances, this challenged the very nature of

geometry. It gradually emerged that a new “stringy geometry” is a more appropriate

concept for the way space-time behaves in string theory.

An immediate consequence of T-duality was the proposal[29] that when the

universe contracts to a big bang in the far past, one should simply perform a T-

duality when stringy sizes are reached and thereafter the universe will expand in
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the new coordinates. More generally, the ability of the string to effectively resolve

singularities and the possibility of topology change potentially provide important

inputs into cosmology.

4. Non-perturbative string theory

The latter half of the 1980’s saw efforts to systematise (even classify) two-dimensional

conformal field theories, as these were now understood to correspond to possible

string vacua. In particular, it was hoped that the right compactification 6-manifold,

of “Calabi-Yau” type, would reproduce the Standard Model in a unified framework

that contained gravity and was UV finite. Apart from many other complexities, one

of the most frustrating problems encountered in this process was that of massless

scalars or moduli fields. To avoid seriously conflicting with experiment they needed

to be “stabilised” or given a mass by some mechanism. There were early hints[30]

that the inclusion of fluxes over the compactification space would help, and these

turned out correct. However it proved impossible to stabilise all moduli using known

perturbative mechanisms.

Therefore it was hoped that non-perturbative effects in string theory would lift

these moduli. Perhaps non-perturbative phenomena could also rule out some or most

of the possible compactifications, whose ever-growing variety was proving to be an

embarrasment. However, such effects could not even be studied within the existing

formalism of string theory, essentially a set of rules to produce a perturbative S-

matrix. At this stage string theorists began to seek non-perturbative information

about the theory. A number of routes were explored and all led to valuable insights.

4.1 Random matrices and noncritical strings

The first successful approach to non-perturbative string theory was to use random

matrices to model the string worldsheet as a sort of random lattice (for a review,

see Ref.[31]). In a suitable continuum limit, the Feynman diagram expansion for the

matrix theory would include all topologies of string worldsheets and one might hope

that results could be extracted beyond perturbation theory. This approach worked

only for vacua of string theory in very low spacetime dimensions (in particular, one

space and one time) and moreover with a coupling constant that varies along the

space dimension8. The continuum limit could also be analysed using standard world-

sheet techniques (for a review of the continuum approach, see Ref.[32]).

We saw that the perturbation series for strings is described by a set of surfaces.

For each topology, we have to sum over all conformally inequivalent metrics on the

8The varying coupling successfully evaded the D=26 consistency condition, but unfortunately

replaced it with the new condition D ≤ 2.
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surface. This description is intrinsically perturbative in the string coupling. The

matrix approach works instead by discretizing the worldsheet.

+  ...  +

Thus the surface is divided into triangles and summing over all ways to do this

implements the sum over all surfaces. This in turn is done by writing a random

matrix integral, a simple example being:
∫

dM e−N tr
(

1
2
M2 + gM3

)

(4.1)

where Mij is an N × N Hermitian matrix. This can be expanded in a Feynman

diagram expansion:
∫

dM e−
N
2
trM2

∞
∑

n=0

1

n!

(

−gN trM3
)n

(4.2)

which, as usual, is drawn in terms of propagators and vertices. The propagator for

a matrix, 〈MijMji〉, and the vertex trM3 = Mij MjkMki are represented pictorially

by:

i i

j j
and

i

k
j

k
i

j

respectively. Connecting propagators and vertices, one constructs graphs that have

cubic intersections, and their dual graphs are then triangulated random surfaces. In

the process one finds that the string coupling constant is effectively:

g ∼ 1

N
(4.3)

where N is the rank of the matrix.

In these “non-critical” strings it proved possible to go beyond just the finite-

order diagrammatic expansion. Here one could compute scattering amplitudes to

all orders in perturbation theory, an unprecedented achievement, and also identify

non-perturbative effects9. The key consequence of these studies was the unexpected

9The original non-critical string theories were later found to be non-perturbatively inconsistent,

but this problem was overcome by introducing world-sheet supersymmetry[33]. Therefore in the end

this development did lead to non-perturbatively consistent and well-understood string backgrounds.
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discovery that non-perturbative effects in string theory scale differently from those

in field theory[34]. While the latter are typically of order:

∼ exp

(

− 1

g2

)

(4.4)

where g is the coupling constant, stringy non-perturbative effects were found to scale

as:

∼ exp

(

− 1

g

)

(4.5)

which is a considerably larger effect at weak coupling.

This observation was at the root of the discovery, a few years later, of D-branes.

These objects, viewed as classical solutions of type II string theory, give rise to effects

that scale as in Eq. (4.5) because their masses (or, in the case of instantons, their

actions) scale as:

M ∼ 1

g
(4.6)

This makes them lighter, and their effects correspondingly more important, compared

to the traditional heavy solitons/instantons in field theory whose masses/actions scale

like:

M ∼ 1

g2
(4.7)

and which are therefore responsible for conventional non-perturbative effects as in

Eq. (4.4).

4.2 Non-perturbative dualities

Studies of magnetic monopoles and dyons in quantum field theory reveal a great

deal of similarity between these magnetic objects and the usual “fundamental” exci-

tations of the quantum field which carry electric charge. Indeed, the only significant

physical difference between the two classes of objects is that in a weakly coupled field

theory, fundamental electric states are relatively light (with masses independent of

the coupling constant) while solitonic magnetic states are heavy, their masses scaling

as in Eq. (4.7).

Similarities in the dynamics of these objects motivated the proposal of “electric-

magnetic duality” – that there exists a transformation on a field theory which in-

terchanges the roles of electricity and magnetism (for a review of this concept and

much of the material in this section, see Ref.[35]). In order to exchange fundamental

and solitonic objects of the type described above, this duality must act as:

g → 1

g

M(g) → 1

g2
M

(

1

g

) (4.8)
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Clearly this takes a weakly coupled to a strongly coupled quantum field theory. So

initially it was difficult to imagine how it could ever be tested.

The resolution came from the “quantum BPS bound” or Witten-Olive[36] bound.

In the original formulation due to Bogomolny[37] and Prasad and Sommerfeld[38]

(BPS) this was a classical lower bound for the mass of solitons and magnetic monopoles

in terms of their charges and parameters of the theory. When the bound was satu-

rated, it became easier to obtain classical solutions of the field theory. But it was

realised that generically quantum corrections would affect the mass, and the bound

would therefore no longer be saturated in the quantum theory. Witten and Olive

showed that the situation is very different in field theories with extended supersym-

metry.

In such theories they noted that the “central charge” in the supersymmetry alge-

bra, evaluated on charged states, evaluates their electric/magnetic charges. Moreover

when the BPS bound between mass and charge is saturated, the representations of

supersymmetry become shorter – the multiplets have a reduced dimensionality. As

a typical example, in a theory with 16 supersymmetry generators a generic state

has a multiplicity of 28 = 256 but a BPS state has a multiplicity of just 24 = 16.

As long as supersymmetry is not violated by quantum corrections, this ensures – as

an exact operator statement – that states saturating the bound classically continue

to saturate it at the quantum level, since quantum corrections cannot continuously

deform a 16-dimensional vector into a 256-dimensional one.

This discovery provided unprecedented control over quantum corrections in the-

ories with extended supersymmetry. In such cases (the most famous being N = 4

supersymmetric Yang-Mills theory in 3+1 dimensions) one could now make some

definite statements about the strongly coupled theory. For example the spectrum of

BPS states had to be isomorphic to that at weak coupling, something that is not

true generically without the BPS condition since field theory states can decay as the

coupling changes.

Such considerations led Ashoke Sen in a classic 1994 paper[39], to propose a

test for strong-weak coupling or electric-magnetic duality in a compactification of

superstring theory to four dimensions which at low energies (and ignoring α′ cor-

rections) reduced to N = 4 super-Yang-Mills theory, He showed explicitly that the

spectrum of this theory fulfils the requisite conditions for strong-weak duality. This

result sparked off a wave of interest in non-perturbative duality. Following it, a va-

riety of dualities were discovered in different field theories, notably Seiberg-Witten

theory[40], and in compactifications of string theory[41, 42]. These dualities were

non-perturbative in nature and could only be argued for using properties of BPS

states as explained above.

The role of duality in string theory was a unifying one. Apparently different

compactifications of different 10-dimensional string theories were related by conjec-
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tured duality transformations for which stringent tests were proposed. String theory

passed all the tests, and in each case did so by strikingly different dynamical mech-

anisms. During this period, it became more clear than ever that the underlying

structure of string theory was very rigid and constrained, and that dualities were an

intrinsic and deep property built into the theory.

Let us briefly describe how duality operates in uncompactified type II string

theories. In type IIB, the strongly coupled theory is dual to the weakly coupled

one but with an important change: the fundamental string gets interchanged with

a D1-brane (alternatively called “D-string”). Something quite different happens in

the type IIA superstring – it gets mapped not onto a weakly coupled string theory,

but into a theory with an extra dimension[42]. The large coupling is exchanged

for the size of the extra (circularly compactified) dimension. In the limit of infinite

coupling we find an 11-dimensional theory that has 11-dimensional supergravity as

its low-energy limit.

Under this duality the string of type IIA string theory reveals itself to be a mem-

brane of the 11-dimensional theory, which has been dubbed “M-theory”[43]. This

brings 11d supergravity, the most beautiful and unique of all supergravity theories,

into the framework of strings10. It also enlarges the scope of string theory by relating

it to a theory where the important excitations are not strings at all.

Before duality, it was thought that there were five different superstring theories

in 10 dimensions and from them a large variety of lower-dimensional theories could

be obtained via compactification. However these compactifications now turn out to

be duality transforms of each other, and a path exists (via compactification, duality

and de-compactification) between all the 10-dimensional string theories. Moreover

they can all be linked to M-theory in 11 dimensions.

4.3 D-branes

Besides membranes, other extended “brane”-like solitons are known to exist in var-

ious supergravity theories. These were extensively explored in the late 1980’s and

early 90’s. The typical strategy for finding such branes is to postulate that they exist

and saturate the quantum BPS bound. This leads to simpler equations of motion

whose solutions, at least when there is a high degree of supersymmetry, are guaran-

teed to solve the full supergravity equations of motion. In this way, several explicit

solutions have been found. Among such “brane” solitons, some of them in type II

string theory carry charges under the Ramond-Ramond gauge fields, a striking fact

given that no states previously known in the theory carried such charges. Moreover

these have tensions that scale according to Eq. (4.6) rather than Eq. (4.7), which

makes them lighter than conventional solitons at weak coupling. Finally, they exist

1011 is the highest space-time dimension in which supergravity exists.
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in pairs whose tensions are related by electric-magnetic duality according to:

T (g) =
1

g2
T

(

1

g

)

(4.9)

Let us examine some of these solitonic brane solutions in a little detail (see

for example Refs.[12, 44]). For this purpose we will need the supergravity action

including the Ramond-Ramond sector, which was written down in a previous section

for type IIA string theory, retaining only the graviton, dilaton and 1-form Ramond-

Ramond gauge field Aµ:

Stype IIA =
1

(2π)7ℓ8s

∫

d10x
√

−‖G‖
[

e−2Φ
(

R + |dΦ|2
)

− 2

8!
|dA|2

]

(4.10)

Now we start by looking for a classical solution corresponding to a point particle that

is charged under Aµ. This will be given by a spherically symmetric gravitational field

along with an electric flux of Aµ. Coulomb’s law for field strengths in 10 dimensions

has a 1/r8 fall-off, so the field strength Fµν = ∂µAν − ∂νAµ takes the form:

F0r ∼ N

r8
, r → ∞ (4.11)

where we anticipate that there will be N quantised units of this flux.

The gravitational field is specified by writing the metric:

ds2 = −
(

1 +
r70
r7

)− 1
2

dt2 +

(

1 +
r70
r7

)
1
2

9
∑

a=1

dxadxa (4.12)

where r =
√
xaxa. This is like an extremal Reissner-Nordstrom black hole in 10

dimensions (in these coordinates the horizon is at r = 0). To complete the solution

we have to specify the dilaton and gauge potential:

e−2Φ = e−2Φ0

(

1 +
r70
r7

)− 3
2

A0 = −1

2

[

(

1 +
r70
r7

)−1

− 1

] (4.13)

where we recall that gs = eΦ0 .

We can compute the mass of this object from the classical solution, and the

result comes out to be:

M =
1

d g2s ℓ
8
s

(r0)
7 , (4.14)

where d is a constant. Using the Dirac quantisation condition one can argue that

this object can only occur in integer multiples of a minimally charged object, where

the integer is:

N =
1

d gs ℓ7s
(r0)

7 (4.15)
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This can be thought of as the charge of the object in units where the minimum

charge is unity. The supergravity solution is valid only when N is large, i.e. r0 ≫ ℓs,

otherwise the curvatures will be large and we are not entitled to use the lowest-order

action in α′.

From the above formulae we see that:

M =
1

gsℓs
N (4.16)

Now, just using supersymmetry one can prove that states charged under Aµ in this

theory obey a mass bound:

M ≥ 1

gsℓs
N (4.17)

Since the above soliton saturates this bound, it must correspond to a stable particle

state in the theory. Also we see clearly that although there are no particles in

the perturbative string spectrum carrying RR charges, the soliton exhibited above

precisely carries such charges.

So far the physical interpretation has been quite conventional. This changed

when Polchinski, in a landmark paper[45] in 1995, observed that such branes admit

an alternate description as the end points of open strings. The idea is that within a

closed string theory, there are dynamical objects with the property that open strings

can end on them. In fact the open strings ending on this object provide an alternative

description of the object itself.

To end on a fixed object, open strings must have Dirichlet boundary conditions

in all directions transverse to the object. These partially break the Lorentz invariance

and supersymmetry of the underlying closed string background. This is understand-

able because the brane in question is an excited state of the closed string theory and

therefore (like any excited state) should spontaneously break some of the original

symmetries.

As a special example corresponding to a point-like particle, consider an open

superstring with Dirichlet boundary conditions on all 9 space directions on each

of its two endpoints. To be specific, we restrict both ends to lie at the origin in

9-dimensional space. Being thus nailed down, such a configuration clearly has no

centre-of-mass degree of freedom. Therefore the excitations of this open string are

all bound to the location of the string end-points. In this situation the effective field

theory for the open string is not a 10d field theory at all, but just quantum mechanics

on a “world-line” fixed at the origin of space. The claim is that this quantum

mechanics provides an alternate description of the pointlike soliton described above

in Eqs.(4.12),(4.13).

Let us see why 9 Dirichlet boundary conditions describe a particle. These bound-

ary conditions clearly break Lorentz as well as translation invariance in 10d. However,
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SO(9) rotational invariance around the origin is preserved:

SO(9, 1) → SO(9) (4.18)

Moreover, in the world-line theory the would-be gauge field Aµ (which would have

been present had the ends of the string been free to move) is re-interpreted as a

(non-dynamical) gauge field A0 along with nine scalar fields φa. Now in field theory,

a particle state breaks translational invariance, since translations move the particle

to another point. But it preserves rotational invariance around the location of the

particle. We see that the endpoint of the Dirichlet open string described above has

the right properties to be a dynamical particle. This interpretation provides a nice

interpretation for the 9 scalar fields on its worldline: they would be the 9 spatial

coordinates of this particle!

With this interpretation, the mass and charge of the string endpoint (which we

now refer to as a “D-particle”) can be computed within string theory[45]. The result

is that the D-particle carries precisely one unit of charge under the Ramond-Ramond

gauge field Aµ. Moreover its mass is:

M =
1

gsℓs
(4.19)

These properties are consistent with, and support, the notion that the open string

endpoint describes a unit-charged version of the RR soliton exhibited as a classical

solution in Eqs.(4.12),(4.13).

The above discussion can be generalised to the case where the string has Neu-

mann boundary conditions at each end in some of the 9 space directions, say 1, 2, · · · , p,
and Dirichlet conditions in the remaining 9− p directions.

1,2,...,p

p+1,p+2,...,9

This defines a p-dimensional hypersurface in spacetime. Generalising the “D-particle”,

such a wall is called a “Dp-brane”. We find that the massless states are now a photon

Aµ in p + 1 dimensions, as well as 9 − p scalar fields φa (plus, of course, fermions).

Clearly the low-energy effective field theory on a Dp-brane is a (p + 1)-dimensional

field theory.
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A
φ

µ µ = 0,1,...,p,

,   a  = p+1,p+2,...,9a

In particular, there is one scalar field for each direction transverse to the brane. As

before, the vacuum expectation value of these scalars are naturally interpreted as

the transverse locations of the branes.

It was perhaps misleading to refer to a D-brane as a “wall” as we did above.

Since it has a fixed tension (which matches that of its dual description as a soliton)

it can be deformed in all possible ways simply by providing appropriate amounts of

energy. So it is simply an extended dynamical object. A planar D-brane is of course

the most symmetric allowed configuration and therefore also the simplest to find as

a classical solution.

There are stable D-branes charged under each of the RR fields of type IIA/B

supergravity. Over the years, each type of brane has provided rich new insights

into quantum field theory in the corresponding space-time dimension. By far the

most profound insight comes from the AdS/CFT correspondence which we discuss

in the following section. Here we briefly describe a simpler physical insight that is a

precursor to the correspondence: the origin of non-Abelian gauge symmetry.

For this, let us assemble a collection of N parallel planar D-branes. As gravitating

objects one might expect them to attract each other, but due to supersymmetry

there are extra exchange forces between them besides the gravitational one, and

these neatly cancel so this configuration is stable.

In this array, an open string can start on any one of the branes and end on any other.

Thus there are N2 species of open strings. That means their lowest excitations, each

one of them a massless gauge field, can be collected into an N ×N matrix Aαβ
µ .

Let’s consider the simplest example, a pair of D3-branes of type IIB string theory:
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We see that there are four species of strings. Of these, two are localised on individual

branes, so they clearly represent the Abelian gauge field for that brane. Together,

these two strings provide U(1)×U(1) gauge fields. However the two strings stretching
across the branes are electrically charged under U(1)× U(1). Thereby they provide

the extra gauge fields to enhance:

U(1)× U(1) → U(2) (4.20)

If the two D-branes are precisely coincident, then the strings stretching from one to

the other can shrink to zero length under their own tension. At this point, all the

four gauge fields are massless. If we now separate the branes, two of the four strings

acquire a minimum length and therefore a classical energy. So the corresponding

gauge fields must be massive. Since transverse motion of the branes is represented

by giving a VEV to the transverse scalar fields, this is string theory’s geometric

realisation of the Higgs mechanism!

Quantising the N2 strings on a stack of N D3-branes and performing amplitude

calculations, one finds that the low-energy effective theory is the Yang-Mills theory

of a U(N) gauge field Aαβ
µ , α, β = 1, 2, . . .N , coupled to scalars φa and fermions ψA

in the adjoint representation of U(N), with the action:

L = tr
{

− 1

4g2YM

FµνF
µν − 1

2
Dµφ

aDµφa − g2YM

4
[φa, φb]2

+
i

2
ψ̄AγµDµψ

A − gYM ψ̄
AΓa

AB[φ
a, ψB]

}

(4.21)

where a, b = 1, 2, · · · , 6; A,B = 1, 2, · · · , 4 and gYM =
√
gs. All fields in the action

are matrices. This action has the maximal supersymmetry allowed for a gauge the-

ory in 4 dimensions, namely N = 4 supersymmetry, and is completely dictated by

supersymmetry.

A special property of this theory, arising from the constancy of the dilaton in

the classical solution, is that it is conformally invariant. Its β-function in fact van-

ishes to all orders in gYM , which renders it scale invariant. As often happens in field

theory, scale invariance automatically gets promoted to conformal invariance. One

consequence is that supersymmetry is enhanced: by commuting special conformal

transformations with the usual 16 supersymmetries, one generates 16 new supersym-

metries. Among Dp-brane theories for p = 1, 2, · · ·9, this is the only conformally

invariant theory.
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Amplitude calculations with multiple D-branes explicitly reveal the famous “three-

gluon” and “four-gluon” interactions, the signature of Yang-Mills theory:

tr ∂µAν [A
µ, Aν ], tr [Aµ, Aν ][A

µ, Aν ] (4.22)

In addition, they correct the Yang-Mills action written above with α′ corrections

involving higher derivatives of the fields.

Besides introducing non-Abelian gauge symmetries into string theory, D-branes

also help reformulate familiar notions from field theory and mathematics in a new

way. This leads to several novel insights about gauge theory and gravity. Indeed

the very conception of string theory and its role as a theory of quantum gravity

has undergone a fairly radical change after Polchinski’s discovery. Being intrinsically

solitonic, D-branes are non-perturbative objects like magnetic monopoles in field

theory (and heavy at weak coupling like these monopoles). Nevertheless, perturbative

techniques in open string theory can be brought to bear on their dynamics. In this

way one acquires the power to reliably analyse non-perturbative excitations. String

theory is no longer just a theory of strings, but of extended branes of all kinds,

and their gravitational dynamics is, via open strings, inextricably linked to gauge

dynamics.

4.4 M-theory

As already mentioned above, dualities led to the discovery of a new theory called M-

theory. It has similar properties to string theory in that it possesses extended objects.

However it has no stable strings. It is well-defined only in 11 dimensions, though like

string theory it can be reduced to any dimension d < 11 by compactification. One

reason to believe M-theory is fundamental is that, as noted above, 11 is the highest

allowed number of dimensions for a consistent supersymmetric theory.

A significant difference from string theory is that M-theory has no dilaton and

consequently no perturbative expansion. However, on compactifying the low-energy

action of M-theory from 11d to 10d, we recover the low-energy action of type IIA

string theory. Indeed, the dilaton of string theory emerges as a scalar mode of the

11-dimensional metric. This is one more reason why M-theory seems more basic than

string theory.

M-theory is not very well-understood, but even at the level at which we under-

stand it, it “explains” many interesting features of string theory. In string theory

there are several p-form fields and the objects charged under them are strings and

branes. Just considering stable objects, type IIA string theory for example has three

different p-form fields and as many as seven different types of strings and branes.

However M-theory has a single 3-form field and a basic brane, a membrane (ex-

tended in two space dimensions) electrically charged under it. There is also its dual,
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a 5-brane that is magnetically charged under the 3-form field (for details, see for

example Ref.[44]).

On compactifying M-theory on a circle, these two branes can wrap – or not wrap

– the circle and as a result, they give rise to all the branes of string theory[46, 47],

including the fundamental string.

Since it is the membrane of M-theory that gives rise to the fundamental string

upon compactification, we may guess that this is the closest to a fundamental object

in M-theory11. Given that there are no strings in the theory, a fascinating ques-

tion is what generates interactions between parallel membranes. The answer is that

when one has parallel membranes then they can be smoothly be connected by other

membranes into a single larger object. After compactifying the theory on a suitable

circle, this object reduces to a configuration of type IIA D2-branes and strings run-

ning between them. These considerations have led to a new understanding, though

still incomplete, of membrane interactions in M-theory[48, 49, 50].

4.5 Black Holes

Being a consistent theory of quantum gravity, string theory can be used as a testing

ground to delve into the nature of black holes and the various potential paradoxes

surrounding these objects. The nature of black hole evaporation, the entropy of black

holes and the possibility of information being lost in black holes were all issues that

had been widely discussed for many years. With the discovery of string dualities and

D-branes, reliable and precise tests became possible.

The basic idea is to consider string states carrying a fixed set of charges at weak

coupling, where they can be thought of as string/D-brane excitations. The number

Ω of microscopic states of these excitations can be counted and their logarithm is the

“statistical entropy” of the system. By contrast, at strong coupling these states fall

inside their own Schwarzschild radius and turn into a black hole[51, 52]. The argu-

ments of Beckenstein and Hawking can then be used to compute the entropy of these

black holes in terms of their famous area formula. Thus one had two independently

computed quantities:

Sstatistical = lnΩ, Sblack hole =
A

4
(4.23)

(both evaluated in suitable units where all dimensional constants are set equal to 1).

In principle there might have been little connection between these quantities, arising

respectively from the spectrum of states at extremely weak and strong coupling.

However in supersymmetric theories it is possible to relate the two extremes under

some circumstances due to the remarkable quantum BPS property alluded to earlier.

11In fact, M stands for Membrane among other things.
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In a major breakthrough, Strominger and Vafa[53] in 1996 computed both quan-

tities for dyonic extremal charged black holes in 5 dimensions12. The black-hole

calculation is standard, requiring knowledge of the black-hole metric which can then

be integrated over the horizon to obtain the area. However the microscopic cal-

culation, as well as the reason why it should be relevant, is special to superstring

theory. This computation is based on a configuration of intersecting D-branes of dif-

ferent dimensionalities wrapped around different cycles of the space-time manifold.

The system carries fixed electric and magnetic black hole charges Qe, Qm, and is

described by a field theory on the uncompactified part of the D-brane world-volume,

which is two dimensional and also turns out to be conformally invariant. Standard

techniques based on the Virasoro algebra then allow one to estimate the degeneracy

of states of this theory, at least in the limit that some of the charges are taken large

(recall that the black hole picture also makes sense for large charges).

If Qe, Qm are the (integer) electric and magnetic charges of the system, the result

of Ref.[53] is:

Sstatistical = 2π

√

Qm

(

1

2
Q2

e + 1

)

, Qe fixed, Qm large

Sblack hole = 2π

√

1

2
QmQ2

e Qe, Qm both large

(4.24)

Note that the second formula is valid in a more limited range of parameters than

the first, so agreement is expected only upon taking Qe large in the first line. In

this limit the two expressions agree perfectly, including the numerical coefficients.

This calculation strongly supports the notion that a black hole is fundamentally a

statistical ensemble and its entropy is due to the microstates that make it up.

It also suggests a class of generalisations: if one could compute both quanti-

ties in the above equation for finite charges, or at least up to some finite order in

an expansion in inverse charges, one should find agreement in each order. On the

statistical side this requires greater control over the conformal field theory, allowing

the computation of the degeneracy of states to higher accuracy as an expansion in

large charges. On the black hole side the relevant quantity is the Wald entropy,

defined via a formula that generalises the Beckenstein-Hawking formula to theories

with higher-derivative terms in the action. It is the Wald entropy rather than the

Beckenstein-Hawking entropy that satisfies the second law of thermodynamics in

general theories. In string theory we have seen that the higher-derivative terms are

uniquely fixed by the background and therefore the Wald entropy sensitively probes

the stringy origin of the gravity action. Phenomenal agreement has been found be-

tween the corrections to Sstatistical and to Sblack hole and the field of “precision

12The dimensionality was merely a convenience, and analogous results were soon obtained for

extremal black holes in four dimensions.
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counting” of black hole states has now come into being (for a review see Ref.[54],

while more recent results can be found for example in Ref.[55]).

4.6 New insights into gravity III

The triangulation of Riemann surfaces by random matrices correctly reproduces, in

the continuum limit, what we expect from summing over continuous surfaces, the

latter being a calculation in two-dimensional gravity. It is found explicitly that in

the domain of overlap, the continuum approach agrees with the results from ma-

trices. However the matrix approach is actually much more powerful, allowing the

computation of amplitudes to all orders in the string coupling. These insights about

two-dimensional gravity arose as a kind of by-product of string theory.

But it is D-branes that have brought about the most major revolution in our

understanding of quantum gravity through string theory. They are massive solitonic

objects, excitations of the closed-string theory, so they of course gravitate and the

metric of space-time around them is precisely known via supersymmetry and BPS

equations. On the other hand they are described by open strings on their world-

volume and the low-energy limit of this theory is a gauge theory of Yang-Mills type.

These two descriptions of D-branes amount to a duality, crucial to the black hole

entropy calculations sketched above: the gravitating description of D-branes provides

the black-hole entropy while the open-string description of the same objects counts

the microscopic degrees of freedom. This is an example of what one could call “open-

closed duality”. The most profound example of such a duality is the AdS/CFT

correspondence, to be discussed in the following section.

5. AdS/CFT correspondence

5.1 Precise statement via heuristic derivation

The discovery of D-branes made it natural to consider a system of open string states

inside a closed-string theory. A particular example of such a system is a stack of N

D3-branes, on whose volume, as we have seen, the open strings generate an N = 4

supersymmetric gauge theory in four space-time dimensions.

In 1996-7, this system was extensively studied in the limit of large N . Following

some earlier key results[56, 57], Maldacena[58] observed that on the one hand, at

low energies this is a conventional gauge theory (even though supersymmetric and

with a gauge group of large rank). On the other hand a brane, viewed as a solitonic

object, deforms the spacetime around it so that the geometry near the brane is very

different from the flat spacetime far away. For N D3-branes, this local geometry has

the form of five-dimensional Anti-deSitter spacetime AdS5× a 5-dimensional sphere.

In a path-breaking work using symmetries and dynamical arguments, Maldacena
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proposed that the two descriptions are exactly equivalent, so that a four-dimensional

gauge theory is the same as a closed string theory (including gravitation!) in a

particular 10-dimensional spacetime. This, the latest and perhaps most dazzling

of string dualities, has revolutionised our notions about gravity and gauge theory:

previously thought of as two totally distinct types of theories, we must now accept

that under certain circumstances they can be one and the same theory. Moreover

the correspondence is “holographic” in the sense that gravity degrees of freedom are

encoded in a gauge theory that lives in a lower number of dimensions.

In concrete terms, consider the Lagrangian of type IIB supergravity (that arises

as the low-energy limit of the type IIB string). This time we include the self-dual

4-form Ramond-Ramond gauge field that is present in this theory:

Stype IIA =
1

(2π)7ℓ8s

∫

d10x
√

−‖G‖
[

e−2Φ
(

R + |dΦ|2
)

− 2

5!
|dD+|2

]

(5.1)

(technically the self-duality condition makes |dD+|2 vanish, so we impose that con-

dition after computing the equations of motion). Now we can write the metric for a

classical solution corresponding to a “black 3-brane”:

ds2 =

(

1 +
R4

r4

)− 1
2

(

− dt2 +
3
∑

i=1

dxidxi

)

+

(

1 +
R4

r4

)
1
2

6
∑

a=1

dxadxa (5.2)

where r =
√
xaxa. Here R is a constant parameter of the solution (not to be confused

with the scalar curvature!).

The dilaton is constant in this solution:

e−2Φ = e−2Φ0 (5.3)

while the 4-form potential is:

D+
0123 = −1

2

[

(

1 +
R4

r4

)−1

− 1

]

(5.4)

The quantised charge N of this solution is easily found to be:

N =
R4

4πgsℓ4s
(5.5)

Notice that in 10 dimensions, a 3-brane is enclosed by a 5-sphere and the integral of

the field strength dD+ over this 5-sphere measures the total charge N .

We now examine physics of a test particle in this field. The coefficient of −dt2
tells us there is a redshift between the energy measured at some radial distance r

and at ∞:

E∞ =

(

1 +
R4

r4

)− 1
4

Er (5.6)
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This means that a given object near r → 0 has a very small energy when measured

from infinity. Define:

U ≡ r

ℓ2s
(5.7)

which is a spatial coordinate with dimensions of energy. Then, multiplying through

by ℓs, we find:

E∞ℓs =

(

1 +
4πgsN

(Uℓs)4

)− 1
4

Erℓs (5.8)

This shows that from the point of view of an observer at infinity, low energy E∞ℓs ≪ 1

means:

Uℓs ≪ 1 or Erℓs ≪ 1 (5.9)

Indeed this low energy limit can be thought of as ℓs → 0 with energies held fixed.

In the first regime, the metric of the D3-brane becomes:

ds2 =
√

4πgsN ℓ2s

[

U2

4πgsN
(−dt2 + dxidxi) +

dU2

U2
+ dω2

5

]

(5.10)

This is the metric of the spacetime AdS5 × S5. There is also an RR field strength

in the classical solution. The second regime instead describes states of small proper

energy in units of ℓ−1
s . Such states correspond to the ℓs → 0 limit of supergravity,

which is free in this limit.

Next one uses the dual description of D3-branes as open-string endpoints. In

this description, the system is described by an effective action for open strings plus

an action for closed strings plus an action describing open-closed couplings:

S = Sopen + Sclosed + Sopen-closed (5.11)

Taking ℓs → 0 keeping energies fixed, the closed-string part (supergravity) becomes

free and the open-closed couplings also vanish. Finally, in the open-string part, the

higher-derivative terms disappear since they are proportional to powers of ℓs. The

surviving action is the N = 4 supersymmetric Yang-Mills field theory written in

Eq. (4.21), with gauge group U(N) and coupling constant gYM =
√
gs.

Thus comparing the two sides we see that each one has a free supergravity action,

which can be equated. The remaining part, which can also be equated, is (i) string

theory in the curved background AdS5 × S5, and (ii) N = 4 supersymmetric Yang-

Mills field theory. The AdS/CFT correspondence is the conjecture that these two

theories are the same.

Unlikely as it may seem, this conjecture says that string theory in a particu-

lar bulk spacetime is equal to a conformal-invariant field theory in a (conformally)

flat space-time that corresponds to the boundary of the original bulk space-time.

Moreover the dimensions of the two theories are 10 and 4 respectively.
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The above was a heuristic derivation following Ref.[58], but the AdS/CFT cor-

respondence has not yet been rigorously proven. It has been tested in many different

ways though, and some of these tests are briefly described below.

5.2 Matching symmetries: isometries

To test the AdS/CFT correspondence, one can first check that the symmetries match

on both sides. The isometries of AdS5 × S5 are:

AdS5 : SO(4, 2)

S5 : SO(6)
(5.12)

On the other side of the correspondence we have a conformally invariant field

theory, N = 4 supersymmetric Yang-Mills theory. It clearly possesses SO(3, 1) sym-

metry, namely Lorentz invariance. Another symmetry we see right away is global

SO(6) invariance which rotates the six scalar fields φa that describe transverse mo-

tions of the D3-brane. The remaining desired symmetries arise from the fact that

whenever a field theory has conformal invariance, this symmetry combined with

Lorentz invariance gives rise to an enhanced symmetry group:

SO(d, 1) → SO(d+ 1, 2) (5.13)

Thus indeed, N = 4 supersymmetric Yang-Mills theory has SO(4, 2)× SO(6) sym-

metry, just like the isometries of AdS5×S5. This is a successful test of the AdS/CFT

correspondence.

Another test follows from matching supersymmetry. Closed superstrings prop-

agating in flat spacetime have N = 2 supersymmetry in 10 dimensions. The su-

percharges have 16 components each, making a total of 32 components. The only

other 10 dimensional space-time with the same number of supersymmetry charges

is AdS5 × S5. N = 4 SYM theory has 4 spinor supercharges, each with 4 com-

ponents. Therefore there are apparently just 16 supersymmetries. However, as we

mentioned earlier, taking the commutator of special conformal transformations with

supersymmetries gives rise to a new set of supersymmetries, also 16 in number.

Thus at the end, both sides have 32 supersymmetries. In fact one can show that:

SO(4, 2)× SO(6)× susy ⊂ SU(2, 2|4) (5.14)

where the RHS is a particular super-algebra, which is a symmetry of both sides of

the AdS/CFT correspondence.

5.3 Parameters and gravity limit

The proposed duality is so nontrivial that, beyond symmetries, it is not immediately

obvious how to test it or use it. One major obstacle is that string theory on AdS5×S5
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has Ramond-Ramond flux. We do not know how to study strings propagating in the

presence of such backgrounds. Thus we are forced to restrict ourselves to the low-

energy effective action of string theory, namely supergravity. This is valid in the

weakly curved case:

R ≫ ℓs (5.15)

which amounts to:

λ ≡ g2YMN ≫ 1 (5.16)

At the same time we must restrict to tree-level, since supergravity is a non-

renormalisable theory so loop diagrams will not make sense. Therefore we must

have:

gs ≪ 1 =⇒ gYM ≪ 1 (5.17)

It follows that the gauge theory must have N ≫ 1. Indeed, the behaviour of gauge

theories at large N (and the simple example of random matrices discussed above)

were among the earliest indications that field theory is related to string theory!

5.4 Gravity-CFT dictionary

There is a precise dictionary between gravity variables and gauge theory variables,

that is known explicitly in many cases. The general proposal[59, 60] is that to each

gauge-invariant operator O(xµ) in the SYM theory, there corresponds a field φ(xµ, U)

in supergravity such that:

〈

exp

(
∫

d4x J(xµ)O(xµ)

)

〉

gauge theory
= Zsupergravity

(

φ(xµ, U
)

∣

∣

∣

∣

φ(xµ,U→∞)=J(xµ)

)

(5.18)

Here the LHS is a gauge theory correlation function in 4 dimensions. The RHS is the

gravity partition function evaluated on 5-dimensional fields φ(xµ, U) in AdS5, but

with their values constrained to be equal to the source J(x) on the boundary of AdS5.

We can generalise this to supergravity fields that depend on the S5 coordinates, by

Fourier decomposing them on S5 and treating each Fourier mode as an independent

field on AdS5.

As a relatively simple example, consider the marginal operator which changes

the gauge theory coupling constant. This is just the entire Lagrangian of the gauge

theory! In the gravity dual the corresponding field in 5 dimensions is the dilaton

operator Φ(xµ, U). Its value on the boundary of AdS5 determines the coupling of the

gauge theory. Thus in this case the correspondence is:

Operator in gauge theory ⇐⇒ Field in supergravity

−1

4
trFµνF

µν(xµ) + · · · ⇐⇒ Φ(xµ, U)
(5.19)
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We see that the extra holographic dimension on the gravity side is the radial

direction U . This can be shown to correspond to an energy scale in the field theory.

Conformal invariance of the field theory is natural in this interpretation. The dilaton

background is constant in the AdS classical solution, therefore in particular it is

independent of U . Therefore the dual field theory is independent of energy scale,

which in turn implies conformal invariance.

If we want to generalise AdS/CFT to have a scale-dependent theory like QCD

on the gauge theory side, then the dual spacetime must be different from AdS in the

interior, and the dilaton must be a non-trivial function of U .

5.5 An application of the correspondence

Since one side of the correspondence is classical gravity, which is relatively easy to

study, we can use it to deduce properties of quantum gauge theories at largeN [61]. In

nature we do not want to know about the gauge theory called N = 4 supersymmetric

Yang-Mills, but about Quantum Chromodynamics, however at finite temperature the

N = 4 SYM can be shown to resemble Quantum Chromodynamics in some ways.

We start by placing the gauge theory not on R3,1 but on S3×S1. This in partic-

ular requires us to make the theory Euclidean, corresponding to finite temperature.

If β is the radius of S1, then the temperature is:

T =
1

β
(5.20)

We also define the radius of S3 to be β ′.

Conformal invariance then tells us the theory depends only on the dimensionless

ratio β/β ′. It has been shown[61] that there are two candidate gravity duals to this

theory. One is a spacetime called thermal AdS (like AdS5 but at finite temperature).

The other is a Schwarzschild black hole which asymptotically becomes AdS. Which

of these two is the correct gravity dual depends on the temperature, more precisely

on β ′/β. At small values of this parameter (low temperature) the thermal AdS

dominates the path integral. At high temperatures instead it is the AdS black hole.

Now the gravity description can be used to compute the entropy in each case.

At low temperatures it is found that:

S ∼ 1 (5.21)

while at high temperatures, the Bekenstein-Hawking formula for black holes gives

us:

S ∼ R3 ×R5 ∼ R8 ∼ N2 (5.22)

The jump from one to another AdS dual of the field theory as we vary temperature

is a phase transition, and is interpreted as the deconfinement phase transition of the
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gauge theory! The numbers fit beautifully with the fact that at low temperature the

gauge theory has only singlet states but at high temperature the gluon degrees of

freedom, which are N2 in number, are liberated13.

We see the power of the AdS/CFT correspondence in extracting analytic in-

formation about confinement. Though the gauge theory in this discussion is not a

realistic one, there have been many attempts to generalise the above discussion to

more realistic confining examples and this remains an active direction of research.

5.6 Gravity and fluid dynamics

Gravitational theories which allow asymptotically AdS space-times can be truncated

to pure Einstein gravity with a (negative) cosmological constant. This implies a

certain universality property for the dual gauge theory on the boundary, which in

turn can be encoded in the dynamics of the gauge-invariant fields, of which the most

important class are the single-trace operators of the type:

On = tr fn(Fµν , φ
a, · · · ) (5.23)

It has been shown[63] that one can use the AdS/CFT correspondence to obtain

universal predictions for the transport coefficients of a gauge-theory plasma, quali-

tatively (in some ways) similar to the quark-gluon plasma produced in relativistic

heavy-ion collisions.

If we consider boosted extended black holes (really branes) in AdS space-time

having a definite temperature and velocity. Via holography these get related to the

temperature and velocity of asymptotically AdS solutions to the Einstein equations.

As a result one finds a beautiful relation between the Einstein equations and Navier-

Stokes equations, the equations of fluid dynamics (see for example Refs.[64]).

This approach has practical utility in understanding strongly coupled plasmas

that are hard to study using other more conventional formalisms. But its most

striking feature is that it correlates fundamental properties of hydrodynamics and

gravitation – a remarkable synthesis of disparate ideas with a long history.

5.7 New insights about gravity IV

The AdS/CFT correspondence tells us that gravity and gauge theory are not two

different types of forces but instead are equivalent to each other. This may seem very

bizarre at first sight. However the different dimensionalities of the gravity and gauge

theory suggest that the transcription between them is not going to be straightfor-

ward, and locality of the bulk theory is a particularly striking mystery14. Despite

13See Ref.[62] for early results in this direction. The present discussion may seem somewhat

confusing given that N = 4 supersymmetric Yang-Mills theory does not exhibit confinement. This

and other subtleties are explained in Ref.[61].
14On which steady progress is being made, see Ref.[65].
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useful examples, the full dictionary between gravity and gauge theory concepts is

complicated and not fully understood. However one key illumination is that the

radial direction in AdS gravity is related to the energy scale of the gauge theory.

Therefore from the gauge theory point of view, motion along this direction is seen as

a renormalisation group flow! (see Ref.[66] and for very recent work in this direction,

Ref.[67]).

The correspondence described here is a realisation of an older conjecture known

as the “holographic principle”, which says that the degrees of freedom of quantum

gravity propagating in a bulk region can be encoded on the boundary of that region.

Just as the comparison of microscopic and macroscopic entropy of black holes in

string theory provided a concrete realisation of something that had previously been

conjectured, here too we have for the first time a concrete realisation of a princi-

ple that had previously been articulated on physical grounds by ’t Hooft[68], and

Susskind[69].

To date, the AdS/CFT correspondence has primarily been used to gain informa-

tion about strongly coupled gauge theories using the dual classical, weakly-coupled

supergravity. This is of physical interest because of QCD and speculative theories

beyond the Standard Model, and also because of strongly coupled systems in con-

densed matter theory, which for reasons of space we have not been able to discuss

here15. Information in the reverse direction would be highly desirable in order to

grapple with conceptual problems of quantum gravity. This has been slightly less

forthcoming because the domain in which gauge theory is relatively easy to study

is that of weak coupling, in which region the dual AdS superstring propagates in

a highly curved space-time of sub-stringy size. This is not directly relevant to the

world today.

However as we briefly discuss below, a sub-stringy holographic world would be

very relevant for studies of the early universe. And of course the work on black

hole entropy described earlier makes use of information from the gauge-theory side

in important ways. Though some of the initial ideas for deriving microscopic black

hole entropy in string theory were developed before the AdS/CFT correspondence

had been precisely articulated, today these ideas have found a natural place in the

context of holography which has also provided many generalisations. It is likely that

the next decade will see increasing feedback from the AdS/CFT correspondence and

its generalisations to address conceptual issues in quantum gravity.

6. Flux compactifications

The old problem of string theory compactifications, namely the large number of un-

determined moduli or flat directions, also benefitted from the AdS/CFT correspon-

15But see Ref.[70] for a review.
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dence which led to a new line of attack. It had been known that nontrivial fluxes in

the internal manifold could fix some of the moduli by providing a potential for them.

Using inspiration from AdS spacetime, it was then realised that such fluxes typically

lead to “warped” backgrounds of string theory: backgrounds in which the metric

at a given point of the noncompact spacetime depends on the point in the internal

space. Such warped backgrounds can have an AdS-like “throat” region in the internal

space and one can thereby obtain a desirable separation of scales. Flux compact-

ifications use combinations of D-branes, anti-branes and orientifolds16 to generate,

among other things, a positive cosmological constant and broken supersymmetry[71]

(see also earlier work on flux stabilisation in Refs.[30, 72, 73]).

Flux compactifications are the closest we have come to realising the Standard

Model of particle physics, as well as a realistic gravitational sector including a cos-

mological constant, in the context of string theory. Their success has paradoxically

raised a problem: it seems likely that string theory admits an immense number of

vacua, known as the “landscape”, and many of them lie arbitrarily close to the real

world. The problem of finding “the right vacuum” in this situation looks very daunt-

ing. We have ended up very far from the original hope that a simple, almost unique

compactification of string theory would lead to a viable description of the real world.

7. String Cosmology

The initial analyses of D-branes focused on charged, stable branes, and for a while

it was not noticed that string theory admits other D-branes that are uncharged and

unstable. One way to think of them is to consider a pair of a D-brane and an anti-

D-brane, the net charge of this system being zero. Such a system would generically

be unstable and decay.

It has been shown (a review can be found in Ref.[74]) that the decay of these

branes can be understood in terms of a tachyonic particle that arises from quantising

the open string ending on the brane (this differs from the closed-string tachyon that

we encountered in bosonic string theory). The rolling of the tachyon down to the

bottom of its potential well is the world-volume description of the process in space-

time wherein the brane decays. This “rolling tachyon” paradigm has proved very

influential in string-inspired cosmology.

Cosmology involves the study of regions of space-time (particularly relevant in

the early universe) where conventional physics breaks down because of the possible

occurrence of singularities. Holography can become a conceptual necessity in situ-

ations where the geometric description of space-time itself is in question – one may

then have no choice but to shift from a macroscopic picture (gravity) to a dual mi-

croscopic picture. Finally, an ultraviolet completion of general relativity is required
16Singularities similar to orbifolds but which carry RR charge.
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when energies reach the Planck scale. Because of the many different properties of

string theory described in this article, it is a prime candidate to address and po-

tentially solve all these problems (these observations and the ones that follow are

elaborated in the review article Ref.[75]).

Discussions about cosmology in string theory are typically made in the framework

of non-supersymmetric configurations of multiple D-branes, referred to above, with

the tachyon playing an important role in the dynamics. Of course such discussions

require a sensible background space-time, for which one needs at least a semi-realistic

model. One of the most important constraints on such backgrounds is that the moduli

associated to the string compactification be completely stabilised.

The primary goals of string cosmology would be to provide a precise mechanism

for inflation and an explanation of dark energy – the latter being arguably the single

biggest puzzle in our microscopic picture of the world. Importantly, there can be

conflicts between such mechanisms and the mechanism for moduli stabilisation. Also,

inflation can potentially screen from observation the kind of microscopic information

about the early universe that a particular string model might provide.

In addition to addressing basic open questions about the origin of the universe,

string cosmology potentially provides an experimental testing ground for string the-

ory itself. This would require identifying observational features of string theory that

are hard, or impossible, to reproduce in field theory. The nature of corrections to

the cosmic microwave background provides a possible class of examples. Despite (or

perhaps because of) these difficulties, string cosmology is currently among the most

fertile fields of research within string theory.

8. Conclusions

It may not be wrong to say that the relevance of string theory to the real world it still

to be completely determined. However the question of “relevance” in this context

has evolved far beyond what anyone could have imagined in 1985.

As a candidate for a unified theory of all fundamental interactions, string theory

is extremely compelling but a precise theory with a set of unambiguous predictions

is indeed not yet available. One key obstacle is the the landscape problem. Far

from there being no accurate string description of the real world, it looks likely that

there could be so many of them as to make the discovery of the “right” one virtually

impossible. This is an issue on which new ideas are awaited.

However, string theory is also a potent and precise formalism that generalises

and probably supplants quantum field theory. It provides an ultraviolet consistent

theory of quantum gravity wherein singularities are typically smoothed out. At low

energies it reduces to ordinary Einstein gravity and its perturbation expansion can
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be used to compute quantum corrections to gravitational processes. Moreover it has

a non-perturbative structure of which many key aspects are well-understood. This

allows it to be used as an unparallelled and accurate testing ground for concepts in

quantum gravity.

String theory has provided the provided the most convincing evidence that black

holes have a large number of microscopic states that account for their entropy. This

has essentially settled in the affirmative the fundamental question of whether the

thermodynamic nature of gravity arises from microscopic states, just like the relation

between usual thermodynamics and statistical mechanics. It is reasonable to expect

that the information-loss paradox will similarly be addressed, and perhaps resolved,

using string theory in the near future.

The usefulness of strings in providing a holographic description of the strong

force and associated strongly coupled fluids is demonstrated and steadily growing.

It is widely expected that the actual QCD string, the very basis for the invention of

string theory, will be found in the near future.

The application of string models to study the early universe promises to uncover

the secrets of the big bang. Given the increasing body of observations pertinent to

the early universe, it is just conceivable that this direction could also yield the long

sought-for experimental tests of string theory.

Perhaps the single most important point is that all the above applications of

string theory do not exist independently of each other. Gravity, gauge symmetry,

compactification, unification, holography, hydrodynamics, strongly correlated sys-

tems and cosmology, and probably many more aspects of physics, are inextricably

linked to each other in this remarkable and profound edifice.
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