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Abstract

Given a family of world-sheet superconformal field theories related by marginal deformation,

we can formulate superstring field theory based on any of these world-sheet theories. Back-

ground independence is the statement that these different superstring field theories are related

to each other by field redefinition. We prove background independence of closed superstring

field theory.
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1 Introduction

Dealing with the problem of mass renormalization and vacuum shift in superstring perturba-

tion theory requires formulation of quantum superstring field theory. We now have such a field

theory for heterotic and type II string theories (for a review see [1]) arising out of a generaliza-

tion of the bosonic closed string field theory constructed in [2–4] and tree level Neveu-Schwarz

(NS) sector superstring field theory described in [5]. However this field theory is apparently

background dependent. One starts with a specific world-sheet superconformal field theory
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(SCFT) describing a specific string compactification, and uses the correlation functions of ver-

tex operators in this world-sheet theory to construct the interaction vertices of the superstring

field theory. Therefore two different world-sheet theories describing different string compacti-

fications will lead to apparently different superstring field theories. Background independence

is the statement that these apparently different superstring field theories are related to each

other by field redefinition. Our goal in this paper will be to prove background independence for

the case where the different world-sheet theories are related by marginal deformation. Besides

being of theoretical interest this also has ‘practical’ consequences – for example background

independence of superstring field theory is used implicitly in the proof of soft theorem (see

e.g. [6]) where it is assumed that the response of string field theory to an infinitesimal on-shell

graviton field is identical to that under a change in the target space metric in the underlying

world-sheet theory.

Background independence of bosonic string field theory was proved in [7, 8]. As in those

papers, we shall restrict our analysis to the case where the pair of world-sheet theories, for

which we want to establish the equivalence of the corresponding string field theories, are related

to each other by infinitesimal marginal deformation. Once the result is proved for infinitesi-

mal deformations, it also establishes the result for finite marginal deformations since a finite

marginal deformation can be built from successive application of infinitesimal deformations.

Of course, beyond a critical distance between the world-sheet theories the required field redef-

inition may diverge, but this is simply a reflection of the fact that the coordinate system in

the space of string fields formulated around one world-sheet theory may break down beyond a

certain distance.

Superstring field theory enjoys infinite parameter gauge invariance. Due to this gauge

invariance the field redefinition that relates a pair of superstring field theories is not unique –

given one such field redefinition we can find infinite number of other field redefinitions that differ

from the first one by gauge transformation with possibly field dependent gauge transformation

parameters. This will be seen explicitly in our analysis.

Our analysis will differ from that of [8] for bosonic string field theory in one important way.

The analysis of [8] focussed on the Batalin-Vilkovisky (BV) master action. For this reason

establishing equivalence of two superstring field theories required taking into account possible

change in the integration measure under the field redefinition. Here we shall work with the

one particle irreducible (1PI) effective action. Since the tree amplitudes computed from the

1PI effective action give the full amplitudes of string theory, we do not need to worry about
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the change in the integration measure. In fact it is also not necessary to prove the equivalence

of the actions – it is sufficient to show that the equations of motion of the two theories get

related to each other by field redefinition. This is useful due to the fact that superstring field

theory, as formulated in [1], contains a set of additional free fields besides the interacting string

field. While these additional fields are needed for writing down the action, the interacting field

equations can be written in terms of the physical string fields, and contains full information

about the S-matrix. Therefore it will be enough to show that the interacting field equations

in the two theories are related to each other by field redefinition. This is the strategy we shall

follow.

Rest of the paper is organized as follows. In section 2 we review some of the details of the

superstring field theory and also introduce some new notations that will simplify our analysis.

In section 3 we discuss two ways of describing string field theory around a new background. The

first corresponds to deforming the world-sheet SCFT by an infinitesimal marginal deformation

and formulating string field theory around the new background. The second approach is

to take the original string field theory action and expand it around an infinitesimal classical

solution to the linearized equations of motion corresponding to the same marginal deformation.

Background independence is the statement that these two string field theories are related by a

field redefinition. In section 4 we give geometric interpretations of the kinetic and interaction

terms of the superstring field theory around marginally deformed background that is needed

for our proof of background independence. Using these results, we give an explicit proof of the

background independence in section 5 by describing a systematic algorithm for constructing

the field redefinition that relates the two versions of superstring field theory. In section 6 we

describe extension of our analysis to type II string theories and also possible applications of

our method to other versions of open and closed superstring field theories.

2 Review of superstring field theory and some notations

In this section we shall first review the construction of superstring field theory described in [1]

and then introduce some new notations that will simplify our analysis.

2.1 Superstring field theory

We begin with a very brief review of superstring field theory – more details can be found

in [1]. For simplicity we shall consider heterotic string theory, but the analysis can be eas-
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ily generalized to type II string theory. Our starting point is the matter-ghost world-sheet

superconformal field theory, describing string theory in a specific background. We denote

by bn, cn, Ln and b̄n, c̄n, L̄n the usual modes of the holomorphic and anti-holomorphic parts

of the anti-commuting ghost fields and the total stress tensor. We also denote by β, γ the

superconformal ghosts and by ξ, η, φ the fields obtained via bosonization of these fields:

β = ∂ξ e−φ, γ = η eφ (2.1)

satisfying the operator product expansion

ξ(z) η(w) = (z − w)−1 + non-singular terms,

eqφ(z) eq
′φ(w) = (z − w)−q q′e(q+q′)φ(w) + less singular terms . (2.2)

ξn, ηn will denote the modes of the ξ, η fields. We define the picture number of a state such

that ξ carries picture number 1, η carries picture number −1, eqφ carries picture number q and

other fields carry picture number 0. We shall denote by Hp the Hilbert space of the world-sheet

theory carrying picture number p and subject to the following constraints on the states

b−0 |Ψ〉 = 0, L−
0 |Ψ〉 = 0, η0|Ψ〉 = 0,

b±0 ≡ b0 ± b̄0, L±
0 ≡ L0 ± L̄0, c±0 ≡

1

2
(c0 ± c̄0) . (2.3)

States in Hp for p ∈ ZZ are NS sector states and for p ∈ ZZ+ 1
2
are Ramond (R) sector states.

QB will denote the nilpotent BRST operator

QB =

∮
dzB(z) +

∮
dz̄̄B(z̄) , (2.4)

where

̄B(z̄) = c̄(z̄)T̄m(z̄) + b̄(z̄)c̄(z̄)∂̄c̄(z̄) , (2.5)

B(z) = c(z)(Tm(z) + Tβ,γ(z)) + γ(z)TF (z) + b(z)c(z)∂c(z) −
1

4
γ(z)2b(z) , (2.6)

and
∮
is normalized so that

∮
dz/z = 1,

∮
dz̄/z̄ = 1. Tm denotes the stress tensor of the matter

SCFT, Tβ,γ denotes the stress tensor of the β, γ system or equivalently the ξ, η, φ system and

TF denotes the supercurrent of the matter SCFT.

The picture changing operator (PCO) X is defined as [9, 10]

X (z) = {QB, ξ(z)} = c ∂ξ + eφTF −
1

4
∂η e2φ b−

1

4
∂
(
η e2φ b

)
. (2.7)
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This is a BRST invariant primary operator of dimension zero carrying picture number 1. X0

will denote the zero mode of X (z):

X0 =

∫
dz

z
X (z) . (2.8)

Also we define the operator G such that, acting on a state in Hp,

G =

{
1 if p ∈ ZZ,
X0 if p ∈ ZZ + 1

2
.

(2.9)

Heterotic string field theory contains a pair of fields |Ψ〉 and |Ψ̃〉 which are taken to be

arbitrary states in

Ĥ ≡ H−1 +H−1/2, and H̃ ≡ H−1 +H−3/2 , (2.10)

respectively. If {|ϕ̂r〉} denote the basis states in Ĥ then we expand the string field |Ψ〉 as a

linear combination
∑

r ψr|ϕ̂r〉 and identify the coefficients of expansion ψr as the dynamical

variables of the theory. One of the key features of closed string field is that the coefficient ψr

has the same grassmann parity as the vertex operator ϕ̂r of the SCFT so that Ψ is always

grassmann even. Similar remarks hold for |Ψ̃〉.

The string field action S is a function of these variables ψr and ψ̃r. For our purpose it will

be most convenient to work with the one particle irreducible (1PI) effective action which takes

the form:1

S = g−2
s

[
−
1

2
〈Ψ̃|c−0 GQB|Ψ̃〉+ 〈Ψ̃|c

−
0 QB|Ψ〉+

∑

N≥1

1

N !
{ΨN}

]
. (2.11)

Here gs is the string coupling. The last term involving {ΨN} describes interaction term and is

defined as follows.

1. We denote by Mg,m,n the moduli space of genus g Riemann surfaces carrying m NS

punctures and n R punctures. We include in the definition ofMg,m,n the choice of spin

structure.

2. We define P̃g,m,n to be a fiber bundle with baseMg,m,n and fiber containing information

on the choice of local coordinates at each puncture and the locations of 2g−2+m+n/2

PCO’s on the Riemann surface. Therefore specifying a section of P̃g,m,n corresponds to

making a specific choice of local coordinates at the punctures and choice of PCO locations

for every Riemann surface of genus g and m+ n punctures.

1The genus zero contribution to {ΨN} vanishes for N = 1, 2.
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3. We shall use the name generalized subspace to denote a formal weighed sum of sub-

spaces of P̃g,m,n with the understanding that integration over such weighted subspaces

mean weighted sum of integrals over each of the subspaces that are being summed.

The generalized subspaces can include vertical segments along which the PCO locations

change from an initial configuration to a final configuration one at a time, keeping the

moduli and local coordinates at the punctures fixed. These vertical segments can pass

through spurious poles [10–12] where the conformal field theory correlation functions on

the corresponding Riemann surfaces have singularities. However all the relevant integrals

along these vertical segments will be well defined [13–15] , and as a result we can continue

to treat the vertical segments as regular subspaces of P̃g,m,n for various manipulations.

4. We shall use the name ‘section segment’ of P̃g,m,n to denote a 6g−6+2m+2n dimensional

generalized subspace of P̃g,m,n, such that the projection of its boundary on the base of

P̃g,m,n encloses a proper subspace of the moduli spaceMg,m,n.

5. For given g,m, n and a set of m different NS states K1, · · ·Km and n different R states

L1, · · ·Ln, one can define a natural p-form Ω
(g,m,n)
p (K1, · · ·Km, L1, · · · , Ln) on P̃g,,m,n for

any integer p. At a given point σ in P̃g,,m,n, the expression for Ω
(g,m,n)
p (K1, · · ·Km, L1, · · · , Ln)

involves correlation function of the vertex operators {Ki}, {Li} inserted using the appro-

priate local coordinate system at the punctures corresponding to the point σ, PCO’s

inserted at appropriate locations corresponding to the point σ, and other insertions of

ghost fields.

6. We now define

{K1 · · ·Km L1 · · ·Ln}g =

∫

Rg,m,n

Ω
(g,m,n)
6g−6+2m+2n(K1, · · ·Km, L1, · · · , Ln),

{K1 · · ·Km L1 · · ·Ln} =

∞∑

g=0

(gs)
2g {K1 · · ·Km L1 · · ·Ln}g , (2.12)

where Rg,m,n is a section segment of P̃g,m,n that never includes singular Riemann surfaces

corresponding to separating type degeneration but includes singular Riemann surfaces

corresponding to non-separating type degenerations. Rg,m,n is taken to be symmetric

under the exchange of any pair of NS punctures or any pair of R punctures, and satisfies

some other constraints that we shall describe shortly.
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7. Given the definition of {· · ·} in (2.12), the interaction term {ΨN} in (2.11) just means

that the state Ψ is inserted N times inside the curly bracket.

Ω
(g,m,n)
p (K1, · · ·Km, L1, · · · , Ln) satisfies the useful identity

Ω(g,m,n)
p (QBK1, · · ·Km, L1, · · · , Ln) + · · ·+ Ω(g,m,n)

p (K1, · · ·Km, L1, · · · , QBLn)

= (−1)pdΩ
(g,m,n)
p−1 (K1, · · ·Km, L1, · · · , Ln) . (2.13)

In writing this identity we have assumed that if any of the vertex operators Ki or Lj are grass-

mann odd, they have been multiplied by a grassmann odd c-number to make them grassmann

even. We can recover the correct sign of each term by pulling these grassmann odd c-numbers

in each term to the extreme right2 and then removing a common factor involving their product.

This is the convention we shall follow throughout.

While we shall not need the explicit form of Ω
(g,m,n)
p for our analysis, the following infor-

mation will be useful. The grassmann parity of Ω
(g,m,n)
p (K1, · · ·Km, L1, · · · , Ln) is (−1)

p if the

states {Ki} and {Lj} are all grassmann even. This arises from the p number of additional

grassmann odd operators inserted in the correlator that defines Ωp. These are inserted on the

left of all the states {Ki} and {Lj}. For even states it does not make any difference, but for

example this is needed for the correct interpretation of (2.13) where the states QBKi and QBLj

are grassmann odd.

Given a pair of points a ∈ P̃g1,m1,n1
and b ∈ P̃g2,m2,n2

, we define by {a, b} a one parameter

family of points in P̃g1+g2,m1+m2−2,n1+n2
as follows. Let w1 be the local coordinate at the last

NS puncture of the Riemann surface a and w̃1 be the local coordinate at the first NS puncture

of the Riemann surface b. Then we construct a one parameter family of Riemann surfaces by

making the identification3

w1 w̃1 = eiθ, 0 ≤ θ < 2π . (2.14)

The resulting Riemann surfaces have genus g1 + g2, m1 +m2 − 2 NS punctures and n1 + n2

R punctures. The operation (2.14) will be called twist sewing. Similarly given a ∈ P̃g1,m1,n1

2The reason that it is more convenient to move the grassmann odd parameters to the extreme right instead of

extreme left is that in the definition of Ω
(g,m,n)
p there are additional insertions of b-ghosts and other grassmann

odd operators besides the operators Ai, and we choose the convention in which they are inserted to the left
of the Ai’s in a correlation function. There are precisely p insertions of such grassmann odd operators in the
definition on Ωp. Therefore if we want to move the grassmann odd c-numbers to the extreme left, we have to
take into account an extra factor of (−1)p for each such grassmann odd c-number.

3This differs from the convention used in [1] where we used e−iθ instead of eiθ. Our θ parameter is related
to that of [1] by a minus sign.
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and b ∈ P̃g2,m2,n2
, we define by {a; b} a one parameter family of points in P̃g1+g2,m1+m2,n1+n2−2

obtained by twist sewing at R punctures. This means that we identify the local coordinate z1

around the last R puncture of a and the local coordinate z̃1 around the first R-puncture of b

via

z1 z̃1 = eiθ, 0 ≤ θ < 2π . (2.15)

This time we also need to insert an extra PCO on the resulting Riemann surface. This is done

via the insertion of

X0 =

∮

|z1|=1

dz1
z1
X (z1) =

∮

|z̃1|=1

dz̃1
z̃1
X (z̃1) . (2.16)

Therefore {a; b} should viewed as a generalized subspace of P̂g1+g2,m1+m2,n1+n2−2 in the sense

described below (2.11) since we are averaging over many subspaces of P̂g1+g2,m1+m2,n1+n2−2,

differing by the location of the PCO.

We are now ready to state the consistency requirement on Rg,m,n. It takes the form

∂Rg,m,n = −
1

2

∑

g1,g2
g1+g2=g

∑

m1,m2
m1+m2=m+2

∑

n1,n2
n1+n2=n

S[{Rg1,m1,n1
,Rg2,m2,n2

}]

−
1

2

∑

g1,g2
g1+g2=g

∑

m1,m2
m1+m2=m

∑

n1,n2
n1+n2=n+2

S[{Rg1,m1,n1
;Rg2,m2,n2

}] , (2.17)

where for example {Rg1,m1,n1
,Rg2,m2,n2

} is the result of twist sewing every Riemann surface

of Rg1,m1,n1
with every Riemann surface of Rg2,m2,n2

. S denotes sum over all inequivalent

permutation of the external punctures so that the right hand side becomes symmetric under

the exchange of any pair of NS punctures and any pair of R punctures. ∂Rg,m,n denotes the

boundary ofRg,m,n, excluding the boundaries associated with non-separating type degeneration

of Riemann surfaces. One important feature of the subspaces Rg,m,n is that they do not include

separating type degenerations.4

The amplitudes of string field theory are given by sum of tree level Feynman diagrams com-

puted from the 1PI effective action (2.11). For any amplitude with external states K1, · · ·Km,

L1, · · ·Ln there is one diagram that has a single vertex and no internal propagator – its contri-

bution is given by {K1 · · ·Km L1 · · ·Ln} (up to factor of i). This involves integration over the

section segments Rg,m,n which cover only part of the moduli spaceMg,m,n. The contributions

from other Feynman diagrams, involving one or more internal propagators, are given by inte-

gration over other section segments. Eq.(2.17) guarantees that together these section segments

4Possible choices of local coordinate systems satisfying these requirements can be found in [4, 16].
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constitute sections of P̃g,m,n over the full moduli spaceMg,m,n. In particular the regions of the

moduli space containing separating type degenerations arise from Feynman diagrams with one

or more propagators.

We end this review by describing the structure of classical equations of motion derived from

the action – this encodes information on the tree level amplitude computed from (2.11) which

is turn gives the loop amplitudes of string theory. The classical equations of motion take the

form

QB(|Ψ〉 − G|Ψ̃〉) = 0,

QB|Ψ̃〉+
∑

N≥0

1

N !
[ΨN ] = 0 , (2.18)

where for A1, · · ·AN ∈ Ĥ, we define [A1 · · ·AN ] ∈ H̃ via

〈φ|c−0 |[A1 · · ·AN ]〉 = {φA1 · · ·AN} , ∀ |φ〉 ∈ Ĥ . (2.19)

Multiplying the second equation in (2.18) by G and adding it to the first equation we get

QB|Ψ〉+
∑

N

1

N !
G [ΨN ] = 0 . (2.20)

This can be regarded as the equation of motion of the interacting field |Ψ〉. For given |Ψ〉

satisfying (2.20), we can find |Ψ̃〉 by solving the second equation in (2.18). Given a particular

solution to this equation, the only left over freedom in the choice of |Ψ̃〉 is the addition of

a BRST invariant state to the solution. Therefore degrees of freedom associated with |Ψ̃〉

describe non-interacting free fields. This can also be seen from the analysis of the Feynman

rules of the theory [1].

Note that in (2.20) we have dropped the summation range over N . In carrying out our

manipulations we shall often not specify the ranges in various sums with the understanding

that the sum ranges over the full set for which the summand does not vanish.

2.2 Some new notations

So far we have introduced interaction vertices {· · ·} where each external state is an off-shell

string field represented by a state in Ĥ. However for our analysis we shall also need more

general interaction vertices where not all external states are in Ĥ. For this we introduce

the space P̃g,m,n;r,s whose base is the moduli space of genus g Riemann surface with m NS

10



and n R punctures in Ĥ, and r NS and s R punctures in H̃. The fiber of P̃g,m,n;r,s contains

information on the local coordinates at all the m + n + r + s punctures and the locations of

the 2g − 2 + m + n/2 + r + 3s/2 PCO’s that are needed to get a non-vanishing correlation

function. We can introduce the p forms Ω
(g,m,n;r,s)
p on these spaces by simple generalization of

the definition of Ω
(g,m,n)
p reviewed in [1]. This p-form satisfies the analog of (2.13):

Ω(g,m,n;r,s)
p (QBK1, · · ·Km, L1, · · · , Ln; K̃1, · · · K̃r, L̃1, · · · L̃s) + · · ·

+Ω(g,m,n;r,s)
p (K1, · · ·Km, L1, · · · , Ln; K̃1, · · · K̃r, L̃1, · · ·QBL̃s)

= (−1)pdΩ
(g,m,n;r,s)
p−1 (K1, · · ·Km, L1, · · · , Ln; K̃1, · · · K̃r, L̃1, · · · L̃s) . (2.21)

In order to avoid writing too many indices we shall now introduce a short-hand notation

Qg,M,R =
∑

m+n=M

∑

r+s=R

P̃g,m,n;r,s , (2.22)

where the sum simply denotes union. Therefore Qg,M,R is the union of all the spaces P̃g,m,n;r,s

with m+n =M and r+ s = R. Consequently we also define ω
(g,M ;R)
p to be a p-form on Qg,M,R

such that

ω(g,M ;R)
p = (gs)

2g Ω(g,m,n;r,s)
p when restricted to P̃g,m,n;r,s . (2.23)

Now let us suppose that Ag1,M1,N1
and Bg2,M2,N2

are subspaces of Qg1,M1,N1
and Qg2,M2,N2

respectively. We define

Ag1,M1,N1
∗ Bg2,M2,N2

, (2.24)

as the result of twist sewing Ag1,M1,N1
and Bg2,M2,N2

similar to the manner in which we defined

it in the paragraphs containing (2.14)-(2.17), but with some difference:

1. The sewing is done by picking one of the M1 punctures of Ag1,M1,N1
carrying states in

Ĥ and one of the M2 punctures of Bg2,M2,N2
carrying states in Ĥ. Therefore the sewed

surfaces form a subspace of Qg1+g2,M1+M2−2,N1+N2
. Since A and B are not necessarily

symmetric under the exchange of all the punctures, we need to specify which of the

punctures of A and B are sewed to each other. In what follows we shall see that some

of the subspaces A and/or B carry special punctures where we always insert a marginal

operator. The special punctures are never sewed. We shall follow the convention that

leaving aside the special puncture, in A ∗ B we sew the last Ĥ puncture in A and first

Ĥ puncture in B. Most subspaces of interest will be symmetric under the exchange of

all the punctures other than the special puncture; so it will not make a difference which

puncture we use for sewing.
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2. Since A and B are not necessarily even dimensional subspaces, we need to specify the

orientation of the space after gluing. We use the convention that the volume form on the

sewed space is given by the wedge product of the volume form on A, dθ where θ is the

sewing parameter and the volume form on B in this order. This gives

∂(A ∗ B) = (∂A) ∗ B + (−1)dimA+1A ∗ ∂B . (2.25)

The symbol ∗ describes the effect of sewing two punctures, each in Ĥ. As described below

(2.15), it involves insertion of the operator G. We shall now introduce two new symbols –

A ∗→ B that sews the last puncture in Ĥ from A to the first puncture in H̃ in B and A ∗← B

that sews the last puncture in H̃ from A to the first puncture in Ĥ in B, without any insertion

of the operator G. The quick way to remember the notation is that the arrow points towards

the subspace that contributes the puncture in H̃. Both ∗→ and ∗← satisfy identities similar to

that in (2.25).

Given a p-dimensional subspace Ag,M,R of Qg,M,R, we shall define

Ag,M,R(A1, · · ·AM ; Ã1, · · · ÃR) ≡

∫

Ag,M,R

ω(g,M ;R)
p (A1, · · ·AM ; Ã1, · · · ÃR) for Ai ∈ Ĥ, Ãi ∈ H̃ .

(2.26)

Furthermore if the k of the states A1, · · ·AM are equal to some state A, then we shall express

the argument as Ak instead of k copies of A. Similar notation is follows for states in H̃. In

this notation (2.21) can be stated as:

Ag,M,R(QBA1, · · ·AM ; Ã1, · · · ÃR) + · · ·Ag,M,R(A1, · · ·AM ; Ã1, · · ·QBÃR)

= (−1)dim(Ag,M,R) ∂Ag,M,R(A1, · · ·AM ; Ã1, · · · ÃR) . (2.27)

Let us now consider the quantity

Ag1,M1,N1
∗ Bg2,M2,N2

(A1, · · ·AM1−1; Ã1, · · · ÃN1
|B1, · · ·BM2−1; B̃1, · · · B̃N2

) . (2.28)

In writing the arguments on the right hand side we have used the convention that all the states

inserted into the punctures of A are written first, followed by the states that are inserted at the

punctures of B, and within each group, the states that are in Ĥ are written first followed by the

states in H̃. We shall furthermore assume that Ai’s, Bi’s, Ãi’s and B̃i’s have been made even,

possibly via multiplication by a grassmann odd c-number. In that case we can write down an
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expression for (2.28) in terms of the corresponding quantities for component Riemann surfaces

as follows. Let |ϕr〉 and |ϕ
c
r〉 be a conjugate pair of basis states in Ĥ ⊕ H̃ satisfying

〈ϕc
r|c

−
0 |ϕs〉 = δrs = 〈ϕs|c

−
0 |ϕ

c
r〉,

∑

s

|ϕs〉〈ϕ
c
s| = b−0 =

∑

s

|ϕc
s〉〈ϕs| . (2.29)

It is easy to check that ϕr and ϕ
c
r have opposite grassmann parities. We shall denote by (−1)nr

the grassmann parity of ϕr with nr taking values 0 or 1. Then using the completeness relation

given in the last equation of (2.29) we have

Ag1,M1,N1
∗ Bg2,M2,N2

(A1, · · ·AM1−1; Ã1, · · · ÃN1
|B1, · · ·BM2−1; B̃1, · · · B̃N2

)

=
∑

r,s

Ag1,M1,N1
(A1, · · ·AM1−1, ϕr; Ã1, · · · ÃN1

) Bg2,M2,N2
(ϕs, B1, · · ·BM2−1; B̃1, · · · B̃N2

)

×〈ϕc
r|c

−
0 G|ϕ

c
s〉 × (−1)ns dimB , (2.30)

where the last factor arises from having to move ϕs inside the argument of Bg2,M2,N2
to the

extreme left through the dimB ≡ dimBg2,M2,N2
number of anti-commuting ghost insertions

present in the correlation function that defines Bg2,M2,N2
. Similarly we have

Ag1,M1,N1
∗→ Bg2,M2,N2

(A1, · · ·AM1−1; Ã1, · · · ÃN1
|B1, · · ·BM2

; B̃1, · · · B̃N2−1)

=
∑

r,s

Ag1,M1,N1
(A1, · · ·AM1−1, ϕr; Ã1, · · · ÃN1

) Bg2,M2,N2
(B1, · · ·BM2

;ϕs, B̃1, · · · B̃N2−1)

×〈ϕc
r|c

−
0 |ϕ

c
s〉 × (−1)ns dimB , (2.31)

and

Ag1,M1,N1
∗← Bg2,M2,N2

(A1, · · ·AM1
; Ã1, · · · ÃN1−1|B1, · · ·BM2−1; B̃1, · · · B̃N2

)

=
∑

r,s

Ag1,M1,N1
(A1, · · ·AM1

; Ã1, · · · ÃN1−1, ϕr)Bg2,M2,N2
(ϕs, B1, · · ·BM2−1; B̃1, · · · B̃N2

)

×〈ϕc
r|c

−
0 |ϕ

c
s〉 × (−1)ns dimB . (2.32)

Using these relations and ghost number conservation rules one can show that if Ag1,M1,N1
and

Bg2,M2,N2
are symmetric under the exchange of the punctures in Ĥ and the exchange of the

punctures in H̃, then,

Ag1,M1,N1
∗ Bg2,M2,N2

(A1, · · ·AM1−1; Ã1, · · · ÃN1
|B1, · · ·BM2−1; B̃1, · · · B̃N2

)

= Bg2,M2,N2
∗ Ag1,M1,N1

(B1, · · ·BM2−1; B̃1, · · · B̃N2
|A1, · · ·AM1−1; Ã1, · · · ÃN1

)

× (−1)dimAdimB+dimA+dimB , (2.33)
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for even states {Ai, Bi, Ãi, B̃i}. Similarly we have

Ag1,M1,N1
∗← Bg2,M2,N2

(A1, · · ·AM1
; Ã1, · · · ÃN1−1|B1, · · ·BM2−1; B̃1, · · · B̃N2

)

= Bg2,M2,N2
∗→ Ag1,M1,N1

(B1, · · ·BM2−1; B̃1, · · · B̃N2
|A1, · · ·AM1

; Ã1, · · · ÃN1−1)

× (−1)dimAdimB+dimA+dimB . (2.34)

These relations can also be derived using the definition of the volume form on A ∗ B (and

similar definitions for A ∗← B and A ∗→ B) given above (2.25).

We shall streamline the notations even further by defining the formal sum

QM,N ≡
∑

g≥0

Qg,M,N . (2.35)

Similarly given a family of subspaces Ag.M,N of Qg,M,N we shall define

AM,N ≡
∑

g≥0

Ag,M,N , (2.36)

so that AM,N ⊂ QM,N . Therefore when we have a symbol with two subscripts it will be

understood that we have summed over g.

Let us now rewrite some of the old identities in the new notation. If we define

Vg,M,0 ≡
∑

m,n
m+n=M

Rg,m,n , (2.37)

describing a subspace of Qg,M,0, and

VM,0 =
∑

g≥0

Vg,M,0 , (2.38)

then we have

(gs)
2g {A1 · · ·AM}g = Vg,M,0(A1, · · ·AM), {A1 · · ·AM} = VM,0(A1, · · ·AM ) . (2.39)

In this notation, eq.(2.17) may be expressed as

∂VM,0(Φ
M) = −

1

2

∑

M1,M2
M1+M2=M

M !

M1!M2!
VM1+1,0 ∗ VM2+1,0(Φ

M1 |ΦM2) , (2.40)
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where the combinatorial factor arises from symmetrization operation S in (2.17). To recover

(2.17) from here we need to take Φ = A1+ · · ·+AM and pick the coefficient of A1 · · ·AM from

both sides. Using (2.27) we can also express (2.40) as

M VM,0(QBΦ,Φ
M−1) = −

1

2

∑

M1,M2
M1+M2=M

M !

M1!M2!
VM1+1,0 ∗ VM2+1,0(Φ

M1 |ΦM2) . (2.41)

This is the form of the relation that is directly used to prove the invariance of the 1PI effective

action (2.11) under the infinitesimal gauge transformation:

δ|Ψ̃〉 = QB|Λ̃〉+
∑

M

1

M !
[ΛΨM ] , δ|Ψ〉 = QB|Λ〉+

∑

M

1

M !
G[ΛΨM ] , (2.42)

where Λ ∈ Ĥ and Λ̃ ∈ H̃ are infinitesimal grassmann odd gauge transformation parameters.

3 Statement of background independence

In this section we shall discuss the precise statement of background independence of superstring

field theory that we shall attempt to prove.

3.1 Marginal deformation of the superconformal field theory

Let us suppose that the matter sector of the world-sheet SCFT admits a supersymmetry

preserving marginal deformation. In the heterotic world-sheet theory this implies the existence

of a dimension (1, 1/2) superconformal primary operator O of the matter theory.5 We also

have an associated dimension (1, 1) matter primary Õ defined through the operator product

expansion

TF (z)O(w, w̄) ≃ (z − w)−1 Õ(w, w̄) + less singular terms ,

TF (z) Õ(w, w̄) ≃
1

4
(z − w)−2O(w, w̄) +

1

4
(z − w)−1∂O(w, w̄) + less singular terms .

(3.1)

O and Õ may be considered as the lower and the upper components of a superfield. We can now

consider a neighboring SCFT that is related to the original theory by marginal deformation

5We use the convention that left-movers are anti-holomorphic and right-movers are holomorphic fields on
the world-sheet.

15



by the operator Õ. Without loss of generality we shall restrict our discussion to first order in

the deformation parameter since we can build a finite deformation by successive application

of infinitesimal deformations. In this case the correlation functions of the new theory on any

Riemann surface can be computed in terms of correlation functions of the original theory on

the same Riemann surface by making an additional insertion of the marginal operator and

integrating over the location of its insertion point. More precisely we deform every correlation

function by inserting into the correlation function an operator

−
λ

2πi

∫
dz ∧ dz̄ Õ(z, z̄) , (3.2)

for some infinitesimal operator λ. However this apparently suffers from divergences when the

locations of the marginal operator approach the locations of the other operators inserted in

the correlation function. It also suffers from an ambiguity since in principle the states of the

undeformed theory and the states of the deformed theory belong to different Hilbert spaces and

there is no canonical isomorphism between these Hilbert spaces. Therefore by state operator

correspondence, there is also no canonical isomorphism between the local operators in the two

theories, and there is no absolute notion of comparing correlation functions in the two theories.

It turns out that both problems can be resolved by introducing the notion of a connection

on the Hilbert space of the family of SCFT’s related by marginal deformation. This estab-

lishes a (non-canonical) isomorphism between the Hilbert spaces of the original theory and the

deformed theory. Once such an isomorphism is established, it becomes meaningful to express

the correlation function of one theory in terms of the correlation function of the other theory.

It turns out that when we choose a non-singular connection it also eliminates the divergence

problems. We shall now state the result for the deformed correlation function for a partic-

ular choice of connection [17–20]. In that case the correlation function of a set of operators

A1, · · ·AN on a Riemann surface Σ, inserted using local coordinates w1, · · ·wN , changes by

δ〈A1 · · ·AN〉Σ = −
λ

2πi

∫

Σ−∪iDi

dz ∧ dz̄ 〈 Õ(z, z̄)A1 · · ·AN〉Σ (3.3)

where Σ − ∪iDi denotes the whole Riemann surface sans unit disks |wi| ≤ 1 around each

puncture. Since in (3.3) the location z of the additional operator Õ never approaches any of

the punctures, there is no divergence of the type mentioned earlier. The fact that we have

to exclude disks of unit radius from around each puncture is dictated by the special choice of

connection we have taken. Excluding disks of radius a for any other number a will correspond

to a different choice of connection. a → 0 limit corresponds to the original prescription
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of integrating over the whole Riemann surface. In this limit we get back the divergences

mentioned earlier but this can now be attributed to the fact that the corresponding choice

of connection is singular. The particular choice of connection described in (3.3) preserves the

BPZ inner product.

Since the PCO’s are typically inserted on Σ−∪iDi, we can get divergences when the location

z of Õ approaches the location w of the PCO. However since the divergent piece is proportional

to (z − w)−2, we can perform the integral by restricting the z integral to |z − w| > ǫ for some

small number ǫ and then taking the ǫ → 0 limit. This gives a finite integral and furthermore

the result of integration is not affected under a non-singular change of coordinates i.e. we get

the same result by performing the integral over the region |f(z)− f(w)| > ǫ and then taking

the ǫ→ 0 limit. For this reason we shall not worry about collision of Õ with the PCO’s.

For the particular choice of connection that excludes disks of unit radius, we can calculate

the deformations of the standard SCFT operators like the Virasoro generators and the modes

of the supercurrent. The modes of the ghost fields remain unchanged since the deformation is

only in the matter sector. The Virasoro generators Ln and L̄n change by [17–20]

δLn = λ

∮

|z|=1

dz̄ zn+1 Õ(z, z̄), δL̄n = λ

∮

|z|=1

dz z̄n+1 Õ(z, z̄) , (3.4)

where the integral is performed over a circle at |z| = 1.
∮

includes appropriate factors of

±(2πi)−1 so that
∮
dz/z = 1,

∮
dz̄/z̄ = 1. The modes Gn of the matter supercurrent change

by [18]6

δGn =
1

4
λ

∮

|z|=1

dz̄ zn+1/2O(z, z̄) . (3.5)

As a result the BRST operator QB and the zero mode of the PCO X0 change by

δQB = λ

∮

|z|=1

dz̄ c(z) Õ(z, z̄) + λ

∮

|z|=1

dz c̄(z̄) Õ(z, z̄) +
1

4
λ

∮

|z|=1

dz̄ γ(z)O(z, z̄) , (3.6)

and

δX0 =
1

4
λ

∮

|z|=1

dz̄ z−1 eφ(z)O(z, z̄) . (3.7)

It is straightforward (although somewhat tedious) to verify that

{QB, δQB} = O(λ
2), [QB, δX0] + [δQB,X0] = O(λ

2) , (3.8)

6The sign and normalization of the right hand side of (3.5) differs from that in [18] due to a difference in
convention. The correct normalization can be derived using the procedure described in [17] using (3.1).

17



so that QB + δQB is nilpotent and commutes with X0 + δX0 to first order in the perturbation

parameter λ. The following argument also shows that the connection preserves the projection

into the L−
0 = 0 states, i.e. δL0 − δL̄0 vanishes while acting on a state with L0 = L̄0. Let us

suppose that φ is a vertex operator with L0 = L̄0 = h. Then we have the operator product

expansion

Õ(z, z̄)φ(0) =
∑

p,q

z̄p−1 zq−1 φp,q(0) , (3.9)

where φp,q have dimension (p+ h, q + h). Therefore

(δL0 − δL̄0)|φ〉 = λ

∮

|z|=1

dz̄ z
∑

p,q

z̄p−1 zq−1 |φp,q〉 − λ

∮

|z|=1

dz z̄
∑

p,q

z̄p−1 zq−1 |φp,q〉 (3.10)

Since the contour integrals are performed over circles of unit radii around the origin, each of

these terms vanish unless p = q. On the other hand for p = q the two terms gives identical

result |φp,q〉 and cancel. This shows that δL0 − δL̄0 vanishes while acting on a state with

L0 = L̄0. Since the bn’s are not deformed at all, the b0 − b̄0 = 0 condition is also preserved by

this connection.

We can now consider the string field theory action S ′(Π, Π̃) formulated in the new back-

ground. It is given by

S ′(Π, Π̃) = S(Π, Π̃) + δS(Π, Π̃) , (3.11)

where

δS = g−2
s

[
−
1

2
〈Π̃|c−0 (δGQB + G δQB)|Π̃〉+ 〈Π̃|c

−
0 δQB|Π〉+

∑

N

1

N !
δ{ΠN}

]
. (3.12)

Here δ{A1 · · ·AN} denotes the change in {A1 · · ·AN} due to the change in the correlation

function given in (3.3).

The equations of motion for the interacting part of the theory is obtained by replacing the

kinetic and interaction terms in (2.20) by their counterpart in the new background. This gives

QB|Π〉+
∑

N

1

N !
G [ΠN ] + δQB |Π〉+

∑

N

1

N !
δ G [ΠN ] +

∑

N

1

N !
G δ [ΠN ] = 0 , (3.13)

where δ [ΠN ] is defined via the equation

〈A|c−0 |δ [Π
N ]〉 = δ {AΠn} (3.14)

for any state A.
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3.2 Superstring field theory around shifted background

Given the superconformal primary operator O(z, z̄) of dimension (1,1/2), we can construct a

BRST invariant operator c̄ce−φO. Since the genus zero contribution {A1 · · ·AN}0 vanishes for

N ≤ 3, the interaction terms begin at cubic order. Therefore

|Ψ〉 = |Ψ̃〉 = λ |Ψ0〉, |Ψ0〉 ≡ c̄1 c1 e
−φ(0)|O〉 , (3.15)

gives a solution to the classical equations of motion (2.18) of the undeformed theory to order

λ. Note that since the solution carries picture number −1 and therefore describes an NS sector

state, G = 1 in this sector and we can take Ψ̃ = Ψ.7 We shall not demand that λ|Ψ0〉 remains a

solution to the quantum corrected equations of motion, just as we do not assume that |Π〉 = 0

is a solution to the deformed equation of motion (3.13) after including the quantum effects in

the 1PI effective action.

We now define shifted fields

|Φ〉 = |Ψ〉 − λ |Ψ0〉, |Φ̃〉 = |Ψ̃〉 − λ |Ψ0〉 , (3.16)

and expand the action in a power series expansion in |Φ〉. The action takes the form

S(Ψ, Ψ̃) = S(Ψ0,Ψ0) + S ′′(Φ, Φ̃) , (3.17)

where

S ′′(Φ, Φ̃) = g−2
s

[
−
1

2
〈Φ̃|c−0 GQB|Φ̃〉+ 〈Φ̃|c

−
0 QB|Φ〉+

∑

N

1

N !
{ΦN}+ λ

∑

N

1

N !
{Ψ0Φ

N}

]
+O(λ2) .

(3.18)

The equations of motion derived from (3.18) takes the form

QB(|Φ〉 − G|Φ̃〉) = 0

QB|Φ̃〉+
∑

N

1

N !
[ΦN ] + λ

∑

N

1

N !
[Ψ0Φ

N ] = 0 . (3.19)

Multiplying the second equation in (3.19) by G and adding it to the first equation we get the

equation of motion for the interacting field |Φ〉:

QB|Φ〉+
∑

N

1

N !
G
(
[ΦN ] + λ[Ψ0Φ

N ]
)
= 0 . (3.20)

7Since the equations of motion allow us to shift Ψ̃ by a BRST invariant state without affecting Ψ, we could
set Ψ̃ = 0.
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For given |Φ〉 satisfying (3.20), the second equation of (3.19) determines |Φ̃〉 up to addition of

BRST invariant states. Therefore as before, the degrees of freedom of Φ̃ are free fields, and

(3.20) contains full information about the S-matrix of the interacting part of the theory.

3.3 Statement of the problem

We now have two potential descriptions of quantum corrected interacting field equations of

superstring field theory in a background related to the original background via marginal de-

formation. The first one, described by (3.13), uses the formulation of superstring field theory

around the deformed world-sheet SCFT. The second one, described by (3.20) is the equation

of motion of superstring field theory formulated around the original background, but expanded

around a new solution to the equations of motion representing the marginal deformation. The

statement of background independence is that these two sets of equations are equivalent (to

order λ). Therefore there must be a field redefinition relating Π to Φ that makes the first set of

equations of motion into linear combinations of the second set (with possibly field dependent

coefficients).8 Since the two sets of equations of motion differ by order λ, we can assume that

the (field dependent) matrix relating the two sets of equations differ from the identity matrix

by terms of order λ. Denoting the original equations of motion by |E0〉 = 0, and the equations

(3.13) and (3.20) by |E0〉 + λ|E1〉 = 0 and |E0〉 + λ|E2〉 = 0 respectively, we can state the

requirement as

|E0〉+ λ|E1〉 = (1 + λM)(|E0〉+ λ|E2〉) (3.21)

where M is some linear operator on Ĥ that could be field dependent. To order λ this gives

|E1〉 − |E2〉 =M |E0〉 . (3.22)

We shall look for a field redefinition of the form

|Π〉 = |Φ〉+ δ |Φ〉 , (3.23)

for some state δ |Φ〉 of order λ, and analyze the difference between the equations of motion

(3.13) and (3.20) to order λ. The inner product between an arbitrary state Ã ∈ H̃ and this

8The advantage of working with the equations of motion derived from the 1PI effective action is that we do
not need to worry about the change in the integration measure over fields under a change in background, since
the effect of integration measure is included in the definition of the 1PI effective action. This avoids some of
the complications encountered in [8].
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difference may then be written as

∆ ≡ 〈Ã|c−0

(
QB |δΦ〉+

∑

N

1

N !
G[ΦN δΦ] + δQB|Φ〉+

∑

N

1

N !
δG [ΦN ] +

∑

N

1

N !
G δ[ΦN ]

−λ
∑

N

1

N !
G [Ψ0Φ

N ]

)
. (3.24)

For definiteness we shall take Ã to be grassmann even – this can always be achieved by

multiplying the state by a grassmann odd c-number if needed. In that case (3.24) may be

written as

∆ = 〈QBÃ|c
−
0 |δΦ〉+

∑

N

1

N !
{(GÃ)ΦN δΦ}+ 〈Ã|c−0 δQB|Φ〉+

∑

N

1

N !
{(δGÃ) ΦN}

+
∑

N

1

N !
δ{(G Ã) ΦN} − λ

∑

N

1

N !
{(GÃ) Ψ0Φ

N} . (3.25)

Eq.(3.22) now translates to the requirement that ∆ vanishes to order λ when |Φ〉 satisfies the

zeroth order equation of motion

QB|Φ〉+
∑

N

1

N !
G [ΦN ] = 0 . (3.26)

Our goal will be to prove the existence of δΦ satisfying this requirement.

One could have asked for more – demanding that the two actions S ′(Π, Π̃) and S ′′(Φ, Φ̃)

are equivalent. However it is easy to see that this cannot hold. Since the equations of motion

of Π, Π̃ use the deformed BRST operator Q′
B and deformed interaction terms, it follows that

the free field degrees of freedom encoded in Π̃ correspond to states annihilated by Q′
B. On

the other hand it follows from (3.19) that the free field degrees of freedom encoded in Φ̃

correspond to states annihilated by QB. Since QB and Q′
B have different cohomologies (in

particular the mass spectrum computed from the two operators are different) there cannot be

a field redefinition that relates the two actions. However this is not necessary for the proof

of background dependence – it is enough to show that the 1PI equations of motion for the

interacting fields are related by field redefinition. This is what we shall attempt to do.

4 Geometric interpretation of the kinetic and interac-

tion terms of the deformed theory

In this section we shall give geometric interpretation of δQB, δG and δ{ΦN} by associating to

each of them appropriate subspaces of Qg,M,N . This will be used in the next section to convert
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(3.25) into a geometric form.

4.1 Deformation of the BRST operator

Let us begin with δQB. For this we introduce a zero dimensional subspace V ′
0,2,1 ⊂ Q0,2,1 of the

following form. If z denotes the standard coordinate on the complex plane used to parametrize

a genus 0 surface, then the second puncture in Ĥ and the puncture in H̃ are taken to be at

z = 0 and z =∞ respectively, with z and 1/z as local coordinates around the two punctures.

The first puncture in Ĥ is inserted at z = 1. This is a special puncture where we always

insert the vertex operator Ψ0 described in (3.15) [7, 8]. Since this is a dimension zero primary

we do not need to specify the choice of local coordinates at this puncture – all choices are

equivalent. Since the total picture number carried by the vertex operators Ψ0, and the two

vertex operators in Ĥ and H̃ is −3, we need one PCO insertion. This is inserted at the special

puncture at z = 1, converting Ψ0 to a zero picture vertex operator

lim
w→z
X (w)Ψ0(z) = c c̄ Õ −

1

4
γ c̄O , (4.1)

without generating any singular term. In this case in the notation of (2.26),

V ′
0,2,1(Ψ0, B; Ã) =

〈
Ã

∣∣∣∣
[
c c̄ Õ(1)−

1

4
γ c̄O(1)

]∣∣∣∣B
〉

(4.2)

for grassmann even vertex operators A and B̃. Using the invariance of states in Ĥ and H̃ under

L−
0 and b−0 , and standard identities for sphere three point function in conformal field theory,

we can bring this to the form

V ′
0,2,1(Ψ0, B; Ã) =

〈
Ã

∣∣∣∣c
−
0

[ ∮

|z|=1

dz̄ c(z) Õ(z, z̄) +

∮

|z|=1

dz c̄(z̄) Õ(z, z̄)

+
1

4

∮

|z|=1

dz̄ γ(z)O(z, z̄)

]∣∣∣∣B
〉

= λ−1 〈Ã|c−0 δQB|B〉 . (4.3)

To see how this works, let us examine the second term on the right hand side of (4.2). We first

write

c̄(1) =
∑

n

c̄n = −
1

2

∑

n

(cn − c̄n) +
1

2
(cn + c̄n) , (4.4)
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and note that since |Ã〉 and |B〉 are annihilated by b−0 , the only term in (4.4) that contributes

to (4.2) is the −(c0 − c̄0)/2 = −c−0 term. This reduces the second term on the right hand side

of (4.2) to
1

4
〈Ã|c−0 γ(1)O(1)|B〉 . (4.5)

Denoting by (hA, hA) and (hB, hB) the conformal weights of |Ã〉 and |B〉, and recalling that

γO has conformal weight (1, 0), we get

〈Ã|c−0 γ(z)O(z, z̄)|B〉 = z̄hA−hB−1zhA−hB〈Ã|c−0 γ(1)O(1)|B〉 = z̄−1 〈Ã|c−0 γ(1)O(1)|B〉 ,

at |z| = 1 . (4.6)

Therefore we get

1

4

∮

|z|=1

dz̄ 〈Ã|c−0 γ(z)O(z, z̄)|B〉 =
1

4
〈Ã|c−0 γ(1)O(1)|B〉 . (4.7)

This establishes the equality of the second term on the right hand side of (4.2) and the term

in the second line of (4.3). Similar manipulations can be carried out for the other terms [7,8].

From (4.3) we have

〈Ã|c−0 δQB|B〉 = λV ′
0,2,1(Ψ0, B; Ã) . (4.8)

Note that since V ′
0,2,1 is a zero dimensional subspace, the right hand side of (4.8) corresponds

to simply evaluating ω
(0,2;1)
0 (Ψ0, B; Ã) on a specific point in Q0,2,1 that represents V ′

0,2,1. Also

∂V ′
0,2,1 = 0. When Ã and B have general grassmann parities (−1)Ã and (−1)B, then this

equation will have an additional sign of (−1)Ã B. This can be seen by multiplying Ã and B by

grassmann odd c-numbers if needed to make them grassmann even, applying (4.8) and finally

stripping off the grassmann odd c-numbers by moving them to the extreme right or extreme

left.

4.2 Deformation of the picture changing operator

Next we turn to δG. For this we define a one dimensional subspace V ′′
0,1,2 of Q0,1,2 as follows.

If any of the punctures in H̃ is NS puncture, we declare V ′′
0,1,2 to be zero, reflecting the fact

that δG vanishes on NS sector state. When the two punctures in H̃ are Ramond punctures,

V ′′
0,1,2 describes a one dimensional subspace of Q0,1,2 such that for each element of V ′′

0,1,2 the

choice of local coordinates at the punctures are fixed in the same way as for V ′
0,2,1 at all the

punctures. In particular the puncture in Ĥ is a special puncture at z = 1 where Ψ0 is inserted,
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the first puncture in H̃ is at z = 0 with local coordinate z and the second puncture in H̃ is at

z = ∞ with local coordinate 1/z. Therefore the different elements of V ′′
0,1,2 differ only in the

choice of PCO locations, making this a ‘vertical segment’ in the language of [13,14]. This one

dimensional vertical segment interpolates between the following pair of PCO configurations.

In both configurations one PCO is inserted at the special puncture, converting Ψ0 into a zero

picture vertex operator given in (4.1). The second PCO is inserted as X0 around the puncture

at∞ in the initial configuration and X0 around the puncture at 0 in the final configuration. In

the correlation function that defines V ′′
0,1,2(Ψ0, Ã, B̃), this corresponds to the difference between

two terms – an insertion of ξ0 around the puncture at∞ and the insertion of ξ0 at the puncture

at 0 [13].9 Therefore we have, for grassmann even Ã, B̃:

V ′′
0,1,2(Ψ0, Ã, B̃) =

〈
B̃

∣∣∣∣
[
ξ0,

(
c c̄ Õ(1)−

1

4
γ c̄O(1)

)]∣∣∣∣ Ã
〉

= −
1

4
〈B̃|eφ c̄O(1)|Ã〉 . (4.9)

Following the same logic described below (4.3) we can express this as

V ′′
0,1,2(Ψ0, Ã, B̃) = −

1

4

〈
B̃

∣∣∣∣∣∣∣
c−0

∮

|z|=1

dz̄

z
eφO(z, z̄)

∣∣∣∣∣∣∣
Ã

〉
= −λ−1 〈B̃|c−0 δX0|Ã〉 . (4.10)

Therefore we may write, for grassmann even states Ã, B̃ ∈ H̃,

〈B̃|c−0 δG|Ã〉 = −λV
′′
0,1,2(Ψ0; Ã, B̃) . (4.11)

When Ã and B̃ are NS sector states then both sides vanish and the equation holds identically.

When Ã and B̃ are R sector states then this equation follows from the equality of (4.9) and

(4.10). When Ã, B̃ have general grassmann parities then this equation will have an additional

factor of (−1)B̃+B̃Ã. This extra sign arises from the fact that when we convert Ã and B̃ to

grassmann even operators by multiplying them by (possibly) grassmann odd c-numbers ζA

and ζB from the right so that (4.11) holds, and try to strip off the ζ ’s by moving them to

the extreme right on both sides in the combination ζBζA, we get a factor of (−1)B̃+B̃Ã on the

left hand side arising from the effect of passing ζB through c−0 and Ã. An identical result is

obtained by moving the ζ ’s to the extreme left.

Since V ′′
0,1,2 interpolates between two configurations: V ′

0,2,1 with an extra factor of G inserted

around ∞ and V ′
0,2,1 with an extra factor of G inserted around 0, we have

∂V ′′
0,1,2(Ψ0; Ã, B̃) = V

′
0,2,1(Ψ0,GÃ; B̃)− V ′

0,2,1(Ψ0,GB̃; Ã) , (4.12)

9Even though ξ0 is not a good operator in the small Hilbert space in which we are working, the difference
between two insertions of ξ0 is in the small Hilbert space.
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for grassmann even Ã and B̃. Another useful property of V ′′
0,1,2(Ψ0; Ã, B̃) is that it is antisym-

metric under Ã↔ B̃ for grassmann even Ã and B̃,

V ′′
0,1,2(Ψ0; Ã, B̃) = −V ′′

0,1,2(Ψ0; B̃, Ã) . (4.13)

For this reason when we sew a H̃ puncture of V ′′ to another puncture belonging to another

Riemann surface, it is important to specify which of the two H̃ punctures of V ′′
0,1,2 is being

used for sewing. Following the conventions given below (2.24), if the first H̃ puncture of V ′′
0,1,2

takes part in the sewing, then we shall write V ′′
0,1,2 to the right of the ∗→ symbol, whereas if

the second H̃ puncture of V ′′
0,1,2 takes part in the sewing, then we shall write V ′′

0,1,2 to the left

of the ∗← symbol. Due to this antisymmetry property, the relations of the form (2.34) acquire

extra minus sign when one of the subspaces is V ′′
0,1,2.

4.3 Deformation of the interaction terms

Finally we turn to the interpretation of δ{ΦN}. This may be expressed as10

δ{ΦN} = λ
∑

g≥0

V ′
g,N+1,0(Ψ0, Φ

N ) , (4.14)

where V ′
g,N+1,0 is a (6g+2N−4) dimensional subspace of Qg,N+1,0 defined as follows. We begin

with the Riemann surfaces associated with the subspace Vg,N,0 ⊂ Qg,N,0 and insert a special

puncture at any point on the Riemann surface outside the unit disks: |wi| ≥ 1 for 1 ≤ i ≤ N ,

where wi is the local coordinate around the i-th puncture on the Riemann surfaces associated

with Vg,N,0. Since we shall always insert the conformally invariant vertex operator Ψ0 at the

special puncture, we do not need to specify the local coordinate at this puncture. Therefore

V ′
g,N+1,0 corresponds to a subspace of Qg,N+1,0 modulo the choice of local coordinates at the

special puncture, and all relations involving V ′
g,N+1,0 that we shall write below will be modulo

this choice. Note that for g = 0 this definition of V ′
g,N+1,0 is valid for N ≥ 3. We define V ′

0,3,0

to be zero. We shall use the convention that the first puncture of V ′
g,N+1,0 will be the special

puncture. From the symmetry of Vg,N,0 under the permutations of the punctures, it follows

that V ′
g,N+1,0 is symmetric under the permutations of all the punctures other than the special

puncture. Since Vg,N,0 avoids regions of the moduli space with separating type degenerations,

and since in the definition of V ′
g,N+1,0 we always keep the special puncture away from the other

punctures, V ′
g,N+1,0 also avoids separating type degenerations.

10The (−2πi)−1 factor in (3.2) arises in (4.14) from a (−2πi)−1 factor included in the definition of Ω
(g,m,n)
p

for every additional puncture (see e.g. [1]).
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Let us define

V ′
N+1,0 ≡

∑

g≥0

V ′
g,N+1,0 . (4.15)

Then (4.14) may be expressed as

δ{ΦN} = λV ′
N+1,0(Ψ0, Φ

N ) . (4.16)

The result for δ{A1 · · ·AN} can be found from (4.16) by taking Φ = A1 + · · · + AN and

keeping terms proportional to A1 · · ·AN on both sides. For example replacing Φ by A+Φ and

keeping terms linear in A on both sides of (4.16) we get

δ{AΦN−1} = λV ′
N+1,0(Ψ0, A,Φ

N−1) . (4.17)

In the following analysis we shall make use of various relations involving the ∗, ∗← and

∗→ product of the subspaces V ′
0,2,1, V

′′
0,1,2 and V ′

g,N+1,0. Since these vertices are not symmetric

in all the punctures, we need to carefully specify which of the punctures are sewed. In this

we shall use the convention that the special puncture carried by the corresponding Riemann

surfaces never takes part in sewing. Therefore for example when we we have a subspace of the

form A ∗ V ′
g,N+1,0, it is the left-most puncture of V ′ other than the special puncture that takes

part in the sewing. Similar convention will be used for V ′
0,2,1 and V ′′

0,1,2.

The boundary of V ′
N+1,0 will play a special role in the subsequent analysis. This can be

determined as follows. Since

Vdeformed
N,0 (ΦN) ≡ VN,0(Φ

N ) + λV ′
N+1,0(Ψ0,Φ

N) (4.18)

gives the interaction vertex of the deformed theory, it satisfies an identity similar to (2.41):

M Vdeformed
M,0 ((QB + δQB)Φ,Φ

M−1) = −
1

2

∑

M1,M2
M1+M2=M

M !

M1!M2!
Vdeformed
M1+1,0 ∗

′ Vdeformed
M2+1,0 (ΦM1 |ΦM2) ,

(4.19)

where ∗′ is defined in the same way as ∗ except that for Ramond sector sewing we insert G+δG

instead of G around one of the punctures that are sewed. Now, using (4.11), (2.30)-(2.32) and

the anti-symmetry property (4.13), we can write

VM1+1,0 ∗
′ VM2+1,0(Φ

M1|ΦM2)

= VM1+1,0 ∗ VM2+1,0(Φ
M1 |ΦM2) + λVM1+1,0 ∗→ V

′′
0,1,2 ∗← VM2+1,0(Φ

M1 |Ψ0|Φ
M2) . (4.20)
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While applying (2.30)-(2.32), (4.11) and (4.13) to arrive at (4.20), we have to keep in mind that

not all the arguments that appear in the intermediate steps of the analysis are grassmann even,

and therefore there will be extra signs that have to be computed carefully using the procedure

explained earlier. Expanding (4.19) in powers of λ using (4.18), (4.20), and collecting the

coefficients of the order λ term, we get

M V ′
M+1,0(Ψ0, QBΦ,Φ

M−1) = −
∑

M1,M2
M1+M2=M

M !

M1!M2!
VM1+1,0 ∗ V

′
M2+2,0(Φ

M1|Ψ0,Φ
M2)

−
1

2

∑

M1,M2
M1+M2=M

M !

M1!M2!
VM1+1,0 ∗→ V

′′
0,1,2 ∗← VM2+1,0(Φ

M1 |Ψ0|Φ
M2)

−M λ−1 VM,0(δQBΦ,Φ
M−1) . (4.21)

As already mentioned, this relation holds up to the choice of local coordinates at the special

puncture. Using (2.32) and (4.8) we can express this as

∂V ′
M+1,0(Ψ0,Φ

M) = −
∑

M1,M2
M1+M2=M

M !

M1!M2!
VM1+1,0 ∗ V

′
M2+2,0(Φ

M1 |Ψ0,Φ
M2)

−
1

2

∑

M1,M2
M1+M2=M

M !

M1!M2!
VM1+1,0 ∗→ V

′′
0,1,2 ∗← VM2+1,0(Φ

M1 |Ψ0|Φ
M2)

−M V ′
0,2,1 ∗← VM,0(Ψ0,Φ|Φ

M−1) . (4.22)

An equivalent relation, that will be useful later, is obtained by replacing Φ by Φ + A and

keeping terms linear in A on both sides:

M ∂V ′
M+1,0(Ψ0, A,Φ

M−1) = −
∑

M1,M2
M1+M2=M

M !

M1!(M2 − 1)!
VM1+1,0 ∗ V

′
M2+2,0(Φ

M1 |Ψ0, A,Φ
M2−1)

−
∑

M1,M2
M1+M2=M

M !

(M1 − 1)!M2!
VM1+1,0 ∗ V

′
M2+2,0(A,Φ

M1−1|Ψ0,Φ
M2)

−
∑

M1,M2
M1+M2=M

M !

(M1 − 1)!M2!
VM1+1,0 ∗→ V

′′
0,1,2 ∗← VM2+1,0(A,Φ

M1−1|Ψ0|Φ
M2)

−M V ′
0,2,1 ∗← VM,0(Ψ0, A|Φ

M−1)−M(M − 1) V ′
0,2,1 ∗← VM,0(Ψ0,Φ|A,Φ

M−2).

(4.23)
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5 Proof of background independence

In this section we shall show the existence of δΦ satisfying the ∆ ≃ 0 equation, where ≃

denotes equality up to terms that vanish by leading order equations of motion (3.26). We shall

seek a solution for δΦ such that for any grassmann even state B̃ ∈ H̃:

〈B̃|c−0 |δΦ〉 = λ
∑

N≥0

1

N !
BN+1,1(Ψ0,Φ

N ; B̃) , (5.1)

BN+1,1 ≡
∑

g≥0

Bg,N+1,1 , (5.2)

where Bg,N+1,1 is a 6g + 2N − 1 dimensional subspace of Qg,N+1,1 that is to be determined.

The dimension of Bg,N+1,1 is fixed by the requirement that the total ghost number carried by

the arguments minus the dimension of Bg,N+1,1 should be equal to 6− 6g due to ghost number

conservation. The first Ĥ puncture of Bg,N+1,1 is taken to be the special puncture where we

insert the state Ψ0. This puncture never takes part in the sewing operation, and we leave

unspecified the choice of local coordinate at this puncture. Bg,N+1,1 is taken to be symmetric

under the permutations of the rest of the N punctures in Ĥ where Φ’s are inserted. B̃ is

inserted at the only H̃ puncture of Bg,N+1,1. We shall look for solutions for Bg,N+1,1 that avoid

separating type degenerations.

If B̃ is grassmann odd then there is an addition minus sign in (5.1) arising as follows. When

we convert a grassmann odd operator to a grassmann even operator by multiplication by a

grassmann odd c-number ζ , and try to strip off ζ by moving it to the extreme right or left

on both sides, we get an extra minus sign arising from the effect of passing ζ through c−0 on

the left hand side of (5.1) when we move ζ to the right, or from having to pass ζ through the

6g+2N − 1 grassmann odd operators on the right hand side of (5.1), implicit in the definition

of Bg,N+1,1(Ψ0,Φ
N ; B̃), when we move ζ to the left.

5.1 Geometrization of the problem of background independence

In this section we shall describe the geometric interpretation of different terms appearing in

(3.25).

First term: We begin with the first term on the right hand side of (3.25). Since QBÃ is

grassmann odd, we have, from (5.1), (2.27) and the BRST invariance of |Ψ0〉, that

〈QBÃ|c
−
0 |δΦ〉 = −λ

∑

N

1

N !
BN+1,1(Ψ0,Φ

N ;QBÃ)
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= λ
∑

N

1

N !
∂BN+1,1(Ψ0,Φ

N ; Ã) + λ
∑

N

1

(N − 1)!
BN+1,1(Ψ0,Φ

N−1, QBΦ; Ã) . (5.3)

Using the leading order equations of motion (3.26) this may be rewritten as

λ
∑

N

1

N !
∂BN+1,1(Ψ0,Φ

N ; Ã)− λ
∑

N,M

1

(N − 1)!M !
BN+1,1(Ψ0,Φ

N−1, ϕr; Ã)〈ϕ
c
r|c

−
0 G|ϕ

c
s〉〈ϕs|c

−
0 [Φ

M ]〉

= λ
∑

N

1

N !
∂BN+1,1(Ψ0,Φ

N ; Ã)− λ
∑

N,M

1

N !M !
BN+2,1 ∗ VM+1,0(Ψ0,Φ

N ; Ã|ΦM) , (5.4)

where in the second step we have used (2.19), (2.30) and (2.39) .

Second term: In order to give a geometric interpretation of the second term on the right

hand side of (3.25), we express this as

∑

N

1

N !
{(GÃ)ΦN ϕr}〈ϕ

c
r|c

−
0 |δΦ〉

= λ
∑

N

∑

M

1

N !

1

M !
(−1)ns VN+2,0((GÃ),Φ

N , ϕr)〈ϕ
c
r|c

−
0 |ϕ

c
s〉 BM+1,1(Ψ0,Φ

M ;ϕs) . (5.5)

Using (2.31) and the fact that dimBg,M+1,1 = 6g + 2M − 1, we can express this as

λ
∑

N

∑

M

1

N !

1

M !
VN+2,0 ∗→ BM+1,1((GÃ),Φ

N |Ψ0,Φ
M) . (5.6)

Note that since VN+2,0 is fully symmetric in all the punctures we need not specify the puncture

that participates in the sewing. BM+2,1 is not fully symmetric, but since it has only one H̃

puncture, there is no ambiguity in which puncture takes part in the sewing.

Third term: It follows from (4.8) that the third term on the right hand side of (3.25) may

be written as

〈Ã|c−0 δQB|Φ〉 = λV ′
0,2,1(Ψ0,Φ; Ã) . (5.7)

Fourth term: Using (4.11) the fourth term on the right hand side of (3.25) may be expressed

as

∑

N

1

N !
{ΦNϕr}〈ϕ

c
r|c

−
0 |ϕ

c
s〉〈ϕs|c

−
0 δG|Ã〉

= λ
∑

N

1

N !
(−1)ns+1VN+1,0(Φ

N , ϕr)〈ϕ
c
r|c

−
0 |ϕ

c
s〉V

′′
0,1,2(Ψ0; Ã, ϕs)

= λ
∑

N

1

N !
VN+1,0 ∗→ V

′′
0,1,2(Φ

N |Ψ0; Ã) (5.8)
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Fifth term: We shall now consider the fifth term on the right hand side of (3.25). Using

(4.17) this may be expressed as

λ
∑

N

1

N !
V ′
N+2,0(Ψ0, (G Ã), Φ

N ) . (5.9)

Sixth term: Finally the sixth term on the right hand side of (3.25) may be written as

−λ
∑

N

1

N !
VN+2,0(Ψ0, (GÃ),Φ

N ) . (5.10)

Using (5.4), (5.6), (5.7), (5.8), (5.9) and (5.10) we can now express (3.25) as

∆ = λ
∑

N

1

N !
∂BN+1,1(Ψ0,Φ

N ; Ã)− λ
∑

N,M

1

N !M !
BN+2,1 ∗ VM+1,0(Ψ0,Φ

N ; Ã|ΦM)

+λ
∑

N

∑

M

1

N !

1

M !
VN+2,0 ∗→ BM+1,1((GÃ),Φ

N |Ψ0,Φ
M) + λV ′

0,2,1(Ψ0,Φ, Ã)

+λ
∑

N

1

N !
VN+1,0 ∗→ V

′′
0,1,2(Φ

N |Ψ0; Ã) + λ
∑

N

1

N !
V ′
N+2,0(Ψ0, (G Ã), Φ

N )

−λ
∑

N

1

N !
VN+2,0(Ψ0, (GÃ),Φ

N) . (5.11)

Demanding the vanishing of ∆ now gives

∂BN+1,1(Ψ0,Φ
N ; Ã)

=
∑

M1,M2
M1+M2=N

N !

M1!M2!
BM1+2,1 ∗ VM2+1,0(Ψ0,Φ

M1 ; Ã|ΦM2)

−
∑

M1,M2
M1+M2=N

N !

M1!M2!
VM1+2,0 ∗→ BM2+1,1((GÃ),Φ

M1|Ψ0,Φ
M2)− δN,1V

′
0,2,1(Ψ0,Φ; Ã)

−VN+1,0 ∗→ V
′′
0,1,2(Φ

N |Ψ0, Ã)− V
′
N+2,0(Ψ0, (G Ã), Φ

N) + VN+2,0(Ψ0, (GÃ),Φ
N) .

(5.12)

Since Ψ0 is inserted at the special puncture, this equation needs to hold as a relation between

subspaces of QN+1,1 up to choice of local coordinates at the special puncture.

5.2 Absence of obstruction

We can solve eq.(5.12) for BN+1,1 ≡
∑

g≥0 Bg,N+1,1 iteratively by carrying out genus expansion

on both sides. Using that fact that V0,N,0 vanishes for N ≤ 2, it is easy to verify that the
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expression for ∂Bg,N+1,1 obtained from (5.12) contains on the right hand side Bg′,N ′+1,1 for

g′ < g, and / or Bg,N ′+1,1 for N
′ < N . In particular the equation for B0,2,1 does not involve any

Bg,N,1 on the right hand side. Once this is determined we can solve for B0,3,1 since its equation

involves only B0,2,1 on the right hand side. Proceeding this was we can first determine all the

B0,N,1 iteratively, then determine all the B1,N,1 and so on.

There is however a possible obstruction to solving these equations. Since ∂(∂Bg,N+1,1) = 0,

in order that the equation for Bg,N+1,1 obtained from (5.12) has a solution, we need to show

that the ∂ annihilates the right hand side of the equation. This gives

0 =
∑

M1,M2
M1+M2=N

N !

M1!M2!
∂BM1+2,1 ∗ VM2+1,0(Ψ0,Φ

M1 ; Ã|ΦM2)

+
∑

M1,M2
M1+M2=N

N !

M1!M2!
BM1+2,1 ∗ ∂VM2+1,0(Ψ0,Φ

M1 ; Ã|ΦM2)

−
∑

M1,M2
M1+M2=N

N !

M1!M2!
∂VM1+2,0 ∗→ BM2+1,1((GÃ),Φ

M1 |Ψ0,Φ
M2)

+
∑

M1,M2
M1+M2=N

N !

M1!M2!
VM1+2,0 ∗→ ∂BM2+1,1((GÃ),Φ

M1|Ψ0,Φ
M2)

−∂VN+1,0 ∗→ V
′′
0,1,2(Φ

N |Ψ0; Ã) + VN+1,0 ∗→ ∂V ′′
0,1,2(Φ

N |Ψ0; Ã)

−∂V ′
N+2,0(Ψ0, (G Ã), Φ

N ) + ∂VN+2,0(Ψ0, (GÃ),Φ
N) . (5.13)

Since in the iterative scheme described above the right hand side involves Bg′,N ′,1 for lower

values of g′ or N ′ which already satisfy (5.12), we need to prove (5.13) for BN ′+1,1’s appearing

on the right hand side satisfying (5.12). This allows us to simplify the different terms on the

right hand side of (5.13) as follows.

The first term on the right hand side of (5.13) is given by

I1 ≡
∑

M1,M2
M1+M2=N

N !

M1!M2!
∂BM1+2,1 ∗ VM2+1,0(Ψ0,Φ

M1 ; Ã|ΦM2)

=
∑

M1,M2
M1+M2=N

N !

M1!M2!

∑

M3,M4
M3+M4=M1

M1!

M3!M4!
BM3+2,1 ∗ VM4+2,0 ∗ VM2+1,0(Ψ0,Φ

M3; Ã|ΦM4 |ΦM2)

−
∑

M1,M2
M1+M2=N

N !

M1!M2!

∑

M3,M4
M3+M4=M1

M1!

M3!M4!
VM4+1,0 ∗ BM3+3,1 ∗ VM2+1,0(Φ

M4 |Ψ0,Φ
M3; Ã|ΦM2)
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−
∑

M1,M2
M1+M2=N

N !

M1!M2!

∑

M3,M4
M3+M4=M1

M1!

M3!M4!
VM3+2,0 ∗→ BM4+2,1 ∗ VM2+1,0((GÃ),Φ

M3 |Ψ0,Φ
M4 |ΦM2)

+
∑

M1,M2
M1+M2=N

N !

M1!M2!

∑

M3,M4
M3+M4=M1

M1!

M3!M4!
BM4+1,1 ∗← VM3+3,0 ∗ VM2+1,0(Ψ0,Φ

M4|(GÃ),ΦM3 |ΦM2)

−V ′
0,2,1 ∗ VN+1,0(Ψ0; Ã|Φ

N)

−
∑

M1,M2
M1+M2=N

N !

M1!M2!
V ′′
0,1,2 ∗← VM1+2,0 ∗ VM2+1,0(Ψ0; Ã|Φ

M1 |ΦM2)

−
∑

M1,M2
M1+M2=N

N !

M1!M2!
V ′
M1+3,0 ∗ VM2+1,0(Ψ0,GÃ,Φ

M1 |ΦM2)

+
∑

M1,M2
M1+M2=N

N !

M1!M2!
VM1+3,0 ∗ VM2+1,0(Ψ0,GÃ,Φ

M1 |ΦM2) . (5.14)

Since this manipulation is somewhat involved, we shall illustrate how the first two terms on

the right hand side of (5.14) arise by picking, in the expression for ∂BM1+2,1(Ψ0,Φ
M1+1; Ã), the

first term on the right hand side of (5.12):

∑

M3,M4
M3+M4=M1+1

(M1 + 1)!

M3!M4!
BM3+2,1 ∗ VM4+1,0(Ψ0,Φ

M3; Ã|ΦM4) . (5.15)

We need to sew this to VM2+1,0. This is done by picking a puncture other than the special

puncture in ∂BM1+2,1 and a puncture of VM2+1,0 and sewing them. Now since ∂BM1+2,1 and

VM2+1,0 are symmetric under the permutations of the punctures in Ĥ (other than the special

puncture), it does not matter which puncture we choose for sewing. However when we pick the

term given in (5.15) in the expression for ∂BM1+2,1, then we have to allow for the puncture to

come either from BM3+2,1 or from VM4+1,0 with appropriate weight factors given by M3/(M3 +

M4) and M4/(M3 +M4) respectively. Thus for example the net contribution to I1 from the

term where we choose the sewing puncture of ∂BM1+2,0 from VM4+1,0 will be given by

∑

M1,M2
M1+M2=N

N !

M1!M2!

∑

M3,M4
M3+M4=M1+1

(M1 + 1)!

M3!M4!

M4

M3 +M4
BM3+2,1∗VM4+1,0∗VM2+1,0(Ψ0,Φ

M3; Ã|ΦM4−1|ΦM2) .

(5.16)

By making a change of variable M4 → M4 + 1 we recover the first term on the right hand

side of (5.14). Similarly the result of choosing the sewing puncture in ∂BM1+2,1 from BM3+2,1
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is given by the second term on the right hand side of (5.14), with the extra minus sign arising

from switching the order of BM3+2,1 and VM4+1,0 (see (2.33)).

The second term on the right hand side of (5.13) is given by

I2 ≡
∑

M1,M2
M1+M2=N

N !

M1!M2!
BM1+2,1 ∗ ∂VM2+1,0(Ψ0,Φ

M1; Ã|ΦM2)

= −
∑

M1,M2
M1+M2=N

N !

M1!M2!

∑

M3,M4
M3+M4=M2

M2!

M3!M4!
BM1+2,1 ∗ VM3+2,0 ∗ VM4+1,0(Ψ0,Φ

M1; Ã|ΦM3 |ΦM4) .

(5.17)

The third term on the right hand side of (5.13) is given by

I3 ≡ −
∑

M1,M2
M1+M2=N

N !

M1!M2!
∂VM1+2,0 ∗→ BM2+1,1((GÃ),Φ

M1 |Ψ0,Φ
M2)

=
∑

M1,M2
M1+M2=N

N !

M1!M2!

∑

M3,M4
M3+M4=M1

M1!

M3!M4!
VM3+2,0 ∗ VM4+2,0 ∗→ BM2+1,1((GÃ),Φ

M3 |ΦM4 |Ψ0,Φ
M2)

+
∑

M1,M2
M1+M2=N

N !

M1!M2!

∑

M3,M4
M3+M4=M1

M1!

M3!M4!
VM3+1,0 ∗ VM4+3,0 ∗→ BM2+1,1(Φ

M3|(GÃ),ΦM4 |Ψ0,Φ
M2) .

(5.18)

The fourth term on the right hand side of (5.13) is given by

I4 ≡
∑

M1,M2
M1+M2=N

N !

M1!M2!
VM1+2,0 ∗→ ∂BM2+1,1((GÃ),Φ

M1 |Ψ0,Φ
M2)

=
∑

M1,M2
M1+M2=N

N !

M1!M2!

∑

M3,M4
M3+M4=M2

M2!

M3!M4!
VM1+2,0 ∗→ BM3+2,1 ∗ VM4+1,0((GÃ),Φ

M1|Ψ0,Φ
M3 |ΦM4)

−
∑

M1,M2
M1+M2=N

N !

M1!M2!

∑

M3,M4
M3+M4=M2

M2!

M3!M4!
VM1+2,0 ∗ VM3+2,0 ∗→ BM4+1,1((GÃ),Φ

M1 |ΦM3|Ψ0,Φ
M4)

−N VN+1,0 ∗→ V
′
0,2,1((GÃ),Φ

N−1|Ψ0,Φ)

−
∑

M1,M2
M1+M2=N

N !

M1!M2!
VM1+2,0 ∗→ V

′′
0,1,2 ∗← VM2+1,0((GÃ),Φ

M1 |Ψ0|Φ
M2)

−
∑

M1,M2
M1+M2=N

N !

M1!M2!
VM1+2,0 ∗ V

′
M2+2,0((GÃ),Φ

M1 |Ψ0,Φ
M2)
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+
∑

M1,M2
M1+M2=N

N !

M1!M2!
VM1+2,0 ∗ VM2+2,0((GÃ),Φ

M1 |Ψ0,Φ
M2) . (5.19)

The fifth term on the right hand side of (5.13) is given by

I5 ≡ −∂VN+1,0 ∗→ V
′′
0,1,2(Φ

N |Ψ0; Ã)

=
∑

M1,M2
M1+M2=N

N !

M1!M2!
VM1+1,0 ∗ VM2+2,0 ∗→ V

′′
0,1,2(Φ

M1 |ΦM2 |Ψ0; Ã) . (5.20)

Using (4.12), the sixth term on the right hand side of (5.13) is given by

I6 ≡ VN+1,0 ∗→ ∂V ′′
0,1,2(Φ

N |Ψ0; Ã)

= VN+1,0 ∗ V
′
0,2,1(Φ

N |Ψ0; Ã)− V
′
0,2,1 ∗← VN+1,0(Ψ0,GÃ|Φ

N) . (5.21)

Using (4.23), the seventh term on the right hand side of (5.13) is given by

I7 ≡ −∂V
′
N+2,0(Ψ0, (G Ã), Φ

N )

=
∑

M1,M2
M1+M2=N

N !

M1!M2!
VM1+1,0 ∗ V

′
M2+3,0(Φ

M1 |Ψ0,GÃ,Φ
M2)

+
∑

M1,M2
M1+M2=N

N !

M1!M2!
VM1+2,0 ∗ V

′
M2+2,0(GÃ,Φ

M1|Ψ0,Φ
M2)

+
∑

M1,M2
M1+M2=N

N !

M1!M2!
VM1+2,0 ∗→ V

′′
0,1,2 ∗← VM2+1,0(GÃ,Φ

M1 |Ψ0|Φ
M2)

+V ′
0,2,1 ∗← VN+1,0(Ψ0,GÃ|Φ

N) +N V ′
0,2,1 ∗← VN+1,0(Ψ0,Φ|GÃ,Φ

N−1) . (5.22)

The eighth term on the right hand side of (5.13) is given by

I8 ≡ ∂VN+2,0(Ψ0, (GÃ),Φ
N)

= −
∑

M1,M2
M1+M2=N

N !

M1!M2!
VM1+3,0 ∗ VM2+1,0(Ψ0,GÃ,Φ

M1 |ΦM2)

−
∑

M1,M2
M1+M2=N

N !

M1!M2!
VM1+2,0 ∗ VM2+2,0(Ψ0,Φ

M1 |GÃ,ΦM2) . (5.23)

We can simplify some of the expressions by using

∑

M1,M2
M1+M2=N

N !

M1!M2!

∑

M3,M4
M3+M4=M1

M1!

M3!M4!
f(M1,M2,M3,M4)
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=
∑

M2,M3,M4
M2+M3+M4=N

N !

M2!M3!M4!
f(M3 +M4,M2,M3,M4) , (5.24)

etc. With such rearrangements we can easily see that the terms on the right hand side of (5.13)

cancel pairwise. In particular:

1. The first term in I1 cancels I2.

2. The second term in I1 is anti-symmetric under the exchange M2 ↔M4 due to (2.33) and

vanishes after we sum over M2,M4.

3. The third term in I1 cancels the first term in I4.

4. The fourth term in I1 cancels the second term in I3 after using (2.33) and (2.34).

5. The fifth term in I1 cancels the first term in I6 after using (2.33).

6. The sixth term in I1 cancels I5 after using (2.33), (2.34) and (4.13).

7. The seventh term in I1 cancels the first term in I7 after using (2.33).

8. The eighth term in I1 cancels the first term in I8.

9. The first term in I3 cancels the second term in I4.

10. The third term in I4 cancels the fifth term in I7 after using (2.34).

11. The fourth term in I4 cancels the third term in I7.

12. The fifth term in I4 cancels the second term in I7.

13. The sixth term in I4 cancels the second term in I8 after using (2.33).

14. The second term in I6 cancels the fourth term in I7.

This shows that the right hand side of (5.12) has no boundary.
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5.3 Proof of background independence

Once we have shown that the right hand side of (5.12) has no boundary, one can argue for the

existence of BN+1,1 satisfying (5.12) as follows. Let us write (5.12) as

∂BN+1,1(Ψ0,Φ
N ; Ã) = V̄N+1,1(Ψ0,Φ

N ; Ã)− V̄ ′
N+1,1(Ψ0,Φ

N ; Ã) , (5.25)

where

V̄N+1,1(Ψ0,Φ
N ; Ã) = VN+2,0(Ψ0,GÃ,Φ

N) ,

V̄ ′
N+1,1(Ψ0,Φ

N ; Ã) = −
∑

M1,M2
M1+M2=N

N !

M1!M2!
BM1+2,1 ∗ VM2+1,0(Ψ0,Φ

M1 ; Ã|ΦM2)

+
∑

M1,M2
M1+M2=N

N !

M1!M2!
VM1+2,0 ∗→ BM2+1,1((GÃ),Φ

M1 |Ψ0,Φ
M2) + δN,1V

′
0,2,1(Ψ0,Φ; Ã)

+VN+1,0 ∗→ V
′′
0,1,2(Φ

N |Ψ0, Ã) + V
′
N+2,0(Ψ0, (G Ã), Φ

N ) . (5.26)

Both V̄N+1,1 and V̄ ′
N+1,1 are appropriate subspaces of QN+1,1 modulo the choice of local coor-

dinates at the special puncture where Ψ0 is inserted. Vanishing of the right hand side of (5.13)

implies that V̄N+1,1 and V̄
′
N+1,1 have common boundary. Furthermore since by assumption the

Bg,M,1’s appearing on the right hand side of (5.26) do not contain any separating type degen-

erations, V̄ ′
N+1,0 also does not contain any separating type degeneration. Now noting that the

dimensions of V̄g,N+1,1 and V̄ ′
g,N+1,1 are both given by 6g − 2 + 2N , their projections on to

the base of Qg,N+1,1 will generically be 6g − 2 + 2N dimensional – the same as the dimension

of the base given by the moduli space of Riemann surfaces of genus g with N + 2 punctures.

Therefore the interiors of V̄g,N+1,1 and V̄ ′
g,N+1,1 either both have the same projection into the

moduli space, or they are complements of each other and have opposite orientation. It is easy

to argue that the former is true – since neither V̄g,N+1,1 nor V̄ ′
g,N+1,1 contain any Riemann

surface with separating type degenerations, they cannot be complements of each other. This

shows that we can regard V̄N+1,1 and V̄ ′
N+1,1 as two different section segments with the same

boundary. Therefore if we can show that V̄N+1,1 and V̄
′
N+1,1 are in the same ‘homology class’ of

Qg,N+1, it will establish the existence of a BN+1,1 that has V̄N+1,1 − V̄
′
N+1,1 as its boundary. If

we forget the fiber coordinates associated with PCO locations, then it follows from an analysis

described in [7] that V̄N+1,1 and V̄ ′
N+1,1 are deformable to each other and are therefore in the

same homology class. Therefore we need to focus on the part of the fiber parametrized by the

choice of PCO locations. Strictly speaking this does not describe a regular manifold since we
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need to exclude codimension two subspaces to avoid spurious poles. Nevertheless the rules for

integration along these fiber directions – called vertical integration [13,14] – are such that they

behave as if these fiber directions describe a homologically trivial space – any closed submani-

fold may be regarded as the boundary of another manifold. This may seem counterintuitive –

for example given two possible locations of a PCO on a Riemann surface, one could have mul-

tiple curves that interpolate between these two points which differ by non-contractible cycles

of the Riemann surface and are therefore not deformable to each other. However the integrals

of Ωp along all of these curves give the same result since the result of vertical integration only

depends on the end-points and not on the details of the path. Therefore these paths are equiv-

alent. This may give the impression that the integral of Ωp along any closed vertical subspace

vanishes, but this is not quite true. For example if we have a pair of PCO’s and consider the

one dimensional vertical cycle in which their locations are moved as

(z1, z2)→ (z′1, z2)→ (z′1, z
′
2)→ (z1, z

′
2)→ (z1, z2) , (5.27)

then integral of Ω1 along this cycle does not vanish. Nevertheless we can effectively reexpress

this as an integral of dΩ1 along a two dimensional vertical cycle (or more precisely a similar

integral where dΩ1 is replaced by Ω2 with modified argument using (2.21)). The net result

is that one can regard the fiber directions of P̃g,m,n labelled by the PCO locations to be

homologically trivial [14]. This in turn establishes the existence of BN+1,1 satisfying (5.25).

This analysis also gives an iterative proof that the subspaces Bg,N+1,1 do not include sep-

arating type degenerations. Assuming that the Bg,M+1,1’s appearing on the right hand side

of (5.26) do not involve separating type degenerations, and using the knowledge that none of

the subspaces VM,0, V
′
M,0, V

′
0,2,1 and V ′′

0,1,2 contain separating type degenerations, we see that

V̄N+1,1 and V̄ ′
N+1,1 defined in (5.26) do not contain separating type degenerations. Therefore

BN+1,1 computed from (5.25) can also be chosen to avoid separating type degenerations.

Finally, we note that the choice of BN+1,1 satisfying (5.25) is not unique. Since Qg,N+1,1 is

an infinite dimensional space while Bg,N+1,1 is finite dimensional, there are in general infinite

families of subspaces of QN+1,1 with the same boundary given by the right hand side of (5.25).

Therefore the field redefinition relating the two string field theories is not unique. This is

simply a reflection of the infinite parameter gauge invariance of the theory as mentioned in the

introduction.
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6 Generalizations to other theories

The extension of the analysis given above to type II superstring field theory is straightforward.

The 1PI equations of motion of the interacting fields still take the form given in (2.20), with

the only difference that now the string field contains four different sectors: NSNS, NSR, RNS

and RR. The operator G in these four sectors take the form 1, X0, X̄0 and X0X̄0 respectively,

where now X̄0 represents the zero mode of the PCO in the left-moving sector of the world-sheet

theory. The analog of (3.1) now takes the form

TF (z)O(w, w̄) ≃ −(z − w)
−1O(w, w̄) + less singular terms

T̄F (z̄)O(w, w̄) ≃ (z̄ − w̄)−1 Ô(w, w̄) + less singular terms

TF (z) Ô(w, w̄) ≃ (z − w)−1 Õ(w, w̄) + less singular terms

T̄F (z̄)O(w, w̄) ≃ (z̄ − w̄)−1 Õ(w, w̄) + less singular terms

TF (z)O(w, w̄) ≃ −
1

4
(z − w)−2O(w, w̄)−

1

4
(z − w)−1∂O(w, w̄) + less singular terms

T̄F (z) Ô(w, w̄) ≃
1

4
(z̄ − w̄)−2O(w, w̄) +

1

4
(z̄ − w̄)−1∂̄O(w, w̄) + less singular terms

TF (z) Õ(w, w̄) ≃
1

4
(z − w)−2Ô(w, w̄) +

1

4
(z − w)−1∂Ô(w, w̄) + less singular terms

T̄F (z) Õ(w, w̄) ≃
1

4
(z̄ − w̄)−2O(w, w̄) +

1

4
(z̄ − w̄)−1∂̄O(w, w̄) + less singular terms

, (6.1)

where O is a dimension (1/2, 1/2) operator. The perturbation (3.2) retains the same form

−
λ

2πi

∫
dz ∧ dz̄ Õ(z, z̄) . (6.2)

Eqs.(3.6) and (3.7) are replaced by

δQB = λ

∮
dz̄ c(z) Õ(z, z̄)+λ

∮
dz c̄(z̄) Õ(z, z̄)+

1

4
λ

∮
dz̄ γ(z) Ô(z, z̄)+

1

4
λ

∮
dz γ̄(z̄)O(z, z̄) ,

(6.3)

and

δX0 =
1

4
λ

∮
dz̄ z−1 eφ(z) Ô(z, z̄) ,

δX̄0 =
1

4
λ

∮
dz z̄−1 eφ̄(z̄)O(z, z̄) . (6.4)
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Besides the identities (3.8), we now also have

[QB, δX̄0] + [δQB, X̄0] = O(λ
2), [X0, δX̄0] = O(λ

2), [X̄0, δX0] = O(λ
2) . (6.5)

The proof of background independence of the equations of motion proceeds as in the case

of heterotic string theory with the only difference that we need to pay a little more attention

to the definition of V ′′
0,1,2. It is defined to be zero in the NSNS sector as for the NS sector of

the heterotic string theory, whereas its definition in the NSR and RNS sectors is similar to

that for the R sector of the heterotic string theory. The definition of V ′′
0,1,2 ⊂ Q0,1,2 in the RR

sector involves a vertical segment in which the PCO arrangement moves from X0X̄0 around∞

to X0X̄0 around 0. We can do this either by first moving X̄0 from ∞ to 0 and then X0 from

∞ to 0 or vice versa. Since X0 and δX̄0 commute and X̄0 and δX0 commute, the two ways

of moving the PCO’s from ∞ to 0 give identical results for V ′′
0,1,2. The rest of the analysis is

identical to that for the heterotic string theory.

One could also explore the possibility of extending the analysis to other versions of su-

perstring field theory. There are various other versions of open and closed superstring field

theories at tree level. These theories may be broadly divided into two classes – those based

on A∞ algebra (for open string) or L∞ algebra (for closed string), and those that do not have

manifest underlying A∞ or L∞ algebra. The former class of theories have the property that the

sum of the Feynman diagrams of the theory produces in a straightforward manner the string

amplitudes computed from the first quantized formalism. The tree level open and closed super-

string field theories constructed in [21–26]. provide sample examples of theories in this class.

In the second class of theories, which include for example the theories described in [27–30],

the Feynman diagrams do not produce the expected string amplitudes in a straightforward

manner, and so far this has been checked either by explicit computation in a case by case

basis (see e.g. [31–33]), or by showing its equivalence to another version of the theory that uses

A∞/L∞ algebra after suitable gauge fixing and field redefinition [34–36]. We expect that the

method described in this paper can be used to prove the background independence of the first

class of theories in a straightforward manner. However proving background independence of

other versions of string field theory may require developing new techniques.
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