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We show that the key results of supersymmetry can be achieved via conformal symmetry instead.
We propose that the Higgs boson be a dynamical fermion-antifermion bound state rather than a
fundamental scalar field, so that there is then no quadratically divergent self-energy problem for it
and thus no need to invoke supersymmetry to resolve the problem. To obtain such a dynamical
Higgs boson we study a conformal invariant gauge theory of interacting fermions and gauge bosons.
The conformal invariance of the theory is realized via scaling with anomalous dimensions in the
ultraviolet, and by a dynamical symmetry breaking via fermion bilinear condensates in the infrared,
a breaking in which the dynamical dimension of the composite operator ψ̄ψ is reduced from three
to two. With this reduction we can augment the theory with a then renormalizable four-fermion
interaction with dynamical dimension equal to four, and can reinterpret the theory as a renormal-
izable version of the Nambu-Jona-Lasinio model, with the gauge theory sector with its now massive
fermion being a mean-field theory and the four-fermion interaction being the residual interaction.
It is this residual interaction and not the mean field that then generates dynamical Goldstone and
Higgs states, states that, as noted by Baker and Johnson, the gauge theory sector itself does not
possess. The Higgs boson is found to be a narrow resonance just above threshold. We couple the
theory to a gravity theory, conformal gravity, that is equally conformal invariant, with the interplay
between conformal gravity and the four-fermion interaction taking care of the vacuum energy prob-
lem. With conformal gravity being a unitary and renormalizable quantum theory of gravity there is
no need for string theory with its supersymmetric underpinnings. With the vacuum energy problem
being resolved and with conformal gravity fits to phenomena such as galactic rotation curves and
the accelerating universe not needing dark matter, there is no need to introduce supersymmetry for
either the vacuum energy problem or to provide a potential dark matter candidate. We propose
that it is conformal symmetry rather than supersymmetry that is fundamental, with the theory of
nature being a locally conformal, locally gauge invariant, non-Abelian Nambu-Jona-Lasinio theory.

I. INTRODUCTION

The assumption of a supersymmetry between bosons
and fermions has been found capable of addressing many
key issues in particle physics and gravity (see e.g. [1–4]).
In flat space physics an interplay between bosons and
fermions can render logarithmically divergent Feynman
diagrams finite. Similarly, an interplay between bosons
and fermions can cancel the perturbative quadratic diver-
gence that a fundamental Higgs scalar field would possess
(the hierarchy problem). In addition, the existence of
fermionic supersymmetry generators allows one to evade
the Coleman-Mandula theorem [5] that forbids the com-
bining of spacetime and bosonic internal symmetry gen-
erators in a common Lie algebra. And with the inclusion
of supersymmetry one can potentially achieve a unifica-
tion of the coupling constants of SU(3)×SU(2))L×U(1)
at a grand-unified energy scale. In the presence of gravity
an interplay between bosons and fermions can cancel the
quartic divergence in the vacuum energy. Cancellation of
perturbative infinities can also be found in supergravity,
the local version of supersymmetry. With supersymme-
try one can construct a consistent candidate quantum
theory of gravity, string theory, which permits a possible
unification of all of the fundamental forces and a met-
rication (geometrization) of them. Finally, with super-
symmetry one has a prime candidate for dark matter.

Despite this quite extensive theoretical inventory, ac-
tual experimental detection of any of the required super-
partners of the standard fermions and bosons has so far
proven elusive. Now until recently one could account for
such non-detection by endowing the superpartners with
ever higher masses or ever weaker couplings to ordinary
matter. However, in order to cancel the quadratic self-
energy divergence that a fundamental Higgs field would
have, one would need a supersymmetric particle with a
mass reasonably close to that of the Higgs boson itself.
And now that the Higgs boson has been discovered at
the Large Hadron Collider (LHC) and its mass has been
determined [6, 7], one should thus anticipate finding a
superparticle at the LHC in the same mass region. How-
ever, no evidence for any such particle has emerged in
an exploration of this mass region, or in decays such as
B0

s → µ++µ− that were thought to be particularly favor-
able for supersymmetry [8]. And while the superparticle
search at the LHC is still in its early stages, nonethe-
less the situation is disquieting enough that one should
at least contemplate whether it might be possible to dis-
pense with supersymmetry altogether. If one is to con-
sider doing so however, then one must seek an alternative
to supersymmetry that has the potential to also achieve
its key successes. In this paper we present such a candi-
date alternative, one that is also based on a symmetry,
namely conformal symmetry.
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Since the Higgs self-energy problem is currently the
most pressing concern for supersymmetry, in this paper
we shall concentrate on the issue of generating the Higgs
boson dynamically, since one then no longer encounters
the quadratic self-energy divergence problem that is asso-
ciated with a fundamental Higgs scalar field. Moreover,
independent of any supersymmetry considerations, now
that the Higgs boson has been shown to exist, it any-
way becomes imperative to ascertain whether it is fun-
damental or composite, and determine whether or not a
fundamental, double-well Higgs potential is to actually
be present in the fundamental action of nature. In the
present paper we will show that in a conformal or scale in-
variant theory as realized via critical scaling with anoma-
lous dimensions there is dynamical symmetry breaking
via a fermion bilinear condensate, with a fermionic mass
and dynamical Higgs and Goldstone particles being gen-
erated, and with the mass of the Higgs boson naturally
being of the same order as that of the fermion. Moreover,
if conformal symmetry is to be exact at the level of the
Lagrangian and to only be broken in the vacuum (giving
the dimensionful ψ̄ψ composite operator a vacuum expec-
tation value would break both chiral and scale symme-
try), the presence of any dimensionful tachyonic −µ2φ2

term in a fundamental Higgs field Lagrangian would ex-
pressly be forbidden.

In order to develop the background needed to estab-
lish our results, given that our work is based on earlier
work from quite some time ago, for the benefit of the
reader and to make the present paper self-contained, in
Sec. II we briefly review the antecedents of our current
work, antecedents that originated in the work of John-
son, Baker, and Willey [9–14] and the present author
[15–17] on critical scaling in quantum electrodynamics
in the 1960s and 1970s. In particular, we discuss the
Baker-Johnson [12] evasion of the Goldstone theorem in
Johnson-Baker-Willey electrodynamics, wherein a self-
consistently generated fermion mass is not accompanied
by a Goldstone boson. In Sec. III we discuss mass gen-
eration in the Nambu-Jona-Lasinio model [18], and in
Sec. IV we adapt the analysis to the Johnson-Baker-
Willey critical scaling case. In this discussion we follow
[15–17] and augment electrodynamics with a four-fermion
interaction, one made renormalizable by a reduction in
its dynamical dimension from six to four. As originally
proposed by the present author this four-fermion interac-
tion was introduced for two reasons: to cancel infinities
in the vacuum (zero-point) energy density, infinities that
one ordinarily would normal order away, and to facilitate
the development of a formalism for treating symmetry
breaking by fermion bilinears. (Contemporaneous with
the author equivalent results on symmetry breaking by
composite operators were obtained by Cornwall, Jackiw,
and Tomboulis [19]). The central theme of the present
paper is to show that this very same four-fermion inter-
action also serves to provide a residual interaction that
then generates the Goldstone and Higgs bosons that are
not present in Johnson-Baker-Willey electrodynamics it-

self. Augmenting Johnson-Baker-Willey electrodynam-
ics with a four-fermion interaction thus enables us to
evade the Baker-Johnson evasion of the Goldstone the-
orem. Now from the perspective of flat space physics
there is no particular need to cancel such vacuum en-
ergy infinities since energies are not observable, only en-
ergy differences. However, once one couples to gravity
one cannot throw away any contribution to the vacuum
energy since the hallmark of Einstein’s formulation of
gravity is that gravity is to couple to every form of en-
ergy and not just to energy differences. Thus once we
extend conformal invariance to gravity, which we do, we
then cannot ignore infinities in the vacuum energy, and
they have to be canceled. It is thus gravity that will force
the four-fermion interaction and its associated Goldstone
and Higgs bosons upon us, and as such the four-fermion
interaction would need to have its dynamical dimension
be lowered from six to four so that it would not destroy
renormalizability. However, to cancel the vacuum energy
density infinities completely we will need to include not
just the four-fermion contribution but also the contri-
bution of quantum conformal gravity itself. We discuss
these vacuum energy issues in Sec. IV and in Sec. V.
And in Sec. V we also show that conformal symmetry
can achieve all of the key results of supersymmetry, and
thus essentially supplant it as a candidate fundamental
symmetry of nature.

II. JOHNSON-BAKER-WILLEY
ELECTRODYNAMICS

A. Vanishing of the Bare Fermion Mass

In order to explore whether the Higgs field might be
dynamical we need a tractable calculational scheme in
which one can study dynamical symmetry breaking via
fermion bilinear condensates non-perturbatively. To this
end we adapt some earlier work of the present author
from the 1970s. This earlier work was itself based on
even earlier work of Johnson, Baker, and Willey from
the 1960s on quantum electrodynamics. The objective
of the study of Johnson, Baker, and Willey was to de-
termine whether it might be possible for all the renor-
malization constants of a quantum field theory to be fi-
nite. Quantum electrodynamics was a particularly con-
venient theory to study since its gauge structure meant
that two of its renormalization constants (the fermion-
antifermion-gauge boson vertex renormalization constant
Z1 and the fermion wave function renormalization con-
stant Z2 to which Z1 is equal) were gauge dependent and
could be made finite by an appropriate choice of gauge,
with the anomalous dimension of the fermion γF conse-
quently then being zero – and for convenience we set Z1

and Z2 equal to one in the following. Johnson, Baker, and
Willey were thus left with the gauge boson wave function
renormalization constant Z3 and the fermion bare mass
m0 and its shift δm to address.
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Now if one were also to consider the coupling of elec-
trodynamics to gravity, one would then have to address
another infinity that electrodynamics possesses, namely
that of the zero-point vacuum energy density, and one
of the objectives of the present paper is to address this
issue. Since Johnson, Baker, and Willey were consider-
ing electrodynamics in flat space, the need to address
the vacuum energy density infinity did not arise in their
study.

As regards Z3 and m0, Johnson, Baker and Wil-
ley showed that Z3 would be finite if the fermion-
antifermion-gauge boson coupling constant α was at a
solution to the Gell-Mann-Low eigenvalue condition. At
this eigenvalue they showed that the bare mass scaled as

m0 = m

(
Λ2

m2

)γ(α)/2

(1)

where Λ is an ultraviolet cutoff and m = m0 + δm is the
renormalized fermion mass. Consequently if the power
γ(α) is negative (which it perturbatively is), the bare
mass would vanish in the limit of infinite cutoff and δm
would be finite. As such, the work of Johnson, Baker,
and Willey was quite remarkable since it predated the
work of Wilson and of Callan and Symanzik on critical
scaling and the renormalization group.

Subsequently, Adler and Bardeen [20] recast the work
of Johnson, Baker, and Willey in the language of the
renormalization group itself, and showed that the renor-
malized inverse fermion propagator S̃−1(p) and the

renormalized vertex function Γ̃S(p, p, 0) associated with
the insertion of composite operator θ = ψ̄ψ with zero
momentum into the fermion propagator were related by[
m
∂

m
+ β(α)

∂

∂α

]
S̃−1(p) = −m[1− γθ(α)]Γ̃S(p, p, 0)(2)

in the limit in which the fermion momentum pµ is deep
Euclidean and γF is zero. In the critical scaling situa-
tion where β(α) = 0 this equation admits of an exact
asymptotic solution

S̃−1(p) = 6 p−m
(
−p2 − iε
m2

)γθ(α)/2

+ iε,

Γ̃S(p, p, 0) =

(
−p2 − iε
m2

)γθ(α)/2

. (3)

With the parameter γ(α) of (1) thus being identifiable as
the anomalous dimension γθ(α) of ψ̄ψ, and with the full
dimension of ψ̄ψ being given by dθ(α) = 3 + γθ(α), the
mechanism for both the finiteness and vanishing of m0 is
to have the dimension of ψ̄ψ be less than canonical.

B. Non-Vanishing of the Physical Fermion Mass
and the Baker-Johnson Evasion of the Goldstone

Theorem

With a vanishing bare mass the anticommutator of γ5

with a Z2 = 1 fermion propagator S(p) = (6 p − Σ(p))−1

would obey a self-consistent equation of the form [21]

{γ5,Σ(p)} =

∫
d4kK(p, k, 0)S(k){γ5,Σ(k)}S(k) (4)

where K(p, k, 0) is the Bethe-Salpeter scattering kernel.
This equation could have both trivial and non-trivial so-
lutions for Σ(p). Then, if the non-zero solution is chosen,
the fermion mass would behave just as dynamical masses
behave in self-consistent theories of mass generation, and
so one initially would expect the presence of a massless
pseudoscalar Goldstone boson associated with the gener-
ation of such a fermion mass. However, this turned out
not to be the case since there was a hidden renormaliza-
tion effect in the theory, one associated with the renor-

malization constant Z
−1/2
θ = (Λ2/m2)γθ(α)/2 that renor-

malizes ψ̄ψ according to Z
−1/2
θ (ψ̄ψ)0 = ψ̄ψ [20]. (Z

−1/2
θ

is also equal to ZS the vertex renormalization constant
for ΓS(p, p, 0).) With the product m0(ψ̄ψ)0 being equal

to m0Z
1/2
θ ψ̄ψ, and thus equal to mψ̄ψ on identifying m

to be the finite but non-zero m = m0Z
1/2
θ , the mass term

m0(ψ̄ψ)0 = mψ̄ψ is then a renormalization group invari-
ant, with a non-zero m0(ψ̄ψ)0 term thus being present
in the bare Lagrangian from the outset. Consequently,
the chiral symmetry is already broken in the Lagrangian
itself and the Goldstone theorem does not apply.

Now if there is to be such a mass term in the La-
grangian one should not actually use (4) where m0 is
absent. Rather, one should use [22]

{γ5,Σ(p)} =

∫
d4kK(p, k, 0)S(k){γ5,Σ(k)}S(k)

+ 2m0

∫
d4kK(p, k, 0)S(k)γ5S(k). (5)

However, given the fact that m0 vanishes as Λγθ while the
kernel term does not diverge as fast as Λ−γθ (the photon
propagator in the kernel being canonical if β(α) = 0),
the 2m0

∫
d4kK(p, k, 0)S(k)γ5S(k) term vanishes in the

limit of infinite cutoff and (4) is recovered. There are thus
two inequivalent ways to recover (4) from (5), either m0

identically zero or m0 vanishing sufficiently rapidly, with
inspection of (4) alone not immediately indicating which
might be the relevant one.

Now as originally noted in [21], in order to establish
the presence of a Goldstone boson it is not sufficient to
look at the self-consistent equation for the fermion mass
alone. Rather, one must look at the fermion-antifermion
scattering amplitude, to see whether there might actually
be a massless pole in it, or whether the renormalization
procedure might prevent this from occurring. And when
Johnson, Baker, and Willey did this in their study of
electrodynamics, they found that there was no massless
Goldstone pole, with the kernel of the Bethe-Salpeter
equation for the scattering amplitude being found (pre-
cisely because of the scaling with anomalous dimensions)
to be non-compact, so that no pole was generated. Thus
having a non-trivial solution to the self-consistent equa-
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tion for the mass is a necessary but not sufficient con-
dition to secure a Goldstone pole. (The self-consistent
mass equation is essentially the self-consistent equation
for the residue at the Goldstone pole, and from a study
of the equation for the would-be residue alone one cannot
establish the presence of the pole itself.) The cause of this
lack of a Goldstone boson in the presence of dynamical
mass generation was explored by Baker and Johnson and
is known as the Baker-Johnson evasion of the Goldstone
theorem.

To illustrate the issues involved we note that if there is
to be a Goldstone boson it must also appear in Γ̃P(p, p+
q, q), the insertion of the pseudoscalar ψ̄iγ5ψ into the
fermion propagator. This Green’s function obeys

Γ̃P(p, p+ q, q) = ZPiγ
5

+

∫
d4kK̃(p, k, q)S̃(k)Γ̃P(k, k + q, q)S̃(k + q). (6)

Here the tilde symbol indicates that everything is renor-
malized, with ZP renormalizing the pseudoscalar vertex
function. Since the large p2 behavior of the theory is
not sensitive to mass, this ZP is equal to the previously
introduced ZS, with ZP vanishing as (Λ2/m2)γθ(α)/2.
To see if there is a pole we note that we can rewrite
(6) by inserting its left-hand side into its right-hand

side iteratively, to symbolically then obtain −iγ5Γ̃P =
ZP + ZPΠZP + ZPΠZPΠZP + ..., where Π is an appro-
priate vacuum polarization term. Thus we obtain

− iγ5Γ̃P =
ZP

1− ZPΠ
=

1

Z−1
P −Π

. (7)

Then with Z−1
P diverging must faster than Π, no pole

is generated. This then is the Baker-Johnson evasion
of the Goldstone theorem. And not only would it im-
ply that there is no dynamical pseudoscalar bound state
Goldstone particle in the theory, implicit in the analysis
is that there would be no dynamical scalar bound state
Higgs particle either.

Now, in and of itself, the fact that (6) becomes ho-
mogeneous when ZP vanishes does not automatically ex-
clude the possible presence of a pole, since an analogous
situation is met in the non-renormalizable but cut-off
Nambu-Jona-Lasinio model. As we discuss in more detail
in Sec. III, there one introduces a four-fermion coupling
(g/2)(ψ̄iγ5ψ)2, and in the pseudoscalar channel of the
fermion-antifermion scattering amplitude one obtains a
T -matrix of the form

TP =
g

1− gΠ
=

1

g−1 −Π
. (8)

Now in the Nambu-Jona-Lasinio case both g−1 and Π
are divergent in the limit of infinite cutoff and g is zero.
However, even though both g−1 and Π are divergent, they
both diverge at the precisely the same rate, with there
then indeed being a massless pole in TP. While one would
automatically obtain a pole if g and Π are both finite

(given dynamical mass generation of course), one could
also obtain a pole if g−1 and Π diverge, provided they
diverge at the same rate. In the renormalizable model
we discuss in Sec. IV, we will see that both Goldstone
and Higgs bosons will be generated by such a mechanism.

C. Non-Zero Vacuum Expectation Value for ψ̄ψ
and the condition γθ(α) = −1

Now even though the non-trivial solution to the self-
consistent fermion mass generating equation given in (4)
might not require a Goldstone boson, there was still the
issue of determining what would oblige the theory to ac-
tually choose the non-trivial solution to it rather than the
trivial one in the first place. To this end the present au-
thor compared the energy densities of the two solutions
to find [15, 16] that if γθ(α) took the special value

γθ(α) = −1, (9)

the infrared divergences that would then follow (the the-
ory having been softened so much in the ultraviolet and
thus made more and more divergent in the infrared)
would then drive the theory into a spontaneously bro-
ken vacuum |Ωm〉 in which 〈Ωm|ψ̄ψ|Ωm〉 6= 0. In or-
der to take care of the infinities that the energy density
contained the present author chose not to normal order
them away, but rather to cancel them by a counter-term,
with the appropriate one being a four-fermion interac-
tion with coupling constant g. Now for a point-coupled
such interaction this counter-term would itself generate
new infinities. However with the dimension of ψ̄ψ having
been reduced from dθ(α) = 3 to dθ(α) = 3 + γθ(α) = 2,
the dimension of (ψ̄ψ)2 was reduced from six to four so
that it had become renormalizable. With this specific
counter-term the then finite energy density was found to
have none other than a double-well potential structure
in which 〈Ωm|ψ̄ψ|Ωm〉 = m/g was non-zero. Specifically,
in terms of a renormalization group subtraction point µ2

that we elaborate on in Sec. IV below, the renormalized
energy density was given as the double-welled

ε̃(m) =
m2µ2

16π2

[
ln

(
m2

M2

)
− 1

]
, (10)

with a local maximum at m = 0 where 〈Ω0|ψ̄ψ|Ω0〉 =
0 and a degenerate global minimum at m = M where
〈ΩM|ψ̄ψ|ΩM〉 = M/g is non-zero. Mass generation in
Johnson-Baker-Willey electrodynamics is thus associated
with a vacuum in which 〈ΩM|ψ̄ψ|ΩM〉 is non-zero.

As originally introduced by Kadanoff and Wilson, crit-
ical scaling described the behavior of a crystal at the
critical phase transition temperature where the corre-
lation length is infinite. However at the same critical
temperature the order parameter is zero, with it only
being non-zero in the ordered phase below the critical
temperature. In the case of critical scaling in a quantum
field theory, when γθ(α) = −1 we can have both scal-
ing with anomalous dimensions and a non-zero value for



5

the order parameter 〈ΩM |ψ̄ψ|ΩM 〉 occur simultaneously.
This happens because in a massless theory (analogous
to an infinite correlation length) there is no scale, so in-
frared divergences (needed to generate long range order
and an order parameter) are also present; with the ef-
fect of γθ(α) = −1 being to soften the theory so much
in the ultraviolet that it becomes sufficiently divergent
in the infrared to cause dynamical symmetry breaking
to take place. Our work thus provides a framework in
which aspects of critical phenomena both at and below
the critical temperature are simultaneously present. And
in fact one of the motivations for the work of the present
author in the 1970s was to try to find such a framework,
with it being through the condition γθ(α) = −1 that it
was achieved.

To underscore and illuminate the interplay between
mass generation and the spontaneously broken vacuum, a
second, independent derivation of the γθ(α) = −1 condi-
tion was also given in [16]. In this derivation the fermion
propagator was derived in two separate ways, via the Wil-
son operator product expansion and via a renormaliza-
tion group analysis, and compatibility between the two
was sought. The Wilson expansion describes the short
distance behavior of a massless theory as constructed in
a non-spontaneously broken normal vacuum |Ω0〉. The
renormalization group describes the short-distance be-
havior of a theory in which the fermion mass is non-zero.
In such a theory we have seen that since the mass is
non-zero, at critical scaling the renormalization group de-
scribes fluctuations around a spontaneously broken vac-
uum |Ωm〉. To compare the two we thus take matrix
elements of the Wilson expansion in |Ωm〉. Specifically,
in the Wilson operator product expansion at a critical
point the leading behavior at short distance of the mass-
less fermion two point function is given by

T (ψ(x)ψ̄(0)) = 〈Ω0|T (ψ(x)ψ̄(0))|Ω0〉
+ (µ2x2)γθ(α)/2 : ψ(0)ψ̄(0) : (11)

where the dots indicate normal ordering with respect to
the massless vacuum |Ω0〉 according to : ψ(0)ψ̄(0) :=
ψ(0)ψ̄(0)−〈Ω0|ψ(0)ψ̄(0)|Ω0〉, 〈Ω0| : ψ(0)ψ̄(0) : |Ω0〉 = 0,
and µ2 is an off-shell Green’s function subtraction point.
If we now take the matrix element of this expansion in
the degenerate vacuum |Ωm〉 we obtain an asymptotic
propagator and inverse propagator that up to coefficients
behave as

S̃(p) =
1

6 p
+ (−p2)(−γθ(α)/2−2),

S̃−1(p) = 6 p− (−p2)(−γθ(α)/2−1).

(12)

On comparing with (3), (9) follows. (In [16] it was shown
that the coefficients match too.) Moreover, not only do
we recover (9), we confirm that the relevant vacuum for
Johnson-Baker-Willey electrodynamics is indeed a spon-
taneously broken one. (Some separate discussion of an

interplay of the Wilson operator product expansion and
vacuum condensates may be found in [23]. Some sep-
arate discussion regarding a dynamical dimension four
four-fermion interaction in scale invariant quantum elec-
trodynamics may be found in [24, 25].)

D. Evasion of the Baker-Johnson Evasion of the
Goldstone Theorem

As we see, the Johnson-Baker-Willey theory has much
of the structure of dynamical symmetry breaking and
yet has no dynamical Goldstone boson, and thus no dy-
namical Higgs boson either. Moreover it has much of the
structure of the Nambu-Jona-Lasinio model. The essence
of the Nambu-Jona-Lasinio model is to rewrite the four-
fermion Lagrangian with a strictly massless fermion in
terms of a mean-field sector with a massive fermion and
a residual interaction sector according to

L = iψ̄γµ∂µψ −
g

2
(ψ̄ψ)2 − g

2
(ψ̄iγ5ψ)2 = LMF + LRI,(13)

where

LMF = iψ̄γµ∂µψ −mψ̄ψ +
m2

2g

LRI = −g
2

(
ψ̄ψ − m

g

)2

− g

2
(ψ̄iγ5ψ)2. (14)

Even though the full Lagrangian L is globally chiral sym-
metric under ψ → eiα5γ5ψ with spacetime independent
phase α5, neither LMF nor LRI are themselves sepa-
rately chirally symmetric. Thus in dynamical symmetry
breaking one produces a mean-field theory in which the
chiral symmetry is expressly broken at the level of the
mean-field Lagrangian. Moreover, no Goldstone boson
is present in the mean-field Lagrangian, as could not be
the case since the mean-field Lagrangian is expressly not
chiral symmetric. Rather, one is generated not by the
mean field at all but by the residual interaction, and it is
the residual interaction that is needed in order to restore
the chiral symmetry that the mean-field sector itself does
not possess.

Now, as had been noted by the present author
in [15, 16], study of symmetry breaking in Johnson-
Baker-Willey electrodynamics can be obtained from the
Nambu-Jona-Lasinio model by replacing the point vertex
for the insertion of a zero-momentum scalar ψ̄ψ opera-
tor into the fermion propagator (viz. Γ̃S(p, p, 0) = 1)

by Γ̃S(p, p, 0) = (−p2/m2)γθ(α)/2 as given above by the
renormalization group equation. Thus, as we show in de-
tail in Sec. IV, we can reinterpret Johnson-Baker-Willey
electrodynamics as coupled to a four-fermion interaction
to be a mean-field theory, one associated with Lagrangian
of the form:

LQED = −1

4
FµνF

µν + ψ̄γµ(i∂µ − eAµ)ψ

− mψ̄ψ +
m2

2g
, (15)



6

where the m2/2g term is just a constant. And as such,
this theory should not contain a Goldstone boson since
mean-field theory never does, with the Baker-Johnson
evasion of the Goldstone theorem then necessarily having
to hold in the mean-field sector. And indeed, for a critical
scaling electrodynamics to admit of a mean-field theory
structure in the first place, the mean-field theory must
thus necessarily be of the Baker-Johnson-evasion type.
Nonetheless, as we show below, the related residual in-
teraction will generate a massless pseudoscalar Goldstone
boson, and will do so while generating a massive scalar
Higgs boson at the same time. Thus by enlarging elec-
trodynamics to include a dynamical four-fermion inter-
action we are able to evade the Baker-Johnson evasion
of the Goldstone theorem, and relate the dynamically
generated mass and the spontaneously broken symmetry
in the mean-field sector to a Goldstone boson after all.
Then, as a very welcome bonus, we obtain a dynamical
Higgs boson as well.

While we shall present our derivation of these results
below, we note here that all we actually need for the
discussion is the behavior of the pure fermion Green’s
functions containing fermion fields and fermion ψ̄ψ in-
sertions, and for them we only need the assumption of
scaling with anomalous dimensions (or equivalently con-
formal invariance with anomalous dimensions). We do
not actually need to specify how the critical scaling was
brought about, and thus do not actually need to intro-
duce any explicit coupling to gauge bosons whose associ-
ated dynamics could cause coupling constant renormal-
ization beta functions (such as β(α)) to actually vanish.
Our results are thus quite generic, and will continue to
hold even if there are many species of fermion (assuming
critical scaling of course), so that it thus suffices to dis-
cuss a single species of fermion and a single type of sym-
metry (in our case chiral symmetry) alone. Also we note
that we only need to discuss spontaneous breakdown of
a global symmetry, since once we have generated a mass-
less Goldstone boson by some dynamical means, Jackiw
and Johnson showed [26] that such a dynamically gen-
erated Goldstone boson would automatically couple to a
massless external gauge field with the relevant quantum
numbers, and would put a massless pole in the gauge
boson vacuum polarization. This would then cause the
gauge boson to become massive, to thus provide an ex-
plicit dynamical realization of the Higgs mechanism that
was presented in [27–30].

III. THE NAMBU-JONA-LASINIO CHIRAL
FOUR-FERMION MODEL

A. Nambu-Jona-Lasinio Model as a Mean-Field
Theory

The Nambu-Jona-Lasinio model is a chirally-
symmetric four-fermion model of interacting massless

fermions with action

INJL =

∫
d4x

[
iψ̄γµ∂µψ −

g

2
[ψ̄ψ]2 − g

2
[ψ̄iγ5ψ]2

]
. (16)

As such it is a relativistic generalization of the BCS
model. In the mean-field, Hartree-Fock approximation
one introduces a trial wave function parameter m that
is not in the original action, and then decomposes the
action into two pieces, a mean-field piece and a residual
interaction according to:

INJL =

∫
d4x

[
iψ̄γµ∂µψ −mψ̄ψ +

m2

2g

]
+

∫
d4x

[
−g

2

(
ψ̄ψ − m

g

)2

− g

2

(
ψ̄iγ5ψ

)2]
= IMF + IRI, (17)

where IMF contains the kinetic energy of a now massive
fermion and a self-consistent m2/2g term. This m2/2g
term acts like a cosmological constant and contributes to
the mean-field vacuum energy density. In the mean-field
Hartree-Fock approximation one sets

〈Ωm|
[
ψ̄ψ − m

g

]2

|Ωm〉 = 〈Ωm|
[
ψ̄ψ − m

g
]

∣∣∣∣Ωm〉2 = 0,

〈Ωm|ψ̄ψ|Ωm〉 =
m

g
, 〈Ωm|ψ̄iγ5ψ|Ωm〉 = 0. (18)

In this approximation one evaluates 〈Ωm|ψ̄ψ|Ωm〉 using
IMF alone, with the physical fermion mass M then being
the value of m that satisfies the one fermion loop

〈Ωm|ψ̄ψ|Ωm〉 = −i
∫

d4k

(2π)4
Tr

[
1

6 p−m+ iε

]
=
m

g
, (19)

viz. the gap equation

− MΛ2

4π2
+
M3

4π2
ln

(
Λ2

M2

)
=
M

g
, (20)

where Λ is an ultraviolet cutoff, as needed since the
Nambu-Jona-Lasinio model is not renormalizable.

Given this gap equation we can calculate the one loop
mean-field vacuum energy density ε̃(m) = ε(m)−m2/2g
as a function of m to obtain

ε̃(m) = i

∫
d4p

(2π)4
Tr ln

[
6 p−m+ iε

6 p+ iε

]
− m2

2g

=
m4

16π2
ln

(
Λ2

m2

)
− m2M2

8π2
ln

(
Λ2

M2

)
+

m4

32π2
.(21)

As we explain below, ε(m) can be constructed as the infi-
nite summation of massless graphs with zero-momentum
point mψ̄ψ insertions (see Fig. 1 below).

We thus see that while the vacuum energy density
i
∫
d4p/(2π)4Tr ln[6 p−m+ iε] has quartic, quadratic and

logarithmically divergent pieces, the subtraction of the
massless vacuum energy density i

∫
d4p/(2π)4Tr ln[6 p+iε]



7

removes the quartic divergence, with the subtraction of
the self-consistent induced mean-field term m2/2g then
leaving ε̃(m) only logarithmically divergent. We shall re-
turn to the quartic divergence below when we couple the
theory to gravity, but since we are for the moment do-
ing a flat space calculation where only energy differences
matter, use of this ε̃(m) suffices to show that the massive
vacuum lies lower than the massless one where m = 0.
I.e. we recognize the logarithmically divergent ε̃(m) as
having a local maximum at m = 0, and a global mini-
mum at m = M where M itself is finite. We thus induce
none other than a dynamical double-well potential, and
identify M as the matrix element of a fermion bilinear
according to M/g = 〈ΩM|ψ̄ψ|ΩM〉.

B. Higgs-Like Lagrangian

While ε̃(m) has a double-well form familiar from a
Higgs model as built out of a Higgs field that is a fun-
damental, and thus a quantum, field, m itself is not a
quantum field. Rather, it is only a c-number matrix
element, with ε̃(m) having a Higgs potential structure
even though no fundamental Higgs field is present. As
regards a kinetic energy term, we look not at matrix ele-
ments in the translationally-invariant vacuum |ΩM 〉 but
instead at matrix elements in coherent states |C〉 where
m(x) = 〈C|ψ̄(x)ψ(x)|C〉 is now spacetime dependent.
Then we find [31, 32] that the resulting mean-field ef-
fective action has a logarithmically divergent part of the
form

IEFF =

∫
d4x

8π2
ln

(
Λ2

M2

)[
1

2
∂µm(x)∂µm(x)

+ m2(x)M2 − 1

2
m4(x)

]
. (22)

If we go further and introduce a coupling gAψ̄γµγ5A
µ
5ψ

to an axial gauge field Aµ5 (x), on setting φ = ψ̄(1 + γ5)ψ
the effective action becomes

IEFF =

∫
d4x

8π2
ln

(
Λ2

M2

)[
1

2
|(∂µ − 2igAAµ5)φ(x)|2

+ |φ(x)|2M2 − 1

2
|φ(x)|4 − g2

A

6
Fµν5F

µν5

]
. (23)

We recognize this action as a double-well Ginzburg-
Landau type Higgs Lagrangian with order parameter
φ(x), only now generated dynamically. We thus gen-
eralize to the relativistic chiral case Gorkov’s derivation
of the Ginzburg-Landau order parameter action start-
ing from the BCS four-fermion theory, and see that just
as in the theory of superconductivity, there is no need
for the Higgs Lagrangian to be built out of a quantized
scalar field. In the IEFF effective action associated with
the Nambu-Jona-Lasinio model there is a double-well
Higgs potential, but since m(x) = 〈C|ψ̄(x)ψ(x)|C〉 is a c-
number, m(x) does not itself represent a q-number scalar

field. Rather, as we now show, the q-number fields are
to be found as collective modes generated by the resid-
ual interaction, with no fundamental scalar field being
needed at all.

C. The Collective Tachyon Modes when the
Fermion is Massless

To find the collective modes we need to evaluate the
vacuum polarizations

ΠS(x) = 〈Ω|T (ψ̄(x)ψ(x)ψ̄(0)ψ(0))|Ω〉,
ΠP(x) = 〈Ω|T (ψ̄(x)iγ5ψ(x)ψ̄(0)iγ5ψ(0))|Ω〉 (24)

associated with the scalar and pseudoscalar sectors, as
is appropriate to a chiral-invariant theory. To see why,
from the perspective of ΠS(x) and ΠP(x), the symmetry
needs to be broken, we first evaluate ΠS(x) and ΠP(x)
on the assumption that the fermion is massless. If we
take the fermion to be massless (i.e. setting |Ω〉 = |Ω0〉
where 〈Ω0|ψ̄ψ|Ω0〉 = 0) to one loop order as evaluated
using the original INJL action we obtain

ΠS(q2) = −i
∫

d4p

(2π)4
Tr

[
1

6 p+ iε

1

6 p+ 6 q + iε

]
,

ΠP(q2) = −i
∫

d4p

(2π)4
Tr

[
iγ5

1

6 p+ iε
iγ5

1

6 p+ 6 q + iε

]
,

(25)

to thus yield

ΠS(q2) = ΠP(q2) = − Λ2

4π2
− q2

8π2
ln

(
Λ2

−q2

)
− q2

8π2
. (26)

The scattering matrices in the two channels are given
by iterating the vacuum polarizations according to T =
g + gΠg + gΠgΠg + ..., to yield

TS(q2) =
g

1− gΠS(q2)
=

1

g−1 −ΠS(q2)
,

TP(q2) =
g

1− gΠP(q2)
=

1

g−1 −ΠP(q2)
. (27)

With g−1 being given by the gap equation above, near
q2 = −2M2 both scattering matrices behave as

TS(q2) = TP(q2) =
Z−1

(q2 + 2M2)
, Z =

1

8π2
ln

(
Λ2

M2

)
(28)

to leading order in the cutoff. We thus obtain degen-
erate (i.e. chirally symmetric) scalar and pseudoscalar
tachyons at q2 = −2M2 (just like fluctuating around the
local maximum in a double-well potential, except that
these tachyons are dynamically induced and not put in
by hand), with |Ω0〉 thus being unstable. Hence, before
determining which vacuum is stable, already we see that
if the fermion is massless the theory is unstable.
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D. The Collective Goldstone and Higgs Modes
when the Fermion is Massive

To find a stable vacuum, we now take the fermion to
have non-zero mass M (i.e. we set |Ω〉 = |ΩM〉). Now we
obtain

ΠS(q2,M)

= −i
∫

d4p

(2π)4
Tr

[
1

6 p−M + iε

1

6 p+ 6 q −M + iε

]
= − Λ2

4π2
+
M2

4π2
ln

(
Λ2

M2

)
+

(4M2 − q2)

8π2

+
(4M2 − q2)

8π2
ln

(
Λ2

M2

)
− 1

8π2

(4M2 − q2)3/2

(−q2)1/2

× ln

(
(4M2 − q2)1/2 + (−q2)1/2

(4M2 − q2)1/2 − (−q2)1/2

)
. (29)

and

ΠP(q2,M) =

−i
∫

d4p

(2π)4
Tr

[
iγ5

1

6 p−M + iε
iγ5

1

6 p+ 6 q −M + iε

]
= − Λ2

4π2
+
M2

4π2
ln

(
Λ2

M2

)
− q2

8π2
ln

(
Λ2

M2

)
+

(4M2 − q2)

8π2
+

(8M4 − 8M2q2 + q4)

8π2(−q2)1/2(4M2 − q2)1/2

× ln

(
(4M2 − q2)1/2 + (−q2)1/2

(4M2 − q2)1/2 − (−q2)1/2

)
. (30)

As we see, both ΠS(q2,M) and ΠP(q2,M) have a branch
point at q2 = 4M2, viz. at the threshold for the cre-
ation of a fermion and antifermion pair each with mass
M . Given the form for g−1, we find a dynamical pseu-
doscalar Goldstone boson bound state at q2 = 0 and a
dynamical scalar Higgs boson bound state at q2 = 4M2

(= −2 ×M2(tachyon)), with the two scattering ampli-
tudes behaving near their poles as

TS(q2) =
R−1

S

(q2 − 4M2)
, TP(q2) =

R−1
P

q2
, (31)

where

RS = RP =
1

8π2
ln

(
Λ2

M2

)
. (32)

(We have labelled the residues R−1
S and R−1

P to indi-

cate that they are not the previously introduced Z−1
S

and Z−1
P .) As we see, the two dynamical bound states

are not degenerate in mass (spontaneously broken chiral
symmetry), and the dynamical Higgs scalar mass 2M is
twice the induced mass of the fermion, to thus lie right at
the threshold of the fermion-antifermion scattering am-
plitude.

E. Fixing the Wick Contour for the Vacuum
Energy Density

For what is to follow below, we need to make one fur-
ther comment regarding the evaluation of the vacuum
energy density. As discussed for instance in [16], what
we have been calling ε(m) is not the energy density of
the vacuum. Rather, according to the Gell-Mann-Low
adiabatic switching procedure, it is actually an energy
density difference

ε(m) = 〈Ωm|Hm|Ωm〉 − 〈Ω0|H0|Ω0〉, (33)

where Hm = H0 + mψ̄ψ is the Hamiltonian density in
the presence of the mψ̄ψ term, while H0 is the Hamilto-
nian density in its absence. Specifically, in the adiabatic
switching procedure one starts with a Hamiltonian H0 at
time t = −∞ and ground state |Ω−0 〉, switches on a source
term such as mψ̄ψ, and then switches the source off at
t = +∞, to then return H0 to its ground state only now
in the state |Ω+

0 〉. The two states |Ω−0 〉 and |Ω+
0 〉 can

only differ by a phase, and that phase is given by the
energy density difference given in (33). As constructed,
this phase could not know what the ground state energy
density of H0 itself might be (it is only gravity that could
know), and thus ε(m) could only be an energy density dif-
ference. Given (33), we note that since 〈Ω0|ψ̄ψ|Ω0〉 = 0,
we can rewrite ε(m) as

ε(m) = 〈Ωm|Hm|Ωm〉 − 〈Ω0|Hm|Ω0〉, (34)

to put it in the form relevant to the dynamical symmetry
breaking of interest to us here.

Diagramatically, ε(m) generates the Green’s functions
associated with zero-momentum insertions of ψ̄ψ, and
can be written as

ε(m) =
∑ 1

n!
G

(n)
0 (qµ = 0,m = 0)mn (35)

Here G
(n)
0 is the ψ̄ψ Green’s function with n insertions

as calculated in the massless H0 theory, with the G
(2)
0

and G
(4)
0 terms for instance being given by

G(2)(qµ = 0,m = 0) = −i
∫

d4p

(2π)4
Tr

[
1

6 p+ iε

1

6 p+ iε

]
G(4)(qµ = 0,m = 0) =

−i
∫

d4p

(2π)4
Tr

[
1

6 p+ iε

1

6 p+ iε

1

6 p+ iε

1

6 p+ iε

]
(36)

in the Nambu-Jona-Lasinio mean-field case. Formally,
the infinite series for ε(m) given in Fig. 1 can be summed,
to give

ε(m) = i

∫
d4p

(2π)4

∞∑
n=1

(−1)

2n
Tr

[
(−i)2

(
i

6 p+ iε

)2

m2

]n
= i

∫
d4p

(2π)4
Tr ln

[
6 p−m+ iε

6 p+ iε

]
, (37)
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FIG. 1: Vacuum energy density ε(m) via an infinite sum-
mation of massless graphs with zero-momentum point mψ̄ψ
insertions.

just as needed for (21).
Despite this, we note that the contour for the p0 in-

tegration in each of the G
(n)
0 is that associated with a

massless Feynman propagator, and not that associated
with a massive one. However, for both the 1/(6 p + iε)
and 1/(6 p+m+ iε) propagators the poles are located be-
low the real p0 axis when p0 is positive, and above the real
p0 axis when p0 is negative (upper left and lower right
quadrants of the complex p0 plane). Thus in both the
cases we can make the same Wick rotation along quarter
circles in the upper right and lower left quadrants, to ob-
tain a Wick contour loop that contains no poles within
it, to thus yield∫ ∞
−∞

dp0 +

∫ i∞

∞
dp0 +

∫ −i∞
i∞

dp0 +

∫ −∞
−i∞

dp0 = 0. (38)

Then, if we can drop the two quarter circle at infinity
terms we obtain

− i
∫ ∞
−∞

dp0 = −i
∫ i∞

−i∞
dp0 =

∫ ∞
−∞

dp4 (39)

where p4 = −ip0. As constructed, for determining ε(m)
we should in general use (35) with its massless fermion
propagator contour, and even if we can do the infinite
sum and obtain some function of a massive fermion prop-
agator, we should continue to use the same massless
fermion contour, i.e. we should Wick rotate every term in
(35) before doing the summation. Now for the Nambu-
Jona-Lasinio case it did not matter since the massless
and massive Wick contour loops coincided, and neither
contained any poles. However, as we show below, in
the Johnson-Baker-Willey electrodynamics case the two
Wick rotations do not coincide (for general Σ(p) the
1/(6 p−Σ(p)+ iε) propagator can have a much more com-
plicated structure in the complex p0 plane), and we must
use the massless Wick contour loop since that is what
(35) requires. Moreover, for the Johnson-Baker-Willey
case the great utility of (35) is that while the scaling so-
lution given in (3) only applies for p2 � m2, if there is
to be critical scaling in the massless theory, then scal-
ing forms would hold at all momenta as there is no mass
scale in the massless theory. Thus, even if a theory with
a mass is only scale invariant for large momenta, its ψ̄ψ

Green’s functions can be constructed by an infinite sum-
mation of graphs all of which are scale invariant for all
momenta, and all of which use the massless theory Feyn-
man propagator contour.

F. General Requirements for the Generation of
Goldstone and Higgs Bosons

To summarize, given the Baker-Johnson evasion of the
Goldstone theorem and the constraints that the renor-
malization process can produce, we see that in order to
generate a Goldstone boson in a renormalizable quan-
tum field theory via dynamical symmetry breaking four
conditions need to be met. First, we need to show that
the unbroken vacuum possesses a tachyonic instability.
Second, we need to show that the fermion mass obeys a
self-consistent gap type equation. Third, we need to show
that the vacuum associated with the non-trivial solution
to the self-consistent gap type equation has lower energy
density than the vacuum associated with the trivial solu-
tion. And fourth, we need to show that there is in fact a
massless pole in the fermion-antifermion scattering am-
plitude. In Sec. IV we shall show that in Johnson-Baker-
Willey electrodynamics coupled to a four-fermion inter-
action all four of these criteria are met when γθ(α) = −1.

As regards the Higgs boson, if we can produce a pseu-
doscalar bound state at all, then in a chirally symmetric
theory we must get a scalar bound state as well. The
two states will necessarily be degenerate in mass if the
symmetry is unbroken. However, when the symmetry
is broken, the mass degeneracy of the two states will be
lifted, with the scalar bound state necessarily acquiring a
mass of order the symmetry breaking scale, so that there
is then no hierarchy problem for it, and no need to utilize
the breaking of scale invariance to control its mass.

IV. JOHNSON-BAKER-WILLEY
ELECTRODYNAMICS COUPLED TO A

FOUR-FERMION INTERACTION

A. Vacuum Energy Density for Arbitrary γθ(α)

As described above, we decompose the QED plus four-
fermion Lagrangian LQED−FF into mean-field and resid-
ual interaction pieces according to

LQED−FF = −1

4
FµνF

µν + ψ̄γµ(i∂µ − eAµ)ψ

−g
2

[ψ̄ψ]2 − g

2
[ψ̄iγ5ψ]2

= −1

4
FµνF

µν + ψ̄γµ(i∂µ − eAµ)ψ −mψ̄ψ +
m2

2g

−g
2

(
ψ̄ψ − m

g

)2

− g

2

(
ψ̄iγ5ψ

)2
= LQED−MF + LQED−RI. (40)
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According to (35), in order to determine the ε(m) associ-
ated with LQED−MF we need to sum an infinite number
of massless theory graphs. With our assumption of criti-
cal scaling, as noted in [15, 16] these massless graphs can
be obtained from the Nambu-Jona-Lasinio point vertex
graphs by replacing point vertices with ΓS(p, p, 0) = 1

by the fully dressed and renormalized Γ̃S(p, p, 0). How-
ever, since these needed vacuum energy density graphs
are massless theory graphs we need the massless theory
Γ̃S(p, p, 0), and in order to renormalize it we shall use
an off-shell renormalization with a parameter µ2. Then,
since there is no scale in the massless theory, the assump-
tion of critical scaling with anomalous dimensions allows
us to set

S̃−1(p,m = 0) = 6 p+ iε,

Γ̃S(p, p, 0) =

(
−p2 − iε

µ2

)γθ(α)/2

(41)

for all momenta in the massless theory. Moreover, a
critical scaling massless theory will not be just scale in-
variant, it will be conformal invariant too. Thus as well
as requiring all massless theory Green’s functions to be
constrained by scale invariance and the renormalization
group equations, for two- and three-point functions con-
formal invariance fixes their form completely. Thus in
the massless theory we can write the exact relation

〈Ω0|T (ψ(x) : ψ̄(z)ψ(z) : ψ̄(y))|Ω0〉

=
µ−γθ ( 6 y − 6 z)( 6 z − 6 x)

[(y − z)2(z − x)2](1+dθ)/2[(x− y)2](3−dθ)/2
, (42)

with the form for Γ̃S(p, p, 0) given in (41) then following
upon a Fourier transform and an amputation of the ex-
ternal fermion legs [16]. In (42) we should note that the
normal ordering is with respect to |Ω0〉, and we can use
this normal ordering prescription for all Green’s functions
other than those related to the vacuum energy density,
as the vacuum energy density plays no role in the stan-
dard Dyson-Wick expansion of Green’s functions. Now
we could normalize µ so that it is equal to the eventual
dynamical mass M right away, but for tracking where
everything comes from it is more convenient to keep it as
is until the end.

Given (41), we replace (37) by

ε(m) = i

∫
d4p

(2π)4

∞∑
n=1

(−1)

2n

×Tr

[
(−i)2

(
−p2 − iε

µ2

)γθ(α)(
i

6 p+ iε

)2

m2

]n

=
i

2

∫
d4p

(2π)4
Tr ln

[
1− m2

p2 + iε

(
−p2 − iε

µ2

)γθ(α)
]
,

(43)

with the infinite summation of massless graphs in Fig. 1
being replaced by the infinite summation in Fig. 2.

FIG. 2: Vacuum energy density ε(m) via an infinite summa-
tion of massless graphs with zero-momentum dressed mψ̄ψ
insertions.

In terms of the quantity

S̃−1
µ (p) = 6 p−m

(
−p2 − iε

µ2

)γθ(α)/2

+ iε, (44)

we can rewrite ε(m) as

ε(m) = i

∫
d4p

(2π)4

[
Tr ln(S̃−1

µ (p))− Tr ln(6 p+ iε)
]
. (45)

Given the form of (45), on comparing with (3) it is sug-

gestive to think of S̃−1
µ (p) as the massive theory propa-

gator. However, it cannot be, since, as constructed, (3)
only gives the asymptotic form for the massive propaga-
tor. Moreover, in the massive theory the renormalization
group equation for the Green’s function involving a fur-
ther ψ̄ψ insertion is of the form [20][

m
∂

m
+ β(α)

∂

∂α
+ γθ(α)

]
Γ̃S(p, p, 0)

= m(1− γθ(α)]Γ̃SS(p, p, 0), (46)

where Γ̃SS contains two zero-momentum ψ̄ψ insertions.
Since Γ̃SS is not zero identically, Γ̃S and thus S̃−1(p) of
(3) must have non-leading terms beyond those exhibited
in (3). Since on power counting grounds [m∂m+β(α)∂α+

2γθ(α)]Γ̃SS(p, p, 0) will be related to a Γ̃SSS that contains

contains three zero-momentum insertions, Γ̃SS(p, p, 0)
will acquire a leading term of the form (−p2/m2)γθ(α),

while Γ̃S(p, p, 0) will acquire a non-leading term of

the form m(−p2/m2)γθ(α). Consequently, S̃−1(p) wiil

then behave as S̃−1(p) = 6 p − m(−p2/m2)γθ(α)/2 −
m2(−p2/m2)γθ(α). Further non-leading terms would then
be generated via the renormalization group for Green’s
functions with even more insertions. Thus S̃−1

µ (p) is
not the full fermion propagator for Johnson-Baker-Willey
electrodynamics. However, it can serve as the propaga-
tor for evaluating Feynman graphs associated with the
mean-field Lagrangian of interest to us here, since the
vertex function Γ̃S(p, p, 0) = (−p2/µ2)γθ(α)/2 is the ex-
act vertex function in a critical scaling massless theory.
However, even in this mean-field theory we cannot take
S̃−1
µ (p) to be its propagator since it has poles in the com-

plex p0 plane. These poles would contribute in a Wick
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rotation. However, as we noted above, the p0 contour is
fixed not by the massive theory but by the underlying
massless one. Thus, as we elaborate on in more detail
below, we must evaluate (43) using the massless theory
Wick contour just as given in (39). Nonetheless, we will

continue to utilize the S̃−1
µ (p) propagator since it is very

convenient for bookkeeping purposes.

B. Vacuum Energy Density for γθ(α) = −1

When γθ(α) = −1, evaluation of ε(m) is straightfor-
ward, and yields [15, 16]

ε(m) = −m
2µ2

8π2

[
ln

(
Λ2

mµ

)
+

1

2

]
. (47)

With ε′(m) being equal to 〈Ωm|ψ̄ψ|Ωm〉, in the Hartree-
Fock approximation we obtain (Fig. 3)

〈Ωm|ψ̄ψ|Ωm〉 = ε′(m)

= −i
∫

d4p

(2π)4
Tr[Γ̃S(p, p, 0)S̃µ(p)]

= 4i

∫
d4p

(2π)4

mµ2

(p2 + iε)2 +m2µ2

= −mµ
2

4π2
ln

(
Λ2

mµ

)
=
m

g
. (48)

FIG. 3: The γθ(α) = −1 tadpole graph for 〈Ωm|ψ̄ψ|Ωm〉 with

a zero-momentum dressed mψ̄ψ insertion and a dressed S̃µ(p)
propagator.

We thus identify the physical mass as the one that sat-
isfies (48) according to the manifestly non-perturbative
gap-type equation

− µ2

4π2
ln

(
Λ2

Mµ

)
=

1

g
, M =

Λ2

µ
exp

(
4π2

µ2g

)
. (49)

Finally, recalling the m2/2g counter-term in (40), we can
write the renormalized mean-field vacuum energy density
just as previously given in (10), viz. (see Fig. 4)

ε̃(m) = ε(m)− m2

2g
=
m2µ2

16π2

[
ln

(
m2

M2

)
− 1

]
, (50)

with its local maximum at m = 0 and its global minimum
at m = M . Quite remarkably, with only the one counter-
term, m2/2g, as expressly provided by the mean-field
theory, we find that ε̃(m) is completely finite. This then is
the power of dynamical symmetry breaking, it generates
appropriate counter-terms automatically.

FIG. 4: Dynamically generated double-well potential for the
renormalized vacuum energy density when γθ(α) = −1.

C. Higgs-Like Lagrangian

To develop an analog of a kinetic energy term to add
on to ε̃(m), we need to determine the massive theory
ΠS(x,m) as defined in (24). In the massless theory first,
we can use conformal invariance to determine ΠS(x,m =
0) exactly. Thus we set

〈Ω0|T (: ψ̄(x)ψ(x) :: ψ̄(y)ψ(y) :)|Ω0〉

=
µ−2γθTr[(6 x− 6 y)( 6 y − 6 x)]

[(x− y)2](dθ+1)/2[(y − x)2](dθ+1)/2
. (51)

With an appropriate normalization Fourier transforming
then gives

ΠS(q2,m = 0) = −i
∫

d4p

(2π)4
Tr

[
[p2(p+ q)2]γθ(α)/4

× 1

6 p
[p2(p+ q)2]γθ(α)/4 1

6 p+ 6 q

]
. (52)

As well as construct ΠS(x,m = 0) via conformal in-
variance we can start with its definition as 〈Ω0|T (:
ψ̄(x)ψ(x) :: ψ̄(y)ψ(y) :)|Ω0〉 and make a Dyson-Wick
contraction between the fields at xµ and yµ. At the one-
loop level this then yields

ΠS(q2,m = 0) = −i
∫

d4p

(2π)4
Tr

[
Γ̃S(p+ q, p,−q)

×S̃µ(p,m = 0)Γ̃S(p, p+ q, q)S̃µ(p+ q,m = 0)

]
,(53)
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where the massless S̃µ(p,m = 0) is given in (41), and
where we have introduced

Γ̃S(p, p+ q, q) =

[
(−p2)

µ2

(−(p+ q)2)

µ2

]γθ(α)/4

. (54)

Now that we know the Γ̃S(p, p + q, q) vertex needed
for ΠS(q2,m = 0), just as with the infinite summation of
massless theory graphs associated with the generation of
the massive theory ε(m), the massive theory ΠS(q2,m) is
also given by an infinite summation. In this summation,
apart from the two ψ̄(x)ψ(x) insertions that carry mo-
mentum qµ, all other insertions carry zero-momentum
and couple with vertices that are given by (41). The
summation thus results in massless fermion propagators
being replaced by massive ones according to [17]

ΠS(q2,m) = −i
∫

d4p

(2π)4
Tr

[
Γ̃S(p+ q, p,−q)

×S̃µ(p)Γ̃S(p, p+ q, q)S̃µ(p+ q)

]
, (55)

where the massive theory S̃µ(p) is given in (44).

As discussed in [32], to now get the coefficient of the
kinetic energy associated with a coherent state in which
〈C|ψ̄ψ|C〉 = m(x) with spacetime dependent m(x), we
need to calculate the derivative of ΠS(q2,m(x)) at q2 = 0.
Now even though the massive ΠS(−∂µ∂µ,m(x)) depends
on the spacetime coordinates when m(x) depends on
the spacetime coordinates, we note that if we develop
ΠS(−∂µ∂µ,m(x)) as an infinite sum of massless graphs,
for each of those graphs there is no spacetime depen-
dence and we can use momentum space Feynman di-
agrams. Graphically, in the Nambu-Jona-Lasinio case
first we evaluate ΠS(−∂µ∂µ,m(x)) using the summation
in Fig. 5, and then in the Johnson-Baker-Willey case we
use the summation given in Fig. 6.

FIG. 5: ΠS(q2,m(x)) developed as an infinite summation of
massless graphs, each with two point mψ̄ψ insertions carrying
momentum qµ (shown as external lines), with all other point
mψ̄ψ insertions carrying zero momentum.

Via the summation in the Nambu-Jona-Lasino case the
kinetic energy term given in (23) was obtained in [16]. In
the Johnson-Baker-Willey case with γθ(α) = −1, an ex-
pansion of ΠS(q2 = 0,m) around q2 = 0 is algebraically
found to give the q2 derivative Π′S(q2,m) = −3µ/128πm
at q2 = 0. This then yields an effective Higgs-like La-

FIG. 6: ΠS(q2,m(x)) developed as an infinite summation of
massless graphs, each with two dressed mψ̄ψ insertions car-
rying momentum qµ (shown as external lines), with all other
dressed mψ̄ψ insertions carrying zero momentum.

grangian of the form [17]

LEFF = −ε̃(m(x))

−1

2
m(x)[ΠS(−∂µ∂µ,m(x))−ΠS(0,m(x))]m(x) + ...

= −m
2(x)µ2

16π2

[
ln

(
m2(x)

M2

)
− 1

]
+

3µ

256πm(x)
∂µm(x)∂µm(x) + .... (56)

Here the dots denote higher gradient terms, and there
is no reason to be concerned about their presence since
m(x) is only a c-number, and thus (56) would not be
associated with a non-renormalizable or non-local field
theory if the higher gradient terms are included. Rather,
(56) is generated by dynamical symmetry breaking in a
local, renormalizable field theory, one which leads to the
expansion given in (56) in which every term is automat-
ically finite. In this way, without every introducing any
input fundamental tachyonic mass term, we can gener-
ate an effective double-well Higgs Lagrangian, one which
could readily be coupled to a gauge field just as in (23).

D. The Collective Tachyon Modes when the
Fermion is Massless

To test for tachyons we need to evaluate the massless
theory ΠS(q2,m = 0) given above and also the pseu-
doscalar ΠP(q2,m = 0), which is given by

ΠP(q2,m = 0) = −i
∫

d4p

(2π)4
Tr

[
[p2(p+ q)2]γθ(α)/4iγ5

× 1

6 p
[p2(p+ q)2]γθ(α)/4iγ5

1

6 p+ 6 q

]
. (57)

When γθ(α) = −1 a straightforward Wick rotation with
spacelike q2 yields

ΠS(q2,m = 0) = ΠP(q2,m = 0)

= − µ2

4π2

[
ln

(
Λ2

(−q2)

)
− 3 + 4 ln2

]
. (58)

With g−1 being given in (49), we thus see that both
g−1 − ΠS(q2,m = 0) and g−1 − ΠP(q2,m = 0) are fi-
nite, with the four-fermion interaction thus supplying
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just the needed counter-term to make both the massless
ΠS(q2,m = 0) and the massless ΠP(q2,m = 0) be finite.

With the T matrix being given by

TS(q2) =
g

1− gΠS(q2)
=

1

g−1 −ΠS(q2)
,

TP(q2) =
g

1− gΠP(q2)
=

1

g−1 −ΠP(q2)
, (59)

we see that both the scalar and pseudoscalar scattering
matrices have a spacelike pole at

q2 = −Mµe4ln2−3 = −0.797Mµ, (60)

with both amplitudes behaving as

TS(q2) = TP(q2) =
31.448Mµ

(q2 + 0.797Mµ)
(61)

near the tachyonic poles. We thus confirm that the mass-
less vacuum is unstable.

E. The Collective Goldstone Mode when the
Fermion is Massive

With the massive theory ΠS(q2,m) being given by (55),
because of the chiral invariance of the massless theory
vertices the analogous massive theory ΠP(q2,m) is given
by

ΠP(q2,m) = −i
∫

d4p

(2π)4
Tr

[
Γ̃S(p+ q, p,−q)

×iγ5S̃µ(p)Γ̃S(p, p+ q, q)iγ5S̃µ(p+ q)

]
. (62)

Both the massive ΠS(q2,m) and the massive ΠP(q2,m)
are logarithmically divergent when γθ(α) = −1, with
the divergence being the same as that of the massless
ΠS(q2,m = 0) and ΠP(q2,m = 0) since the large momen-
tum behavior of the Green’s functions is not sensitive to
the fermion mass. Consequently, both g−1 − ΠS(q2,m)
and g−1−ΠP(q2,m) are finite, with the four-fermion in-
teraction thus supplying just the needed counter-term
to make both the massive ΠS(q2,m) and the massive
ΠP(q2,m) be finite.

When γθ(α) = −1, ΠS(q2,m) and ΠP(q2,m) evaluate
to

ΠS(q2,m) = −4iµ2

∫
d4p

(2π)4

N(q, p) +m2µ2

D(q, p,m)
,

ΠP(q2,m) = −4iµ2

∫
d4p

(2π)4

N(q, p)−m2µ2

D(q, p,m)
, (63)

where

N(q, p) = (p2 + iε− q2/4)

×(−(p− q/2)2 − iε)1/2(−(p+ q/2)2 − iε)1/2,

D(q, p,m) = (((p− q/2)2 + iε)2 +m2µ2)

×(((p+ q/2)2 + iε)2 +m2µ2).

(64)

(In (63) and (64) we have conveniently translated pµ to
pµ − qµ/2.)

On now evaluating ΠP(q2,m) at q2 = 0 we obtain

ΠP(q2 = 0,m) = −4iµ2

∫
d4p

(2π)4

(p2)(−p2)−m2µ2

((p2 + iε)2 +m2µ2)2
.

= 4iµ2

∫
d4p

(2π)4

1

(p2 + iε)2 +m2µ2
. (65)

On comparing with (48) and (49) we see that when m
is equal to M , ΠP(q2 = 0,M) is equal to none other
than g−1. In the pseudoscalar TP(q2) channel we thus
obtain our sought-after massless pseudoscalar Goldstone
boson. Finally, with an expansion of ΠP(q2 = 0,M)
around q2 = 0 algebraically being found to give the q2

derivative Π′P(q2,M) = −7µ/128πM at q2 = 0, near the
Goldstone pole TP(q2) is found to evaluate to

TP(q2) =
128πM

7µq2
=

57.446M

µq2
. (66)

Now at γθ(α) = −1 the quantity g−1 is infinite (as
counter-terms need to be) and g itself is zero. Thus
even though the ΠP-independent homogeneous term in
TP = g + gΠPg + gΠPgΠPg + ... = g/(1 − gΠP) would
be zero, nonetheless the interplay between the numerator
and the denominator still enables a pole to be generated.
Thus, as we had noted above, even if the homogeneous
term in a scattering amplitude iteration vanishes there
still could be a pole. Thus in conclusion we note that
even though Johnson-Baker-Willey electrodynamics does
not on its own have a Goldstone boson pole, when it is
coupled to the four-fermion interaction it then does.

F. The Collective Higgs Mode when the Fermion is
Massive – the Needed Contour

Because we were able to show that ΠP(q2 = 0,M) and
g−1 were identically equal, we did not actually need to
explicitly evaluate either quantity, and thus to establish
the presence of a Goldstone pole we did not need to ex-
plicitly specify the contour needed for the p0 integration.
To show that there is a Higgs boson pole in the scalar
channel we will need to specify the contour and will need
to evaluate the ΠS(q2,M) integral explicitly, since, unlike
in the Goldstone case where there is an axial-vector Ward
identity, there appears to be no general theorem or rele-
vant Ward identity that would tell us a priori what value
the mass of a dynamical Higgs boson should be. Since
each massive fermion graph is an infinite sum of mass-
less fermion graphs, as noted above, the massive theory
inherits its contour from the massless one. For the mass-
less case we note that on translating pµ to pµ − qµ/2 the
massless ΠS(q2,m = 0) given in (52) evaluates to

ΠS(q2,m = 0) = −4iµ2

∫
d4p

(2π)4

N(q, p)

D(q, p,m = 0)
, (67)
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when γθ(α) = −1, with N(q, p) and D(q, p) being given
in (64). The integrand in ΠS(q2,m = 0) has both poles
and branch points, the poles coming from the zeroes of
D(q, p,m = 0) and the branch points from the zeroes of
N(q, p).

For spacelike qµ we set qµ = (0, 0, 0, q3) and find that
all poles and branch points are in the lower right and
upper left quadrants in the complex p0 plane. Conse-
quently, for spacelike qµ we can use the Wick contour
loop given in (39) as is since there are no poles within
the loop, and indeed we already did so when we tested
for tachyons.

For timelike qµ we set qµ = (q0, 0, 0, 0) with q0 ≥ 0, to
find poles at

p0 = q0/2 + p− iε, p0 = −q0/2 + p− iε,
p0 = q0/2− p+ iε, p0 = −q0/2− p+ iε. (68)

The p0 = q0/2 + p − iε pole is always in the lower right
quadrant in the complex p0 plane, and the p0 = −q0/2−
p + iε pole is always in the upper left quadrant. If p >
q0/2 the p0 = −q0/2 + p − iε pole is in the lower right
quadrant and the p0 = q0/2−p+iε pole is in the upper left
quadrant. However, if p < q0/2 the p0 = −q0/2 + p− iε
pole migrates to the lower left quadrant and the p0 =
q0/2− p+ iε pole migrates to the upper right quadrant.

The pattern of N(q, p) = 0 branch points completely
follows the same pattern as that of the poles. By taking
branch cuts to terminate at either end at branch points,
we will have two branch cuts in total. We shall take one
branch cut to run between the two branch points in the
upper half p0 plane and the other to run between the two
branch points in the lower half plane. Thus for p > q0/2
all poles and branch cuts are in the upper left and lower
right quadrants, and so we can make the standard Wick
rotation given in (39) as is as per Fig. 7. However, for
p < q0/2 we will in addition need to circumnavigate the
branch points and poles that have migrated to the upper
right and lower left half planes. Since the branch points
and poles have migrated from the upper left and lower
right planes into the upper right and lower left planes, as
they migrate we must deform the Wick contour loop so
that no singularities enter the loop as per Fig. 8.

For timelike qµ the full Wick contour loop is then the
standard one given in (38) and (39), as augmented with
an integration above the cut from p0 = 0 to the branch
point at p0 = q0/2 − p, then round this branch point
followed by an integration to the branch point at p0 =
−q0/2 + p, then round this branch point and back to
p0 = 0. This contour does not enclose any of the poles
(they have also been circumnavigated), and thus we can
write

− i
∫ ∞
−∞

dp0 =

∫ ∞
−∞

dp4 + Icut. (69)

Consequently, the full cut contribution is given by four
times the first section, viz.

Icut = −4iµ2

π3

∫ q0/2

0

dpp2

∫ q0/2−p

0

dp0
N(q0, p, p0)

D(q0, p, p0,m)
.(70)

FIG. 7: The standard Wick contour. The branch cuts are
shown as lines and the poles as dots.

FIG. 8: The migrated Wick contour. The branch cuts are
shown as lines and the poles as dots.

The imaginary p0 axis contribution, IWick, is given by

IWick =
µ2

π3

∫ ∞
0

dpp2

∫ ∞
∞

dp4
N(q0, p, p4) +m2µ2

D(q0, p, p4,m)
. (71)

Now while p2 is spacelike along the p4 axis, in the cut
region both (p0 − q0/2)2 − p2 and (p0 + q0/2)2 − p2

are timelike. Thus while we recognize both [−((p0 −
q0/2)2 − p2)]1/2 and [−((p0 + q0/2)2 − p2)]1/2 as being

real and positive on the p4 axis, given that Γ̃S(p, p, 0) =
(−p2/µ2)γθ(α)/2, each of the two square roots should be
interpreted with an extra factor of i in the timelike case.
Thus while the net square root factor in N(q0, p, p4) is
positive definite, the net square root factor in N(q0, p, p0)
possesses an overall minus sign.

To appreciate the nature and sense of the contour it is
instructive to change the location of the branch cut in the
massless theory Γ̃S(p, p, 0) as given in (41) by replacing
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it by

Γ̃S(p, p, 0) =

(
p2 + iε

ν2

)γθ(α)/2

(72)

In this case the mean-field theory effective propagator
given in (44) would be replaced by

S̃−1
ν (p) = 6 p−m

(
p2 + iε

ν2

)γθ(α)/2

+ iε. (73)

As a function of a complex variable, S̃ν(p) has poles at
p2

0−p2+iε = mν and at the tachyonic p2
0−p2+iε = −mν

when γθ(α) = −1. All the poles in p2
0−p2+iε = mν lie in

the lower right and upper left quadrants in the complex
p0 plane, as do all the poles in p2

0 − p2 + iε = −mν if
p > (mν)1/2. However for p < (mν)1/2 the poles migrate
to p0 = ±i(mν − p2)1/2 ∓ ε. While these poles lie on the
imaginary axis they are slightly displaced from it into the
upper left and lower right quadrants. Consequently, none
of the poles in S̃ν(p) lie inside the standard Wick contour
loop. For this propagator we can thus Wick rotate as per
(38) and (39). Suppose we now continue back from ν2 to

µ2. When we do so the poles in S̃ν(p) will move into the
complex plane according to p2

0−p2 +iε±imµ = 0, and in
particular some will move into the upper right and lower
left quadrants. Thus when we make this continuation we
must at the same time deform the Wick contour loop so
that it continues to contain no poles. We thus consider
the upper right and left quadrant poles to be in a zone
of avoidance. To specify this zone exactly we note that
the poles of p2

0 = p2 ± imµ are given as

p0 =
1

21/2

[
(p4 +m2µ2)1/2 + p2)

]1/2
± i

21/2

[
(p4 +m2µ2)1/2 − p2)

]1/2
p0 = − 1

21/2

[
(p4 +m2µ2)1/2 + p2)

]1/2
∓ i

21/2

[
(p4 +m2µ2)1/2 − p2)

]1/2
(74)

The poles in the upper right quadrant thus lie in a region
that begins at p = 0 where p0 = (mµ)1/2(1+i)/21/2, with
an imaginary part that falls off as p increases, reaching
zero at p =∞ where the real part of the location of the
pole becomes infinite, with the zone of avoidance thus
being wedge shaped. An analogous situation exists for
the poles in the lower left quadrant. Thus if we want to
define a contour for the massive theory with the S̃µ(p)
propagator, for Green’s functions such as ΠS(q2,m) we
must define the p0 integration to run not along the real
axis, but rather to skirt the zones of avoidance in the
lower left and upper right quadrants as per Fig. 9 by
going around them so that no poles are then picked up
in the Wick contour loop. In this way the complex p0

plane poles in S̃µ(p) do not play a physical role in the
Wick contour loop needed for ΠS(q2,m).

FIG. 9: The deformed Wick contour needed for S̃ν(p). Poles
are shown as dots.

The complex p0 plane poles in S̃µ(p) would however
play a role if we want to integrate using a Feynman con-
tour. For S̃ν(p) first, the Feynman contour is obtained
by closing below the real p0 axis and integrating along
a semicircle in the lower half plane. This contour would
then include all poles with Re[p0] > 0, and for S̃ν(p) all

would have Im[p0] < 0. If we now continue to S̃µ(p)
we would continue to include all poles with Re[p0] > 0.
This would require us to include the zone of avoidance
in Re[p0] > 0 but not include the zone of avoidance with
Re[p0] < 0. Thus for Re[p0] > 0 the Feynman contour is
the compliment of the Wick contour, while for Re[p0] < 0
the Feynman contour is the same as the Wick contour

The general rule then for all of the cases described
above is that the Wick contour loop integration is always
to be defined as being the contour that contains no poles
and circumnavigates all upper right and lower left quad-
rant cuts. For all the cases this will always yield (69).
Similarly, the Feynman contour is to always be defined
as the contour that includes all poles with Re[p0] > 0.

Finally, since the p0 contours are different for space-
like and timelike qµ, we cannot first evaluate ΠS(q2,m)
for spacelike qµ (say using Feynman parameters for am-
plitudes with Euclidean pµ and qµ) and then continue the
resulting answer to timelike qµ since we would miss the
migrated cuts, with the spacelike and timelike qµ Wick
contour loops being different. We will thus need to eval-
uate the timelike qµ case directly.

G. The Collective Higgs Mode when the Fermion
is Massive – Results

For timelike qµ we shall explicitly evaluate IWick and
Icut in detail in the appendix, and will show there that
as a function of q2

0 = q2, IWick has a branch point at
q2 = 2mµ. While we will show thus explicitly in the
appendix, it may be understood heuristically by noting
that at p = 0 the massive S̃µ(p) propagator has poles at

p0 = (1+i)(mµ)1/2/21/2 and at p0 = (1−i)(mµ)1/2/21/2,
and thus a particle-antiparticle threshold at q2 = ((1 +
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i)(mµ)1/2/21/2 + (1 − i)(mµ)1/2/21/2)2 = 2mµ. For q2

below this threshold the integrands in both IWick and Icut

as given in (71) and (70) are real. Consequently, with
g−1 being real and with Icut itself possessing an overall
factor of i, there cannot be any bound state Higgs boson
pole at or below q2 = 2mµ (unless both IWick − 1/g
and Icut just happen to vanish at some common value
of q2 in that region – though this turns out not to be
the case). However, while the integrand in Icut remains
real above the q2 = 2mµ threshold so that Icut itself
remains pure imaginary, the integrand in IWick becomes
complex, and then one can find a pole. Any solution
above the threshold must thus satisfy g−1 − Re[IWick]−
Im[IWick] − Icut = 0. The Higgs boson must thus be a
resonance, with its width then being fixed by Icut. With
the actual integrals only being doable numerically, in the
appendix we show that there is an explicit solution, with
our sought-after dynamical massive scalar Higgs boson
being a narrow resonance lying below the real axis in the
complex q2 plane, with parameters

q0(Higgs) = (1.480− 0.017i)(Mµ)1/2,

q2(Higgs) = (2.189− 0.051i)Mµ. (75)

We had noted above that we always had the freedom to
normalize µ to M . On now doing so, the Higgs boson
parameters become

q0(Higgs) = (1.480− 0.017i)M,

q2(Higgs) = (2.189− 0.051i)M2, (76)

to thus naturally be of order the fermion mass scale.
Thus even though the ΠS-independent homogeneous
term in TS = g + gΠSg + gΠSgΠSg + ... = g/(1 − gΠS)
is zero (g−1 being divergent according to (49)), nonethe-
less we again see that the vanishing of the homogeneous
term in the scattering amplitude need not prevent the
presence of a pole.

In the literature attention has focussed on the fact
that in the Nambu-Jona-Lasinio model the dynamical
Higgs boson is a stable bound state that lies right at the
particle-antiparticle threshold with a mass twice that of
the dynamical fermion. However, as we see, this is not a
generic feature of dynamical symmetry breaking, and in
fact it could only possibly occur if the scattering ampli-
tude is purely real at the threshold. For a point coupled
theory such as the Nambu-Jona-Lasinio model, this is in
fact the case. However, once we give the coupling some
momentum dependence the dynamical Higgs boson could
move away from the particle-antiparticle threshold, and
could potentially become a resonance rather than a stable
bound state.

H. Distinguishing a Dynamical Higgs Boson from a
Fundamental One

If the Higgs boson is to be dynamical, it would be very
instructive to identify some way to distinguish it from a

fundamental Higgs boson. Also we would need to account
for the fact that a fundamental Higgs field theory works
so well in weak interactions. To this end let us consider
the path integral representation of the generator Z(η̄, η)
of fermion Green’s functions associated with the fermion
sector of the LQED−FF Lagrangian given in (40), viz.

Z(η̄, η) =

∫
[dη̄dη] exp

[
i

∫
d4x

(
ψ̄γµ(i∂µ − eAµ)ψ

− g

2
(ψ̄ψ)2 + η̄ψ + ψ̄η

)]
, (77)

with Grassmann sources η and η̄. (For simplicity we have
left out the (g/2)(ψ̄iγ5ψ)2 term present in (40), though
it could be incorporated via a dummy pseudoscaler field
if desired.) Via Gaussian path integration on a dummy
scalar field variable σ, Z(η̄, η) can be rewritten as

Z(η̄, η) =

∫
[dη̄dηdσ] exp

[
i

∫
d4x

(
ψ̄γµ(i∂µ − eAµ)ψ

− g

2
(ψ̄ψ)2 +

g

2

(
σ

g
− ψ̄ψ

)2

+ η̄ψ + ψ̄η

)]
,(78)

and thus as

Z(η̄, η) =

∫
[dη̄dηdσ] exp

[
i

∫
d4x

(
ψ̄γµ(i∂µ − eAµ)ψ

− σψ̄ψ +
σ2

2g
+ η̄ψ + ψ̄η

)]
. (79)

We recognize (79) as having the same structure as the
mean-field Lagrangian LQED−MF given in (40). Thus
the fermion Green’s functions of the LQED−FF theory
of interest to us in this paper are given as the fermion
Green’s functions of a Yukawa-coupled scalar field the-
ory. In consequence, diagramatically the perturbative
expansions associated with (79) and with a theory with
a fundamental scalar field are in one to one correspon-
dence. However, in (79) there is no source term Jσ for
the scalar field (in a true fundamental Higgs Lagrangian
there would be such a source term), and thus (79) only
generates Green’s functions with external fermion legs
and does not generate any Green’s functions with exter-
nal scalar field legs. Thus in the dynamical Higgs case
one can generate the fermion Green’s functions using a
scalar field theory in which the only role of the scalar field
is to contribute internally in Feynman diagrams and to
never appear in any external legs. From the perspec-
tive of (79) it would be the all-order iteration of internal
σ exchange diagrams in Z(η̄, η) that then generates the
dynamical Higgs and Goldstone poles that we have found
in TS(q2) and TP(q2). The only distinction between (79)
and a fundamental Higgs field theory would be in those
weak interaction processes in which the Higgs boson goes
on shell. While beyond the scope of the present paper,
it would be very instructive to determine what such dif-
ferences might then look like.
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V. CONFORMAL SYMMETRY CHALLENGES
SUPERSYMMETRY

A. Cancellation of Infinities

Because of the Fermi statistics of half-integer spin par-
ticles and the Bose statistics of integer spin particles, the
Feynman diagrams of closed fermion loops and closed bo-
son loops have opposite overall signs. Consequently, they
are able to cancel each others’ perturbative infinities to
some degree. This can occur not just in supersymme-
try but also in supergravity, its local extension (a recent
review of cancellations in the supergravity case may be
found in [33]).

To compare and contrast with conformal symmetry, we
note that with critical scaling there is also a cancellation
of infinities. However, it does not occur order by order
in perturbation theory. Rather, it is only achieved non-
perturbatively via an infinite summation of diagrams. In
this paper we have encountered four examples of this,
the finiteness of the gauge boson wave function renor-
malization constant Z3, the form for m0 given in (1), the
structure of TS(q2) and TP(q2) in both the massless and
massive cases, and the form for ε̃(m) as given in (50).

For Z3 the finiteness is achieved immediately just by
being at a critical point where β(α) = 0. For m0 it is
instructive to expand (1) as

m0 = m

[
1 +

γθ(α)

2
ln

(
Λ2

m2

)
+

γ2
θ (α)

8
ln2

(
Λ2

m2

)
+ ....

]
. (80)

In this expansion all the radiative correction terms in-
dividually diverge. However because of critical scaling
the coefficients of these terms are such that their non-
perturbative sum exponentiates, with the sum itself then
being finite if γθ(α) is negative. Thus if one were to
write (80) as some low-order perturbative term plus a
counter-term, the counter-term would then represent the
rest of the series. Thus in the language of perturbation
theory, critical scaling uniquely fixes the needed counter-
term. Since the cancellation is really a cancellation of
infinities in the vertex renormalization constant ZS =

Z
−1/2
θ = (Λ2/µ2)γθ(α)/2 that multiplicatively renormal-

izes the massless theory ΓS(p, p, 0) = (Λ2/p2)−γθ(α)/2 to

give Γ̃S(p, p, 0) = (p2/µ2)γθ(α)/2, it is a purely ultraviolet
effect. Thus it can occur in either a massless theory or
in the short-distance behavior of a massive theory, with
it not being sensitive to any mass generation that might
be taking place in the infrared.

As regards TS and TP we note that in the series
T = g + gΠg + gΠgΠg + ... every term is divergent,
and quadratically so in the Nambu-Jona-Lasinio case as
per (20) and (26). If γθ(α) = −1, then as per (49)
and (63), term by term in the series the divergence is
brought down to logarithmic. The total sum however is
finite. With g−1 having been fixed as the Hartree-Fock

condition 〈ΩM|ψ̄ψ|ΩM〉 = M/g, the cancellation involves
an interplay between short-distance and long-distance ef-
fects, and is expressly sensitive to the mass generation
mechanism. Thus the γθ(α) = −1 condition reduces the
divergences in ΠS(q2,M), ΠP(q2,M), and 〈ΩM |ψ̄ψ|ΩM 〉
to logarithmic, with the infrared Hartree-Fock condition
〈ΩM |ψ̄ψ|ΩM 〉 = M/g then leading to completely finite
scattering amplitudes TS and TP. Thus in the language
of perturbation theory, critical scaling plus symmetry
breaking uniquely fixes the needed counter-terms.

Exactly the same set of cancellations is found to occur
for ε̃(m) as well. As evidenced in (50), the γθ(α) = −1
condition reduces the divergence in ε(m) from quadratic
to logarithmic, with the symmetry breaking then gener-
ating precisely the needed m2/2g counter-term to make
ε̃(m) completely finite. Welcome as this is, nonetheless,
left out from this discussion is the vacuum energy density
quartic divergence to which we alluded before. And so it
is to this issue that we now turn.

B. Supersymmetry Treatment of the Vacuum
Energy Density

There are two separate issues for the vacuum energy
density. First, simply because a matter field energy-
momentum tensor is composed of products of quantum
fields at the same spacetime point, there is a zero-point
problem. This problem already occurs in a massless the-
ory with a normal vacuum. And second, when one gen-
erates mass via symmetry breaking, not only does the
zero-point vacuum energy density change, in addition a
cosmological constant term is produced.

To illustrate the issues that are involved, it is conve-
nient to first look at the vacuum expectation value of the
energy-momentum tensor

TµνM = ih̄ψ̄γµ∂νψ (81)

of a free fermion matter field of mass m = 0 in flat,
four-dimensional spacetime, with the fermion obeying
the massless Dirac equation. With kµ = (ωk, k̄) where
ωk = k, following a Feynman contour integration in
the complex frequency plane the vacuum matrix element
evaluates to

〈Ω0|TµνM |Ω0〉 = − 2h̄

(2π)3

∫ ∞
−∞

d3k
kµkν

ωk
. (82)

With its kµkν structure 〈Ω0|TµνM |Ω0〉 has the generic form
of a perfect fluid with a timelike fluid velocity vector
Uµ = (1, 0, 0, 0), viz.

〈Ω0|TµνM |Ω0〉 = (ρM + pM)UµUν + pηµν , (83)

where

ρM = 〈Ω0|T 00
M |Ω0〉 = − 2h̄

(2π)3

∫ ∞
−∞

d3kωk, (84)
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pM = 〈Ω0|T 11
M |Ω0〉 = 〈Ω0|T 22

M |Ω0〉 = 〈Ω0|T 33
M |Ω0〉

= − 2h̄

3(2π)3

∫ ∞
−∞

d3k
k2

ωk
. (85)

The zero-point energy density ρM and the zero-point
pressure pM are related by the tracelessness condition

ηµν〈Ω0|TµνM |Ω0〉 = 3pM − ρM = 0 (86)

since ηµνk
µkν = 0. (We use diag[ηµν ] = (−1, 1, 1, 1) here

and in the discussion of gravity below.) Since pM is not
equal to −ρM, the zero-point energy-momentum tensor
does not have the form of a cosmological constant term,
to underscore that fact that the zero-point problem is
distinct from the cosmological constant problem.

With both ρM and pM being divergent, in terms of a 3-
momentum cutoff K the divergences can be parametrized
as the quartic divergences

ρM = − h̄K
4

4π2
, pM = − h̄K

4

12π2
. (87)

Cancellation of these mass-independent quartic diver-
gences is readily achieved in supersymmetry since a mass-
less boson loop has the opposite sign to a massless
fermion loop.

However, the situation changes once the fermion ac-
quires mass. For a free massive fermion in flat spacetime
with vacuum |ΩM〉 the form of the energy-momentum
tensor remains unchanged but the Dirac equation be-
comes that of a massive fermion. Then, with kµ =
((k2 +m2/h̄2)1/2, k̄), ρM and pM now evaluate to

ρM = − h̄K
4

4π2
− m2K2

4π2h̄
+

m4

16π2h̄3 ln

(
4h̄2K2

m2

)
− m4

32π2h̄3 ,

pM = − h̄K
4

12π2
+
m2K2

12π2h̄
− m4

16π2h̄3 ln

(
4h̄2K2

m2

)
+

7m4

96π2h̄3 , (88)

and while 3pM − ρM is no longer zero, pM remains un-
equal to −ρM. In (88) we encounter quadratic and loga-
rithmic divergences. Since both of these divergences are
mass dependent, they cannot be canceled by an interplay
between fermions and bosons unless the fermions and
bosons are degenerate in mass. Since no supersymmetric
partners of the ordinary particles have been detected to
date, we know that the masses of the superparticles are
far from being degenerate with those of the ordinary par-
ticles, with supersymmetry thus leaving 〈ΩM|TµνM |ΩM〉
quadratically divergent. In fact the situation is similar
to that met with a fundamental scalar Higgs field self-
energy since it too has a quadratic divergence (the con-
tribution due to a fermion that is Yukawa-coupled to the
Higgs scalar field is equal to the quantity ΠS(q2,M) given
in (29)). And it too can only be canceled via supersym-
metry if there is a superparticle in the same mass region

as the Higgs particle itself, and this appears not to be
the case.

Finally, as regards the cosmological constant, as long
as the supersymmetry is unbroken, the cosmological con-
stant is zero. Specifically, in a supersymmetric theory one
has a generic anticommutator of the form {Qα, Q†α} = H,
where the Qα are Grassmann supercharges and H is the
Hamiltonian. If the supercharges annihilate |Ω0〉 (viz.
unbroken supersymmetry), then 〈Ω0|H|Ω0〉 is zero, the
energy of the vacuum is zero, and the cosmological con-
stant is thus zero too. However if the Grassmann charges
do not annihilate the vacuum |ΩM〉 then 〈ΩM|H|ΩM〉
is non-zero and a non-zero cosmological constant is in-
duced, one whose magnitude would be as big as the su-
persymmetry breaking scale. Since this scale is known to
be no smaller than the largest currently accessible energy
at the LHC, this would give a cosmological constant con-
tribution to standard Einstein-gravity based cosmology
that would be at least 60 or so orders of magnitude larger
than allowable by current Hubble plot data.

C. Conformal Gravity Treatment of the Vacuum
Energy Density

If the quartic divergence given in (87) is not to be can-
celed by a boson loop associated with a superparticle,
then the only apparent remaining option is for it to be
canceled by gravity itself, as the gravitational field gµν
is itself bosonic. And indeed in any quantum gravita-
tional theory one would encounter products of gravita-
tional fields, with quantum gravity thus having a zero-
point problem of its own. Now one cannot make the
needed cancellation using standard Einstein gravity it-
self since it is not renormalizable at the quantum level.
However, one can do so in conformal gravity since it is
a consistent quantum theory, being renormalizable, uni-
tary, and ghost free [34–37].

Conformal gravity assumes invariance under local
conformal transformations of the form gµν(x) →
e2α(x)gµν(x). In the pure gravitational sector of the the-
ory it is thus required to possess the Weyl tensor based
action

IW = −αg
∫
d4x(−g)1/2CλµνκC

λµνκ

≡ −2αg

∫
d4x(−g)1/2

[
RµκR

µκ − 1

3
(Rαα)2

]
,(89)

where αg is a dimensionless gravitational coupling con-
stant. Functional variation of this action with respect to
the metric defines a gravitational tensor

Wµν =
1

2
gµν(Rαα);β

;β +Rµν;β
;β −R

µβ;ν
;β −R

νβ;µ
;β

− 2RµβRνβ +
1

2
gµνRαβR

αβ − 2

3
gµν(Rαα);β

;β

+
2

3
(Rαα);µ;ν +

2

3
RααR

µν − 1

6
gµν(Rαα)2, (90)
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and a fourth-order derivative equation of motion of the
form

− 4αgW
µν + TµνM = 0, (91)

when the theory is coupled to a conformal invariant mat-
ter sector. If we define −4αgW

µν to be the energy-
momentum tensor TµνGRAV of gravity, and introduce a
energy-momentum tensor for the universe as a whole we
can rewrite (91) as

TµνUNIV = TµνGRAV + TµνM = 0, (92)

to thus put the gravity and matter sectors on an equal
footing, while showing that the total energy-momentum
tensor of the universe is zero.

Given the conformal symmetry, no dimensionful pa-
rameters are allowed in the conformal action. Thus both
the Einstein-Hilbert action

IEH = − 1

16πG

∫
d4x(−g)1/2Rαα (93)

and a cosmological constant action

IΛ = −
∫
d4x(−g)1/2Λ (94)

are forbidden. Thus just like supersymmetry, conformal
symmetry forbids the presence of any fundamental cos-
mological constant at the level of the Lagrangian.

If we now quantize the gravity sector of the conformal
theory to lowest order in Planck’s constant around flat
(viz. the first quantum correction), and take the vac-
uum expectation value of TµνGRAV in the massless vacuum
|Ω0〉 we obtain a zero-point energy density in the gravity
sector of the form [37]

〈Ω0|TµνGRAV|Ω0〉 =
2h̄

(2π)3

∫ ∞
−∞

d3k
Z(k)kµkν

ωk
, (95)

where Z(k = |k̄|) is the gravitational field wave function
renormalization constant, as defined [36, 37] as the co-
efficient of the delta function in canonical commutation
relations for the momentum modes of the gravitational
field. Inserting (95) and (87) into (92) then yields

Z(k) = 1. (96)

Thus, we can effect a complete cancellation of the quar-
tically divergent zero-point terms. Moreover, we do not
need to introduce any regulators to separately define ei-
ther 〈Ω0|TµνGRAV|Ω0〉 or 〈Ω0|TµνM |Ω0〉, as each term reg-
ulates the other as needed to maintain the stationarity
condition 〈Ω0|TµνUNIV|Ω0〉 = 0, with the cancellation being
done mode by mode and not mode sum by mode sum. As
long as (92) is maintained order by order in perturbation
theory (which it is since both the gravity and matter sec-
tors are renormalizable when conformal), then the mode
by mode cancellation will persist, with matrix elements of
TµνUNIV never having a zero-point problem. In addition, we

note that we not only do not need to specify Z(k) a priori,
we actually cannot in fact do so. Rather, Z(k) is deter-
mined entirely by the coupling of gravity to matter, with
the quantization of matter enforcing the quantization of
gravity since the condition Z(k) = 0 is not consistent
with (92). To underscore that Z(k) cannot be assigned
independently but is determined by the structure of the
matter source to which gravity is coupled, we note that
if the gravitational source consists of M massless gauge
bosons and N two-component fermions, the vanishing of
〈Ω0|TµνUNIV|Ω0〉 then entails that 2Z(k)+M−N = 0 [36],
with gravity adjusting to whatever its source is.

Moreover, since we do not need to introduce any regu-
lators we do not obtain any anomalies such as the trace
anomaly. Specifically, while scale invariance Ward iden-
tities would be violated by anomalies, to thus give both
〈Ω0|TµνGRAV|Ω0〉 and 〈Ω0|TµνM |Ω0〉 trace anomalies, the
vanishing of 〈Ω0|TµνUNIV|Ω0〉 is not a Ward identity con-
dition but a stationarity condition. Since 〈Ω0|TµνUNIV|Ω0〉
is thus anomaly free, anomalies in 〈Ω0|TµνGRAV|Ω0〉 and
〈Ω0|TµνM |Ω0〉 must cancel each other identically. However
since we can effect a mode by mode cancellation without
needing to look for a regulated sum of modes by regu-
lated sum of modes cancelation, we never have to deal
with the trace anomaly at all, and can treat both TµνGRAV
and TµνM as continuing to retain the tracelessness required
by conformal invariance.

The conformal gravity cancellation of zero-point ener-
gies described above is not quite the same as the super-
symmetry cancellation, since that cancellation did not
address the gravitational zero-point energy problem, to
thus leave the issue open. To clarify the issue, consider
the second-order derivative Einstein gravity equation of
motion

− 1

8πG

(
Rµν − 1

2
gµνRαα

)
= TµνM . (97)

If (97) is to be an operator identity, then the two sides of
it are to both be quantum-mechanical or to both be clas-
sical. However, since the gravity side is not well-defined
quantum-mechanically, one takes it to be classical. But
since the matter side is built out of quantum fields, the
matter side is quantum-mechanical. To get round this
one replaces (97) by a hybrid

− 1

8πG

(
Rµν − 1

2
gµνRαα

)
CL

= 〈Ω|TµνM |Ω〉. (98)

However, since the matter term in (98) has a zero-point
problem, one must find a mechanism to cancel it, and
must do so via the matter side alone. Now while unbro-
ken supersymmetry actually achieves this, as we noted
above, broken supersymmetry does not. However, since
the gravity side of (98) is finite it cannot be equal to
something that is infinite. Thus, in the literature one
commonly ignores the fact that gravity is to couple to all
forms of energy rather than only to energy differences,
and subtracts off the zero-point infinity by hand and re-
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places (98) by

− 1

8πG

(
Rµν − 1

2
gµνRαα

)
CL

= 〈Ω|TµνM |Ω〉FIN. (99)

Thus in treating the contribution of the Fermi sea to
the stability of white dwarfs or in evaluating the con-
tribution of the cosmic microwave background to cos-
mology, one uses an energy operator of the generic form
H =

∑
(a†(k̄)a(k̄) + 1/2)h̄ωk, and then by hand discards

the H =
∑
h̄ωk/2 term. And then, after all this is done,

the finite part of 〈Ω|TµνM |Ω〉 still has an uncanceled and as
yet uncontrolled cosmological constant contribution that
still needs to be dealt with. The present author is not
aware of any formal derivation of (99) starting from a
consistent quantum gravity theory, and notes that since
it is (99) that is conventionally used in astrophysics and
cosmology, it would not appear to yet be on a fully secure
footing.

In the conformal case the situation is somewhat dif-
ferent. In the event of dynamical symmetry breaking,
critical scaling and γθ(α) = −1, one has to take matrix
elements of (92) in the self-consistent, Hartree-Fock vac-
uum |ΩM〉. The quantity 〈ΩM|T 00

M |ΩM〉 consists of the
previously introduced ε̃(M) as given in (50), together
with the quartically divergent ρM as given in (87), as it
had originally been removed in (43). The vanishing of
TµνUNIV then entails that at the minimum where m = M

〈ΩM |T 00
GRAV|ΩM 〉 −

h̄K4

4π2
− M4

16π2h̄3 = 0. (100)

From (100) it follows that Z(k) is given by [37]

kZ(k) = (k2 + iM2/h̄2)1/2 − iM2

4h̄2(k2 + iM2/h̄2)1/2

+(k2 − iM2/h̄2)1/2 +
iM2

4h̄2(k2 − iM2/h̄2)1/2
. (101)

(In [37] (101) was originally derived via a Feynman con-
tour using the Sν(p) propagator given in (73). Continu-
ation to the Sµ(p) propagator given in (44) yields (101).)
As we see, Z(k) is again determined by the dynamics,
and even though the gravitational modes remain mass-
less, Z(k) adjusts to the fact that the fermion has mass.

With (100) and (101), we see that when the symmetry
is broken, 〈ΩM|T 00

M |ΩM〉 adjusts from the purely quartic
(87) to acquire a logarithmic divergence in (50). This
logarithmic divergence is then automatically canceled by
the induced and thus dynamically determined cosmolog-
ical constant term M2/2g (dynamical in the sense that it
depends on the state in which matrix elements are taken),
with gravity then automatically canceling the quartic di-
vergence and the residual finite part, −M4/16π2h̄3, of
〈ΩM|T 00

M |ΩM〉. Moreover, the cancellation works no mat-
ter how big M4 might be, and none of it is observable
since it all occurs in the vacuum, i.e. it is due entirely
to the occupied negative energy states in the Dirac sea.
Specifically, what one measures in actual astrophysical

phenomena is not the vacuum but the behavior of the
positive energy modes that can be excited out of it.

To be more specific, we note that since all of the in-
finities in TµνGRAV and TµνM are in the vacuum sector, if
we decompose them into finite and divergent parts ac-
cording to TµνGRAV = (TµνGRAV)FIN + (TµνGRAV)DIV, TµνM =
(TµνM )FIN + (TµνM )DIV, (92) will decompose into

(TµνGRAV)DIV + (TµνM )DIV = 0, (102)

(TµνGRAV)FIN + (TµνM )FIN = 0. (103)

All of the infinities are taken care of by (102), and for
astrophysics and cosmology we can then use the com-
pletely infinity-free (103). In this way for studying white
dwarfs or the cosmic microwave background we can now
use H =

∑
a†(k̄)a(k̄)h̄ωk alone, as the zero-point con-

tribution has already been taken care of by gravity itself
and does not appear in (103) at all. Moreover, when we
do excite positive energy modes out of the vacuum we will
generate a new cosmological constant contribution, and
it this term that is measured in cosmology. Cosmology
thus only sees the change in the vacuum energy density
due to adding in positive energy modes and does not see
the full negative energy mode vacuum energy density it-
self, i.e. in (103) one is sensitive not to 〈ΩM|TµνM |ΩM〉,
and not to 〈ΩM|bTµνM b†|ΩM〉, but only to their difference
〈ΩM|bTµνM b†|ΩM〉 − 〈ΩM|TµνM |ΩM〉. Also gravity sees this
effect mode by mode, i.e. gravity mode by fermion mode.
In contrast, if one uses (99), then gravity sees an entire
sum over fermion modes, which is one of the reasons why
in the standard Einstein theory the cosmological constant
effect is so big. To summarize, if one wants to take care of
the cosmological constant problem, one has to take care
of the zero-point problem, and when one has a renor-
malizable theory of gravity, via an interplay with gravity
itself one is then able to do so.

D. Conformal Gravity as a Consistent Quantum
Gravitational Theory

As a quantum theory conformal gravity had long been
known to be renormalizable (αg being dimensionless),
but being fourth order it had long been thought to pos-
sess negative norm ghost states that would violate uni-
tarity. This view of conformal gravity is suggested by
writing the massless fourth-order propagator 1/k4 as the
M2 → 0 limit

1

k4
= lim

[
1

M2

(
1

k2
− 1

k2 +M2

)]
. (104)

With the second term in (104) having a negative coef-
ficient one immediately anticipates that the theory has
states with negative norm. However, from inspection of
a c-number propagator alone one cannot determine what
quantum-mechanical Green’s function the propagator is
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to correspond to. For this one has to quantize the the-
ory, construct the appropriate Hilbert space and then
construct the propagator. When Bender and Mannheim
did this they found [34, 35] that the quantum Hamil-
tonian was not Hermitian, but that it instead was PT
symmetric. In such a situation the correct Hilbert space
norm is given by the overlap not of the right-eigenvectors
of the Hamiltonian with their Dirac conjugates, viz. the
Dirac norm 〈R|R〉, but rather by the overlap of the right-
eigenvectors of the Hamiltonian with its left-eigenvectors,
viz. 〈L|R〉, with the left-eigenvectors being related to
the PT conjugates of the right-eigenvectors. And with
〈L|R〉 being found to not be negative in the fourth-order
case, when one uses the PT -theory norm one can as-
sociate (104) with a unitary theory. (Since one can
write 〈L| = 〈R|A with an appropriate operator A, it is
through this A that the minus sign in (104) is generated,
rather than through properties of the states themselves.)
Thus by recognizing conformal gravity to be a PT the-
ory rather than a Hermitian one, its unitarity can then
be secured.

In addition, with the 1/M2 prefactor in (104) actually
blowing up in the M2 → 0 limit, Bender and Mannheim
found that M2 → 0 limit was singular, with the Hamil-
tonian associated with the pure 1/k4 propagator actually
not being diagonalizable, but being of Jordan-block form
instead. Since the Hamiltonian is not diagonalizable, it
manifestly could not be Hermitian. Thus the ghost prob-
lem in fourth-order theories only arose because one tried
to treat the theory as though it was a Hermitian theory
and as though one could use the standard Dirac norm.
Thus the apparent generation of negative Dirac norm
states indicates not that the theory violates conservation
of probability, but that the Hamiltonian is not Hermitian
and the Dirac norm is not the appropriate norm.

With conformal gravity thus being a consistent the-
ory of gravity, one expressly constructed in the four
spacetime dimensions for which there is observational
evidence, one does not need to resort to string theory.
Thus one has no need for supersymmetry (or for extra
dimensions for that matter) that are so key to string the-
ory. Also, since conformal gravity has no need to uti-
lize the interplay between spacetime and the fermionic
supercharges of supersymmetry that is central to string
theory, it has no need to find a way to evade the Coleman-
Mandula theorem that would forbid any such interplay
for bosonic charges.

E. Conformal Gravity and the Cosmological
Constant Problem

If one takes the mean-field Lagrangian and couples it
to geometry, then just as in (23) where the mean field
was coupled to an axial gauge field, one finds [38–40]
that (cf. (125) below) the coupling in this case is that
of a conformally coupled field, viz. ∂µm(x)∂µm(x)/2 −
m2(x)Rαα/12. However, since we are in a conformal the-

ory, we can make a conformal transform that would bring
m(x) in the effective Higgs Lagrangian of (56) to a con-
stant. Thus at m = M = µ, and with h̄ = 1, when
coupled to geometry the effective Higgs Lagrangian of
(56) takes the form

LEFF =
M4

16π2
− M2

512π
Rαα. (105)

In its coupling to M2 the Ricci scalar appears with
the opposite sign to the sign that appears in the Einstein-
Hilbert action (compare (93) and (125) below). This then
leads to repulsive rather than attractive gravity. In the
conformal theory attractive Newtonian gravity arises not
from this term but from the Wµν term [41, 42]. Since the
Weyl tensor Cλµνκ and Wµν both vanish in geometries
such as Robertson-Walker that are conformal to flat, Wµν

plays no role in cosmology, to thus allow cosmological
gravity to be repulsive and local gravity to be attrac-
tive. This fact was capitalized on in [43] to show that
a repulsive cosmological gravity would have no flatness
problem. And in [44] it was shown that the theory would
have no horizon problem, and that in such a cosmology
there would be cosmic repulsion and it would lower the
current era value q0 of the deceleration parameter with
respect to its value in standard attractive gravity. Specif-
ically in [44] it was shown that even without the M4 term
this would reduce q0 from its pure matter inflationary
universe value of q0 = 1/2 to q0 = 0. When the cosmo-
logical term is included the matter energy-momentum
tensor takes the form

TµνM = ih̄ψ̄γµ∂νψ − M2

256π

(
Rµν − gµν

2
Rαα

)
− gµν

M4

16π2
. (106)

In (106) it is understood that, as discussed above, now
only the positive frequency components of the fields are
to appear, and not the full vacuum contribution – i.e.
just the finite part of the energy-momentum tensor as
given in (103). Then, no matter how big M might be, it
was shown [45, 46] that q0 was obliged to lie in the nar-
row range −1 ≤ q0 ≤ 0, with the associated luminosity
distance dL versus redshift z relation being of the form

dL = − c

H0

(1 + z)2

q0

(
1−

[
1 + q0 −

q0

(1 + z)2

]1/2
)
,(107)

where H0 is the current value of the Hubble parameter.
With q0 = −0.37 (107) was found [46] to provide every
bit as good a fit to the accelerating universe data [47–49]
as the standard ΩM = 0.3, ΩΛ = 0.7 paradigm. How-
ever the fit provided by (107) requires no dark matter
or fine tuning at all, with the acceleration coming from
the negative effective Newton constant and the negative
spatial curvature k that conformal cosmology possesses.
(More technically, it is not that dark matter is excluded,
it is just that the contribution of any matter, dark or
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even luminous, to current Hubble plot era cosmic evolu-
tion is highly suppressed in conformal cosmology.) More-
over, conformal cosmology continues to be accelerating at
higher redshift and thus requires none of the fine tuning
that would make the standard cosmology only be acceler-
ating at late redshifts. Thus at higher redshift the Hubble
plots associated with conformal cosmology and standard
cosmology will differ markedly, a potentially testable di-
agnostic. Finally, we note that with there being no need
for dark matter in conformal cosmology, there is no need
for supersymmetry to provide any dark matter candi-
dates (not that supersymmetry is currently known to
naturally lead to ΩM = 0.3, or to ΩΛ = 0.7 for that
matter when it does so).

F. Conformal Gravity and the Dark Matter
Problem

While the Weyl tensor vanishes in geometries that are
homogeneous and isotropic, as soon as one introduces lo-
calized sources the homogeneity is lost and Wµν of (90) is
no longer zero. Despite its somewhat formidable appear-
ance Mannheim and Kazanas [42] were able to determine
its form exactly and to all orders in classical geometries
that are only spherically symmetric about a single point.
In particular they found that B(r) = −g00(r) exactly
obeys the fourth-order poisson equation

∇4B(r) =
3

4αgB(r)
(T 0

0 − T rr) = f(r). (108)

The general solution to this equation is given by

B(r) = −1

6

∫ r

0

dr′f(r′)

(
3r′2r +

r′4

r

)
− 1

6

∫ ∞
r

dr′f(r′)(3r′3 + r′r2) +B0(r), (109)

where B0(r) obeys ∇4B0(r) = 0. Since the integration
in (109) extends all the way to r =∞, the B(r) potential
receives contributions from material both inside and out-
side any system of interest. According to (109), a star
of radius r0 produces an exterior potential of the form
V ∗(r > r0) = −β∗c2/r + γ∗c2r/2 per unit solar mass of
star. We thus recover the Newtonian potential while find-
ing that the potential gets modified at large distances, i.e.
at precisely the distances where one has to resort to dark
matter. Integrating the V ∗(r) potential over a thin disk
with a surface brightness Σ(R) = Σ0 exp(−R/R0) with
scale length R0 (the typical configuration for the stars in
a spiral galaxy) yields the net local potential produced
by the stars in the galaxy itself, and leads to a locally
generated contribution to galactic circular velocities of

the form [50]

v2
LOC =

N∗β∗c2R2

2R3
0

[
I0

(
R

2R0

)
K0

(
R

2R0

)
− I1

(
R

2R0

)
K1

(
R

2R0

)]
+

N∗γ∗c2R2

2R0
I1

(
R

2R0

)
K1

(
R

2R0

)
, (110)

where N∗ is the number of stars in the galaxy.
There are two contributions due to material outside

the galaxy, i.e. due to the rest of the universe. The first
is a linear potential term with coefficient γ0/2 = (−k)1/2

coming from cosmology (associated with the B0(r) term,
and due to writing a comoving Robertson-Walker geom-
etry with negative curvature in the rest frame coordinate
system of the galaxy). The second arises from the in-
tegral from r to ∞ term in (109) due to cosmological
inhomogeneities such as clusters of galaxies, and is of a
quadratic potential form with coefficient κ. When all
these contributions are combined, the total circular ve-
locities are given by

v2
TOT = v2

LOC +
γ0c

2R

2
− κc2R2. (111)

Mannheim and O’Brien [51–54] have applied this formula
to the rotation curves of a set of 141 different galaxies and
found very good fitting with parameters

γ∗ = 5.42× 10−41cm−1, γ0 = 3.06× 10−30cm−1,

κ = 9.54× 10−54cm−2, (112)

with no dark matter being needed. Thus even though
there is only one free parameter per galaxy, viz. N∗, a
parameter that is common to all galactic rotation curve
fits, and even though there is basically no flexibility, (111)
fully captures the essence of the data.

We should note that it was not the dark matter prob-
lem the first got the present author interested in confor-
mal gravity. Rather, it was because conformal gravity
possessed a symmetry that forbade the presence of any
the cosmological constant term at the level of the start-
ing Lagrangian [55]. Moreover, Mannheim and Kazanas
set out with the quite limited objective of trying to see
whether a theory that was not based on the Einstein-
Hilbert action could still lead to a Newtonian potential.
It was only on solving the conformal gravity theory in
a static, spherically symmetric geometry that they dis-
covered that the theory not only did indeed support a
Newtonian potential, it was accompanied by a linear po-
tential term that they had not anticipated. That this
linear potential could then be used to eliminate the need
for galactic dark matter is therefore quite non-trivial.

We should also note that in contrast to the conformal
gravity fits, dark matter fits to this same set of galaxies
requires 282 additional free parameters, viz. two free pa-
rameters for each galactic dark matter halo. Now dark
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matter theory does provide generic forms for the shapes
of the halos [56, 57], but each halo has two free numer-
ical parameters, parameters which for the moment have
to be phenomenologically determined by the fitting itself.
Thus, with there being no need for dark matter in con-
formal gravity fits to galactic rotation curves, we again
note that there is no need for supersymmetry to provide
any dark matter candidates (not that supersymmetry is
anyway currently known to naturally lead to values for
any of the 282 free halo parameters). Finally, since both
(107) and (111) do capture the essence of the data, then,
if supersymmetry, dark matter theory, and even string
theory, are to be correct, they should be able to derive
these formulas for themselves.

We would also like to note that even if a supersym-
metric particle is discovered at the LHC, this would not
necessarily solve the dark matter problem. Specifically,
the so far unsuccessful underground dark matter searches
have identified a fairly large exclusion zone in supersym-
metric cross section versus supersymmetric mass plots.
For any supersymmetric particles discovered at the LHC
to be dark matter they would have to not fall in this ex-
clusion zone, and would, of course, then have to be found
in the allowed region.

As regards conformal gravity, if it is to supplant dark
matter then it will have to successfully describe astro-
physical phenomena such as gravitational lensing and
the anisotropy structure of the cosmic microwave back-
ground. The study of conformal cosmological fluctuation
theory given in [58] provides a first step in this direction.

G. Conformal Invariance and the Metrication and
Unification of the Fundamental Forces

With string theory with its supersymmetric underpin-
nings being capable of addressing both a metrication of
all the fundamental forces and a unification of them, it is
of interest to see how conformal symmetry fares on these
issues where there is no supersymmetry to appeal to and
no way to evade the constraints of the Coleman-Mandula
theorem. We discuss first metrication, and we shall fol-
low the recent discussion given in [59] where the effects of
some generalized geometric connections were considered.

In the presence of some generalized geometric connec-
tion Γ̃λµν = Λλµν + δΓλµν where Λλµν is the standard
Levi-Civita connection

Λλµν =
1

2
gλα(∂µgνα + ∂νgµα − ∂αgνµ), (113)

one introduces a generalized spin connection of the form

− ω̃abµ = −ωabµ + V bλ δΓ
λ
νµV

aν , (114)

where the V aν are vierbeins and ωabµ is given by

− ωabµ = V bν ∂µV
aν + V bλΛλµνV

aν = ωbaµ . (115)

In terms of this generalized connection the Dirac action
for a massless fermion takes the form

ID =
1

2

∫
d4x(−g)1/2iψ̄γaV µa (∂µ + Σbcω̃

bc
µ )ψ + H. c.,

(116)

where Σab = (1/8)(γaγb − γbγa) and the γa refer to a
fixed frame.

Consider now a δΓλµν of the form

δΓλµν = −2i

3
gλα (gναAµ + gµαAν − gνµAα)

+
1

2
gλα(Qµνα +Qνµα −Qανµ). (117)

Here Qλµν = Γλµν − Γλνµ = −Qλνµ is the antisymmet-
ric Cartan torsion tensor. With Aµ being a vector field,
the Aµ-dependent connection term is essentially the con-
nection first introduced by Weyl, differing from it only
through the presence of the additional factor of i, a factor
that enforces PT symmetry and is crucial for metrication
[59]. Following some algebra the insertion of the full ω̃abµ
into the Dirac action is found to lead to the action [59]

ID =

∫
d4x(−g)1/2iψ̄γaV µa (∂µ + Σbcω

bc
µ

−iAµ − iγ5Sµ)ψ, (118)

where

Sµ =
1

8
(−g)−1/2εµαβγQαβγ . (119)

We recognize ID as describing none other than a fermion
coupled to a standard Levi-Civita based spin connection
and to chiral electromagnetism. Thus through the use of
the generalized spin connection we are able to provide a
purely geometric origin for both vector and axial-vector
gauge fields.

Apart from possessing full local vector gauge symmetry
[ψ(x) → eiα(x)ψ(x), Aµ(x) → Aµ(x) + ∂µα(x)] and full

local axial-vector gauge symmetry [ψ(x)→ eiγ5α(x)ψ(x),
Sµ(x) → Sµ(x) + ∂µα(x)], the action in (118) has an-
other local invariance, namely local conformal invariance,
with it being left invariant under gµν(x)→ e2α(x)gµν(x),

V aµ (x) → eα(x)V aµ (x), ψ(x) → e−3α(x)/2ψ(x), Aµ(x) →
Aµ(x), Sµ(x)→ Sµ(x). (Each of these local transforma-
tions has its own α(x) of course.)

In addition, as noted in [59], the action also possess two
discrete symmetries, namely PT and CPT symmetry,
with the factor of i in (117) being needed to secure these
invariances for the Aµ-dependent sector. (As noted in
[59], if we were not to include the factor of i in (117), the
Aµ-dependent piece of the connection would not couple
in the generalized Dirac action at all.)

The extension to the non-Abelian case is direct. If for
instance we put the fermions into the fundamental repre-
sentation of SU(N)×SU(N) with SU(N) generators T i
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that obey [T i, T j ] = if ijkT k, replace Aµ by gV T
iAiµ, re-

place Qαβγ by gAT
iQiαβγ , and thus replace Sµ by gAT

iSiµ
in the connections, we obtain a locally SU(N)× SU(N)
invariant Dirac action of the form

ID =

∫
d4x(−g)1/2iψ̄γaV µa (∂µ + Σbcω

bc
µ

−igV T iAiµ − igAγ5T iSiµ)ψ. (120)

This action is precisely a local chiral Yang-Mills ac-
tion, and remains locally conformally invariant under
gµν(x) → e2α(x)gµν(x), V aµ (x) → eα(x)V aµ (x), ψ(x) →
e−3α(x)/2ψ(x), Aiµ(x) → Aiµ(x), Siµ(x) → Siµ(x), while
still being PT and CPT invariant as well. Since the ac-
tion given in (120) is the standard action that is used to
describe the coupling of fermions to Yang-Mills fields and
to standard Riemannian geometry, it is the action that
is used in particle physics all the time. It thus has a dual
characterization – it can be generated via local gauge
invariance or via a generalized geometric connection.

To obtain the form of the kinetic energy operator for
the gauge fields and the metric we perform a path integra-
tion over the fermion fields (equivalent to a one fermion
loop Feynman diagram) using the above Dirac action, to
obtain an effective action whose leading term is

IEFF =

∫
d4x(−g)1/2C

[
1

20

[
RµνR

µν − 1

3
(Rαα)2

]
+

1

3
GiµνG

µν
i +

1

3
SiµνS

µν
i

]
, (121)

where C is a log divergent constant. (The vector piece
of IEFF may be found in [38] and the axial-vector piece
may be found in [60] and in (23) above.) In (121) we
recognize the conformal gravity action with theRµνR

µν−
(1/3)(Rαα)2 term being evaluated with the Levi-Civita
connection alone, and with the rest of the generalized
connection emerging as the gauge field sector of a chiral
Yang-Mills action. Thus even though we start with a
non-Riemannian connection we finish up with a strictly
Riemannian geometry, with all of the non-Riemannian
structure being buried in the gauge fields. As noted in
[59], the reason for this is that a generalized Riemann
or Weyl tensor built out of the generalized connection
would not be locally conformal invariant, since neither
Aµ(x) nor Sµ(x) transform at all under a local conformal
transformation. Hence the only allowed action in the
pure geometric sector is that based on the Weyl tensor
as constructed from the standard Levi-Civita connection
alone, with the fermion path integration with a conformal
invariant Dirac action having no choice but to produce it
in (121).

Moreover, now that we have established the generic
form needed for the gauge and metric sectors of the the-
ory, and have seen that in this sector there are no cross-
terms between any of the various connections in Γ̃λµν ,
we now augment the Dirac action with a fundamental
Yang-Mills gauge field (IYM) action and a conformal (IW)

metric sector action of the form

IW + IYM =

∫
d4x(−g)1/2

[
− 2αg

(
RµνR

µν

−1

3
(Rαα)2

)
− 1

4
GiµνG

µν
i −

1

4
SiµνS

µν
i

]
. (122)

This action not only respects full conformal and gauge
symmetry, like ID it has a dual characterization – it can
be generated via local gauge invariance or via a gen-
eralized geometric connection. Finally, on adding an
SU(N)× SU(N) invariant four-fermion action

IFF = −
∫
d4x(−g)1/2 gFF

2

[
ψ̄T iψψ̄T iψ

+ ψ̄iγ5T
iψψ̄iγ5T

iψ

]
, (123)

with coupling gFF, we can write down the fundamental
action for a conformal invariant universe, viz.

IUNIV = ID + IW + IYM + IFF. (124)

If the dynamics associated with (124) leads to critical
scaling and an IFF with dynamical dimension equal to
four, the IUNIV action will then provide a fully renormal-
izable and consistent action for the universe in which all
mass is generated in the vacuum by dynamical symmetry
breaking.

In addition, we noted that since (120) is the standard
action used in physics, the effective action given in (121)
must always appear in particle physics at the one fermion
loop level. Now, as noted in [38], radiative loops due to
other standard fields such as scalars and gauge bosons
yield a log divergence of the same sign, and thus the
fermionically-generated IEFF could not be canceled by
other fundamental fields. The infinity in (121) is thus an
infinity that supersymmetry could not cancel.

However, this infinity could be canceled via confor-
mal invariance, and this can be done in two ways.
Specifically, since IW + IYM is fully renormalizable, one
could cancel the C term directly by a renormaliza-
tion counter-term. However, the C term could also be
cancelled non-perturbatively if there is critical scaling.
Specifically, we recall that, unlike the scalar ΠS(x) =
〈Ω|T (ψ̄(x)ψ(x)ψ̄(0)ψ(0))|Ω〉, in quantum electrodynam-
ics higher order radiative corrections to the vacuum po-
larization Πµν(x) = 〈Ω|T (ψ̄(x)γµψ(x)ψ̄(0)γνψ(0))|Ω〉 do
not generate higher powers of ln(Λ2), but are all equally
linear in ln(Λ2). Hence if the respective coefficients of
all these ln(Λ2) terms sum to zero, this divergence will
be canceled completely. The condition that the coeffi-
cients do sum to zero requires the coupling constant to
be a solution to the Gell-Mann-Low eigenvalue condition,
viz. the critical scaling condition. And indeed this is pre-
cisely how Johnson, Baker, and Willey were able to make
Z3 finite. Thus in the language of perturbation theory,
critical scaling uniquely fixes the needed counter-term.



25

Now while the same analysis would equally apply if
there is critical scaling in the axial-vector sector, we have
not made a similar analysis for conformal gravity. How-
ever, we note that the generation of (121) from (120)
involves matrix elements of fermion loops not with scalar
insertions of fermion bilinears but with vector, axial-
vector and tensor insertions instead. Now all of these par-
ticular insertions are associated with conservation condi-
tions, and it is thus plausible that the cancellation would
hold for conformal gravity too. Then, should it indeed
hold, the dynamics associated with IUNIV would not only
be renormalizable, non-perturbatively it would even be
completely finite.

Moreover, if one goes further and even breaks the con-
formal invariance by adding a spacetime-dependent mass
term −

∫
d4x(−g)1/2ψ̄(x)M(x)ψ(x) to the Dirac action,

the above IEFF remains intact while being augmented by
the ”mean-field” action [38–40], [37]

IMF =

∫
d4x(−g)1/2C

[
−M4(x) +

1

6
M2(x)Rαα

− (∂µ + iAµ)M(x)(∂µ − iAµ)M(x)

]
. (125)

Here C is the same log divergent constant as before, with
two last terms in (125) needing to appear jointly in order
to maintain local conformal invariance. Again, it does
not appear possible for supersymmetry to cancel this in-
finity as the superpartners are not degenerate with the
regular particles. However, as noted above, with critical
scaling and γθ = −1, the infinity in IMF will be canceled.

Now while it is nice to obtain an action such as (122),
as given it could not describe the real world since there
are no massless axial photons. The chiral symmetry thus
must be broken spontaneously, and as we have shown
in this paper, that is precisely what critical scaling does
when γθ(α) = −1. Thus starting from a generalized tor-
sion connection we are led not only to axial-vector gauge
bosons, we are forced to break the associated symmetries
dynamically. Similarly, since there is only one photon,
any other vector symmetries must be spontaneously bro-
ken also, with (122) then being augmented by the mean-
field terms that accompany dynamical mass generation.

The extension of our ideas to grand-unified theories of
the strong, electromagnetic and weak interactions is di-
rect since one could endow a generalized connection with
all of the needed internal quantum numbers, while not
generating any quantum number dependence in the pure
metric sector as it is automatically based on the Levi-
Civita connection alone. There is however a caveat. The
conformal group that underlies conformal invariance is
SO(4, 2) and its covering group is SU(2, 2). The fun-
damental representation of SU(2, 2) is a 4-dimensional
spinor representation. Thus, in a conformal invariant
world all fermions must be four-component, with there
thus having to be right-handed neutrinos and not just
left-handed ones. Families of quarks and leptons must
thus contain 16 fundamental two-component spinors and

not just 15. Hence the smallest grand unified group al-
lowed would be the anomaly-free SO(10), with its fun-
damental spinor representation being 16-dimensional.

If one is to have a chance to achieve coupling constant
unification without supersymmetry, one needs some rea-
sonably low lying mass scale beyond those of the standard
SU(3) × SU(2)L × U(1). Depending on how it is bro-
ken the grand-unified group could provide such a scale,
though we should note that the B0

s → µ+ + µ− data
of [8] leave little room for any physics beyond the stan-
dard model of any description at current energies. How-
ever, we should also note that this whole issue would be
moot if the renormalized coupling constant of the grand-
unified group is itself at a renormalization group fixed
point away from the origin. However, the coupling con-
stants would be able to depend on the running scale if the
theory has a non-trivial fixed point for some value of the
coupling constant other than the physical one, with the
theory tracking to the origin at high energies because of
its asymptotic freedom, while tracking to the non-trivial
fixed point and spontaneously breaking the symmetry
in the infrared. (An alternate possibility was noted in
[16] – when γθ(α) = −1, the fluctuations produced by
the renormalizable four-fermion residual interaction are
themselves asymptotically free.)

Without super charges one is constrained by the
Coleman-Mandula theorem, and so one could not unify
the strong, electromagnetic and weak interactions with
gravity by embedding spacetime and internal symmetries
in a common Lie algebra. However, with conformal in-
variance there is an alternate way to extend unification
to include gravity as well. Specifically, with fermions be-
ing in the fundamental representation of the conformal
group, consider some general complex transformation on
a fermion of the form ψ → exp(αR + iαI)ψ, with only
αI carrying internal quantum numbers. Then gauging
αI gives Yang-Mills while gauging αR gives conformal
gravity. Thus starting from the kinetic energy of a free
massless fermion in flat spacetime, on imposing all these
local gaugings we obtain none other than the Dirac action
given in (120). Hence while Yang-Mills theories are ob-
tained by gauging the imaginary part of the phase of the
fermion field, gravity is obtained by gauging its real part.
In this way spacetime and gravity can be unified, with it
being (124) that should be considered as the fundamental
action for physics, an action that can be obtained either
by local gauging or by geometry, an action that could
serve as a candidate theory of everything.

H. Final Comments

In this paper we have presented arguments to show
that conformal invariance can do as well as supersymme-
try in addressing some key concerns in particle physics.
We thus advocate that conformal symmetry be regarded
as a symmetry that is every bit as fundamental to physics
as Lorentz invariance and Poincare invariance. Specifi-
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cally, conformal symmetry is the full symmetry of the
light cone, and in the absence of mass all particles must
move on the light cone, with conformal symmetry thus
being an exact symmetry at the level of the Lagrangian
if all mass generation is to come solely from the vacuum.
In [37] we have made the case for local conformal grav-
ity, while in [61] ’t Hooft has made the case for local
conformal symmetry.

Moreover, we noted above that the action given in
(120) is locally conformal invariant, and that a fermion
path integration automatically generates the conformal
gravity action. However, the action given in (120) is the
standard fermion action that is used in particle physics.
Thus both conformal invariance and conformal gravity
cannot be avoided, and must play some role in physics.

In this paper we have shown that conformal gravity can
address the quantum gravity, the cosmological constant,
and the dark matter problems. That one theory can ad-
dress three problems might seem surprising. However,
all of these problems have a common origin, namely the
extrapolation of the standard Einstein equations beyond
their solar system origins. Specifically, if we extrapolate
the Einstein equations to galactic distances and beyond
we get the dark matter problem, if we extrapolate to cos-
mology we get the cosmological constant problem, and if
we quantize the theory and extrapolate to short distances
far off the mass shell we get renormalization and zero-
point problems. Since all three problems have a common
origin, they can have a common solution, with conformal
gravity potentially being that solution since it provides
a very different extrapolation.

When the present author in the 1970s found that one
could make the four-fermion interaction renormalizable
via dynamical dimensions, it appeared to have the po-
tential to provide a solution to the four-fermion theory
of weak interactions that would be an alternative to the
spontaneously broken gauge theory solution. However,
now we see that when Yang-Mills theories are coupled
to gravity, we need both, namely we need Yang-Mills for
scattering amplitudes and we need a renormalizable four-
fermion interaction for the vacuum energy density. Then,
when we interplay the two, with critical scaling we find
that we can generate dynamical Goldstone and dynami-
cal Higgs bosons, just as needed for a spontaneously bro-
ken gauge theory of weak interactions, with there being
no need for any fundamental Higgs fields at all. Acknowl-
edgment: The author wishes to thank Michael Mannheim
for his help in the preparation of the figures.

Appendix A: The Collective Higgs Mode when the
Fermion is Massive – the Calculation

1. The Basic Equations

In this appendix we evaluate Icut and IWick as given
in (70) and (71). For Icut first it is convenient to remove
the q0 dependence from the range of integration, and so

we set p0 = q0λ/2, p = q0σ/2. Following some straight-
forward algebra, and recalling the extra minus sign in
N(q0, p, p0) as discussed above, we then obtain

Icut = −4iµ2

π3

∫ 1

0

dσσ2

∫ 1−σ

0

dλ
Ncut

Dcut
,

Ncut = −(λ2 − σ2 − 1)[(λ2 − σ2 + 1)2 − 4σ2]1/2q8
0 ,

Dcut = 256m4µ4 + 32m2µ2[(λ2 − σ2 + 1)2 + 4σ2]q4
0

+ [(λ2 − σ2 + 1)2 − 4σ2]2q8
0 . (A1)

With Icut thus behaving as q8
0 at small q0, Icut makes

no contribution to the derivative at q2 = 0 of either
ΠS(q2,m) (as would be needed for (56)) or ΠP(q2,m)
(as would be needed for (66)). With the λ2 − σ2 − 1 fac-
tor in Ncut always being negative in the Icut integration
range, Icut is then expressly proportional to a negative
number times i. The evaluation of Icut at arbitrary q0

can be done numerically, and because of its q0 behavior
Icut is quite small, taking the value −0.000291µ2i at the
threshold where q2

0 = 2mµ. Numerically Icut is found
to be a monotonic function of q0, and because Icut is so
so small, we can immediately anticipate that the even-
tual Higgs boson resonance that we will find above the
threshold will have a very narrow width.

With IWick being evaluated on the p4 axis, for it we
set

N(q, p) = −(p2
4 + p2 + q2

0/4)

× [(p2 + p2
4 − q2

0/4)2 + p2
4q

2
0 ]1/2,

D(q, p) = [(p2 + p2
4 − q2

0/4)2 + p2
4q

2
0 −m2µ2]2

+ 4m2µ2(p2 + p2
4 − q2

0/4)2. (A2)

On setting p4 = r cos θ, p = r sin θ, and on then setting
cos θ = z, for IWick we obtain

IWick =
2µ2

π3

∫ ∞
0

drr3

∫ 1

0

dz(1− z2)1/2

×
[
N(q, r, z) +m2µ2

D(q, r, z)

]
,

N(q, r, z) = −(r2 + q2
0/4)[(r2 − q2

0/4)2 + r2z2q2
0 ]1/2,

D(q, r, z) = [(r2 − q2
0/4)2 + r2z2q2

0 −m2µ2]2

+ 4m2µ2(r2 − q2
0/4)2. (A3)

Inspection of D(q, r, z) now shows that D(q, r, z) will van-
ish if r = q0/2, z = mµ/rq0, i.e. if z = 2mµ/q2

0 . Since
z is less than one there will always be some r and some
z for which D(q, r, z) will vanish if q2

0 ≥ 2mµ. We thus
identify q2

0 = q2 = 2mµ as a threshold, and anticipate
a discontinuity in IWick if q2 ≥ 2mµ. Below we will
calculate the discontinuity and show that IWick with its
seemingly real integrand actually develops an imaginary
part when q2 ≥ 2mµ, and it is this imaginary part that
will then cancel the pure imaginary Icut.

Given (A3) we can calculate its q2 derivative at
q2 = 0 algebraically. The N(q, r, z)/D(q, r, z) term
yields −5µ/128πm while the m2µ2/D(q, r, z) term yields
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+2µ/128πm. This then yields the values −3µ/128πm for
Π′S(q2 = 0) and −7µ/128πm for Π′P(q2 = 0) that were
used in (56) and (66) above.

To simplify the writing it is convenient to introduce

α =
(r2 − q2

0/4)2 −m2µ2

r2q2
,

β =
(r2 − q2

0/4)2 +m2µ2

r2q2
, (A4)

so that we can set

N(q, r, z) = −(r2 + q2
0/4)rq0(z2 + α/2 + β/2)1/2,

D(q, r, z) = r4q4
0(z4 + 2αz2 + β2). (A5)

The substitution z = y/(1 + y2)1/2 enables us to eval-
uate the needed z integrations, according to

I2 =

∫ 1

0

dz
(1− z2)1/2

z4 + 2αz2 + β2

=

∫ ∞
0

dy
1

y4(1 + 2α+ β2) + 2y2(α+ β2) + β2

=
π

4β(α2 − β2)1/2
[(α+ β2 + (α2 − β2)1/2)1/2

−(α+ β2 − (α2 − β2)1/2)1/2], (A6)

and

I1 =

∫ 1

0

dz
(1− z2)1/2(z2 + α/2 + β/2)1/2

z4 + 2αz2 + β2

=

∫ ∞
0

dy
1

21/2(1 + y2)1/2

× (2y2 + (α+ β)(1 + y2))1/2

y4(1 + 2α+ β2) + 2y2(α+ β2) + β2

= − i

81/2β2(α+ β)(α− β)1/2

×[(α+ β)(α2 − β2)1/2(F− + F+)

+(α2 + αβ − 2β2)(F− − F+)], (A7)

where

F± =

∫ φ

0

dθ
1

(1− j± sin2 θ)(1− k sin2 θ)1/2
, (A8)

with

j± =
1 + 2α+ β2

α+ β2 ± (α2 − β2)1/2
,

φ = i arcsinh(∞), k =
2 + α+ β

α+ β
. (A9)

The substitution sin θ = i tan ν allows us to rewrite (A8)
as

F± = i

∫ π/2

0

dν

cos ν

1

(1 + j± tan2 ν)(1 + k tan2 ν)1/2

= − i

j± − 1
K(1− k) +

ij±
j± − 1

E(1− n±, 1− k),

(A10)

where K(1 − k) and E(1 − n±, 1 − k) are the complete
elliptic integrals

K(1− k) =

∫ π/2

0

dν
1

(1− (1− k) sin2 ν)1/2

E(1− n±, 1− k) =

∫ π/2

0

dν

× 1

(1− (1− n±) sin2 ν)(1− (1− k) sin2 ν)1/2
.(A11)

Finally, in terms of all these expressions we can write
ΠS(q2,m) as

ΠS(q2,m) =
2µ2

π3

∫ ∞
0

drr3

[
− (r2 + q2

0/4)I1
r3q3

0

+
m2µ2I2
r4q4

0

]
.

(A12)

Then with the physical mass being given by M , to find
any Higgs boson we need to look for zeros of the finite

Π̂S(q2,M) = ΠS(q2,M)− g−1. (A13)

where g−1 is given in (49).
While it does not appear to be possible to do the in-

tegration in (A12) analytically, the utility of (A12) is
that we can extract an analytic expression for the dis-
continuity from it. However, before doing so we first
evaluate Π̂S(q2,M) below the q2 = 2Mµ threshold. At

q2 = 0 we can evaluate Π̂S(q2 = 0,M) analytically to
obtain the value µ2/4π2 = 0.025330µ2. As we increase

q2, via numerical integration we find that Re[Π̂S(q2,M)]
decreases monotonically, reaching a value of 0.003373µ2

at q2 = 2Mµ. We can thus anticipate that it will vanish
a little beyond the threshold.

2. The Discontinuity

As we had noted earlier, above the threshold the inte-
gral in (A12) becomes undefined at r = q0/2. To avoid
this we must either move q0 off the real axis or keep
q0 real and deform the r-integration contour. To imple-
ment the former we look for Π̂S(q2,M) to vanish at some
q0 = qR − iΓ, with a necessarily positive Γ of dimension
(Mµ)1/2 if the Higgs boson is indeed to be a resonance.
With the quantity r2−q2

0/4 that appears in α and β then
becoming r2− (qR− iΓ)2/4 near the resonance, to imple-
ment the more convenient latter procedure, for q0 > qR

only we split the (A12) integral into two parts, a real part,
IR, that consists of an integration involving two intervals
r ∈ (0, qR/2− Γ) and r ∈ (qR/2 + Γ,∞), and a complex
part ICOM along a semicircle in the upper half r plane
of radius Γ in which r = qR/2 + Γeiθ where θ ∈ (π, 0).
Then we can solve for the real and imaginary parts of
Π̂S(q2,M) = 0 to fix both the position and the width of
the resonance at some q0 = qR−iΓ, q2 = q2

R−Γ2−2iqRΓ.
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Now before we solve for the location of the Higgs boson
we do not know whether it will in fact turn out to be a
narrow resonance. Thus we shall take Γ to be small,
and then self-consistently discover that the solution is
one in which it is in fact small. With small Γ we can
evaluate (A12) on the semicircle in the upper half r plane
by making a Taylor series expansion. With the measure
for the integration on the semicircle being given by dr =
iΓeiθdθ, to lowest order in Γ we only need to evaluate
the integrand in (A12) to zeroth order in Γ. On inserting
r = qR/2 + Γeiθ in (A7) this yields

I1 →
∫ ∞

0

dy
q8
Ry

(1 + y2)1/2(y2(q4
R − 4M2µ2)− 4M2µ2)2

=

(
q4
R(1 + y2)1/2

2(4M2µ2 + (4M2µ2 − q4
R)y2)

+
q2
R

4(q4
R − 4M2µ2)1/2

×ln

(
q2
R + (q4

R − 4M2µ2)1/2(1 + y2)1/2

q2
R − (q4

R − 4M2µ2)1/2(1 + y2)1/2

))∣∣∣∣∞
0

=
iπq2

R

4(q4
R − 4M2µ2)1/2

− q4
R

8M2µ2
− q2

R

4(q4
R − 4M2µ2)1/2

×ln

(
q2
R + (q4

R − 4M2µ2)1/2

q2
R − (q4

R − 4M2µ2)1/2

)
. (A14)

Similarly, for (A6) we obtain

I2 →
∫ ∞

0

dy
q8
R

(y2(q4
R − 4M2µ2)− 4M2µ2)2

=

(
q8
Ry

8M2µ2(4M2µ2 + (4M2µ2 − q4
R)y2)

+
q8
R

32M3µ3(q4
R − 4M2µ2)1/2

×ln

(
2Mµ+ (q4

R − 4M2µ2)1/2y

2Mµ− (q4
R − 4M2µ2)1/2y

))∣∣∣∣∞
0

=
iπq8

R

32M3µ3(q4
R − 4M2µ2)1/2

. (A15)

Finally, on inserting (A14) and (A15) into (A12) and
doing the now trivial θ integration from θ = π to θ = 0,
the real part of ICOM is found to evaluate to

Re[ICOM] =
q3
RΓ

4π3M2
+

µ2qRΓ

2π3(q4
R − 4M2µ2)1/2

× ln

(
q2
R + (q4

R − 4M2µ2)1/2

q2
R − (q4

R − 4M2µ2)1/2

)
, (A16)

while the imaginary part evaluates to

Im[ICOM] =
iµΓqR(q2

R − 2Mµ)1/2

4π2M(q2
R + 2Mµ)1/2

. (A17)

As we see, there is an explicit branch point at q2
R =

2Mµ in ΠS(q2,M) just as we had anticipated. (There

is no branch point at q2 = −2Mµ since (A12), (A16),
and (A17) only hold for timelike qµ.) The discontinuity
structure exhibited in (A16) is reminiscent of that ob-
tained for ΠS(q2,M) in the Nambu-Jona-Lasinio model
as given in (29), where there is also a threshold branch
point. Also we note that even though the imaginary parts
given in (A14) and (A15) are actually singular at the
branch point, their coefficients are such that when they
combine in (A17) the singularity is canceled. Since sin-
gularities of this sort are not allowed, their cancellation
in (A17) provides a nice internal check on our calcula-
tion. With this cancellation, rather than diverge at the
threshold Im[ICOM] actually vanishes there. With ICUT

not vanishing there the Higgs boson must thus lie above
threshold. With ICUT and Im[ICOM] having opposite
signs, a cancellation between them can thus be effected
above threshold, with the resulting sign of Γ then in-
deed being the positive one required by unitarity. With
qR being fixed by a cancellation between Re[IWICK] and
Re[ICOM], the imaginary part cancellation then fixes the
magnitude of Γ.

3. Numerical Results

For the actual numerical work we must evaluate not
ΠS(q2,M) itself but Π̂S(q2,M) = ΠS(q2,M) − g−1, as
only the latter quantity is finite. We shall use a hat nota-
tion to indicate that we now refer quantities to Π̂S(q2,M)
rather than to ΠS(q2,M). Since we have broken the eval-

uation of Π̂S(q2,M) into a low section, ÎWICK(LOW),

where r < qR/2−Γ, a high section, ÎWICK(HIGH), where
r > qR/2 + Γ, and a semicircle section ICOM, then since
the integration in (48) involves the full r ∈ (0,∞) range,

we need to include the contribution, ÎGGAP, to g−1 of the
gap region r ∈ (qR/2 − Γ, qR/2 + Γ). This contribution
is readily found to evaluate to

ÎGGAP =
2µ2q3

RΓ

π2(q4
R + 16M2µ2)

. (A18)

With this addition the full Π̂S(q2,M) is given by

Π̂S(q2,M) = ÎWICK(LOW) + ÎWICK(HIGH)

+ÎGGAP + Re[ICOM] + Im[ICOM] + ICUT. (A19)

With everything now being well-defined, we can proceed
to solve the condition Π̂S(q2,M) = 0, and numerically

find that Π̂S(q2,M) vanishes at

qR = 1.480(Mµ)1/2, Γ = 0.017i(Mµ)1/2

q2 = (2.189− 0.051i)Mµ. (A20)

In this solution the six terms in (A19) respectively
evaluate to 0.004710, −0.008832, 0.001610, 0.002517,
0.000406i, −0.000400i (in units of µ2), as given to six

decimal places, with Π̂S(q2,M) thus vanishing to five.
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We thus self-consistently confirm that qR is indeed
close to threshold where qR = 1.414(Mµ)1/2, and that
Γ is indeed small and that its sign had correctly been
chosen. Near the resonance pole Π̂S(q2,M) behaves as

Π̂S(q2,M) = (q2 − (qR − iΓ)2)(−0.021662 + 0.000484i),

(A21)

with TS(q2) = 1/(g−1 − ΠS(q2)) thus having the Breit-
Wigner structure

TS(q2) =
46.141 + 1.030i

q2 − 2.2189Mµ+ 0.051iMµ
. (A22)
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