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Abstract

Several lines of evidence hint that quantum gravity at very small distances may be ef-
fectively two-dimensional. I summarize the evidence for such “spontaneous dimensional
reduction,” and suggest an additional argument coming from the strong-coupling limit
of the Wheeler-DeWitt equation. If this description proves to be correct, it suggests
a fascinating relationship between small-scale quantum spacetime and the behavior of
cosmologies near an asymptotically silent singularity.
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Stephen Hawking and George Ellis prefaced their seminal book, The Large Scale Struc-
ture of Space-Time, with the explanation that their aim was to understand spacetime “on
length-scales from 1073 c¢m, the radius of an elementary particle, up to 10%® cm, the radius
of the universe” [I]. While many deep questions remain, ranging from cosmic censorship
to the actual topology of our universe, we now understand the basic structure of spacetime
at these scales: to the best of our ability to measure such a thing, it behaves as a smooth
(3+1)-dimensional Riemannian manifold.

At much smaller scales, on the other hand, the proper description is far less obvious.
While clever experimentalists have managed to probe some features down to distances
close to the Planck scale [2], for the most part we have neither direct observations nor
a generally accepted theoretical framework for describing the very small-scale structure
of spacetime. Indeed, it is not completely clear that “space” and “time” are even the
appropriate categories for such a description.

But while a complete quantum theory of gravity remains elusive, we do have fragments:
approximations, simple models, and pieces of what may eventually prove to be the correct
theory. None of these fragments is reliable by itself, but when they agree with each other
about some fundamental property of spacetime, we should consider the possibility that they
are showing us something real. The thermodynamic properties of black holes, for example,
appear so consistently that it is reasonable to suppose that they reflect an underlying
statistical mechanics of quantum states.

Over the past several years, evidence for another basic feature of small-scale spacetime
has been accumulating: it is becoming increasingly plausible that spacetime near the Planck
scale is effectively two-dimensional. No single piece of evidence for this behavior is in itself
very convincing, and most of the results are fairly new and tentative. But we now have
hints from a number of independent calculations, based on different approaches to quantum
gravity, that all point in the same direction. Here, I will summarize these clues, provide a
further piece of evidence in the form of a strong-coupling approximation to the Wheeler-
DeWitt equation, and discuss some possible implications.

1 Spontaneous dimensional reduction?

Hints of short-distance “spontaneous dimensional reduction” in quantum gravity come from
a number of places. Here I will review some of the highlights:

Causal Dynamical Triangulations

As we have learned from quantum chromodynamics—and from our colleagues in con-
densed matter physics—lattice approximations to the Feynman path integral can give us
valuable information about the nonperturbative behavior of theories that may otherwise
be extremely difficult to analyze. Lattice approximations to quantum gravity are not quite
typical: in contrast to QCD, where fields live on a fixed lattice, gravity is the lattice [3],
which forms a discrete approximation of a continuous spacetime geometry. Despite this dif-
ference, though, we might hope that a suitable lattice formulation could tell us something
important about quantized spacetime.

The idea of combining Regge calculus with Monte Carlo methods to evaluate the grav-
itational path integral on a computer dates back to 1981 [4]. Until fairly recently, though,



Figure 1: A spatial slice and a typical history contributing to the causal dynamical trian-
gulations path integral (R. Kommu and M. Sachs, UC Davis)

no good continuum limit could be found. Instead, the simulations typically yielded two
unphysical phases, a “crumpled” phase with very high Hausdorff dimension and a two-
dimensional “branched polymer” phase [5]. The causal dynamical triangulation program of
Ambjgrn, Jurkiewicz, and Loll [6H8] adds a crucial new ingredient, a fixed causal structure
in the form of a prescribed time-slicing. By controlling fluctuations in topology, this added
structure suppresses the undesirable phases, and appears to lead to a good four-dimensional
continuum picture. Results so far are very promising; in particular, the cosmological scale
factor appears to have the correct semiclassical behavior [89]. Figure [dlillustrates a typical
time slice and a typical history contributing to the path integral in a simulation developed
at UC Davis [10].

A crucial question for any such microscopic approximation is whether it can genuinely
reproduce the four-dimensional structure we observe at “normal” distances. This is a subtle
issue, which cannot be answered by merely looking at particular contributions to the path
integral. As a first step, we need a definition of “dimension” for a discrete structure that
may be very non-manifold-like at short distances. One natural choice—although by no
means the only one—is the spectral dimension [11], the dimension as seen by a diffusion
process or a random walker.

The basic idea of the spectral dimension is simple. In any structure on which a random
walk can be defined, the associated diffusion process will gradually explore larger and larger
regions of the structure. The more dimensions available for the random walk to explore,
though, the longer this diffusion will take. Quantitatively, diffusion from an initial position
x to a final position 2’ on a manifold M may be described by a heat kernel K(x,z’',s)
satisfying

<% - Aw> K(z,2';5) =0, with  K(z,2',0) = 0(z — '), (1)

where A, is the Laplacian on M at z, and s is a measure of the diffusion time. Let o(x,2')
be Synge’s world function [12], one-half the square of the geodesic distance between z and
2'. Then on a manifold of dimension dg, the heat kernel generically behaves as

K(z,2';5) ~ (47rs)_d5/26_°(x’xl)/25 (1+0(s)) (2)



for small s. In particular, the return probability K (x,z,s) is
K(z,2;5) ~ (4ms)~4s/2, (3)

For any structure on which a diffusion process can be defined, be it a manifold or not,
we can now use equation (3) to define an effective dimension dg, the spectral dimension.
On a lattice, in particular, we can determine the spectral dimension by directly simulating
random walks. In the causal dynamical triangulation program, the ensemble average over
the histories contributing to the path integral then gives a quantum spectral dimension.
The results of such simulations yield a spectral dimension of dg = 4 at large distances [S/11].
This is a promising sign, indicating the recovery of four-dimensional behavior. Similarly,
(2+1)-dimensional causal dynamical triangulations yield a large-distance spectral dimension
of dg = 3 [10,13].

At short distances, though, the result is dramatically different. In both 3+1 dimensions
and 241 dimensions, the small-scale spectral dimension falls to dg = 2. This is the first,
and perhaps the clearest, sign of spontaneous dimensional reduction at short distances.

As noted above, dg is by no means the only definition of a generalized dimension, and
one may worry about reading too much significance into this result. Note, though, that
the heat kernel has a special significance in quantum field theory: propagators of quantum
fields may be obtained as Laplace transforms of appropriate heat kernels. For a scalar field,
in particular, the propagator is determined by the heat kernel (I, and the behavior of the
spectral dimension implies a structure

o2 at large distances

Ino at small distances.

o0
G(z,2') ~ / ds K (z,2';s) ~ { (4)
0
The logarithmic short-distance behavior is the standard result for a two-dimensional con-
formal field theory. If one probes short distances with a quantum field, the field will thus
act as if it lives in an effective dimension of two.

Renormalization Group Analysis

General relativity is nonrenormalizable: conventional perturbative quantum field theory
techniques yield an infinite number of higher derivative counterterms, each with its own
coupling constant. Nevertheless, the renormalization group flow of these coupling constants
may provide us with valuable information about quantum gravity. In particular, a renor-
malization group analysis, even if incomplete or truncated, may offer a method for probing
the theory at high energies and short distances.

One particularly dramatic possibility, first suggested by Weinberg [14], is that general
relativity may be “asymptotically safe.” Consider the full effective action for conventional
gravity, with its infinitely many coupling constants. The renormalization group describes
the dependence of these constants on energy scale, and in principle allows us to compute
the high-energy/small-distance (“ultraviolet”) couplings in terms of their low-energy/large-
distance (“infrared”) values. Under the renormalization group flow toward high energies,
some of these constants may blow up, indicating that the description has broken down and
that new physics is needed. An alternative possibility, though, is that the coupling constants
might remain finite and flow to an ultraviolet fixed point. In that case, the theory would



continue to make sense down to arbitrarily short distances. If, in addition, the critical
surface—the space of such UV fixed points—were finite dimensional, the long-distance
coupling constants would be determined by a finite number of short-distance parameters:
not quite renormalizability, but perhaps almost as good.

Distinguishing among these possibilities (and others) is extremely difficult, and we are
still a long way from knowing whether quantum general relativity is asymptotically safe.
But there is growing evidence for a UV fixed point, coming from various truncations of the
effective action and from exact calculations in dimensionally reduced models [I5HIT]. For
our present purposes, the key result of these calculations is that field operators acquire large
anomalous dimensions; that is, under a change in mass scale, they scale differently than one
would expect from dimensional analysis based on their classical “engineering dimension.”
In fact, these operators scale precisely as one would expect for the corresponding quantities
in a two-dimensional field theory [I5]. Moreover, the spectral dimension near the putative
fixed point can be computed using field theoretical techniques, and the result is again
ds = 2 [18].

There is, in fact, a fairly general argument that if quantum gravity is asymptotically
safe, it must be effectively two-dimensional at very short distances [I7,[19]. Consider the
dimensionless coupling constant gy () = Gyp"2, where Gy is Newton’s constant and j
is the mass scale that appears in the renormalization group flow. Under this flow,

99N

o [d—2+nN(gN,---)]gn, (5)

where the anomalous dimension 7y depends upon both gx and any other dimensionless
coupling constants in the theory. Evidently a free field (or “Gaussian”) fixed point can
occur at gy = 0. For an additional non-Gaussian fixed point gy, to be present, though, the
right-hand side of (&) must vanish: gy (gy,...) =2 —d.

But the momentum space propagator for a field with an anomalous dimension 7y has
a momentum dependence (p?)~'*W/2. For ny = 2 — d, this becomes p~¢, and the asso-
ciated position space propagator depends logarithmically on distance. As I noted earlier,
such a logarithmic dependence is characteristic of a two-dimensional conformal field. A
variation of this argument shows that arbitrary matter fields interacting with gravity at a
non-Gaussian fixed point exhibit a similar two-dimensional behavior [17].

Loop quantum gravity

A third hint of short-distance dimensional reduction comes from the area spectrum of
loop quantum gravity [20]. States in this proposed quantum theory of gravity are given by
spin networks, graphs with edges labeled by half-integers j (which represent holonomies of a
connection) and vertices labeled by SU(2) intertwiners, that is, generalized Clebsch-Gordan
coefficients. Given such a state, the area operator for a surface counts the number of spin
network edges that puncture the surface, with each such edge contributing an amount

Aj ~ 25 +1),

where

hG

bh=\% (6)



is the Planck length.

While area and volume operators in loop quantum gravity are well understood, it has
proven rather difficult to define a length operator. But since j is, crudely speaking, a
quantum of area, one can (equally crudely) think of v/j as a sort of quantum of length. If
we therefore define a length ¢; = \/j¢,, we can rewrite the spectrum as

02 for large areas
o 2(p2 2\ ~ J
4, V e] (gy + Ep) { lpl; for small areas. @

Like the propagator (), this spectrum undergoes a change in scaling at small distances.
Indeed, one can define a scale-dependent effective metric that reproduces the behavior ([7),
and use it to compute an effective spectral dimension. One again finds a dimension that
decreases from four at large scales to two at small scales.

High temperature strings

A fourth piece of evidence for small-scale dimensional reduction comes from the behavior
of string theory at high temperatures. At a critical temperature, the Hagedorn temperature,
the string theory partition function diverges, and the theory (probably) undergoes a phase
transition. As early as 1988, Atick and Witten discovered that at temperatures far above
the Hagedorn temperature, string theory has an unexpected thermodynamic behavior [21]:
the free energy in a volume V' varies with temperature as

F/VT ~T. (8)

For a field theory in d dimensions, in contrast, F/VT ~ T 1. So even though string
theory lives in 10 or 26 dimensions, at high temperatures it behaves thermodynamically as
if spacetime were two-dimensional.

Anisotropic scaling models

A fifth sign of short-distance spontaneous dimensional reduction in quantum gravity
comes from “Horava-Lifshitz” models [22]. These are new models of gravity that exhibit
anisotropic scaling, that is, invariance under constant rescalings

x — bx, t — b3t.

This scaling property clearly violates Lorentz invariance, breaking the symmetry between
space and time and picking out a preferred time coordinate. In fact, it is this breaking
of Lorentz invariance that makes the models renormalizable: the field equations may now
contain many spatial derivatives, leading to high inverse powers of spatial momentum in
propagators that can tame loop integrals, while keeping only second time derivatives, thus
avoiding negative energy states or negative norm ghosts. This might seem an unlikely way to
quantize gravity—and indeed, these models may face serious low-energy problems [23[—but
the hope is that Lorentz invariance might be recovered and conventional general relativity
restored at low energies and large distances.

Horava has calculated the spectral dimension in such models [24], and again finds dg = 2
at high energies. In this case, the two-dimensional behavior can be traced to the fact that



the propagators contain higher inverse powers of momentum; the logarithmic dependence
on distance comes from integrals of the form

4
/ 4P ip-(e—a”)
p? '

Whether this is “real” dimensional reduction becomes a subtle matter, which may depend
on how one operationally defines dimension. As before, though, the logarithmic behavior
of propagators implies that quantum fields used to probe the structure of spacetime will
act as if they are in a two-dimensional space.

Other hints

Hints of two-dimensional behavior come from several other places as well. In the causal
set approach to quantum gravity, spacetime is taken to be fundamentally discrete, with a
“geometry” determined by the causal relationships among points. In this setting, a natural
definition of dimension is the Myrheim-Meyer dimension, which compares the number of
causal relations between pairs of points to the corresponding number for points randomly
sprinkled in a dj;-dimensional Minkowski space (see, for instance, [25]). For a small enough
region of spacetime, one might guess that the causal structure is generic, coming from a
random causal ordering. In that case, the Myrheim-Meyer dimension is approximately
2.38—mnot quite 2, but surprisingly close [26].

Dimensional reduction has also appeared in an analysis of quantum field theory in a
background “foam” of virtual black holes [27], although the effective dimension depends on
the (unknown) black hole distribution function. A dimension of 2 also appears in Connes’
noncommutative geometrical description of general relativity [28]; it is not clear to me
whether this is related to the dimensional reduction considered here.

2 Strong coupling and small-scale structure

Let us suppose these hints are really telling us something fundamental about the small-
scale structure of quantum gravity. We then face a rather bewildering question: which two
dimension? How can a four-dimensional theory with no background structure or preferred
direction pick out two “special” dimensions at short distances? To try to answer this
question, it is worth looking at one more approach to Planck scale physics: the strong-
coupling approximation to the Wheeler-DeWitt equation.

In the conventional Dirac quantization of canonical general relativity, the configuration
space variables are given by the spatial metric g;; on a time slice X, while their canonically
conjugate momenta are related to the extrinsic curvature of the slice. The Hamiltonian
constraint, which expresses invariance under diffeomorphisms that deform the slice X, then
acts on states U[g| to give the Wheeler-DeWitt equation [29]

) 1
20 _ (3) —
{167T€prkz 590 Som 1677612,\/5 R} Ylg] =0 9)
where
L 1)
Gijh = 59 (9ikgj1 + 99k — 9ijGKi) (10)



is the DeWitt metric on the space of metrics. The Wheeler-DeWitt equation is not terribly
well-defined—the operator ordering is ambiguous, the product of functional derivatives
must be regularized, and the wave functions ¥[g] should really be functions of spatial
diffeomorphism classes of metrics—and it is not at all clear how to find an appropriate
inner product on the space of solutions [30]. Nevertheless, the equation is widely accepted
as a heuristic guide to the structure of quantum gravity.

Note now that spatial derivatives of the three-metric appear only in the scalar curvature
term ®R in @). As early as 1976, Isham [31] observed that this structure implied an
interesting strong-coupling limit ¢, — co. As the Planck length becomes large—that is,
as we probe scales near or below £, [32[33]—the scalar curvature term becomes negligible.
Neighboring spatial points thus effectively decouple, and the equation becomes ultralocal.

The absence of spatial derivatives greatly simplifies the Wheeler-DeWitt equation, which
becomes exactly solvable. Its properties in this limit have been studied extensively [34H3§],
and preliminary attempts have been made to restore the coupling between neighboring
points by treating the scalar curvature term as a perturbation [33,39-41]. The same kind
of perturbative treatment of the scalar curvature is important classically in a very different
setting: it is central to the Belinskii-Khalatnikov-Lifshitz (BKL) approach to cosmology
near a spacelike singularity [42[43]. We can therefore look to this classical setting for clues
about the small-scale structure of quantum gravity.

To understand the physics of the strong-coupling approximation, it is helpful to note
that the Planck length (@) also depends on the speed of light. In fact, this approximation
can also be viewed as a small ¢ (“anti-Newtonian”) approximation. As the Planck length
becomes large, particle horizons shrink and light cones collapse to timelike lines, leading to
the decoupling of neighboring points and the consequent ultralocal behavior [44]. In the
completely decoupled limit, the classical solution at each point is a Kasner space,

ds® =dt* — t?P1dx? — t°P2dy? — t°P3d2? (11)
(—3<p1<O0<pa<ps, p1+p2+ps=1=p}+p3+p3d.

More precisely—see, for example, [45]—the general solution is an arbitrary GL(3) transfor-
mation of a Kasner metric. This is still essentially a Kasner space, but now with arbitrary,
not necessary orthogonal, axes.

For large but finite ), the classical solution exhibits BKL behavior [42/43]. At any given
point, the metric spends most of its time in a nearly Kasner form. But as the metric evolves,
the scalar curvature can grow abruptly. The curvature term in the Hamiltonian constraint—
the classical counterpart of the Wheeler-DeWitt equation—then acts as a potential wall,
causing a Mixmaster-like “bounce” [46] to a new Kasner solution with different axes and
exponents. In contrast to the ultralocal behavior at the strong-coupling limit, neighboring
points are now no longer completely decoupled. But the Mixmaster bounces are chaotic [47],
and the geometries at nearby points quickly become uncorrelated, with Kasner exponents
occurring randomly with a known probability distribution [48].

We can now return to the problem of dimensional reduction. Consider a timelike
geodesic in Kasner space, starting at ¢ = tg with a random initial velocity. The geodesic
equation is exactly integrable, and in the direction of decreasing ¢, the proper spatial dis-



tance traveled along each Kasner axis asymptotes to

Sg ~ Pt
5y ~0 (12)
s, ~ 0.

Particle horizons thus shrink to lines, and geodesics effectively explore only one spatial
dimension. In the direction of increasing ¢, the results are similar, though a bit less dramatic:

Sy~ 1
5y ~ tmax(p2,14P1=p2) (13)

S, ~ tP3,

Since py, 1 4+ p1 — p2, and ps are all less than one, a random geodesic again predominantly
sees only one spatial dimension.

Since the heat kernel describes a random walk, one might expect this behavior of Kasner
geodesics to be reflected in the spectral dimension. The exact form of heat kernel for Kasner
space is not known, but Futamase [49] and Berkin [50] have evaluated K (z,2';s) in certain
approximations. Both find behavior of the form

1 a
K(l‘,l‘;S)N—z[1+t—28—|—... . (14)

4drrs
The interpretation of this expression involves an order-of-limits question. For a fixed time
t, one can always find s small enough that the first term in (I4]) dominates. This is not
surprising: the heat kernel is a classical object, and we are still looking at a setting in which
the underlying classical spacetime is four-dimensional. For a fixed return time s, on the
other hand, one can always find a time t small enough that the second term dominates,
leading to an effective spectral dimension of two. One might worry about the higher order
terms in ([I4]), which involve higher inverse powers of ¢ and might dominate at smaller times.
But these terms do not contribute to the singular part of the propagator (d)); rather, they
give terms that go as positive powers of the geodesic distance, and are irrelevant for short
distance singularities, light cone behavior, and the like.

One can investigate the same problem via the Seeley-DeWitt expansion of the heat
kernel [51H53],

K(x,2,8) ~ Flﬁ (Jao) + [a1]s + [az]s® +...). (15)

The “Hamidew coefficient” [a;] is proportional to the scalar curvature, and vanishes for an
exact vacuum solution of the field equations. In the presence of matter, however, the scalar
curvature will typically increase as an inverse power of t as t — 0 [42]; this growth is slow
enough to not disrupt the BKL behavior of the classical solutions near ¢ = 0, but it will
nevertheless give a diverging contribution to [a4].

This short-distance BKL behavior of the strongly coupled Wheeler-DeWitt equation
may thus offer an explanation for the apparent dimensional reduction of quantum gravity at
the Planck scale. We now have a possible answer to the question, “Which two dimensions?”
If this picture is right, the dynamics picks out an essentially random timelike plane at each
point. This choice, in turn, is reflected in the behavior of the heat kernel, and hence in the
propagators and the consequent short-distance properties of quantum fields.



3 Spacetime foam?

The idea that the “effective infrared dimension” might differ from four goes back to work by
Hu and O’Connor [54], but the relevance to short-distance quantum gravity was not fully
appreciated at that time. To investigate this prospect further, though, we should better
understand the physics underlying BKL behavior.

The BKL picture was originally developed as an attempt to understand the cosmology
of the very early Universe near an initial spacelike singularity. Near such a singularity, light
rays are typically very strongly focused by the gravitational field, leading to the collapse of
light cones and the shrinking of particle horizons. This “asymptotic silence” [43] is the key
ingredient in the ultralocal behavior of the equations of motion, from which the rest of the
BKL results follow.

Small-scale quantum gravity has no such spacelike singularity, so if a similar mechanism
is at work, something else must account for the focusing of null geodesics. An obvious can-
didate is “spacetime foam,” small-scale quantum fluctuations of geometry. Seeing whether
such an explanation can work is very difficult; it will ultimately require that we understand
the full quantum version of the Raychaudhuri equation. As a first step, though, let us start
with the classical Raychaudhuri equation for the focusing of null geodesics,

W _ Ly 06" 05" + wapw® — Rogk®kP. (16)
dX 2

Here, 0 is the expansion of a bundle of light rays, essentially (1/A)(dA/d\) where A is the
cross-sectional area; o and w are the shear and rotation of the bundle. Negative terms on
the right-hand side of (I6]) decrease expansion, and thus focus null geodesics; positive terms
contribute to defocusing.

If we naively treat (I6) as an operator equation in the Heisenberg picture and take
the expectation value, ignoring for the moment the need for renormalization, we see that
quantum fluctuations in the expansion and shear should focus geodesics. Indeed,

(0%) = (0)” + (A0)?, (17)

with a similar equation for o, so the uncertainties A9 and Ao contribute negative terms to
the right-hand side of (I6]). We can estimate the size of these fluctuations by noting that
the expansion 6 is roughly canonically conjugate to the cross-sectional area A [55]. Indeed,
0 is the trace of an extrinsic curvature, which is, as usual, conjugate to the corresponding
volume element. Keeping track of factors of 7 and G, we find an uncertainty relation of the
form

AGAA ~ 1, (18)

where 0 is the expansion averaged over a Planck distance along the congruence. In many
approaches to quantum gravity—for instance, loop quantum gravity—we expect areas to be
quantized in Planck units. It is thus plausible that AA ~ 612,, which would imply fluctuations
of 6 of order 1/¢,. This would mean very strong focusing at the Planck scale, as desired.
As I have presented it, this argument is certainly inadequate. To begin with, I have
not specified which congruence of null geodesics I am considering. In the BKL analysis,
a spacelike singularity determines a special null congruence. In short-distance quantum



gravity, no such structure exists, and we will have to work hard to define 6 as a genuine
observable.

Moreover, while the classical shear contributes a negative term to the right-hand side
of (I6]), the operator product O'aﬁdga in a quantum theory must be renormalized, and
need not remain positive. Indeed, it is known that this quantity becomes negative near
the horizon of a black hole [56]; this is a necessary consequence of the fact that Hawking
radiation decreases the horizon area. On the other hand, there are circumstances in which
a particular average of this operator over a special null geodesic must be positive to avoid
violations of the generalized second law of thermodynamics [57]. The question of whether
quantum fluctuations and “spacetime foam” at the Planck scale can lead to something akin
to asymptotic silence thus remains open.

4 What next?

In short, the proposal I am making is this: that spacetime foam strongly focuses geodesics at
the Planck scale, leading to the BKL behavior predicted by the strongly coupled Wheeler-
DeWitt equation. If this suggestion proves to be correct, it leads to a novel and interesting
picture of the small-scale structure of spacetime. At each point, the dynamics picks out
a “preferred” spatial direction, leading to approximately (1+1)-dimensional local physics.
The preferred directions are presumably determined classically by initial conditions, but
because of the chaotic behavior of BKL bounces, they are quickly randomized; in the
quantum theory, they are picked out by an initial wave function, but again one expects
evolution to scramble any initial choices. From point to point, these preferred directions
vary continuously, but they oscillate rapidly [58]. Space at a fixed time is thus threaded by
rapidly fluctuating lines, and spacetime by two-surfaces; the leading behavior of the physics
is described by an approximate dimensional reduction to these surfaces.

There is a danger here, of course: the process I have described breaks Lorentz invariance
at the Planck scale, and even small violations at that scale can be magnified and lead
to observable effects at large scales [2]. Note, though, that the symmetry violations in
this scenario vary rapidly and essentially stochastically in both space and time. Such
“nonsystematic” Lorentz violations are harder to study, but there is evidence that they
lead to much weaker observational constraints [59].

The scenario I have presented is still very speculative, but I believe it deserves further
investigation. One avenue might be to use results from the eikonal approximation [60H62).
In this approximation, developed to study very high energy scattering, a similar dimensional
reduction takes place, with drastically disparate time scales in two pairs of dimensions.
Although the context is very different, the technology developed for this approximation
could prove useful for the study of Planck scale gravity.
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