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We construct a class of closed timelike curves (CTCs) using a compactified extra dimension
u. A nonzero metric element gtu(u) enables particles to travel backwards in global time t. The
compactified dimension guarantees that the geodesic curve closes in u. The effective 2D (t and
u) nature of the metric ensures that spacetime is flat, therein satisfying all the classical stability
conditions as expressed by the energy conditions. Finally, stationarity of the metric guarantees that
a particle’s energy is conserved. The pathologies that plague many hypothesized metrics admitting
CTCs, e.g. an infinite cylinder of matter, a negative energy-distribution, particle acceleration/blue-
shifting along the CTC, do not occur within our metric class.

I. INTRODUCTION

It is well known that closed timelike curves (CTCs) are
allowed solutions of general relativity, and so time travel
is theoretically possible. For years, many proposals for
CTCs have been discussed in the literature. These in-
clude van Stockum’s rotating cylinder [1] (extended later
by Tipler [2]), Gödel’s rotating universe [3], Wheeler’s
spacetime foam [4], Kerr and Kerr-Newman’s region be-
tween the two horizons of the rotating black hole [5],
Morris, Thorne and Yurtsever’s traversable wormholes
[6], Gott’s pair of spinning cosmic strings [7], Alcubierre’s
warp drive [8], Ori’s vacuum torus [9], and some other
new proposals [10]. All of these proposals are constructed
in our observable 4D universe. And these candidate pro-
posals for CTCs generally suffer from at least one of the
following pathologies [11]: (1) requiring an unphysical
matter distribution of infinite extent; (2) violating one
or more of the null, weak, strong and dominant energy
conditions (e.g., with a distribution of negative-energy),
which suggests instability of the local spacetime; and
(3) increasing the particle energy (“blue-shifting”) as it
traverses the CTC, thereby dissipating the source of the
CTC at earlier times, leading to its non-existence.

The success of large [12] and warped [13] extra dimen-
sions has led many people to think of gravitons or gauge-
singlet particles taking “shortcuts” through the extra di-
mensions [14–18]. For instance, a signal such as a gravi-
ton may take a “shortcut” from one point on the brane
through the bulk and return to the brane at a different
point, but with a transit time shorter than that for a pho-
ton traveling along a brane geodesic between the same
two points. Although the “shortcut” allows for superlu-
minal communication, the path still obeys time-ordering
and so does not lead to a CTC. A shorter time-of-flight
is not the same as time traveling backwards. Using the
idea of asymmetrically-warped extra-dimensions [19], it
has been shown that paths can be glued together to form
CTCs [20]. But these paths are not solutions of geodesic
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equations, and so would not be traversed by particles.
Also, the CTCs in [20] require negative-energy (“tachy-
onic”) matter in the bulk, violating the weak energy con-
dition.
The purpose of this article is to propose a new frame-

work for CTCs in one or more extra-dimensions, which
does not suffer from any of the pathologies common
to previous proposals. For definiteness, we will invoke
5D spacetime, but our results can be readily extended to
higher dimensions.

II. THE 5D METRIC

Inspired by the idea of large extra dimensions [12] and
guided by analogy with Gödel’s rotating universe [3] and
the CTCs therein, we are led to consider a metric off-
diagonal in extra dimension (u, with size L) and time
t.
We assume that the extra dimension is compactified.

For simplicity, we take its topology to be that of a cir-
cle (technically, a 1-sphere S1). The periodic boundary
condition then requires the point u + L to be identified
with u. With further simplicity in mind, we consider the
following time-independent (“stationary”) metric:

dτ2 = ηijdx
idxj + dt2 + 2 g(u) dt du− h(u) du2 , (1)

where i, j = 1, 2, 3, and ηij is the spatial part of the
Minkowski metric. The 4D metric induced from this 5D
metric is completely Minkowskian.
This off-diagonal metric with the term g(u) is rem-

iniscent of the metric constructions of Gödel and van
Stockum-Tipler (GvST) which admitted CTCs. GvST
imagined a physical rotating cylinder in 4D; here the “ro-
tation” is in u-space, with its axis of rotation parallel to
the 4D brane. However, unlike the GvST construction
with a physical 4D cylinder of matter, here it is the ex-
tra dimension itself which provides the cylinder.
The determinant of our metric is Det[gµν ] = g2 + h.

The spacelike nature of the u coordinate requires Det > 0
for the entire 5D metric, which, in turn, requires that g2+
h > 0 for all u. It is desirable to maintain a Minkowski
metric as the brane is approached. Thus, we set Det(u =
0) = g20 + h0 = +1, where g0 ≡ g(0) and h0 ≡ h(0).
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The metric tensor must reflect the S1 topology of the
compactified extra dimension. Thus, g(u) and h(u) must
be periodic functions of u with period L. We expand
g(u) in terms of the Fourier modes:

g(u) = g0 +A−

∞
∑

n=1

{

an cos

(

2π nu

L

)

+ bn sin

(

2π nu

L

)}

, (2)

where A ≡
∑∞

n=1 an is a constant. A similar expression
can be written down for h(u), but it will not be needed.
We note in passing that the value of the off-diagonal met-
ric element g(u) averaged over the path through the com-
pact dimension is ḡ = g0+A; thus, the physical meaning
for A = ḡ− g0 is the deviation of mean g from the brane
value g0.

III. GEODESIC EQUATIONS AND THEIR

SOLUTIONS

The next task is to obtain the geodesic equations of
motion and solve for their solutions. Since the metric (1)
is completely Minkowskian on the brane, the geodesic
equations of motion along the brane are just ~̈r = 0, where
the dot-derivative denotes differentiation with respect to
the proper time, τ . Solutions to these geodesic equations
are simply

~̇r = ~̇r0 , or ~r = ~r0 τ . (3)

The geodesic equations for t and u are more interest-
ing. Due to the time-independence (“stationarity”) of
the metric, there exists a timelike Killing vector; the cor-
responding conserved quantity is

ṫ+ g(u) u̇ = γ0 + g0 u̇0 , (4)

where we have evaluated the right-handed side at its ini-
tial (τ = 0) value. Given this conserved quantity, it is
almost evident that time will run backwards (ṫ < 0), pro-
vided that the condition g(u) u̇ > γ0 + u̇0 g0 is consistent
with the geodesic equation for u.
The geodesic equation for u is

2 (g ẗ− h ü)− h′ u̇2 = 0 , (5)

where we use the superscript “prime” to denote differen-
tiation with respect to u. We can eliminate ẗ and ü from
Eq. (5). First, we take the dot-derivative of Eq. (4). Then
we rewrite Eqs. (4) and (5) as

ẗ(τ) =
1

2

−2g′h+ gh′

g2 + h
u̇2 , (6)

ü(τ) = −
1

2

2gg′ + h′

g2 + h
u̇2 = −

1

2
ln′(g2 + h) u̇2 . (7)

Inspection of these two geodesic equations suggests that
we fix the determinant to be unity not just on the brane,
but everywhere. For simplicity, we do so:

Det(u) = g2(u) + h(u) = 1 , ∀ u . (8)

Thus, h(u) = 1 − g2(u) everywhere. Once the metric
function g(u) is given by the Fourier series of Eq. (2),
then the second metric function h(u) is automatically de-
termined. Substituting Eq. (8) into Eq. (7) immediately
leads to

u̇(τ) = u̇0 , (9)

u(τ) = u̇0 τ , (mod L ) . (10)

The solution for t can easily be obtained from Eq. (4) as

t(τ) = (γ0 + g0 u̇0) τ −
∫ u(τ)

du g(u). Using Eq. (10), we
rewrite this expression in a form that is more useful for
later discussions:

t(u) =

(

g0 +
1

β0

)

u−

∫ u

0

du g(u) . (11)

Here we have introduced the symbol β0 = u̇0

γ0
=

(

du
dt

)

0
for the initial velocity of the particle along u-direction,
as measured by a stationary omniscient observer on the
brane. Analogous to those historical CTCs arising from
metrics describing rotation, we will say that a particle
with β0 > 0 is “co-rotating”, while a particle with β0 < 0
is “counter-rotating”.

IV. CLOSED TIMELIKE CURVES

Closed timelike curves, by definition, are geodesics that
return a particle to the same space coordinates from
which it left, but with a negative time so that its arrival
equates to or precedes its departure. Due to the periodic
boundary condition from the S1 topology of the com-
pactified extra dimension, a particle created on the brane
but propagating into the extra dimension will necessarily
come back to the brane. So the “closed” condition for a
CTC is satisfied automatically by a compactified metric.
We note that when the trivial motion along the brane
~̇r = constant is added to the geodesic solution for u(τ),
there results a helical particle motion which periodically
intersects the brane.
The “timelike” condition for a CTC requires that when

the particle returns to the initial space coordinates, the
time elapsed as viewed by a stationary observer is zero
or negative. To ascertain whether the travel time can be
negative, we must solve the geodesic equation for time,
Eq. (11). With the general g(u) given by Eq. (2), we can
perform the integration in Eq. (11) to obtain

t(u) =

(

1

β0
−A

)

u+

(

L

2π

) ∞
∑

n=1

(

1

n

){

an sin

(

2π nu

L

)

+ bn

[

1− cos

(

2π nu

L

)]}

. (12)
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Due to the periodic boundary condition from the com-
pactified extra dimension, the particle returns to the
brane at u = ±N L, N = 1, 2, . . . , after traversing N
times around the extra dimension. Here the ± signs
hold for co-rotating and counter-rotating particles, re-
spectively. At the N th return, the time measured by a
stationary clock on the brane, as given by Eq. (12), will
be

tN ≡ t(u = ±N L) = ±

(

1

β0
−A

)

N L . (13)

Interestingly, tN depends on the Fourier modes only
through A =

∑

n=1 an, and is completely independent
of the bn. Thus, the potential for a CTC arise only from
the cosine modes in g(u), and not the sine modes [28].
(This implies a necessary but not sufficient condition on
g(u) for the possible existence of a CTC: for the Det = 1
metric, g(L2 ) must differ from g0.)
To have a viable CTC, we require tN < 0, or equiva-

lently, ±N ( 1
β0

−A ) < 0. For a co-rotating particle, β0

is positive, and tN < 0 is satisfied only if

A >
1

β0
. (14)

For a counter-rotating particle, β0 is negative, and tN < 0
is satisfied only if

A, β0 < 0 and |A| >

∣

∣

∣

∣

1

β0

∣

∣

∣

∣

. (15)

Thus, a viable CTC requires sign(A) to be the same as
sign(β0) in either case of co-rotating or counter-rotating
particles. Once Nature chooses the constant A with a
definite sign, these CTC conditions for co-rotating and
counter-rotating particles are not compatible. For defi-
niteness in what follows, we will assume that A > 1

β0
is

satisfied for some β0. Then only the co-rotating particles
with sufficiently large initial bulk-velocity can traverse
the CTC to go backward in time; the counter-rotating
particles go forward in time.
Remarkably, the conditions (14) and (15) can be sat-

isfied even if |β0| < 1. This means that Nature does
not need superluminal speeds to realize CTCs. We ex-
hibit the possibilities implied by our metric in Figs. (1)
and (2). The geodesic may describe subluminal, super-
luminal, or CTC travel, depending on the value of the
positive parameter product β0 A.

V. WORLD-LINE ANALYSIS

In this section, we generalize the analysis of massless
particle light-cones in Ref. [20] to massive particles, and
discuss the result.
The realization of CTCs requires that the particle

world-line tips so that the motion in the u-direction oc-
curs backwards in time t as measured from the brane. In

terms of the spacetime slope s ≡ dt/du for the world-line
along the ±u-directions, the line element in Eq. (1) is
simply

dτ2

du2
=

1

u̇2(u)
= s2 + 2s g(u)− h(u) , (16)

where we have ignored a possible nonzero velocity d~r/dt
along the brane which would not affect the following dis-
cussions. The solutions to the above quadratic equation
are

s±(u) = −g(u)±

√

g2(u) + h(u) +
1

u̇2(u)
, (17)

where s+ and s− represent the slopes for the co-rotating
and counter-rotating world-lines respectively. The con-
sistency of this assignment can be checked by noting that
s(u = 0) is just γ0/u̇0, which implies that sign(s(0)) =
sign(u̇0).
It is more illuminating to put Eq. (17) into the form

s−(u) + s+(u) = −2 g(u) , (18)

s−(u) s+(u) = −

(

h(u) +
1

u̇2(u)

)

. (19)

In conventional 4D Minkowski space, g0 would be zero
and h0 would equal unity. For our CTC in 5D, it is crucial
that g0 6= 0, but we assume a semblance of the Minkowski
space limit by taking h0 ≥ 0. The world-line of a CTC
must tip into the negative t region, and so its slope must
pass through zero. This means that s−(u) s+(u), or
equivalently, h(u) + u̇−2, must pass through zero. Sup-
pose that this happens at u = u⋆; then h(u⋆) = −u̇⋆

−2.
With our previous assumption that g2 + h = 1 every-
where, we have g2(u⋆) = 1 − h(u⋆) = 1 + u̇−2. But by

Eq. (9), we may write this result as |g(u⋆)| =
√

1 + u̇−2
0 .

On the other hand, Eq. (9) and the constraint h0 ≥ 0
imply that |g0| < 1. We learn that time will become neg-
ative if |g(u)| rises from its value |g0| ≤ 1 on the brane

to above
√

1 + u̇−2
0 in the bulk. For a general metric

function of Eq. (2), this requirement on g(u) is easily
accommodated.
We reinforce two earlier lessons from this world-line

analysis. The first is that for a given sign of A, only one
of the co-rotating and counter-rotating particles can ex-
perience the CTCs. The reason here is that only one edge
of the world-line can tip below the horizontal axis into the
negative-time half-plane. The second lesson is that since
time begins to flow backwards only after |g(u)| rises to
√

1 + u̇−2
0 , there may exist a critical (u̇0)min (equivalent

to a minimum β0) below which CTCs are not accessible.

VI. RESEMBLANCE WITH 4D SPINNING

STRINGS

Our class of 5D metrics admitting CTCs resembles in
some ways the well-studied metric for a 4D spinning cos-
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FIG. 1: The ratio of apparent brane velocity v to initial brane velocity v0 is plotted against β0 A. The co-rotating particle
can move superluminally in either time direction, while the counter-rotating particle always moves subluminally forward in
time. Note that when the lightcone crosses the horizontal axis of the spacetime diagram at β0 A = 1, the brane velocities
are divergent. For β0A > 1, the co-rotating geodesic corresponds to a CTC. The regions denoted by (a), (b), (c), (d) and (e)
correspond to the worldlines with the same labels in Fig. 2.

mic string [21, 22]:

dτ2spinning
string

= (dt+4GJ dθ)2−dr2−(1−4Gm)2 r2 dθ2−dz2 ,

(20)
where G is Newton’s constant, J is the angular momen-
tum, and m is the mass per unit length of the cosmic
string.
In three spacetime dimensions, the Weyl tensor van-

ishes, and so any region without a gravitational source
must be flat. Consequently, in the region outside the
spinning string, the local Minkowski coordinates may be
extended to cover the entire region. In particular, one
could change the coordinates in Eq. (20) to t̃ = t+4GJ θ
and ϕ = (1 − 4Gm) θ such that the metric becomes
Minkowskian, with the conformal factor being unity.
Similar to θ, ϕ is periodic and is subject to the identifica-
tion ϕ ∼ ϕ+2π−8πGm. It is well-known that the wedge
∆ϕ = 8πGm should be removed from the plane, leaving
behind a cone. While these coordinate transformations
apparently lead to simplicity, in fact t̃ is a pathological
coordinate. It is a linear combination of a non-compact
variable t and a compact variable θ. For a fixed θ (or ϕ),
t̃ is a smooth and continuous variable. But for a fixed
t, one needs the identification t̃ ∼ t̃ + 8πGJ to avoid a
“jump” in the new variable. A a result, the singularity
at gθθ = 0, which occurs at r = 4GJ/(1 − 4Gm), is in
effect encoded in the pathological coordinate t̃ [21].

In the (t, u)-plane, our metric has the form

dτ2 = ( dt+ g(u) du )2 − du2 , (21)

where we have used the simplifying condition in Eq.
(8). This appears similar to the 4D spinning-string met-
ric. Analogously, we can define a new exact differential
dt̄ ≡ dt + g(u) du to put our metric into the diagonal
“Minkowskian” form:

dτ2 = ηij dx
idxj + dt̄2 − du2 . (22)

This nontrivial coordinate transformation defines a new
time variable t̄ = t+

∫ u(t)

0
du g(u) which is measured in

the frame that “co-rotates” with the circle S1. Since the
equivalent metric is locally Minkowskian everywhere, the
entire 5D spacetime is flat. This is consistent with the
theorem which states that any two-dimensional (pseudo)
Riemannian metric, whether in a source-free region or
not, is conformal to a Minkowski metric. (Here, our (t, u)
submanifold is not only conformally flat, but has a con-
formal factor of unity.) However, similar to the case of
the spinning string, the topology of our 5D spacetime is
non-trivial. The new time variable t̄ is ill-defined glob-
ally. It is a pathological combination of a non-compact t
coordinate and a compact u coordinate.
We remark that the time measured by an observer (or

experiment) on our brane should just be given by t. The
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FIG. 2: The worldlines denoted by (a), (b), (c), (d) and (e) correspond to the regions with the same labels in Fig. 1. For
instance, the worldline (a) corresponds to a counter-rotating particle traveling (forward in brane/coordinate time t) within the
forward-light-cone. The worldlines (c), (d) and (e) correspond to a co-rotating particle traveling beyond the brane’s forward-
light-cone. For the wordline (b), the particle travels superluminally but moves forward in brane time. The worldline (c)
is horizontal and so the particle is “moving” instantaneously in brane time. The worldlines (d) and (e) represent particles
traveling with superluminal and subluminal velocities respectively, and in both cases, the particles travel backwards in brane
time (signifying a CTC).

reason is that the constraint equation that reduces the
5D metric to the induced 4D metric is simply u(xµ) = 0,
and taking the differential gives du = 0. When the latter
result is substituted into the 5D metric in Eq. (1), the
standard 4D Minkowski metric with time t is induced.

VII. PATHOLOGIES OF MOVING 4D COSMIC

STRINGS

It has been shown by Deser, Jackiw, and ’t Hooft that
the metric for the 4D spinning string leads to CTCs [21].
However, this metric has also been criticized by them-
selves and others. Their criticism is that the definition
of spin becomes singular as one approaches the string’s
center at r = 0. In contrast, this problem is absent in
our compactified 5D metric of Eq. (1) because there is
simply no “r = 0” in the u-space. The “center” of the
periodic u-space is not part of the spacetime.
Gott proposed an improved stringy CTC by making

use of a pair of infinitely-long cosmic strings with a rel-
ative velocity [7]. In his improved scheme, the singular
spin angular-momentum of a single spinning string is re-
placed by the non-singular orbital angular-momentum of
a two-string system. Since each of the cosmic strings is in-
finitely long, the configuration is translationally invariant
along the z direction, and one can freeze the z coordinate
and reduce the problem to an effective (2+1) dimensional

spacetime. In this (2+1)D spacetime, the piercings of the
two strings appear as moving dots. Gott showed that
there exists a ‘figure-eight” CTC geodesic encircling the
dots and crossing between them.

However, the non-trivial topology in Gott’s spacetime
results in non-linear energy-momentum addition rules.
While each of the spinning cosmic strings carries a time-
like energy-momentum vector, the two-string center-of-
mass energy-momentum vector turns out to be spacelike
or tachyonic [23, 24]. Even though Gott’s CTC does not
violate the weak energy condition, the tachyonic total
energy-momentum vector leads to violations of the null,
strong and dominant energy conditions [24–26]. (Energy
conditions are briefly discussed in the next section.)

In addition, it has been proved that in an open uni-
verse, an infinite amount of energy is required to form
Gott’s CTC [25]. A related argument against the sta-
bility of Gott’s CTC is the blue-shifting of the parti-
cle traversing the CTC [26]. Since the particle can tra-
verse the CTC infinitely many times, it can be infinitely
blue-shifted, while maintaining the elapsed time as neg-
ative [25, 27]. This implies that the total energy of the
pair of cosmic strings would have been infinitely dissi-
pated even before the particle enters the CTC for the
first time. The simple interpretation is that the CTC
simply cannot be formed in the first place.



6

VIII. COMPACTIFIED 5D CTCS WITHOUT

PATHOLOGIES

In the previous section, we discussed the pathologies
of a CTC realized by a pair of moving cosmic strings.
In fact, these pathologies are common among 4D metrics
admitting CTCs. In contrast, we will show in this section
that our compactified 5D CTCs do not suffer from any
of these pathologies.
Firstly, the realization of our compactified 5D CTCs

with a compactified extra dimension only requires a flat
spacetime metric. No matter distribution, negative or
positive, infinite or even finite extent, is needed. One can
easily verify that all the components of the 5D curvature
tensor RABCD and Ricci tensor RAB, derived from the
metric of Eq. (1), are identically zero. Thus, by the Ein-
stein field equation, the energy-momentum tensor TAB

is also vanishing. This implies that our 5D spacetime,
which admits CTCs, automatically satisfies all of the
standard null, weak, strong and dominant energy con-
ditions:

NEC: TAB lA lB ≥ 0 ,

WEC: TAB tA tB ≥ 0 ,

SEC: TAB tA tB ≥
1

2
TA
A tB tB ,

DEC: TAB tA tB ≥ 0 and TAB TB
C tA tC ≤ 0 ,

where lA and tA are any null vectors and timelike vectors
respectively.
Secondly, particles traversing the compactified 5D

CTCs are not blue-shifted. This can be understood
as follows. The contravariant momentum is defined as
pA ≡ m (ṫ, ~̇r, u̇), with m being the mass of the particle.
Correspondingly, the covariant five-momentum is given
by

pA = GAB pB = m
(

ṫ+ g u̇, −~̇r, g ṫ− h u̇
)

. (23)

From Eq. (4), it is clear that the quantity p0 = m (ṫ+g u̇)
is covariantly conserved along the geodesic on and off the
brane, a result of the time-independence of the metric
GAB. We can therefore identify this conserved quantity
as the energy E of the time-traveling particle. With the
energy E covariantly conserved, we conclude that the
particle is not blue-shifted, and there is no dissipation of
the CTC.

IX. CONCLUSIONS

We have constructed a class of CTCs that are physical
and classically stable. Since it is the compactified extra
dimension that enables the CTCs, only the Kaluza-Klein
(KK) modes of quanta can traverse through these CTCs
and go backwards in time. Wherever there is spacetime,
there will be gravitons from the quantization of the met-
ric fluctuation. Therefore, KK gravitons will certainly be
time-traveling particles, provided that our specific met-
ric in Eq. (1) is realized by Nature. If Standard Model
particles are confined to our familiar 4D brane as in the
framework of large extra dimensions [12], we may antic-
ipate that the KK modes of gauge-singlets (e.g. Higgs
singlets or sterile neutrinos) could also be CTC time-
travelers.

Finally, we mention that our derivation has been
purely classical. Whether or not our results survive in
a quantum mechanical picture is another story, yet to be
written..

Acknowledgments

C.M. Ho and T.J. Weiler were supported in part by
the Department of Energy grant DE-FG05-85ER40226.

[1] W. J. van Stockum, Proc. R. Soc. Edin. 57 135-154
(1937).

[2] F. J. Tipler, Phys.Rev. D 9, 2203-2206 (1974).
[3] K. Godel, Rev. Mod. Phys. 21, 447 (1949).
[4] J. A. Wheeler, Phys. Rev. 97 511-536 (1962); J. A.

Wheeler, Ann. Phys. (NY) 2 511-536 (1962).
[5] S. W. Hawking, G. F. R. Ellis, The Large Scale Structure

of Spacetime, Cambridge University Press, New York,
1973.

[6] M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395
(1988); M. S. Morris, K. S. Thorne and U. Yurtsever,
Phys. Rev. Lett. 61, 1446 (1988).

[7] J. R. I. Gott, Phys. Rev. Lett. 66, 1126 (1991).
[8] M. Alcubierre, Class. Quant. Grav. 11, L73 (1994)

[arXiv:gr-qc/0009013]; A. E. Everett, Phys. Rev. D 53,
7365 (1996).

[9] A. Ori, arXiv:gr-qc/0503077.

[10] O. Gron and S. Johannesen, arXiv:1004.3235 [gr-qc];
ibid., New J. Phys. 10, 103025 (2008) [arXiv:gr-
qc/0703139].

[11] M. Visser, Lorentzian Wormholes - from Einstein to

Hawking, Springer, New York, 1996.
[12] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys.

Lett. B 429, 263 (1998) [arXiv:hep-ph/9803315]; I. Anto-
niadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali,
Phys. Lett. B 436, 257 (1998) [arXiv:hep-ph/9804398];
N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys.
Rev. D 59, 086004 (1999) [arXiv:hep-ph/9807344];

[13] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370
(1999) [arXiv:hep-ph/9905221]; L. Randall and R. Sun-
drum, Phys. Rev. Lett. 83, 4690 (1999) [arXiv:hep-
th/9906064];

[14] G. Kaelbermann, Int. J. Mod. Phys. A 15, 3197 (2000)
[arXiv:gr-qc/9910063].



7

[15] H. Ishihara, Phys. Rev. Lett. 86, 381 (2001) [arXiv:gr-
qc/0007070].

[16] R. R. Caldwell and D. Langlois, Phys. Lett. B 511, 129
(2001) [arXiv:gr-qc/0103070].

[17] H. Stoica, JHEP 0207, 060 (2002) [arXiv:hep-
th/0112020].

[18] E. Abdalla, A. G. Casali and B. Cuadros-Melgar, Int. J.
Theor. Phys. 43, 801 (2004) [arXiv:hep-th/0501076].

[19] C. Csaki, J. Erlich and C. Grojean, Nucl. Phys. B 604,
312 (2001) [arXiv:hep-th/0012143].

[20] H. Pas, S. Pakvasa, J. Dent and T. J. Weiler, Phys. Rev.
D 80, 044008 (2009) [arXiv:gr-qc/0603045].

[21] S. Deser, R. Jackiw and G. ’t Hooft, Annals Phys. 152,
220 (1984).

[22] S. Deser and R. Jackiw, Comments Nucl. Part. Phys. 20,
337 (1992) [arXiv:hep-th/9206094].

[23] S. Deser, R. Jackiw and G. ’t Hooft, Phys. Rev. Lett. 68,
267 (1992).

[24] G. M. Shore, Int. J. Mod. Phys. A 18, 4169 (2003)
[arXiv:gr-qc/0210048], and references therein.

[25] S. M. Carroll, E. Farhi, A. H. Guth and K. D. Olum,
Phys. Rev. D 50, 6190 (1994) [arXiv:gr-qc/9404065].

[26] B. Shlaer and S. H. Tye, Phys. Rev. D 72, 043532 (2005)
[arXiv:hep-th/0502242].

[27] S. W. Hawking, Phys. Rev. D 46, 603 (1992).
[28] In fact, we can show that a single mode from the set {an}

is sufficient to admit a CTC.


