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Since Pythagoras of Samos and Euclid of Alexandrig we have
known how to express the squared distance between entities a
the sum of squares of displacements in perpendicular diregins.
Since Hermann Minkowski? and Albert Einstein®, the squared in-
terval between events has acquired a new term which represen
the square of the time displacement and which comes in with a
negative sign. Most higher dimensional theories, whose ains
to unify the physical interactions of nature, use space-lik extra
dimensions (more squares with positive signs) rather thanime-
like (more squares with negative signs)~%l. But there need be
no contradiction if timelike extra dimensions are used: forexam-
ple, in the seminal work of Lisa Randall and Raman Sundruni,
consistency can be achieved by replacing their parameter$ and
A by —r? and —A, respectively. Here a new spinorial theory of
physics is developed, built on Einstein’s general relatity® and
using the unifying triality concept of Elie Cartan®!%: the trial-
ity links space-time with two twistor spaces'~'¥. Unification en-
tails that space-time acquires two extra dimensions, each which
must be time-like. The experimental device known as the Larg
Hadron Collider, which is just now coming online, is expectd to
put the higher-dimensional theories and this prediction inpartic-
ular to the test!%16,



The present theory has three key features:

e A powerful new spinor transform is constructed in generktiaty, the =-
transform, solving a forty-year old problem posed by RogamBse!'~14:
to find a non-local, essentially spinorial approach to fundatal physics.

e It gives a co-ordinate free definition of chaos for spacesinypical defi-
nitions of chaos use a preferred time co-ordinate, for exangpdefine the
Lyapunov exponent$, violating the basic principles of general relativity.

e It rounds out the "primordial theory” of the author and PiTiillman’ 1822,
which supposes that there is a triality symmetry of the tygeetbped by
Elie Cartan®, associated with the real Lie gro@i4, 4). In particular trial-
ity requires that space-time extends minimally to six-disiens, of signa-
ture(3, 3), so it predictdwo extra timelike dimensions

The triality links real vector spaces B andC, each of dimension eight and each
with a dot product of signaturel, 4), by a real-valued trilinear forn{zyz), for =

in A, yin B andz in C*%18, Dualizing gives mapé x B — C, B x C — A and

C x A — B, denoted by parenthe$es. Then, for example((zy)z) = z.z v,
and(xy).z = (zz).y = (y2).x = (zyz), for anyz, y andz in A, B andC*'8.

Fix a null vectory # 0 in B. The setV,, of all z in A, such thatzy) = 0 is
a totally null, self-dual, four-dimensional subspace\ofThe restriction toV,, of
the three-fornw, = xAdxAdzNdz, factors:w, = 7(y®y)a,, wherer is a canon-
ical isomorphism of the space of trace-free symmetric etemefB @ B with the
space of self-dual elements of the fourth exterior proddick avith itself (each
space has dimensiaid) and«, is an ordinary three-form, homogeneous of de-
grees minus four and minus two in the variableendy, respectively. For integral
k, denote byH (A, k) the space of smooth functiorf§x), defined for non-zero
null vectorsz in A, that are homogeneous of degieef (tz) = t* f(x), for any
non-zero reat. DefineH (B, k) andH(C, k) analogously. Fof (x) € H(A, —4),
the following integral is well-defined:

=2 (f)(y) = /N L f@e

The integral is taken over a oriented three-sphere in theespg — {0}, sur-
rounding the origin. The output functiat} (/) belongs taH (B, —2), so=} gives
a natural integral transformation=7 : H(A, —4) — H(B, —2), the=-transform.
There aresix such transforms, one for each ordered pair from the AeB, C}.
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Now the work of Robin Graham, Ralph Jenne, Lionel Mason aedatitthot’
yields a canonical conformally invariant second ordereddhtial operator,1,,
mappingH (A, —2) to H(A, —4), with analogous operatofSy and ¢ for the
space® andC, respectively. The first major result is:

—B —B

Thephysical interpretations that the space of null rays i is a six-dimensional
generalization of Minkowski spacetime (equipped with afoamal structure of
signatureg(3, 3)), into which the ordinary Minkowksi spacetime naturally lesds
(see below), whereas the null raysBrandC are six-dimensional spaces of null
twistors, whose real scaling is factored but'¥. Then the=-transform gives

a six-fold binding togetheof these spaces, transferring information between the
spaces, withossegquantified by the wave operator.

Shockingly, this transform generalizes to arbitrary four-dimensional space-
time M, with metricg. Let e denote the complex spinor symplectic formif so
thatg = e®e (the bar denotes complex conjugatitin)Denote bys* the co-spinor
bundle of all pairgz, 7) with z in M and7 a non-zero co-spinor at Each such
co-spinorr naturally represents a future pointing non-zero null coteedenoted
pr, such thap,, = |t|?p,, for any complex numbetr # 0'3. The null geodesic
sprayV is the vector field of$*, whose integral curves represent a null geodesic
with a parallely propagated spiner= 0, such thay~!(p,) is tangent to the null
geodesic. For integrél, denote by7 (k) the space of aliwistor functionsf (z, 7)
of degreek: soN'(f) = 0 andf(x,tr) = t* f(z, w), for anyreal numbert # 013,
Note that the elements @f(k) depend on six free real variables.

For f(x, ) in T(—4), the generak-transform is given by the integral formula:

[1]

() =i A fla,m)e ! (n,dm) N (T, dT) A O.pr.

vy(m)
Hered is the vector-valued canonical one-formMdf pulled back to the co-spin-
bundle and the dot represents the canonical pairing of secter and a vector.
Also dr is the tautological co-spinor-valued one-form on the co-fundle rep-
resenting the Levi-Civita spin connection. Next;) is a future-pointing null
geodesic inVl with parallely propagated non-zero spingrsuch thay~*(p,) is
tangent to the null geodesic. Finally,,, is a "fattened” null geodesic: the three-
manifold consisting of all tripleéz, =, ) with 7 andn co-spinors at, such that
x liesinvy(n) and{r, n} is anormalizedspin-framer @ n —n® T = e.
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It is easily checked thaE(f) € 7(—2), so we have aatural non-local spinor
transform called the=-transform from7 (—4) to 7 (—2). This transform then is
the long-sought answer to Penrose’s challenge. It has tloeviog properties:

e Itis conformally invariant.

e It uses thephaseof the spinors in an essential way: the space of null
geodesics in space-time is five-real dimensional; the siatfable in our
theory is the spinor phase.

e Mutatis mutandisfor the case of conformally flat space-time, it is equiva-
lent to the=§ transform described above.

¢ In conformally flat space-time, there is a natural confoiyniavariant op-
erator, denotedl, mappingZ (—2) to 7 (—4), such thatlo= = Zo [0 = 0.

e It completes the "primordial theory” providing the anabal component to
accompany the previous geometric and algebraic constnscéind showing
how to extend that theory to curved space-tifig.

We would like to understand the meaning of Exransform. Of principal interest
is the nature of its image. On the basis of examination ofrdmesform in various
prototypical space-times, particularly those of Deverdapadia and the authg
we are led to the following definition:

e The space-time isoherenif and only if the image of th&-transform obeys
apseudo-differential equatigif not the space-time is said to lohaotic

We view the coherence condition as a resonance or tuningea$ghce-time; in
particular it isnon-perturbativan character. We conjecture that all space-times
that have previously been treated by twistor methods arereokr for example,
the stationary axi-symmetric space-times, as analyzeditlyaRl Ward'. These
include the fundamental space-times of physical intertrs: solutions of Karl
Schwarzschiléf and Roy Kerf?. Similarly we conjecture that the space-times
of Vladimir Belinski, Isaak Khalatnikov and Evgeny Lifshit are chaotic in our
sense.



The triality spaces have conformal symmetry group the gfd@p 4). We need to
reduce this td(2, 4) to give the conformal symmetries of Minkowksi space-time.
Also, for the two twistor spaces, we need to reducB{d, 2), to recover the stan-
dard successful quantum twistor description of masslasieies in terms of sheaf
cohomology, due to Lane Hughston, Penrose and the diitAoBurprisingly, we
can achieve these reductions with a common mechanism: arocoaf symme-
try of rotational type, whose orbits are circles about a{diunensional invariant
"axis”: the conformally compactified Minkowki space-tim&/e may write the
equation of the null cone ok asqq = r7, whereq andr are non-zero quater-
nions, and the bar denotes the conjugation of quaterniomesn The rotations are
(q,7) — (q, e''re="), for t real, where # 0 is a unit imaginary quaternion. The
axis comprises all pairg, r) with r = u+1v, for u andv real. Thenyg = u?+v?,
giving the correctD(2, 4) structure. Simultaneously, the operat@utomatically
gives the other triality spaces their needed complex strast allowing the cor-
rect definitions of sheaf cohomology and massless patrticles

Remarkably this same idea extends to an arbitrary spaae-fiilme conventional
space-time structure whose information we wish to presexvibe Fefferman
tensorF = i0* ® (Tadwa — madT4), USING the abstract index formalism of
Penros&, which is defined on the spin-bundle and which plays threestoits
skew part is the form used by Edward Wittemo control the space-time energy;
the exterior derivative of the skew part gives rise to a forial controls the Ein-
stein field equatiort§; its symmetric part gives theentral fact of twistor theory
and, in particular controls the hypersurface twistor ty&of .

This structure extends naturally and beautifully to simensional space-time,
necessarily of signatur@, 3), where the tensor is now given simply by the for-
mula: F = 0*°@n,dns; here the co-spinors,,, of real dimension four, transform
according to a fundamental representation of the giu@, R); also the canon-
ical one-formd? is skew, so has the requisite six degrees of freedom. There ar
two main points. First on restriction to the original spaicee submanifold, the
spinors lose no information, the correspondence being> (74, 74). Second,
in general, the six-dimensional spin connectibwould have extra terms of spin
two over and above those of general relativity, on resticto the space-time.
However these terms can be eliminated by precisely the saaohanism that for
conformally flat space allows the correct definition of masslparticles: we re-
quire that there be a conformal Killing symmetry of rotatibtype, whose axis is
the space-time.



So we predict that spacetime extends to six dimensionsgofsire(3, 3), with

a rotational symmetry: this means that the effective stmecis the anti-de-Sitter
group, allowing contact with the important work of Juan Maddn&®; also from
the viewpoint of the work of Randall and Sundrimspace-time appears as a kind
of brane or orbifold, the main difference with the philosgi their work being
the difference over signature. Further we can now systealbtigo through the
canon of string theory, appropriately adapting its coneépthe present situation,
thereby achieving at least the outline of a synthesis foichasysics. In particu-
lar the fundamental string amplitude, the so-called "tesysants” diagrarh will
become an amplitude relating three strings, one in eachreé thfferentspaces,
one being the extended space-time and the others beingahesistor spaces. Fi-
nally the three spaces will be linked by the fundamental guarfermionic fluid

of Shou-Cheng Zhang and Jiangping®Mi}, the spaces arising at the boundaries
of the fluid, the excitations at the boundary giving rise te #tructure of the
spaces.
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