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We consider the conditioning of the timeless solution to the Wheeler-DeWitt equation by a pre-
defined matter clock state in the simple scenario of de Sitter universe. The resulting evolution of
the geometrodynamical degree of freedom with respect to clock time is characterized by the “Berry
connection” of the reduced geometrodynamical space, which relies on the coupling of the clock with
the geometry. When the connection vanishes, the standard Schrödinger equation is obtained for the
geometry with respect to clock time. When one considers environment-induced decoherence in the
semi-classical limit, this condition is satisfied and clock time coincides with cosmic time. Explicit
results for the conditioned wave functions for minimal clocks made up of two quantum harmonic
oscillator eigen-states are shown.
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I. INTRODUCTION

In the canonical approach to relativistic and non-relativistic quantum mechanics, where one supposes a background
classical geometry, a classical time sticks out in the Schrödinger (functional) equation as a external parameter used
by the observer. The apparent lack of an external time for the dynamics of canonical quantum gravity, the so called
problem of time put forth by the Wheeler-DeWitt (WD) equation [1]

ĤΨ = 0 , (1)

has been therefore one of the elements stimulating the research concerning the nature of time and towards under-
standing how the evolution of the quantum state of the universe Ψ can be described when time and space themselves
become dynamical variables [2–6].

Different ways have been produced to try and rescue a effective time variable in the canonical picture of gravity.
In one class of such attempts, one tries to extract a physical variable t to be used as a effective time and obtain a
Schrödinger-like structure for the Hamiltonian H

ĤΨ =
(
ĥ− i∂t

)
Ψ = 0 . (2)

The structure ĥ + p̂t, ĥ being a physical Hamiltonian describing the evolution with respect to time t and p̂t being
the momentum canonically conjugated to time, is characteristic of time-reparametrized Hamiltonians in the classical
theory, i.e. Hamiltonians where coordinate time t has been promoted to a dynamical variable t(θ) dependent on some
implicit, unobservable time θ. The absence of a structure like (2) with respect to time in canonical gravity, already
at the classical level, is due to the fact that the theory is built on space-time diffeomorphism invariance to begin with
and the attempts to try and identify a canonical momentum to use as a generator of time translations is plagued by
difficulties of various kinds and degrees (see e.g. [7–9]).

A rather general idea to extract dynamics from a seemingly stationary system has been proposed in what is
sometimes called the Page-and-Wootters (PaW) approach or Conditional Probability Interpretation (CPI) [10, 11],
where “time” evolution is read, under the condition that the total state Hamiltonian

Ĥ = ĤC ⊗ 1R + 1C ⊗ ĤR (3)

is constrained, in the quantum correlations between the two partition of total state, i.e. a clock state (C) and the
physical state (R) ( the “rest of the universe”) entangled with it. Time evolution emerges through the measurement
of a clock observable of some kind, whose reading conditions the physical state. The attention to this approach seems
to have gone through a recent revival, especially after some of the most important criticisms moved to it in the past
have been addressed, followed by a experimental illustration of the mechanism [12–14]. The actual application of the
CPI to timelessness in canonical quantum gravity, which originally motivated it, still seems to be lacking.

One important requirement that is generally cast on a good clock is that it weakly interacts with the system it
describes the evolution of. When we take gravity to partake in the dynamics, though, it couples to all forms of
energy, including the clock, and while the coupling might become weak for some chosen cases (e.g. when the clock
has conformal coupling to a conformally invariant geometry) or approximations, it may generally be strong or even
dominant in the quantum regime. On the other hand, when we consider how classical time emerges from the timeless
WD equation (1) in the semi-classical limit, we see that it comes to be defined as the parameter along the classical
trajectories of the gravitational degrees of freedom in the WKB approximation. The origin of the classical time of the
(functional) Schrödinger equation lies therefore precisely in the coupling between geometry and matter fields.

In the present work, rather than trying to recover a equation of the Schrödinger type (2) or a notion of time
through dynamical observables, we study how, starting from a definition of the clock time, the resulting conditioned
state for the geometry evolves with respect to it in the general case where coupling cannot be neglected. We will
treat the simple example of the mini-superspace model of a de Sitter universe with a homogeneous massive scalar
field minimally coupled to gravity. In Section II we introduce the mini-superspace model and expand the solution of
the WD equation in the eigen-states of the matter Hamiltonian. In Section III we discuss how time emerges in the
semi-classical limit of gravity and how it appears for the conditioning by a predefined matter clock in the quantum
regime. In Section IV we show the explicit solution for minimal working clocks. Final observations and conclusions
are provided in Section V.
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II. MINI-SUPERSPACE MODEL

We will consider the simple scenario of the minisuperspace for a spatially flat FLRW universe of scale factor a

ds2 = −N(t)2dt2 + a(t)2δijdx
idxj (4)

with a minimally coupled scalar field φ and a cosmological constant Λ. The classical action is 1

S =
1

2κ2

∫
d4x
√
−g (R− 2Λ) +

∫
d4x
√
−g
(
−1

2
(∂µφ)

2 − U(φ)

)
. (5)

The Lagrangian is

L =
V

κ2

(
−3aȧ2

N
−Na3Λ

)
+ V a3

(
φ̇2

2N
−NU

)
(6)

=
1

κ2

(
− ρ̇2

3Nρ
−NρΛ

)
+ ρ

(
φ̇2

2N
−NU

)
, (7)

where ˙ := d/dt, V denotes the comoving volume of the universe and we introduced the physical volume of the universe
ρ := V a3 as a dynamical variable. The canonical momenta are

πρ =
∂L

∂ρ̇
= − 1

κ2

2ρ̇

3Nρ
, πφ =

∂L

∂φ̇
=
ρ φ̇

N
. (8)

The Hamiltonian reads

H = πρρ̇+ πφφ̇− L = N (Hρ +Hφ) , (9)

where

Hρ := ρ

(
−3κ2

4
π2
ρ +

Λ

κ2

)
, Hφ :=

π2
φ

2ρ
+ ρU(φ). (10)

The metric is

ds2 = −N2dt2 + (ρ/ρ0)2/3 δijdx
idxj , ρ0 := V . (11)

The first class Hamiltonian constraint

δH/δN = Hρ +Hφ = 0 (12)

becomes

1

3

(
ρ̇

Nρ

)2

= Λ + κ2

ρ2

2

(
φ̇

N

)2

+ U(φ)

 , (13)

which corresponds to the Friedmann equation for the universe with a minimal scalar field if we choose N = 1.
Constraint quantization of (12) for a physical state Ψ gives the WD equation

(Ĥρ + Ĥφ)Ψ = 0 . (14)

In the representation diagonalizing (ρ, φ), we have the WD equation for the wave function Ψ(ρ, φ):[
ρ

(
∂2

∂ρ2
+ λ

)
+

4

3κ2

(
− 1

2ρ

∂2

∂φ2
+ ρU(φ)

)]
Ψ(ρ, φ) = 0 , (15)

1 ~ = 1 , κ2 = 8πG = 1
M2
p
.
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where λ = 4Λ/(3κ4) and we have assumed appropriate ordering of the operator π̂ρ for simplicity of analysis.
For the free massive field U(φ) = µ2φ2/2, the matter Hamiltonian is

Ĥφ = − 1

2ρ

∂2

∂φ2
+

1

2
ρµ2φ2 . (16)

When we consider the eigen-states of the Hamiltonian Ĥφ, the variable ρ contained in Ĥφ can be treated as an
unknown external parameter and the eigenvalue equation is

Ĥφ χn(φ|ρ) = En χn(φ|ρ) , (17)

where χn(φ|ρ) are the energy eigen-states of Ĥφ for any value of ρ and the energy eigen-states can be determined as

χn(φ|ρ) =
1√

2nn!
√
π

(µρ)
1
4 e−µρφ

2/2Hn (
√
µρφ) . (18)

Hn(x) are the Hermite polynomials and the associated eigenvalues are

En = µ

(
n+

1

2

)
, n = 0, 1, 2, · · · . (19)

The eigen-modes χn satisfy the orthogonality and completeness relations

(χm, χn) :=

∫ ∞
−∞

dφχ∗m(φ|ρ)χn(φ|ρ) = δmn , (20)∑
k

χ∗k(φ1|ρ)χk(φ2|ρ) = δ(φ1 − φ2) . (21)

Then we can expand the universal wave function Ψ(ρ, φ) as

Ψ(ρ, φ) =
∑
n

ψn(ρ)χn(φ|ρ) . (22)

The function ψn(ρ) represents one component of the quantum state of the universe and its form is determined by the
substituting (22) in the WD equation (15)∑

n

[
ρ
(
∂2
ρψn + λψn

)
χn +

4

3κ2
ψn Ĥφχn

]
= −

∑
n

ρ
[
2∂ρψn ∂ρχn + ψn ∂

2
ρχn

]
. (23)

After taking inner product with χm, the wave function of the universe ψn obeys

∑
n

[
ρ
∑
k

D̂mkD̂kn +

(
ρλ+

4Em
3κ2

)
δmn

]
ψn = 0 , (24)

where the covariant derivative is introduced as

D̂mn := δmn∂ρ − iAmn , (25)

with the “Berry” connection

Amn := i(χm, ∂ρχn) . (26)

As a result of the connection, different components ψn of the expansion (22) become generally coupled to each other.
For each component, the connection leads to a geometric phase and the formal solution of (24) is given by 2

ψn(ρ) =
∑
m

[
P exp

(
i

∫
dρA(ρ)

)]
nm

bmGm(ρ) , (27)

2 For a function ψ = BG, (∂ρ − iA)ψ = (∂ρB − iAB)G + B∂ρG = B∂ρG for ∂ρB = iAB. The solution of this condition is B =
P exp

(
i
∫
dρA(ρ)

)
.
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where bm are constants, the symbol P denotes a path ordering and the functions Gn satisfy

−ĤρGn = EnGn (28)

which gives

Gn = ρ e−i
√
λ ρ

1F1[1 + iβn/
√
λ, 2, 2i

√
λρ] , βn =

4µ

3κ2
(n+ 1/2) , n = 0 , 1 , 2 , . . . (29)

1F1 being Kummer’s confluent hypergeometric function.

III. EMERGENCE OF TIME

A. WKB time

In the semi-classical limit, time naturally appears as a parameter along the superspace trajectories of the spatial
geometry. One considers the WKB ansatz for the wave function [15, 16]

Ψ(ρ, φ) = exp

[
i

∞∑
n=0

(
3κ2

2

)n−1

Sn(ρ, φ)

]
. (30)

By substituting in (15) and equating each order of
(
3κ2/2

)p
one obtains

[p = −2] : ∂φS0 = 0 , (31)

[p = −1] : (∂ρS0)
2

= 3Λ , (32)

[ p = 0 ] :

(
− 1

2ρ

∂2

∂φ2
+ ρU

)
eiS1 = ρ∂ρS0∂ρS1 , (33)

. . .

Equations (31) and (32) give S0 = S0(ρ) and the Einstein-Hamilton-Jacobi equation for de Sitter space, respectively.
Then introducing the WKB time as a parameter along the classical trajectories of ρ(τ)

∂τ := −ρ(∂ρS0)∂ρ = −ρπρ∂ρ , (34)

equation (33) gives the functional Schrödinger equation

∓i∂τχ = Ĥφχ (35)

for the matter wave functional χ := eiS1 on the classical de Sitter background. Ambiguity in the sign of (34), which
determines the direction of the cosmological arrow of time, corresponds to the choice of sign in (32), where positive
sign gives the contracting de Sitter universe and negative sign the expanding one. These correspond also to the choice
of Gn rather than G∗n as a fundamental solution in (28). In the semi-classical approximation, the total wave function
is

Ψ(ρ, φ) ∝ e±i
√
λρχ(ρ, φ) . (36)

B. Scalar field as a clock

Classical (WKB) time (34) relies on the coupling between geometry and matter and on the existence of trajectories
for the geometrodynamical degrees of freedom. Therefore it cannot be extended straightforwardly to the full quantum
regime. In the present approach we start with the definition of a clock time through the scalar field φ, which we

regard as a clock. More specifically, given the Hamiltonian Ĥφ, we define a “clock time” T as a parameter of the
following normalized clock wave function

χ̃(T, φ|ρ) =
∑
n

cn e
−iEnTχn(φ|ρ) ,

∑
n

c∗ncn = 1 , (37)
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which satisfies the standard Schrödinger equation

i∂T χ̃ = Ĥφ χ̃ . (38)

By quantum estimation of the time parameter T of the clock χ̃(T, φ|ρ), the quantum state of the geometry conditioned
by the clock reading T will effectively be described by

ψ̃(ρ, T ) : = (χ̃(T, φ|ρ),Ψ(ρ, φ, T )) =
∑
m

c∗me
iEmTψm(ρ) =

∑
m,n

c∗mbne
iEmTBmnGn(ρ) (39)

where we have defined for simplicity of notation the matrix of elements

Bmn(ρ) :=

[
P exp

(
i

∫
dρA(ρ)

)]
mn

. (40)

The exact form of the connection is

Amn(ρ) = i(χm, ∂ρχn) = i
αmn
4ρ

, (41)

where

αmn : = 4ρ

∫ ∞
−∞

dφχ∗m(φ|ρ) ∂ρχn(φ|ρ)

=
√
n(n− 1) δm,n−2 −

√
(n+ 2)(n+ 1) δm,n+2 . (42)

Notice that for the present choice of Hamiltonian the energy eigenvalues are independent on the parameter ρ and
therefore are not affected by the derivative in the connection. The integral of the connection is∫ ρ

ρ0

dρ′Amn(ρ′) = i
αmn

4
ln(ρ/ρ0) . (43)

where we may identify the arbitrary scale ρ0 with the comoving volume of the universe introduced before. If we set
this scale, for example, as the Planck scale, then ρ < ρ0 belong to the sub-Planckian, strong quantum regime.

C. Evolution equation

The time evolution of state ψ̃(ρ, T ) =
∑
n c
∗
ne
iEnTψn is determined implicitly through its conditioning by the clock

and is not generally of the Schrödinger type with the pure geometrodynamical Hamiltonian Hρ. To derive the explicit
dynamic law, one may start by noticing that

1

∆T

∫ T+∆T

T

dT ′eiµnT
′

= δn0 , ∆T :=
2π

µ
, (44)

and therefore

c∗nψn(ρ) =
1

∆T

∫ T+∆T

T

dT ′e−iEnT
′
ψ̃(ρ, T ′) , (45)

c∗nEnψn(ρ) = − i

∆T

∫ T+∆T

T

dT ′e−iEnT
′
ψ̃(ρ, T ′)∂T ′ ψ̃(ρ, T ′) . (46)

This allows to write

ψ̃(ρ, T ) =
∑
n

c∗ne
iEnTψn (47)

=
1

∆T

∑
n

∫ T+∆T

T

dT ′e−iEn(T−T ′)ψ̃(ρ, T ′) . (48)
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A representation of the delta function in the interval [T, T + ∆T ] is therefore

δ(T ′ − T ) :=
1

∆T

∑
n

e−iEn(T ′−T ) . (49)

Using the previous relations and assuming cn 6= 0 ∀n, the WD equation (24) gives the evolution equation of ψ̃

i∂T ψ̃(ρ, T ) = Ĥρψ̃(ρ, T ) +
3κ2

4∆T
ρ
∑
m 6=n

c∗m
c∗n

∫ T+∆T

T

dT ′ei(EmT−EnT
′)[D̂2]mnψ̃(ρ, T ′) . (50)

Although the obtained equation has the structure of a differential-integral equation, when [D2]mn has only diagonal

non-vanishing components (the connection is zero), the Schrödinger equation with Hamiltonian Ĥρ is recovered for

ψ̃.
The first term of the RHS of (50) is inherited by conditioned state independently on the coupling between the

clock and the geometry and corresponds to the mechanism discussed by Page and Wootters. On the other hand, the
second term depends on the coupling through the connection in the geometric phase term. Notice that vanishing of

this term does not necessarily require the coupling to be absent and one may obtain for ψ̃ the Schrödinger evolution

generated by Ĥρ also when the coupling is strong. On the other hand, recovery of semi-classical time (WKB time)
itself requires that a coupling between matter and geometry exists.

In the semi-classical expansion of Ψ(ρ, φ) solving the WD equation, the geometrodynamical variable ρ and matter
variable φ are treated respectively as “heavy” and “fast” degrees of freedom of the system. The evolution of the heavy
degrees of freedom is described by the classical Einstein-Hamilton-Jacobi equation (32) for the chosen metric, while
the matter field describes quantum perturbations of the system. For a cyclic evolution of ρ, the various components
of (43) become contributions to the so-called Berry phase acquired by the system, which has been discussed both in
the context of non-relativistic quantum mechanics, where it was first introduced, as well as in quantum cosmology
[17–21]. In the present case, though, the relevance of the phase (43) originates from the fact that it determines the
coupling of different components of the expansion (22) and the time evolution law of the geometrodynamical state.

When one takes into account the necessary coupling of gravity with “environmental” degrees of freedom [22], the
fast energy eigen-modes in the expansion (22) decohere from each other and one can neglect the off-diagonal elements
of (26), in which consists the so called “Born-Oppenheimer approximation”. Since the coherence between different
components of the clock decays, the clock cannot be used any longer to track time as the quantum superposition is
destroyed and the time-dependent relative phases between distinct energy eigen-states is lost. This is reflected in the
decoupling of the different indexes of ψn in (24) and the diagonalization of (40). In this limit, we obtain a effective

Schrödinger equation for each component of ψ̃

Ĥρψn = −Enψn (51)

which is equivalent to the equation defining Gn in the timeless picture (28). For a given n-branch with En := E, the

solution is ψ̃ ≈ exp [iET + iS(E, ρ)] and the classical trajectory is recovered by the condition

const. = ∂E (ET + S) = T + ∂ES(E, ρ) , (52)

from which the kinematic expression for ρ = ρ(T ) can be obtained. For the present case, it is possible to check that
we obtain the classical equation for ρ with pure cosmological constant with N = 1 slice and clock time T corresponds
to cosmic time.

IV. SOLUTION OF THE WD EQUATION WITH CLOCK

We will consider different clock models and show the behavior of the corresponding conditioned state ψ̃.

A. Clock with a single eigen-state

To start, let us consider the total wave function with only the m-th component

Ψ(ρ, φ) = ψm(ρ)χm(ρ, φ) . (53)
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For this state the connection vanishes A = Amm = 0 and the wave function of the universe conditioned by the clock
is simply

ψ̃(T, ρ) = eiµ(m+1/2)TGm(ρ) . (54)

Thus the wave function has the trivial time dependence given by a overall phase factor, which is not measureable.
The disappearance of clock time for the case of a single energy eigen-state reflects the fact that a working clock needs
a superposition of at least two energy eigen-states to track the time evolution.

B. Clock with two eigen-states

Let us the consider the minimal case of a working clock, made up of the only two eigen-states 0 and 1 (c0 = c1 =

1/
√

2). The timeless wave function will be

Ψ(ρ, φ) =
1√
2

(ψ0(ρ)χ0(φ|ρ) + ψ1(ρ)χ1(φ|ρ)) . (55)

Notice that when looking for the solutions ψn (27) satisfying (24) we have assumed a expansion including all the
eigen-states. This allows the use of the completeness relation to grant the vanishing of the extra ρ−2-order term∑
k(∂ρχm, χk)(χk, ∂ρχn)− (∂ρχm, ∂ρχn). We may consider the present case of a finite number of energy eigen-states

as an approximation where all other coefficients cm are negligibly small and can be dropped from the equation. Also
in this case, the connection Anm (n,m = 0, 1) vanishes and [ei

∫
dρA]nm = 1nm. The conditional state becomes

ψ̃(T, ρ) =
eiµT/2√

2

(
G0(ρ) + eiµTG1(ρ)

)
, (56)

where the relative phase makes the time dependence observable.

As discussed in the previous section, the simple time dependence of ψ̃(T, ρ) follows from the diagonality of (40).
For the choice of matter Hamiltonian (16), diagonality is granted for m 6= n± 2. The simplest example in which this

condition is not satisfied and ψ̃(T, ρ) takes a more complex time evolution is the case of eigen-states n,m = 0, 2

Ψ =
1√
2

(ψ0(ρ)χ0(φ|ρ) + ψ2(ρ)χ2(φ|ρ)) . (57)

The integral of the connection becomes∫ ρ

ρ0

dρ′A(ρ′) =
i√
8

ln(ρ/ρ0)

(
0 1
−1 0

)
, (58)

and

B =

 cos
(

ln(ρ/ρ0)√
8

)
sin
(

ln(ρ/ρ0)√
8

)
− sin

(
ln(ρ/ρ0)√

8

)
cos
(

ln(ρ/ρ0)√
8

) , (59)

which is independent on the path ordering since the dependence on ρ appears in the connection integral as a overall
multiplicative factor. The wave function of the universe conditioned by the clock (taking bn = 1/

√
2) becomes

ψ̃(T, ρ) =
eiµT/2

2

[(
B00(ρ) + e2iµTB20(ρ)

)
G0(ρ) +

(
B02(ρ) + e2iµTB22(ρ)

)
G2(ρ)

]
. (60)

For the chosen clock Hamiltonian, the general time evolution (50) is simply

i∂T ψ̃(ρ, T ) = Ĥρψ̃(ρ, T ) +
3κ2

8

(
∂ρ −

1

2ρ

) ∑
m6=n

c∗me
iEmTαmnψn(ρ)︸ ︷︷ ︸

X(ρ,T )

. (61)

While the state (56) follows exactly the Schrödinger equation with Hamiltonian Ĥρ, for the time evolution of the state
(60) the second term X of (61) will not vanish generally.
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FIG. 1. Plot of Re[X/Hρψ̃] (left) and |X/Hρψ̃| (right) for unitary values of the physical constants λ = µ = κ = ρ0 = 1 when
the {0, 2}-clock is employed.

The behavior of the ratio X/Hρψ̃ for the {0, 2}-clock is shown in Fig.1. The values of X(ρ, T ) and Hρψ̃ are

undetermined at ρ = 0∀T due to the “rotation” B(ln(ρ/ρ0)/
√

8), whose argument diverges at ρ = 0. In this regime,
(61) diverges from the Schrödinger evolution. On the other hand, for

ρ� λ−
1
2 = `2P `H (62)

where `−1
H := 2

√
Λ/3 is the de Sitter horizon scale and `P = κ is the Planck length, the ratio becomes negligibly

small. In this limit, Gm(ρ) can be approximated as

Gm(ρ) ≈ gmei(
√
λρ+ βm√

λ
log(
√
λρ))

, gm =
1

4
√
λ

(2i)
1+i βm√

λ

Γ
(

1 + iβm√
λ

) . (63)

On the other hand, ∂ρB can be neglected in this limit and, neglecting the other contributions of order ρ−1, X(ρ, T )
will be approximated as a oscillatory term of order κ2

X(ρ, T ) ≈ i3κ
2

8

√
λ

2

((
B22 − ei2µTB02

)
e
i
β2√
λ

log(
√
λρ)g2 +

(
B20 − ei2µTB00

)
e
i
β0√
λ

log(
√
λρ)g0

)
ei(

µ
2 T+

√
λρ) , (64)

which can be neglected compared to the growing contribution of the geometrodynamical Hamiltonian. Therefore, in
the limit (62) the Schrödinger equation is effectively recovered using this clock.

V. CONCLUSIONS

We have discussed the time dependence of the quantum state of the geometry obtained by conditioning the timeless
solution of the Wheeler-DeWitt equation with a predefined clock state. The resulting time dependence is generally
not trivial and the coupling between the clock and the geometry affects the quantum state through a geometric phase
which couples different components of the expansion of the timeless state in the basis of the energy eigen-states of
the clock. We have derived a evolution law for the geometry with respect to clock time which holds also when the
coupling between the clock and the geometry cannot be neglected. A standard Scrödinger-type evolution generated
by the geometrodynamical Hamiltonian is always recovered when the off-diagonal elements of the Berry connection,
which determines the geometric phase, vanish. In the semi-classical limit when environment-induced decoherence is
taken into account, the off-diagonal elements of the connection can effectively be neglected as well and the different
components of the clock decohere from each other. The disappearance of quantum superposition between different
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energy eigen-states of the clock makes it impossible to use it to track time: in this limit observers will rely on the
classical time parameter, which emerges in the WKB approximation of the total wave function. We have shown the
explicit result for minimal working clocks made up of two harmonic oscillators. For a clock made by a superposition
of the ground state and the first energy level (or indeed any two states which are not separated by two energy levels)
the Schrödinger evolution is retrieved exactly. Using a superposition of the ground state and the second energy level
harmonic oscillator the evolution of the quantum wave function of the geometry presents non-trivial deviation from
the Schrödinger-type evolution generated by the pure geometrodynamical Hamiltonian. The Schrödinger equation is
approximately recovered also for this clock for physical volume much larger than the scale `2P `H .

Although we have considered the simple case of a de Sitter mini-superspace, the extension to other geometries and
different matter Hamiltonians for the clock may proceed along the same lines.

ACKNOWLEDGMENTS

M. R. gratefully acknowledges support from the Ministry of Education, Culture, Sports, Science and Technology
(MEXT) of Japan.

[1] Bryce S. DeWitt. Quantum Theory of Gravity. I. The Canonical Theory. Phys. Rev., 160(5):1113–1148, August 1967.
[2] William G. Unruh and Robert M. Wald. Time and the interpretation of canonical quantum gravity. Phys. Rev. D,

40(8):2598–2614, October 1989.
[3] H. D. Zeh. Emergence of classical time from a universal wavefunction. Physics Letters A, 116(1):9–12, May 1986.
[4] J. J. Halliwell, J. Prez-Mercader, and W. H. Zurek. Physical Origins of Time Asymmetry. Cambridge University Press,

March 1996.
[5] E. Anderson. Problem of time in quantum gravity. Annalen der Physik, 524(12):757–786, 2012.
[6] Claus Kiefer. Does Time Exist in Quantum Gravity? In Dennis Lehmkuhl, Gregor Schiemann, and Erhard Scholz, editors,

Towards a Theory of Spacetime Theories, Einstein Studies, pages 287–295. Springer New York, New York, NY, 2017.
[7] Karel V. Kucha. Time and Interpretations of Quantum Gravity. page 211, 1992.
[8] C. J. Isham. Canonical Quantum Gravity and the Problem of Time. In L. A. Ibort and M. A. Rodrguez, editors, Inte-

grable Systems, Quantum Groups, and Quantum Field Theories, NATO ASI Series, pages 157–287. Springer Netherlands,
Dordrecht, 1993.

[9] Claus Kiefer. Conceptual Issues in Quantum Cosmology. In Jerzy Kowalski-Glikman, editor, Towards Quantum Gravity,
Lecture Notes in Physics, pages 158–187. Springer Berlin Heidelberg, 2000.

[10] William K. Wootters. Time replaced by quantum correlations. Int J Theor Phys, 23(8):701–711, August 1984.
[11] Don N. Page and William K. Wootters. Evolution without evolution: Dynamics described by stationary observables. Phys.

Rev. D, 27(12):2885–2892, June 1983.
[12] Ekaterina Moreva, Giorgio Brida, Marco Gramegna, Vittorio Giovannetti, Lorenzo Maccone, and Marco Genovese. Time

from quantum entanglement: An experimental illustration. Phys. Rev. A, 89(5):052122, May 2014.
[13] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum time. Phys. Rev. D, 92(4):045033, August 2015.
[14] C. Marletto and V. Vedral. Evolution without evolution and without ambiguities. Phys. Rev. D, 95(4):043510, February

2017.
[15] Claus Kiefer. The semiclassical approximation to quantum gravity. In J. Ehlers and H. Friedrich, editors, Canonical

Gravity: From Classical to Quantum, Lecture Notes in Physics, pages 170–212. Springer Berlin Heidelberg, 1994.
[16] J. J. Halliwell and S. W. Hawking. Origin of structure in the Universe. Phys. Rev. D, 31(8):1777–1791, April 1985.
[17] Berry Michael Victor. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London.

A. Mathematical and Physical Sciences, 392(1802):45–57, March 1984.
[18] M. V. Berry. Classical adiabatic angles and quantal adiabatic phase. J. Phys. A: Math. Gen., 18(1):15, 1985.
[19] Roberto Balbinot, Antonio Barletta, and Giovanni Venturi. Matter, quantum gravity, and adiabatic phase. Phys. Rev. D,

41(6):1848–1854, March 1990.
[20] D.p. Datta. Semiclassical backreaction and berrys phase. Mod. Phys. Lett. A, 08(03):191–196, January 1993.
[21] C. Kiefer. Why Quantum Gravity? In Ion-Olimpiu Stamatescu and Erhard Seiler, editors, Approaches to Fundamental

Physics: An Assessment of Current Theoretical Ideas, Lecture Notes in Physics, pages 123–130. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007.

[22] Erich Joos, H. Dieter Zeh, Claus Kiefer, Domenico J. W. Giulini, Joachim Kupsch, and Ion-Olimpiu Stamatescu. De-
coherence and the Appearance of a Classical World in Quantum Theory. Springer-Verlag, Berlin Heidelberg, 2 edition,
2003.


	Clock Time in Quantum Cosmology
	Abstract
	I Introduction
	II Mini-superspace model
	III Emergence of time
	A WKB time
	B Scalar field as a clock
	C Evolution equation

	IV Solution of the WD equation with clock
	A Clock with a single eigen-state
	B Clock with two eigen-states 

	V Conclusions
	 Acknowledgments
	 References


