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Preface

The development of cosmology will no doubt be seen as one of the scientific triumphs of
the twentieth century. At its beginning, cosmology hardly existed as a scientific discipline.
By its end, the Hot Big Bang cosmology stood secure as the accepted description of the
Universe as a whole. Telescopes such as the Hubble Space Telescope are capable of seeing
light from galaxies so distant that the light has been travelling towards us for most of the
lifetime of the Universe. The cosmic microwave background, a fossil relic of a time when
the Universe was both denser and hotter, is routinely detected and its properties examined.
That our Universe is presently expanding is established without doubt, and its material
composition is accurately determined.

We are now in an era where understanding of cosmology has shifted from the qualitative
to the quantitative. The turn of the millennium saw the establishment of what has come to
be known as the Standard Cosmological Model, representing an almost universal consensus
amongst cosmologists as to the best description of our Universe. Nevertheless, it is a model
with a major surprise – the belief that our Universe is presently experiencing accelerated
expansion. Add to that ongoing mysteries such as the properties of the so-called dark
matter, which is believed to be the dominant form of matter in the Universe, and it is clear
that we have some way to go before we can say that a full picture of the physics of the
Universe is in our grasp.

Such a bold endeavour as cosmology easily captures the imagination, and there has
been increasing demand for cosmology to be taught at university in an accessible manner.
Traditionally, cosmology was taught, as it was to me, as the tail end of a general relativity
course, with a derivation of the metric for an expanding universe and a few solutions. Such
a course fails to capture the flavour of modern cosmology, which takes classic physical
sciences like thermodynamics, atomic physics and gravitation and applies them on a grand
scale.

In fact, introductory modern cosmology can be tackled in a different way, by avoiding
general relativity altogether. By a lucky chance, and a subtle bit of cheating, the correct
equations describing an expanding universe can be obtained from Newtonian gravity. From
this basis, one can study all the triumphs of the Hot Big Bang cosmology – the expansion of
the Universe, the prediction of its age, the existence of the cosmic microwave background,
and the abundances of light elements such as helium and deuterium – and even go on to
discuss more speculative ideas such as the inflationary cosmology.

The origin of this book, first published in 1998, was a short lecture course at the Uni-
versity of Sussex, around 20 lectures, taught to students in the final year of a bachelor’s
degree or the penultimate year of a master’s degree. The prerequisites are all very standard
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physics, and the emphasis is aimed at physical intuition rather than mathematical rigour.
It has been further developed through my experiences of teaching cosmology at Imperial
College London, the University of Hawai‘i, and at the University of Edinburgh, plus much
useful feedback from readers.

The structure of the book is a central ‘spine’, the main chapters from 1 to 15, which
provide a self-contained introduction to modern cosmology. In addition there are six Ad-
vanced Topic chapters, each with prerequisites, which can be added to extend the course
as desired. Ordinarily the best time to tackle those Advanced Topics is immediately after
their prerequisites have been attained, though they could also be included at any later stage.

Cosmology is an interesting course to teach, as it is not like most of the other subjects
taught in undergraduate physics courses. There is no perceived wisdom, built up over a
century or more, which provides an unquestionable foundation, as in thermodynamics,
electromagnetism, and even quantum mechanics and general relativity. Each successive
edition of this book has introduced new discoveries, and lecturers can expect opportunities
to crop up during their course to discuss new results which impact on cosmologists’ views
of the Universe.

You can follow my own evolving views by checking out this book’s WWW Home Page
at

http://www.roe.ac.uk/~arl/cosbook.html
There you may find some updates on observations, and also a list of any errors in the book
that I am aware of. If you are confident you’ve found one yourself, and it’s not on the list,
I’d be very pleased to hear of it. Full-colour versions of many of the images can also be
found there.

Andrew R. Liddle
Edinburgh

September 2014

http://www.roe.ac.uk/~arl/cosbook.html
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Chapter 1

A Brief History of Cosmological
Ideas

The cornerstone of modern cosmology is the belief that the place that we occupy in the
Universe is in no way special. This is known as the cosmological principle, and it is an
idea which is both powerful and simple. It is intriguing, then, that for the bulk of the history
of civilization it was believed that we occupy a very special location, usually the centre, in
the scheme of things.

The ancient Greeks, in a model further developed by the Alexandrian Ptolemy, believed
that the Earth must lie at the centre of the cosmos. It would be circled by the Moon, the Sun
and the planets, and then the ‘fixed’ stars would be yet further away. A complex combina-
tion of circular motions, Ptolemy’s Epicycles, was devised in order to explain the motions
of the planets, especially the phenomenon of retrograde motion where planets appear to
temporarily reverse their direction of motion. It was not until the early 1500s that Coper-
nicus stated forcefully the view, initiated nearly two thousand years before by Aristarchus,
that one should regard the Earth, and the other planets, as going around the Sun. By ensur-
ing that the planets moved at different speeds, retrograde motion could easily be explained
by this theory. However, although Copernicus is credited with removing the anthropocen-
tric view of the Universe, which placed the Earth at its centre, he in fact believed that the
Sun was at the centre.

Newton’s theory of gravity put what had been an empirical science (Kepler’s discovery
that the planets moved on elliptical orbits) on a solid footing, and it appears that Newton
believed that the stars were also suns pretty much like our own, distributed evenly through-
out infinite space, in a static configuration. However it seems that Newton was aware that
such a static configuration is unstable.

Over the next two hundred years, it became increasingly understood that the nearby
stars are not evenly distributed, but rather are located in a disk-shaped assembly which we
now know as the Milky Way galaxy. The Herschels were able to identify the disk structure
in the late 1700s, but their observations were not perfect and they wrongly concluded that
the Solar System lay at its centre. Only in the early 1900s was this convincingly overturned,
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2 A BRIEF HISTORY OF COSMOLOGICAL IDEAS

by Shapley, who realized that we are some two-thirds of the radius away from the centre
of the Galaxy. Even then, he apparently still believed our galaxy to be at the centre of the
Universe. Only in 1952 was it finally demonstrated, by Baade, that the Milky Way is a
fairly typical galaxy, leading to the modern view, known as the cosmological principle
(or sometimes the Copernican principle), that the Universe looks the same whoever and
wherever you are.

It is important to stress that the cosmological principle isn’t exact. For example, no
one thinks that sitting in a lecture theatre is exactly the same as sitting in a bar, and the
interior of the Sun is a very different environment from the interstellar regions. Rather, it
is an approximation that we believe holds better and better the larger the length scales we
consider. Even on the scale of individual galaxies it is not very good, but once we take
very large regions (though still much smaller than the Universe itself), containing say a
million galaxies, we expect every such region to look more or less like every other one.
The cosmological principle is therefore a property of the global Universe, breaking down
if one looks at local phenomena.

The cosmological principle is the basis of the Big Bang Cosmology. The Big Bang is
the best description we have of our Universe, and the aim of this book is to explain why.
The Big Bang is a picture of our Universe as an evolving entity, which was very different in
the past as compared to the present. Originally, it was forced to compete with a rival idea,
the Steady State Universe, which holds that the Universe does not evolve but rather has
looked the same forever, with new material being created to fill the gaps as the Universe
expands. However, the observations I will describe now support the Big Bang so strongly
that the Steady State theory is almost never considered.



Chapter 2

Observational Overview

For most of history, astronomers have had to rely on light in the visible part of the spec-
trum in order to study the Universe. One of the great astronomical achievements of the
20th century was the exploitation of the full electromagnetic spectrum for astronomical
measurements. We now have instruments capable of making observations of radio waves,
microwaves, infrared light, visible light, ultraviolet light, X-rays and gamma rays, which
all correspond to light waves of different (in this case increasing) frequency. We are even
entering an epoch where we can go beyond the electromagnetic spectrum and receive in-
formation of other types. A remarkable feature of observations of a nearby supernova in
1987 was that it was also seen through detection of neutrinos, an extraordinarily weakly
interacting type of particle normally associated with radioactive decay. Very high energy
cosmic rays, consisting of highly-relativistic elementary particles, are now routinely de-
tected, though as yet there is no clear understanding of their astronomical origin. And as
I write, experiments appear close to the goal of directly detecting gravitational waves, rip-
ples in space–time itself, and ultimately of using them to observe astronomical events such
as colliding stars.

The advent of large ground-based and satellite-based telescopes operating in all parts
of the electromagnetic spectrum has revolutionized our picture of the Universe. While
there are probably gaps in our knowledge, some of which may be important for all we
know, we do seem to have a consistent picture, based on the cosmological principle, of
how material is distributed in the Universe. My discussion here is brief; for a much more
detailed discussion of the observed Universe, see Rowan-Robinson’s book Cosmology (full
reference in the Bibliography). A set of images, including full-colour versions of the figures
in this chapter, can be found via the book’s Home Page as given in the Preface.

2.1 In visible light

Historically, our picture of the Universe was built up through ever more careful observations
using visible light.

An Introduction to Modern Cosmology, Third Edition. Andrew Liddle.
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4 OBSERVATIONAL OVERVIEW

Figure 2.1 If viewed from above the disk, our own Milky Way galaxy would probably resem-
ble the M100 galaxy, imaged here by the Hubble Space telescope. (Figure courtesy NASA.)

Stars: The main source of visible light in the Universe is nuclear fusion within stars. The
Sun is a fairly typical star, with a mass of about 2 × 1030 kilograms. This is known
as a solar mass, indicated M�, and is a convenient unit for measuring masses. The
nearest stars to us are a few light years away, a light year being the distance (about
1016 metres) that light can travel in a year. For historical reasons, an alternative
unit, known as the parsec and denoted ‘pc’,1 is more commonly used in cosmology.
A parsec equals 3.261 light years. In cosmology, one seldom considers individual
stars, instead preferring to adopt as the smallest considered unit the conglomerations
of stars known as ...

Galaxies: Our Solar System lies some way off-centre in a giant disk structure known as
the Milky Way galaxy. It contains a staggering hundred thousand million (1011) or so
stars, with masses ranging from about a tenth that of our Sun to tens of times larger.
It consists of a central bulge, plus a disk of radius 12.5 kiloparsecs (kpc, equal to
103 pc) and a thickness of only about 0.3 kpc. We are located in the disk about 8
kpc from the centre. The disk rotates slowly (and also differentially, with the outer
edges moving more slowly, just as more distant planets in the Solar System orbit
more slowly). At our radius, the galaxy rotates with a period of 200 million years.
Because we are within it, we can’t get an image of our own galaxy, but it probably
looks not unlike the M100 galaxy shown in Figure 2.1.

1A parsec is defined as the distance at which the mean distance between the Earth and Sun subtends a second
of arc. The mean Earth–Sun distance (called an Astronomical Unit) is 1.496 × 1011 m, and dividing that by
tan(1 arcsec) gives 1 pc = 3.086 × 1016 m.



2.1. IN VISIBLE LIGHT 5

Our galaxy is surrounded by smaller collections of stars, known as globular clusters.
These are distributed more or less symmetrically about the bulge, at distances of 5–
30 kpc. Typically they contain a million stars, and are thought to be remnants of the
formation of the galaxy. As we shall discuss later, it is believed that the entire disk
and globular cluster system is embedded in a larger spherical structure known as the
Galactic halo.

Galaxies are the most visually striking and beautiful astronomical objects in the Uni-
verse, exhibiting a wide range of properties. However, in cosmology the detailed
structure of a galaxy is usually irrelevant, and galaxies are normally thought of as
point-like objects emitting light, often broken into sub-classes according to colours,
luminosities and morphologies.

The local group: Our galaxy resides within a small concentrated group of galaxies known
as the local group. The nearest galaxy is a small irregular galaxy known as the Large
Magellanic Cloud (LMC), which is 50 kpc away from the Sun. The nearest galaxy
of similar size to our own is the Andromeda Galaxy, at a distance of 770 kpc. The
Milky Way is one of the largest galaxies in the local group. A typical galaxy group
occupies a volume of a few cubic megaparsecs. The megaparsec, denoted Mpc and
equal to a million parsecs, is the cosmologist’s favourite unit for measuring distances,
because it is roughly the separation between neighbouring galaxies. It equals 3.086×
1022 metres.

Clusters of galaxies, superclusters and voids: Surveying larger regions of the Universe,
say on a scale of hundreds of Mpc, one sees a variety of large-scale structures, as
shown in Figure 2.2. This figure is not a photograph, but rather a carefully con-
structed map of the nearby region of our Universe, on a scale of about 1:1027! In
some places galaxies are clearly grouped into clusters of galaxies.

A famous example of a cluster of galaxies is the Coma cluster, which is about 100
Mpc away from our own Galaxy. The upper panel of Figure 2.3 shows a combined
optical/infrared image of Coma; although the image resembles a star field, almost
every source is a distinct galaxy (the main exception being two bright stars in the
upper right quadrant). Coma contains perhaps 10 000 galaxies, mostly too faint to
show in this image, orbiting in their common gravitational field.

However, most galaxies, sometimes called field galaxies, are not part of a cluster.
Galaxy clusters are the largest gravitationally-collapsed objects in the Universe, and
they themselves are grouped into superclusters, joined by filaments and walls of
galaxies. In between this ‘foamlike’ structure lie large voids, some as large as 50 Mpc
across. Structures in the Universe will be further described in Advanced Topic 5. Fig-
ure 2.4 shows an example of a computer simulation aiming to model the distribution
of material within the Universe.

Large-scale smoothness: Only once we get to scales of hundreds of megaparsecs or more
does the Universe begin to appear smooth, as revealed by extremely large galaxy
surveys such as the 2dF galaxy redshift survey and the Sloan Digital Sky Survey.
Such surveys do not find any huge structures on scales greater than those described
above; the galaxy superclusters and voids are believed to be the biggest structures in
the present Universe.
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Figure 2.2 A map of galaxy positions in a narrow slice of the Universe, as measured by the
Sloan Digital Sky Survey. Our galaxy is located at the centre, and the survey radius is around
600 Mpc. The galaxy positions were obtained by measurement of the shift of spectral lines,
as described in Section 2.4. (Figure courtesy M. Blanton and the Sloan Digital Sky Survey,
www.sdss3.org.)

The belief that the Universe does indeed become smooth on the largest scales, the
cosmological principle, is the underpinning of modern cosmology. It is interesting
that while the smoothness of the matter distribution on large scales has been a key
assumption of cosmology for decades now, it is only fairly recently that it has been
possible to provide a convincing observational demonstration.

2.2 In other wavebands

Observations using visible light provide us with a good picture of what’s going on in the
present-day Universe. However, many other wavebands make vital contributions to our
understanding, and in particular our best knowledge of cosmology comes not from visible
light but from microwaves.

Microwaves: For cosmology, this is by far the most important waveband. Penzias & Wil-
son’s accidental discovery in 1965 that the Earth is bathed in microwave radiation,
with a black-body spectrum at a temperature of around 3 Kelvin, was and is one of

http://www.sdss3.org
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Figure 2.3 Images of the Coma cluster of galaxies in visible/infrared light (top) and in
X-rays (bottom), the latter being on a larger angular scale. Colour versions can be found on
the book’s WWW site. (Images courtesy of NASA/Spitzer satellite and ESA/U. Briel/MPE
Garching/XMM-Newton satellite.)
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Figure 2.4 A computer simulation showing the predicted distribution of matter in the Uni-
verse on large scales. (Image courtesy V. Springel and the Virgo Consortium.)

the most powerful pieces of information in support of the Big Bang theory, around
which cosmology is based. This is now known as the cosmic microwave background
or simply CMB. Observations by the FIRAS (Far InfraRed Absolute Spectrometer)
experiment on board the COBE (COsmic Background Explorer) satellite have con-
firmed that the radiation is extremely close to the black-body form at a temperature
2.725 ± 0.001 Kelvin. This data is shown in Figure 2.5. Furthermore, the tem-
perature coming from different parts of the sky is astonishingly uniform, and this
presents the best evidence that we can use the cosmological principle as the founda-
tion of cosmology.

Even more importantly, it is possible to identify tiny variations, only one part in a
hundred thousand, between the intensities of the microwaves coming from different
directions. These were first discovered by the COBE satellite in 1992, and Figure 2.6
shows precision measurements published by the Planck Satellite collaboration in
2013. It is believed that these patterns, known as cosmic microwave background
anisotropies, are intimately related to the origin of structure in the Universe, and at
present such measurements give us by far the most accurate understanding of cos-
mology. This topic is explored further in Advanced Topics 5 and 6.

Infrared: Carrying out surveys in the infrared part of the spectrum, as was first done by
the highly-successful IRAS (InfraRed Astronomical Satellite) in the 1980s, is an ex-
cellent way of spotting young galaxies, in which star formation is at an early stage.
Infrared surveys pick up a somewhat different population of galaxies to surveys car-
ried out in optical light, though obviously the brightest galaxies are seen in both.
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Figure 2.5 The cosmic microwave background spectrum as measured by the FIRAS experi-
ment on the COBE satellite. The error bars are so small that they have been multiplied by 400
to make them visible on this plot, and the best-fit black-body spectrum at T = 2.725 Kelvin,
shown by the line, is an excellent fit.

Infrared is particularly good for looking through the dust in our own Galaxy to see
distant objects, as it is absorbed and scattered much less strongly than visible radia-
tion. Accordingly, it is best for studying the region close to our Galactic plane, where
obscuration by dust is strongest. Infrared is also vital for studying the most distant
galaxies, whose emission has been shifted predominantly into the infrared part of
the spectrum by the expansion of the Universe after the light was emitted, while
the far infrared can probe emission from interstellar dust grains to learn about dust-
enshrouded environments which are opaque at visible and near-infrared wavelengths.

X-rays: These are a vital probe of clusters of galaxies; in between the galaxies lies gas so
hot that it emits in the X-ray part of the spectrum, corresponding to a temperature
of tens of millions of Kelvin. This gas is thought to be remnant material from the
formation of the galaxies, which failed to collapse to form stars. X-ray emission from
the Coma galaxy cluster is shown in the lower panel of Figure 2.3. The individual
galaxies seen in the visible light image in the upper panel are almost all invisible in X-
rays, with the bright diffuse X-ray emission from the hot gas dominating the image.

Radio waves: A powerful way of gaining high-resolution maps of distant galaxies is by
mapping in the radio part of the spectrum. An important future probe of cosmology
will be observation of the ‘21 cm’ emission line, due to spin-flip of the electron in
a hydrogen atom, enabling maps of the distribution of neutral hydrogen gas in the
distant Universe. This can probe both the early development of structures in the Uni-
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Figure 2.6 The cosmic microwave background intensity variations on the sky as measured
by the Planck Satellite. (Image courtesy ESA/Planck collaboration.)

verse, and the transition of the Universe to its present state of high ionization of the
intergalactic medium.

2.3 Homogeneity and isotropy

The evidence that the Universe becomes smooth on large scales supports the use of the
cosmological principle. It is therefore believed that our large-scale Universe possesses two
important properties, homogeneity and isotropy. Homogeneity is the statement that the
Universe looks the same at each point, while isotropy states that the Universe looks the
same in all directions.

These do not automatically imply one another. For example, a universe with a uni-
form magnetic field is homogeneous, as all points are the same, but it fails to be isotropic
because directions along the field lines can be distinguished from those perpendicular to
them. Alternatively, a spherically-symmetric distribution, viewed from its central point, is
isotropic but not necessarily homogeneous. However, if we require that a distribution is
isotropic about every point, then that does enforce homogeneity as well.

As mentioned earlier, the cosmological principle is not exact, and so our Universe does
not respect exact homogeneity and isotropy. Indeed, the study of departures from homo-
geneity is currently the most prominent research topic in cosmology. I’ll introduce this in
Advanced Topic 5, but in the main body of this book I am concerned only with the be-
haviour of the Universe as a whole, and so will be assuming large-scale homogeneity and
isotropy.

2.4 The expansion of the Universe

A key piece of observational evidence in cosmology is that almost everything in the Uni-
verse appears to be moving away from us, and the further away something is, the more
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Figure 2.7 A plot of velocity versus estimated distance for a set of 1355 galaxies. A straight-
line relation implies Hubble’s law. The considerable scatter is due to observational uncer-
tainties and random galaxy motions, but the best-fit line accurately gives Hubble’s law. (The
x-axis scale assumes a particular value of H0.)

rapid its recession appears to be. These velocities are measured via the redshift, which
is basically the Doppler effect applied to light waves. Galaxies have a set of absorption
and emission lines identifiable in their spectra, whose characteristic frequencies are well
known. However, if a galaxy is moving towards us, the light waves get crowded together,
raising the frequency. Because blue light is at the high-frequency end of the visible spec-
trum, this is known as a blueshift. If the galaxy is receding, the characteristic lines move
towards the red end of the spectrum and the effect is known as a redshift. This technique
was first used to measure a galaxy’s velocity by Vesto Slipher around 1912, and was applied
systematically by one of the most famous cosmologists, Edwin Hubble, in the following
decades.

It turns out that almost all galaxies are receding from us, so the standard terminology
is redshift z, defined by

z =
λobs − λem

λem
, (2.1)

where λem and λobs are the wavelengths of light at the points of emission (the galaxy) and
observation (us). If a nearby object is receding at a speed v, then its redshift is

z =
v

c
, (2.2)
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Figure 2.8 According to Hubble’s law, the further away from us a galaxy is, the faster it is
receding.

where c is the speed of light.2 Figure 2.7 shows velocity against distance, a plot known as
the Hubble diagram, for a sample of 1355 galaxies.

Hubble realized that his observations, which were of course much less extensive than
those available to us now, showed that the velocity of recession was proportional to the
distance of an object from us:

�v = H0 �r . (2.3)

This is known as Hubble’s law, and the constant of proportionality H0 is known as Hub-
ble’s constant. Hubble’s law isn’t exact, as the cosmological principle doesn’t hold per-
fectly for nearby galaxies, which typically possess some random motions known as peculiar
velocities. But it does describe the average behaviour of galaxies extremely well. Hubble’s
law gives the picture of our Universe illustrated in Figure 2.8, where the nearby galaxies
have the smallest velocity relative to ours. Over the years many attempts have been made
to find accurate values for the proportionality constant, but, as we will see in Chapter 6, a
consensus is only now being reached.

At first sight, it seems that the cosmological principle must be violated if we observe
everything to be moving away from us, since that apparently places us at the centre of the
Universe. However, nothing could be further from the truth. In fact, every observer sees all

2This formula ignores special relativity and so is valid only for speeds v � c. If you’re interested, the special
relativity result, of which this is an expansion for small v/c, is

1 + z =

√
1 + v/c

1 − v/c
.

However, for distant objects in cosmology there are further considerations, concerning the propagation time of
the light and how the relative velocity might change during it, and so this expression should not be used.
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objects rushing away from them with velocity proportional to distance. It is perhaps easiest
to convince yourself of this by setting up a square grid with recession velocity proportional
to distance from the central grid-point. Then transform the frame of reference to a nearby
grid-point, and you’ll find that the Hubble law still holds about the new ‘centre’. This only
works because of the linear relationship between velocity and distance; any other law and
it wouldn’t work.

So, although expanding, the Universe looks just the same whichever galaxy we choose
to imagine ourselves within. A common analogy is to imagine baking a cake with raisins
in it, or blowing up a balloon with dots on its surface. As the cake rises (or the balloon is
inflated), the raisin (or dots) move apart. From each one, it seems that all the others are
receding, and the further away they are the faster that recession is.

Because everything is flying away from everything else, we conclude that in the distant
past everything in the Universe was much closer together. Indeed, trace the history back
far enough and everything comes together. The initial explosion is known as the Big Bang,
and a model of the evolution of the Universe from such a beginning is known as the Big
Bang Cosmology. Later on, we will find out why it is commonly called the Hot Big Bang.

2.5 Particles in the Universe

2.5.1 What particles are there?

Everything in the Universe is made up of fundamental particles, and the behaviour of the
Universe as a whole depends on the properties of these particles.

One crucial question is whether a particle is moving relativistically or not. Any particle
has two contributions to its energy, one being the kinetic energy and the other being the
mass–energy, which combine to give

E2
total = m2c4 + p2c2 , (2.4)

where m is the particle rest mass and p the particle momentum. If the mass–energy dom-
inates, the particle will be moving at much less than the speed of light, and we say it is
non-relativistic. In that limit we can carry out an expansion

Etotal = mc2

(
1 +

p2

m2c2

)1/2

≈ mc2 +
1
2

p2

m
. (2.5)

We recognize the first term as Einstein’s famous E = mc2, known as the rest mass–energy
as it is the energy of the particle when it is stationary. The second term is the usual kinetic
energy (p = mv in the non-relativistic limit). If the mass–energy does not dominate, the
particle will be moving at a substantial fraction of the speed of light and so is relativistic.
In particular, any particle with zero rest mass is always relativistic and moves at the speed
of light, the simplest example being light itself.

Let’s review the nature of the particles which are believed to exist in our Universe.
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Baryons

We ourselves are built from atoms, the bulk of whose mass is attributable to the protons
and neutrons in the atomic nuclei. Protons and neutrons are believed to be made up of more
fundamental particles known as quarks, a proton being made of two up quarks and a down
quark, while a neutron is an up and two downs. A general term for particles made up of three
quarks is baryons. Of all the possible baryons, only the proton and neutron can be stable,3

and so these are thought to be the only types of baryonic particle significantly represented in
the Universe. Yet another piece of terminology, nucleon, refers to just protons and neutrons,
but I’ll follow the standard practice of using the term baryon. In particle physics units, the
mass–energies of a proton and a neutron are 938.3 MeV and 939.6 MeV respectively, where
‘MeV’ is a Mega-electron volt, a unit of energy equal to a million electron volts (eV) and
rather more convenient than a Joule.

Although electrons are certainly not made from quarks, they are traditionally also in-
cluded under the title baryon by cosmologists (to the annoyance of particle physicists). A
crucial property of the Universe is that it is charge neutral, so there must be one electron
for every proton. Weighing in at a puny 0.511 MeV, well under a thousandth of a proton
mass, the contribution of electrons to the total mass is a tiny fraction, not meriting separate
discussion.

In the present Universe, baryons are typically moving non-relativistically, meaning that
their kinetic energy is much less than their mass–energy.

Radiation

Our visual perception of the Universe comes from electromagnetic radiation, and such ra-
diation, at a large variety of frequencies, pervades the Universe. In the quantum mechanical
view of light, it can be thought of as made up of individual particles – like packets of energy
– known as photons and usually indicated by the symbol γ. Photons propagate, naturally
enough, at the speed of light; since they have zero rest mass their total energy is always
given by their kinetic energy, and is related to their frequency f by

E = hf , (2.6)

where h is Planck’s constant.

Photons can interact with the baryons and electrons; for example, a high-energy photon
can knock an electron out of an atom (a process known as ionization), or can scatter off
a free electron (known as Thomson scattering in the non-relativistic case hf � mec

2,
otherwise Compton scattering). The more energetic the photons are, the more devastating
their effects on other particles.

3The proton lifetime is known to be either infinite, corresponding to the proton being absolutely stable, or much
longer than the age of the Universe so that they are effectively stable. Isolated neutrons are unstable (decaying
into a proton, an electron and an anti-neutrino), but those bound in nuclei may be stable; this will prove crucial
in Chapter 12.
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Neutrinos

Neutrinos are extremely weakly interacting particles, produced for example in radioactive
decay. There is now significant experimental evidence that they possess a non-zero rest
mass, but so far there has been no clear evidence that this mass is large enough to have
observable cosmological effects. Hence for now it remains a working assumption in cos-
mology to treat them as effectively massless. I will adopt that assumption for the main body
of this book, and in that case they, like photons, are always relativistic. The combination
of photons and neutrinos makes up the relativistic material in our Universe. Confusingly,
sometimes the term ‘radiation’ is used to refer to all the relativistic material.

There are three types of neutrino, the electron neutrino, muon neutrino and tau neutrino,
and if they are indeed all massless they should all exist in our Universe. Unfortunately, their
interactions are so weak that for now there is no hope of detecting cosmological neutrinos
directly. Originally their presence was inferred on purely theoretical grounds, though we
will see that the existence of the cosmic neutrino background may be inferred indirectly by
some cosmological observations.

Because they are so weakly interacting, the experimental limits on the neutrino masses,
especially of the latter two types, are quite weak, and it is in fact perfectly possible that
they are massive enough to be non-relativistic. The possible effects of neutrino masses are
explored in Advanced Topic 3. Cosmological effect of neutrino masses might well have
been spotted by the time you read this book.

Dark matter

In this book we’ll encounter one further kind of particle that may exist in our Universe,
which is not part of the Standard Model of particle theory. It is known as dark matter, and
its properties are highly uncertain and a matter of constant debate amongst cosmologists.
We’ll return to it in Chapter 9.

2.5.2 Thermal distributions and the black-body spectrum

I end this section with some discussion of the physics of radiation. If this is unfamiliar to
you, the details aren’t all that crucial, though some of the final results will be used later in
the book.

If particles are frequently interacting with one another, then the distribution of their
energies can be described by equilibrium thermodynamics. In a thermal distribution, inter-
actions are frequent, but a balance has been reached so that all interactions proceed equally
frequently in both the forward and backward directions, so that the overall distribution of
particle numbers and energies remains fixed. The number of particles of a given energy
then depends only on the temperature.

The precise distribution depends on whether the particles considered are fermions,
which obey the Pauli exclusion principle, or bosons, which do not. In this book the most
interesting case is that of photons, which are bosons, and their characteristic distribution
at temperature T is the Planck or black-body spectrum. Photons have two possible polar-
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Figure 2.9 The Planck function of Equation (2.7). There are far more photons with very low
energy than very high energy.

izations, and each has an occupation number per mode N given by the Planck function

N =
1

exp (hf/kBT ) − 1
, (2.7)

where h is Planck’s constant and kB is one of the fundamental constants of Nature, the
Boltzmann constant, whose value is 1.381 × 10−23 J K−1 = 8.619 × 10−5 eV K−1.

To interpret this equation, remember that hf is the photon energy. The purpose of the
Boltzmann constant is to convert temperature into a characteristic energy kBT . Below this
characteristic energy, hf � kBT , it is easy to make photons and the occupation number is
large (as photons are bosons, the Pauli exclusion principle doesn’t apply and there may be
arbitrarily many photons in a given mode). Above the characteristic energy, hf � kBT , it
is energetically unfavourable to make photons and the number is exponentially suppressed,
as shown in Figure 2.9.

More interesting than the number of photons in a mode is the distribution of energy
amongst the modes. We focus on the energy per unit volume, known as the energy den-
sity ε. Because there are very few photons with hf � kBT there isn’t much energy at
high frequencies. But, despite their large number, there also isn’t much total energy at low
frequencies hf � kBT , both because those photons have less energy each (E = hf ), and
because their wavelength is longer and so each photon occupies a greater volume. With
quite a bit of work, the energy density in a frequency interval df about f can be shown
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Figure 2.10 The energy density distribution of a black-body spectrum, given by Equation
(2.8). Most of the energy is contributed by photons of energy hf ∼ kBT .

to be

ε(f) df =
8πh

c3

f3 df

exp (hf/kBT ) − 1
, (2.8)

which tells us how the energy is distributed amongst the different frequencies. We see in
Figure 2.10 that the peak of the distribution is at fpeak � 2.8 kBT/h, corresponding to
an energy Epeak = hfpeak � 2.8 kBT . That is to say, the total energy in the radiation is
dominated by photons with energies of order kBT . Indeed, the mean energy of a photon in
this distribution is Emean � 3 kBT .

When we study the early history of the Universe, an important question will be how
this typical energy compares to atomic and nuclear binding energies.

A further quantity of interest will be the total energy density of the black-body radiation,
obtained by integrating Equation (2.8) over all frequencies. Setting y = hf/kBT quickly
leads to

εrad =
8πk4

B

h3c3
T 4 ×

∫ ∞

0

y3 dy

ey − 1
. (2.9)

The integral is not particularly easy to compute, but you might like to try it as a challenge.
The answer is π4/15, giving a radiation energy density

εrad = αT 4 , (2.10)
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where the radiation constant α is defined as

α =
π2k4

B

15h̄3c3
= 7.565 × 10−16 J m−3 K−4 . (2.11)

Here h̄ = h/2π is the reduced Planck constant.

Problems

2.1. Suppose that the Milky Way galaxy is a typical size, containing say 1011 stars, and
that galaxies are typically separated by a distance of one megaparsec. Estimate the
density of the Universe in SI units. How does this compare with the density of the
Earth?

1 M� � 2 × 1030 kg, 1 parsec � 3 × 1016 m.

2.2. In the real Universe the expansion is not completely uniform. Rather, galaxies exhibit
some random motion relative to the overall Hubble expansion, known as their pecu-
liar velocity and caused by the gravitational pull of their near neighbours. Supposing
that a typical (e.g. root mean square) galaxy peculiar velocity is 600 km s−1, how
far away would a galaxy have to be before it could be used to determine the Hubble
constant to ten per cent accuracy, supposing

(a) the true value of the Hubble constant is 100 km s−1 Mpc−1?

(b) the true value of the Hubble constant is 50 km s−1 Mpc−1?

Assume in your calculation that the galaxy distance and redshift could be measured
exactly. Unfortunately, that is not true of real observations.

2.3. What evidence can you think of to support the assertion that the Universe is charge
neutral, and hence contains an equal number of protons and electrons?

2.4. The binding energy of the electron in a hydrogen atom is 13.6 eV. What is the fre-
quency of a photon with this energy? At what temperature does the mean photon
energy equal this energy?

2.5. The peak of the energy density distribution of a black-body at fpeak � 2.8kBT/h
implies that fpeak/T is a constant. Evaluate this constant in SI units (see page xiv
for useful numbers). The Sun radiates approximately as a black-body with
Tsun � 5800K. Compute fpeak for solar radiation. Where in the electromagnetic
spectrum does the peak emission lie?
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2.6. The cosmic microwave background has a black-body spectrum at a temperature of
2.725K. Repeat Problem 2.5 to find the peak frequency of its emission, and also
find the corresponding wavelength and compare to Figure 2.5. Confirm that the peak
emission lies in the microwave part of the electromagnetic spectrum. Finally, com-
pute the total energy density of the microwave background.





Chapter 3

Newtonian Gravity

It is perfectly possible to discuss cosmology without having already learned general rel-
ativity. In fact, the most crucial equation, the Friedmann equation which describes the
expansion of the Universe, turns out to be the same when derived from Newton’s theory
of gravity as it is when derived from the equations of general relativity. The Newtonian
derivation is, however, some way from being completely rigorous, and general relativity is
required to fully patch it up, a detail that need not concern us at this stage. Readers with
some familiarity with general relativity may wish to study the relativistic derivation given
in Advanced Topic 1.

In Newtonian gravity all matter attracts, with the force exerted by an object of mass M
on one of mass m given by the famous relationship

F =
GMm

r2
, (3.1)

where r is the distance between the objects and G is Newton’s gravitational constant. That
is, gravity obeys an inverse square law. Because a force on an object induces an acceleration
which is also proportional to its mass, via F = ma, the acceleration an object feels under
gravity is independent of its mass.

The force exerted means there is a gravitational potential energy

V = −GMm

r
, (3.2)

with the force being in the direction which decreases the potential energy the fastest. Like
the electric potential of two opposite charges, the gravitational potential is negative, favour-
ing the two objects being close together. But with gravity there is no analogue of the re-
pulsion of like charges. Gravity always attracts.

The derivation of the Friedmann equation requires a famous result due originally to
Newton, which I won’t attempt to prove here. This result states that in a spherically-
symmetric distribution of matter, a particle feels no force at all from the material at greater
radii, and the material at smaller radii gives exactly the force which one would get if all the

An Introduction to Modern Cosmology, Third Edition. Andrew Liddle.
c© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Figure 3.1 The particle at radius r only feels gravitational attraction from the shaded region.
Any gravitational attraction from the material outside cancels out, according to Newton’s the-
orem.

material was concentrated at the central point. This property arises from the inverse square
law; the same results exist for electromagnetism. One example of its use is that the grav-
itational (or electromagnetic) force outside a spherical object of unknown density profile
depends only on the total mass (charge). Another is that an ‘astronaut’ inside a spherical
shell feels no gravitational force, not only if they are at the centre but if they are at any
position inside the shell.

3.1 The Friedmann equation

The Friedmann equation describes the expansion of the Universe, and is therefore the most
important equation in cosmology. One of the routine tasks for a working cosmologist is
solving this equation under different assumptions concerning the material content of the
Universe. To derive the Friedmann equation, we need to compute the gravitational po-
tential energy and the kinetic energy of a test particle (it doesn’t matter which one, since
everywhere in the Universe is the same according to the cosmological principle), and then
use energy conservation.

Let’s consider an observer in a uniform expanding medium, with mass density ρ, the
mass density being the mass per unit volume. We begin by realizing that because the Uni-
verse looks the same from anywhere, we can consider any point to be its centre. Now
consider a particle a distance r away with mass m, as shown in Figure 3.1. (By ‘particle’,
I really mean a small volume containing the mass m.) Due to Newton’s theorem, this par-
ticle only feels a force from the material at smaller radii, shown as the shaded region. This
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material has total mass given by M = 4πρr3/3, contributing a force

F =
GMm

r2
=

4πGρ rm

3
, (3.3)

and our particle has a gravitational potential energy

V = −GMm

r
= −4πGρ r2m

3
. (3.4)

The kinetic energy is easy; the velocity of the particle is ṙ (I’ll always use dots to mean
time derivatives) giving

T =
1
2
mṙ2 . (3.5)

The equation describing how the separation r changes can now be derived from energy
conservation for that particle, namely

U = T + V , (3.6)

where U is a constant. Note that U need not be the same constant for particles separated
by different distances. Substituting gives

U =
1
2

mṙ2 − 4π

3
Gρ r2m. (3.7)

This equation gives the evolution of the separation r between the two particles.

We now make a crucial step in this derivation, which is to realize that this argument ap-
plies to any two particles, because the Universe is homogeneous. This allows us to change
to a different coordinate system, known as comoving coordinates. These are coordinates
which are carried along with the expansion. Because the expansion is uniform, the rela-
tionship between real distance �r and the comoving distance, which we can call �x, can be
written

�r = a(t) �x , (3.8)

where the homogeneity property has been used to ensure that a is a function of time alone.
Note that these distances have been written as vector distances. What you should think
of when studying this equation is a coordinate grid which expands with time, as shown in
Figure 3.2. The galaxies remain at fixed locations in the �x coordinate system. The original
�r coordinate system, which does not expand, is usually known as physical coordinates.

The quantity a(t) is a crucial one, and is known as the scale factor of the Universe.
It measures the universal expansion rate. It is a function of time alone, and it tells us
how physical separations are growing with time, since the coordinate distances �x are by
definition fixed. For example, if, between times t1 and t2, the scale factor doubles in value,
that tells us that the Universe has expanded in size by a factor two, and it will take us twice
as long to get from one galaxy to another.
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Time

Figure 3.2 The comoving coordinate system is carried along with the expansion, so that any
objects remain at fixed coordinate values.

We can use the scale factor to rewrite Equation (3.7) for the expansion. Substituting
Equation (3.8) into it, remembering ẋ = 0 by definition as objects are fixed in comoving
coordinates, gives

U =
1
2
mȧ2x2 − 4π

3
Gρa2x2m. (3.9)

Multiplying each side by 2/ma2x2 and rearranging the terms then gives

(
ȧ

a

)2

=
8πG

3
ρ − kc2

a2
, (3.10)

where kc2 = −2U/mx2. This is the standard form of the Friedmann equation, and it
will appear frequently throughout this book. In this expression k must be independent of x
since all the other terms in the equation are, otherwise homogeneity will not be maintained.
So in fact we learn that homogeneity requires that the quantity U , while constant for a given
particle, does indeed change if we look at different separations x, with U ∝ x2.

Finally, since k = −2U/mc2x2 which is time independent (as the total energy U
is conserved, and the comoving separation x is fixed), we learn that k is just a constant,
unchanging with either space or time. It has the units of [length]−2. An expanding Universe
has a unique value of k, which it retains throughout its evolution. In Chapter 4 we will see
that k tells us about the geometry of the Universe, and it is often called the curvature.
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3.2 On the meaning of the expansion

So what does the expansion of the Universe mean? Well, let’s start with what it does not
mean. It does not mean that your body is gradually going to get bigger with time (and
certainly isn’t an excuse if it does). It does not mean that the Earth’s orbit is going to get
further from the Sun. It doesn’t even mean that the stars within our galaxy are going to
become more widely separated with time.

But it does mean that distant galaxies are getting further apart.
The distinction is whether or not the motion of objects is governed by the cumulative

gravitational effect of a homogeneous distribution of matter between them, as shown in
Figure 3.1. The atoms in your body are not; their separation is dictated by the strength
of chemical bonds, with gravity playing no significant role. So molecular structures will
not be affected by the expansion. Likewise, the Earth’s motion in its orbit is completely
dominated by the gravitational attraction of the Sun (with a minor contribution from the
other planets). And even the stars in our galaxy are orbiting in the common gravitational
potential well which they themselves create, and are not moving apart relative to one an-
other. The common feature of these environments is that they are ones of considerable
excess density, very different from the smooth distribution of matter we used to derive the
Friedmann equation.

But if we go to large enough scales, in practice tens of megaparsecs, the Universe does
become effectively homogeneous and isotropic, with the galaxies flying apart from one
another in accordance with the Friedmann equation. It is on these large scales that the
expansion of the Universe is felt, and on which the cosmological principle applies.

3.3 Things that go faster than light

A common question that concerns people is whether faraway galaxies are receding from
us faster than the speed of light. That is to say, if velocity is proportional to distance, then
if we consider galaxies far enough away can we not make the velocity as large as we like,
in violation of special relativity?

The answer is that indeed in our theoretical predictions distant objects can appear to
move away faster than the speed of light. However, it is space itself which is expanding.
There is no violation of causality, because no signal can be sent between such galaxies.
Further, special relativity is not violated, because it refers to the relative speeds of objects
passing each other, and cannot be used to compare the relative speeds of distant objects.

One way to think of this is to imagine a colony of ants on a balloon. Suppose that the
fastest the ants can move is a centimetre per second. If any two ants happen to pass each
other, their fastest relative speed would be two centimetres per second, if they happened
to be moving in opposite directions. Now start to blow the balloon up. Although the ants
wandering around the surface still cannot exceed one centimetre per second, the balloon
is now expanding under them, and ants which are far apart on the balloon could easily
be moving apart at faster than two centimetres per second if the balloon is blown up fast
enough. But if they are, they will never get to tell each other about it, because the balloon is
pulling them apart faster than they can move together, even at full speed. Any ants that start
close enough to be able to pass one another must do so at no more than two centimetres
per second even if the Universe is expanding.
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The expansion of space is just like that of the balloon, and pulls the galaxies along with
it.

3.4 The fluid equation

Fundamental though it is, the Friedmann equation is of no use without an equation to de-
scribe how the density ρ of material in the Universe is evolving with time. This involves
the pressure p of the material, and is called the fluid equation. (Unfortunately the standard
symbol p for pressure is the same as for momentum, which we’ve already used. Almost
always in this book, p will be pressure.) As we’ll shortly see, the different types of material
which might exist in our Universe have different pressures, and lead to different evolution
of the density ρ.

We can derive the fluid equation by considering the first law of thermodynamics

dE + pdV = TdS , (3.11)

applied to an expanding volume V of unit comoving radius.1 This is exactly the same as
applying thermodynamics to a gas in a cylinder. The volume has physical radius a, so the
energy is given, using E = mc2, by

E =
4π

3
a3ρ c2 . (3.12)

The change of energy in a time dt, using the product rule, is

dE

dt
= 4πa2ρ c2 da

dt
+

4π

3
a3 dρ

dt
c2 , (3.13)

while the rate of change in volume is

dV

dt
= 4πa2 da

dt
. (3.14)

Assuming a reversible adiabatic expansion dS = 0, putting these into Equation (3.11) and
rearranging gives

ρ̇ + 3
ȧ

a

(
ρ +

p

c2

)
= 0 , (3.15)

where as always dots are shorthand for time derivatives. This is the fluid equation. As
we see, there are two terms contributing to the change in the density. The first term in
the brackets corresponds to the dilution in the density because the volume has increased,
while the second corresponds to the loss of energy because the pressure of the material has
done work as the Universe’s volume increased. This energy has not disappeared entirely
of course; energy is always conserved. The energy lost from the fluid via the work done
has gone into gravitational potential energy.

1Don’t confuse V for volume with V for gravitational potential energy.
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Let me stress that there are no pressure forces in a homogeneous universe, because the
density and pressure are everywhere the same. A pressure gradient is required to supply
a force. So pressure does not contribute a force helping the expansion along; its effect is
solely through the work done as the Universe expands.

We are still not in a position to solve the equations, because now we only know what
ρ is doing if we know what the pressure p is. It is in specifying the pressure that we are
saying what kind of material our model universe is filled with. The usual assumption in
cosmology is that there is a unique pressure associated with each density, so that p ≡ p(ρ).
Such a relationship is known as the equation of state, and we’ll see two different examples
in Chapter 5. The simplest possibility is that there is no pressure at all, and that particular
case is known as (non-relativistic) matter.

Once the equation of state is specified, the Friedmann and fluid equations are all we
need to describe the evolution of the Universe. However, before discussing this evolution,
I am going to spend some time exploring some general properties of the equations, as well
as devoting Chapter 4 to consideration of the meaning of the constant k. If you prefer
to immediately see how to solve these equations, feel free to jump straight away to Sec-
tions 5.3 to 5.5, and come back to the intervening material later. On the way, you might
want to glance at Section 3.6 to find out why a factor of c2 mysteriously vanishes from the
Friedmann equation between here and there.

3.5 The acceleration equation

The Friedmann and fluid equations can be used to derive a third equation, not indepen-
dent of the first two of course, which describes the acceleration of the scale factor. By
differentiating Equation (3.10) with respect to time we obtain

2
ȧ

a

aä − ȧ2

a2
=

8πG

3
ρ̇ + 2

kc2ȧ

a3
. (3.16)

Substituting in for ρ̇ from Equation (3.15) and cancelling the factor 2ȧ/a in each term gives

ä

a
−

(
ȧ

a

)2

= −4πG
(
ρ +

p

c2

)
+

kc2

a2
, (3.17)

and finally, using Equation (3.10) again, we arrive at an important equation known as the
acceleration equation

ä

a
= −4πG

3

(
ρ +

3p

c2

)
. (3.18)

Notice that if the material has any pressure, this increases the gravitational force, and so
further decelerates the expansion. I remind you that there are no forces associated with
pressure in an isotropic universe, as there are no pressure gradients.

The acceleration equation does not feature the constant k which appears in the Fried-
mann equation; it cancelled out in the derivation.
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3.6 On mass, energy and vanishing factors of c2

You should be aware that cosmologists have a habit of using mass density ρ and energy
density ε interchangeably. They are related via Einstein’s most famous equation as ε = ρc2,
and if one chooses so-called ‘natural units’ in which c is set equal to one, the two become
the same. For clarity, however, I will be careful to maintain the distinction. Note that the
phrase ‘mass density’ is used in Einstein’s sense – it includes the contributions to the mass
from the energy of the various particles, as well as any rest mass they might have.

The habit of setting c = 1 means that the Friedmann equation is normally written
without the c2 in the final term, so that it reads

(
ȧ

a

)2

=
8πG

3
ρ − k

a2
. (3.19)

The constant k then appears to have units [time]−2 – setting c = 1 makes time and length
units interchangeable. Since the practice of omitting the c2 in the Friedmann equation is
widely adopted in other cosmology textbooks, I will drop it for the remainder of this book
too. In practice, it is a rare situation indeed where one has to be careful about this.



Chapter 4

The Geometry of the Universe

We now consider the real meaning of the constant k which appears in the Friedmann
equation (

ȧ

a

)2

=
8πG

3
ρ − k

a2
. (4.1)

While the Newtonian derivation in the last chapter introduced this as a measure of the
energy per particle, the true interpretation, apparent in the context of general relativity, is
that it measures the curvature of space. General relativity tells us that gravity is due to the
curvature of four-dimensional space–time, and a full analysis can be found in any general
relativity textbook. Here I will be purely descriptive, and focus on the interpretation of
k as measuring the curvature of the three spatial dimensions. Further details of general
relativistic cosmology can be found in Advanced Topic 1.

We have demanded that our model universes be both homogeneous and isotropic. The
simplest type of geometry which can have this property is what is called a flat geometry,
in which the normal rules of Euclidean geometry apply. However, it turns out that the
assumption of isotropy is not enough to demand that as the only choice. Instead, there are
three possible geometries for the Universe, and they correspond to k being zero, positive
or negative.

4.1 Flat geometry

Euclidean geometry is based on a set of simple axioms (e.g. a straight line is the short-
est distance between two points), plus one more complex axiom which says that parallel
straight lines remain a fixed distance apart. These are the basis for the standard laws of
geometry, and lead to the following conclusions:

• The angles of a triangle add up to 180◦.

• The circumference of a circle of radius r is 2πr.
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Such a geometry might well apply to our own Universe. If that is the case, then the Universe
must be infinite in extent, because if it came to a definite edge then that would clearly violate
the principle that the Universe should look the same from all points.1

A universe with this geometry is usually called a flat universe.

4.2 Spherical geometry

Euclid always hoped that the more artificial final axiom could be proven from the others.
It wasn’t until the 19th century that Riemann demonstrated that Euclid’s final axiom was
an arbitrary choice, and that one could make other assumptions. In doing so, he founded
the subject of non-Euclidean geometry, which forms the mathematical foundation for Ein-
stein’s theory of general relativity.

The simplest kind of non-Euclidean geometry is actually very familiar to us; it is the
spherical geometry which we use, for instance, to navigate around the Earth. Before wor-
rying about the Universe having three dimensions, let’s examine the properties of the two-
dimensional surface of the Earth, shown in Figure 4.1.

First of all, we know that a perfect sphere looks the same from all points on its surface,
so the condition of isotropy is satisfied (e.g. if someone hands you a snooker ball and asks
which way up it is, you’re not going to be able to tell them). But, unlike the case of a flat
geometry, the spherical surface is perfectly finite in extent, its area being given by 4πr2.
Yet there is no boundary, no ‘edge’ to the surface of the Earth. So it is perfectly possible
to have a finite surface which nevertheless has no boundary.

If we draw parallel lines on the surface of the Earth, then they violate Euclid’s final
axiom. The definition of a straight line is the shortest distance between two points, which
means that the straight lines in a spherical geometry are segments of great circles, such as
the equator or the lines of longitude.2 The lines of longitude are an excellent example of
the failure of Euclid’s axiom; as they cross the equator they are all parallel to one another,
but rather than remaining a constant distance apart they meet at both poles.

If we draw a triangle on a sphere, we find that the angles do not add up to 180◦ degrees
either. The easiest example to think about is to start at the North Pole. Draw two straight
lines down to the equator, ninety degrees apart, and then join them with a line on the equator.
You have drawn a triangle in which all three angles are 90◦, shown in Figure 4.1.

The circumference of a circle also fails to obey the normal law. Suppose we draw a
circle at a radius r from the North Pole, and we’ll choose r so that our circle is the equator.
That radius, measured on the surface of the sphere, corresponds to a quarter of a complete
circle around the Earth, so r = πR/2 where R is the radius of the Earth. However, the
circumference c is given by 2πR, so instead of the usual relation one has c = 4r for a circle
drawn at the equator. The circumference is less than 2πr. Problem 4.1 looks at the general
case; you may find it helpful to glance at the figure on page 35 now.

Although I have only considered specific cases where the algebra is easy, it is true that
whatever triangle or circle is drawn, you’ll always find

• the angles of a triangle add up to more than 180◦;

1Well, that’s almost true. See Advanced Topic 1.3 for a way to bypass that conclusion.
2Note that, apart from the equator, lines of latitude are not straight lines; this is why aeroplanes do not follow

lines of latitude when flying, because they are not the shortest way to go!
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Figure 4.1 A sketch of a spherical surface, representing positive k. A triangle is shown which
has three right angles!

• the circumference of a circle is less than 2πr.

If you make the triangles or circles much smaller than the size of the Earth, then the
Euclidean laws start to become a good approximation; certainly we don’t have to worry
about Euclidean laws being broken in our everyday existence (though the appreciation that
the Earth is spherical is vital for the planning of long distance journeys). So a small triangle
drawn on a sphere will have the sum of its angles only marginally larger than 180◦. This
property makes it rather hard to measure the geometry of our own Universe, because the
neighbouring region which we can measure accurately is only a small fraction of the size
of the Universe and so will obey nearly Euclidean laws whatever the overall geometry.

One of the most important conceptual points that you need to grasp is that our three-
dimensional Universe can have properties just like the two-dimensional surface of the
sphere. Unfortunately our brains are not conditioned to think of three dimensions as being
curved, so we must work by analogy with the two-dimensional situation I’ve just described.
When we think of the surface of a sphere being curved, we naturally imagine the sphere
as an object in our own three-dimensional Universe, and think of it as curved in that sense.
The important point is that the curvature is a property of the two-dimensional surface of
the sphere itself; the triangles and circles whose properties I’ve just described are drawn
on the surface. A classic application of this was the ancient Greeks’ use of these laws to
deduce that the Earth is spherical, and even to obtain a good estimate of its diameter. When
we discuss the spherical geometry, there is actually no need to think of it as existing within
our three-dimensional space at all, and we must remember when discussing the geometry
that we are assumed to be restricted to the surface of the sphere, and not allowed to move
off the surface either towards or away from the notional centre.

All this is an analogy to what might happen with our three-dimensional Universe. The
analogue of the two-dimensional sphere is called a three-sphere. In the rather unlikely
event of four-dimensional creatures existing, they would be able to visualize the curvature
of three-dimensional space in just the same way we can visualize that of two-dimensional
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Figure 4.2 A sketch of a saddle surface, representing the hyperbolic geometry obtained when
k is negative. A rather exaggerated triangle is shown with its sum of angles well below 180◦.

space. However, like the two-dimensional sphere, the possible curvature of three-space is
an intrinsic property and there is no actual need of a higher-dimensional space for it to live
in. Obtaining a correct mental picture of this is one of the big challenges in understanding
our Universe!

A universe with a spherical geometry, like the surface of the Earth, has a finite size but
no boundary. All points are equivalent. If we live in a spherical geometry, and travel in
a straight line, we would not go on for ever and ever. Rather, eventually we would come
back to where we had started from, from the opposite direction, exactly in the manner
that someone travelling outward from the North Pole on the Earth eventually returns there
from the opposite direction. Such a universe corresponds to choosing a positive value for
the quantity k appearing in the Friedmann equation. Because the special properties of the
spherical geometry are due to its curvature, k is often therefore called the curvature term.

A universe with k > 0 is normally referred to as a closed universe, because of its finite
size.

4.3 Hyperbolic geometry

The final choice is k negative. The corresponding geometry is known as hyperbolic, and
is much less familiar than spherical geometry. It is normally represented by a saddle-like
surface as in Figure 4.2; it is hard to see that this is consistent with isotropy but in fact it
is. In a hyperbolic geometry, parallel lines never meet – in fact they break Euclid’s axiom
by diverging away from one another.

The behaviour of the hyperbolic geometry can be guessed from what has gone before;
it is the opposite of the spherical geometry. One finds that

• the angles of a triangle add up to less than 180◦;

• the circumference of a circle is greater than 2πr.

Because parallel lines never meet, such a universe must be infinite in extent, just as in the
flat case. The situation k < 0 is known as an open universe.
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Table 4.1 A summary of possible geometries

Curvature Geometry Angles of Circumference Type of
triangle of circle universe

k > 0 Spherical > 180◦ c < 2πr Closed

k = 0 Flat 180◦ c = 2πr Flat

k < 0 Hyperbolic < 180◦ c > 2πr Open

In Chapter 9 we’ll explore which of the three possible geometries, summarized in
Table 4.1, seems best suited to describe the real Universe.

4.4 Infinite and observable universes

What does it actually mean for the Universe to be infinite, as in the flat and open cases?
This property is nothing to do with the Universe lasting forever; what it means is that the
Universe is already infinite in size even at a finite time. It genuinely goes on forever in all
directions. Even despite this, it is still able to expand – the distances between objects can
still increase regardless of whether the total Universe is infinite in extent or not. (You might
consider the integers; these form an infinite set, but you can still multiply each by two to
get a new infinite set where the separation between the numbers is twice as large.)

Nevertheless, this description is only a model, and we have no way of discovering
whether the actual Universe does indeed go on forever. Cosmologists often talk about a
different concept to the entire, possibly infinite, Universe, namely the observable Uni-
verse. This corresponds to the portion of the Universe we can actually see, and is limited
by the finite speed of light. As the Universe gets older the observable Universe becomes
larger and larger, by a combination of two effects. Firstly, the Universe is expanding, and
secondly light has had longer to travel across the Universe. In practice, our knowledge
of the Universe is restricted to this portion and we have no way of telling whether it does
indeed continue into the infinite distance as required by the cosmological principle. It may
be, for example, that the Universe becomes highly irregular on extremely large scales, and
there are some theoretical models which predict that this might happen. Another possibility
is discussed in Advanced Topic 1.3.

4.5 Where did the Big Bang happen?

A common question is ‘where did the Big Bang happen?’, suggesting perhaps that one
could point in a specific direction and say ‘That way!’. After all, in a conventional explosion
that is a perfectly reasonable question to ask, as all the material flies outwards from the
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ignition point. Unfortunately, for the Big Bang things aren’t so simple, and in a sense the
answer is ‘everywhere and nowhere’.

First of all, remember that our entire foundation is the cosmological principle, telling
us that no point in the Universe is special. If there were a particular point where the ‘Bang’
happened, that would clearly be a special point and violate the cosmological principle.
Rather, space and time themselves were created at the instant of the Big Bang (unlike a
conventional explosion where the material flies through pre-existing space). If we take any
point in the present Universe and trace back its history, it would start out at the explosion
point, and in that sense the Big Bang happened everywhere in space.

In another sense, the location of the Big Bang is nowhere, because space itself is evolv-
ing and expanding, and it has changed since the Big Bang took place. Imagine the Uni-
verse as an expanding sphere; at any instant ‘space’ is the surface of the sphere, which is
becoming bigger with time (again I’m thinking of a two-dimensional analogy to our real
three-dimensional space). The place where the ‘Bang’ happened is at the centre of the
sphere, but that’s no longer part of the space, the surface of the sphere, in which we live.
In particular, being constrained to the surface of the sphere means we are unable to ‘point’
to the place where the explosion is supposed to have happened. However, all the points in
our current space were once at the centre of the sphere, when the Big Bang took place.

4.6 Three values of k

Because there are only three distinct possibilities for the geometry, many people indicate
this explicitly by scaling their variables so that k takes on one of only three possible values,
namely k = −1, 0 or +1, corresponding to the open, flat and closed cases respectively.
This can be achieved by rescaling the scale factor by multiplying it by a fixed constant,
namely â = a/

√
|k|, in cases where k is non-zero. This leaves H = ȧ/a unchanged, and

removes the k from the final term in Equation (4.1), which now reads

(
˙̂a
â

)2

=
8πG

3
ρ ± 1

â2
, (4.2)

with ‘−’ for positive k, ‘+’ for negative k and the last term absent if k = 0.
If this rescaling is used, then (except in the k = 0 case) one loses the freedom to set

â = 1 at the present time, as will be used in Section 5.3. In effect, what one is doing is
choosing to measure comoving distances in units of the so-called curvature scale, which is
the scale on which the effects of curved space must be included, rather than in astronomical
units such as megaparsecs.

In this book I will not rescale k to one of these three discrete values, though most of
the time I will be specializing to k = 0 anyway.
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Problems

4.1. Consider the surface of a two-dimensional sphere of radius R, as illustrated.

r
R

θ

Figure 4.3

Circles are drawn on the sphere which have radius r as measured on the surface
on the sphere, centred on the North Pole. Show that the general formula for the
circumference c of such a circle, as a function of r, is given by

c = 2π
sin θ

θ
r = 2πR sin

r

R
,

where θ is the angle between a line drawn from the centre of the sphere to the North
Pole and one drawn to the circle. (Remember that by definition of angles in radians
we have r = θR.)

Demonstrate that for small θ (i.e. r � R) this gives the normal flat geometry
relation. Evaluate the relation for the case when the circle is at the equator.

4.2. Consider the spherical geometry of the previous problem, staying with the two-
dimensional analogy to the real Universe. Suppose that galaxies are distributed evenly
in such a universe, with a number density n per unit area. Show that the total number
N of galaxies inside a radius r is given by

N = 2πnR2
[
1 − cos

r

R

]
.

Expand this for r � R to show that the flat space result that the number is nπr2 is
recovered (remember we are working in only two dimensions). Do you see more or
fewer galaxies out to the same radius, if the Universe is spherical rather than flat?
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4.3. Is it possible for a closed universe to evolve to become an open universe? Give a
reason for your answer.



Chapter 5

Simple Cosmological Models

In Chapter 3 we derived the equations satisfied by an expanding isotropic gas. They are the
Friedman equation1

(
ȧ

a

)2

=
8πG

3
ρ − k

a2
, (5.1)

which governs the time evolution of the scale factor a(t), and the fluid equation

ρ̇ + 3
ȧ

a

(
ρ +

p

c2

)
= 0 , (5.2)

which gives us the evolution of the mass density ρ(t). I stress that, despite their Newtonian
derivation, these are the real equations used by cosmologists, more traditionally derived
via the equations of general relativity as described in Advanced Topic 1.

This chapter finds and discusses some simple solutions to these equations, which will
be used extensively during the book. However, while they have wide applicability during
the early stages of the Universe, it will turn out that these are not sufficient to describe the
present state of the Universe, for which an extra ingredient, the cosmological constant, will
be needed. It is introduced in Chapter 7.

Before finding solutions to these equations, we can study two of their implications.

5.1 Hubble’s law

The Friedmann equation allows us to explain Hubble’s discovery that recession velocity is
proportional to the distance. The velocity of recession is given by �v = d�r/dt and is in the

1In accord with the discussion of Section 3.6, the c2 on the final term has been dropped, so that its appearance
matches that of other cosmology textbooks.
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same direction as �r, allowing us to write

�v =
|�̇r |
|�r | �r =

ȧ

a
�r . (5.3)

The last step used �r = a�x, remembering that the comoving position �x is a constant by
definition. Consequently, Hubble’s law �v = H�r tells us that the proportionality constant,
the Hubble parameter, should be identified as

H =
ȧ

a
, (5.4)

and the value as measured today can be denoted with a subscript ‘0’ as H0. Because we
measure Hubble’s constant to be positive rather than negative, we know that the Universe
is expanding rather than contracting.

We notice from this that the phrase Hubble’s constant is a bit misleading. Although
certainly it is constant in space due to the cosmological principle, there is no reason for
it to be constant in time. In fact, using it as a more compact notation, we can write the
Friedmann equation as an evolution equation for H(t), as

H2 =
8πG

3
ρ − k

a2
. (5.5)

It is best to use the phrase ‘Hubble parameter’ for this quantity as a function of time, reserv-
ing ‘Hubble constant’ for its present value. Normally the Hubble parameter decreases with
time, for instance as the expansion is slowed by the gravitational attraction of the matter in
the Universe.

5.2 Expansion and redshift

The redshift of spectral lines that we used to justify the assumption of an expanding universe
can also be related to the scale factor. In this derivation I’ll make the simplifying assumption
that light is passed between two objects which are very close together, separated by a small
distance dr, as shown in Figure 5.1. I’ve drawn the objects as galaxies, but I really mean
two nearby points. According to Hubble’s law, their relative velocity dv will be

dv = H dr =
ȧ

a
dr . (5.6)

As the points are nearby we can directly apply the Doppler law to say that the change in
wavelength between emission and reception, dλ ≡ λr − λe, is

dλ

λe
=

dv

c
, (5.7)

where dλ is going to be positive since the wavelength is increased. The time between
emission and reception is given by the light travel time dt = dr/c, and putting all that
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dr

Galaxy BGalaxy A
Photon

Figure 5.1 A photon travels a distance dr between two galaxies A and B.

together gives

dλ

λe
=

ȧ

a

dr

c
=

ȧ

a
dt =

da

a
. (5.8)

Integrate and we find that ln λ = ln a + constant, i.e.

λ ∝ a , (5.9)

where λ is now the instantaneous wavelength measured at any given time.
Although as I’ve derived it this result only applies to objects which are very close to each

other, it turns out that it is completely general (a rigorous treatment is given in Advanced
Topic 2). It tells us that as space expands, wavelengths become longer in direct proportion.
One can think of the wavelength as being stretched by the expansion of the Universe, and
its change therefore tells us how much the Universe has expanded since the light began its
travels. For example, if the wavelength has doubled, the Universe must have been half its
present size when the light was emitted.

The redshift as defined in Equation (2.1) is related to the scale factor by

1 + z =
λr

λe
=

a(tr)
a(te)

. (5.10)

and is normally only used to refer to light received by us at the present epoch.

5.3 Solving the equations

In order to discover how the Universe might evolve, we need some idea of what is in it. In a
cosmological context, this is done by specifying the relationship between the mass density
ρ and the pressure p. This relationship is known as the equation of state. At this point, we
shall only consider two possibilities.

Matter: In this context, the term ‘matter’ is used by cosmologists as shorthand for ‘non-
relativistic matter’, and refers to any type of material which exerts negligible pres-
sure, p = 0. Occasionally care is needed to avoid confusion between ‘matter’ used
in this sense, and used to indicate all types of matter whether non-relativistic or not.
A pressureless universe is the simplest assumption that can be made. It is a good
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approximation to use for the atoms in the Universe once it has cooled down, as they
are quite well separated and seldom interact, and it is also a good description of a
collection of galaxies in the Universe, as they have no interactions other than gravi-
tational ones. Occasionally the term ‘dust’ is used instead of ‘matter’.

Radiation: Particles of light move, naturally enough, at the speed of light. Their kinetic
energy leads to a pressure force, the radiation pressure, which using the standard
theory of radiation can be shown to be p = ρc2/3. Problem 5.2 gives a rather hand-
waving derivation of this result. More generally, any particles moving at highly-
relativistic speeds have this equation of state, neutrinos being an obvious example.

I will concentrate on the case where the constant k in the Friedmann equation is set equal
to zero, corresponding to a flat geometry.

5.3.1 Matter
We start by solving the fluid equation, having set p = 0 for matter. One way to solve it is
to notice a clever way of rewriting it, as follows

ρ̇ + 3
ȧ

a
ρ = 0 =⇒ 1

a3

d

dt

(
ρa3

)
= 0 =⇒ d

dt

(
ρa3

)
= 0 , (5.11)

though one could also solve it more formally by noting that it is a separable equation.
Integrating tells us that ρa3 equals a constant, i.e.

ρ ∝ 1
a3

. (5.12)

This is not a surprising result. It says that the density falls off in proportion to the volume
of the Universe. It is very natural that if the volume of the Universe increases by a factor
of say two, then the density of the matter must fall by the same factor. After all, material
cannot come from nowhere, and there is no pressure to do any work.

The equations we are solving (with k = 0) have one very useful symmetry; their form
is unchanged if we multiply the scale factor a by a constant, since only the combination
ȧ/a appears. This means that we are free to rescale a(t) as we choose, and the normal
convention is to choose a = 1 at the present time. With this choice physical and comoving
coordinate systems coincide at the present, since �r = a�x. Throughout this book I will use
the subscript ‘0’ to indicate the present value of quantities. Denoting the present density
by ρ0 fixes the proportionality constant

ρ =
ρ0

a3
. (5.13)

Having solved for the evolution of the density in terms of a, we must now find how a
varies with time by using the Friedmann equation. Substituting in for ρ, and remembering
we are assuming k = 0, gives

ȧ2 =
8πGρ0

3
1
a

. (5.14)
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Faced with an equation like this, one can use formal techniques to solve it (this equation is
separable, allowing it to be integrated), or alternatively make an educated guess as to the
solution and confirm it by substitution. In cosmology, a good educated guess is normally a
power-law a ∝ tq. Substituting this in, the left-hand side has time dependence t2q−2 and
the right-hand side t−q. This can only be a solution if these match, which requires q = 2/3,
and so the solution is a ∝ t2/3. As we have fixed a = 1 at the present time t = t0, the full
solution is therefore

a(t) =
(

t

t0

)2/3

; ρ(t) =
ρ0

a3
=

ρ0t
2
0

t2
. (5.15)

In this solution, the Universe expands forever, but the rate of expansion H(t) decreases
with time

H ≡ ȧ

a
=

2
3t

, (5.16)

becoming infinitely slow as the Universe becomes infinitely old. Notice that despite the
pull of gravity, the material in the Universe does not recollapse but rather expands forever.

This is one of the classic cosmological solutions, and will be much used throughout
this book.

5.3.2 Radiation
Radiation obeys p = ρc2/3. Consequently the fluid equation is changed from the matter-
dominated case, now reading

ρ̇ + 4
ȧ

a
ρ = 0 . (5.17)

This is amenable to the same trick as before, with the a3 replaced by a4 in Equation (5.11),
giving

ρ ∝ 1
a4

. (5.18)

Carrying out the same analysis we did in the matter-dominated case gives

a(t) =
(

t

t0

)1/2

; ρ(t) =
ρ0

a4
=

ρ0t
2
0

t2
. (5.19)

This is the second classic cosmological solution.
Notice that the Universe expands more slowly if radiation dominated than if matter

dominated, a consequence of the extra deceleration that the pressure supplies – see Equa-
tion (3.18). So it is definitely wrong to think of pressure as somehow ‘blowing’ the Universe
apart. However, in each case the density of material falls off as t2.

We’d better examine the fall off of the radiation density with volume more carefully.
It drops as the fourth power of the scale factor. Three of those powers we have already
identified as the increase in volume, leading naturally to a drop in the density. The final
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power arises from a different effect, the stretching of the wavelength of the light. Since the
stretching is proportional to a, and the energy of radiation proportional to its frequency via
E = hf , this results in a further drop in energy by the remaining power of a. This lowering
of energy is exactly the redshifting effect we use to measure distances.

The rate of decrease of the radiation density also has an explanation in terms of thermo-
dynamics, which is macroscopic rather than microscopic. Since the Universe in this case
has a pressure, when it expands there is work done which is given by p dV , in exactly the
same way as work is done on a piston when the gas is allowed to expand and cool. This
work done corresponds to the extra diminution of the radiation density by the final factor
of a.

5.3.3 Mixtures

A more general situation is when one has a mixture of both matter and radiation. Then
there are two separate fluid equations, one for each of the two components. The trick
which allows us to write ρ as a function of a still works, so we still have

ρmat ∝
1
a3

; ρrad ∝ 1
a4

. (5.20)

However, there is still only a single Friedmann equation (after all, there is only one Uni-
verse!), which now has

ρ = ρmat + ρrad . (5.21)

This means that the scale factor will have a more complicated behaviour, and so to convert
ρ(a) into ρ(t) is much harder. It is possible to obtain exact solutions for this situation,
but they are quite messy so I won’t include them here. Instead, I’ll consider the simpler
situation where one or other of the densities is by far the larger.

In that case, we can say that the Friedmann equation is accurately solved by just in-
cluding the dominant component. That is, we can use the expansion rates we have already
found. For example, suppose radiation is much more important. Then one would have

a(t) ∝ t1/2 ; ρrad ∝ 1
t2

; ρmat ∝
1
a3

∝ 1
t3/2

. (5.22)

Notice that the density in matter falls off more slowly than that in radiation. So the situation
of radiation dominating cannot last forever; however small the matter component might be
originally it will eventually come to dominate. We can say that domination of the Universe
by radiation is an unstable situation.

In the opposite situation, where it is the matter which is dominant, we obtain the solu-
tion

a(t) ∝ t2/3 ; ρmat ∝
1
t2

; ρrad ∝ 1
a4

∝ 1
t8/3

. (5.23)

Matter domination is a stable situation, the matter becoming increasingly dominant over
the radiation as time goes by.
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Figure 5.2 A schematic illustration of the evolution of a universe containing radiation and
matter. Once matter comes to dominate the expansion rate speeds up, so the densities fall more
quickly with time.

Figure 5.2 shows the evolution of a universe containing matter and radiation, with the
radiation initially dominating. Eventually the matter comes to dominate, and as it does so
the expansion rate speeds up from a(t) ∝ t1/2 to the a(t) ∝ t2/3 law. It is likely that this
is the situation that applied in our Universe until fairly recently, as we’ll see in Chapter 11.

5.4 Particle number densities

An important alternative view of the evolution of particles, which will be much used later
in the book, is that of the number density n of particles rather than of their mass or energy
density.

The number density is simply the number of particles in a given volume. If the mean
energy per particle (including any mass–energy) is E, then the number density is related
to the energy density by

ε = n × E . (5.24)

The number density is useful because in most circumstances particle number is conserved.
For example, if particle interactions are negligible, you wouldn’t expect an electron to
suddenly vanish into oblivion, and the same is true of a photon of light. The particle number
can change through interactions, for example an electron and positron could annihilate and
create two photons. However, if the interaction rate is high we expect the Universe to be
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in a state of thermal equilibrium. If so, then particle number is conserved even in a highly-
interacting state, since by definition thermal equilibrium means that any interaction, which
may change the number density of a particular type of particle, must proceed at the same
rate in both forward and backward directions so that any change cancels out.

So, barring brief periods where thermal equilibrium does not hold, we expect the num-
ber of particles to be conserved. The only thing that changes the number density, therefore,
is that the volume is getting bigger, so that these particles are spread out in a larger volume.
This implies

n ∝ 1
a3

. (5.25)

This looks encouragingly like the behaviour we have already seen for matter, but it’s also
true for radiation as well!

How does this relate to our earlier results? The energy of non-relativistic particles is
dominated by their rest mass–energy which is constant, so

ρmat ∝ εmat ∝ nmat × Emat ∝
1
a3

× const ∝ 1
a3

. (5.26)

But photons lose energy as the Universe expands and their wavelength is stretched, so their
energy is Erad ∝ 1/a as we have already seen. So

ρrad ∝ εrad ∝ nrad × Erad ∝ 1
a3

× 1
a
∝ 1

a4
. (5.27)

These are exactly the results we saw before, equations (5.12) and (5.18).

Although the energy densities of matter and radiation evolve in different ways, their
particle numbers evolve in the same way. So, apart from epochs during which the assump-
tion of thermal equilibrium fails, the relative number densities of the different particles
(e.g. electrons and photons) do not change as the Universe expands.

5.5 Evolution including curvature

We can now re-introduce the possibility that the constant k is non-zero, corresponding to
spherical or hyperbolic geometry. Rather than seeking precise solutions, I will concentrate
on the qualitative properties of the solutions. These are actually of rather limited use in
describing our own Universe, because as we will see the cosmological models discussed
so far are not general enough and we will need to consider a cosmological constant (see
Chapter 7). Nevertheless, studying the possible behaviours of these simple models is a
useful exercise, even if one should be cautious about drawing general conclusions.

In analysing the possible dynamics, I will assume that the Universe is dominated by
non-relativistic matter always, which in practice is not a restrictive assumption. We have
already seen that if we assume that the constant k in the Friedmann equation is zero, then
the Universe expands for ever, a ∝ t2/3, but slows down arbitrarily at late times. So we
know the fate of the Universe in that case. But what happens if k 	= 0?
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Figure 5.3 Three possible evolutions for the Universe, corresponding to the different signs
of k. The middle line corresponds to the k = 0 case where the expansion rate approaches zero
in the infinite future. During the early phases of the expansion the lines are very close and so
observationally it can be difficult to distinguish which path the actual Universe will follow.

The principal question to ask is whether it is possible for the expansion of the Universe
to stop, which since H = ȧ/a corresponds to H = 0. Looking at the Friedmann equation

H2 =
8πG

3
ρ − k

a2
, (5.28)

it is immediately apparent that this is not possible if k is negative, for then both the terms on
the right-hand side of the Friedmann equation are positive. Consequently, such a universe
must expand forever. That enables us to study the late-time behaviour, because we can see
that the term k/a2 falls off more slowly with the expansion than does ρmat ∝ 1/a3. Since
a becomes arbitrarily large for the matter-dominated solution for negligible k, the k/a2

term must eventually come to dominate. When it does, the Friedmann equation becomes

(
ȧ

a

)2

= − k

a2
. (5.29)

Cancel off the a2 terms and you’ll find the solution is a ∝ t. So when the last term comes
to dominate, the expansion of the Universe becomes yet faster. In this case, the velocity
does not tend to zero at late times, but instead becomes constant. This is sometimes known
as free expansion.

Things are very different if k is positive. It then becomes possible for H to be zero, by
the two terms on the right-hand side of the Friedmann equation cancelling each other out.
Indeed, this is inevitable, because the negative influence of the k/a2 term will become more
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and more important relative to the ρmat term as time goes by. In such a universe therefore,
the expansion must come to an end after a finite amount of time. As gravitational attraction
persists, the recollapse of the Universe becomes inevitable.

The collapse of the Universe is fairly easy to describe, because the equations governing
the evolution are time reversible. That is, if one substitutes −t for t, they remain the same.
The collapse phase is therefore just like the expansion in reverse, and so after a finite time
the Universe will come to an end in a Big Crunch. Problem 5.5 investigates this in more
detail.

These three behaviours, illustrated in Figure 5.3, can be related to the particle energy U
in our Newtonian derivation of the Friedmann equation. If the particle energy is positive,
then it can escape to infinity, with a final kinetic energy given by U . If the total energy
is zero, then the particle can just escape but with zero velocity. Finally, if the energy is
negative, it cannot escape the gravitational attraction and is destined to recollapse inwards.

There is a fairly precise analogy with escape velocity from the Earth (or the Moon, if
you want to worry about the atmosphere). If you throw a rock up in the air hard enough,
gravity will be unable to stop it and eventually it will sail off into space at a constant ve-
locity. If your throw is too puny, it will rapidly fall back. And in between is the escape
velocity, where the rock is just able to escape the gravitational field and no more.

Problems

5.1. Is the total energy of the Universe conserved as it expands?

5.2. This problem indicates the origin of the equation of state p = ρc2/3 for radiation.
An ideal gas has pressure

p =
1
3
n〈v.p〉 ,

where 〈· · ·〉 indicates an average over the direction of particle motions. Here n is the
number density, and be careful not to confuse the unfortunate notation p for pressure
and p for momentum. Using Equation (2.4) to relate the photon energy and momen-
tum, show that this gives

p =
1
3
n〈E〉 ,

where 〈E〉 is the mean photon energy. Hence demonstrate the equation of state for
radiation.
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5.3. During this chapter we examined solutions for the expansion when the Universe con-
tained either matter (p = 0) or radiation (p = ρc2/3). Suppose we have a more gen-
eral equation of state, p = (γ − 1)ρc2, where γ is a constant in the range 0 < γ < 2.
Find solutions for ρ(a), a(t) and hence ρ(t) for universes containing such matter.
Assume k = 0 in the Friedmann equation.

What is the solution if p = −ρc2?

5.4. Using your answer to Problem 5.3, what value of γ would be needed so that ρ has
the same time dependence as the curvature term k/a2? Find the solution a(t) to the
full Friedmann equation for a fluid with this γ, assuming negative k.

5.5. The full Friedmann equation is

(
ȧ

a

)2

=
8πG

3
ρ − k

a2
.

Consider the case k > 0, with a universe containing only matter (p = 0) so that
ρ = ρ0/a3. Demonstrate that the parametric solution

a(θ) =
4πGρ0

3k
(1 − cos θ) ; t(θ) =

4πGρ0

3k3/2
(θ − sin θ)

solves this equation, where θ is a variable which runs from 0 to 2π.
Sketch a and t as functions of θ. Describe qualitatively the behaviour of the Uni-

verse. Attempt to sketch a as a function of t.

5.6. Now consider the case k < 0, with a universe containing only matter (p = 0) so
that ρ = ρ0/a3. What is the solution a(t) in a situation where the final term of
the Friedmann equation dominates over the density term? How does the density of
matter vary with time? Is domination by the curvature term a stable situation that will
continue forever?





Chapter 6

Observational Parameters

The Big Bang model does not give a unique description of our present Universe, but rather
leaves quantities such as the present expansion rate, or the present composition of the Uni-
verse, to be fixed by observation.

It is a standard practice to specify cosmological models via a few parameters, which one
then tries to determine observationally to decide which version of the model best describes
our Universe. In this chapter and the next I’ll discuss the most commonly-considered pa-
rameters, including ones we have already seen and new ones.

6.1 The expansion rate H0

The Hubble constant H0 tells us the present expansion rate of the Universe, making it a
vital cosmological parameter as measurements of other properties of the Universe often
depend on it. It also ought to be the easiest to measure, since all galaxies are supposed to
obey v = H0r. So all we have to do is measure the velocities and distances of as many
galaxies as we can and get an answer. However, each measurement has its problems.

Velocities are given by the redshift of spectral lines, a measurement which is now easy
enough that the velocity of an individual galaxy can be measured to high accuracy. How-
ever, remember that the cosmological principle isn’t perfect, and so, as well as the uniform
expansion we are trying to measure, galaxies also have motions relative to one another, the
so-called peculiar velocity. The peculiar velocities are randomly oriented, and for a given
galaxy we cannot split its measured velocity into the Hubble expansion and the peculiar ve-
locity. However, the cosmological principle does tell us that the typical size of the peculiar
velocity should not depend on where in the Universe the galaxy is. It is therefore indepen-
dent of distance, whereas the Hubble velocity is proportional to distance. If we look far
enough away (in practice many tens of megaparsecs) then the Hubble velocity dominates
and the (unknown) peculiar velocity can be ignored.

Given that the expansion velocity can only be accurately distinguished from the peculiar
velocity at large distances, we need to be able to estimate these large distances accurately
in order to carry out the calculation H0 = v/r. These distances are much harder to obtain,
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because galaxies are far too distant to be located by parallax. (Remember that an object
one parsec away has a parallax (i.e. an apparent motion when viewed from different parts
of Earth’s orbit) of one arcsecond, by definition. A galaxy many megaparsecs away will
have an immeasurably small parallax of less than a micro-arcsecond.) The usual method
is known as ‘standard candles’, where some type of object is assumed to have exactly the
same properties in all parts of the Universe. This is the cosmological equivalent of saying
that if one light bulb looks a quarter as bright as another, then from the inverse square law it
must be twice as far away – fine as long as you believe that all light bulbs have precisely the
same brightness. A classic example is the period–luminosity relation in cepheid variable
stars. The period of variability of those stars is readily measured, and there is reasonable
empirical evidence of a relation between the period and the luminosity of the stars which
lets us convert the measured period into a brightness. Other standard candles which have
been used include the brightness of certain types of supernovae, and the brightest galaxies
in galaxy clusters. All these methods have good success at determining relative distances
between two galaxies, which requires that the objects be good standard candles, and relative
distances are all that is needed to confirm the Hubble law.

However, to give an absolute distance, actually measuring the proportionality constant
H0, we also need a calibration against an object of known distance, which proves much
harder. In the light bulb analogy, to get relative distances we need only the inverse square
law and the belief that all bulbs have the same brightness; we don’t need to know how bright
the bulbs are. But to be able to say how far away a bulb of a given observed brightness is,
we need to know its absolute brightness.

It is only relatively recently that the calibration problem has begun to come under con-
trol, principally through Hubble Space Telescope observations. The Hubble constant is
usually parametrized as

H0 = 100h km s−1 Mpc−1 . (6.1)

In the 1990s the Hubble Space Telescope Key Project, led by Wendy Freedman, gave

h = 0.72 ± 0.08 , (6.2)

where the uncertainty is a one-sigma error (meaning it should be doubled to indicate 95
per cent confidence, at least if the uncertainty is approximately gaussian-distributed). This
was considered the first precision direct measurement of the Hubble constant, and has sub-
sequently been improved to h = 0.75 ± 0.03 by the SH0ES (Supernovae and H0 for the
Equation of State) project.

On the other hand, indirect measurements, which assess the impact of the expansion
rate on other cosmological observables such as the cosmic microwave background, have
suggested a somewhat lower value, the Planck satellite observations described in Advanced
Topic 6 giving h = 0.673 ± 0.012. There is mild tension between these measurements
which is currently under investigation, but it seems safe to conclude that h is now quite
accurately measured to be 0.70 within at most a few per cent. An object with a recession
velocity of 7000 km s−1 would be expected to be at a distance v/H0 = 100 Mpc. The long-
standing problem of determining the overall scale of the Universe is therefore essentially
solved!
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6.2 The density parameter Ω0

The density parameter is a very useful way of specifying the density of the Universe. Let’s
start with the Friedmann equation again. Recalling that H = ȧ/a, it reads

H2 =
8πG

3
ρ − k

a2
. (6.3)

For a given value of H , there is a special value of the density which would be required
in order to make the geometry of the Universe flat, k = 0. This is known as the critical
density ρc, which we see is given by

ρc(t) =
3H2

8πG
. (6.4)

Note that the critical density changes with time, since H does. As we know the present
value of the Hubble constant (at least in terms of h defined in Equation (6.1)), we can com-
pute the present critical density. Since G = 6.67 × 10−11 m3 kg−1 sec−2, and converting
megaparsecs to metres using conversion factors quoted on page xiv, it is

ρc(t0) = 1.88h2 × 10−26 kg m−3 . (6.5)

This is a startlingly small number; compare for example the density of water which is
103 kg m−3. If there is any more matter than this apparently tiny amount, it is enough to tip
the balance beyond a flat universe to a closed one with k > 0. So only a very tiny density
of matter is needed in order to provide enough gravitational attraction to halt and reverse
the expansion of the Universe.

However, let us write that another way, since kilograms and metres are rather small and
inconvenient units for dealing with something as big as the Universe. Let’s try measuring
masses in solar masses and distances in megaparsecs. It becomes

ρc(t0) = 2.78h−1 × 1011M�/(h−1Mpc)3 . (6.6)

Suddenly this doesn’t look so small. In fact, 1011 to 1012 solar masses is about the mass
of a typical galaxy, and a megaparsec more or less the typical galaxy separation, so the
Universe cannot be far away (within an order of magnitude or so) from the critical density.
Its density really must be around 10−26 kg m−3.

Be sure to understand that the critical density is not necessarily the true density of the
Universe, since the Universe need not be flat. However, it sets a natural scale for the density
of the Universe. Consequently, rather than quote the density of the Universe directly, it is
often useful to quote its value relative to the critical density. This dimensionless quantity
is known as the density parameter Ω, defined by

Ω(t) ≡ ρ

ρc
. (6.7)
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Again, in general Ω is a function of time, since both ρ and ρc depend on time. The present
value of the density parameter is denoted Ω0.

With this new notation, we can rewrite the Friedmann equation in a very useful form.
Substituting in for ρ in Equation (6.3) using the definitions I have made, Equations (6.4)
and (6.7), leads to

H2 =
8πG

3
ρc Ω − k

a2
= H2 Ω − k

a2
, (6.8)

and rearranging gives

Ω − 1 =
k

a2H2
. (6.9)

We see that the case Ω = 1 is very special, because in that case k must equal zero and since
k is a fixed constant this equation becomes Ω = 1 for all time. That is true independent
of the type of matter we have in the Universe, and this is often called a critical-density
universe. When Ω 	= 1, this form of the Friedmann equation is very useful for analysing
the evolution of the density, as we will see later in the chapter on inflationary cosmology.

Our Universe contains several different types of matter, and this notation can be used
not just for the total density but also for each individual component of the density, so one
talks of Ωmat, Ωrad etc. Some cosmologists even define a ‘density parameter’ associated
with the curvature term, by writing

Ωk ≡ − k

a2H2
. (6.10)

This can be positive or negative, and using it the Friedmann equation can be written as

Ω + Ωk = 1 . (6.11)

We’ll return to the observational status of Ω0 in Chapter 9.

6.3 The deceleration parameter q0

As we’ve discovered, not only is the Universe expanding, but also the rate at which it
is expanding, given by the Hubble parameter, is changing with time. The deceleration
parameter is a way of quantifying this.

Consider a Taylor expansion of the scale factor about the present time. The general
form of this (with dots as always indicating time derivatives) is

a(t) = a(t0) + ȧ(t0) [t − t0] +
1
2
ä(t0) [t − t0]

2 + · · · . (6.12)

Let’s divide through by a(t0). Then the coefficient of the [t − t0] term will just be the
present Hubble parameter, and we can write

a(t)
a(t0)

= 1 + H0 [t − t0] −
q0

2
H2

0 [t − t0]
2 + · · · , (6.13)
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which defines the deceleration parameter q0 as

q0 = − ä(t0)
a(t0)

1
H2

0

= −a(t0)ä(t0)
ȧ2(t0)

. (6.14)

The larger the value of q0, the more rapid the deceleration.
The simplest situation is if the Universe is matter dominated, p = 0. Remember that by

‘matter’ we mean any pressureless material; it could be a collection of elementary particles,
or equally well a collection of galaxies. Then from the acceleration Equation (3.18) and
the definition of critical density, Equation (6.4), we find

q0 =
4πG

3
ρ

3
8πGρc

=
Ω0

2
. (6.15)

So in this case, a measurement of q0 would immediately tell us Ω0.
If we know the properties of the matter in the Universe, then q0 is not independent of the

first two parameters we have discussed, H0 and Ω0. Those two are sufficient to describe all
the possibilities. However, we don’t know everything about the material in the Universe,
so q0 can provide a new way of looking at the Universe. It can in principle be measured
directly by making observations of objects at very large distances, such as the numbers of
distant galaxies, because the deceleration governs how large the Universe would be at an
earlier time.

In the late 1990s, the first convincing measurements of q0 were made by two research
groups studying distant supernovae of a class known as type Ia, which are believed to be
good standard candles. To widespread surprise at the time, the result is that the Universe is
accelerating at present, q0 < 0.1 None of the cosmological models that we have discussed
so far is capable of satisfying this condition, as can be seen directly from the acceleration
Equation (3.18). This result is becoming firmly established, and is amongst the most dra-
matic observational results in modern cosmology. The following chapter discusses how to
extend our simple cosmological models to account for it.

Problems

6.1. The deceleration parameter is defined by Equation (6.14). Use the acceleration Equa-
tion (3.18) and the definition of critical density to show that a radiation-dominated
universe has q0 = Ω0.

6.2. Identify a sufficient and necessary condition that must be satisfied by the equation of
state if q0 is to be negative.

1The mathematical tools required to analyse such data are beyond the scope of the main body of this book,
but are described in Advanced Topic 2, where the supernova observations are discussed in greater detail.





Chapter 7

The Cosmological Constant

7.1 Introducing Λ

When formulating general relativity, Einstein believed that the Universe was static, but
found that his theory of general relativity did not permit it. This is simply because all
matter attracts gravitationally; none of the solutions we have found corresponds to a static
universe with constant a. In order to arrange a static universe, he proposed a change to
the equations, something he would later famously call his ‘greatest blunder’. That was the
introduction of a cosmological constant.

The introduction of such a term is permitted by general relativity, and although Ein-
stein’s original motivation has long since faded, it is currently seen as one of the most
important and enigmatic objects in cosmology. The cosmological constant Λ appears in
the Friedmann equation as an extra term, giving

H2 =
8πG

3
ρ − k

a2
+

Λ
3

. (7.1)

Here Λ has units [time]−2, though some people include an explicit factor of c2 in this
equation to instead measure it as [length]−2.

In principle, Λ can be positive or negative, though the positive case is much more
commonly considered. Einstein’s original idea was to balance curvature, Λ and ρ to get
H(t) = 0 and hence a static universe (see Problem 7.2). In fact, this idea was rather
misguided, since such a balance proves to be unstable to small perturbations, and hence
presumably couldn’t arise in practice. Nowadays, the cosmological constant is most often
discussed in the context of universes with the flat Euclidean geometry, k = 0.

The effect of Λ can be seen more directly from the acceleration equation. Following
the derivation of Section 3.5, but now using the Friedmann equation as given above, gives

ä

a
= −4πG

3

(
ρ +

3p

c2

)
+

Λ
3

. (7.2)
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A positive cosmological constant gives a positive contribution to ä, and so acts effectively
as a repulsive force. In particular, if the cosmological constant is sufficiently large, it can
overcome the gravitational attraction represented by the first term and lead to an accelerat-
ing universe. It can therefore explain the observed acceleration of the Universe described
in Section 6.3.

In the same way that it is useful to express the density as a fraction of the critical density,
it is convenient to define a density parameter for the cosmological constant as

ΩΛ =
Λ

3H2
. (7.3)

Although Λ is a constant, ΩΛ is not since H varies with time. Repeating the steps used to
write the Friedmann equation in the form of Equation (6.9), we then find

Ω + ΩΛ − 1 =
k

a2H2
. (7.4)

The condition to have a flat universe, k = 0, generalizes to

Ω + ΩΛ = 1 . (7.5)

The usual convention amongst astronomers, which I will follow in this book, is that the
cosmological constant term is not considered to be part of the matter density Ω. (Particle
physicists, on the other hand, often include the cosmological constant as one of the compo-
nents of the total density.) The relation between the density parameters and the geometry
now becomes

Open universe: 0 < Ω + ΩΛ < 1 .

Flat universe: Ω + ΩΛ = 1 .

Closed universe: Ω + ΩΛ > 1 .

7.2 Fluid description of Λ

It is often helpful to describe Λ as if it were a fluid with energy density ρΛ and pressure
pΛ. From Equation (7.1), we see that the definition

ρΛ ≡ Λ
8πG

(7.6)

brings the Friedmann equation into the form

H2 =
8πG

3
(ρ + ρΛ) − k

a2
. (7.7)

This definition also ensures that ΩΛ ≡ ρΛ/ρc, where ρc is the critical density.
In order to determine the effective pressure corresponding to Λ, one can seek a defini-

tion so that the acceleration equation with Λ reduces to its standard form, Equation (3.18),
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with ρ → ρ + ρΛ and p → p + pΛ. More directly, we can consider the fluid equation for Λ

ρ̇Λ + 3
ȧ

a

(
ρΛ +

pΛ

c2

)
= 0 . (7.8)

Since ρΛ is constant by definition, we must have

pΛ = −ρΛc2 . (7.9)

The cosmological constant has a negative effective pressure. This means that as the Uni-
verse expands, work is done on the cosmological constant fluid. This permits its energy
density to remain constant even though the volume of the Universe is increasing.

Concerning its physical interpretation, Λ is sometimes thought of as the energy density
of ‘empty’ space. In particular, in quantum physics one possible origin is as a type of
‘zero-point energy’, which remains even if no particles are present, though unfortunately
particle physics theories tend to predict that the cosmological constant is far larger than
observations allow. This discrepancy is known as the cosmological constant problem,
and is one of the key unsolved problems in elementary particle physics.

It may be that the cosmological constant is only a transient phenomenon, which will
disappear in the future. Another possibility, often called quintessence, is that the cosmo-
logical constant is not actually perfectly constant but exhibits slow variation. For instance,
one could assume the quintessence ‘fluid’ to have equation of state

pQ = wρQc2 , (7.10)

where w is a constant. The case w = −1 corresponds to a cosmological constant, while
more generally accelerated expansion is possible provided w < −1/3 (you explored some
solutions of this type in Problem 5.3). However in this book I will only consider the case
of a perfect cosmological constant.

7.3 Cosmological models with Λ

The introduction of Λ has forced cosmologists to rethink some of the standard lore of
cosmology, as it greatly increases the range of possible behaviours of the Universe. For
instance, it is no longer necessarily true that a closed universe (k > 0) recollapses, nor that
an open universe expands forever. In fact, if the cosmological constant is powerful enough,
there need not even be a Big Bang, with the Universe instead beginning in a collapsing
phase, followed by a bounce at finite size under the influence of the cosmological constant
(though such models are ruled out by observations). It is also possible to have a prolonged
phase where the Universe remains almost static, known as ‘loitering’, by arranging param-
eters so that the Universe closely approaches the unstable Einstein static universe.

As the Hubble parameter only provides an overall scaling factor, a useful way to
parametrize possible models is to focus on the two other parameters, the present densi-
ties of matter and of the cosmological constant. An excellent assumption is to assume the
matter in the present Universe is pressureless. Different models can then be identified by
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Figure 7.1 Different models for the Universe can be identified by their location in the plane
showing the densities of matter and Λ. This figure indicates the main properties in different
regions, with the labels indicating the behaviour on each side of the dividing lines.

their location in the plane of Ω0 and ΩΛ, as shown in Figure 7.1.1 We have already seen
that the line Ω0 + ΩΛ = 1 gives a flat universe, and divides the plane into open and closed
cosmologies.

To identify where in the plane we have an accelerating universe, we need an expression
for the deceleration parameter q0. A pressureless universe with a cosmological constant
has

q0 =
Ω0

2
− ΩΛ , (7.11)

which you are asked to derive in Problem 7.3, and so we have acceleration provided
ΩΛ > Ω0/2. If we additionally assume that the geometry is flat, this relation simplifies
further to q0 = 3Ω0/2 − 1, and we have acceleration if ΩΛ > 1/3.

1Beware the somewhat sloppy notation of sometimes using ΩΛ to indicate the present value of this quantity.
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The other two main properties are whether there is a Big Bang, and whether the Uni-
verse will eventually collapse or not. There are analytic expressions for these curves, shown
in Figure 7.1, but they are too complicated to give here. For Ω0 ≤ 1, whether there is
recollapse or not depends simply on the sign of Λ, but for Ω0 > 1 the gravitational at-
traction of matter can overcome a small positive cosmological constant and cause recol-
lapse.

While most cosmologists would have preferred the cosmological constant to equal zero,
the Universe itself appears to have other ideas, with the observations of distant type Ia
supernovae mentioned at the end of the previous chapter arguing strongly in favour of a
presently-accelerating universe. The observations leading to that conclusion are explored
in more detail in Advanced Topic 2.3, and even if you are not planning to read that section
I suggest you have a look at Figure A2.4 on page 134, which shows the observational
constraints superimposed on the Ω0–ΩΛ plane. These observations demand inclusion of
the cosmological constant; it is now regarded as an essential part of cosmological models
aiming to explain observational data, and understanding its value is one of the mysteries of
fundamental physics.

Problems

7.1. Suppose that the Universe contains four different contributions to the Friedmann
equation, namely radiation, non-relativistic matter, a cosmological constant, and a
negative (hyperbolic) curvature. Write down the way in which each of these terms
behaves as a function of the scale factor a(t). Which of them would you expect to
dominate the Friedmann equation at early times, and which at late times?

7.2. By considering both the Friedmann and acceleration equations, and assuming a pres-
sureless universe, demonstrate that in order to have a static universe we must have a
closed universe with a positive vacuum energy. Using either physical arguments or
mathematics, demonstrate that this solution must be unstable.

7.3. Confirm the result, quoted in the main text, that a pressureless universe with a cos-
mological constant has a deceleration parameter given by

q0 =
Ω0

2
− ΩΛ(t0) .

7.4. The most likely cosmology describing our own Universe has a flat geometry with a
matter density of Ω0 � 0.3 and a cosmological constant with ΩΛ(t0) � 0.7. What
will the values of Ω and ΩΛ be when the Universe has expanded to be five times
its present size? Use an approximation suggested by this result to find the late-time
solution to the Friedmann equation for our Universe. What is the late-time value of
the deceleration parameter q?
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7.5. Show that in a spatially-flat matter-dominated cosmology the density parameter
evolves as

Ω(z) = Ω0
(1 + z)3

1 − Ω0 + (1 + z)3Ω0
.

If our Universe has Ω0 � 0.3, at what redshift did it begin accelerating?



Chapter 8

The Age of the Universe

One of the quantities that we can predict from a cosmological model, from the solution
a(t) for the expansion, is the age of the Universe t0. This offers an opportunity to connect
the age of the Universe itself with the ages of objects within it. Historically there was much
concern as to whether the predicted age of the Universe was large enough to accommodate
the ages of its contents, but in recent years such fears have largely disappeared.

Let’s start with an approximate estimation. The characteristic rate of expansion is given
by the Hubble parameter, so a first guess at the age of the Universe is that it is the timescale
associated with the Hubble parameter, namely H−1

0 , since r = vH−1
0 is basically distance

equals velocity multiplied by time. This estimate is approximate, because it ignores the
fact that v changes with time under the effect of gravity. We’ve been writing the Hubble
constant as

H0 = 100h km s−1 Mpc−1 , (8.1)

which isn’t quite what we need, because the unusual units conceal the fact that H simply
has the units of [time]−1. We have to convert the kilometres into megaparsecs (or vice
versa) to cancel them out, and then convert seconds to years. What we get, using values
quoted on page xiv, is

H−1
0 = 9.77h−1 × 109 yrs . (8.2)

This is known as the Hubble time. The uncertainty in the Hubble constant, indicated by h,
means we have to tolerate an uncertainty in this crude estimate of the age of the Universe.
But the message is that ten billion years is a good first guess at the age of the Universe.

Before progressing to a better calculation, let’s find out what observations tell us of the
age of the Universe. The geological timescale gives us a good estimate of the age of the
Earth, which is about five billion years. But it is not thought that the Earth is nearly as old as
the Universe. There are various ways of dating other objects in the Universe. The relative
amounts in the Galactic disk of Uranium isotopes, which have lifetimes comparable to the
age of the Universe, suggests an age around ten billion years – see Problem 8.1. Estimates
consistent with this are also found from studying the cooling of white dwarf stars after they
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form. However, the best method is thought to be to use the chemical evolution of stars in old
globular clusters, which are believed to be amongst the oldest objects in the Universe. Until
1997 these were thought to be alarmingly old, but then the Hipparcos satellite discovered
that nearby stars are further away than we thought, hence brighter, hence burning fuel faster
and hence younger. The best estimate now is an age in the range 10–13 billion years, with
perhaps an extra billion years to be added in before they manage to form in the first place.

It should be stressed that it is remarkable that the cosmological theory and the age
measurements are in the same ballpark at all. That in itself is a strong vindication that the
ideas behind the Big Bang are along the right track. Our crude estimate above seems to
adequately account for the observed ages of objects in the Universe.

What happens if we try to do better with our theoretical estimates? Although the precise
cosmological model describing our Universe is uncertain, we are pretty sure that it has
been matter dominated (i.e. dominated by some form of pressureless material) for some
considerable time, and so we can use the matter-dominated evolution to calculate the age.
Let’s first suppose that the Universe has the critical density. Then we already have the
solution, Equation (5.15), which is

a(t) =
(

t

t0

)2/3

=⇒ H ≡ ȧ

a
=

2
3t

, (8.3)

and so the present Hubble parameter is

H0 =
2

3t0
. (8.4)

So in such a universe, the age is actually shorter than our naı̈ve estimate – it’s only

t0 =
2
3
H−1

0 = 6.51h−1 × 109 yrs . (8.5)

The extra factor of 2/3 has removed much of the room for comfort; with the measured value
h � 0.7 we predict an age of only 9.3 billion years.

What can happen to reconcile this? Well, if the Universe is closed then the age becomes
even less and the situation is becoming very problematic indeed. This is one of many
arguments going against the idea of a closed universe.

On the other hand, moving to an open universe with Ω0 < 1 helps. The physical
interpretation is that if there is less matter, then it would have taken longer for the gravita-
tional attraction to slow the expansion to its present rate. That last sentence needs a bit of
thought before it sinks in. Try thinking of two trains travelling at 100 miles per hour (or your
favourite metric unit); they both start to brake and you ask how long before they slow down
to 50 miles per hour. The one with the inferior brakes takes longer to do so. The same works
for the Universe; if there is less matter it requires longer for the gravitational deceleration to
slow it down to the observed expansion rate. The detailed result is studied in Problem 8.2.

In the limit Ω0 → 0 there is no gravity at all, and hence no deceleration, so the esti-
mate of Equation (8.2), based on assuming constant velocity, becomes correct and we get
t0 = H−1

0 . However, clearly we can’t countenance a Universe with no matter at all in it,
so we can only get part of the way there.
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Figure 8.1 Predicted ages as fractions of the Hubble time H−1
0 , for open universes and for

universes with a flat geometry plus a cosmological constant. The prediction H0t0 = 2/3 for
critical-density models is at the right-hand edge.

Observations suggest that a better option for a low-density universe is to retain the flat
geometry by introducing a positive cosmological constant. As this opposes the decelera-
tion, it has a more severe effect in increasing the age than going to an open universe, and if
the density is low enough we can get an age which exceeds H−1

0 . Deriving the formula for
the age is tricky (see Problem 8.4), but for reference there are two equivalent (and equally
unpleasant) forms

H0t0 =
2
3

1√
1 − Ω0

ln
[
1 +

√
1 − Ω0√
Ω0

]
=

2
3

1√
1 − Ω0

sinh−1

[√
1 − Ω0

Ω0

]
. (8.6)

The ‘break-even’ point where t0 = H−1
0 is at Ω0 = 0.26, close to the value preferred by

observation. For a given value of h, the cosmological constant gives us the oldest age, and
for the favoured values Ω0 � 0.3 and h � 0.7 we get an age of about 14 billion years. This
sits comfortably with the estimated ages given earlier.

Figure 8.1 shows the predicted ages for these different cosmological models, as frac-
tions of the Hubble time H−1

0 . For Ω0 = 1 we get an age which is two-thirds of the
Hubble time, according to Equation (8.5), while for lower densities the age becomes older,
assuming H0 is kept fixed.
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Problems

8.1. The galaxy’s age can be estimated by radioactive decay of uranium. Uranium is
produced as an r-process element in supernovae (don’t worry if you don’t know what
that is!), and on this basis the initial abundances of the two isotopes U235 and U238

are expected to be in the ratio

U235

U238

∣∣∣∣
initial

� 1.65 .

The decay rates of the isotopes are

λ(U235) = 0.97 × 10−9 yr−1 ;

λ(U238) = 0.15 × 10−9 yr−1 .

Finally, the present abundance ratio is

U235

U238

∣∣∣∣
final

� 0.0072 .

Use the decay law

U(t) = U(0) exp (−λt) ,

to estimate the age of the galaxy.
Assuming the galaxy took a minimum of an additional billion years to form in the

first place, obtain an upper limit on the value of the Hubble parameter h assuming a
critical-density universe.

8.2. In a matter-dominated open Universe, the present age of the Universe is given by the
intimidating formula

H0t0 =
1

1 − Ω0
− Ω0

2(1 − Ω0)3/2
cosh−1

(
2 − Ω0

Ω0

)
.

(This is the formula which gives the innocent-looking lower curve in Figure 8.1.)
Demonstrate that in the limiting case of an empty Universe Ω0 → 0 we get H0t0 = 1,
and in the limiting case of a flat Universe Ω0 → 1 we recover the result H0t0 = 2/3.

(Useful formulae: cosh−1(x) � ln(2x) for large x,
cosh−1[(1 + x)/(1 − x)] � 2

√
x + 2x3/2/3 for small x.)

8.3. Give a physical argument explaining why introducing a positive cosmological con-
stant will increase the predicted age of the Universe.
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8.4. [For the mathematically-keen only!] Derive one version of Equation (8.6), which
gives the age of a spatially-flat cosmology with a cosmological constant. As a first
step towards this, demonstrate that the Friedmann equation can be written as

ȧ2 = H2
0

[
Ω0a

−1 + (1 − Ω0)a2
]

,

where a is normalized to be one at the present. Then change the integration variable
to a in the expression t0 =

∫ t0
0

dt.





Chapter 9

The Density of the Universe and
Dark Matter

The total density of matter in the Universe is quantified by the density parameter Ω0. We
would like to know not only its value, but also how that density is divided up amongst the
different types of material present in our Universe.

9.1 Weighing the Universe

The characteristic scale for the density in the Universe is the critical density ρc. As we saw
on page 51, it is not a particularly imposing number; its present value is

ρc = 1.88h2 × 10−26 kg m−3 = 2.78h−1 × 1011 M�
(h−1 Mpc)3

. (9.1)

An obstacle to comparing the true density to the critical density is the factors of h, which
are uncertain. Nevertheless, to get an idea of what is going on, all we have to do is estimate
how much material there is in the Universe. From the crude estimates that a typical galaxy
weighs about 1011M� and that galaxies are typically about a megaparsec apart, we know
that the Universe cannot be a long way from the critical density. But how good an estimate
can be made?

9.1.1 Counting stars
The simplest thing we can do is look at all the stars within a suitably-large region. Stellar
structure theory gives a good estimate of how massive a star is for a given temperature
and luminosity. Provided we have looked in a large enough region, we get an estimate of
the overall density of material in stars. This has been done by many researchers, and the
answer obtained is that the density in stars is a small fraction of the critical density, around
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Ωstars ≡
ρstars

ρc
� 0.005 → 0.01 . (9.2)

Notice that this number is independent of h, even though the critical density depends on
h2. That is because the estimate is carried out by adding up the light flux; since distances
are uncertain by a factor h and the light flux falls off as the square of the distance, the h
dependence cancels out of the final answer.

9.1.2 Nucleosynthesis foreshadowed
Not all of the material we are able to see is in the form of stars. For example, within clusters
of galaxies there is a large amount of gas which is extremely hot and emits in the X-ray
region of the spectrum, which I will discuss further below. Another possibility is that a lot of
material resides in very low mass stars, which would be too faint to detect. Often discussed
are brown dwarfs (sometimes called Jupiters), which are ‘stars’ with insufficient material
to initiate nuclear burning. Objects with mass less than 0.08M� are thought to be in this
class. However sensitive observations by the Hubble Space Telescope have not uncovered
a significant population of such objects, meaning they cannot contribute substantially to
the total density.

Anyway, there is a very strong reason to believe that conventional material cannot con-
tribute an entire critical density. That evidence comes from the theory of nucleosynthesis
– the formation of light elements – which will be discussed in Chapter 12. This theory
can only match the observed element abundances if the amount of baryonic matter has a
density

0.021 ≤ ΩBh2 ≤ 0.025 . (9.3)

Recall from Section 2.5 that baryonic matter means protons and neutrons, and hence refers
to the kinds of particle that we and our environment are made from.

In this expression the Hubble constant appears as an additional uncertainty, but the
constraint is certainly strong enough to insist that it is not possible to have an entire critical
density worth of baryonic matter, whether it be in the form of luminous stars or invisible
brown dwarfs or gas. Adopting the Hubble Space Telescope constraints on h gives an upper
limit well below 10 per cent.

Nucleosynthesis also gives a lower bound on ΩB which suggests that there should be
substantially more baryonic material in the Universe than just the visible stars, probably
upwards of 4 per cent of the critical density. This is in good agreement with observations
of galaxy clusters discussed below.

9.1.3 Galaxy rotation curves
In fact, there is considerable dynamical evidence that there is more than just the visible
matter. The history of this subject is surprisingly old; in 1932 Oort found evidence for
extra hidden matter in our galaxy, and one year later Zwicky inferred a large density of
matter within clusters of galaxies, a result which has stood the test of time extremely well.
The general argument is to look at motions of various kinds of astronomical object, and
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Figure 9.1 The rotation curve of the spiral galaxy NGC3198. We see that it remains roughly
constant at large radii, outside the visible disk. Faster than expected orbits require a larger
central force, and so they imply the existence of extra, dark, matter.

assess whether the visible material is sufficient to provide the inferred gravitational force.
If it is not, the excess gravitational attraction must be due to extra, invisible, material.

One of the most impressive applications of this simple idea is to galaxy rotation curves.
A galaxy rotation curve shows the velocity of matter rotating in a spiral disk, as a function of
radius from the centre. The individual stars are on orbits given by Kepler’s law; if a galaxy
has mass M(R) within a radius R, then the balance between the centrifugal acceleration
and the gravitational pull demands that its velocity obeys

v2

R
=

GM(R)
R2

, (9.4)

which can be rewritten as

v =

√
GM(R)

R
. (9.5)

The mass outside the radius R contributes no gravitational pull, due to the same theorem
of Newton’s we used to derive the Friedmann equation in Chapter 3.

At large distances, enclosing most of the visible part of the galaxy, we expect the mass
to be roughly constant and so the rotational velocity should drop off as the square root
of R. At such large distances, the rotation is mapped out by interstellar gas, and instead
is found to stay more or less constant, as shown in Figure 9.1.1 The typical velocities at

1Note that it is the velocity itself, and not the angular velocity, which is constant, so the galaxy is still rotating
differentially and certainly not as a rigid body.
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Figure 9.2 A schematic illustration of a galactic disk, with a few globular clusters, embedded
in a spherical halo of dark matter.

large radii can be three times higher than predicted from the luminous matter, implying ten
times more matter than can be directly seen. This is an example of dark matter. Standard
estimates suggest

Ωhalo � 0.1 . (9.6)

It is just about possible given present observations that this matter can be entirely bary-
onic, since this is marginally consistent with Equation (9.3). However, many models based
on low-mass stars and/or brown dwarfs have been excluded and it is probably difficult to
make up all of the halo with them. A popular alternative is to suggest that this density is
in some new form of matter, which is non-baryonic and only interacts extremely weakly
with conventional matter. This is reinforced by higher estimates for the matter density on
larger scales discussed next. It is usually assumed that this dark matter lacks any dissipa-
tion mechanism able to concentrate it into a disk structure resembling that of the stars. If
that is the case, then the dark matter should be in the form of a spherical halo, meaning
a solid sphere with high density at the centre falling off to smaller values at large radii.
The visible Galactic disk and the globular clusters are embedded in this halo, as shown in
Figure 9.2.

9.1.4 Galaxy cluster composition

Galaxy clusters are the largest gravitationally-collapsed objects in the Universe, and as
such are an ideal probe of the different kinds of matter. Because of their size, they should
contain a fair sample of the material in the Universe, since there is no means of segregating
different types of material as all is drawn in by gravity. The visible components of a galaxy
cluster are in two main parts, seen in Figure 2.3 on page 7. There are the stars within the
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individual galaxies, and there is diffuse hot gas seen in X-rays which has been heated up
through falling into the strong gravitational potential well of the cluster. It turns out that
the baryon content of the latter is the greater, with about five to ten times more hot gas than
stars. While only a small fraction of galaxies are in clusters, galaxy cluster formation is
an ongoing process and those still to form ought to resemble those already present. The
simplest assumption is that there is a considerable amount of cool gas between galaxies,
which present technology does not allow us to detect, which will be heated if it becomes
incorporated into a galaxy cluster. Note that the relative amounts of stars and hot gas in
galaxy clusters are in excellent agreement with a comparison of the observed density of
stars to the total baryon density inferred from nucleosynthesis.

The hot gas can also be used to estimate the amount of dark matter present. Its high
temperature gives it a substantial pressure, but it is confined to the galaxy cluster by grav-
itational attraction. However, the self-gravity of the gas alone does not provide enough
attraction on its own, with the total mass of the cluster inferred to be around ten times
larger than the gas mass. It is natural to assume that this extra attraction is given by dark
matter, and if so the dark matter density must be around ten times larger than the baryon
density given by nucleosynthesis. For example, data from the Chandra X-ray satellite have
been used to give

ΩB

Ω0
� 0.065h−3/2 , (9.7)

which using the nucleosynthesis constraint on ΩB given above leads to

Ω0 � 0.35h−1/2 � 0.4 , (9.8)

a bit higher than other measures. This type of analysis indicates very directly that the
matter density is dominated by dark matter, but that the dark matter density falls short of
the critical density.

9.1.5 The formation of structure

One of the most exciting areas of modern cosmology is the study of the origin of structure in
the Universe, such as galaxies, galaxy clusters, and irregularities in the cosmic microwave
background. As described in Advanced Topic 5, the modern view of the origin of struc-
ture is that it grew from initially small irregularities through gravitational attraction, which
draws material towards regions which start off with higher than average density. As gravity
is the driving force, the formation of structure is a probe of the total density of matter, just
like rotation curves and bulk flows.

Since the 1980s, it was been widely accepted that the baryonic matter in the Universe
would not in itself provide enough gravitational attraction to form the observed structures
by the present age of the Universe. This problem can be circumvented by the introduction of
non-baryonic dark matter, which provides the extra gravitational force to allow structures to
form more quickly and is not inhibited by pressure effects. This view has been vindicated
by modern precision measurements of the cosmic microwave background, described in
Advanced Topic 6. These are beautifully matched by theoretical predictions, provided the
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density of the Universe is

Ω0 � 0.3 , (9.9)

with an uncertainty of just a few per cent. There are presently no working models of struc-
ture formation which do not rely on this amount of dark matter.

9.1.6 The geometry of the Universe and the brightness of supernovae
A landmark in cosmology was the first precision measurement of the geometry of the Uni-
verse using structures in the cosmic microwave background. I can only give a flavour of the
result here, though more details will be given later in the book. As explained in Advanced
Topic 5.4, structure formation scenarios predict a characteristic angular size, of around one
degree, for features seen in the microwave background. The precise scale depends primar-
ily on the geometry of the Universe, which tells us how the microwave photons travelled
from their origin to our location.

The first precision measurement of the size of these features was announced by the
Boomerang experiment in April 2000, followed swiftly by confirmation from the Maxima
experiment. While the precise result does depend somewhat on assumptions, the simplest
interpretation of those results is that the Universe is close to spatially flat, with the total
density (including any cosmological constant) lying within 10 per cent of the critical den-
sity. Further and more accurate confirmation of this result has come from the WMAP and
Planck satellites, reducing the uncertainty to less than 1 per cent (see Equation (A5.7)).

This microwave background data are especially powerful when combined with the data
on supernova brightness described in Chapter 7. Both can be represented in the Ω0–ΩΛ

plane. A full discussion is made in the Advanced Topics, but I suggest you look now to
Figure A2.4 on page 134. The supernova data cross the line of flat geometry almost at a
right angle, and hence the region capable of fitting both data sets is extremely small. The
favoured values are Ω0 � 0.3 and ΩΛ � 0.7, and the former is in excellent agreement with
other measures of the matter density given earlier in this section. Note that the combination
of direct measures of the dark matter density with the WMAP results gives support to the
cosmological constant independently of the supernova observations.

We will later see that the theory of cosmological inflation, discussed in Chapter 13,
makes the prediction that the Universe has a flat geometry. Cosmologists have long used
this theoretical argument to justify them adopting the spatially-flat case, but it is only more
recently that it has had direct support from observation.

9.1.7 Overview
To summarize, observational evidence paints a consistent picture as follows:

• Luminous baryonic matter provides less than 1 per cent of the total density.

• Dark baryonic material, probably mostly in the form of cool gas, is the dominant
form of baryonic matter, overall making around 4 per cent of the total density.

• There is around five times as much non-baryonic dark matter as baryonic matter.
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• The cosmological constant makes the largest contribution to the total density.

• All components added together give a density equal to, or at least extremely close
to, the critical density.

9.2 What might the dark matter be?

The realization that the majority of the matter in the Universe might be non-baryonic is the
ultimate Copernican viewpoint; not only are we in no special place in the Universe, but
we aren’t even made out of the same stuff as dominates the matter density of the Universe.
The prediction of non-baryonic dark matter is one of the boldest and most striking in all
of cosmology, and if ultimately verified, for example by direct detection of dark matter
particles, will be amongst cosmology’s most notable successes.

Although the evidence for dark matter is regarded by most as pretty much overwhelm-
ing, there is no consensus as to what form it takes. An array of possibilities are discussed
below. There are two main classes; in one the dark matter is in the form of individual el-
ementary particles, while in the other it is in some type of compact astrophysical object
formed from many particles.

9.2.1 Fundamental particles
• Things we know exist: The particle which we know exists and yet whose properties are

uncertain enough to allow it to be the dark matter is the neutrino. In the Standard Model
of particle interactions the neutrino is a massless particle, and is present in the Universe
in great abundance, being about as numerous as photons of light. If the Standard Model
is extended to permit the neutrinos to have a small mass (a few tens of electron-volts),
this would not affect their number density but they would have enough density to imply a
closed universe! The required density is comparable to, or perhaps slightly higher than,
current experimental limits on the electron neutrino, but there are also the neutrinos
associated with the muon and tau particles, and so they are more probable candidates.
See Problem 9.1 and Advanced Topic 3 for further discussion of this.

A light neutrino would be a type of dark matter known as hot dark matter, meaning that
the particles have relativistic velocities for at least some fraction of the Universe’s life-
time. In fact, hot dark matter does not have favourable properties for structure formation
and if the neutrino has such a mass it is believed that it could at most contribute only
part of the matter density, with some other form of dark matter also being required.

Another possibility is that the neutrino could be very heavy, for example comparable to
the proton mass. This is allowed because such massive particles wouldn’t have as high
a number density as photons, since in thermal equilibrium high-mass particles are hard
to create – the Boltzmann suppression. A heavy neutrino is an example of cold dark
matter, meaning particles which have negligible velocities throughout the Universe’s
history. Having at least some cold dark matter is desirable for structure formation, but
a heavy neutrino is much less desirable on particle physics grounds than a light one,
and indeed is excluded by particle physics experiments unless the neutrino has unusual
properties.
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• Things we believe might exist: Particle physics theories (particularly those aiming at
unification of fundamental forces) have a habit of throwing up all manner of new and as-
yet-undiscovered particles, several of which are plausible dark matter candidates. Parti-
cle physicists regard supersymmetry as the most solidly-founded extension to standard
particle theory, and it has the nice property of associating a new companion particle to
each of the particles we already know about. In the simplest scenarios, the lightest su-
persymmetric particle (LSP) is stable and is an excellent cold dark matter candidate.
Depending on the model the particle in question might be called the photino, or grav-
itino, or neutralino. They are also sometimes known as WIMPs – Weakly Interacting
Massive Particles.

However the LSP is not the only option for particle dark matter, and other proposed par-
ticles include an ultra-light particle known as the axion, ultra-heavy dark matter particles
which might for instance be formed at the end of inflation, or particles from a ‘shadow
universe’ which interacts with our own Universe only gravitationally.

• Or: The dark matter could be made of something completely different, which no-one
has yet thought of. No-one has ever seen any, after all.

9.2.2 Compact objects

• Black Holes: A population of primordial black holes, meaning black holes formed early
in the Universe’s history rather than at a star’s final death throes, would act like cold dark
matter. However if they are made of baryons they must form before nucleosynthesis to
avoid the nucleosynthesis bound of Equation (9.3). Baryons already in black holes by the
time of nucleosynthesis don’t count as baryons, as they are not available to participate
in nuclei formation.

• MACHOs: This rather dubious acronym stands for MAssive Compact Halo Object, an
attempt to counter the WIMP acronym sometimes used for cold dark matter particles.
It’s a generic term for compact objects with masses not too far from stellar masses, and
they may be baryonic or non-baryonic. Brown dwarfs are a baryonic example, but it
would also be possible to conceive of non-baryonic examples.

Detection of MACHOs has been claimed using gravitational lensing of stars in the Large
Magellanic Cloud (LMC), but this is controversial and even in the most optimistic cir-
cumstances the inferred abundance falls very far short of explaining the mass of the halo.

9.3 Dark matter searches

Given the strength of the evidence that most of the matter in the Universe is dark matter,
what can be done to discover it and study its properties? We’ve already discussed the
detection of compact dark objects using microlensing, which can be used provided the
masses are within a few orders of magnitude of a solar mass. But most of the favoured
candidates for non-baryonic dark matter are elementary particles, whose masses are tiny
fractions of a gram. Lensing certainly cannot be used to detect these.
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The worst case scenario is if the dark matter particles interact with normal matter only
through gravitational forces. If that is true then direct detection appears completely impos-
sible; the gravitational force of an individual particle with say a proton mass is minuscule.
The cumulative gravitational force of many such particles is measurable – that’s all the
astrophysical dark matter evidence I’ve just discussed – but we want something more tan-
gible.

The best hope is if the dark matter particles interact not only gravitationally, but also
through the weak nuclear force (hence the name Weakly Interacting Massive Particle or
WIMP).2 Such interactions could, very reasonably, be feeble enough to have so far re-
mained unobserved, but yet be within the realm of possible detectability. Supersymmetric
particles in particular are thought to be potentially detectable if they indeed make up the
dark matter.

Remember that the Universe is supposed to be full of these dark matter particles. Con-
sequently, many of them will be streaming through your body at this very instant! Prob-
lem 11.2 will investigate this further for the case of neutrinos. You don’t notice them be-
cause their chance of interacting with you is so slight. But if you collect together enough
material, and watch it for long enough, and the interaction rate is high enough, then every
so often a dark matter particle will interact with a proton or neutron and give away the
secret of its presence.

Many experiments of this type are now in operation around the world. As I write, no
detections have been confirmed, but the experimenters live in hope and the sensitivity of the
experiments has been improving at an impressive rate. The experiments are challenging, as
a typical interaction rate is only of order once per day per kilogram of material (this applies
to your own body every bit as much as to a dark matter detector!). In order to prevent
confusion with other interactions, such as cosmic rays or radioactive decay products, a
typical experiment is located deep underground. The detectors are further shielded from
radioactivity within the laboratory, and the apparatus cooled to extremely low temperatures.
A range of particle detection strategies are used by the different experiments, in order to
spot the recoil of atomic nuclei from those rare collisions with dark matter particles.

Picking out a signal from amongst the large range of noise sources is a considerable
challenge. One useful check is that the dark matter signal should show an annual modu-
lation; there should be a prevailing flow of dark matter in the solar neighbourhood, and at
some parts of its orbit the Earth goes generally in the direction of the flow, decreasing the
flux, while at others it goes against the flow and a larger signal should be produced.

2Such particles cannot have electromagnetic or strong nuclear interactions, or they would be visible via their
direct interactions with conventional matter.



76 THE DENSITY OF THE UNIVERSE AND DARK MATTER

Problems

9.1. As we’ll see in the next chapter, radiation in the present Universe, corresponding to
a thermal background at 2.725 K, contributes an energy density corresponding to a
density parameter of Ωrad = 2.47 × 10−5h−2. The typical energy of a photon of
light in a thermal distribution is given by 3kBT (where kB = 8.6 × 10−5 eV K−1).
Suppose that the number of neutrinos matches the number of photons. What mass–
energy (in electron volts) would these neutrinos have to have in order to contribute
a critical density? (Assume that the thermal energy of the neutrinos is negligible
compared to their mass–energy.)

The present upper limit on the electron neutrino mass-energy from experiments
on Earth is about 10 eV. How low would h have to be to enable electron neutrinos to
contribute all the dark matter in a universe with the critical density?

A more accurate calculation (partly explored in Chapter 11) suggests that the neu-
trino mass-energy required to give the critical density is larger than the crude calcu-
lation above suggests, being about 90h2 eV. Is the electron neutrino a realistic dark
matter candidate?

9.2. Suppose it were suggested that black holes of mass 10−10 solar masses might make
up the dark matter in our Galactic halo. Make a rough estimate of how far away you’d
expect the nearest such black hole to be. How does this compare to the size of the
solar system?



Chapter 10

The Cosmic Microwave
Background

The time for discussion of the global dynamics of the Universe is over. We now move on to
the question of why it is said to be the Hot Big Bang. From now on I will concentrate on the
case of a flat Universe with no cosmological constant; this sounds significant but we will
see during Chapter 13 that this is always a good approximation during the early evolution of
the Universe, even if the present Universe is not flat or possesses a cosmological constant.

10.1 Properties of the microwave background

The crucial observation which swayed the Big Bang/Steady State Universe debate in favour
of the former was the detection of the cosmic microwave background radiation reported in
1965. This radiation bathes the Earth from all directions, and is now known to accurately
take on the form of a black-body with temperature

T0 = 2.725 ± 0.001 Kelvin , (10.1)

as shown in Figure 2.5. As a first step, let’s work out how much energy that corresponds
to, in comparison to the critical density.

We studied the properties of thermal distributions in Section 2.5.2. The black-body
spectrum is given by Equation (2.8). We found the total energy density εrad of radiation at
temperature T by integrating the energy density over the black-body distribution, obtaining
Equation (2.10)

εrad ≡ ρradc2 = αT 4 , (10.2)

where

α ≡ π2k4
B

15h̄3c3
= 7.565 × 10−16 J m−3 K−4 , (10.3)

An Introduction to Modern Cosmology, Third Edition. Andrew Liddle.
c© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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is the radiation (or black-body) constant. Evaluating Equation (10.2) for the observed tem-
perature gives the present energy density of radiation

εrad(t0) = 4.17 × 10−14 J m−3 . (10.4)

Writing this in terms of the critical density, Equation (6.5), remembering to convert energy
density to mass density by dividing by c2, yields

Ωrad = 2.47 × 10−5h−2 . (10.5)

So the radiation in the microwave background (which in fact dominates the energy density
in radiation of all wavelengths) is a small but not completely negligible fraction of the
critical density. However, it is quite a lot smaller than the density which we presently see
in stars etc., even without further considering that most of the matter in the Universe is
thought to be dark matter.

However, we know how the density of radiation evolves with the expansion of the
Universe, Equation (5.18):

ρrad ∝ 1
a4

. (10.6)

Combined with Equation (10.2), this implies the following crucial equation

T ∝ 1
a

. (10.7)

This means that the Universe cools as it expands. Since today it has a temperature of about
3K, that means that at earlier times it must have been much hotter. In fact, since the further
back in the past we consider, the smaller the Universe was, it must have been arbitrarily
hot in its earliest stages.

If the temperature is changing as the Universe evolves, then the thermal distribution
must evolve too. However, the energy density distribution of the black-body distribution

ε(f)df =
8πh

c3

f3df

exp (hf/kBT ) − 1
, (10.8)

that we saw in Section 2.5.2 (Equation (2.8)) has a special property, shown in Figure 10.1.
As the Universe expands, the frequency f reduces in proportion to 1/a, but the black-body
form is preserved at a lower temperature Tfinal = Tinitial × ainitial/afinal. This works for
two reasons. The first is because the denominator is only a function of f/T and not f and
T separately, and so the reduction of f can be absorbed by an equivalent reduction in T .
The second is because the f3 on the numerator scales as the inverse volume, corresponding
to the evolution of the photon number density as the Universe expands. So as the Universe
expands and cools, the photon distribution continues to correspond to a thermal distribu-
tion, but one with ever lower temperature. Consequently, as long as at some early stage
interactions were frequent enough to establish a thermal distribution, it will persevere even
if at a later stage particle interactions become infrequent.
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Figure 10.1 The evolution of the black-body spectrum as the Universe expands. The expan-
sion reduces the number density of photons, while the redshifting reduces their frequency. In
combination, these two effects map the spectrum onto a new black-body at a lower tempera-
ture. (The axes match Figure 2.10, using the higher temperature for each curve. The cooling
is by a factor 2.)

10.2 The photon to baryon ratio

Before proceeding to the origin of the microwave background, let’s reconsider it in terms
of the numbers of particles. You’ll recall, from Section 5.4, that since particles cannot
simply disappear, then so long as interactions are negligible particle number densities sim-
ply reduce in inverse proportion to the volume, n ∝ 1/a3. This is true of both protons
and neutrons, collectively known as baryons, and of the photons making up the microwave
background. The ratio of the number of photons to the number of baryons is therefore a
constant, preserved as the Universe expands. How many photons are there per baryon?

We’ve just seen that the present energy in the microwave background is

εrad(t0) = 4.17 × 10−14 J m−3. (10.9)

The typical energy of a photon of light in a thermal distribution is (see page 17)

Emean � 3kBT = 7.0 × 10−4 eV , (10.10)

for a temperature T = 2.725K. Converting electron-volts to Joules (page xiv) and dividing
the energy density by the mean energy we find the present number density of photons
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is

nγ = 3.7 × 108 m−3 . (10.11)

There are nearly a billion microwave background photons in every cubic metre!
Now we need to compare this to the number density of baryons. A powerful constraint

comes from nucleosynthesis, which is the topic of Chapter 12; however, we already saw
the result quoted in Section 9.1.2. The density parameter in baryons is

ΩB � 0.023h−2 . (10.12)

We convert this into an energy density using the critical density, obtaining

εB = ρBc2 = ΩBρcc
2 � 3.9 × 10−11 J m−3. (10.13)

The baryon energy density is about a thousand times larger than the density parameter in
radiation, Equation (10.5), but the individual baryons have much more mass–energy, the
proton and neutron rest masses being about 939 MeV. We find

nB = 0.26m−3 . (10.14)

Although the total energy density in baryons considerably exceeds that in radiation,
there are vastly more photons than there are baryons. In fact, there are about 1.7 × 109

photons for every baryon.

10.3 The origin of the microwave background

We are now in a position to discuss the origin of the microwave background. The crucial
ingredient we need is that a hydrogen atom has a minimum ionization energy; if an electron
finds its way into the ground state then 13.6 eV of energy is needed to free it. At the very
least, 10.2 eV is needed to raise it to its first excited state, from which a further 3.4 eV will
ionize it. As long as the Universe is hot enough, photons will easily have this energy and
are able to keep the hydrogen fully ionized.

Let’s begin by considering a suitably early time, say when the Universe was one mil-
lionth of its present size. At that time the temperature would have been about 3 000 000 K.
Such a temperature was high enough that the typical energy of a photon in the thermal dis-
tribution was considerably more than the ionization energy of hydrogen atoms, so atoms
would not have been able to exist at that epoch; any electron trying to bind to a proton
would immediately be blasted away again by collision with a photon of light. The Uni-
verse at that time was therefore a sea of free nuclei and electrons, and because photons
interact strongly with free electrons (via Thomson scattering), the mean free path of any
photon was short (approximately 1/neσe where ne is the electron number density and σe

the Thomson scattering cross-section). So we picture a sea of frequently-colliding parti-
cles, forming an ionized plasma. This situation is actually not very exotic; if you calculate
the density of material at that time you will find it’s very low – considerably less than water–
and it’s very easy to heat a gas up until it becomes a plasma. The physics is all extremely
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well tested and understood.
As the Universe expanded and cooled, the photons of light lost energy and became less

and less able to ionize any atoms that form. The situation is exactly that of the photoelectric
effect, where long-wavelength photons, however numerous, are unable to knock electrons
out of metal atoms. Eventually all the electrons found their way into the ground state and
the photons were no longer able to interact at all. Over a short interval of time, the Universe
suddenly switched from being opaque to being completely transparent. The photons were
then able to travel unimpeded for the entire remainder of the Universe’s evolution. This
process is known as decoupling.

The simplest estimate of when the microwave background formed comes from equating
the mean photon energy at a given temperature to the ionization energy. The mean energy
of a photon in a black-body distribution at temperature T is E � 3kBT , as we saw in
Section 2.5.2. Since kB = 8.62 × 10−5 eV K−1, the temperature at formation of the
microwave background would be

T � 13.6 eV
3kB

= 50 000K , (10.15)

if this procedure were valid. In fact, this estimate is not quite sophisticated enough, because
we have yet to account for our discovery, in the previous section, that there are far more
photons in the Universe than electrons, about a factor of 109 more. Because of this, even
when the mean photon energy dropped below 13.6 eV, there were still high-energy photons
in the tail of the distribution able to ionize any atoms that formed – see Equation (2.7) and
Figure 2.9 on page 16.

An accurate calculation of the temperature of decoupling requires a lot of physics, some
of which I will outline in an optional section following this one. However we can at least
estimate the order of the effect simply using the Boltzmann suppression factor, making
the assumption that we only need something like one ionizing photon per atom to keep
the Universe ionized. (Note that the high-energy photons keep the electrons out of atoms,
and then all the remaining photons can interact with the free electrons thus created.) In
its crudest form, the Boltzmann suppression says that the fraction of photons with energy
exceeding I is given approximately by exp(−I/kBT ), leading to the expression

Tdec =
13.6 eV

kB ln(1.7 × 109)
� 7400K . (10.16)

We can do a little better by actually integrating over the photon distribution function, Equa-
tion (2.7), which indicates a significant prefactor to the Boltzmann suppression, reducing
the estimate to 5700 K (see Problem 10.5). This is in fact fairly close to the right answer,
which is that decoupling occurred when the Universe was at a temperature of about 3000 K.
This temperature is known as the decoupling temperature.

Comparing this to the present temperature, we conclude, using Equation (10.7), that
decoupling happened when the Universe was about one-thousandth of its present size, with
adec � 1/1000 assuming we have normalized a(t0) = 1.

Thus, the reason why the microwave background is so accurately given by a thermal
distribution is that it was once in a highly-interacting thermal state when the Universe was
much hotter. As we’ve seen, the black-body form is preserved as the Universe expands
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Figure 10.2 Because they have travelled towards us uninterrupted since the Universe was
at 3000K, the photons making up our microwave background originated on the surface of a
sphere, known as the surface of last scattering, a considerable distance away from our own
galaxy. If observers exist in other galaxies, they will see microwaves coming from the surface
of a different sphere centred around their location. At the last-scattering surface, the photons
had a much higher frequency, which has been redshifted as the photons travel towards us.

and cools. The Hot Big Bang theory therefore gives a simple explanation of this crucial
observation.

Since decoupling happened when the Universe was only about one thousandth of its
present size, and the photons have been travelling uninterrupted since then, they come
from a considerable distance away. Indeed, a distance close to the size of the observable
Universe. Those we see originate on the surface of a very large sphere centred on our
location, shown in Figure 10.2, called the surface of last scattering. Its radius is of order
6000h−1 Mpc (see Problem 10.6). Of course, there is nothing special about this particular
surface, except that it happens to be at just the right distance that the photons have reached
us by today. There are photons originating at every point, and observers in different parts
of the Universe (if there are any!) will see photons originating from different large spheres,
of the same radius, centred on their location.

When the photons set out, their temperature was about 3000 K and their frequencies
were much higher than now, so that they weren’t actually microwaves at that time. We’ll
see in the next chapter that the age of the Universe at that time was about 350 000 yrs. As
the photons travel, the Universe expands and they cool, maintaining their thermal form,
until they are detected on Earth at a temperature a little below 3K. By this time, redshifting
has placed them in the microwave region of the electromagnetic spectrum.
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10.4 The origin of the microwave background
(optional advanced treatment)

The derivation of the temperature when the cosmic microwave background formed given
in the last section is not entirely satisfactory, and in this optional section I give a brief de-
scription of a more accurate calculation, based loosely on the textbook of Kolb & Turner.
First of all, we should acknowledge that there are two separate processes going on, which
I have up until now taken as one and the same. Recombination refers to the epoch where
electrons joined the nuclei to create atoms (‘recombination’ is however a misnomer in that
the electrons and nuclei were never previously combined). Decoupling refers to the epoch
after which the photons will not scatter again. If recombination were instantaneous and
complete, the two would coincide, but in practice each process takes some time and decou-
pling follows recombination. An improved calculation of the recombination epoch uses
the Saha equation, which computes the ionization fraction of a gas in thermal equilibrium.

The Saha equation is derived by assuming that only hydrogen is present, and considers
the distribution functions for hydrogen, free protons and electrons, which are assumed to
be in thermal and chemical equilibrium (a chemical potential has to be included to enforce
baryon number conservation). Defining the ionization fraction as X ≡ np/nB, where np

and nB are the number densities of free protons and of baryons, the equilibrium abundance
can be shown to be

1 − X

X2
� 3.8

nB

nγ

(
kBT

mec2

)3/2

exp
(

13.6 eV
kBT

)
. (10.17)

This complicated formula properly includes the distribution functions, and also allows for
the large ratio of photons to baryons, nB/nγ � 6 × 10−10.

If the right-hand side of the Saha equation is small, then X will be close to one corre-
sponding to full ionization. For example, this will be true if the temperature is much greater
than the binding energy (while still low enough to avoid spontaneous electron–positron cre-
ation), due to the small baryon-to-photon ratio. As the temperature cools, the right-hand
side will become large and the ionization ratio will fall towards zero. However both the
factors in front of the exponential are small numbers, and these are overcome by the expo-
nential only once the temperature is well below the binding energy. Note that as well as the

baryon-to-photon ratio discussed earlier, there is a significant prefactor
(
kBT/mec

2
)3/2

coming from correct treatment of the distribution functions.
A standard definition of recombination is Xrec = 0.1, corresponding to the process

being 90 per cent complete. The Saha equation has to be solved iteratively or numeri-
cally, once the precise value of nB/nγ has been chosen, and this gives kBTrec � 0.31 eV,
implying Trec � 3600K.

In fact not all electrons manage to combine with atoms, because eventually the remain-
ing electrons are so rare that they are unable to find their corresponding nuclei. However
the Saha equation cannot be used to predict the residual ionization as equilibrium will have
broken down by then, and so a yet more sophisticated calculation is needed. The residual
ionization is expected to be of order 10−3.

Having found the ionization history of the Universe, the epoch of decoupling can be
formally defined as the epoch when the duration of the photon mean free path equals the age
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of the Universe. The mean free path by this stage grows much more rapidly than the size
of the observable Universe, so the photons are then unlikely to interact at any subsequent
epoch. The result has a very weak dependence on the matter and baryon densities, and can
be shown to be Tdec � 3000K as given in the previous section.

Problems

10.1. If the microwave background has a temperature of about 3K, why does a microwave
oven heat food up rather than cool it down? Also, if microwaves can’t interact with
atoms as they have insufficient energy to shift the electrons up energy levels, how
can a microwave oven heat food?

10.2. The energy density ε in radiation is related to its temperature by

εrad = ρradc2 = αT 4 .

Compute the temperature when the Universe was one second old, using the Fried-
mann equation and the radiation-dominated solution a(t) ∝ t1/2. (You’ll need
some of the constants listed on page xiv.)

What was the corresponding mass density at that time? Compare it with that of
water. How old is the Universe when its density matches that of water?

10.3. Suppose we live in a closed universe (k > 0), which will recollapse some time in
the future. What will the temperature be when the Universe has gone through its
maximum size and then shrunk back to its present size?

10.4. The present number density of electrons in the Universe is the same as that of pro-
tons, about 0.2m−3. Consider a time long before the formation of the microwave
background, when the scale factor was one millionth of its present value. What was
the number density of electrons then? Given that the electron mass–energy is 0.511
MeV, do you expect electrons to be relativistic or non-relativistic at that time?

The cross-section for the scattering of photons off electrons is the Thomson
cross-section σe = 6.7 × 10−29m2. Given that the mean free path (i.e. the typ-
ical distance travelled between interactions) of photons through an electron gas of
number density ne is d � 1/neσe, compute the mean free path for photons when
the scale factor was one millionth its present value.

From the mean free path, calculate the typical time between interactions, the
speed of light being 3×108 msec−1. Compare the interaction time with the age of
the Universe at that time, which would be about 10 000 years. What is the signifi-
cance of the comparison?
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10.5. Integration of the Planck function (which you can try yourself if you have time on
your hands) shows that if I � kBT the fraction of photons of energy greater than
I is

n(> I)
n

�
(

I

kBT

)2

exp
(
− I

kBT

)
.

Either numerically or by iteration, find the temperature such that there is one ion-
izing photon per baryon.

10.6. Use the age of the Universe to estimate the radius of the last-scattering surface, as-
suming critical density. Why might this underestimate the true value? Assuming
a typical galaxy has mass 1011M�, and using the critical density given in Equa-
tion (6.6), estimate the number of galaxies in the observable Universe. How many
protons are there in the observable Universe?





Chapter 11

The Early Universe

Now that we understand the behaviour of the radiation, we can consider the entire thermal
history of the Universe. The best approach is to start from the present and work backwards,
and see how far our understanding can take us.

At the present we have some idea of the constituents of the Universe, at least up to
the uncertainty in cosmological parameters such as h. The relativistic particles come in
two varieties, photons and neutrinos. The photon density we have already found to be
Ωrad = 2.47 × 10−5 h−2, Equation (10.5). The neutrinos present more of a challenge,
because neutrinos are fiendishly hard to detect. For example, to detect the neutrinos even
from something as optically bright as our own Sun requires delicate underground experi-
ments involving huge tanks of material. Direct detection of a thermal cosmological neutrino
background is presently orders of magnitude beyond our technical expertise. To estimate
the properties of the neutrino background, we must for now resort to purely theoretical
arguments.

Within this main body of this book, I will make the common assumption that as far
as cosmology is concerned the neutrinos can be treated as massless particles. There is in
fact now substantial experimental evidence that neutrinos have some mass, though it is
unclear whether this is large enough to have cosmological effects, and Advanced Topic 3
will study the effects of neutrino mass in some detail. Under the massless assumption,
theoretical calculations of the present neutrino density give a famous and bizarre-looking
result

Ων = 3 × 7
8
×

(
4
11

)4/3

Ωrad = 0.68Ωrad = 1.68 × 10−5h−2 , (11.1)

the steps to which you can follow in Problem 11.1 and in Advanced Topic 3. The amount
of energy expected in the cosmic neutrino background is similar to that in the cosmic mi-
crowave background.

Adding together the photon and neutrino densities gives the complete density parameter
in relativistic particles

Ωrel = 4.15 × 10−5h−2 . (11.2)

An Introduction to Modern Cosmology, Third Edition. Andrew Liddle.
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Since this is well below the observed density of the matter in the Universe, most of the
matter in the present Universe is non-relativistic. The density of non-relativistic material
is simply Ω0, which is expected to be around 0.3.

We know the dependences of both relativistic and non-relativistic matter densities on
the expansion, reducing as 1/a4 and 1/a3 respectively. Their ratio, expressed using the
density parameter, therefore behaves as

Ωrel

Ωmat
=

4.15 × 10−5

Ω0h2

1
a

, (11.3)

where the constant of proportionality has been fixed by the present values and it is assumed
we normalize a(t0) = 1. With this, we can compute the relative amounts of relativistic and
non-relativistic material for any given size of the Universe. For example, at decoupling we
found adec � 1/1000, so the ratio at decoupling is given by

Ωrel

Ωmat
=

0.04
Ω0h2

. (11.4)

Unless the combination Ω0h
2 is very small, there will be more non-relativistic matter than

not at the time of decoupling; the Universe is said to be matter dominated.

However, considering earlier times that state of affairs cannot persevere for long; when

a = aeq =
1

24 000Ω0h2
, (11.5)

the densities of matter and radiation would be the same. This is known as the epoch of
matter–radiation equality. At all earlier times, the relativistic particles would dominate
the Universe.

We now have enough information to calculate the full temperature versus time relation-
ship for the Universe, assuming an instantaneous transition between radiation domination
and matter domination. Since T ∝ 1/a, and we know how a behaves in each of those
regimes, we can immediately write down the appropriate results.

An acceptable approximation is to set k = 0 and Λ = 0, as even if they are present
now they would be negligible early on. Then the scale factor grows as a ∝ t2/3, giving the
relation T ∝ t−2/3. Fixing the proportionality constant assuming the Universe is presently
12 billion years old (a slight underestimate to compensate for ignoring Λ) gives

T

2.725K
=

(
4 × 1017 sec

t

)2/3

. (11.6)

This holds for

T < Teq =
2.725K

aeq
= 66 000Ω0h

2 K . (11.7)

The time of matter–radiation equality is then given by

teq � 1.0 × 1011 Ω−3/2
0 h−3 sec � 3400Ω−3/2

0 h−3 yrs . (11.8)
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As decoupling happened after matter–radiation equality, we can apply Equation (11.6)
with Tdec � 3000K to find the age of the Universe at decoupling

tdec � 1013 sec = 350 000 yrs . (11.9)

At temperatures above Teq, radiation domination takes over and, from the expansion
law a ∝ t1/2, the temperature–time relation becomes

T

Teq
=

(
teq
t

)1/2

, (11.10)

where the constant of proportionality is fixed by the values at matter–radiation equality.

However, during radiation domination we can obtain a more accurate result directly
from the Friedmann equation. Write

H2 =
8πG

3
ρ =

8πG

3
× 1.68 × αT 4

c2
, (11.11)

and substitute in for all the constants, remembering that radiation domination gives a ∝
t1/2 and hence H = 1/2t. The factor 1.68 allows for the neutrinos. This then gives

(
1 sec

t

)1/2

� T

1.3 × 1010 K
=

kBT

1.1MeV
. (11.12)

This means that when the Universe was one second old, the temperature would have been
about 1.3 × 1010 Kelvin and the typical particle energy about 1.1 MeV.

The temperature–time relation for the Universe is illustrated in Figure 11.1.

Knowing the typical energy of the radiation as a function of time allows us to construct
a history of interesting eras in the evolution of the Universe. Let’s begin at the present and
consider running time backwards, so that the Universe gets hotter as we go to earlier and
earlier times.

We’ve already discussed decoupling, which was when the microwave background
formed. It corresponds to the last time photons were energetic enough to knock electrons
out of atoms, at a temperature of about 3000K. Looking at Equation (11.7), we see that de-
coupling almost certainly happened during the matter-dominated era. However, continuing
to run time backwards, we learn that a little earlier the radiation would have been the dom-
inant constituent of the Universe, according to Equation (11.5). The transition occurred at
a temperature Teq = 66 000Ω0h

2 K.

As we contemplate earlier times, the Universe was ever hotter, but we have to consider
quite early times before that extra energy has a significant effect. At times early enough
that the temperature exceeded 1010 Kelvin, the typical photon energies were comparable to
nuclear binding energies, which are of order an MeV; this would have been the case when
the Universe was around one second old. When the Universe was younger than this, the
photons were energetic enough to destroy nuclei, by splitting protons and neutrons away
from each other. So at any time before an age of one second the Universe would have been
a sea of separate protons, neutrons, electrons etc., strongly interacting with each other.
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Figure 11.1 A schematic illustration of the temperature–time relation, assuming Ω0 = 0.3
and h = 0.7. When the radiation era ends the expansion rate increases and the temperature
cools more quickly.

The transition from free protons and neutrons into atomic nuclei is the topic of the next
chapter.

Going back further in time, when the temperature was even hotter, the situation be-
comes less clear, because the typical energies start to be so high that the laws of physics
become less well known. It is believed that at 1012 Kelvin it stops making sense even to
think of protons and neutrons; instead their constituent quarks are free to wander around
in a dense sea (rather reminiscently of the way that in some molecules the electrons are
not associated with any particular nucleus). The transition where quarks first condense
into protons and neutrons is known as the quark–hadron phase transition [hadron being the
technical term for bound states of quarks, either baryons (three quarks) or mesons (a quark
and an anti-quark)]. Theoretically this picture is appealing, but observational evidence,
obtained by colliding heavy nuclei together, is so far scanty at best.

The highest particle energies that have been achieved on Earth are generated by particle
accelerators and are around 100 GeV (where GeV is a giga-electron volt, i.e. one thousand
MeV), corresponding to an effective temperature of about 1015 Kelvin. This is the highest
energy at which we have direct evidence of the physical behaviour of fundamental particles,
and that temperature was achieved only 10−10 seconds after the Big Bang itself. Earlier yet
lies the realm of the very early Universe, where speculations concerning laws of physics
such as the unification of fundamental forces must be used. A variety of possible behaviours
have been proposed; one particularly prominent idea is cosmological inflation, which I’ll
come to shortly.
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Table 11.1 Different stages of the Universe’s evolution (taking Ω0 = 0.3 and h = 0.7). Some
numbers are approximate

Time Temperature What’s going on?

t < 10−10 s T > 1015 K Open to speculation!

10−10 s < t < 10−4 s 1015 K > T > 1012 K Free electrons, quarks, photons, neutri-
nos; everything is strongly interacting
with everything else.

10−4 s < t < 1 s 1012 K > T > 1010 K Free electrons, protons, neutrons, pho-
tons, neutrinos; everything is strongly in-
teracting with everything else.

1 s < t < 1012 s 1010 K > T > 10000K Protons and neutrons have joined to form
atomic nuclei, and so we have free elec-
trons, atomic nuclei, photons, neutrinos;
everything is strongly interacting with ev-
erything else except the neutrinos, whose
interactions are now too weak. The Uni-
verse is still radiation dominated.

1012 s < t < 1013 s 10000K > T > 3000 K As before, except that now the Universe
is matter dominated.

1013 s < t < t0 3000 K > T > 3 K Atoms have now formed from the nu-
clei and the electrons. The photons are
no longer interacting with them, and are
cooling to form what we will see as the
microwave background.

The different eras are summarized in Table 11.1. Note that I haven’t mentioned the
dark matter, since so little is known about it, but it is most likely present at all these epochs
and, at least at the later stages, cannot have significant interactions with anything else or it
wouldn’t be dark.
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Problems

11.1. This question indicates the path to the neutrino density Ων of Equation (11.1). Re-
member that there are three different families of neutrino, each contributing to the
density. Very early on the Universe was so hot and dense that even neutrinos would
interact sufficiently to become thermalized.

The neutrino temperature is predicted to be lower than the photon temperature,
the reason being electron–positron annihilations which feed energy into the photon
energy density but not the neutrino one. This boosts the photon temperature relative
to the neutrinos by a factor 3

√
11/4. Compute Ων/Ωrad, assuming at this stage that

the radiation constant is the same in each case.
In fact, the equivalent of the radiation constant for neutrinos is lower than that

for photons, by a factor 7/8. (The fundamental reason for this is that neutrinos
obey Fermi–Dirac statistics rather than Bose–Einstein ones as photons do; their
equivalent of Equation (2.7) has +1 rather than −1 on the denominator.) Correct
your estimate of Ων/Ωrad to include this.

11.2. In Section 10.2, we learned that the number density of photons in the microwave
background is nγ � 3.7×108 m−3. Assuming neutrinos are massless, estimate the
neutrino number density. Estimate how many cosmic neutrinos pass through your
body each second.

11.3. The temperature at the core of the Sun is around 107 K. How old was the Universe
when it was this hot? Was it matter dominated or radiation dominated at that time?

At the CERN collider, typical particle energies are of order of 100 GeV. How
old was the Universe when typical particle energies were around this size? What
was the temperature at this time?

11.4. Estimate Ωrad at the time of decoupling, stating clearly any assumptions.



Chapter 12

Nucleosynthesis:
The Origin of the Light Elements

The abundance of elements in the Universe provides the final, and in many ways most com-
pelling, piece of evidence supporting the Hot Big Bang theory. Historically it was assumed
that the first stars began their life made from hydrogen, with heavier elements being gen-
erated via nuclear fusion reactions as they burned (later generations of stars formed from
gas that contained heavier elements produced by the first stars). While this is certainly the
process giving rise to the heavy elements, it was eventually recognized that all the light
elements – deuterium, helium-3, lithium and especially helium-4 – could not have been
created in this manner. Instead, as one looks to younger and younger stars, these approach
non-zero abundances, which the stars seem to begin their lives with. These abundances
are apparently those of the primordial gas from which the stars formed, and the question is
whether or not they can be explained by the Hot Big Bang theory.

The processes which give rise to nuclei parallel those which we have already examined
for atoms in Chapter 10. A typical nuclear binding energy is around 1 MeV, and so if typical
photon energies exceed this, then nuclei will be immediately dissociated. This energy is
about 100 000 times greater than the electron binding energy, and so the corresponding
temperature is higher by this factor. The formation of nuclei in the Universe therefore
took place at a much earlier stage in the Universe’s history; from the temperature–time
relation of the last chapter, Equation (11.12), we see that this should have happened when
the Universe was about one second old. The process is known as nucleosynthesis.

12.1 Hydrogen and helium

I’ll give a simplified analysis, which assumes that only helium-4, the most stable of the light
nuclei, was formed, with the leftover material remaining as hydrogen nuclei (i.e. individual
protons). Three pieces of physics are important:

• Protons are lighter than neutrons (mp c2 = 938.3 MeV; mn c2 = 939.6 MeV).

An Introduction to Modern Cosmology, Third Edition. Andrew Liddle.
c© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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• Free neutrons don’t survive indefinitely, but instead decay into protons (plus elec-
trons and anti-neutrinos) with a surprisingly long half-life of thalf = 610 sec.

• There exist stable isotopes of light elements, and neutrons bound into them do not
decay.

At high temperatures the Universe contains protons and neutrons in thermal equilibrium at
high energies. As it cools, these at some point stop being free particles and are able to bind
into nuclei.

We start our discussion at a time before the nuclei form, but late enough that the tem-
perature is sufficiently low that the protons and neutrons are non-relativistic, meaning
kBT � mp c2. When this is satisfied the particles will be in thermal equilibrium and
satisfy a Maxwell–Boltzmann distribution, in which the number density N is given by

N ∝ m3/2 exp
(
−mc2

kBT

)
. (12.1)

(I’m using N for number density in this section to avoid confusion with ‘n’ for neutron;
N is the same as the number density n of Section 5.4 and elsewhere.) The constant of
proportionality is the same for each particle species and isn’t needed. The relative densities
of neutrons and protons will be

Nn

Np
=

(
mn

mp

)3/2

exp
[
− (mn − mp) c2

kBT

]
. (12.2)

The prefactor is always very close to one as the particle masses are so similar. The expo-
nential factor is also close to one as long as the temperature exceeds the proton–neutron
mass difference of 1.3 MeV, so while kBT � (mn − mp)c2 the numbers of protons and
of neutrons in the Universe will be almost identical.

The reactions converting neutrons to protons and vice versa are

n + νe ←→ p + e− (12.3)

n + e+ ←→ p + ν̄e (12.4)

where νe is an electron neutrino and ν̄e its anti-particle. As long as these interactions pro-
ceed sufficiently rapidly, the neutrons and protons will remain in thermal equilibrium with
abundance determined by Equation (12.2). A calculation of the interaction rate is beyond
the scope of this book, but indicates that reactions proceed quickly until the temperature
reaches kBT � 0.8 MeV, after which the rate becomes much longer than the age of the Uni-
verse. At that temperature, the relative abundances of protons and neutrons become fixed.
As this temperature is slightly less than the neutron–proton mass-energy difference, the
exponential in Equation (12.2) has become important and the relative number densities are

Nn

Np
� exp

(
−1.3 MeV

0.8 MeV

)
� 1

5
. (12.5)

From this time onwards, the only process which can change the abundances is the decay
of free neutrons.
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The production of light elements then has to go through a complex reaction chain, with
nuclear fusion forming nuclei and the high-energy tail of the photon distribution breaking
them up again (just as at the formation of the microwave background). The sort of reactions
which are important (but far from a complete set) are

p + n → D ; (12.6)

D + p → 3He ; (12.7)

D + D → 4He , (12.8)

where ‘D’ stands for a deuterium nucleus and ‘He’ a helium one. The destruction processes
happen in the opposite direction; they become less and less important as the Universe cools
and eventually the build-up of nuclei can properly proceed. It turns out that this happens
at an energy of about 0.06 MeV. I won’t attempt a derivation of that number, though I note
that it can be estimated by a similar ‘high-energy tail’ argument to that of Chapter 10, this
time applied to the deuterium binding energy of 2.2 MeV. Once the neutrons manage to
form nuclei, they become stable.

The delay until 0.06 MeV before nuclei such as helium-4 appear is long enough that the
decay of neutrons into protons is not completely negligible, though most of the neutrons
do survive. To figure out how many neutrons decay, we need to know how old the Universe
is at a temperature kBT � 0.06MeV. We found this in the last chapter, Equation (11.12);
the age is tnuc � 340 s, surprisingly close to the neutron half-life of thalf = 610 s. The
neutron decays reduce the neutron number density by exp(− ln 2 × tnuc/thalf) giving

Nn

Np
� 1

5
× exp

(
−340 s × ln 2

610 s

)
� 1

7.3
. (12.9)

One could take into account that the neutron decays are increasing the number of protons
too, but that’s a small correction. It is quite a bizarre coincidence that the neutron half-life
is so comparable to the time it takes the nuclei to form; if it had been much shorter all
neutrons would decay and only hydrogen could form.

In the early Universe, the only elements produced in any significant abundance are hy-
drogen and helium-4. The latter is produced because it is the most stable light nucleus, and
the former because there aren’t enough neutrons around for all the protons to bind with and
so some protons are left over. We can therefore get an estimate of their relative abundance,
normally quoted as the fraction of the mass (not number density) of the Universe which is in
helium-4. Since every helium nucleus contains 2 neutrons (and hydrogen contains none),
all neutrons end up in helium and the number density of helium-4 is NHe−4 = Nn/2.
Each helium nucleus weighs about four proton masses, so the fraction of the total mass in
helium-4, known as Y4, is

Y4 ≡ 2Nn

Nn + Np
=

2
1 + Np/Nn

� 0.24 . (12.10)

So this simple treatment tells us that about 24% of the matter in the Universe is in the form
of helium-4. Note that this is the mass fraction; since helium-4 weighs four times as much
as hydrogen, it means there is one helium-4 nucleus for every 14 hydrogen ones.
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A more detailed treatment involves keeping track of a whole network of nuclear reac-
tions, and carefully analysing the balance between nuclear reaction rates and the expansion
rate of the Universe. This typically gives answers in the range 23–24% helium-4, with al-
most all the rest in hydrogen. This reaction network also allows one to estimate the trace
abundances of all the other nuclei which form in the early Universe. These are deuterium,
helium-3 and lithium-7. By mass, these contribute about 10−4, 10−5 and 10−10 respec-
tively.

12.2 Comparing with observations

Remarkably, all of these element abundances can be measured, even that of lithium-7. This
allows a powerful test of the Hot Big Bang model, encompassing ten orders of magnitude
in abundance. There turn out to be only two important input parameters which affect the
abundances.

1. The number of massless neutrino species in the Universe, which affects the expan-
sion temperature–time relation and hence the way in which nuclear reactions go out
of thermal equilibrium. So far we have assumed there are three neutrino types as
in the Standard Model of particle interactions, but other numbers are possible in
principle.

2. The density of baryonic matter in the Universe, from which the nuclei are composed.
If the density of baryons were changed, it is reasonable to imagine that the details
of how they form nuclei are changed. The absolute density of baryons, ρB, is what
matters. Normally this is expressed using the density parameter, and since the critical
density ρc has a factor h2 in it, that means that it is the combination ΩBh2 which is
constrained.

An impressive success of the Big Bang model is that it was found that agreement with
the observed element abundances could only be obtained if the number of massless neutrino
species is three, which corresponds exactly to the three species (electron, muon and tau) we
know to exist. When first obtained in the late 1980s, this result had no independent support,
but since then the LEP experiment at CERN has confirmed the result of there being only
three light neutrino species, based on the decay of the Z0 particle. This is powerful indirect
evidence that the predicted cosmic neutrino background does exist.

Once we fix the number of neutrinos at three, that leaves only ΩBh2 as an input param-
eter. Figure 12.1 shows the predicted abundances as a function of this parameter. The Hot
Big Bang theory can reproduce the observed abundances of the light elements, provided
ΩBh2 lies within a narrow range. There is an exception in the case of lithium-7, where the
predicted abundance has the right order of magnitude but is nevertheless about a factor of
two higher than measured; the origin of this discrepancy is not understood as yet.

While the helium-4 abundance is quite uncertain, and there are presently no useful
measurements of helium-3 at all, the deuterium abundance is very accurately determined
from absorption features in quasar spectra, to the extent that the ‘box’ in Figure 12.1 looks
more like a horizontal line. Agreement with these observations places a very tight bound
on the amount of baryonic matter there can be in the Universe, as was already discussed in
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Figure 12.1 The predicted abundances of light nuclei, as a function of ΩBh2 along the top
and of the baryon-to-photon number density ratio along the bottom. From top to bottom the el-
ements are helium-4, deuterium, helium-3 and lithium-7, and the spreads in the theoretical pre-
dictions are due to uncertainties in nuclear cross-sections. The boxes show the observationally-
allowed abundances and the parameter range matching them. The vertical band shows
the range compatible with the deuterium abundance observations, while the narrower band
within it shows the range inferred from the cosmic microwave background (Advanced
Topic 6). (Adapted from Reviews of Particle Properties 2014, B.D. Fields, P. Molaro and
S. Sarkar.)

Chapter 9. This is shown by the vertical band in Figure 12.1, corresponding to

0.021 ≤ ΩBh2 ≤ 0.025 , (12.11)
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Table 12.1 A comparison of nucleosynthesis and decoupling

Nucleosynthesis Decoupling

Time A few minutes 300 000 yrs

Temperature 1010 K 3000K

Typical energy 1MeV 1 eV

Process Protons and neutrons Nuclei and electrons
form nuclei. form atoms.

Electrons remain free.

Radiation Continues to interact with Ceases interaction and
nuclei and electrons. forms microwave background.

as already quoted in Chapter 9. This is a 95% confidence interval. This result is consistent
with an even more precise, but less direct, measurement of the baryon density coming from
the cosmic microwave background (shown by a thin faintly-shaded vertical band within the
nucleoynthesis band).

The critical density is far off the right-hand edge of this plot. This confirms, as dis-
cussed in Chapter 9, that it is impossible to have a critical density of baryonic matter unless
the entire nucleosynthesis argument is somehow completely incorrect, despite giving such
impressive answers. In fact, the upper limit from nucleosynthesis is well below even the ob-
served density of matter in the Universe, giving strong support to the idea of non-baryonic
dark matter.

Having measured the baryon density using nucleosynthesis, we then start to wonder
about the density of anti-baryons. In particle physics, every particle has its anti-particle.
However, it is believed that there are no significant quantities of anti-matter in our Universe;
the annihilation signals of matter and anti-matter coming together are just too strong and
would have already been seen. So our Universe possesses a matter–anti-matter asymmetry,
quantified by the amount of baryonic matter within it. How this might arise is discussed in
Advanced Topic 4.

12.3 Contrasting decoupling and nucleosynthesis

Because of the strong parallels between nucleosynthesis and decoupling, it is important to
keep their properties distinct in your mind. The differences between the two arise in the
huge difference in energy scales between atomic and nuclear processes, most disturbingly
illustrated by the vastly different destructive powers of chemical and nuclear bombs.1 The
Universe is only hot enough to destroy nuclei for the first few minutes of its existence

1Don’t be fooled by the incorrect terminology of ‘atom bomb’.
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(until t � 400 sec), while it remains capable of destroying atoms for more than a hundred
thousand years. Table 12.1 summarizes the different scales and processes. In particular,
remember that it is only decoupling which leads to the microwave background; after nu-
cleosynthesis the photons are still able to interact with both nuclei and electrons.

Problems

12.1. By the standards of typical nuclear reactions, the neutron half-life of 610 seconds is
extraordinarily long. What would be the consequence for light element production
had this half-life instead been tiny (say a microsecond, for example)?

12.2. Imagine an alternate universe where the neutron half-life is 100 seconds rather than
610 seconds. Estimate the fraction of the total mass of baryonic matter in the form
of helium once nucleosynthesis is over in such a Universe.

12.3. Assuming that the Universe is charge neutral, how many electrons are there per
baryon?

12.4. Which of decoupling and nucleosynthesis do you feel is the stronger test of the Hot
Big Bang cosmology, and why?





Chapter 13

The Inflationary Universe

We now leave the well-established and understood topics in cosmology in order to dis-
cuss something more speculative. The idea in question is cosmological inflation, which
was invented in 1981 and remains a hot research topic in modern cosmology. Inflation
is not a replacement for the Hot Big Bang theory, but rather an extra add-on idea which
is supposed to apply during some very early stage of the Universe’s expansion. By the
time the Universe has reached the ages we have already discussed, inflation is supposed to
be long since over and the standard Big Bang evolution restored, in order to preserve the
considerable successes we have already discussed, such as the microwave background and
nucleosynthesis.

13.1 Problems with the Hot Big Bang

Before describing the idea of inflation, I will cover some of the historical motivations which
led to its introduction. They arise from the realization that, despite all its successes, there
remain some unsatisfactory aspects to the Hot Big Bang theory.

13.1.1 The flatness problem
The flatness problem is the easiest one to understand. We have learned that the Universe
possesses a total density of material, Ωtot = Ω0+ΩΛ, which is close to the critical density.
Very conservatively, it is known to lie in the range 0.5 ≤ Ωtot ≤ 1.5. In terms of geometry,
that means that the Universe is quite close to possessing the flat (Euclidean) geometry.

We have seen that the Friedmann equation can be rewritten as an equation showing how
Ωtot varies with time. Adding modulus signs to Equation (7.4), this is

|Ωtot(t) − 1| =
|k|

a2 H2
. (13.1)

We know from this that if Ωtot is precisely equal to one, then it remains so for all time. But
what if it is not?

An Introduction to Modern Cosmology, Third Edition. Andrew Liddle.
c© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Let’s consider the situation where we have a conventional universe (matter or radiation
dominated) where the normal matter is more important than the curvature or cosmological
constant term. Then we can use the solutions ignoring the curvature term, Equations (5.15)
and (5.19), to find

a2H2 ∝ t−1 radiation domination ; (13.2)

a2H2 ∝ t−2/3 matter domination . (13.3)

So we have

|Ωtot − 1| ∝ t radiation domination ; (13.4)

|Ωtot − 1| ∝ t2/3 matter domination . (13.5)

In either case, the difference between Ωtot and 1 is an increasing function of time. That
means that the flat geometry is an unstable situation for the Universe; if there is any devi-
ation from it then the Universe will very quickly become more and more curved. Conse-
quently, for the Universe to be so close to flat even at its large present age means that at
very early times it must have been extremely close to the flat geometry.

An alternative way to see this is to remember that the densities of matter and radiation
reduce with expansion as 1/a3 and 1/a4 respectively. These are both faster reductions than
the curvature term k/a2. So if the curvature term is not to totally dominate in the present
Universe, it must have begun as much smaller than the other terms.

The equations for |Ωtot − 1| derived above stop being valid once the curvature or cos-
mological constant terms are no longer negligible, since we used the a(t) solutions for the
flat geometry to derive them. But they are fine to give us an approximate idea of what the
problem is. For extra ease let’s assume that the Universe always has only radiation in it.
Using the equations above, we can ask how close to one the density parameter must have
been at various early times, based on the constraint today (t0 � 4 × 1017 sec).

• At decoupling (t � 1013 sec), we need |Ωtot − 1| ≤ 10−5.

• At matter–radiation equality (t � 1012 sec), we need |Ωtot − 1| ≤ 10−6.

• At nucleosynthesis (t � 1 sec), we need |Ωtot − 1| ≤ 10−18.

• At the scale of electro-weak symmetry breaking, which corresponds to the earliest
known physics (t � 10−12 sec), we need |Ωtot − 1| ≤ 10−30.

Written out in long hand, that means we know that at nucleosynthesis, an era we are sup-
posed to understand very well indeed, the density parameter must have lain within the range
0.999999999999999999 ≤ Ωtot ≤ 1.000000000000000001!! Out of all the possible val-
ues that it might have had, this seems a very restrictive range. Any other value would lead
to a Universe extremely different to that which we see.

The easiest way out of this dilemma is to suppose that the Universe must have precisely
the critical density. But on the face of it there seems no reason to prefer this choice over
any other. What would be nice would be an explanation of such a value.

Regardless of whether or not we understand the physical origin of these numbers, they
are an observed fact. One useful thing they tell us is that the Universe is very close to
spatial flatness at decoupling and at nucleosynthesis, which means that it is always a good
approximation to set k = 0 in the Friedmann equation when describing those phenomena.
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Origin of microwave background

Our
galaxy

Spheres of influence

A B

Figure 13.1 An illustration of the horizon problem. We receive microwave radiation from
points A and B on opposite sides of the sky. These points are well separated and would not
have been able to interact at all since the Big Bang – the dotted lines indicate the extent of
regions able to influence points A and B by the present – far less manage to interact by the
time the microwave radiation was released. So in the Hot Big Bang model it is impossible to
explain why they have the same temperature to such accuracy.

13.1.2 The horizon problem

The horizon problem is the most important problem with the Hot Big Bang model, and
refers to communication between different regions of the Universe. The crucial ingredi-
ent is that the Universe has only a finite age, and so even light can only have travelled a
finite distance by any given time. As I have remarked, the distance which light could have
travelled during the lifetime of the Universe gives rise to a region known as the observable
Universe. This is the region we can actually see, and is always finite regardless of whether
or not the Universe as a whole is finite or infinite.

One of the most important properties of the microwave background is that it is very
nearly isotropic. That is, light seen from all parts of the sky possesses, to very great accu-
racy, the same temperature of 2.725 K. Being at the same temperature is the characteristic
of thermal equilibrium, and so this observation is naturally explained if different regions of
the sky have been able to interact and move towards thermal equilibrium. Unfortunately,
the light we see from opposite sides of the sky has been travelling towards us since decou-
pling, close to the time of the Big Bang itself. Since the light has only just reached us, it
can’t possibly have made it all the way across to the opposite side of the sky. Therefore
there has not been time for two regions on opposite sides of the sky to interact in any way,
and so one cannot claim that the regions have the same temperature because they have
interacted and established thermal equilibrium. This is illustrated in Figure 13.1.
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In fact the problem is even worse, because the microwaves have been travelling unin-
terrupted since decoupling. Regions would have had to interact and thermalize even before
then, by which time light could only have travelled a very short distance indeed – the ob-
servable Universe is much smaller at early times as light could have travelled much less
far. So it transpires that even regions which appear quite close to each other on the sky (any
points more than about a degree or two apart – see Problem 13.4) would not have been able
to interact before decoupling to establish thermal equilibrium.

The final twist in the tail, which elevates this to a problem of extreme relevance, is that
actually the microwave background is not perfectly isotropic, but instead exhibits small
fluctuations (about one part in 100 000) as first detected by the COBE satellite. These ir-
regularities are thought to represent the ‘seeds’ from which structure in the Universe grows,
as described in Advanced Topic 5. For the same reason that one cannot thermalize sepa-
rated regions, one also cannot create an irregularity. So in the standard Big Bang theory
one cannot have a theory allowing the generation of the seed perturbations – they have to
be there already.

13.1.3 Relic particle abundances

Another mystery arises from combining the Hot Big Bang model with modern ideas of
particle physics. One of the curious things about the Universe is that it remained radiation
dominated for so long, until an age of at least 1000 years. That is unexpected because
the radiation density reduces with expansion as 1/a4, much faster than any other type of
matter. If the Universe starts with just a very small amount of non-relativistic matter, then
its slower reduction in density will rapidly bring it to prominence.

In fact, the particles in the Standard Model of particle interactions don’t lead to any
problems, because they interact strongly with radiation and thermalization stops them be-
coming too prominent. But modern particle physics throws up other particles. The most
crucial in originally motivating inflation was a type of particle known as a magnetic monopole.
Such particles are an inevitable consequence of models of unification of fundamental forces,
the so-called Grand Unified Theories, and it is predicted that they were produced with a
high abundance at a very early stage in the Universe. They are predicted to be extraordinar-
ily massive; the Grand Unified Scale is thought to be around 1016 GeV, in comparison to
the proton’s puny 1GeV or so. Such particles would be non-relativistic for almost all the
Universe’s history, giving them plenty of time to come to dominate over radiation. Since
we know the Universe is not dominated by magnetic monopoles now, theories predicting
them are incompatible with the standard Hot Big Bang model. This is further explored in
Problem 13.5.

While magnetic monopoles were the relic particle thought most important at the time
inflation was conceived, there are now several other kinds of relic particle also speculated to
exist which would cause similar problems, going under such elaborate names as gravitinos
and moduli fields.
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13.2 Inflationary expansion

Alan Guth proposed inflation in 1981 as a solution to all of these problems. Stripped to its
bare bones, inflation is defined as a period in the evolution of the Universe during which
the scale factor was accelerating

INFLATION ⇐⇒ ä(t) > 0 . (13.6)

Typically this corresponds to a very rapid expansion of the Universe.
Looking at the acceleration equation

ä

a
= −4πG

3

(
ρ +

3p

c2

)
, (13.7)

we see immediately that this implies ρc2 + 3p < 0. Since we always assume a positive
density, this requires a negative pressure,

p < −ρc2

3
. (13.8)

Fortunately, modern particle physics ideas of symmetry breaking indicate ways in which
this negative pressure can be brought about, described later in this chapter.

The classic example of inflationary expansion is a universe possessing a cosmological
constant Λ. This is equivalent to having a fluid with p = −ρc2 (see Section 7.2), which sat-
isfies the condition above. We saw in Chapter 7 that the full Friedmann equation, including
other matter terms and curvature, becomes

H2 =
8πG

3
ρ − k

a2
+

Λ
3

. (13.9)

If all the terms on the right-hand side are significant, then this is quite complex. Fortunately,
though, the situation quickly becomes more simple, because the first two terms are rapidly
reduced by the expansion while the last one remains constant. So after a while, only the
cosmological constant term will be significant and we will have

H2 =
Λ
3

. (13.10)

Recalling that H = ȧ/a, this means

ȧ =

√
Λ
3

a , (13.11)

which, since Λ is a constant, has the solution

a(t) = exp

(√
Λ
3

t

)
. (13.12)
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So when the Universe is dominated by a cosmological constant, the expansion rate of the
Universe is much more dramatic than those we have seen so far.

After some amount of time, inflation must come to an end, with the energy in the cos-
mological constant being converted into conventional matter. One should think of this as
a decay of the particles acting as the cosmological constant into normal particles. The Big
Bang can then proceed just as before. Provided all this happens when the Universe was
extremely young, none of the successes of the Hot Big Bang model is lost. In typical mod-
els the Universe is extremely young indeed when inflation is supposed to occur, perhaps
around 10−34 sec which is roughly the time appropriate to the Grand Unification scale of
1016 GeV – see Equation (11.12).

13.3 Solving the Big Bang problems

13.3.1 The flatness problem

Recall that we rewrote the Friedmann equation as

|Ωtot(t) − 1| =
|k|

a2 H2
. (13.13)

In the Big Bang theory, the problem was that this always increases with time, forcing Ωtot

away from one.
Inflation reverses this state of affairs, because

ä > 0 =⇒ d
dt

(ȧ) > 0 =⇒ d
dt

(aH) > 0 . (13.14)

So the condition for inflation is precisely that which drives Ωtot towards one rather than
away from one. In the special case of perfect exponential expansion, the approach is par-
ticularly dramatic

|Ωtot(t) − 1| ∝ exp

(
−

√
4Λ
3

t

)
. (13.15)

The aim is to use inflation not just to force Ωtot close to one, but in fact to make it so
extraordinarily close to one that even all the subsequent expansion between the end of
inflation and the present is insufficient to move it away again, as shown in Figure 13.2. In
the next section we’ll see how much inflation that entails.

The standard analogy for this solution to the flatness problem is to imagine a balloon
being very rapidly blown up, say to the size of the Sun; its surface would then look flat
to us. The crucial difference inflation introduces compared to the usual Big Bang case is
that the size of the portion of the Universe you can observe, given roughly by the Hubble
length cH−1 (since H−1 is roughly the age of the Universe and c the maximum speed),
does not change while this happens. So very quickly you are unable to notice the curvature
of the surface. By contrast, in the Big Bang scenario the distance you can see increases
more quickly than the balloon expands, so you can see more of the curvature as time goes
by.
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Figure 13.2 Possible evolution of the density parameter Ωtot. There might or might not be
a period before inflation, indicated by the dashed line. Inflation then drives log Ωtot towards
zero (i.e. Ωtot towards 1), either from above or below. By the time inflation ends Ωtot is so
close to one that all the evolution after inflation up to the present day is not enough to pull it
away again. Only some time in the very distant future would it start to move away from one
again.

Inflation predicts a universe extremely close to spatial flatness. If one allows the possi-
bility of a cosmological constant in the present Universe, then a flat universe requires

Ω0 + ΩΛ = 1 . (13.16)

Current observations, particularly of cosmic microwave background anisotropies, strongly
suggest that this condition is indeed satisfied. So far, then, this simple prediction of inflation
stands up well to confrontation with observations.

13.3.2 The horizon problem

Inflation greatly increases the size of a region of the Universe, while keeping its character-
istic scale, the Hubble scale, fixed. This means that a small patch of the Universe, small
enough to achieve thermalization before inflation, can expand to be much larger than the
size of our presently observable Universe, as shown in Figure 13.3. Then the microwaves
coming from opposite sides of the sky really are at the same temperature because they were
once in equilibrium. Equally, this provides the opportunity to generate irregularities in the
Universe which can lead to structure formation.

Another way of expressing the resolution of the horizon problem is to say that, because
of inflation, light can travel a much greater distance between the Big Bang and the time
of decoupling than it can between decoupling and the present, reversing the usual state of
affairs.
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Figure 13.3 A schematic illustration of the inflationary solution to the horizon problem, with
a small initial thermalized region blown up to encompass our entire observable Universe.

13.3.3 Relic particle abundances
The dramatic expansion of the inflationary era dilutes away any unfortunate relic parti-
cles, because their density is reduced by the expansion more quickly than the cosmological
constant. Provided enough expansion occurs, this dilution can easily make sure that the
particles are not observable today; in fact, rather less expansion is needed than to solve the
other problems.

One important proviso though is that the decay of the cosmological constant which
ends inflation must not regenerate the troublesome particles again. This means that the
temperature which the Universe is at after inflation must not be too high, in order to make
sure there is no new thermal production.

13.4 How much inflation?

We can use the flatness problem to estimate how much expansion is needed from inflation.
I’ll make the following simplifying assumptions, all of which could be relaxed for a better
calculation.

• Inflation ends at 10−34 sec.

• The inflationary expansion is perfectly exponential.

• The Universe is perfectly radiation dominated all the way from the end of inflation
to the present.

• The value of Ωtot near the start of inflation is not hugely different from one.

• For the sake of argument, assume the present value of |Ωtot − 1| ≤ 0.1.
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The present age of the Universe is about 4 × 1017 sec. During radiation domination

|Ωtot(t) − 1| ∝ t , (13.17)

so

|Ωtot(t0) − 1| ≤ 0.1 ⇒
∣∣Ωtot(10−34 sec) − 1

∣∣ ≤ 3 × 10−53 . (13.18)

During inflation H is constant, so

|Ωtot(t) − 1| ∝ 1
a2

. (13.19)

So the required value at the end of inflation can be achieved provided that during inflation
a is increased by a factor of at least 1027!! Incredibly, by the standards of what comes out
of inflation model building this isn’t much at all. Expansion by factors like 10108

are not
uncommon!

This can all happen very quickly. Suppose for example that the characteristic expansion
time, H−1, is 10−36 sec. Then between 10−36 sec and 10−34 sec, the Universe would have
expanded by a factor

afinal

ainitial
� exp [H(tfinal − tinitial)] = e99 � 1043 . (13.20)

The exponential expansion is so dramatic that very large expansion factors drop out almost
automatically.

13.5 Inflation and particle physics

The way I’ve discussed inflation, defining it as a period of accelerated expansion and show-
ing that, for example, a cosmological constant can give such behaviour, is fine for devel-
oping an understanding of what inflation is and why it can solve the various cosmological
problems. However, simply postulating a cosmological constant and claiming that it is able
to decay away after having done its work is clearly a very ad hoc approach. A true model of
inflation should contain a reasonable hypothesis for the origin of the cosmological constant,
and a natural way of bringing inflation to an end.

To find such a model, we have to search the realms of particle physics. Remember that
we must not spoil nucleosynthesis, so the very latest that inflation could have happened was
when the Universe was one second old. We saw in Chapter 11 that this already corresponds
to temperatures of over 1010 K, and in fact typical inflation models happen at much earlier
times, and hence hotter environments, than that. In order to describe such extreme physical
conditions, in which violent particle collisions are the norm, fundamental particle physics
is required, and in particular theories of the fundamental interactions. Inflation is assumed
to be driven by a new, as-yet-undiscovered, form of matter required by such theories.

A key idea is that of phase transitions. A phase transition corresponds to a dramatic
change in the properties of a physical system as it is heated or cooled. Familiar examples
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are the freezing of water into ice, the lining up of domains in a cooled ferromagnet, or
the onset of superconductivity or superfluidity at low temperatures. It is believed that the
Universe itself will have undergone a series of phase transitions as it cooled, an example
being when quarks first condensed to form hadrons.

A phase transition is a particularly dramatic event in the history of the Universe, a time
when its properties change substantially. Phase transitions are controlled by an unusual
form of matter known as a scalar field. Depending on the precise nature of the transition,
scalar fields can behave with a negative pressure, and can satisfy the inflationary condition
ρc2 +3p < 0. That is, they behave like an effective cosmological constant. Once the phase
transition comes to an end, the scalar field decays away and the inflationary expansion
terminates, hopefully having achieved the necessary expansion by a factor of 1027 or more.

Inflation is currently a very active research field, and most of the study is carried out
under the general hypothesis that inflation is driven by a scalar field. The hope is that
eventually some specific particle physics phase transition can be identified which is likely to
be the one giving inflation. Early work focussed on the Grand Unification phase transition,
where the strong nuclear force first obtains an identity distinct from the electro-weak force
(which will itself later split into the weak nuclear force and the electromagnetic interaction).
This is believed to have happened at the very high energy of 1016 GeV, when the Universe
was only 10−34 sec old, and was the example I used in working out the amount of inflation
required.

More recently, attention has focussed on a different idea known as supersymmetry,
already invoked in Chapter 9 to give a dark matter candidate. Supersymmetry postulates
that every fundamental particle we know about, such as photons, electrons and quarks,
has a partner particle with similar properties but with a higher mass. This higher mass
makes them very difficult to create using particle accelerators, which is why they have yet
to be seen in experiments (apart from the obvious possibility that they haven’t been seen
because they are a figment of particle physicists’ imaginations). In the early Universe,
the particles and their partners would have had very similar properties, and then a phase
transition would lead to their present, more separate, identities. Currently, supersymmetric
theories of particle physics appear the best prospect for creating models for the inflationary
expansion. However, there are now a very large number of different models of inflation, and
one of the goals of cosmology is to narrow this down to a favoured model or, alternatively,
to disprove the inflation theory.

Problems

13.1. During standard Big Bang evolution, we have seen that Ωtot moves away from one
unless its initial value was precisely one. Can Ωtot become infinite, and if so what
does this mean?

13.2. Certain models of the early Universe permit an expansion rate a ∝ tm where m
is an arbitrary positive constant. What range of values of m corresponds to an
inflationary expansion?
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13.3. In a radiation-dominated universe, the temperature and time are related by Equa-
tion (11.12) (

1 sec
t

)1/2

� T

1.3 × 1010 K
.

At what time was the temperature 3 × 1025 K?
Suppose that at that time Ωtot were a bit less than one, so that the Universe

quickly became curvature dominated, with expansion law a(t) ∝ t. How would
the above equation be changed, and how old would the Universe have been when
its temperature fell to 3K?

13.4. In this question, assume throughout that the Universe is matter dominated with
critical density, so that a(t) ∝ t2/3. Take the present Hubble constant to be
100 km s−1 Mpc−1 � 10−10 yr−1. As we have seen, the age of the Universe is
given fairly accurately by the Hubble time, H−1. Estimate how far light can have
travelled since the Big Bang, given that the speed of light is c � 3×10−7 Mpc yr−1.

The microwave background radiation has been travelling towards us uninter-
rupted since decoupling, when the Universe was one thousandth its present size.
Compute the value of the Hubble parameter at the time of decoupling. How far
could light have travelled in the time up to decoupling?

Between decoupling and the present, the distance that the light travelled up to the
time of decoupling has been stretched by the subsequent expansion. What would
be its physical size today?

Assuming that the distance to the origin of the microwave background, known as
the last-scattering surface, is given by your answer to the first part of this question,
what angle is subtended by the distance light could have travelled before decou-
pling? What is the physical significance of this angle?

13.5. Magnetic monopoles behave as non-relativistic matter. Suppose that at a tempera-
ture corresponding to the Grand Unified era, about 3×1028 K, magnetic monopoles
were created with a density of Ωmon = 10−10. Assuming that the Universe has a
critical density and is radiation dominated, what was the temperature when the den-
sity of monopoles equalled that of the radiation?

In the present Universe, T � 3 K. Compute the value Ωmon/Ωrad would have
at the present day. Is this ratio compatible with observations?

13.6. Consider the situation of Problem 13.5. If we have a period of inflation, the
monopole density still reduces as ρmon ∝ 1/a3, but the total density, dominated by
the cosmological constant, remains fixed. Since that density will be converted to
radiation after inflation, we can imagine that the radiation density remains constant
during inflation. How much inflationary expansion is necessary so that the present
density of monopoles matches that of radiation?





Chapter 14

The Initial Singularity

We now continue our tracing of the Universe’s history. We began by describing its present
state. We then studied the successes of decoupling and nucleosynthesis, and then more
speculatively considered inflation as a theory of the possible early evolution. We are now
led to the ultimate question: if the Universe has always been expanding, must it have had
a beginning?

Let’s begin with a historical perspective. In the 1960s it was believed that any conceiv-
able form of matter would obey a condition known as the strong energy condition,

ρc2 + 3p ≥ 0 . (14.1)

Under this assumption, we see immediately from the acceleration equation

ä

a
= −4πG

3

(
ρ +

3p

c2

)
, (14.2)

that the Universe was always decelerating. This allows us to prove, as follows, that if the
Universe is homogeneous then it must have had a beginning.

Let’s first assume that the Universe experiences no deceleration as it expands. Then,
since we know it is expanding now, we get

ȧ = const =⇒ a(t) = const × (t − tmin) , (14.3)

which implies that a(t) becomes zero at t = tmin. We can evaluate the integration constant
tmin from the present expansion rate H = ȧ/a, getting

t0 − tmin = H−1
0 = 9.77h−1 × 109 yrs . (14.4)

So, with no deceleration, the Universe would have an age equal to the Hubble time H−1
0 ,

as we found in Chapter 8. This is shown in Figure 14.1 as the dotted line.
Now, in reality the strong energy condition guarantees that the Universe is decelerating.

That means that the true a(t) must be curving downwards, while having the same slope at
the present time t0, again as shown in Figure 14.1. The dotted line is the tangent to the
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Figure 14.1 The solid line shows the true (decelerating) scale factor. The dotted line extrap-
olated back from the present shows the earliest possible time that the scale factor can have
been zero.

solid line at t0. As you see, because the true a(t) is curving down, it must intersect with
the x-axis, a = 0, at some time later than tmin. So, if the strong energy condition is obeyed,
a homogeneous Universe must have had a zero scale factor at some time in the past more
recent than H−1

0 before the present. This time is known as the Big Bang. At the time of
the Big Bang, all the material in the Universe is crushed into a point of infinite density, and
physical laws as we know them break down. For that reason, the Big Bang is also known
as the initial singularity.

This argument may not apply directly to our Universe, however, as the presence of a
cosmological constant breaks the strong energy condition. In Chapter 7 it was noted that if
Λ is large enough, there are models with no Big Bang. However those bounce models are
ruled out by observations of high-redshift objects, and so the existence of Λ in the present
Universe is not thought to evade the above argument.

However, in the early 1960s it was believed that this didn’t necessarily imply an ini-
tial singularity to the Universe, because the argument depends on the assumption that the
Universe is homogeneous and isotropic, which we know not to be absolutely true. It was
believed that if the Universe was not perfectly isotropic, then during the collapse (think-
ing backwards in time again!) the irregularities might grow, and that the Universe might
somehow ‘miss’ the crunch point and expand out again. It was also briefly believed that
pressure might save the day, though as we have seen pressure actually increases the gravita-
tional force. It therefore came as a big shock when Penrose and Hawking managed to prove
several singularity theorems, which demonstrated that the existence of the initial singularity
is extremely generic, under the assumption of the strong energy condition. Their results
implied that there was indeed a ‘Big Bang’.
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Since then however the situation has become a lot less clear, because it has become
widely accepted that a crucial plank of the proof, the strong energy condition, need not al-
ways be obeyed. Indeed, we have seen that inflation relies on its violation. That said, there
might still be a more general, as-yet-undiscovered, generalization of the singularity theo-
rems which doesn’t require the assumption of the strong energy condition. Considerable
work recently has gone into the investigation of the possibility of non-singular cosmolo-
gies, with only limited success. It is easy to find solutions which don’t have singularities
[for example, the perfect inflationary solution a(t) ∝ exp(Ht) is perfectly finite back to
t = −∞]; the principal problem is that these situations don’t seem to be stable solutions.

Finally, all the above discussion is based on classical physics. However, it is widely
believed that when the Universe exceeded a certain density, quantum effects must have been
important even for gravitational physics. This should happen when the energy scale is at or
above the Planck scale, which is a characteristic scale formed from the three fundamental
constants G, h̄ and c, in such a way as to obtain the dimensions of energy

EPl ≡
√

h̄c5

G
= 1.22 × 1019 GeV . (14.5)

This density would have been achieved when the Universe’s age equalled the Planck time

tPl ≡
√

h̄G

c5
= 5.39 × 10−44 sec . (14.6)

This is the earliest time we have seen mentioned in the entire book, earlier even than the
time at which inflation is thought to take place. The mechanism for driving inflation is
therefore part of classical, not quantum, physics.

The merger of gravitational physics with quantum physics is known as quantum grav-
ity, but unfortunately at present we have no firm picture of what a quantum gravity theory
might entail. In particular, Einstein’s general relativity appears inconsistent with quantum
mechanics. One candidate for a reconciliation is superstring theory (and its more modern
variant M-theory). The implications of these ideas for the nature of the Big Bang itself
have yet to be understood.

The question of whether our Universe really did experience a ‘Big Bang’ therefore
remains open, though we do know that if anything strange happened to prevent it, it must
be a property of the very earliest stages of the Universe’s evolution. One possibility is that
the Universe originated by quantum tunnelling, somewhat in the manner of radioactive
decay freeing an alpha particle from a nucleus. The most puzzling aspect of that is that
since time and space do not exist independently of the Universe, the tunnelling must be
from nothing. Meaning not just empty space, but from a state where space and time had
yet to exist!

Problem

14.1. In a radiation-dominated universe, what would be the temperature at the Planck
time?





Chapter 15

Overview: The Standard
Cosmological Model

This book has provided an introductory account of many of the most important topics in
modern cosmology. As you’ve seen, there remain a number of unresolved issues, many of
which should however be accessible to observation over the next decade as astronomical
instrumentation continues to improve.

Here is a brief summary of what we’ve learned. In combination, it adds up to a Standard
Cosmological Model, with an almost universal consensus amongst cosmologists that it
represents our best understanding of the observational data – the first time in the history
of cosmology that such a consensus has existed. Where specific observational results are
quoted, remember that they were written in mid 2014, and may have changed. Check out

http://www.roe.ac.uk/~arl/cosbook.html
where, if my computer account is still valid, you might find some more up-to-date opinions.

Where precise numbers are given, I quote the current best values coming from fits to
cosmic microwave background anisotropy data, particularly from the WMAP and Planck
satellites. These presently provide the most robust and accurate results, and are discussed
in Advanced Topic 6. They are consistent with, though typically more precise than, values
described within the main body of the book.

Expansion

The expansion of the Universe is a long-established fact. However, the difficulty of measur-
ing distances to galaxies, independent of their redshift, has meant that fixing the present rate
of expansion, the Hubble constant, has been a lengthy and exhausting process stretching
back over fifty years. Nevertheless, through efforts including the Hubble Space Telescope
Key Project, and more generally through combination of the large array of evidence sup-
porting the standard cosmological model, it now seems certain that h � 0.70 within a few
per cent accuracy at 95% confidence.
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An interesting question is whether or not the expansion is accelerating or decelerating,
as measured by q0 (Chapter 6). Acceleration is the conclusion from studies of distant type
Ia supernovae, and carries independent support from observations of structure formation.
It seems that our Universe is presently experiencing an inflationary expansion!

Geometry
There has long been theoretical support for a flat geometry from the inflationary cosmology,
which generates flatness while resolving other cosmological issues. Since around 2000 this
has been strongly supported by observations, in particular of the angular size of features in
the cosmic microwave background. While it is impossible to ever prove that the Universe
is precisely flat, all indications are that it is at least extremely close, with the sum of all
density parameters (including the cosmological constant) adding to one to about 1 per cent
accuracy.

Age
Results from the Hipparcos satellite have brought what were formerly alarmingly high age
estimates for globular clusters down to much more comfortable values. At the same time,
the introduction of the cosmological constant has pushed the predicted age of the Universe
significantly upwards. The Standard Cosmological Model predicts a universe which is 13.8
billion years old, comfortably consistent with the ages of the oldest objects within it.

Fate
In the currently-favoured cosmological models, the Universe survives forever rather than
recollapsing, and indeed the inferred cosmological constant is leading to an accelerated
expansion at present. Nevertheless, it is dangerous to try and second-guess what physics
might take over in future; the cosmological constant may be a transient phenomenon, as
was the similar quantity believed to have driven inflation in the early Universe, and so the
acceleration may one day cease. If a small negative cosmological constant were ever to
appear, it could promote recollapse in the future even if the geometry is flat.

Contents
The Universe contains several different kinds of material and the relative abundances are
now accurately measured. The detailed picture is given in Advanced Topic 6; here I just
give a summary.

Radiation: The amount of radiation is accurately given from the cosmic microwave back-
ground temperature as Ωradh2 � 2.47 × 10−5.

Relativistic: The cosmic neutrino background cannot be observed directly, but plausible
assumptions give the minimum possible combined energy density in photons and
neutrinos as Ωrelh

2 � 4× 10−5, if neutrino masses are all negligible. More likely is
that neutrinos do have significant mass, and if so present cosmological limits permit
a neutrino density up to around Ων = 0.01.
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Baryons: Nucleosynthesis indicates that baryons make up about 5 per cent of the critical
density, with a dependence on the value of h, in order to match the observed abun-
dances of light elements. Cosmic microwave background anisotropy studies have
given a similar and now more precise value.

Dark matter: There are so many separate pieces of supporting evidence that the case for
the existence of dark matter is overwhelming. The most accurate measurement of
its density come from the cosmic microwave background, which gives Ωdm � 0.27
to a few per cent accuracy. However the actual constitution remains unknown. Cold
dark matter is preferred to hot, though a subdominant component of hot dark matter
could still be present.

Cosmological constant: Current observations indicate that the energy density of the cos-
mological constant dominates the Universe, driving accelerated expansion. How-
ever, it is unable to replace all the dark matter since by definition its density is con-
stant everywhere, whereas dark matter needs to be concentrated into galaxy halos to
explain the rotation curves. There is some speculation that the cosmological constant
might be a transient phenomenon and/or exhibit slow variation, in which case the ef-
fective cosmological ‘constant’ is often described as quintessence. Various models
for quintessence exist, none being compelling.

Early history
Inflation is a compelling and observationally viable idea. The simplest inflation models
make predictions for the form of perturbations that are in excellent accord with what is seen
in the cosmic microwave background and in large-scale structures. Inflation is increasingly
viewed as being an essential component of the Standard Cosmological Model.

Outlook
As I advertised at the start of the book, the Hot Big Bang cosmology is an impressive
framework within which we are able to interpret the many kinds of observations we are now
able to make. Five pieces of strong evidence in its favour stand out – the expansion of the
Universe, the predicted age of the Universe, the existence and thermal form of the cosmic
microwave background, the relative abundances of the light elements predicted by cosmic
nucleosynthesis, and the ability to predict the observed structures in the galaxy distribution
and cosmic microwave background. Cosmologists are in the process of establishing and
verifying the Standard Cosmological Model as described above. Barring surprises, we are
now in the era of precision cosmology, where the basic parameters describing our Universe
are being determined to the best possible accuracy, hopefully the per cent level in many
cases. There is every indication that this precision model of the Universe will stand the test
of time.





Advanced Topic 1

General Relativistic Cosmology

Prerequisites: Chapters 1 to 4

For those readers who have experienced some general relativity, this chapter outlines the
construction of cosmological models using relativity. As far as we are presently aware,
general relativity gives an excellent description of gravitational physics and is normally
considered the correct setting for discussing cosmological models.

An important idea is the metric of space–time, which describes the physical distance
between points, and the metric is important both for correctly interpreting the geometry
of the Universe and to fully understand ideas of luminosities and distances in cosmology.
Those are discussed further in Advanced Topic 2, and play an important role in evidence
for the cosmological constant as discussed in Chapter 7. This chapter will also outline the
derivation of the crucial Friedmann and fluid equations using general relativity, giving rise
to the same equations as derived using Newtonian techniques in Chapter 3.

A1.1 The metric of space–time

In general relativity, the fundamental quantity is the metric which describes the geome-
try of space–time, by giving the distance between neighbouring points in space–time. To
build intuition, we consider first the metric of a flat piece of paper, upon which points can
be specified by coordinates x1 and x2. The distance ds between two points is given by
Pythagoras’s Theorem

Δs2 = Δx2
1 + Δx2

2 , (A1.1)

where Δx1 and Δx2 are the separations in the x1 and x2 coordinates. Now suppose we
replace the paper by a rubber sheet and let it expand. If our coordinate grid x1–x2 ex-
pands with the sheet, then the physical distance between points grows with time, and if the
expansion is uniform (i.e. independent of position) we can write

Δs2 = a2(t)
[
Δx2

1 + Δx2
2

]
, (A1.2)

where a(t) measures the rate of expansion. The coordinates x1 and x2 are comoving coor-
dinates, exactly as described in Chapter 3.
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In the simple example above, Δs indicated only the spatial distance between points.
However, in general relativity we are interested in the distance between points in four-
dimensional space–time, and we must also allow for the possibility that space–time might
be curved. The separation can be written as

ds2 =
∑
μ,ν

gμνdxμdxν , (A1.3)

where gμν is the metric, μ and ν are indices taking the values 0, 1, 2 and 3, x0 is the time
coordinate and x1, x2 and x3 are the three spatial coordinates. In general the metric is a
function of the coordinates (indeed, to describe a curved space–time there must be some
such dependence), and the distances are written in infinitesimal notation as once space–
time is curved it only makes sense to give the distance to nearby points.

Fortunately, this complicated situation can immediately be dramatically simplified by
imposing the cosmological principle that, at a given time, the Universe should not have any
preferred locations. This requires that the spatial part of the metric has a constant curvature,
a condition satisfied for example by a flat metric which has zero curvature everywhere.
However this is not the most general possibility; the most general spatial metric which has
constant curvature can be shown to be

ds2
3 =

dr2

1 − kr2
+ r2

(
dθ2 + sin2 θ dφ2

)
, (A1.4)

where ds3 refers only to the spatial dimensions, and spherical polar coordinates have been
used. Here k is an undetermined constant which measures the curvature of space. The
possibilities k positive, zero or negative correspond to the three possible spatial geometries
spherical, flat or hyperbolic respectively, as described in Chapter 4.

Having found the most general spatial metric, we now need to incorporate it into a
space–time. The only further dependencies we can put in are time dependences; in partic-
ular we can allow the space to grow or shrink with time. This leads us to the Robertson–
Walker metric

ds2 = −c2dt2 + a2(t)
[

dr2

1 − kr2
+ r2

(
dθ2 + sin2 θ dφ2

)]
, (A1.5)

where a(t) is the scale factor of the Universe. It looks as though there could also have
been a function of time b2(t) before the dt2, but it could be removed by redefining the
time coordinate as dt → dt′ = b(t)dt; general relativity tells us we are allowed to use any
coordinate system and so this extension would be no more general than the form given.

A1.2 The Einstein equations

The metric evolves according to Einstein’s equation

Rμ
ν − 1

2
gμ

νR =
8πG

c4
Tμ

ν , (A1.6)
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where Tμ
ν is the energy–momentum tensor of any matter which is present, and Rμ

ν and
R are the Ricci tensor and scalar respectively, which give the curvature of space–time.
As the energy–momentum tensor is assumed symmetric there are potentially ten Einstein
equations (the number of independent components of a 4 × 4 symmetric matrix). If, as
here, the metric has additional symmetries, the number of independent Einstein equations
may be much less.

Einstein’s equation tells us how the presence of matter curves space–time, and so we
need to describe the matter under consideration. The possible constituents of the Universe
considered in this book are all examples of so-called perfect fluids, meaning that they have
no viscosity or heat flow. Perfect fluids have energy–momentum tensor

Tμ
ν = diag (−ρc2, p, p, p) , (A1.7)

where ρ is the mass density and p the pressure.

For this metric, there are two independent Einstein equations, the time–time one and
the space–space one. The derivation is too lengthy to reproduce here, but can be found in
any good general relativity textbook. The time–time Einstein equation gives precisely the
Friedmann equation (

ȧ

a

)2

+
kc2

a2
=

8πG

3
ρ , (A1.8)

exactly as Equation (3.10) except for the interpretation of k. The second Einstein equation
doesn’t quite look like those we’ve seen so far, being

2
ä

a
+

(
ȧ

a

)2

+
kc2

a2
= −8πG

p

c2
, (A1.9)

but if we subtract the Friedmann equation from it we get precisely the acceleration equation,
Equation (3.18). We can then derive the fluid equation from these two, just by reversing
the way we obtained the acceleration equation from the Friedmann and fluid equations. In
this way, we obtain our equations from general relativity. The equations we are using are
exact; for homogeneous universes Newtonian gravity, normally only an approximation to
general relativity, happens to yield exactly the right result.

There is a more direct route to the fluid equation, taking advantage of the fact that
general relativity automatically encodes energy conservation. This can be written

Tμ
ν;μ = 0 , (A1.10)

where the semicolon is a covariant derivative and a summation over the repeated μ index
is assumed (the Einstein summation convention). Although this is really four equations
(ν being any of the four space–time coordinates), only the time component gives a non-
trivial equation. Writing out the covariant derivative using the Christoffel symbols Γα

βγ

gives

T μ
ν,μ + Γμ

αμ Tα
ν − Γα

νμ Tμ
α = 0 , (A1.11)
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where a comma is an ordinary derivative. For the ν = 0 component, remembering that Tμ
ν

is diagonal, the relevant Christoffel symbols are

Γ0
00 = 0 ; Γ1

01 = Γ2
02 = Γ3

03 =
ȧ

a
. (A1.12)

Substituting them in, keeping careful track of the summation over repeated indices, gives

ρ̇ + 3
ȧ

a

(
ρ +

p

c2

)
= 0 . (A1.13)

This is exactly the fluid equation. Just as in our Newtonian derivation, the fluid equation
maintains energy conservation for the fluid as the Universe expands.

A1.3 Aside: Topology of the Universe

It is usually assumed that universes with a flat or open geometry are infinite in extent,
though the finite speed of light ensures we will never be able to prove this. However there
is an alternative; the Universe may have a non-trivial topology. While geometry tells us the
local shape of space or of space–time, topology describes the global properties. General
relativity tells us that the properties of matter dictate the geometry, but says nothing about
the topology.

The simplest type of topology is associated with identification of points in space. For
example, if you take a sheet of paper and join two sides to form a cylinder, you have
identified the points at these two edges. An ant can now walk around the cylinder forever,
even though its extent in that direction is finite. If you can also bend the cylinder around to
join its ends together, you can form a shape like a bagel, known formally as a torus. Like
a sphere, we have a finite two-dimensional surface with no edge. However a torus and a
sphere have a different global structure; for example if you draw any loop on a sphere it can
always be continuously deformed so as to shrink away to nothing, while a loop on a torus
which wraps round one of its principal directions can never be continuously removed; it is
‘caught’ around the hole. This difference is not a local geometric property of the surface,
but is a global property of the entire surface and it indicates that the two surfaces have
different topology.1

In fact a torus can be constructed with a flat geometry. The surface may look curved
to you, but that curvature is just due to the way the surface has been represented in three-
dimensional space. Any inhabitants restricted to the surface will find that the angles of any
triangle always add up to 180◦, and that circles have circumference equal to 2π times their
radius. If you can only explore a small area, there is no way of telling whether you live on
the surface of a torus or on a genuinely infinite plane.

It is possible for our Universe to have a non-trivial topology, so that for instance even
if it has a flat geometry the volume might be finite and a traveller might return to their
starting point in a finite time. If the scale of any topology is much larger than the observable

1Another example of identification is a video game where a character leaving one edge of the screen reappears
on the other. If top and bottom are identified as well as the two edges, the game is actually taking place on the
surface of a torus.
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Universe then we have no way to detect it, but if it is smaller then there can be observable
consequences. A flat geometry permits any scale of topology, and indeed even allows that
scale to be different in different directions. If the topology scale were tiny, then light coming
from a large distance would ‘wrap’ many times around the Universe before reaching us,
and what we would see would be many repeats of the same set of galaxies in the same
configuration. Such repeats are not seen, and so if there were topology its scale must be
larger than any galaxy surveys yet carried out. This limit has been pushed out towards
the size of the observable Universe by studies of distant quasars and particularly of the
cosmic microwave background. No evidence of non-trivial topology has been seen, and
upcoming cosmic microwave background observations should make definitive tests, with
most cosmologists expecting topology to be ruled out as an interesting possibility. On the
theoretical side, there are no well-motivated models predicting that there should be a non-
trivial topology, and indeed discovery of topology of the Universe would be in conflict with
standard inflationary cosmology models.

Non-trivial topology is also possible in the hyperbolic geometry. In principle this is
a more interesting possibility, as there are only a certain set of possible sizes of topology
(measured in comparison to the curvature scale), and in particular there is a smallest pos-
sible topology where the topology scale is about half the curvature scale. It is interesting
to speculate that this might be favoured for some as-yet-unknown reason. However recent
observations indicating that the Universe is very close to the flat geometry mean that even if
the Universe is as far from flatness as allowed, and the topology scale the smallest possible,
then the topology scale is still too large to be detectable.

Problems

A1.1. The spatial part of the Robertson–Walker metric is

ds2
3 = a2(t)

[
dr2

1 − kr2
+ r2 dθ2 + r2 sin2 θ dφ2

]

(a) For positive k, what is the allowed range of the r coordinate? Define a new

coordinate by the transformation r = (1/
√

k) sin
(√

k ξ
)

, and rewrite the

metric using it. Such coordinates are called hyperspherical coordinates. Ex-
plain why they show that the space has the geometry of a three-dimensional
sphere.

(b) Find an analogous transformation for negative k. Use it to find the ratio of
circumference to radius for a circle at coordinate distance ξ = 10/

√
|k|.

Compare with the equivalent ratio for a flat geometry.

A1.2. What is the maximum possible physical separation in a closed universe at the
present epoch?





Advanced Topic 2

Classic Cosmology:
Distances and Luminosities

Prerequisites: Chapters 1 to 7 and Advanced Topic 1.1

Observational cosmology considers how objects with given properties, such as luminos-
ity and size, will appear to us. In particular, it is concerned with the dependence of that
appearance on the cosmological model. The simplest manifestation is something we have
already seen – the redshifting of light due to the expansion – but there are also important
effects if the geometry is not the standard Euclidean one. The discussion will be focussed
around the Robertson–Walker metric

ds2 = −c2dt2 + a2(t)
[

dr2

1 − kr2
+ r2

(
dθ2 + sin2 θ dφ2

)]
, (A2.1)

but whereas in Advanced Topic 1.1 we were primarily concerned with the geometrical
interpretation of the spatial part alone, in considering light propagation we require the full
space–time.

A2.1 Light propagation and redshift

In Section 5.2 we derived the redshift of photon wavelengths in a rather heuristic manner.
In this section, a rigorous general relativistic interpretation will be given.

The key property of light propagation is that it obeys

ds = 0 . (A2.2)

That is to say, a light ray travels no distance at all in space–time. At a given time all points
in space are equivalent, so for simplicity we can consider a light ray to propagate radially
from r = 0 to r = r0, giving dθ = dφ = 0. Remember that the spatial coordinates in
the metric are comoving, so galaxies remain at fixed coordinates; the expansion is entirely
taken care of by the scale factor a(t).
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Setting ds = 0 for our radial light ray tells us that

c dt

a(t)
=

dr√
1 − kr2

. (A2.3)

To find the total time the ray takes to get from r = 0 to r = r0, we simply integrate this
giving ∫ tr

te

c dt

a(t)
=

∫ r0

0

dr√
1 − kr2

, (A2.4)

where ‘e’ stands for emission and ‘r’ for reception.
Now consider a light ray emitted a short time interval later, so the emission time is

te +dte. The galaxies are still at the same coordinates, so we can get the time of reception,
tr + dtr, from a similar integral

∫ tr+dtr

te+dte

c dt

a(t)
=

∫ r0

0

dr√
1 − kr2

. (A2.5)

The right-hand sides of these equations are equal, so we can write

∫ tr

te

c dt

a(t)
=

∫ tr+dtr

te+dte

c dt

a(t)
. (A2.6)

Remember that the integrals are just the areas under curves, in this case the curve of
c/a(t), which is a reducing function if the Universe is expanding. Figure A2.1 shows the
integrand, and the previous equation tells us that the area between the dashed lines is equal
to that between the dotted lines. As the central area is common to both integrals, this implies
that the two narrow slices at the edges must have the same area1

∫ te+dte

te

c dt

a(t)
=

∫ tr+dtr

tr

c dt

a(t)
. (A2.7)

Since the slices are narrow the area is just width times height, so

dtr
a(tr)

=
dte

a(te)
. (A2.8)

In an expanding universe, a(tr) > a(te), so dtr > dte. The time interval between the two
rays increases as the Universe expands.

Now imagine that, instead of being two separate rays, they correspond to successive
crests of a single wave. As the wavelength is proportional to the time between crests,
λ ∝ dt ∝ a(t), and so

λr

λe
=

a(tr)
a(te)

. (A2.9)

1Of course you can get that just by rearranging the limits – you don’t really need the graph.
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dte 

dtr

c/a(t)

te tr Time

Figure A2.1 A graph of c/a(t) illustrates how the redshift law can be derived.

This expression is exactly the one derived in Section 5.2, but now it applies for arbitrary
separations and for any geometry of the Universe. The interpretation is that light is stretched
as it travels across the Universe; for example if the light were intercepted by an intermediate
observer comoving with the expansion, that observer would see the light with a wavelength
intermediate to the original emitted and received wavelengths. Note that light emitted when
a(t) = 0 would be infinitely redshifted.

The standard application of this expression is to light received by us, so that tr is iden-
tified with t0. We can then define the redshift z by

a(t0)
a(te)

≡ 1 + z . (A2.10)

It will be greater than zero in an expanding universe, with z → ∞ as we consider light
emitted ever closer to the Big Bang itself.

It is quite common for astronomers to use the term ‘redshift’ to describe epochs of the
Universe and to describe the distances to objects. For example, referring to the Universe
at a redshift of z means the time when the Universe was 1/(1 + z) of its present size. If
an object is said to be at redshift z, that means that it is at a distance so that in the time
its light has taken to reach us, it has redshifted by a factor 1 + z. As I write, the most
distant objects known are galaxies whose distance has been verified by spectroscopy up to
redshifts of around 8. There are indications, from brightnesses in different wavebands (so-
called photometric redshifts), that some observed galaxies are at at least redshift 10. The
most redshifted light we receive, however, is the cosmic microwave background radiation
originating at z � 1000.
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A2.2 The observable Universe

Equipped with Equation (A2.4), we can compute how far light could have travelled during
the lifetime of the Universe. The distance is given by r0 satisfying

∫ r0

0

dr√
1 − kr2

=
∫ t0

0

c dt

a(t)
. (A2.11)

Let’s simplify by assuming a matter-dominated universe with k = Λ = 0,2 so that the
relevant solution for the scale factor is a(t) = (t/t0)2/3 (Equation (5.15)). Then

∫ r0

0

dr = ct
2/3
0

∫ t0

0

dt

t2/3
=⇒ r0 = 3ct0 . (A2.12)

Here r0 is the coordinate distance, but in this example we have a(t0) = 1 so physical
distances and coordinate distances coincide.

There are two striking features of this result. The first is that at any given time it is
finite; even though the solution for a(t) we are using has 1/a(t) → ∞ at t → 0, it can still
be integrated. As nothing can travel faster than the speed of light, this means that even in
principle we can only see a portion of the Universe, known as the observable Universe.
However, if we have a different evolution of the scale factor at very early times this may
lead to very different conclusions (e.g. see the discussion of inflation in Chapter 13). One
way of circumventing this uncertainty is to instead define the observable Universe as the
region that can be probed by electromagnetic radiation, noting that the Universe is opaque
until the time of formation of the cosmic microwave background. Using this as the initial
time gives a finite result which is independent of the (unknown) very early history of the
Universe.

The second feature is that the distance the light has travelled is actually somewhat
greater than the speed of light multiplied by the age of the Universe. This is because the
Universe expands as the light crosses it; note that r0 is the distance as measured in the
present Universe. At early times when the Universe was smaller, it was easier for the light
to make progress across it.

A2.3 Luminosity distance

The luminosity distance is a way of expressing the amount of light received from a distant
object. Let us suppose we observe an object with a certain flux. The luminosity distance
is the distance that the object appears to have, assuming the inverse square law for the
reduction of light intensity with distance holds.

Let me stress right away that the luminosity distance is not the actual distance to the
object, because in the real Universe the inverse square law does not hold. It is broken
both because the geometry of the Universe need not be flat, and because the Universe is

2Using a more realistic cosmology changes the numbers, and can prevent an analytic derivation, but does not
lead to qualitative changes.
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a0r0

Figure A2.2 We receive light a distance a0r0 from the source. The surface area of the sphere
at that distance is 4πa2

0r
2
0 , and so our detector of unit area intercepts a fraction 1/4πa2

0r
2
0 of

the total light output 4πL.

expanding. For generality, while in the following discussion it is presumed the object is
observed at the present epoch, I will not set the present value of the scale factor a0 to one.

We begin with definitions as follows. The luminosity L of an object is defined as the
energy emitted per unit solid angle per second; since the total solid angle is 4π steradians,
this equals the total power output divided by 4π. The radiation flux density S received by
us is defined as the energy received per unit area per second. Then

d2
lum ≡ L

S
, (A2.13)

because L/S is the unit area per unit solid angle.
This is best visualized by placing the radiating object at the centre of a sphere, comoving

radius r0, with us holding our detector at the surface of the sphere, as shown in Figure A2.2.
The physical radius of the sphere is a0r0, and so its total surface area is 4πa2

0r
2
0 (this fairly

obvious answer can be verified explicitly by integrating the area element r2
0 sin θ dθ dφ

from the metric over θ and φ). In this representation, the effect of the geometry is in the
determination of r0; it doesn’t appear explicitly in the area.

If we were in a static space that would be the end of the story and the radiation flux
received would simply be S = L/a2

0r
2
0, but we have to allow for the expansion of the

Universe and how that affects the photons as they propagate from the source to the observer.
There are actually two effects, which looks like double counting but is not:

• The individual photons lose energy ∝ (1+ z), so have less energy when they arrive.

• The photons arrive less frequently ∝ (1 + z).
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Combining the two, the received flux is

S =
L

a2
0r

2
0 (1 + z)2

, (A2.14)

and hence the luminosity distance is given by

dlum = a0 r0(1 + z) . (A2.15)

Distant objects appear to be further away than they really are because of the effect of
redshift reducing their apparent luminosity. For example, consider a flat spatial geometry
k = 0. Then for a radial ray ds = a(t)dr, and so the physical distance to a source is given
by integrating this at fixed time

dphys = a0 r0 (A2.16)

For nearby objects z � 1 and so dlum � dphys, i.e. the objects really are just as far away
as they look. But more distant objects appear further away (dlum > dphys) than they really
are.

If the geometry is not flat, this gives an additional effect which can either enhance this
trend (hyperbolic geometry) or oppose it (spherical geometry) – see Problem A2.2. Pro-
vided there is no cosmological constant, there are useful analytic forms for the luminosity
distance as a function of redshift, related to an equation known as the Mattig equation, but
once a cosmological constant is introduced calculations have to be done numerically. A
detailed account can be found in Peacock’s textbook (see Bibliography).

Before we can use the luminosity distance in practice, there is a problem to overcome.
The luminosity we have described is the total luminosity of the source across all wave-
lengths (called the bolometric luminosity), but in practice a detector is sensitive only to a
particular range of wavelengths. The redshifting of light means that the detector is seeing
light emitted in a different part of the spectrum, as compared to nearby objects. If enough
is known about the emission spectrum of the object, a correction can be applied to allow
for this, which is known as the K-correction, though often its application is an uncertain
business.

The luminosity distance depends on the cosmological model we have under discussion,
and hence can be used to tell us which cosmological model describes our Universe. In
particular, we can plot the luminosity distance against redshift for different cosmologies,
as in Figure A2.3 (see Problem A2.4 to find out how to obtain these curves). Unfortunately,
however, the observable quantity is the radiation flux density received from an object, and
this can only be translated into a luminosity distance if the absolute luminosity of the object
is known. There are no distant astronomical objects for which this is the case. This problem
can however be circumvented if there are a population of objects at different distances
which are believed to have the same luminosity; even if that luminosity is not known, it
will appear merely as an overall scaling factor.

Such a population of objects is Type Ia supernovae. These are believed to be caused
by the core collapse of white dwarf stars when they accrete material to take them over the
Chandrasekhar limit. Accordingly, the progenitors of such supernovae are expected to be
very similar, leading to supernovae of a characteristic brightness. This already gives a good
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Figure A2.3 The luminosity distance as a function of redshift is plotted for three different
spatially-flat cosmologies with a cosmological constant. From bottom to top, the lines are
Ω0 = 1, 0.5 and 0.3 respectively. Notice how weak the dependence on cosmology is even to
high redshift. It turns out that open universe models with no cosmological constant have an
even weaker dependence.

standard candle, but it can be further improved as there is an observed correlation between
the maximum absolute brightness of a supernova and the rate at which it brightens and fades
(typically over several tens of days). And because a supernova at maximum brightness has
a luminosity comparable to an entire galaxy, they can be seen at great distances.

Supernovae are rare events, but in the 1990s it became possible to systematically survey
for distant supernovae by comparing telescope images containing large numbers of galaxies
taken a few weeks apart. Two teams, the Supernova Cosmology Project and the High-z
Supernova Search Team, were able to assemble samples containing tens of supernovae at
redshifts approaching z = 1, and hence map the luminosity distance out to those redshifts.

The results delivered a major surprise to cosmologists. None of the usual cosmological
models without a cosmological constant was able to explain the observed luminosity dis-
tance curve (usually called the apparent magnitude–redshift diagram). Figure A2.4 shows
the allowed region of cosmological models in the Ω0–ΩΛ plane (as introduced in Sec-
tion 7.3), with the contours indicating the allowed regions at different confidence levels
from a recent data compilation. Models with a flat spatial geometry agree with the super-
nova data only if Ω0 � 0.3. Constraints from other types of data, also shown in this plot,
reinforce this conclusion.
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Figure A2.4 The contours marked ‘SNe’ show observational constraints from the supernova
luminosity–redshift relation from the Union2.1 data set compiled the Supernova Cosmology
Project. They are displayed in the Ω0–ΩΛ plane as introduced in Section 7.3, alongside con-
straints from the cosmic microwave background (CMB) and from a technique known as baryon
acoustic oscillations (BAO). Only a very small region, with Ω0 � 0.3 and ΩΛ � 0.7, matches
all three data sets. (From Suzuki et al., Astrophys. J. 746, 85 (2012), courtesy Supernova
Cosmology Project.)

A2.4 Angular diameter distance

The angular diameter distance is a measure of how large objects appear to be. As with
the luminosity distance, it is defined as the distance that an object of known physical extent
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appears to be at, under the assumption of Euclidean geometry. If we take the object to
lie perpendicular to the line of sight and to have physical extent l, the angular diameter
distance is therefore

ddiam ≡ l

sin θ
� l

θ
(A2.17)

where the small-angle approximation used in the final expression is valid in almost any
astronomical context.

To find an expression for this, it is most convenient this time to place ourselves at the
origin, and the object at radial coordinate r0. We need to use the metric at the time the light
was emitted, te, and we align our ‘rod’ in the θ direction of the metric, Equation (A2.1).
The physical size l is measured using ds, now entirely in the θ direction, as

l = ds = r0 a(te) dθ (A2.18)

The light rays from each end of the rod propagate radially towards us, and so this angular
extent is preserved even if the Universe is expanding. The angular size we perceive is

dθ =
l

r0 a(te)
=

l(1 + z)
a0r0

, (A2.19)

where the redshift term accounts for the evolution of the scale factor between emission and
the present. Accordingly

ddiam =
a0 r0

1 + z

[
=

dlum

(1 + z)2

]
. (A2.20)

The angular diameter and luminosity distances therefore have similar forms, but have a
different dependence on redshift.

As with the luminosity distance, for nearby objects the angular diameter distance closely
matches the physical distance, so that objects appear smaller as they are put further away.
However the angular diameter distance has a much more striking behaviour for distant ob-
jects. In discussing the observable Universe, we noted that even for distant objects a0 r0

remains finite, but the light becomes infinitely redshifted. Hence ddiam → 0 as z → ∞,
meaning that distant objects appear to be nearby! Once objects are far enough away, mov-
ing them further actually makes their angular extent larger (though they do get fainter as
according to the luminosity distance). In fact it is not hard to understand why, because the
diameter distance refers to objects of fixed physical size l, so the earlier we are consider-
ing, the larger a comoving size they have. The angular diameter distance in three different
cosmologies is shown in Figure A2.5.

In practice the Universe does not contain objects of a given fixed physical size back to
arbitrarily early epochs. Nevertheless, objects of a given physical size appear smallest at a
redshift z ∼ 1 (with some dependence on the cosmological model chosen) and so one can
hope to use distant objects to probe beyond the minimum angular size.

In a situation where we are observing distant objects at a high enough resolution that
their angular extent is resolved (as is often the case for distant galaxies), the (1+z) factors
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Figure A2.5 The angular diameter distance as a function of redshift is plotted for three dif-
ferent spatially-flat cosmologies with a cosmological constant. From bottom to top, the lines
are Ω0 = 1, 0.5 and 0.3 respectively. For nearby objects ddiam and dlum are very similar, but
at large redshifts the angular diameter distance begins to decrease.

in both the luminosity and angular diameter distances can be relevant. The luminosity
distance effect dims the radiation and the angular diameter distance effect means the light
is spread over a larger angular area. This so-called surface brightness dimming is therefore
a particularly strong function of redshift.

Key applications of the angular diameter distance are in the study of features in the
cosmic microwave background radiation, as described in Advanced Topic A5.4, and of a
related phenomenon called baryon acoustic oscillations in the pattern of galaxy clustering.

A2.5 Source counts

Another useful probe of cosmology is the source counts of objects (usually classes of galaxy
in practical applications). Suppose sources are uniformly distributed in the Universe, with
a number density n(t) ∝ 1/a3 that decreases with the expansion of the Universe. To
compute the number of sources as a function of radius, we need the full volume element
from the metric, which is the physical volume in an infinitesimal cube of sides dr, dθ and
dφ.

dV =
a(t) dr√
1 − kr2

a(t) r dθ a(t) r sin θ dφ . (A2.21)

If we count sources per steradian, so that
∫

sin θ dθ dφ = 1, then the number of source dN
in the volume element is

dN =
n(t)a3(t)r2dr√

1 − kr2
=

n(t0)a3
0r

2dr√
1 − kr2

, (A2.22)
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and the total number of sources per steradian out to distance r0 is

N(r0) = n(t0)a3
0

∫ r0

0

r2dr√
1 − kr2

. (A2.23)

For a useful application, one will have a limiting detectable flux in mind. To obtain the
total number of sources, we use the luminosity distance to tell us how far away objects can
be while still being bright enough to be seen, giving r0. In principle source counts can be
used to probe cosmological models, but in practice it is very difficult to untangle the effects
of cosmology from evolution in the source population.

Problems

A2.1. A galaxy emits light of a particular wavelength. As the light travels, the expansion
of Universe slows down and stops. Just after the Universe begins to recollapse, the
light is received by an observer in another galaxy. Does the observer see the light
redshifted or blueshifted?

A2.2. This question concerns the luminosity distance in a closed cosmological model,
with metric given by Equation (A2.1) with k > 0. The present physical distance
from the origin to an object at radial coordinate r0 is given by integrating ds at fixed
time, i.e.

dphys = a0

∫ r0

0

dr√
1 − kr2

.

Evaluate this (e.g. by finding a suitable change of variable) to show

dphys =
a0√
k

sin−1
(√

kr0

)
,

and hence find an expression for dlum in terms of dphys and z. Show that
dlum � dphys for nearby objects, and comment on the two effects which cause dlum

and dphys to differ for distant objects.

A2.3. Throughout this question, assume a matter-dominated universe with k = 0 and
Λ = 0. By considering light emitted at time te (corresponding to a redshift z) and
received at the present time t0, show that the coordinate distance travelled by the
light is given by

r0 = 3ct0

[
1 − 1√

1 + z

]

Derive a formula for the apparent angle subtended by an object of length l at
redshift z. Find the behaviour in the limits of small and large z, and provide a
physical explanation. Show that the object appears the smallest if it is located at
redshift z = 5/4.
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A2.4. Demonstrate that for spatially-flat matter-dominated cosmologies with a cosmolog-
ical constant the Friedmann equation can be written as

H2(z) = H2
0

[
1 − Ω0 + Ω0(1 + z)3

]
Use this to show that for spatially-flat cosmologies

r0 = cH−1
0

∫ z

0

dz

[1 − Ω0 + Ω0(1 + z)3]1/2

Bearing in mind that cH−1
0 = 3000h−1 Mpc, derive formulae for the luminosity

and angular diameter distances as a function of redshift for the special case Ω0 = 1.
If you are feeling adventurous, solve this equation numerically to obtain curves for
Ω0 = 0.3 as shown in Figures A2.3 and A2.5.

A2.5. This question concerns what are called ‘Euclidean number counts’, meaning source
counts in the limits where geometry and expansion can both be ignored so that the
geometry is approximated as Euclidean. Evolution of the source population is also
ignored.

Consider a population of sources with the same fixed luminosity, distributed
throughout space with uniform number density. Determine how the number of
sources seen above a given flux density limit S scales with S, and show that this
scaling relation is unchanged if we have populations of sources with different ab-
solute luminosities. Use this to argue that any realistic survey of objects is likely to
be dominated by sources close to the flux limit for detection.



Advanced Topic 3

Neutrino Cosmology

Prerequisites: Chapters 1 to 12

Evidence has mounted in recent years that neutrinos must possess a non-zero rest mass.
Studies of neutrinos coming from the Sun, those interacting in the Earth’s atmosphere, and
those created on Earth via nuclear interactions, have all shown evidence that neutrinos pos-
sess the ability to change their type as they travel. This phenomenon is known as neutrino
oscillations, whereby for instance an electron neutrino may temporarily become a muon
neutrino before oscillating back to its original type. This can be understood in particle
physics models, but only those where the neutrino rest-mass is non-zero. The evidence is
now sufficiently strong that a non-zero rest mass should be taken as the working hypothesis.

According to the above experiments, assuming the usual three types of neutrino, the
mass–energy of the heaviest should be at least mνc2 = 0.05 eV. Cosmological observa-
tions are, as I write, approaching the sensitivity where even this minimal mass may give
discernible effects. The aim of this chapter is to investigate some of the consequences of
neutrino mass, and to assess the circumstances in which it can play an important role. A
much more complete account of neutrino cosmology, including the possibility of decay of
heavy neutrinos, can be found in the textbook by Kolb & Turner (see Bibliography).

A3.1 The massless case

In order to judge whether the neutrino mass is important or not, we first need to understand
the massless case better. The purpose of this section is to derive Equation (11.1) for the
cosmological density of neutrinos, in order to study under what circumstances it holds.

The reason why we expect there to be a neutrino background is because in the early
Universe the density would be high enough for neutrinos to interact, and they would be
created by interactions such as

p + e− ←→ n + νe

γ + γ ←→ νμ + ν̄μ

At sufficiently early times, these interactions will ensure that neutrinos are in thermal equi-
librium with the other particle species, in particular the photons.

An Introduction to Modern Cosmology, Third Edition. Andrew Liddle.
c© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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If neutrinos had identical properties to photons that would be the end of the story; as
there are three types of neutrino and one type of photon we would simply predict Ων =
3Ωrad. However this simple estimate fails for two reasons; neutrinos are fermionic particles
while photons are bosons, and neutrinos have different interaction properties.

It is fairly easy to account for the fermionic properties of neutrinos. The Fermi–Dirac
distribution is very similar to the Bose–Einstein distribution, Equation (2.7), but with the
minus sign on the denominator replaced by a plus sign. Because of this, the occupation
numbers of the states at a given temperature is smaller for fermions, though the difference
is only significant for low frequencies. To figure out how much smaller, one has to do the
integral analogous to Equation (2.9). It turns out that it is smaller by a factor 7/8.

Much less trivial is accounting for the difference between photon and neutrino prop-
erties. In Chapter 10 we learnt that photons cease interaction (known as decoupling) at
T � 3000K, but neutrinos interact much more weakly and hence decouple at a much
higher temperature. The decoupling time can be estimated by comparing the neutrino in-
teraction time with the expansion rate; if the former dominates then thermal equilibrium is
maintained, but if the latter then the reactions are too slow to maintain equilibrium and can
be considered negligible. The weak interaction cross-section gives the relevant interaction
rate, and it can be shown (see Problem A3.1) that the interaction rate exceeds the expansion
rate for kBT > 1MeV; once the Universe falls below this temperature the neutrinos cease
interacting.

The significance of this is that this temperature is above the energy at which electrons
and positrons are in thermal equilibrium with the photons; as the electron rest mass–energy
is 0.511MeV, provided the typical photon energy is above this electron–positron pairs are
readily created (and destroyed) by the reaction

γ + γ ←→ e+ + e−

and so at kBT � 1MeV we expect electrons and positrons to have similar number density
to photons.1 Once the temperature falls further, the photons no longer have the energy
to create the pairs and the reaction above proceeds only in the leftwards direction, with
electron–positron annihilation leading to the creation of extra photons. The corresponding
cross-section for electrons and positrons to annihilate into neutrinos is vastly smaller, so
the annihilations serve to create extra photons but not neutrinos, as there is no mechanism
to transfer the excess energy into the neutrinos.

Once the annihilations have created these new photons, the photons rapidly thermalize
amongst themselves, boosting their temperature relative to that of the neutrinos. It turns
out that the decays take place at constant entropy, and this can be used to show that the
temperature increases by the curious factor of 3

√
11/4 (see Problem A3.2). We know the

present photon temperature is 2.725K, so the present neutrino temperature is predicted to
be

Tν = 3

√
4
11

T = 1.95 Kelvin . (A3.1)

1You might worry that there isn’t much difference between the thermal energy at neutrino decoupling and
the electron mass–energy, but detailed calculations show that the difference is enough that the events can be
considered to take place sequentially.
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Putting all these pieces together, and remembering that the energy density goes as the
fourth power of the temperature, we conclude that

Ων = 3 × 7
8
×

(
4
11

)4/3

Ωrad = 0.68Ωrad = 1.68 × 10−5h−2 . (A3.2)

The validity of this expression requires that the neutrinos act as relativistic species,
i.e. that their rest mass–energy is negligible compared to their kinetic energy. The kinetic
energy per particle is about 3kBTν � 5 × 10−4 eV. The above calculation of the neutrino
energy density is therefore valid only if the masses of all three neutrino species are less
than this. If the masses exceed this, the neutrinos would be non-relativistic by the present
and this would need to be accounted for.

A3.2 Massive neutrinos

While a neutrino mass–energy greater than 5 × 10−4 eV would have an important effect
at the present epoch, it would have to be much higher in the early history of the Universe
for it to play an important role as the neutrino thermal energy was much higher then. In
particular, we can distinguish two cases depending on whether or not the mass–energy is
negligible at neutrino decoupling.

A3.2.1 Light neutrinos

At neutrino decoupling, the thermal energy is kBT � 1MeV. If the neutrino mass–energy
is much less than this, it will be unimportant at the decoupling era, which is when the
number density of neutrinos is determined. I will refer to this regime as light neutrinos.

In the case of light neutrinos the formula for the cosmological density of neutrinos is
easily derived. The number of neutrinos is just the same as in the massless case, but instead
of their kinetic energy 5×10−4 eV, their mass–energy is now dominated by their rest mass–
energy mνc2. If we consider just one species of massive neutrino, the corresponding energy
density would therefore be

Ων =
1.68 × 10−5h−2

3
mνc2

5 × 10−4 eV
=

mνc2

94h2 eV
. (A3.3)

For the more likely case that all neutrinos have a mass, this can be written

Ων =
∑

mνc2

94h2 eV
, (A3.4)

where the sum is over the neutrino types with mνc2 � 1MeV.
We see that a light neutrino species could readily provide the observed dark matter den-

sity Ωdm � 0.3. Taking h = 0.72, it requires a neutrino of mass–energy mνc2 � 14 eV.
This is above current experimental limits for the electron neutrino, but acceptable for the
other two species. However, in fact such a neutrino is not thought to be a good dark matter
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candidate, because it is relativistic until fairly late in the Universe’s evolution (see Prob-
lem A3.3) which prevents the formation of galaxies.

Equation (A3.4) is a powerful constraint on neutrino properties. As we do not believe
the matter density exceeds the critical density,2 stable neutrinos cannot have a mass in the
range from 90h2 eV all the way up to the 1MeV for which the calculation is valid (the next
subsection will explore higher masses). Such neutrinos might be permitted if they proved
to be unstable, though that would depend in detail on the nature of the decay products.

A3.2.2 Heavy neutrinos
If the neutrino masses exceed 1 MeV, the calculation of the neutrino density needs further
modification, and I will refer to this limit as heavy neutrinos. In this case, at neutrino
decoupling the neutrino mass–energy is already higher than the thermal energy. In this
regime the number density of neutrinos is suppressed, the most important term being an
exponential (Boltzmann) suppression factor exp

(
−mνc2/kBT

)
. The higher the neutrino

mass, the more potent this suppression, and hence the predicted neutrino mass density
begins to fall as the exponential suppression of the number density overcomes the extra
mass-per-particle. A detailed calculation shows that once mνc2 reaches around 1 GeV, the
predicted neutrino density has once more fallen to Ων ∼ 1; this analysis therefore extends
the excluded mass–energy range for neutrinos discussed in the previous subsection up to
1 GeV. Heavy neutrinos with mνc2 � 1GeV are therefore another candidate to be the dark
matter in the Universe, but this time they become non-relativistic extremely early and are a
cold dark matter candidate. This is very much what we would like for successful structure
formation, but unfortunately laboratory limits on all three known neutrino species are well
below 1 GeV. Accordingly, only some new type of neutrino, perhaps with unconventional
interactions, could fulfil that role, which is an unattractive proposition.

A3.3 Neutrinos and structure formation

The cross-section for neutrino interactions with normal matter depends on the neutrino mo-
mentum (see Problem A3.1), and the very low momenta predicted for the cosmic neutrinos
means they cannot be detected by any existing or planned detector. Nevertheless, it should
be possible to verify the existence of cosmic neutrinos indirectly via their effect on struc-
ture formation. Between neutrino decoupling and photon decoupling the two species have
very different properties, the former travelling freely and the latter still strongly interacting
with baryonic matter.

In the case of light neutrinos massive enough to contribute significantly to the dark mat-
ter density, there are already strong limits. These neutrinos correspond to hot dark matter,
meaning particles which, though non-relativistic now, travelled a significant distance while
relativistic (see Problem A3.3). This opposes the formation of structure and can prevent
galaxies from forming, and pure hot dark matter is strongly excluded by observations.

2Although commonly used by cosmologists, this phrasing is rather sloppy; we have already seen that if Ω0 is
initially equal to one then it remains so for all time, regardless of how many neutrinos might be formed. A more
technically correct version of this argument would compute the ratio of neutrino density to photon density, and
impose a limit from combining the requirements that the total density must not exceed one and that the photon
density has its observed value.
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Relativistic neutrinos also have important effects at early times. Most important is on
nucleosynthesis, where the presence of a neutrino background appears essential to obtain
the right element abundances. However there are also predicted effects on structure for-
mation. The epoch of matter–radiation equality computed in Equation (11.5) would be
different if the neutrinos were omitted, and it turns out that this epoch gives a characteristic
scale in the clustering of galaxies. The existence of the neutrino background also plays
an important role in predictions of structures in the cosmic microwave background, with
different results obtained if the neutrinos are not present. These observations give strong
support to the existence of the cosmic neutrino background at the expected level.

Problems

A3.1. The decoupling temperature of neutrinos can be estimated by comparing the typical
interaction rate with the expansion rate H of the Universe. The cross-section for
weak interactions depends on momentum (and hence temperature), and is given
by σ � G2

Fp2 where p is the momentum and the Fermi constant GF = 1.17 ×
10−5 GeV−2. (For simplicity I have set c = h̄ = 1 in this question; if you want
to include them you need to multiply by a term (h̄c)−4 on the right-hand side.)
Assuming the neutrinos are highly relativistic, write this in terms of the temperature,
taking the characteristic energy as kBT .

With c = h̄ = 1, the number density of relativistic species is n � k3
BT 3 (for the

temperatures we are interested in the coefficient happens to be close to unity) and
the Friedmann equation can be approximated as

H2 =
k4
BT 4

(1019 GeV)2
.

Obtain an expression for the interaction rate per neutrino, Γ, and show that

Γ
H

�
(

kBT

1MeV

)3

.

This confirms that the neutrino decoupling temperature is around 1 MeV.
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A3.2. The entropy density of a sea of relativistic particles at temperature T is given by

s =
2π2

45
g∗ T 3 ,

where g∗ is the number of particle degrees of freedom and again fundamental con-
stants have been set to one. Fermions count 7/8 per degree of freedom towards this
sum, and bosons 1. Photons have two degrees of freedom (the polarization states),
and each of the electron and positron has two states (spin up and spin down). If the
epoch of electron–positron annihilation occurs at constant entropy and produces
only photons, demonstrate that the photon temperature is raised relative to the neu-
trino temperature by a factor 3

√
11/4.

A3.3. By considering the ratio of the neutrino thermal energy 3kBT to its mass–energy,
derive an approximate formula for the redshift at which massive neutrinos first be-
come non-relativistic. Evaluate this redshift for the case of a neutrino hot dark mat-
ter candidate with mass–energy mν = 10 eV. Using Equation (11.12), estimate the
distance (in comoving megaparsecs) that such neutrinos travel while relativistic.
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Baryogenesis

Prerequisites: Chapters 1 to 12

Chapter 12 described the theory of cosmic nucleosynthesis, and demonstrated that good
agreement with the observed light element abundances is only achieved if the baryon den-
sity satisfies the tight constraint

0.021 ≤ ΩBh2 ≤ 0.025 . (A4.1)

Since we have such an accurate measure of the observed baryon density in the Universe,
it would be nice to have a theory explaining its value, in the same way that the theory of
nucleosynthesis explains the abundances of the light elements. Such theories are known
as baryogenesis, but unfortunately at present are highly speculative and have no pretence
of matching the observational accuracy. Rather, the current goal is to obtain an order-of-
magnitude understanding of the baryon-to-photon ratio of 10−9, and even that has yet to be
achieved. It seems undesirable to assume that the Universe began with the baryon asym-
metry already in place, so the currently-favoured models assume that there are processes
which preferentially create matter rather than anti-matter, and try to exploit them.

In order to generate a baryon asymmetry, there are three conditions which must be
satisfied, known as the Sakharov conditions after Andrei Sakharov who first formulated
them in 1967. They are

1. Baryon number violation.

2. C and CP violation.

3. Departure from thermal equilibrium.

Clearly baryon number violation is necessary to generate a baryon asymmetry. Interac-
tions in the Standard Model of particle physics conserve baryon number, meaning that the
total number of baryons at the end of any interaction is the same as at the start. New types
of interactions are needed to satisfy the first Sakharov condition; for example Grand Uni-
fied Theories seeking to merge the fundamental forces of nature typically permit baryon
number violating interactions.

C and CP violation refers to two symmetries typically obeyed by particle interactions
– that interaction rates are unchanged if one switches the charge (C) or parity (P) of the
particles, or both (CP). For our discussion, the desired property is that anti-particles don’t
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behave in precisely the same way as particles. If they did, then if we start with an equal
mix of particles and anti-particles, any baryon number that might be generated through
interactions of the particles will be exactly cancelled out by the equivalent interactions of
the anti-particles. CP violation is observed in interactions of particles called neutral K-
mesons, though at a very low level and without the presence of baryon number violation.
Such violation, at a much larger level, would be needed in any interactions able to generate
the baryon number.

Finally, thermal equilibrium is characterized by all interactions proceeding at the same
rate in both the forward and backward directions. If the Universe stayed in thermal equilib-
rium, it wouldn’t matter whether any interactions might generate a baryon number, because
the reverse reactions would cancel it out. Departure from thermal equilibrium permits re-
actions to run preferentially in one direction. In cosmology, we expect the cooling due to
the expansion of the Universe to lead to occasional departures from thermal equilibrium, as
the available energy becomes too small to create massive particles, existing ones of which
then subsequently decay. A typical baryogenesis scenario might therefore exploit a massive
particle whose decays violate both baryon number and C/CP symmetry.

Although no established models exist, the overall picture of what is required is quite
simple. Usually, the matter–anti-matter asymmetry is thought to have been created very
early in the history of the Universe. When the mean photon energy was much higher than
the baryon rest mass, kBT � mpc2, it was possible to create baryons and anti-baryons in
thermal equilibrium, by reactions such as

γ + γ ←→ p + p̄ , (A4.2)

where p̄ is an anti-proton. At these times one expects as many protons and anti-protons as
photons of light. This is an ideal time to set about making a matter–anti-matter asymmetry;
all one has to do is create one extra proton for every billion which exist, while leaving the
anti-protons untouched. At this point the story becomes rather weak, because there is no
established theory of how this might happen, but let’s suppose that there exists a heavy
particle, which we will call X, with suitable baryon number violating decays which is also
produced in the thermal bath. It and its anti-particle should initially also be present in the
same number as protons. As the Universe cools, there is insufficient energy to generate
these heavy particles via interactions, and those particles in existence begin to decay, gen-
erating the baryon number. This process need only have an efficiency such that for every
billion X and X̄ particles that decay, a single baryon is preferentially created.

Having created this minor imbalance and reached a stage where baryon number is con-
served, we simply wait for the Universe to cool, and once kBT � mpc2 the protons and
anti-protons will annihilate. There will be too little energy to create new ones. Out of each
one billion and one protons, one billion of them annihilate with the one billion anti-protons,
and the remaining one is left over. This will give the required baryon density, as we only
need one proton for every billion or so photons of light. If this picture, shown schemati-
cally in Figure A4.1, turns out to be true, then all the baryons we see, including those we
ourselves are made of, have their origin in the small initial excess.

While the picture described above is the simplest, there are other ideas for generat-
ing the baryon asymmetry. One of the most important is electro-weak baryogenesis.
While particle interactions involving the weak force, part of the Standard Model of par-
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Figure A4.1 The favourite way to make a matter–anti-matter asymmetry is to do so very
early, when the Universe was full of baryons and anti-baryons, by making a small excess of
baryons. (I’ve contented myself with drawing fifteen rather than a billion!) Later, when the
baryons and anti-baryons annihilate, the small excess is left over.

ticle physics, conserve baryon number, it was discovered by Gerard t’Hooft that a more
complicated type of interaction (catch-phrases non-perturbative or sphaleron), which can
be thought of as a type of many-particle interaction, actually does violate baryon number,
opening the possibility of baryogenesis without considering new interactions. In the cool
conditions of the present Universe sphaleron interactions are negligibly rare and so baryon
number is indeed conserved, but in the early Universe they may be frequent. At very high
energies these interactions have the tendency to try and suppress any pre-existing baryon
asymmetry (as such they act against the type of scenario outlined above), while in the pro-
cess of going out of equilibrium they may be able to generate an asymmetry. Unfortunately
current calculations indicate that the sphaleron interactions are too inefficient to give the
observed baryon number, leaving such studies at an impasse.

In summary, the accurate observation of the baryon density of the Universe presently
lacks a satisfying explanation in terms of fundamental physics. Most likely new theoretical
ideas are needed before progress can be made in this direction.





Advanced Topic 5

Structures in the Universe

Prerequisites: Chapters 1 to 13

This book is about the Hot Big Bang model and its successes in describing the Universe as a
whole. The basic precept has been the cosmological principle, requiring that the Universe
be homogeneous and isotropic, and we have seen how this leads to an explanation for
the cosmic microwave background and the light element abundances. However, although
the cosmological principle is valid for studying the Universe as a whole, we know that it
doesn’t hold perfectly. The nearby Universe is highly inhomogeneous, being made up of
stars and planets and galaxies rather than the smoothly-distributed fluid of mass density ρ
that we’ve considered so far. Attempting to explain these observed structures is the most
active research area in modern cosmology, and no cosmology textbook would be complete
without making some mention of it. However, this book is not the place to develop the
detailed mathematics of structure formation, and I will mostly keep things at a descriptive
level. The details can be found in the more advanced textbooks listed in the Bibliography.

A5.1 The observed structures

The brief observational overview of Chapter 2 showed you some of the observed structures
in the Universe. The fundamental building blocks of cosmology are galaxies. These come
in a wide variety of types, some spiral, some elliptical and some with irregular shapes.
They also have a wide range of masses, from dwarf galaxies of only a million solar masses
up to giant galaxies lurking in the centre of galaxy clusters, which might be ten times more
massive than our own. As we saw in Figure 2.2, galaxies are not distributed randomly in
space, but rather show strong clustering with the galaxies lining up in filaments and walls,
with large voids in between. You are far more likely to find a galaxy near another galaxy
than at a randomly-selected location.

Places where galaxies are grouped together so closely that they are held together by
their mutual gravitational attraction are called galaxy clusters. An example is the Coma
cluster mentioned in Chapter 2. The individual galaxies are on orbits, often highly eccen-
tric ones, around the centre of mass, and the largest galaxy clusters contain thousands of
galaxies. Even galaxy clusters are themselves clustered, again meaning that if you want to
find a galaxy cluster, the best place to look is near another one.

The distribution of galaxies in the Universe has been studied for several decades now.
A much more recent, and rapidly advancing, field of observational cosmology is the study
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of irregularities in the cosmic microwave background radiation. Because we study the
radiation coming from different directions, these are known as anisotropies. As the cos-
mological principle is not exact, it had long been expected that anisotropies must exist
in the microwave background radiation at some level. In practice, they proved extremely
hard to detect, and it was not until 1992 that they were measured by the DMR (Differen-
tial Microwave Radiometer) experiment on the COBE satellite. The typical difference in
temperature, ΔT , if you look in two different directions turns out to be only a few tens of
microKelvin (one Kelvin equals one million microKelvin). Remembering that the average
temperature is 2.725K, that means that the fractional irregularity in temperature is

ΔT

T
∼ 10−5 . (A5.1)

If a swimming pool were to be so smooth, the largest ripples could only be one hundredth
of a millimetre high!

The microwave background has been travelling towards us uninterrupted since decou-
pling, when the Universe was only 375 000 yrs old.1 Its anisotropies carry a record of the
state of the Universe at that time, and are telling us that the Universe was much more ho-
mogeneous then than it is now. Since COBE, many other experiments have been able to
make measurements of the anisotropies, and their study is becoming a mature science.

The nearby galaxy distribution shows us the present Universe, while the microwave
background probes a very early stage of its history. It is only recently that significant
inroads have been made in understanding what happened between those epochs, by study-
ing galaxies with high redshifts. Recall the relationship between redshift and scale factor,
Equation (5.10)

1 + z =
aobs

aem
, (A5.2)

where the right-hand side has the scale factor at the time of observation (meaning now) and
the time of emission of the light. If the light from a galaxy indicates a high redshift, say
of 3 or 4, then the light must have been emitted when the Universe was a small fraction
of its present size. If we specialize to a critical-density matter-dominated Universe, so that
a = (t/t0)2/3, then the time the light was emitted was

t

t0
=

1
(1 + z)3/2

, (A5.3)

where t0 is the present age of the Universe. So an object with redshift z = 4, for example, is
being seen when the Universe was only about 1/11-th of its present age, i.e. not much more
than one billion years old. Since its light has been travelling towards us since then, it has
come from a considerable distance away, most of the way across the observable Universe.

Powerful telescopes, such as the Hubble Space Telescope and the Keck Telescope in
Hawaii, are capable of studying galaxies at these redshifts. In fact, the furthest galaxies
seen have redshifts well above five. Samples of galaxies with redshifts around three have

1This is a more accurate computation than the 350 000 yrs quoted earlier in this book.
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Figure A5.1 Gravity pulls material towards the denser regions, enhancing any initial irregu-
larities.

become large enough that the galaxies’ clustering can be studied, and compared with the
clustering of galaxies in our local neighbourhood.

All of this reconfirms our view of the Universe as an evolving place. At decoupling the
irregularities were very small, and so the microwave background is very close to isotropy.
The high-redshift galaxies seen by the Hubble Space Telescope appear different from those
around us, being more likely to have irregular shapes and to be involved in interactions with
other galaxies, and so the galaxy population has evolved since then. Presumably even the
present state of the Universe is a transient one, and things will also look different in the
distant future.

The various forms of structure in the Universe are often collectively referred to as large-
scale structure.

A5.2 Gravitational instability

The key idea in explaining the way in which structures evolve in the Universe is gravita-
tional instability. If material is to be brought together to form structures then a long-range
force is required, and gravity is the only known possibility. (Although electromagnetism
is a long-range force, charge neutrality demands that its influence is unimportant on large
scales.) The basic picture is as follows.

Suppose that at some initial time, say decoupling, there are small irregularities in the
distribution of matter. Those regions with more matter will exert a greater gravitational
force on their neighbouring regions, and hence tend to draw surrounding material in. This
extra material makes them even denser than before, increasing their gravitational attraction
and further enhancing their pull on their neighbours, shown in Figure A5.1. An irregular
distribution of matter is therefore unstable under the influence of gravity, becoming more
and more irregular as time goes by.

This instability is exactly what’s needed to explain the observation that the Universe
is much more irregular now than at decoupling, and gravitational instability is almost uni-
versally accepted to be the primary influence leading to the formation of structures in the
Universe. It’s an appealingly simple picture, rather spoiled in real life by the fact that while
gravity may have the lead role, numerous other processes also have a part to play and things
become quite complicated. For example, we know that radiation has pressure proportional
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to its density, and during structure formation the irregularities create pressure gradients
which lead to forces opposing the gravitational collapse. We know that neutrinos move
relativistically and do not interact with other material, and so they are able to escape from
structures as they form. And once structure formation begins, the complex astrophysics
of stars, especially supernovae, can inject energy back into the intergalactic regions and
influence regions yet to complete their gravitational collapse.

The formation of structure is a massive subject area, and in this book I will consider
only one facet of it – the use of structure formation studies to constrain the cosmologi-
cal model. Clearly the cosmological setting, for example the material composition of the
Universe and its rate of expansion, will influence the way gravitational instability devel-
ops, and so accurate studies of structure can be used to constrain cosmological models.
This endeavour is usually called parameter estimation, the presumption being that the
basic cosmological model has been established, leaving us the task of finding the actual
values of the various parameters, such as H0 and ΩΛ, which describe our own Universe.
Parameter estimation now typically involves around ten parameters, some describing the
present dynamical state and matter content of the Universe and others describing the nature
of the primordial irregularities that initiate structure formation (see Advanced Topic 5.5).
Different kinds of observations tend to be sensitive to different subsets of the complete
parameter set, so a fully comprehensive parameter estimation study will consider several
different types of data.

A5.3 The clustering of galaxies

The clustering of galaxies is the oldest topic in structure formation, and the phrase ‘large-
scale structure’ is still sometimes used to refer to it alone. Early studies, culminating in
the CfA survey in the mid 1980s, were able to establish the three-dimensional positions
of several thousands of galaxies, clearly showing substantial clustering. Spectra of each
galaxy were obtained in order to determine their redshift, which using the Hubble law
gives their distance from us (at least if the peculiar velocity of the galaxy, which cannot
easily be independently measured, is small compared to their recession velocity).

Modern surveys are able to use multi-object spectrographs, where the light from several
hundred galaxies can be collected simultaneously and fed to a spectrograph via fibre optic
cables. These have revolutionized galaxy surveys, allowing them to include hundreds of
thousands of galaxies. The 2dF galaxy redshift survey, shown in Figure A5.2, contains
over 220 000 galaxies and was completed in mid 2002. An even larger effort, the Sloan
Digital Sky Survey, reached over 650 000 galaxies by the end of its first phase in 2005 and
is currently continuing into a fourth phase.

In order to analyse such large samples, the vast information needs to be condensed into
statistical measures of clustering. The simplest are the two-point correlation function ξ(r),
which measures the likelihood of two galaxies having a given separation r, and the power
spectrum P (k) which decomposes the pattern into waves with wavenumber k ≡ 2π/λ and
gives the typical amplitude of those waves.

For the measurements to be useful, we must be able to predict those quantities for
a given cosmological model, and determine how they vary with different choices of the
cosmological parameters in order to determine which cosmologies best fit the data. This
is a complex task requiring numerical solution of equations describing the evolution of
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Figure A5.2 The completed 2dF galaxy redshift survey, with our galaxy located at the centre.
The three-dimensional survey volume has been flattened to make this image, and the sudden
angular variations indicate regions which were not surveyed. The number of galaxies is so
large that projection effects make it difficult to see the structures. The radial distance indicates
the redshift to the galaxy, which is independent of the underlying cosmological model, while
the scale indicating distance makes particular assumptions about the cosmological model.
(Figure courtesy Matthew Colless and the 2dFGRS Team.)

structure, well beyond the scope of this book (see the Bibliography for a selection of ad-
vanced texts). During the initial stages of structure formation, where the irregularities are
small deviations from a homogeneous universe, it is possible to follow their progress ac-
curately, and the cosmology community has been greatly helped by researchers making
computer codes to carry out these calculations publicly available, such as the cmbfast
program of Seljak and Zaldarriaga and camb by Lewis, Challinor and Lasenby. During the
later stages, when gravitational collapse leads to the formation of individual galaxies and
stars and supernovae begin to feed energy back into the intergalactic medium, the situa-
tion becomes highly complex, and even on state-of-the-art supercomputers it is possible to
include only a subset of the physical processes that might be relevant.

The best understanding is of the distribution of the dark matter in the Universe; because
it is the dominant form of material (apart from the cosmological constant which, being
constant, is not able to form irregularities), and because it only interacts gravitationally, it is
almost unaffected by other physical processes which might affect protons and neutrons. It is
believed that we have a very good theoretical understanding of the dark matter distribution
in the Universe, the only problem being that since it is dark we are unable to study it directly
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in order to see whether we are right! Galaxies presumably generally follow this dark matter
distribution, since it is the gravitational attraction of the dark matter which causes galaxies
to clump together, but the way in which they do this is likely to be complex – the jargon
is that galaxies are biased with respect to the dark matter. For instance, there is no good
reason to think that a region with twice the average number of galaxies necessarily also has
twice the amount of dark matter. It is hoped that in the near future measurements of the
bending of light paths from distant sources caused by the presence of dark matter, known
as gravitational lensing, will provide a more accurate way of measuring the dark matter
distribution in order to test the theoretical predictions.

Despite these difficulties in matching theory to observation, it is clear that current cos-
mological models give an excellent description of the observations. On large scales of tens
of megaparsecs and above, where the Universe is approaching homogeneity and accurate
calculations can be made, the observed clustering can be accurately matched in cosmologi-
cal models of the type discussed throughout this book. On shorter scales, it is much harder
to extract information from observations which can be used to constrain cosmology, but
models of galaxy formation are in good agreement with the observational data available so
far.

A5.4 Cosmic microwave background anisotropies

A5.4.1 Statistical description of anisotropies

No discussion of structure formation would be complete without discussion of cosmic mi-
crowave background anisotropies, one of the fastest developing areas of astrophysics. The
anisotropies in the cosmic microwave background are of particular interest because the
temperature variations are so small, which means that the Universe was close to homo-
geneity when the microwave background formed and hence accurate calculations can be
made using computer programs such as cmbfast and camb. Furthermore, it turns out that
the predicted anisotropies are very sensitive to a wide range of cosmological parameters,
meaning that accurate measurements of them can provide excellent constraints on cosmo-
logical models.

The fundamental measurement in microwave background studies is the temperature
of the microwave background seen in a given direction on the sky, T (θ, φ), as shown in
Figure 2.6 on page 10.2 Usually the mean temperature T̄ is subtracted and a dimensionless
temperature anisotropy

ΔT

T
(θ, φ) =

T (θ, φ) − T̄

T̄
, (A5.4)

is defined. The next step is to carry out an expansion in spherical harmonics Y �
m(θ, φ) (the

2The radiation is also predicted to have a small level of polarization, and this was first detected in 2002 by
the DASI experiment. Polarization can be described similarly to temperature, and is becoming an increasingly
important observational measurement.
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analogue of a Fourier series for the surface of a sphere)

ΔT

T
(θ, φ) =

∞∑
�=1

�∑
m=−�

a�mY �
m(θ, φ) . (A5.5)

The coefficients a�m tell us the size of the irregularities on different scales. As with the
galaxy distribution, to compare with theory we are interested only in the statistical prop-
erties of these coefficients, quantified by the radiation angular power spectrum, now
known universally by the notation C� and defined by

C� = 〈|a�m|2〉 . (A5.6)

This expression needs quite a bit of explanation. The angled brackets mean a statistical
average, as often used in statistical mechanics. To a theorist that means an average over
all the possible Universes that might have arisen by chance, once the cosmological model
has been fixed. This can also be thought of as an average over all the possible observers
in our Universe; remember that we just see the microwaves emitted from our own last-
scattering surface, and other observers will see different photons whose detailed pattern
of temperature variation may differ, just as observers in different galaxies would have a
different view of the detailed galaxy distribution. However observers can only study the
microwave background as seen from Earth, and all they can do is average over the different
values of the index m. Care therefore needs to be taken in making comparisons with theory
and observation; the difference between our region of the Universe as compared to the
average region of the Universe is known as cosmic variance.

On average, a particular a�m is as likely to be negative as positive, and so the interesting
quantity is the mean-square |a�m|2, which measures the typical deviation of a�m from
zero and hence gives the typical size of anisotropies. The modulus signs are needed just
because the usual convention is to define the spherical harmonics as complex and then
impose reality conditions to ensure ΔT/T ends up being real. Finally, the requirement
that the statistical properties are independent of the choice of origin of the θ–φ coordinates
(rotational invariance) means that the result cannot depend on the m index, so the radiation
angular power spectrum C� depends on � alone.

The index � can be thought of as giving the angular scale, with small � corresponding to
large angular scales and large � to small angular scales. This is because as � increases, the
spherical harmonics have variation on smaller angular scales. As a rough rule of thumb, C�

is telling us about the size of irregularities on an angular scale of approximately 180◦/�.
The interesting range for current observations runs from � equals one up to � of several
thousand.

The most prominent feature in the cosmic microwave background is the � = 1 perturba-
tion, known as the dipole. It corresponds to a pattern which is hot in one direction and cold
in the opposite direction, with a smooth transition between them. It is believed to be due to
the motion of the Earth relative to the microwave background, with the dipole simply due
to the Doppler effect. Averaging over a year, its maximum value is ΔT/T = 1.23× 10−3,
corresponding to the Sun having a velocity of 370 km s−1; taking into account the Sun’s
revolution around the Galaxy this is consistent with the typical peculiar velocities observed
for nearby galaxies. While interesting, this observation is not telling us about properties
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intrinsic to the microwave background, and so usually the dipole is studied separately and
� = 2 is the smallest value considered. Maps of the cosmic microwave background are
always shown with the dipole already removed.

A5.4.2 Computing the C�

Because the anisotropies in the cosmic microwave background represent small departures
from homogeneity, it is possible to calculate them accurately, though this requires a so-
phisticated numerical computation which includes many physical processes, such as grav-
itational attraction and the interaction of radiation with electrons. Before the microwave
background is released, the photons are interacting strongly with the electrons, providing
a pressure which opposes gravitational collapse. At that time, therefore, the cosmic fluid is
undergoing oscillations, alternating between compression and rarefaction under the com-
bined influence of gravitation and pressure.

At some stage in this process, the Universe cools sufficiently to release the microwave
background. This removes the pressure support from the atoms, which are now able to
collapse gravitationally to form galaxies and stars. But the photons are already on their
way towards us, carrying a snapshot of the complicated fluid motions taking place at a
redshift of around one thousand.

Modelling all these complexities is challenging, but has been made accessible to the
astronomy community via publicly-available programs such as cmbfast and camb. Such
programs act as a ‘black box’, where you feed in your favourite cosmological model at one
end, and out the other end comes a detailed prediction ready to be tested against observa-
tional data. For example, Figure A5.3 shows the prediction for the structure of microwave
anisotropies in the Standard Cosmological Model.

As you can see from the figure, the predictions take on a complex form. By convention
the combination �(� + 1)C�/2π is plotted, and on the very largest scales, correspond-
ing to small � (for example COBE probed only � ≤ 15), this has a non-zero value, with
�(� + 1)C� roughly constant across the COBE range. This region is known as the Sachs–
Wolfe plateau, and is caused by variations in the gravitational potential between regions.
Moving to smaller scales (larger �) we see a broad peak at � � 200 followed by a series
of peaks and troughs which represent the complicated fluid motions that were taking place
when the microwave background was released. Bearing in mind our rule-of-thumb for re-
lating � to angles, θ ∼ 180◦/�, the first broad peak at � � 200 corresponds to an angular
scale of about one degree, indicating that maps of the microwave background are predicted
to have particularly strong features of that angular size.

Had I chosen a different cosmological model, the qualitative pattern of peaks and
troughs would have been the same, but the detailed structure would change. Sufficiently
accurate measurements of those structures can therefore rule out cosmological models.

A5.4.3 Microwave background observations
After the discovery of the anisotropies by the COBE satellite, which only probed the largest
angular scales, most observers turned their attention to probing the structure predicted on
smaller angular scales, requiring higher-resolution experiments. While many experiments
contributed towards this goal, it is widely recognized that the landmark step was made
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Figure A5.3 A typical prediction of cosmic microwave anisotropies, in this case for the
Standard Cosmological Model. The predicted curve is calculated to better than 1 per cent
accuracy.

in April 2000 with the announcement of results from the Boomerang experiment. This
was an ingenious experiment carried around Antarctica on a high-altitude balloon by wind
currents, in order to maximize observation time (around fourteen days) while minimizing
contamination from the atmosphere. This experiment clearly picked out the first broad
peak, locating it at � � 200, the significance of which will be explored in the follow-
ing subsection. It was rapidly followed by independent confirmation from another bal-
loon experiment, called Maxima. Subsequently, more detailed analysis of these observa-
tions, along with results from new experiments, began to pick out the peak structures at
larger �.

Experiments carried out on Earth or on high-altitude balloons can have high precision,
but their statistical power is limited by being able to survey only small areas of sky. In 2003,
spectacular results were announced by the WMAP satellite project. The true successor to
COBE, this mission combined sensitive detectors with full sky coverage at a resolution ap-
proaching 10 arcminutes, and eventually released nine years of data. The state of the art as
I write comes from the Planck satellite, whose first cosmological results were published in
2013. The Planck collaboration’s measurement of the radiation angular power spectrum is
shown in Figure A5.4. A comparison with Figure A5.3 (noting the different �-axis scaling)
shows that these observations agree extremely well with expectations.

The solid line in Figure A5.4 is the prediction from the cosmological model best fit-
ting their data. As discussed in Advanced Topic 6, this fit can now be taken as defining
the parameters of the Standard Cosmological Model. The band indicates the statistical
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Figure A5.4 The radiation angular power spectrum as measured by the Planck satellite,
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while Figure A5.3 uses a logarithmic �-axis, this plot uses a non-standard scaling along the
�-axis chosen to display the observations evenly. (Figure courtesy ESA/Planck Collaboration.)

uncertainty from cosmic variance, which is most important on large angular scales. The
conclusion is that our current cosmological models are very much on the right track, a
remarkable vindication of theoretical predictions which were already in place long before
any microwave anisotropies were measured. Those anisotropies are now the most powerful
observational tool for constraining cosmological models.

A5.4.4 Spatial geometry

While high-precision microwave background observations can constrain many cosmolog-
ical parameters, one of the most important is that they give a direct indication of the geom-
etry of the Universe, which can be read off from the location of the first peak in the angular
power spectrum. While there is much complicated physics taking place around the time of
formation of the microwave background, there is only one important characteristic scale,
which is the Hubble time H−1 at that redshift. The peak structure comes from oscillations,
and so the first peak, being on the largest scale, must correspond to perturbations which
have just had time to undergo one oscillation. The Hubble time is an estimate of the age
of the Universe at that time, and the Hubble length cH−1 estimates the physical size of a
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perturbation which oscillates on that timescale.3

In order to predict how the angular scale of the peak depends on our choice of cosmo-
logical model, we just need to know the Hubble length at last scattering and the angular
diameter distance to the last-scattering surface. Problem A5.2 takes you through a demon-
stration that for spatially-flat universes, the peak position is always approximately the same,
independent of Ω0. Problem A5.3 shows that if Λ = 0 there is a strong dependence on Ω0.
In combination, these indicate that it is the geometry which is the main factor in determin-
ing the peak location. These arguments are not however good enough to tell you the precise
position of the peak, which needs a detailed calculation, but a glance at Figure A5.3 shows
you that the peak is at � � 220 for the Standard Cosmological Model, corresponding to an
angular scale of about a degree. This is exactly where the WMAP and Planck results place
the peak.

The Planck satellite 2013 results, combined with other observations, indicate that

Ω0 + ΩΛ = 1.0005 ± 0.0033 , (A5.7)

placing the Universe well within a per cent of spatial flatness and completely ruling out
significantly non-flat universes. While this conclusion does depend on the validity of the
assumptions made in the theoretical calculation of the C�, those predictions are borne out
so well by the observations that discussion of non-flat Universes has become very rare.
Figure A2.4 on page 134 shows the constraint in the Ω0–ΩΛ plane from the supernovae
experiments. Only a tiny region, the location of the Standard Cosmological Model, can
match both the microwave background and supernova data. Combining the microwave
data with the preferred matter density of Ω0 � 0.3 also gives support for the cosmological
constant independent of the supernova results.

A5.5 The origin of structure

Gravitational instability is a powerful idea which lets us understand how structures in the
Universe evolve. However, it does not let us address a more fundamental question – what
is the origin of structure? Gravitational instability is excellent for taking initially small
irregularities and amplifying them, but it needs the initial irregularities to act upon. Where
might they come from?

The origin of structure takes us back into the realm of the very early Universe, be-
cause it appears that none of the established physics we know about is capable of making
perturbations. However we do know of a mechanism that can. I introduced inflation in
Chapter 13 following the historical motivation of the flatness and horizon problems. But
in fact the best reason for believing in inflation (and certainly the best hope for testing the
idea observationally) wasn’t appreciated until a year after Guth’s paper, and is that inflation
can generate irregularities capable of initiating structure formation.

The mechanism is a remarkable one, being quantum mechanical in origin. Heisenberg’s
famous Uncertainty Principle tells us that even apparently empty space is a seething mass of
quantum fluctuations, with particles continually popping in and out of existence. Normally

3This assumes that the sound speed cs is approximately the speed of light; in fact it is a bit smaller, but close
enough for my purposes.
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we don’t notice this as the time and length scales are so small, but during a period of
inflation the Universe is expanding so rapidly that any fluctuations get caught up in the
expansion and stretched. While one set of fluctuations is being stretched, new fluctuations
are always being created which will then themselves be caught up in the expansion. By
the end of inflation, there are small irregularities on a wide range of different length scales.
Gravitational instability then acts on these small initial irregularities, and eventually, much
much later, they can form galaxies and galaxy clusters.

This inflationary mechanism is currently the most popular model for the origin of struc-
ture, partly because it turns out to give mathematically simple predictions, but mainly be-
cause so far it offers excellent agreement with the real Universe, such as the microwave
anisotropies just discussed. As I mentioned at the end of Section 13.5, there are presently
quite a few different models for inflation, and typically their detailed predictions for the ori-
gin of structure are somewhat different. They therefore predict slightly different patterns
of observed structures, hopefully different enough that one day we can use these structures
to distinguish between inflation models observationally.

If the inflationary picture of the origin of structure is correct, a striking consequence is
that all structures, including our own bodies, ultimately owe their existence to small quan-
tum fluctuations occurring during the inflationary epoch. There can be no more dramatic
example of the strong connection between microphysics and the large-scale Universe.

Problems

A5.1. You might wonder whether the galaxy distribution shown in Figure 2.2 on page 6
could arise by random chance. You could try the following computational experi-
ment. For the x and y coordinates of a point, get the computer to choose random
numbers between 0 and 1. Repeat this until you have a few thousand points, and
make a plot of them. Try this several times. Does the outcome ever resemble the
real map?

A5.2. Throughout this question, assume that the Universe only contains matter and a pos-
sible cosmological constant. Use the definition of the density parameter to show
that at any epoch we can write the matter density as

H2 Ωmat(z)
(1 + z)3

= constant = Ω0H
2
0 .

Given that in any realistic cosmology Ωmat � 1 at early times, compute the Hubble
parameter at decoupling (zdec � 1000) as a fraction of its present value. As the only
important characteristic scale in the young Universe, the Hubble length cH−1 gives
the characteristic scale of the first peak in the microwave background.
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In a spatially-flat cosmology with a cosmological constant, the present physical
distance to an object with z � 1 is given approximately by

a0r0 � 2cH−1
0√

Ω0

.

(If you wish, you can verify this approximation by numerical integration along the
lines of Problem A2.4.) By considering the angular diameter distance, demonstrate
that the angle subtended by the Hubble length at decoupling is approximately inde-
pendent of Ω0 in spatially-flat cosmologies, and compute its value in degrees. This
demonstrates that the peak position is nearly independent of ΩΛ for spatially-flat
geometries, the approximations being the formula for a0r0 above and the assump-
tion that the Universe is perfectly matter dominated at last-scattering.

A5.3. This problem repeats Problem A5.2 for an open universe with Λ = 0.

(a) [For the mathematically-keen only!] Show that in a matter-dominated open
universe with Λ = 0, the angular diameter distance to an object at redshift z
is given by

ddiam = 2cH−1
0

Ω0z + (Ω0 − 2)
(√

1 + Ω0z − 1
)

Ω2
0(1 + z)2

.

(b) Using the result of part (a) above, demonstrate that the angular size of the Hub-
ble length at decoupling is approximately θ = 1deg × Ω1/2

0 . Given that if
Ω0 = 1 the peak in the microwave power spectrum is at � � 220, use this
result to predict the peak position in an open universe with Ω0 = 0.3, and
compare with Figure A5.4. This demonstrates that the peak position does
depend significantly on geometry, and hence can strongly constrain it.





Advanced Topic 6

Constraining cosmological models

Prerequisites: Chapters 1 to 13 and Advanced Topics 2 and 5

A6.1 Cosmological models and parameters

Now that precision cosmological data exist, comparisons of cosmological models with data
have become quite sophisticated.

Let’s first be clear what a cosmological model actually is. It is a mathematical represen-
tation, intended to capture in sufficient detail the physical processes relevant to the types
of observation we wish to describe. To be worth considering, the model must be consistent
with what is already known about the Universe. To be useful, we must be able to ask our
model to make predictions for the observations we plan to explain. Particularly valued are
models that make specific predictions for observations yet to be made.

The first task is to define the physical processes governing the model, e.g. the types of
material within the Universe, and the evolution equations such as the Friedmann equation.
We may also have to specify initial conditions, for instance the type of density irregularities
which initiate structure formation through gravitational instability. In order to understand
the consequences of these equations, most likely we will have to model them on a computer.

Having decided on the basic principles underlying our model, it is likely that many
quantities remain undecided, for instance the relative amounts of the different kinds of ma-
terial in the Universe. These are the cosmological parameters, whose values cannot be
predicted from first principles, but which we can seek to measure from our observations.
If you like, the different possible values of the parameters describe the set of possible Uni-
verses consistent with the physical laws, but only one particular combination of parameter
values describes our actual Universe and our aim is to seek which combination it is.

Consequently, we have a two-stage process. First, decide what the model is. Ideally
this model should be as simple as possible, while sophisticated enough to explain the data
we have obtained. Secondly, having decided the model, we use our observations to mea-
sure the values of its parameters, and in doing so learn about our Universe and its material
composition. Ultimately, the hope would then be to exploit that knowledge to learn about
the physical processes at work in our Universe, and perhaps connect them to ideas in fun-
damental theoretical physics such as superstring theory.

An Introduction to Modern Cosmology, Third Edition. Andrew Liddle.
c© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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A6.2 Key cosmological observations

An impressive range of cosmological data now exists, and naturally the trend is for the data
volume to continue a dramatic increase. One of the first tasks in a cosmological analysis
is to decide which types of data should be used to test the model(s). Usually a compilation
of several different types of data, analysed simultaneously, is used. Desirable traits in a
compilation of cosmological data include

1. The data should be high precision and reliable, and consistent with other quality data
of the same type.

2. The data should be of a type where accurate and unambiguous predictions can be ob-
tained from the models under investigation. Limiting factors here might include both
the ability to model all necessary physical effects, and the availability of sufficient
computing resource.

3. The observables should have a significant dependence on the model parameters of
interest (otherwise the data will be unable to constrain them).

4. Where multiple datasets are used, they should complement each other, for example
one type of data strongly constraining parameters (or parameter combinations) that
other data constrain only weakly.

At present the most powerful single source of data is the cosmic microwave background
(CMB) anisotropies, as measured by the Wilkinson Microwave Anisotropy Probe (WMAP)
and Planck satellites (perhaps enhanced by other experiments of higher angular resolution).
This scores powerfully under all of the criteria above, and indeed the simplest cosmological
models can be well constrained using CMB data alone. However, when more complicated
models are considered, for instance allowing the spatial geometry to vary from flatness,
the CMB alone is not quite good enough to constrain all parameters and is usually com-
plemented by some additional data of other types.

A6.3 Cosmological data analysis

Cosmologists almost invariably tackle data analysis problems using a methodology known
as Bayesian statistics, a system of inference named after the Reverend Thomas Bayes,
who proved a key theorem, Bayes Theorem, in the mid eighteenth century. The Bayesian
approach assigns a probability to each quantity of interest, for instance the probability of
a parameter lying within a particular range of values, and then updates those probabilities
in light of observations using a series of rules.

Bayes theorem states that given two possible statements/events, A and B, then

P (B|A) =
P (A|B)P (B)

P (A)
. (A6.1)

where the vertical line indicates the conditional probability, P (B|A) usually being read as
‘The probability of B given A equals . . . ’. Here A and B could be anything at all, but we’ll
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take A to be the set of data D and B to be the parameter values θ (where θ is a vector made
up of the parameters being varied in the model under consideration), hence writing

P (θ|D) =
P (D|θ)P (θ)

P (D)
. (A6.2)

The left-hand side is what we want to know, namely the probability distribution of the
parameters θ given the data, and this is referred to as the posterior distribution. On the
right-hand side, P (D) does not depend on the parameters and hence is just an overall nor-
malization, and can ignored in estimating parameter values. P (θ), the prior distribution,
is our knowledge of the possible parameter values before the data was obtained. Finally,
P (D|θ), the probability of the data presuming particular parameter values, is known as the
likelihood. It is this likelihood that we want to be able to calculate, so we can multiply our
prior knowledge by it in order to update it to the posterior.

The above presupposes that we know which parameters θ we need to vary in order to
fit the data. In reality we often do not, and indeed one of the primary goals of cosmol-
ogy is to work out which physical processes are relevant to our Universe, and hence which
parameters are needed to describe it. Bayesian inference can be extended to the situation
where several different choices of parameters, i.e. models, need to be considered and com-
pared. This extension is known as model selection, model comparison, or multi-model
inference. However I shall not explore these ideas in this book, instead presuming that we
do know which is the appropriate model to fit to the data and are focussed on determining
its parameter values.

Computing the likelihood of particular parameter values requires calculating theoreti-
cal predictions from the model (for example, the C� curve describing cosmic microwave
background anisotropies), and then working out how probable the observed data were given
those theoretical predictions (essentially a glorified chi-squared analysis). The theoretical
calculations can be carried out using publicly-available computer packages, such as cmb-
fast or camb described in Advanced Topic 5.4.2, and increasingly experimental teams
are making available (as a piece of computer code) the likelihood function that combines
those predictions with the data to generate the likelihood of the parameters.

The remaining challenge is to navigate around the space of possible parameter values in
order to map out the posterior distribution of parameters. This is challenging, as typically
many parameters, usually at least six, are being varied simultaneously, and calculating the
likelihood at a single point in parameter space requires several seconds of computing time.
Fully sampling the parameter space even quite crudely, say at ten points in each of six
parameter directions, requires a million likelihood evaluations and hence the best part of a
year of computer time, rather a long time to wait for results.

Fortunately, there is a much more efficient way of exploring parameter space, known as
a Monte Carlo Markov Chain (MCMC). In this approach, the parameter space is explored
by ‘jumping’ randomly from one set of parameter values to the next, with a rule for whether
the jump is accepted or rejected depending on how the likelihood of the new point compares
to the old. In the simplest version, known as the Metropolis–Hastings algorithm, jumps
are always accepted if the likelihood of the new point is higher, while jumps to lower
likelihood points are sometimes accepted and sometimes not according to a particular rule.
The algorithm therefore generally drifts towards the highest likelihood regions, where the
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Figure A6.1 An example of joint constraints on two pairs of parameters, obtained from an
MCMC calculation using data from the WMAP satellite. The filled contours, showing 68%
and 95% confidence limits, are from the combined five-year dataset, while the unfilled con-
tours show the results from the first thee years for comparison. The choice of variables on the
axes of these plots is discussed in Advanced Topic 6.4; Ωc is the density parameter for cold
dark matter alone. (Image courtesy NASA/WMAP Science Team.)

fit to the data is best, and then meanders around that region exploring the shape of the
likelihood in the vicinity of the maximum. The Metropolis–Hastings rule is chosen so that
this exploration maps out the probability of the parameter values.

Cosmologists are fortunate to have access to a software package CosmoMC, written
by Antony Lewis and Sarah Bridle. This carries out an MCMC analysis using the camb
program to carry out the theoretical calculations, and many datasets have been incorporated
into it making it relatively easy for cosmologists to carry out analysis of new cosmological
models or to discover the effect of emerging data. CosmoMC is a publicly-available code,1

but the reader should be warned that access to large amounts of computer time, typically
on multi-processor platforms, is necessary to get reliable results from it.

Figure A6.1 shows an example of constraints obtained on two parameters using an
MCMC calculation.

A6.4 The Standard Cosmological Model: 2014 edition

At the time of writing, the most powerful single dataset for constraining cosmological mod-
els is the 2013 data release of cosmic microwave background temperature variations from
the Planck satellite. Indeed, this dataset is powerful enough that quite definitive results can
be obtained using it on its own, at least for the simplest viable cosmological models. Most
commonly, this data is combined with other cosmic microwave background data: temper-
ature measurements at high angular resolution from the South Pole Telescope (SPT) and
Atacama Cosmology Telescope (ACT) and polarization measurements from the Wilkin-
son Microwave Anisotropy Probe (WMAP). This is the combination I will use here. For
more complicated cosmological models it can be necessary to include other types of data,
for instance measurements of supernova luminosities as described in Advanced Topic 2.3

1Go to http://cosmologist.info for more information and downloads.

http://cosmologist.info
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Table 6.1 Parameter values for the Standard Cosmological Model 2014. The model allows six
parameters to vary as shown in the upper part of the table. The lower part of the table shows other

parameters of interest that can be derived from this basic set. (Results, with some additional
rounding, from the Planck 2013 data release, published as Ade et al. (Planck Collaboration Paper

XVI, 2014))

Parameter Constraint
Ωdmh2 0.1198 ± 0.0026
ΩBh2 0.02207 ± 0.00027
100θMC 1.0413 ± 0.0006
ns 0.958 ± 0.007
τ 0.091 ± 0.014
ln(1010Δ2

R) 3.090 ± 0.025

h 0.673 ± 0.012
Ω0 0.315 ± 0.017
ΩΛ 0.685 ± 0.017
t0 (13.81 ± 0.05) Gyr

and measures of galaxy correlations mentioned in Advanced Topic 5.3 (in particular a phe-
nomenon known as baryon acoustic oscillations in the galaxy power spectrum).

The data is well fit by models which assume spatial flatness. Six parameters need to
be varied in fits to the data, and are as follows. First there are the densities of baryons,
of cold dark matter, and of the cosmological constant, along with the Hubble constant.
Rather than fit these directly (with spatial flatness enforcing that the density parameters
sum to one), it is standard to quote the baryon and dark matter densities as the density
parameter multiplied by the Hubble constant squared. This combination is proportional
to the physical density ρ, and it turns out that the observables are most sensitive to this
combination. The spatial flatness condition then fixes h, which is no longer a free parameter
in the analysis. For technical reasons of numerical convergence, current analyses vary a
parameter θMC known as the sound horizon, rather than the cosmological constant directly.
The cosmological constant is then derived from the values of the fitted parameters.

The remaining three parameters needed to get a good fit to the data are the ampli-
tude and scale dependence of the primordial density perturbations, and the optical depth to
reionization. These are indicated by the symbols Δ2

R, ns, and τ respectively, their precise
meanings being beyond the scope of this book. The first two quantify the type of initial
inhomogeneities, as may have been generated during the inflationary era. The last is a
measure of the probability that a photon from the last-scattering surface collided with and
scattered from a free electron on route to us.

Table 6.1 shows the current constraints on these six parameters, plus four auxiliary pa-
rameters that can be determined from them. The datasets used are all CMB measurements,
being temperature anisotropies from the Planck satellite and, at high angular resolution,
from the ground-based SPT and ACT projects, combined with polarization measurements
by the Wilkinson Microwave Anisotropy Probe (WMAP). Here Ωdm is the density of cold
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Figure A6.2 The three dominant constituents of the present Universe. The present densities
of photons and of neutrinos are too small to appear in this figure.

dark matter alone; this would be added to the baryon density ΩB to get the total matter
density Ω0 quoted further down the table. The parameter θMC (a measure of the size of the
sound horizon at last scattering) is used in the fitting for technical reasons and its meaning
is not relevant to us. Spatial flatness is assumed. Note the high degree of precision with
which these parameters are determined; for example, the age of the Universe t0 is known
to better than 1 per cent precision. The baryon, dark matter, and dark energy densities are
also all measured to very good accuracy, and their values are illustrated in Figure A6.2.

Overall, these numbers give a more accurate representation of the Standard Cosmolog-
ical Model than I gave in Chapter 15.

A6.5 The future

Future cosmological experiments have the dual goals of increasing the precision on already
measured parameters, and on identifying a need for new parameters describing new phys-
ical processes at work in our Universe. In the absence of the latter, significant progress
on precision would be expected which would be a welcome confirmation that our ideas of
how the Universe works are broadly correct and are fairly complete.

However, discovering new physical processes is what cosmologists really hope to get
from new experiments, and most of us would be much happier to see something genuinely
new. What form this might take is guesswork, but some example landmark discoveries that
may lie in the future (from my perspective writing this) are

• Discovery that the cosmological constant is not, after all, a constant, but rather has a
time-dependence to its density. This would indicate that some dynamical process is
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at work, and the cosmological ‘constant’ is then referred to under the more general
name of dark energy.

• Discovery that the cosmic microwave background holds distinctive signatures of the
inflationary cosmology (a particular hope is that gravitational waves – ripples in
space–time – might be shown to have affected the cosmic microwave background).

• Discovery that the dark matter is not perfectly cold, but rather has some random
motion which affects the details of galaxy formation and evolution.

If cosmologists like me are to stay in our job, we’d better hope at least one of these pos-
sibilities, or better still something completely unexpected, does indeed show up to give us
new directions to explore!
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Numerical Answers and Hints
to Problems

2.1: You should get something like ρ ∼ 10−26 kg m−3 for the Universe. The Earth’s
density is about 1030 times greater.

2.2: Slightly different answers are possible depending how you deal with the rms velocity.
You should get something like r > 35Mpc for H0 = 100 km s−1 and r > 70Mpc
for H0 = 50 km s−1.

2.4: The frequency is f = 3.3 × 1015 Hz and the temperature T = 53 000K.

2.5: The constant is 5.8 × 1010 Hz K−1. For the Sun, fpeak � 3.4 × 1014 Hz. When I
wrote the question I was expecting this to be in the visible part of the electromagnetic
spectrum (as the peak is when the spectrum is expressed in wavelength), but in fact
the non-linear transformation between f and λ shifts the peak into the near infrared.

2.6: For the microwave background, fpeak � 1.6×1011 Hz, and the corresponding wave-
length λpeak = 1.9 × 10−3 m = 0.19 cm (i.e. slightly more than 5 waves per cen-
timetre, as in Figure 2.5). The energy density is εrad = 4.17 × 10−14 J m−3.

4.1: Begin by showing that the radius of the circle is r = R sin θ. At the equator c = 4r.

4.2: Consider a thin circular strip of width dr at radius r; the area will be the width of
the strip times the circumference, and the number of galaxies in the strip will be the
area times the density. You then need to integrate this expression from radius zero to
radius r to get the total number of galaxies. Fewer galaxies are seen in the spherical
geometry.

5.1: Energy is always, always, always conserved.

5.2: To apply Equation (2.4) to photons, remember that their rest mass is zero.
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5.3: For 0 < γ < 2, the solution is

ρ(a) ∝ a−3γ ; a(t) ∝ t2/3γ ; ρ(t) ∝ t−2 .

For γ = 0, this solution breaks down and is replaced by

ρ = ρ0 ; a(t) ∝ exp

(√
8πGρ0

3
t

)
.

5.4: We need γ = 2/3. Then a(t) ∝ t.

5.5: Use the chain rule to convert time derivatives to θ-derivatives.

5.6: The solution is a(t) ∝ t ; ρ(t) ∝ t−3. Stable.

6.2: Look at the acceleration Equation (3.18).

7.1: Respectively, they evolve as 1/a4, 1/a3, constant, and 1/a2. Radiation will dominate
at early times, and the cosmological constant at late times.

7.2: To have a static universe, we must have both ȧ = 0 and ä = 0. The latter gives
Λ = 4πGρ, and then as both ρ and Λ are positive, a positive curvature is required in
the Friedmann equation.

7.3: This is fairly straightforward using the generalization of the acceleration equation to
include Λ.

7.4: This is solved by considering how the ratio of the densities evolves, and imposing
the flatness constraint. The answer Ω � 0.003, ΩΛ � 0.997. At late times the
matter term can be ignored, and the solution is exponential expansion (c.f. last part
of Problem 5.3). At late times q → −1.

7.5: Deriving this equation is fiddly. To obtain it, write down an equation for the ratio
Ω(z)/ΩΛ(z) in terms of the present ratio, and impose the condition of spatial flatness.
According to Equation (7.11), acceleration began at Ω = 2/3, corresponding to z �
0.67.

8.1: tgal = 6.6 × 109 yrs ; h < 0.85.

8.2: For the second part, use x = 1 − Ω0 as the expansion parameter.

8.3: Positive Λ gives acceleration, implying a smaller velocity at early times and thus that
the Universe needed longer to expand to its present size.

9.1: mν = 28h2 eV. We need h < 0.60 with the numbers as given, and h < 0.33 with
the improved number quoted in the question. See also Advanced Topic 3.

9.2: A typical estimate would be one thousandth of a parsec.

10.2: T � 2 × 1010 K. The mass density at 1 sec was about 2 × 109 kg m−3, about a
million times that of water. The density matches water at t � 1000 sec.

10.4: ne = 2 × 1017 m−3; non-relativistic; d � 7.5 × 1010 m. The interaction time is
about 250 sec, much less than tuniv.

10.5: You should find T � 5700 K, confirming the result given in text.
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10.6: The estimated radius is 2000h−1 Mpc. This underestimates (in fact by a factor
three) because it neglects the expansion of the Universe during the light propaga-
tion. Answers to remainder depend a little on the assumptions you make concerning
Ω0 and the density of dark matter. The number of galaxies in the observable Uni-
verse is about 1011; presumably it is just a coincidence that this is very similar to
the number of stars in the galaxy. Using ΩB ∼ 0.05, the number of protons is about
1078.

11.1: Taking everything into account, Ων/Ωrad = 0.68 (Equation (11.1)). See also Ad-
vanced Topic 3.

11.2: If you use the information from Problem 11.1 that the energy per neutrino is smaller
by 3

√
4/11, you’ll find nν is almost identical to nγ . Even if you don’t it’s still

much the same. The estimate of neutrinos passing through your body can be done
in several ways and I imagine has a range of answers. My estimate is that about
1016 neutrinos pass through you each second!

11.3: Solar temperature was achieved at a time of about 4×106 sec, while CERN energies
were reached at t � 4 × 10−10 sec, at a temperature of 1015 K.

11.4: Ωrad(tdec) ∼ 0.04 is a typical estimate.

12.1: Only hydrogen would form.

12.2: Y4 � 0.04 in this hypothetical universe.

12.3: There are 8/9 electrons per baryon.

12.4: I would say nucleosynthesis, but it’s a rather subjective question!

13.1: Yes it can.

13.2: Inflation corresponds to m > 1. (If m < 0 the inflationary condition is also satis-
fied, but the Universe is contracting rather than expanding.)

13.3: T = 3 × 1025 K is achieved at t = 2 × 10−31 sec. We then have T ∝ 1/t, and
reach T = 3K at t = 2 × 10−6 sec.

13.4: Light could have travelled about 3000Mpc up to the present day. Up to decoupling,
it could only travel 0.095Mpc, which is stretched by the subsequent expansion to
95Mpc. The subtended angle is 2◦.

13.5: The densities are equal at T = 3 × 1018 K. Today, Ωmon/Ωrad would be 1018.

13.6: An expansion factor of about 106 is required.

14.1: TPl � 8 × 1031 K.

A1.1: r has range 0 ≤ r ≤ 1/
√

k. The equivalent transformation for the hyperbolic case is
r = (1/

√
|k|) sinh(

√
|k| ξ). The ratio of circumference to radius at ξ = 10/

√
|k|

is about 6920, rather than the usual 2π.

A1.2: The maximum physical separation is s = πa0/2
√

k.

A2.1: The light is redshifted.
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A2.2: The luminosity distance is given by

dlum =
a0√
k

(1 + z) sin

(√
k

a0
dphys

)
.

For nearby objects the sin can be expanded for small argument. For distant objects,
redshift increases dlum as compared to dphys, but the geometry, expressed by the sin
function, acts to reduce dlum. This latter effect is because with spherical geometry
the area at a given radius is smaller than would be given by the flat geometry, so the
flux per unit area must be higher. The geometry could be thought of as focussing
the light rays.

A2.3: An object with physical size l subtends an angle

θ =
l

3ct0

(1 + z)3/2

(1 + z)1/2 − 1

For small z we have θ ∝ 1/z and for large z we have θ ∝ z.

A2.5: The number of sources scales as N(> S) ∝ S−3/2. As the number increases
sharply as S is decreased, we conclude that most sources are seen at close to the
flux limit.

A3.1: The cross-section is σ � G2
Fk2

BT 2. The interaction rate is Γ = nσv where v � c
is the velocity. Putting these together gives the result.

A3.2: The effective number of species before annihilation is g∗ = 2 + 4 × 7/8 = 11/2,
and afterwards is 2. Conservation of g∗T

3 across the transition gives the result.

A3.3: The redshift is 1+znr � mνc2/3kBT . For a 10 eV neutrino this gives znr � 20 000.
The comoving distance travelled by those neutrinos is approximately 8 Mpc. (If
your answer is much smaller than this, you may have forgotten to allow for the
expansion of the Universe after the neutrinos become non-relativistic.)

A5.1: Your randomly-generated maps won’t look like the real thing. The strong filaments
and large voids of the original won’t be reproduced. Galaxies exhibit stronger clus-
tering than a random distribution.

A5.2: This problem, though more sophisticated, is closely related to Problem 13.4. The
Hubble parameter at decoupling is given by H = Ω1/2

0 (1 + zdec)3/2 H0. Using
the angular diameter distance formula gives an apparent size θ = 1/2

√
1 + zdec =

0.016 rad � 1◦.

A5.3: Part (a) is a nasty algebraic slog. For part (b), the expression for the Hubble radius
at decoupling in Problem A5.2 remains valid, and we only need the z � 1 limit of
ddiam. For Ω0 = 0.3, we predict �peak � 400, completely incompatible with the
data.
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