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Foreword

The Centro de Estudios Cientificos (CECS) began a new phase of its existence
at the end of 1999, when it moved to the city of Valdivia, 800 kilometers South
of the capital of Chile, Santiago. The letter “S", which stood for Santiago
in the original acronym has been maintained to provide a sense of historical
continuity, and it is now - when necessary - explained as arising from the plural
in the word Científicos.

Valdivia used to be part of the “frontier" in the early days of the country
and one still breathes frontier air in it. This frontier air has inspired the Center
to undertake new and bolder challenges in science and exploration, such as an
unprecedented airborne exploration of the Amundsen Sea in West Antarctica
and the development of a state of the art Transgenic Facility.

However, in the midst of all this excitement and frenetic activity, we were
distinctly reminded by the physicists who came to Valdivia from many countries
to take part in the School of Quantum Gravity that, as Richard Feynman used
to say: “there is nothing better in life than eating cookies and talking about
Physics".

Claudio Teitelboim
Director, Centro de Estudios Científicos

Valdivia, April 2004.
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Ted Jacobson University of Maryland.

Juan Maldacena Institute for Advanced Study.

Robert C. Myers Perimeter Institute for Theoretical Physics, University of
Waterloo and McGill University.

Hermann Nicolai Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-
Institut.

Rafael D. Sorkin Syracuse University.

Washington Taylor Center for Theoretical Physics, Massachusetts Institute of
Technology (MIT).

Claudio Teitelboim Centro de Estudios Cientı́ficos (CECS).

Robert M. Wald University of Chicago.

Frank Wilczek Center for Theoretical Physics, Massachusetts Institute of Tech-
nology (MIT).

xi



Preface

The 2002 Pan-American Advanced Studies Institute School on Quantum
Gravity was held at the Centro de Estudios Cientificos (CECS),Valdivia, Chile,
January 4-14, 2002. The school featured lectures by ten speakers, and was
attended by nearly 70 students from over 14 countries. A primary goal was
to foster interaction and communication between participants from different
cultures, both in the layman’s sense of the term and in terms of approaches to
quantum gravity. We hope that the links formed by students and the school will
persist throughout their professional lives, continuing to promote interaction
and the essential exchange of ideas that drives research forward.

This volume contains improved and updated versions of the lectures given at
the School. It has been prepared both as a reminder for the participants, and so
that these pedagogical introductions can be made available to others who were
unable to attend. We expect them to serve students of all ages well.

ANDRES GOMBEROFF AND DONALD MAROLF
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THE THERMODYNAMICS OF BLACK HOLES

Robert M. Wald
Enrico Fermi Institute and Department of Physics
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Abstract
We review the present status of black hole thermodynamics. Our review

includes discussion of classical black hole thermodynamics, Hawking radiation
from black holes, the generalized second law, and the issue of entropy bounds. A
brief survey also is given of approaches to the calculation of black hole entropy.
We conclude with a discussion of some unresolved open issues.

This article is based upon an article of the same title published in Living
Reviews in Relativity, http://www.livingreviews.org.
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1. Introduction

During the past 30 years, research in the theory of black holes in general
relativity has brought to light strong hints of a very deep and fundamental
relationship between gravitation, thermodynamics, and quantum theory. The
cornerstone of this relationship is black hole thermodynamics, where it appears
that certain laws of black hole mechanics are, in fact, simply the ordinary laws
of thermodynamics applied to a system containing a black hole. Indeed, the
discovery of the thermodynamic behavior of black holes – achieved primarily
by classical and semiclassical analyses – has given rise to most of our present
physical insights into the nature of quantum phenomena occurring in strong
gravitational fields.

The purpose of this article is to provide a review of the following aspects of
black hole thermodynamics:

At the purely classical level, black holes in general relativity (as well as
in other diffeomorphism covariant theories of gravity) obey certain laws
which bear a remarkable mathematical resemblance to the ordinary laws
of thermodynamics. The derivation of these laws of classical black hole
mechanics is reviewed in section 2.

Classically, black holes are perfect absorbers but do not emit anything;
their physical temperature is absolute zero. However, in quantum theory
black holes emit Hawking radiation with a perfect thermal spectrum. This
allows a consistent interpretation of the laws of black hole mechanics as
physically corresponding to the ordinary laws of thermodynamics. The
status of the derivation of Hawking radiation is reviewed in section 3.

The generalized second law (GSL) directly links the laws of black hole
mechanics to the ordinary laws of thermodynamics. The arguments in
favor of the GSL are reviewed in section 4. A discussion of entropy
bounds is also included in this section.

The classical laws of black hole mechanics together with the formula
for the temperature of Hawking radiation allow one to identify a quantity
associated with black holes – namelyA/4 in general relativity – as playing
the mathematical role of entropy. The apparent validity of the GSL
provides strong evidence that this quantity truly is the physical entropy
of a black hole. A major goal of research in quantum gravity is to provide
an explanation for – and direct derivation of – the formula for the entropy
of a black hole. A brief survey of work along these lines is provided in
section 5.

Although much progress has been made in our understanding of black
hole thermodynamics, many important issues remain unresolved. Pri-



The Thermodynamics of Black Holes 3

mary among these are the “black hole information paradox” and issues
related to the degrees of freedom responsible for the entropy of a black
hole. These unresolved issues are briefly discussed in section 6.

Throughout this article, we shall set G = � = c = k = 1, and we shall
follow the sign and notational conventions of [1]. Although I have attempted
to make this review be reasonably comprehensive and balanced, it should be
understood that my choices of topics and emphasis naturally reflect my own
personal viewpoints, expertise, and biases.
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2. Classical Black Hole Thermodynamics

In this section, I will give a brief review of the laws of classical black hole
mechanics.

In physical terms, a black hole is a region where gravity is so strong that
nothing can escape. In order to make this notion precise, one must have in
mind a region of spacetime to which one can contemplate escaping. For an
asymptotically flat spacetime (M, gab) (representing an isolated system), the
asymptotic portion of the spacetime “near infinity” is such a region. The black
hole region, B, of an asymptotically flat spacetime, (M, gab), is defined as

B ≡M − I−(I+), (1)

where I+ denotes future null infinity and I− denotes the chronological past.
Similar definitions of a black hole can be given in other contexts (such as
asymptotically anti-deSitter spacetimes) where there is a well defined asymp-
totic region.

The event horizon,H, of a black hole is defined to be the boundary ofB. Thus,
H is the boundary of the past of I+. Consequently, H automatically satisfies
all of the properties possessed by past boundaries (see, e.g., [2] or [1] for further
discussion). In particular,H is a null hypersurface which is composed of future
inextendible null geodesics without caustics, i.e., the expansion, θ, of the null
geodesics comprising the horizon cannot become negatively infinite. Note that
the entire future history of the spacetime must be known before the location of
H can be determined, i.e.,H possesses no distinguished local significance.

If Einstein’s equation holds with matter satisfying the null energy condition
(i.e., if Tabk

akb ≥ 0 for all null ka), then it follows immediately from the
Raychauduri equation (see, e.g., [1]) that if the expansion, θ, of any null geodesic
congruence ever became negative, then θ would become infinite within a finite
affine parameter, provided, of course, that the geodesic can be extended that
far. If the black hole is strongly asymptotically predictable – i.e., if there is a
globally hyperbolic region containing I−(I+) ∪ H – it can be shown that this
implies that θ ≥ 0 everywhere on H (see, e.g., [2, 1]). It then follows that the
surface area, A, of the event horizon of a black hole can never decrease with
time, as discovered by Hawking [4].

It is worth remarking that since H is a past boundary, it automatically must
be a C0 embedded submanifold (see, e.g., [1]), but it need not be C1. However,
essentially all discussions and analyses of black hole event horizons implic-
itly assume C1 or higher order differentiability of H. Recently, this higher
order differentiability assumption has been eliminated for the proof of the area
theorem [3].

The area increase law bears a resemblance to the second law of thermody-
namics in that both laws assert that a certain quantity has the property of never
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decreasing with time. It might seem that this resemblance is a very superfi-
cial one, since the area law is a theorem in differential geometry whereas the
second law of thermodynamics is understood to have a statistical origin. Never-
theless, this resemblance together with the idea that information is irretrievably
lost when a body falls into a black hole led Bekenstein to propose [5, 6] that
a suitable multiple of the area of the event horizon of a black hole should be
interpreted as its entropy, and that a generalized second law (GSL) should hold:
The sum of the ordinary entropy of matter outside of a black hole plus a suitable
multiple of the area of a black hole never decreases. We will discuss this law
in detail in section 4.

The remaining laws of thermodynamics deal with equilibrium and quasi-
equilibrium processes. At nearly the same time as Bekenstein proposed a re-
lationship between the area theorem and the second law of thermodynamics,
Bardeen, Carter, and Hawking [7] provided a general proof of certain laws of
“black hole mechanics” which are direct mathematical analogs of the zeroth
and first laws of thermodynamics. These laws of black hole mechanics apply to
stationary black holes (although a formulation of these laws in terms of isolated
horizons will be briefly described at the end of this section).

In order to discuss the zeroth and first laws of black hole mechanics, we
must introduce the notions of stationary, static, and axisymmetric black holes
as well as the notion of a Killing horizon. If an asymptotically flat spacetime
(M, gab) contains a black hole, B, then B is said to be stationary if there exists
a one-parameter group of isometries on (M, gab) generated by a Killing field
ta which is unit timelike at infinity. The black hole is said to be static if it is
stationary and if, in addition, ta is hypersurface orthogonal. The black hole
is said to be axisymmetric if there exists a one parameter group of isometries
which correspond to rotations at infinity. A stationary, axisymmetric black hole
is said to possess the “t–φ orthogonality property” if the 2-planes spanned by ta

and the rotational Killing field φa are orthogonal to a family of 2-dimensional
surfaces. The t–φ orthogonality property holds for all stationary-axisymmetric
black hole solutions to the vacuum Einstein or Einstein-Maxwell equations (see,
e.g., [8]).

A null surface, K, whose null generators coincide with the orbits of a one-
parameter group of isometries (so that there is a Killing field ξa normal to K)
is called a Killing horizon. There are two independent results (usually referred
to as “rigidity theorems”) that show that in a wide variety of cases of interest,
the event horizon,H, of a stationary black hole must be a Killing horizon. The
first, due to Carter [9], states that for a static black hole, the static Killing field
ta must be normal to the horizon, whereas for a stationary-axisymmetric black
hole with the t–φ orthogonality property there exists a Killing field ξa of the
form

ξa = ta + Ωφa (2)



6 LECTURES ON QUANTUM GRAVITY

which is normal to the event horizon. The constant Ω defined by Eq. (2) is
called the angular velocity of the horizon. Carter’s result does not rely on any
field equations, but leaves open the possibility that there could exist stationary
black holes without the above symmetries whose event horizons are not Killing
horizons. The second result, due to Hawking [2] (see also [10]), directly proves
that in vacuum or electrovac general relativity, the event horizon of any station-
ary black hole must be a Killing horizon. Consequently, if ta fails to be normal
to the horizon, then there must exist an additional Killing field, ξa, which is
normal to the horizon, i.e., a stationary black hole must be nonrotating (from
which staticity follows [11, 12, 13]) or axisymmetric (though not necessarily
with the t–φ orthogonality property). Note that Hawking’s theorem makes no
assumptions of symmetries beyond stationarity, but it does rely on the properties
of the field equations of general relativity.

Now, let K be any Killing horizon (not necessarily required to be the event
horizon,H, of a black hole), with normal Killing field ξa. Since∇a(ξbξb) also
is normal to K, these vectors must be proportional at every point onK. Hence,
there exists a function, κ, on K, known as the surface gravity of K, which is
defined by the equation

∇a(ξbξb) = −2κξa. (3)

It follows immediately that κ must be constant along each null geodesic gen-
erator of K, but, in general, κ can vary from generator to generator. It is not
difficult to show (see, e.g., [1]) that

κ = lim(V a), (4)

where a is the magnitude of the acceleration of the orbits of ξa in the region off
ofKwhere they are timelike, V ≡ (−ξaξa)1/2 is the “redshift factor” of ξa, and
the limit as one approachesK is taken. Equation (4) motivates the terminology
“surface gravity”. Note that the surface gravity of a black hole is defined only
when it is “in equilibrium”, i.e., stationary, so that its event horizon is a Killing
horizon. There is no notion of the surface gravity of a general, non-stationary
black hole, although the definition of surface gravity can be extended to isolated
horizons (see below).

In parallel with the two independent “rigidity theorems” mentioned above,
there are two independent versions of the zeroth law of black hole mechanics.
The first, due to Carter [9] (see also [14]), states that for any black hole which
is static or is stationary-axisymmetric with the t–φ orthogonality property, the
surface gravity κ, must be constant over its event horizon H. This result is
purely geometrical, i.e., it involves no use of any field equations. The second,
due to Bardeen, Carter, and Hawking [7] states that if Einstein’s equation holds
with the matter stress-energy tensor satisfying the dominant energy condition,
then κ must be constant on any Killing horizon. Thus, in the second version
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of the zeroth law, the hypothesis that the t–φ orthogonality property holds is
eliminated, but use is made of the field equations of general relativity.

A bifurcate Killing horizon is a pair of null surfaces, KA and KB , which
intersect on a spacelike 2-surface, C (called the “bifurcation surface”), such
that KA and KB are each Killing horizons with respect to the same Killing
field ξa. It follows that ξa must vanish on C; conversely, if a Killing field,
ξa, vanishes on a two-dimensional spacelike surface, C, then C will be the
bifurcation surface of a bifurcate Killing horizon associated with ξa (see [15]
for further discussion). An important consequence of the zeroth law is that if
κ �= 0, then in the “maximally extended” spacetime representing a stationary
black hole, the event horizon, H, comprises a branch of a bifurcate Killing
horizon [14]. This result is purely geometrical – involving no use of any field
equations. As a consequence, the study of stationary black holes which satisfy
the zeroth law divides into two cases: “extremal” black holes (for which, by
definition, κ = 0), and black holes with bifurcate horizons.

The first law of black hole mechanics is simply an identity relating the
changes in mass, M , angular momentum, J , and horizon area, A, of a sta-
tionary black hole when it is perturbed. To first order, the variations of these
quantities in the vacuum case always satisfy

δM =
1
8π

κδA + ΩδJ. (5)

In the original derivation of this law [7], it was required that the perturbation be
stationary. Furthermore, the original derivation made use of the detailed form
of Einstein’s equation. Subsequently, the derivation has been generalized to
hold for non-stationary perturbations [11, 16], provided that the change in area
is evaluated at the bifurcation surface, C, of the unperturbed black hole (see,
however, [17] for a derivation of the first law for non-stationary perturbations
that does not require evaluation at the bifurcation surface). More significantly,
it has been shown [16] that the validity of this law depends only on very general
properties of the field equations. Specifically, a version of this law holds for
any field equations derived from a diffeomorphism covariant Lagrangian, L.
Such a Lagrangian can always be written in the form

L = L (gab; Rabcd,∇aRbcde, ...; ψ,∇aψ, ...) , (6)

where ∇a denotes the derivative operator associated with gab, Rabcd denotes
the Riemann curvature tensor of gab, and ψ denotes the collection of all matter
fields of the theory (with indices suppressed). An arbitrary (but finite) number
of derivatives of Rabcd and ψ are permitted to appear in L. In this more general
context, the first law of black hole mechanics is seen to be a direct consequence
of an identity holding for the variation of the Noether current. The general form
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of the first law takes the form

δM =
κ

2π
δSbh + ΩδJ + ..., (7)

where the “...” denote possible additional contributions from long range matter
fields, and where

Sbh ≡ −2π

∫
C

δL

δRabcd
nabncd. (8)

Here nab is the binormal to the bifurcation surface C (normalized so that
nabn

ab = −2), and the functional derivative is taken by formally viewing
the Riemann tensor as a field which is independent of the metric in Eq. (6). For
the case of vacuum general relativity, where L = R

√−g, a simple calculation
yields

Sbh = A/4, (9)

and Eq. (7) reduces to Eq. (5).
The close mathematical analogy of the zeroth, first, and second laws of

thermodynamics to corresponding laws of classical black hole mechanics is
broken by the Planck-Nernst form of the third law of thermodynamics, which
states that S → 0 (or a “universal constant”) as T → 0. The analog of this law
fails in black hole mechanics – although analogs of alternative formulations of
the third law do appear to hold for black holes [18] – since there exist extremal
black holes (i.e., black holes with κ = 0) with finite A. However, there is good
reason to believe that the “Planck-Nernst theorem” should not be viewed as a
fundamental law of thermodynamics [19] but rather as a property of the density
of states near the ground state in the thermodynamic limit, which happens to
be valid for commonly studied materials. Indeed, examples can be given of
ordinary quantum systems that violate the Planck-Nernst form of the third law
in a manner very similar to the violations of the analog of this law that occur
for black holes [20].

As discussed above, the zeroth and first laws of black hole mechanics have
been formulated in the mathematical setting of stationary black holes whose
event horizons are Killing horizons. The requirement of stationarity applies
to the entire spacetime and, indeed, for the first law, stationarity of the entire
spacetime is essential in order to relate variations of quantities defined at the
horizon (like A) to variations of quantities defined at infinity (like M and J).
However, it would seem reasonable to expect that the equilibrium thermody-
namic behavior of a black hole would require only a form of local stationarity at
the event horizon. For the formulation of the first law of black hole mechanics,
one would also then need local definitions of quantities like M and J at the
horizon. Such an approach toward the formulation of the laws of black hole
mechanics has recently been taken via the notion of an isolated horizon, defined
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as a null hypersurface with vanishing shear and expansion satisfying the addi-
tional properties stated in [21]. (This definition supersedes the more restrictive
definitions given, e.g., in [22, 23, 24].) The presence of an isolated horizon
does not require the entire spacetime to be stationary [25]. A direct analog of
the zeroth law for stationary event horizons can be shown to hold for isolated
horizons [26]. In the Einstein-Maxwell case, one can demand (via a choice
of scaling of the normal to the isolated horizon as well as a choice of gauge
for the Maxwell field) that the surface gravity and electrostatic potential of the
isolated horizon be functions of only its area and charge. The requirement that
time evolution be symplectic then leads to a version of the first law of black
hole mechanics as well as a (in general, non-unique) local notion of the energy
of the isolated horizon [26]. These results also have been generalized to allow
dilaton couplings [24] and Yang-Mills fields [27, 26].

In comparing the laws of black hole mechanics in classical general relativity
with the laws of thermodynamics, it should first be noted that the black hole
uniqueness theorems (see, e.g., [8]) establish that stationary black holes – i.e.,
black holes “in equilibrium” – are characterized by a small number of param-
eters, analogous to the “state parameters” of ordinary thermodynamics. In the
corresponding laws, the role of energy, E, is played by the mass, M , of the
black hole; the role of temperature, T , is played by a constant times the surface
gravity, κ, of the black hole; and the role of entropy, S, is played by a constant
times the area, A, of the black hole. The fact that E and M represent the same
physical quantity provides a strong hint that the mathematical analogy between
the laws of black hole mechanics and the laws of thermodynamics might be
of physical significance. However, as argued in [7], this cannot be the case in
classical general relativity. The physical temperature of a black hole is abso-
lute zero (see subsection 4.1 below), so there can be no physical relationship
between T and κ. Consequently, it also would be inconsistent to assume a
physical relationship between S and A. As we shall now see, this situation
changes dramatically when quantum effects are taken into account.
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3. Hawking Radiation

In 1974, Hawking [28] made the startling discovery that the physical tem-
perature of a black hole is not absolute zero: As a result of quantum particle
creation effects, a black hole radiates to infinity all species of particles with a
perfect black body spectrum, at temperature (in units with G = c = � = k = 1)

T =
κ

2π
. (10)

Thus, κ/2π truly is the physical temperature of a black hole, not merely a
quantity playing a role mathematically analogous to temperature in the laws of
black hole mechanics. In this section, we review the status of the derivation of
the Hawking effect and also discuss the closely related Unruh effect.

The original derivation of the Hawking effect [28] made direct use of the
formalism for calculating particle creation in a curved spacetime that had been
developed by Parker [29] and others. Hawking considered a classical spacetime
(M, gab) describing gravitational collapse to a Schwarzschild black hole. He
then considered a free (i.e., linear) quantum field propagating in this background
spacetime, which is initially in its vacuum state prior to the collapse, and he
computed the particle content of the field at infinity at late times. This calcu-
lation involves taking the positive frequency mode function corresponding to a
particle state at late times, propagating it backwards in time, and determining
its positive and negative frequency parts in the asymptotic past. His calculation
revealed that at late times, the expected number of particles at infinity corre-
sponds to emission from a perfect black body (of finite size) at the Hawking
temperature (Eq. (10)). It should be noted that this result relies only on the
analysis of quantum fields in the region exterior to the black hole, and it does
not make use of any gravitational field equations.

The original Hawking calculation can be straightforwardly generalized and
extended in the following ways. First, one may consider a spacetime represent-
ing an arbitrary gravitational collapse to a black hole such that the black hole
“settles down” to a stationary final state satisfying the zeroth law of black hole
mechanics (so that the surface gravity, κ, of the black hole final state is constant
over its event horizon). The initial state of the quantum field may be taken to
be any nonsingular state (i.e., any Hadamard state – see, e.g., [15]) rather than
the initial vacuum state. Finally, it can be shown [30] that all aspects of the
final state at late times (i.e., not merely the expected number of particles in each
mode) correspond to black body1 thermal radiation emanating from the black
hole at temperature (Eq. (10)).

It should be noted that no infinities arise in the calculation of the Hawking
effect for a free field, so the results are mathematically well defined, without any
need for regularization or renormalization. The original derivations [28, 30]
made use of notions of “particles propagating into the black hole”, but the
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results for what an observer sees at infinity were shown to be independent
of the ambiguities inherent in such notions and, indeed, a derivation of the
Hawking effect has been given [31] which entirely avoids the introduction of any
notion of “particles”. However, there remains one significant difficultly with
the Hawking derivation: In the calculation of the backward-in-time propagation
of a mode, it is found that the mode undergoes a large blueshift as it propagates
near the event horizon, but there is no correspondingly large redshift as the
mode propagates back through the collapsing matter into the asymptotic past.
Indeed, the net blueshift factor of the mode is proportional to exp(κt), where
t is the time that the mode would reach an observer at infinity. Thus, within a
time of order 1/κ of the formation of a black hole (i.e., ∼ 10−5 seconds for a
one solar mass Schwarzschild black hole), the Hawking derivation involves (in
its intermediate steps) the propagation of modes of frequency much higher than
the Planck frequency. In this regime, it is difficult to believe in the accuracy of
free field theory – or any other theory known to mankind.

An approach to investigating this issue was first suggested by Unruh [32],
who noted that a close analog of the Hawking effect occurs for quantized sound
waves in a fluid undergoing supersonic flow. A similar blueshifting of the
modes quickly brings one into a regime well outside the domain of validity of
the continuum fluid equations. Unruh suggested replacing the continuum fluid
equations with a more realistic model at high frequencies to see if the fluid ana-
log of the Hawking effect would still occur. More recently, Unruh investigated
models where the dispersion relation is altered at ultra-high frequencies, and he
found no deviation from the Hawking prediction [33]. A variety of alternative
models have been considered by other researchers [34, 35, 36, 37, 38, 39, 40].
Again, agreement with the Hawking effect prediction was found in all cases,
despite significant modifications of the theory at high frequencies.

The robustness of the Hawking effect with respect to modifications of the
theory at ultra-high frequency probably can be understood on the following
grounds. One may view the backward-in-time propagation of modes as con-
sisting of two stages: a first stage where the blueshifting of the mode brings
it into a WKB regime but the frequencies remain well below the Planck scale,
and a second stage where the continued blueshifting takes one to the Planck
scale and beyond. In the first stage, the usual field theory calculations should
be reliable. On the other hand, after the mode has entered a WKB regime, it
seems plausible that the kinds of modifications to its propagation laws consid-
ered in [33, 34, 35, 36, 37, 38, 39, 40] should not affect its essential properties,
in particular the magnitude of its negative frequency part.

Indeed, an issue closely related to the validity of the original Hawking deriva-
tion arises if one asks how a uniformly accelerating observer in Minkowski
spacetime perceives the ordinary (inertial) vacuum state (see below). The outgo-
ing modes of a given frequency ω as seen by the accelerating observer at proper
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time τ along his worldline correspond to modes of frequency∼ ω exp(aτ) in a
fixed inertial frame. Therefore, at time τ 
 1/a one might worry about field-
theoretic derivations of what the accelerating observer would see. However,
in this case one can appeal to Lorentz invariance to argue that what the accel-
erating observer sees cannot change with time. It seems likely that one could
similarly argue that the Hawking effect cannot be altered by modifications of
the theory at ultra-high frequencies, provided that these modifications preserve
an appropriate “local Lorentz invariance” of the theory. Thus, there appears to
be strong reasons for believing in the validity of the Hawking effect despite the
occurrence of ultra-high-frequency modes in the derivation.

There is a second, logically independent result – namely, the Unruh effect [41]
and its generalization to curved spacetime – which also gives rise to the for-
mula (10). Although the Unruh effect is mathematically very closely related
to the Hawking effect, it is important to distinguish clearly between them. In
its most general form, the Unruh effect may be stated as follows (see [42, 15]
for further discussion): Consider a classical spacetime (M, gab) that contains a
bifurcate Killing horizon,K = KA∪KB , so that there is a one-parameter group
of isometries whose associated Killing field, ξa, is normal toK. Consider a free
quantum field on this spacetime. Then there exists at most one globally nonsin-
gular state of the field which is invariant under the isometries. Furthermore, in
the “wedges” of the spacetime where the isometries have timelike orbits, this
state (if it exists) is a KMS (i.e., thermal equilibrium) state at temperature (10)
with respect to the isometries.

Note that in Minkowski spacetime, any one-parameter group of Lorentz
boosts has an associated bifurcate Killing horizon, comprised by two intersect-
ing null planes. The unique, globally nonsingular state which is invariant under
these isometries is simply the usual (“inertial”) vacuum state, |0〉. In the “right
and left wedges” of Minkowski spacetime defined by the Killing horizon, the
orbits of the Lorentz boost isometries are timelike, and, indeed, these orbits
correspond to worldlines of uniformly accelerating observers. If we normalize
the boost Killing field, ba, so that Killing time equals proper time on an orbit
with acceleration a, then the surface gravity of the Killing horizon is κ = a.
An observer following this orbit would naturally use ba to define a notion of
“time translation symmetry”. Consequently, by the above general result, when
the field is in the inertial vacuum state, a uniformly accelerating observer would
describe the field as being in a thermal equilibrium state at temperature

T =
a

2π
(11)

as originally discovered by Unruh [41]. A mathematically rigorous proof of
the Unruh effect in Minkowski spacetime was given by Bisognano and Wich-
mann [43] in work motivated by entirely different considerations (and done
independently of and nearly simultaneously with the work of Unruh). Further-
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more, the Bisognano-Wichmann theorem is formulated in the general context
of axiomatic quantum field theory, thus establishing that the Unruh effect is not
limited to free field theory.

Although there is a close mathematical relationship between the Unruh ef-
fect and the Hawking effect, it should be emphasized that these results refer
to different states of the quantum field. We can divide the late time modes
of the quantum field in the following manner, according to the properties that
they would have in the analytically continued spacetime [14] representing the
asymptotic final stationary state of the black hole: We refer to modes that would
have emanated from the white hole region of the analytically continued space-
time as “UP modes” and those that would have originated from infinity as “IN
modes”. In the Hawking effect, the asymptotic final state of the quantum field
is a state in which the UP modes of the quantum field are thermally populated at
temperature (10), but the IN modes are unpopulated. This state (usually referred
to as the “Unruh vacuum”) would be singular on the white hole horizon in the
analytically continued spacetime. On the other hand, in the Unruh effect and its
generalization to curved spacetimes, the state in question (usually referred to
as the “Hartle-Hawking vacuum” [44]) is globally nonsingular, and all modes
of the quantum field in the “left and right wedges” are thermally populated.2

The differences between the Unruh and Hawking effects can be seen dra-
matically in the case of a Kerr black hole. For the Kerr black hole, it can be
shown [42] that there does not exist any globally nonsingular state of the field
which is invariant under the isometries associated with the Killing horizon,
i.e., there does not exist a “Hartle-Hawking vacuum state” on Kerr spacetime.
However, there is no difficultly with the derivation of the Hawking effect for
Kerr black holes, i.e., the “Unruh vacuum state” does exist.

It should be emphasized that in the Hawking effect, the temperature (10)
represents the temperature as measured by an observer near infinity. For any
observer following an orbit of the Killing field, ξa, normal to the horizon, the
locally measured temperature of the UP modes is given by

T =
κ

2πV
, (12)

where V = (−ξaξa)1/2. In other words, the locally measured temperature of
the Hawking radiation follows the Tolman law. Now, as one approaches the
horizon of the black hole, the UP modes dominate over the IN modes. Taking
Eq. (4) into account, we see that T → a/2π as the black hole horizon, H, is
approached, i.e., in this limit Eq. (12) corresponds to the flat spacetime Unruh
effect.

Equation (12) shows that when quantum effects are taken into account, a
black hole is surrounded by a “thermal atmosphere” whose local temperature
as measured by observers following orbits of ξa becomes divergent as one
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approaches the horizon. As we shall see in the next section, this thermal atmo-
sphere produces important physical effects on quasi-stationary bodies near the
black hole. On the other hand, it should be emphasized that for a macroscopic
black hole, observers who freely fall into the black hole would not notice any
important quantum effects as they approach and cross the horizon.
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4. The Generalized Second Law (GSL)

In this section, we shall review some arguments for the validity of the gen-
eralized second law (GSL). We also shall review the status of several proposed
entropy bounds on matter that have played a role in discussions and analyses
of the GSL.

4.1 Arguments for the validity of the GSL

Even in classical general relativity, there is a serious difficulty with the ordi-
nary second law of thermodynamics when a black hole is present, as originally
emphasized by J.A. Wheeler: One can simply take some ordinary matter and
drop it into a black hole, where, according to classical general relativity, it will
disappear into a spacetime singularity. In this process, one loses the entropy
initially present in the matter, and no compensating gain of ordinary entropy
occurs, so the total entropy, S, of matter in the universe decreases. One could
attempt to salvage the ordinary second law by invoking the bookkeeping rule
that one must continue to count the entropy of matter dropped into a black hole
as still contributing to the total entropy of the universe. However, the second
law would then have the status of being observationally unverifiable.

As already mentioned in section 2, after the area theorem was proven, Beken-
stein [5, 6] proposed a way out of this difficulty: Assign an entropy, Sbh, to a
black hole given by a numerical factor of order unity times the area, A, of the
black hole in Planck units. Define the generalized entropy, S′, to be the sum
of the ordinary entropy, S, of matter outside of a black hole plus the black hole
entropy

S′ ≡ S + Sbh. (13)

Finally, replace the ordinary second law of thermodynamics by the generalized
second law (GSL): The total generalized entropy of the universe never decreases
with time,

ΔS′ ≥ 0. (14)

Although the ordinary second law will fail when matter is dropped into a black
hole, such a process will tend to increase the area of the black hole, so there is
a possibility that the GSL will hold.

Bekenstein’s proposal of the GSL was made prior to the discovery of Hawk-
ing radiation. When Hawking radiation is taken into account, a serious problem
also arises with the second law of black hole mechanics (i.e., the area theorem):
Conservation of energy requires that an isolated black hole must lose mass in
order to compensate for the energy radiated to infinity by the Hawking process.
Indeed, if one equates the rate of mass loss of the black hole to the energy flux
at infinity due to particle creation, one arrives at the startling conclusion that an
isolated black hole will radiate away all of its mass within a finite time. During
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this process of black hole “evaporation”, A will decrease. Such an area decrease
can occur because the expected stress-energy tensor of quantum matter does
not satisfy the null energy condition – even for matter for which this condition
holds classically – in violation of a key hypothesis of the area theorem.

However, although the second law of black hole mechanics fails during the
black hole evaporation process, if we adjust the numerical factor in the definition
of Sbh to correspond to the identification of κ/2π as temperature in the first law
of black hole mechanics – so that, as in Eq. (9) above, we have Sbh = A/4 in
Planck units – then the GSL continues to hold: Although A decreases, there is at
least as much ordinary entropy generated outside the black hole by the Hawking
process. Thus, although the ordinary second law fails in the presence of black
holes and the second law of black hole mechanics fails when quantum effects
are taken into account, there is a possibility that the GSL may always hold. If
the GSL does hold, it seems clear that we must interpret Sbh as representing
the physical entropy of a black hole, and that the laws of black hole mechanics
must truly represent the ordinary laws of thermodynamics as applied to black
holes. Thus, a central issue in black hole thermodynamics is whether the GSL
holds in all processes.

It was immediately recognized by Bekenstein [5] (see also [7]) that there is a
serious difficulty with the GSL if one considers a process wherein one carefully
lowers a box containing matter with entropy S and energy E very close to the
horizon of a black hole before dropping it in. Classically, if one could lower the
box arbitrarily close to the horizon before dropping it in, one would recover all
of the energy originally in the box as “work” at infinity. No energy would be
delivered to the black hole, so by the first law of black hole mechanics, Eq. (7),
the black hole area, A, would not increase. However, one would still get rid of
all of the entropy, S, originally in the box, in violation of the GSL.

Indeed, this process makes manifest the fact that in classical general rela-
tivity, the physical temperature of a black hole is absolute zero: The above
process is, in effect, a Carnot cycle which converts “heat” into “work” with
100% efficiency [45]. The difficulty with the GSL in the above process can be
viewed as stemming from an inconsistency of this fact with the mathematical
assignment of a finite (non-zero) temperature to the black hole required by the
first law of black hole mechanics if one assigns a finite (non-infinite) entropy
to the black hole.

Bekenstein proposed a resolution of the above difficulty with the GSL in a
quasi-static lowering process by arguing [5, 6] that it would not be possible
to lower a box containing physically reasonable matter close enough to the
horizon of the black hole to violate the GSL. As will be discussed further in
the next sub-section, this proposed resolution was later refined by postulating
a universal bound on the entropy of systems with a given energy and size [46].
However, an alternate resolution was proposed in [47], based upon the idea
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that, when quantum effects are taken into account, the physical temperature of
a black hole is no longer absolute zero, but rather is the Hawking temperature,
κ/2π. Since the Hawking temperature goes to zero in the limit of a large
black hole, it might appear that quantum effects could not be of much relevance
in this case. However, despite the fact that Hawking radiation at infinity is
indeed negligible for large black holes, the effects of the quantum “thermal
atmosphere” surrounding the black hole are not negligible on bodies that are
quasi-statically lowered toward the black hole. The temperature gradient in
the thermal atmosphere (see Eq. (12)) implies that there is a pressure gradient
and, consequently, a buoyancy force on the box. This buoyancy force becomes
infinitely large in the limit as the box is lowered to the horizon. As a result of
this buoyancy force, the optimal place to drop the box into the black hole is no
longer the horizon but rather the “floating point” of the box, where its weight
is equal to the weight of the displaced thermal atmosphere. The minimum area
increase given to the black hole in the process is no longer zero, but rather turns
out to be an amount just sufficient to prevent any violation of the GSL from
occurring in this process [47].

The analysis of [47] considered only a particular class of gedankenexperi-
ments for violating the GSL involving the quasi-static lowering of a box near a
black hole. Of course, since one does not have a general proof of the ordinary
second law of thermodynamics – and, indeed, for finite systems, there should
always be a nonvanishing probability of violating the ordinary second law – it
would not be reasonable to expect to obtain a completely general proof of the
GSL. However, general arguments within the semiclassical approximation for
the validity of the GSL for arbitrary infinitesimal quasi-static processes have
been given in [48, 49, 15]. These arguments crucially rely on the presence of
the thermal atmosphere surrounding the black hole. Related arguments for the
validity of the GSL have been given in [50, 51]. In [50], it is assumed that the
incoming state is a product state of radiation originating from infinity (i.e., IN
modes) and radiation that would appear to emanate from the white hole region
of the analytically continued spacetime (i.e., UP modes), and it is argued that
the generalized entropy must increase under unitary evolution. In [51], it is
argued on quite general grounds that the (generalized) entropy of the state of
the region exterior to the black hole must increase under the assumption that it
undergoes autonomous evolution.

Indeed, it should be noted that if one could violate the GSL for an infinitesimal
quasi-static process in a regime where the black hole can be treated semi-
classically, then it also should be possible to violate the ordinary second law for
a corresponding process involving a self-gravitating body. Namely, suppose that
the GSL could be violated for an infinitesimal quasi-static process involving,
say, a Schwarzschild black hole of mass M (with M much larger than the
Planck mass). This process might involve lowering matter towards the black
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hole and possibly dropping the matter into it. However, an observer doing this
lowering or dropping can “probe” only the region outside of the black hole, so
there will be some r0 > 2M such that the detailed structure of the black hole
will directly enter the analysis of the process only for r > r0. Now replace the
black hole by a shell of matter of mass M and radius r0, and surround this shell
with a “real” atmosphere of radiation in thermal equilibrium at the Hawking
temperature (10) as measured by an observer at infinity. Then the ordinary
second law should be violated when one performs the same process to the shell
surrounded by the (“real”) thermal atmosphere as one performs to violate the
GSL when t

he black hole is present. Indeed, the arguments of [48, 49, 15] do not dis-
tinguish between infinitesimal quasi-static processes involving a black hole
as compared with a shell surrounded by a (“real”) thermal atmosphere at the
Hawking temperature.

In summary, there appear to be strong grounds for believing in the validity
of the GSL.

4.2 Entropy bounds

As discussed in the previous subsection, for a classical black hole the GSL
would be violated if one could lower a box containing matter sufficiently close
to the black hole before dropping it in. Indeed, for a Schwarzschild black hole,
a simple calculation reveals that if the size of the box can be neglected, then the
GSL would be violated if one lowered a box containing energy E and entropy
S to within a proper distance D of the bifurcation surface of the event horizon
before dropping it in, where

D <
S

(2πE)
. (15)

(This formula holds independently of the mass, M , of the black hole.) However,
it is far from clear that the finite size of the box can be neglected if one lowers
a box containing physically reasonable matter this close to the black hole. If it
cannot be neglected, then this proposed counterexample to the GSL would be
invalidated.

As already mentioned in the previous subsection, these considerations led
Bekenstein [46] to propose a universal bound on the entropy-to-energy ratio of
bounded matter, given by

S/E ≤ 2πR, (16)

where R denotes the “circumscribing radius” of the body. Here “E” is normally
interpreted as the energy above the ground state; otherwise, Eq. (16) would be
trivially violated in cases where the Casimir energy is negative [52] – although
in such cases in may still be possible to rescue Eq. (16) by postulating a suitable
minimum energy of the box walls [53].
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Two key questions one can ask about this bound are: (1) Does it hold in
nature? (2) Is it needed for the validity of the GSL? With regard to question
(1), even in Minkowski spacetime, there exist many model systems that are
physically reasonable (in the sense of positive energies, causal equations of state,
etc.) for which Eq. (16) fails. (For a recent discussion of such counterexamples
to Eq. (16), see [54, 55, 52]; for counter-arguments to these references, see [53].)
In particular it is easily seen that for a system consisting of N non-interacting
species of particles with identical properties, Eq. (16) must fail whenN becomes
sufficiently large. However, for a system of N species of free, massless bosons
or fermions, one must take N to be enormously large [56] to violate Eq. (16), so
it does not appear that nature has chosen to take advantage of this possible means
of violating (16). Equation (16) also is violated at sufficiently low temperatures
if one defines the entropy, S, of the system via the canonical ensemble, i.e.,
S(T ) = −tr[ρ ln ρ], where ρ denotes the canonical ensemble density matrix,

ρ = exp(−H/T )tr[exp(−H/T )], (17)

where H is the Hamiltonian. However, a study of a variety of model sys-
tems [56] indicates that (16) holds at low temperatures when S is defined via the
microcanonical ensemble, i.e., S(E) = lnn where n is the density of quantum
states with energy E. More generally, Eq. (16) has been shown to hold for a
wide variety of systems in flat spacetime [56, 57].

The status of Eq. (16) in curved spacetime is unclear; indeed, while there is
some ambiguity in how “E” and “R” are defined in Minkowski spacetime [52], it
is very unclear what these quantities would mean in a general, non-spherically-
symmetric spacetime. (These same difficulties also plague attempts to give
a mathematically rigorous formulation of the “hoop conjecture” [58].) With
regard to “E”, it has long been recognized that there is no meaningful local
notion of gravitational energy density in general relativity. Although numerous
proposals have been made to define a notion of “quasi-local mass” associated
with a closed 2-surface (see, e.g., [59, 60]), none appear to have fully satisfactory
properties. Although the difficulties with defining a localized notion of energy
are well known, it does not seem to be as widely recognized that there also
are serious difficulties in defining “R”: Given any spacelike 2-surface, C, in
a 4-dimensional spacetime and given any open neighborhood, O, of C, there
exists a spacelike 2-surface, C′ (composed of nearly null portions) contained
within O with arbitrarily small area and circumscribing radius. Thus, if one
is given a system confined to a world tube in spacetime, it is far from clear
how to define any notion of the “externally measured size” of the region unless,
say, one is given a preferred slicing by spacelike hypersurfaces. Nevertheless,
the fact that Eq. (16) holds for the known black hole solutions (and, indeed, is
saturated by the Schwarzschild black hole) and also plausibly holds for a self-
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gravitating spherically symmetric body [61] provides an indication that some
version of (16) may hold in curved spacetime.

With regard to question (2), in the previous section we reviewed arguments for
the validity of the GSL that did not require the invocation of any entropy bounds.
Thus, the answer to question (2) is “no” unless there are deficiencies in the
arguments of the previous section that invalidate their conclusions. A number
of such potential deficiencies have been pointed out by Bekenstein. Specifically,
the analysis and conclusions of [47] have been criticized by Bekenstein on the
grounds that:

i A “thin box” approximation was made [62].

ii It is possible to have a box whose contents have a greater entropy than
unconfined thermal radiation of the same energy and volume [62].

iii Under certain assumptions concerning the size/shape of the box, the na-
ture of the thermal atmosphere, and the location of the floating point, the
buoyancy force of the thermal atmosphere can be shown to be negligible
and thus cannot play a role in enforcing the GSL [63].

iv Under certain other assumptions, the box size at the floating point will be
smaller than the typical wavelengths in the ambient thermal atmosphere,
thus likely decreasing the magnitude of the buoyancy force [64].

Responses to criticism (i) were given in [65] and [66]; a response to criticism
(ii) was given in [65]; and a response to (iii) was given in [66]. As far as I am a
aware, no response to (iv) has yet been given in the literature except to note [67]
that the arguments of [64] should pose similar difficulties for the ordinary second
law for gedankenexperiments involving a self-gravitating body (see the end of
subsection 4.1 above). Thus, my own view is that Eq. (16) is not necessary for
the validity of the GSL3. However, this conclusion remains controversial; see
[68] for a recent discussion.

More recently, an alternative entropy bound has been proposed: It has been
suggested that the entropy contained within a region whose boundary has area
A must satisfy [69, 70, 71]

S ≤ A/4. (18)

This proposal is closely related to the “holographic principle”, which, roughly
speaking, states that the physics in any spatial region can be fully described in
terms of the degrees of freedom associated with the boundary of that region.
(The literature on the holographic principle is far too extensive and rapidly
developing to attempt to give any review of it here.) The bound (18) would
follow from (16) under the additional assumption of small self-gravitation (so
that E <∼ R). Thus, many of the arguments in favor of (16) are also applicable
to (18). Similarly, the counterexample to (16) obtained by taking the number,
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N , of particle species sufficiently large also provides a counterexample to (18),
so it appears that (18) can, in principle, be violated by physically reasonable
systems (although not necessarily by any systems actually occurring in nature).

Unlike Eq. (16), the bound (18) explicitly involves the gravitational constant
G (although we have set G = 1 in all of our formulas), so there is no flat
spacetime version of (18) applicable when gravity is “turned off”. Also unlike
(16), the bound (18) does not make reference to the energy, E, contained within
the region, so the difficulty in defining E in curved spacetime does not affect the
formulation of (18). However, the above difficulty in defining the “bounding
area”, A, of a world tube in a general, curved spacetime remains present (but
see below).

The following argument has been given that the bound (18) is necessary for
the validity of the GSL [71]: Suppose we had a spherically symmetric system
that was not a black hole (so R > 2E) and which violated the bound (18), so
that S > A/4 = πR2. Now collapse a spherical shell of mass M = R/2− E
onto the system. A Schwarzschild black hole of radius R should result. But the
entropy of such a black hole is A/4, so the generalized entropy will decrease
in this process.

I am not aware of any counter-argument in the literature to the argument
given in the previous paragraph, so I will take the opportunity to give one here.
If there were a system which violated the bound (18), then the above argument
shows that it would be (generalized) entropically unfavorable to collapse that
system to a black hole. I believe that the conclusion one should draw from this
is that, in this circumstance, it should not be possible to form a black hole. In
other words, the bound (18) should be necessary in order for black holes to be
stable or metastable states, but should not be needed for the validity of the GSL.

This viewpoint is supported by a simple model calculation. Consider a
massless gas composed of N species of (boson or fermion) particles confined
by a spherical box of radius R. Then (neglecting self-gravitational effects and
any corrections due to discreteness of modes) we have

S ∼ N1/4R3/4E3/4. (19)

We wish to consider a configuration that is not already a black hole, so we
need E < R/2. To violate (18) – and thereby threaten to violate the GSL by
collapsing a shell upon the system – we need to have S > πR2. This means that
we need to consider a model with N >∼ R2. For such a model, start with a region
R containing matter with S > πR2 but with E < R/2. If we try to collapse a
shell upon the system to form a black hole of radius R, the collapse time will
be >∼ R. But the Hawking evaporation timescale in this model is tH ∼ R3/N ,
since the flux of Hawking radiation is proportional to N . Since N >∼ R2, we
have tH <∼ R, so the Hawking evaporation time is shorter than the collapse time!
Consequently, the black hole will never actually form. Rather, at best it will
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merely act as a catalyst for converting the original high entropy confined state
into an even higher entropy state of unconfined Hawking radiation.

As mentioned above, the proposed bound (18) is ill defined in a general (non-
spherically-symmetric) curved spacetime. There also are other difficulties with
(18): In a closed universe, it is not obvious what constitutes the “inside” versus
the “outside” of the bounding area. In addition, (18) can be violated near cosmo-
logical and other singularities, where the entropy of suitably chosen comoving
volumes remains bounded away from zero but the area of the boundary of the
region goes to zero. However, a reformulation of (18) which is well defined in a
general curved spacetime and which avoids these difficulties has been given by
Bousso [72, 73, 74]. Bousso’s reformulation can be stated as follows: LetL be
a null hypersurface such that the expansion, θ, ofL is everywhere non-positive,
θ ≤ 0 (or, alternatively, is everywhere non-negative, θ ≥ 0). In particular, L is
not allowed to contain caustics, where θ changes sign from −∞ to +∞. Let
B be a spacelike cross-section of L. Bousso’s reformulation conjectures that

SL ≤ AB/4, (20)

where AB denotes the area of B and SL denotes the entropy flux through L to
the future (or, respectively, the past) of B.

In [67] it was argued that the bound (21) should be valid in certain “classical
regimes” (see [67]) wherein the local entropy density of matter is bounded in
a suitable manner by the energy density of matter. Furthermore, the following
generalization of Bousso’s bound was proposed: Let L be a null hypersurface
which starts at a cross-section, B, and terminates at a cross-section B′. Suppose
further that L is such that its expansion, θ, is either everywhere non-negative
or everywhere non-positive. Then

SL ≤ |AB −AB′ |/4. (21)

Although we have argued above that the validity of the GSL should not
depend upon the validity of the entropy bounds (16) or (18), there is a close
relationship between the GSL and the generalized Bousso bound (21). Namely,
as discussed in section 2 above, classically, the event horizon of a black hole
is a null hypersurface satisfying θ ≥ 0. Thus, in a classical regime, the GSL
itself would correspond to a special case of the generalized Bousso bound (21).
This suggests the intriguing possibility that, in quantum gravity, there might
be a more general formulation of the GSL – perhaps applicable to an arbitrary
horizon as defined on p. 134 of [15], not merely to an event horizon of a black
hole – which would reduce to (21) in a suitable classical limit.
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5. Calculations of Black Hole Entropy

The considerations of the previous sections make a compelling case for the
merger of the laws of black hole mechanics with the laws of thermodynamics.
In particular, they strongly suggest that Sbh (= A/4 in general relativity – see
Eqs.(8) and (9) above) truly represents the physical entropy of a black hole.
Now, the entropy of ordinary matter is understood to arise from the number of
quantum states accessible to the matter at given values of the energy and other
state parameters. One would like to obtain a similar understanding of why A/4
represents the entropy of a black hole in general relativity by identifying (and
counting) the quantum dynamical degrees of freedom of a black hole. In order
to do so, it clearly will be necessary to go beyond the classical and semiclassical
considerations of the previous sections and consider black holes within a fully
quantum theory of gravity. In this section, we will briefly summarize some of
the main approaches that have been taken to the direct calculation of the entropy
of a black hole.

The first direct quantum calculation of black hole entropy was given by
Gibbons and Hawking [75] in the context of Euclidean quantum gravity. They
started with a formal, functional integral expression for the canonical ensemble
partition function in Euclidean quantum gravity and evaluated it for a black
hole in the “zero loop” (i.e, classical) approximation. As shown in [77], the
mathematical steps in this procedure are in direct correspondence with the
purely classical determination of the entropy from the form of the first law
of black hole mechanics. A number of other entropy calculations that have
been given within the formal framework of Euclidean quantum gravity also
can be shown to be equivalent to the classical derivation (see [78] for further
discussion). Thus, although the derivation of [75] and other related derivations
give some intriguing glimpses into possible deep relationships between black
hole thermodynamics and Euclidean quantum gravity, they do not appear to
provide any more insight than the classical derivation into accounting for the
quantum degrees of freedom that are responsible for black hole entropy.

It should be noted that there is actually an inconsistency in the use of the
canonical ensemble to derive a formula for black hole entropy, since the entropy
of a black hole grows too rapidly with energy for the canonical ensemble to
be defined. (Equivalently, the heat capacity of a Schwarzschild black hole
is negative, so it cannot come to equilibrium with an infinite heat bath.) A
derivation of black hole entropy using the microcanonical ensemble has been
given in [76].

Another approach to the calculation of black hole entropy has been to attribute
it to the “entanglement entropy” resulting from quantum field correlations be-
tween the exterior and interior of the black hole [79, 80, 81]. As a result of
these correlations across the event horizon, the state of a quantum field when
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restricted to the exterior of the black hole is mixed. Indeed, in the absence of
a short distance cutoff, the von Neumann entropy, −tr[ρ ln ρ], of any physi-
cally reasonable state would diverge. If one now inserts a short distance cutoff
of the order of the Planck scale, one obtains a von Neumann entropy of the
order of the horizon area, A. Thus, this approach provides a natural way of
accounting for why the entropy of a black hole is proportional to its surface
area. However, the constant of proportionality depends upon a cutoff and is
not (presently) calculable within this approach. (Indeed, one might argue that
in this approach, the constant of proportionality between Sbh and A should
depend upon the number, N , of species of particles, and thus could not equal
1/4 (independently of N ). However, it is possible that the N -dependence in the
number of states is compensated by an N -dependent renormalization of G [82]
and, hence, of the Planck scale cutoff.) More generally, it is far from clear
why the black hole horizon should be singled out for a such special treatment
of the quantum degrees of freedom in its vicinity, since similar quantum field
correlations will exist across any other null surface. It is particularly puzzling
why the local degrees of freedom associated with the horizon should be singled
out since, as already noted in section 2 above, the black hole horizon at a given
time is defined in terms of the entire future history of the spacetime and thus
has no distinguished local significance. Finally, since the gravitational action
and field equations play no role in the above derivation, it is difficult to see how
this approach could give rise to a black hole entropy proportional to Eq. (8)
(rather than proportional to A) in a more general theory of gravity. Similar
remarks apply to approaches which attribute the relevant degrees of freedom to
the “shape” of the horizon [83] or to causal links crossing the horizon [84].

A closely related idea has been to attribute the entropy of the black hole
to the ordinary entropy of its thermal atmosphere [85]). If we assume that
the thermal atmosphere behaves like a free, massless (boson or fermion) gas,
its entropy density will be (roughly) proportional to T 3. However, since T
diverges near the horizon in the manner specified by Eq. (12), we find that the
total entropy of the thermal atmosphere near the horizon diverges. This is, in
effect, a new type of ultraviolet catastrophe. It arises because, on account of
arbitrarily large redshifts, there now are infinitely many modes – of arbitrarily
high locally measured frequency – that contribute a bounded energy as measured
at infinity. To cure this divergence, it is necessary to impose a cutoff on the
locally measured frequency of the modes. If we impose a cutoff of the order of
the Planck scale, then the thermal atmosphere contributes an entropy of order
the horizon area, A, just as in the entanglement entropy analysis. Indeed, this
calculation is really the same as the entanglement entropy calculation, since the
state of a quantum field outside of the black hole is thermal, so its von Neumann
entropy is equal to its thermodynamic entropy (see also [86]). Note that the
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bulk of the entropy of the thermal atmosphere is highly localized in a “skin”
surrounding the horizon, whose thickness is of order of the Planck length.

Since the attribution of black hole entropy to its thermal atmosphere is es-
sentially equivalent to the entanglement entropy proposal, this approach has
essentially the same strengths and weaknesses as the entanglement entropy ap-
proach. On one hand, it naturally accounts for a black hole entropy proportional
to A. On the other hand, this result depends in an essential way on an uncalcu-
lable cutoff, and it is difficult to see how the analysis could give rise to Eq. (8)
in a more general theory of gravity. The preferred status of the event horizon
and the localization of the degrees of freedom responsible for black hole en-
tropy to a “Planck length skin” surrounding the horizon also remain puzzling in
this approach. To see this more graphically, consider the collapse of a massive
spherical shell of matter. Then, as the shell crosses its Schwarzschild radius, the
spacetime curvature outside of the shell is still negligibly small. Nevertheless,
within a time of order the Planck time after the crossing of the Schwarzschild
radius, the “skin” of thermal atmosphere surrounding the newly formed black
hole will come to equilibrium with respect to the notion of time translation
symmetry for the static Schwarzschild exterior. Thus, if an entropy is to be
assigned to the thermal atmosphere in the manner suggested by this proposal,
then the degrees of freedom of the thermal atmosphere – which previously were
viewed as irrelevant vacuum fluctuations making no contribution to entropy –
suddenly become “activated” by the passage of the shell for the purpose of
counting their entropy. A momentous change in the entropy of matter in the
universe has occurred, even though observers riding on or near the shell see
nothing of significance occurring.

Another approach that is closely related to the entanglement entropy and
thermal atmosphere approaches – and which also contains elements closely re-
lated to the Euclidean approach and the classical derivation of Eq. (8) – attempts
to account for black hole entropy in the context of Sakharov’s theory of induced
gravity [87, 88]. In Sakharov’s proposal, the dynamical aspects of gravity arise
from the collective excitations of massive fields. Constraints are then placed
on these massive fields to cancel divergences and ensure that the effective cos-
mological constant vanishes. Sakharov’s proposal is not expected to provide a
fundamental description of quantum gravity, but at scales below the Planck scale
it may possess features in common with other more fundamental descriptions.
In common with the entanglement entropy and thermal atmosphere approaches,
black hole entropy is explained as arising from the quantum field degrees of
freedom outside the black hole. However, in this case the formula for black
hole entropy involves a subtraction of the (divergent) mode counting expression
and an (equally divergent) expression for the Noether charge operator, so that,
in effect, only the massive fields contribute to black hole entropy. The result of
this subtraction yields Eq. (9).



26 LECTURES ON QUANTUM GRAVITY

More recently, another approach to the calculation of black hole entropy has
been developed in the framework of quantum geometry [89, 90]. In this ap-
proach, if one considers a spacetime containing an isolated horizon (see section
2 above), the classical symplectic form and classical Hamiltonian each acquire
an additional boundary term arising from the isolated horizon [26]. (It should be
noted that the phase space [91] considered here incorporates the isolated hori-
zon boundary conditions, i.e., only field variations that preserve the isolated
horizon structure are admitted.) These additional terms are identical in form
to that of a Chern-Simons theory defined on the isolated horizon. Classically,
the fields on the isolated horizon are determined by continuity from the fields
in the “bulk” and do not represent additional degrees of freedom. However, in
the quantum theory – where distributional fields are allowed – these fields are
interpreted as providing additional, independent degrees of freedom associated
with the isolated horizon. One then counts the “surface states” of these fields on
the isolated horizon subject to a boundary condition relating the surface states
to “volume states” and subject to the condition that the area of the isolated hori-
zon (as determined by the volume state) lies within a squared Planck length of
the value A. This state counting yields an entropy proportional to A for black
holes much larger than the Planck scale. Unlike the entanglement entropy and
thermal atmosphere calculations, the state counting here yields finite results
and no cutoff need be introduced. However, the formula for entropy contains
a free parameter (the “Immirzi parameter”), which arises from an ambiguity in
the loop quantization procedure, so the constant of proportionality between S
and A is not calculable.

The most quantitatively successful calculations of black hole entropy to date
are ones arising from string theory. It is believed that at “low energies”, string
theory should reduce to a 10-dimensional supergravity theory (see [92] for
considerable further discussion of the relationship between string theory and
10-dimensional and 11-dimensional supergravity). If one treats this supergrav-
ity theory as a classical theory involving a spacetime metric, gab, and other
classical fields, one can find solutions describing black holes. On the other
hand, one also can consider a “weak coupling” limit of string theory, wherein
the states are treated perturbatively. In the weak coupling limit, there is no
literal notion of a black hole, just as there is no notion of a black hole in lin-
earized general relativity. Nevertheless, certain weak coupling states can be
identified with certain black hole solutions of the low energy limit of the the-
ory by a correspondence of their energy and charges. (Here, it is necessary to
introduce “D-branes” into string perturbation theory in order to obtain weak
coupling states with the desired charges.) Now, the weak coupling states are,
in essence, ordinary quantum dynamical degrees of freedom, so their entropy
can be computed by the usual methods of statistical physics. Remarkably, for
certain classes of extremal and nearly extremal black holes, the ordinary en-
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tropy of the weak coupling states agrees exactly with the expression for A/4 for
the corresponding classical black hole states; see [93] and [94] for reviews of
these results. Recently, it also has been shown [95] that for certain black holes,
subleading corrections to the state counting formula for entropy correspond to
higher order string corrections to the effective gravitational action, in precise
agreement with Eq. (8).

Since the formula for entropy has a nontrivial functional dependence on
energy and charges, it is hard to imagine that the agreement between the ordi-
nary entropy of the weak coupling states and black hole entropy could be the
result of a random coincidence. Furthermore, for low energy scattering, the ab-
sorption/emission coefficients (“gray body factors”) of the corresponding weak
coupling states and black holes also agree [96]. This suggests that there may be
a close physical association between the weak coupling states and black holes,
and that the dynamical degrees of freedom of the weak coupling states are likely
to at least be closely related to the dynamical degrees of freedom responsible
for black hole entropy. However, it remains a challenge to understand in what
sense the weak coupling states could be giving an accurate picture of the local
physics occurring near (and within) the region classically described as a black
hole.

The relevant degrees of freedom responsible for entropy in the weak coupling
string theory models are associated with conformal field theories. Recently Car-
lip [97, 98] has attempted to obtain a direct relationship between the string theory
state counting results for black hole entropy and the classical Poisson bracket
algebra of general relativity. After imposing certain boundary conditions corre-
sponding to the presence of a local Killing horizon, Carlip chooses a particular
subgroup of spacetime diffeomorphisms, generated by vector fields ξa. The
transformations on the phase space of classical general relativity correspond-
ing to these diffeomorphisms are generated by Hamiltonians Hξ. However,
the Poisson bracket algebra of these Hamiltonians is not isomorphic to the Lie
bracket algebra of the vector fields ξa but rather corresponds to a central exten-
sion of this algebra. A Virasoro algebra is thereby obtained. Now, it is known
that the asymptotic density of states in a conformal field theory based upon a
Virasoro algebra is given by a universal expression (the “Cardy formula”) that
depends only on the Virasoro algebra. For the Virasoro algebra obtained by
Carlip, the Cardy formula yields an entropy in agreement with Eq. (9). Since
the Hamiltonians, Hξ, are closely related to the corresponding Noether currents
and charges occurring in the derivation of Eqs. (8) and (9), Carlip’s approach
holds out the possibility of providing a direct, general explanation of the re-
markable agreement between the string theory state counting results and the
classical formula for the entropy of a black hole.
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6. Open Issues

The results described in the previous sections provide a remarkably com-
pelling case that stationary black holes are localized thermal equilibrium states
of the quantum gravitational field, and that the laws of black hole mechanics
are simply the ordinary laws of thermodynamics applied to a system containing
a black hole. Although no results on black hole thermodynamics have been
subject to any experimental or observational tests, the theoretical foundation of
black hole thermodynamics appears to be sufficiently firm as to provide a solid
basis for further research and speculation on the nature of quantum gravitational
phenomena. In this section, I will briefly discuss two key unresolved issues in
black hole thermodynamics which may shed considerable further light upon
quantum gravitational physics.

6.1 Does a pure quantum state evolve to a mixed state in
the process of black hole formation and evaporation?

In classical general relativity, the matter responsible for the formation of
a black hole propagates into a singularity lying within the deep interior of
the black hole. Suppose that the matter which forms a black hole possesses
quantum correlations with matter that remains far outside of the black hole.
Then it is hard to imagine how these correlations could be restored during the
process of black hole evaporation unless gross violations of causality occur.
In fact, the semiclassical analyses of the Hawking process show that, on the
contrary, correlations between the exterior and interior of the black hole are
continually built up as it evaporates (see [15] for further discussion). Indeed,
these correlations play an essential role in giving the Hawking radiation an
exactly thermal character [30].

As already mentioned in subsection 4.1 above, an isolated black hole will
“evaporate” completely via the Hawking process within a finite time. If the
correlations between the inside and outside of the black hole are not restored
during the evaporation process, then by the time that the black hole has evap-
orated completely, an initial pure state will have evolved to a mixed state, i.e.,
“information” will have been lost. In a semiclassical analysis of the evaporation
process, such information loss does occur and is ascribable to the propagation
of the quantum correlations into the singularity within the black hole. A key
unresolved issue in black hole thermodynamics is whether this conclusion con-
tinues to hold in a complete quantum theory of gravity. On one hand, arguments
can be given [15] that alternatives to information loss – such as the formation of
a high entropy “remnant” or the gradual restoration of correlations during the
late stages of the evaporation process – seem highly implausible. On the other
hand, it is commonly asserted that the evolution of an initial pure state to a final
mixed state is in conflict with quantum mechanics. For this reason, the issue
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of whether a pure state can evolve to a mixed state in the process of black hole
formation and evaporation is usually referred to as the “black hole information
paradox”.

There appear to be two logically independent grounds for the claim that the
evolution of an initial pure state to a final mixed state is in conflict with quantum
mechanics:

i Such evolution is asserted to be incompatible with the fundamental prin-
ciples of quantum theory, which postulates a unitary time evolution of a
state vector in a Hilbert space.

ii Such evolution necessarily gives rise to violations of causality and/or
energy-momentum conservation and, if it occurred in the black hole for-
mation and evaporation process, there would be large violations of causal-
ity and/or energy-momentum (via processes involving “virtual black
holes”) in ordinary laboratory physics.

With regard to (1), within the semiclassical framework, the evolution of an
initial pure state to a final mixed state in the process of black hole formation
and evaporation can be attributed to the fact that the final time slice fails to
be a Cauchy surface for the spacetime [15]. No violation of any of the local
laws of quantum field theory occurs. In fact, a closely analogous evolution of
an initial pure state to a final mixed state occurs for a free, massless field in
Minkowski spacetime if one chooses the final “time” to be a hyperboloid rather
than a hyperplane [15]. (Here, the “information loss” occurring during the
time evolution results from radiation to infinity rather than into a black hole.)
Indeed, the evolution of an initial pure state to a final mixed state is naturally
accommodated within the framework of the algebraic approach to quantum
theory [15] as well as in the framework of generalized quantum theory [99].

The main arguments for (2) were given in [100] (see also [101]). However,
these arguments assume that the effective evolution law governing laboratory
physics has a “Markovian” character, so that it is purely local in time. As
pointed out in [102], one would expect a black hole to retain a “memory”
(stored in its external gravitational field) of its energy-momentum, so it is far
from clear that an effective evolution law modeling the process of black hole
formation and evaporation should be Markovian in nature. Furthermore, even
within the Markovian context, it is not difficult to construct models where
rapid information loss occurs at the Planck scale, but negligible deviations
from ordinary dynamics occur at laboratory scales [102].

For the above reasons, I do not feel that the issue of whether a pure state
evolves to a mixed state in the process of black hole formation and evaporation
should be referred to as a “paradox”. Nevertheless, the resolution of this issue
is of great importance: If pure states remain pure, then our basic understanding
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of black holes in classical and semiclassical gravity will have to undergo sig-
nificant revision in quantum gravity. On the other hand, if pure states evolve to
mixed states in a fully quantum treatment of the gravitational field, then at least
the aspect of the classical singularity as a place where “information can get
lost” must continue to remain present in quantum gravity. In that case, rather
than “smooth out” the singularities of classical general relativity, one might
expect singularities to play a fundamental role in the formulation of quantum
gravity [103]. Thus, the resolution of this issue would tell us a great deal about
both the nature of black holes and the existence of singularities in quantum
gravity.

6.2 What (and where) are the degrees of freedom
responsible for black hole entropy?

The calculations described in section 5 yield a seemingly contradictory pic-
ture of the degrees of freedom responsible for black hole entropy. In the en-
tanglement entropy and thermal atmosphere approaches, the relevant degrees
of freedom are those associated with the ordinary degrees of freedom of quan-
tum fields outside of the black hole. However, the dominant contribution to
these degrees of freedom comes from (nearly) Planck scale modes localized to
(nearly) a Planck length of the black hole, so, effectively, the relevant degrees
of freedom are associated with the horizon. In the quantum geometry approach,
the relevant degrees of freedom are also associated with the horizon but appear
to have a different character in that they reside directly on the horizon (although
they are constrained by the exterior state). Finally the string theory calculations
involve weak coupling states, so it is not clear what the degrees of freedom of
these weak coupling states would correspond to in a low energy limit where
these states may admit a black hole interpretation. However, there is no indica-
tion in the calculations that these degrees of freedom should be viewed as being
localized near the black hole horizon.

The above calculations are not necessarily in conflict with each other, since
it is possible that they each could represent a complementary aspect of the same
physical degrees of freedom. Nevertheless, it seems far from clear as to whether
we should think of these degrees of freedom as residing outside of the black
hole (e.g., in the thermal atmosphere), on the horizon (e.g., in Chern-Simons
states), or inside the black hole (e.g., in degrees of freedom associated with
what classically corresponds to the singularity deep within the black hole).

The following puzzle [104] may help bring into focus some of the issues re-
lated to the degrees of freedom responsible for black hole entropy and, indeed,
the meaning of entropy in quantum gravitational physics. As we have already
discussed, one proposal for accounting for black hole entropy is to attribute it to
the ordinary entropy of its thermal atmosphere. If one does so, then, as previ-
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ously mentioned in section 5 above, one has the major puzzle of explaining why
the quantum field degrees of freedom near the horizon contribute enormously
to entropy, whereas the similar degrees of freedom that are present throughout
the universe – and are locally indistinguishable from the thermal atmosphere –
are treated as mere “vacuum fluctuations” which do not contribute to entropy.
But perhaps an even greater puzzle arises if we assign a negligible entropy to
the thermal atmosphere (as compared with the black hole area, A), as would
be necessary if we wished to attribute black hole entropy to other degrees of
freedom. Consider a black hole enclosed in a reflecting cavity which has come
to equilibrium with its Hawking radiation. Surely, far from the black hole, the
thermal atmosphere in the cavity must contribute an entropy given by the usual
formula for a thermal gas in (nearly) flat spacetime. However, if the thermal
atmosphere is to contribute a negligible total entropy (as compared with A),
then at some proper distance D from the horizon much greater than the Planck
length, the thermal atmosphere must contribute to the entropy an amount that
is much less than the usual result (∝ T 3) that would be obtained by a naive
counting of modes. If that is the case, then consider a box of ordinary thermal
matter at infinity whose energy is chosen so that its floating point would be less
than this distance D from the horizon. Let us now slowly lower the box to its
floating point. By the time it reaches its floating point, the contents of the box
are indistinguishable from the thermal atmosphere, so the entropy within the
box also must be less than what would be obtained by usual mode counting ar-
guments. It follows that the entropy within the box must have decreased during
the lowering process, despite the fact that an observer inside the box still sees
it filled with thermal radiation and would view the lowering process as having
been adiabatic. Furthermore, suppose one lowers (or, more accurately, pushes)
an empty box to the same distance from the black hole. The entropy difference
between the empty box and the box filled with radiation should still be given
by the usual mode counting formulas. Therefore, the empty box would have to
be assigned a negative entropy.

I believe that in order to gain a better understanding of the degrees of freedom
responsible for black hole entropy, it will be necessary to achieve a deeper
understanding of the notion of entropy itself. Even in flat spacetime, there is far
from universal agreement as to the meaning of entropy – particularly in quantum
theory – and as to the nature of the second law of thermodynamics. The situation
in general relativity is considerably murkier [105], as, for example, there is
no unique, rigid notion of “time translations” and classical general relativistic
dynamics appears to be incompatible with any notion of “ergodicity”. It seems
likely that a new conceptual framework will be required in order to have a proper
understanding of entropy in quantum gravitational physics.
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Notes

1. If the black hole is rotating, the the spectrum seen by an observer at infinity corresponds to what
would emerge from a “rotating black body”.

2. The state in which none of the modes in the region exterior to the black hole are populated is usually
referred to as the “Boulware vacuum”. The Boulware vacuum is singular on both the black hole and white
hole horizons.

3. It is worth noting that if the buoyancy effects of the thermal atmosphere were negligible, the bound (16)
also would not be sufficient to ensure the validity of the GSL for non-spherical bodies: The bound (16) is
formulated in terms of the “circumscribing radius”, i.e., the largest linear dimension, whereas if buoyancy
effects were negligible, then to enforce the GSL one would need a bound of the form (16) with R being the
smallest linear dimension.

References
[1] R.M. Wald, General Relativity, University of Chicago Press (Chicago, 1984).

[2] S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Spacetime, Cambridge
University Press (Cambridge, 1973).

[3] P. T. Chrusciel, E. Delay. G.J. Galloway, and R. Howard, “The Area Theorem”, gr-
qc/0001003.

[4] S.W. Hawking, “Gravitational Radiation from Colliding Black Holes”, Phys. Rev. Lett.
26, 1344-1346 (1971).

[5] J.D. Bekenstein, “Black Holes and Entropy”, Phys. Rev. D7, 2333-2346 (1973).

[6] J.D. Bekenstein, “Generalized Second Law of Thermodynamics in Black-Hole Physics”,
Phys. Rev. D9, 3292-3300 (1974).

[7] J.M. Bardeen, B. Carter, and S.W. Hawking, “The Four Laws of Black Hole Mechanics”
Commun. Math. Phys. 31, 161-170 (1973).

[8] M. Heusler, Black Hole Uniqueness Theorems, Cambridge University Press (Cambridge,
1996).

[9] B. Carter, “Black Hole Equilibrium States” in Black Holes, ed. by C. DeWitt and B.S.
DeWitt, 57-214, Gordon and Breach (New York, 1973).

[10] H. Friedrich, I. Racz, and R.M. Wald, “On the Rigidity Theorem for Spacetimes with a
Stationary Event Horizon or a Compact Cauchy Horizon”, Commun. Math. Phys. 204,
691-707 (1999); gr-qc/9811021.

[11] D. Sudarsky and R.M. Wald, “Extrema of Mass, Stationarity and Staticity, and Solutions
to the Einstein-Yang-Mills Equations” Phys. Rev. D46, 1453-1474 (1992).

[12] D. Sudarsky and R.M. Wald, “Mass Formulas for Stationary Einstein-Yang-Mills Black
Holes and a Simple Proof of Two Staticity Theorems” Phys. Rev. D47, R5209-R5213
(1993).

[13] P.T. Chrusciel and R.M. Wald, “Maximal Hypersurfaces in Stationary Asymptotically
Flat Spacetimes” Commun. Math Phys. 163, 561-604 (1994).

[14] I. Racz and R.M. Wald, “Global Extensions of Spacetimes Describing Asymptotic Final
States of Black Holes” Class. Quant. Grav. 13, 539-552 (1996); gr-qc/9507055.



The Thermodynamics of Black Holes 33

[15] R.M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynam-
ics, University of Chicago Press (Chicago, 1994).

[16] V. Iyer and R.M. Wald, “Some Properties of Noether Charge and a Proposal for Dynam-
ical Black Hole Entropy”, Phys. Rev. D50, 846-864 (1994).

[17] R. Sorkin, “Two Topics Concerning Black Holes: Extremality of the Energy, Fractality of
the Horizon” in Proceedings of the Conference on Heat Kernel Techniques and Quantum
Gravity, ed. by S.A. Fulling, 387-407, University of Texas Press, (Austin, 1995); gr-
qc/9508002.

[18] W. Israel, “Third Law of Black-Hole Dynamics: a Formulation and Proof”, Phys. Rev.
Lett. 57, 397-399 (1986).

[19] M. Aizenman and E.H. Lieb, “The Third Law of Thermodynamics and the Degeneracy
of the Ground State for Lattice Systems”, J. Stat. Phys. 24, 279-297 (1981).

[20] R.M. Wald, “‘Nernst Theorem’ and Black Hole Thermodynamics”, Phys. Rev. D56,
6467-6474 (1997); gr-qc/9704008.

[21] A. Ashtekar, C. Beetle, O. Dreyer, S. Fairhurst, B. Krishnan, J. Lewandowski, and J.
Wisniewski, “Generic Isolated Horizons and Their Applications”, gr-qc/0006006.

[22] A. Ashtekar, C. Beetle, and S. Fairhurst, “Isolated Horizons: A Generalization of Black
Hole Mechanics”, Class. Quant. Grav. 16, L1-L7 (1999); gr-qc/9812065.

[23] A. Ashtekar, C. Beetle, and S. Fairhurst, “Mechanics of Isolated Horizons”, Class. Quant.
Grav. 17, 253-298 (2000); gr-qc/9907068.

[24] A. Ashtekar and A. Corichi, “Laws Governing Isolated Horizons: Inclusion of Dilaton
Couplings”, Class. Quant. Grav. 17, 1317-1332 (2000); gr-qc/9910068.

[25] J. Lewandowski, “Spacetimes Admitting Isolated Horizons”, Class. Quant. Grav. 17,
L53-L59 (2000); gr-qc/9907058.

[26] A. Ashtekar, S. Fairhurst, and B. Krishnan, “Isolated Horizons: Hamiltonian Evolution
and the First Law”, gr-qc/0005083.

[27] A. Corichi, U. Nucamendi, and D. Sudarsky, “Einstein-Yang-Mills Isolated Horizons:
Phase Space, Mechanics, Hair and Conjectures” Phys. Rev. D62, 044046 (19 pages)
(2000); gr-qc/0002078.

[28] S.W. Hawking, “Particle Creation by Black Holes”, Commun. Math. Phys. 43, 199-220
(1975).

[29] L. Parker, “Quantized Fields and Particle Creation in Expanding Universes”, Phys. Rev.
183, 1057-1068 (1969).

[30] R.M. Wald, “On Particle Creation by Black Holes”, Commun. Math. Phys. 45, 9-34
(1975).

[31] K. Fredenhagen and R. Haag, “On the Derivation of the Hawking Radiation Associated
with the Formation of a Black Hole”, Commun. Math. Phys. 127, 273-284 (1990).

[32] W.G. Unruh, “Experimental Black-Hole Evaporation?”, Phys. Rev. Lett. 46, 1351-1353
(1981).

[33] W.G. Unruh, “Dumb Holes and the Effects of High Frequencies on Black Hole Evapo-
ration” Phys. Rev. D51, 2827-2838 (1995); gr-qc/9409008.

[34] R. Brout, S. Massar, R. Parentani, and Ph. Spindel, “Hawking Radiation Without Trans-
planckian Frequencies”, Phys. Rev. D52, 4559-4568 (1995); hep-th/9506121.

[35] S. Corley and T. Jacobson, “Hawking Spectrum and High Frequency Dispersion” Phys.
Rev. D54, 1568-1586 (1996); hep-th/9601073.



34 LECTURES ON QUANTUM GRAVITY

[36] T. Jacobson, “On the Origin of the Outgoing Black Hole Modes” Phys. Rev. D53, 7082-
7088 (1996); hep-th/9601064.

[37] B. Reznik, “Trans-Planckian Tail in a Theory with a Cutoff”, Phys. Rev. D55, 2152-2158
(1997); gr-qc/9606083.

[38] M. Visser, “Hawking radiation without black hole entropy”, Phys. Rev. Lett. 80, 3436-
3439 (1998); gr-qc/9712016.

[39] S. Corley and T. Jacobson, “Lattice Black Holes”, Phys. Rev. D57, 6269-6279 (1998);
hep-th/9709166.

[40] T. Jacobson and D. Mattingly, “Hawking radiation on a falling lattice”, Phys. Rev. D61
024017 (10 pages) (2000); hep-th/9908099.

[41] W.G. Unruh, “Notes on Black Hole Evaporation”, Phys. Rev. D14, 870-892 (1976).

[42] B.S. Kay and R.M. Wald, “Theorems on the Uniqueness and Thermal Properties of Sta-
tionary, Nonsingular, Quasifree States on Spacetimes with a Bifurcate Killing Horizon”,
Phys. Rep. 207, 49-136 (1991).

[43] J.J. Bisognano and E.H. Wichmann, “On the Duality Condition for Quantum Fields”, J.
Math. Phys. 17, 303-321 (1976).

[44] J.B. Hartle and S.W. Hawking, “Path Integral Derivation of Black Hole Radiance”, Phys.
Rev. D13, 2188-2203 (1976).

[45] R. Geroch, colloquium given at Princeton University, December, 1971 (unpublished).

[46] J.D. Bekenstein, “Universal Upper Bound on the Entropy-to-Energy Ratio for Bounded
Systems”, Phys. Rev. D23, 287-298 (1981).

[47] W.G. Unruh and R.M. Wald, “Acceleration Radiation and the Generalized Second Law
of Thermodynamics”, Phys. Rev. D25, 942-958 (1982).

[48] W.H. Zurek and K.S. Thorne, “Statistical Mechanical Origin of the Entropy of a Rotating,
Charged Black Hole”, Phys. Rev. Lett. 54, 2171-2175 (1986).

[49] K.S. Thorne, W.H. Zurek, and R.H. Price, “The Thermal Atmosphere of a Black Hole”,
in Black Holes: The Membrane Paradigm, ed. by K.S. Thorne, R.H. Price, and D.A.
Macdonald, 280-340, Yale University Press (New Haven, 1986).

[50] V.P. Frolov and D.N. Page, “Proof of the Generalized Second Law for Quasistatic,
Semiclassical Black Holes”, Phys. Rev. Lett. 71, 3902-3905 (1993).

[51] R.D. Sorkin, “The Statistical Mechanics of Black Hole Thermodynamics”, in Black
Holes and Relativistic Stars, ed. by R.M. Wald, 177-194, University of Chicago Press
(Chicago, 1998); gr-qc/9705006.

[52] D.N. Page, “Defining Entropy Bounds”, hep-th/0007238.

[53] J.D. Bekenstein, “On Page’s Examples Challenging the Entropy Bound”, gr-qc/0006003.

[54] D.N. Page, “Huge Violations of Bekenstein’s Entropy Bound”, gr-qc/0005111.

[55] D.N. Page, “Subsystem Entropy Exceeding Bekenstein’s Bound”, hep-th/0007237.

[56] J.D. Bekenstein, “Entropy Content and Information Flow in Systems with Limited En-
ergy”, Phys. Rev. D30, 1669-1679 (1984).

[57] J.D. Bekenstein and M. Schiffer, “Quantum Limitations on the Storage and Transmission
of Information”, Int. J. Mod. Phys. C1, 355 (1990).

[58] C.W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation, Freeman (San Francisco,
1973).



The Thermodynamics of Black Holes 35

[59] R. Penrose, “Quasi-Local Mass and Angular Momentum ”, Proc. Roy. Soc. Lond. A381,
53-63 (1982).

[60] J.D. Brown and J.W. York, “Quasilocal Energy and Conserved Charges Derived from
the Gravitational Action”, Phys. Rev. D47, 1407-1419 (1993).

[61] R.D. Sorkin, R.M. Wald, and Z.J. Zhang, “Entropy of Self-Gravitating Radiation”, Gen.
Rel. Grav. 13, 1127-1146 (1981).

[62] J.D. Bekenstein, “Entropy Bounds and the Second Law for Black Holes”, Phys. Rev.
D27, 2262-2270 (1983).

[63] J.D. Bekenstein, “Entropy Bounds and Black Hole Remnants”, Phys. Rev. D49, 1912-
1921 (1994).

[64] J.D. Bekenstein, “Non-Archimedian Character of Quantum Buoyancy and the Gener-
alized Second Law of Thermodynamics”, Phys. Rev. D60, 124010 (9 pages) (1999);
gr-qc/9906058.

[65] W.G. Unruh and R.M. Wald, “Entropy Bounds, Acceleration Radiation and the Gener-
alized Second Law”, Phys. Rev. D27, 2271-2276 (1983).

[66] M.A. Pelath and R.M.Wald, “Comment on Entropy Bounds and the Generalized Second
Law”, Phys. Rev. D60, 104009 (4 pages) (1999); gr-qc/9901032.

[67] E.E. Flanagan, D. Marolf, and R.M. Wald, “Proof of Classical Versions of the Bousso
Entropy Bound and of the Generalized Second Law” Phys. Rev. D62, 084035 ( 11 pages)
(2000); hep-th/9909373

[68] W. Anderson, “Does the GSL Imply and Entropy Bound?”, in Matters of Gravity, ed.
by J. Pullin, gr-qc/9909022.

[69] G. ’t Hooft, “On the Quantization of Space and Time”, in Quantum Gravity, ed. by M.A.
Markov, V.A. Berezin, and V.P. Frolov, 551-567, World Scientific Press (Singapore,
1988).

[70] J.D. Bekenstein, “Do We Understand Black Hole Entropy ?”, in Proceedings of the
VII Marcel Grossman Meeting, 39-58, World Scientific Press (Singapore, 1996); gr-
qc/9409015.

[71] L. Susskind, “The World as a Hologram”, J. Math. Phys. 36, 6377-6396 (1995); hep-
th/9409089.

[72] R. Bousso, “A Covariant Entropy Conjecture”, JHEP 07, 004 (1999); hep-th/9905177.

[73] R. Bousso, “Holography in General Space-times”, JHEP 06, 028 (1999); hep-
th/9906022.

[74] R. Bousso, “The Holographic Principle for General Backgrounds”, hep-th/9911002.

[75] G. Gibbons and S.W. Hawking “Action Integrals and Partition Functions in Quantum
Gravity”, Phys. Rev. D15, 2752-2756 (1977).

[76] J.D. Brown and J.W. York, “Microcanonical Functional Integral for the Gravitational
Field”, Phys. Rev. D47, 1420-1431 (1993).

[77] R.M. Wald, “Black Hole Entropy is the Noether Charge”, Phys. Rev. D48, R3427-R3431
(1993).

[78] V. Iyer and R.M. Wald, “A Comparison of Noether Charge and Euclidean Methods for
Computing the Entropy of Stationary Black Holes”, Phys. Rev. D52, 4430-4439 (1995);
gr-qc/9503052.

[79] L. Bombelli, R.K. Koul, J. Lee, and R. Sorkin, “Quantum Source of Entropy for Black
Holes” Phys. Rev. D34, 373-383 (1986).



36 LECTURES ON QUANTUM GRAVITY

[80] C. Callen and F. Wilzcek, “On Geometric Entropy”, Phys. Lett B333, 55-61 (1994).

[81] C. Holzhey, F. Larsen, and F. Wilzcek, “Geometric and Renormalized Entropy in Con-
formal Field Theory”, Nucl. Phys. B424, 443-467 (1994).

[82] L. Susskind and J. Uglam, “Black Hole Entropy in Canonical Quantum Gravity and
Superstring Theory”, Phys. Rev. D50, 2700-2711 (1994).

[83] R. Sorkin, “How Wrinkled is the Surface of a Black Hole?” in Proceedings of the First
Australasian Conference on General Relativity and Gravitation, ed. by D. Wiltshire,
163-174, University of Adelaide Press, (Adelaide, 1996); gr-qc/9701056.

[84] D. Dou, “Causal Sets, a Possible Interpretation for the Black Hole Entropy, and Related
Topics”, Ph.D. thesis (SISSA, Trieste, 1999).

[85] G. ’t Hooft, “On the Quantum Structure of a Black Hole”, Nucl. Phys. B256, 727-745
(1985).

[86] S. Mukohyama, “Aspects of Black Hole Entropy”, gr-qc/9912103.

[87] V.P. Frolov, D.V. Fursaev and A.I. Zelnikov, “Statistical Origin of Black Hole Entropy
in Induced Gravity”, Nucl. Phys. B486, 339-352 (1997); hep-th/9607104.

[88] V.P. Frolov and D.V. Fursaev, “Mechanism of the Generation of Black Hole Entropy in
Sakharov’s Induced Gravity”, Phys. Rev. D56, 2212-2225 (1997); hep-th/9703178.

[89] A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, “Quantum Geometry and Black Hole
Entropy”, Phys. Rev. Lett. 80, 904-907 (1998); gr-qc/9710007.

[90] A. Ashtekar and K. Krasnov, “Quantum Geometry and Black Holes”, in Black Holes,
Gravitational Radiation, and the Universe, ed. by B.R. Iyer and B. Bhawal, 149-170,
Kluwer Academic Publishers (Dordrecht, 1999); gr-qc/9804039.

[91] A. Ashtekar, A. Corichi, and K. Krasnov, “Isolated Horizons: the Classical Phase Space”,
gr-qc/9905089.

[92] D. Marolf, “String/M-branes for Relativists”, gr-qc/9908045.

[93] G. Horowitz, “Quantum States of Black Holes”, in Black Holes and Relativistic Stars, ed.
by R.M. Wald, 241-266, University of Chicago Press (Chicago, 1998); gr-qc/9704072.

[94] A. Peet, “TASI Lectures on Black Holes in String Theory”, hep-th/0008241.

[95] G.L. Cardoso, B. de Wit, and T. Mohaupt, “Area Law Corrections from State Counting
and Supergravity”, Class. Quant. Grav. 17 1007-1015 (2000); hep-th/9910179.

[96] J.M. Maldacena and A. Strominger, “Black Hole Greybody Factors and D-Brane Spec-
troscopy”, Phys.Rev. D55, 861-870 (1997); hep-th/9609026.

[97] S. Carlip, “Entropy from Conformal Field Theory at Killing Horizons”, Class. Quant.
Grav. 16, 3327-3348 (1999); gr-qc/9906126.

[98] S. Carlip, “Black Hole Entropy from Horizon Conformal Field Theory”, gr-qc/9912118.

[99] J. Hartle, “Generalized Quantum Theory in Evaporating Black Hole Spacetimes”, in
Black Holes and Relativistic Stars, ed. by R.M. Wald, 195-219, University of Chicago
Press (Chicago, 1998); gr-qc/9705022.

[100] T. Banks, L. Susskind, and M.E. Peskin, “Difficulties for the Evolution of Pure States
into Mixed States”, Nucl. Phys. B244, 125-134 (1984).

[101] J. Ellis, J.S. Hagelin, D.V. Nanopoulos, and M. Srednicki, “Search for Violations of
Quantum Mechanics”, Nucl. Phys. B241, 381-405 (1984).

[102] W.G. Unruh and R.M. Wald, “Evolution Laws Taking Pure States to Mixed States in
Quantum Field Theory”, Phys. Rev. D52, 2176-2182 (1995); hep-th/9503024.



The Thermodynamics of Black Holes 37

[103] R. Penrose, “Singularities and Time-Asymmetry” in General Relativity, an Einstein
Centennary Survey, ed. by S.W. Hawking and W. Israel, 581-638, Cambridge University
Press (Cambridge, 1979).

[104] R.M. Wald, “Gravitation, Thermodynamics, and Quantum Theory”, Class. Quant. Grav.
16, A177-A190 (1999); gr-qc/9901033.

[105] R.M. Wald, “Black Holes and Thermodynamics”, in Black Holes and Relativistic
Stars, ed. by R.M. Wald, 155-176, University of Chicago Press (Chicago, 1998); gr-
qc/9702022.



INTRODUCTION TO QUANTUM FIELDS IN CURVED
SPACETIME AND THE HAWKING EFFECT

Ted Jacobson
Department of Physics, University of Maryland

College Park, MD 20742-4111

jacobson@physics.umd.edu

Abstract These notes introduce the subject of quantum field theory in curved spacetime
and some of its applications and the questions they raise. Topics include particle
creation in time-dependent metrics, quantum origin of primordial perturbations,
Hawking effect, the trans-Planckian question, and Hawking radiation on a lattice.

1. Introduction

Quantum gravity remains an outstanding problem of fundamental physics.
The bottom line is we don’t even know the nature of the system that should
be quantized. The spacetime metric may well be just a collective description
of some more basic stuff. The fact[1] that the semi-classical Einstein equation
can be derived by demanding that the first law of thermodynamics hold for
local causal horizons, assuming the proportionality of entropy and area, leads
one to suspect that the metric is only meaningful in the thermodynamic limit
of something else. This led me at first to suggest that the metric shouldn’t be
quantized at all. However I think this is wrong. Condensed matter physics
abounds with examples of collective modes that become meaningless at short
length scales, and which are nevertheless accurately treated as quantum fields
within the appropriate domain. (Consider for example the sound field in a
Bose-Einstein condensate of atoms, which loses meaning at scales below the
so-called “healing length", which is still several orders of magnitude longer
than the atomic size of the fundamental constituents.) Similarly, there exists a
perfectly good perturbative approach to quantum gravity in the framework of
low energy effective field theory[2]. However, this is not regarded as a solution
to the problem of quantum gravity, since the most pressing questions are non-
perturbative in nature: the nature and fate of spacetime singularities, the fate of
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Cauchy horizons, the nature of the microstates counted by black hole entropy,
and the possible unification of gravity with other interactions.

At a shallower level, the perturbative approach of effective field theory is
nevertheless relevant both for its indications about the deeper questions and for
its application to physics phenomena in their own right. It leads in particular
to the subject of quantum field theory in curved spacetime backgrounds, and
the “back-reaction" of the quantum fields on such backgrounds. Some of the
most prominent of these applications are the Hawking radiation by black holes,
primordial density perturbations, and early universe phase transitions. It also
fits into the larger category of quantum field theory (qft) in inhomogeneous
and/or time-dependent backgrounds of other fields or matter media, and is also
intimately tied to non-inertial effects in flat space qft such as the Unruh effect.
The pertubative approach is also known as “semi-classical quantum gravity",
which refers to the setting where there is a well-defined classical background
geometry about which the quantum fluctuations are occuring.

The present notes are an introduction to some of the essentials and phenom-
ena of quantum field theory in curved spacetime. Familiarity with quantum
mechanics and general relativity are assumed. Where computational steps are
omitted I expect that the reader can fill these in as an exercise.

Given the importance of the subject, it is curious that there are not very many
books dedicated to it. The standard reference by Birrell and Davies[3] was
published twenty years ago, and another monograph by Grib, Mamaev, and
Mostapanenko[4], half of which addresses strong background field effects in
flat spacetime, was published two years earlier originally in Russian and then
in English ten years ago. Two books with a somewhat more limited scope
focusing on fundamentals with a mathematically rigorous point of view are
those by Fulling[5] and Wald[6]. This year DeWitt[7] published a comprehen-
sive two volume treatise with a much wider scope but including much material
on quantum fields in curved spacetime. A number of review articles (see e.g.
[8, I76, 10, 11, 12, 13]) and many shorter introductory lecture notes (see e.g.
[14, 15, 16]) are also available. For more information on topics not explicitly
referenced in the text of these notes the above references should be consulted.

In these notes the units are chosen with c = 1 but � and G are kept explicit.
The spacetime signature is (+−−−). Please send corrections if you find things
here that are wrong.

2. Planck length and black hole thermodynamics

Thanks to a scale separation it is useful to distinguish quantum field theory in
a curved background spacetime (qftcs) from true quantum gravity (qg). Before
launching into the qftcs formalism, it seems worthwhile to have a quick look at
some of the interesting issues that qftcs is concerned with.



Introduction to Quantum Fields in Curved Spacetime and the Hawking Effect 41

2.1 Planck length

It is usually presumed that the length scale of quantum gravity is the Planck
length LP = (�G/c3)1/2 ≈ 10−33 cm. The corresponding energy scale is 1019

GeV. Recent “braneworld scenarios", in which our 4d world is a hypersurface in
a higher dimensional spacetime, put the scale of quantum gravity much lower,
at around a TeV, corresponding to LTeV = 1016LP ≈ 10−17 cm. In either case,
there is plenty of room for applicability of qftcs. (On the other hand, we are
much closer to seeing true qg effects in TeV scale qg. For example we might
see black hole creation and evaporation in cosmic rays or accelerators.)

Here I will assume Planck scale qg, and look at some dimensional analysis
to give a feel for the phenomena. First, how should we think of the Planck
scale? The Hilbert-Einstein action is SHE = (�/16πL2

P )
∫

d4x|g|1/2R. For
a spacetime region with radius of curvature L and 4-volume L4 the action is
∼ �(L/LP )2. This suggests that quantum curvature fluctuations with radius
less than the Planck length L <∼ LP are unsuppressed.

Another way to view the significance of the Planck length is as the minimum
localization length Δx, in the sense that if Δx < LP a black hole swallows
the Δx. To see this, note that the uncertainty relation ΔxΔp ≥ �/2 implies
Δp >∼ �/Δx which implies ΔE >∼ �c/Δx. Associated with this uncertain
energy is a Schwarzschild radius Rs(Δx) = 2GΔM/c2 = 2GΔE/c4, hence
quantum mechanics and gravity imply Rs(Δx) >∼ L2

P /Δx. The uncertain
Rs(Δx) is less than Δx only if Δx >∼ LP .

2.2 Hawking effect

Before Hawking, spherically symmetric, static black holes were assumed to
be completely inert. In fact, it seems more natural that they can decay, since there
is no conservation law preventing that. The decay is quantum mechanical, and
thermal: Hawking found that a black hole radiates at a temperature proportional
to �, TH = (�/2π)κ, where κ is the surface gravity. The fact that the radiation is
thermal is even natural, for what else could it be? The very nature of the horizon
is a causal barrier to information, and yet the Hawking radiation emerges from
just outside the horizon. Hence there can be no information in the Hawking
radiation, save for the mass of the black hole which is visible on the outside,
so it must be a maximum entropy state, i.e. a thermal state with a temperature
determined by the black hole mass.

For a Schwarzschild black hole κ = 1/4GM = 1/2Rs, so the Hawking
temperature is inversely proportional to the mass. This implies a thermal wave-
length λH = 8π2Rs, a purely geometrical relationship which indicates two
things. First, although the emission process involves quantum mechanics, its
“kinematics" is somehow classical. Second, as long as the Schwarzschild ra-
dius is much longer than the Planck length, it should be possible to understand
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the Hawking effect using only qftcs, i.e. semi-classical qg. (Actually one must
also require that the back-reaction is small, in the sense that the change in the
Hawking temperature due to the emission of a single Hawking quantum is small.
This fails to hold for for a very nearly extremal black hole[17].)

A Planck mass (∼ 10−5 gm) black hole—if it could be treated semi-classically—
would have a Schwarzschild radius of order the Planck length (∼ 10−33 cm)
and a Hawking temperature of order the Planck energy (∼ 1019 GeV). From
this the Hawking temperatures for other black holes can be found by scaling. A
solar mass black hole has a Schwarzschild radius Rs ∼ 3 km hence a Hawking
temperature ∼ 10−38 times smaller than the Planck energy, i.e. 10−19 GeV.
Evaluated more carefully it works out to TH ∼ 10−7 K. For a mini black hole
of mass M = 1015 gm one has Rs ∼ 10−13 cm and TH ∼ 1011K ∼ 10 MeV.

The “back reaction", i.e. the response of the spacetime metric to the Hawking
process, should be well approximated by the semi-classical Einstein equation
Gμν = 8πG〈Tμν〉 provided it is a small effect. To assess the size, we can
compare the stress tensor to the background curvature near the horizon (not to
Gμν , since that vanishes in the background). The background Riemann tensor
components are ∼ 1/R2

s (in suitable freely falling reference frame), while for
example the energy density is∼ T 4

H/�
3 ∼ �/R4

s . Hence G〈Tμν〉 ∼ �G/R4
s =

(LP /Rs)2R−2
s , which is much less than the background curvature provided

Rs 
 LP , i.e. provided the black hole is large compared to the Planck length.
Although a tiny effect for astrophysical black holes, the Hawking process

has a profound implication: black holes can “evaporate". How long does one
take to evaporate? It emits roughly one Hawking quantum per light crossing
time, hence dM/dt ∼ TH/RS ∼ �/R2

S ∼ �/G2M2. In Planck units � =
c = G = 1, we have dM/dt ∼M−2. Integration yields the lifetime ∼M3 ∼
(Rs/LP )2RS . For the 1015 gm, 10−13 cm black hole mentioned earlier we
have (1020)210−13cm = 1027 cm, which is the age of the universe. Hence a
black hole of that mass in the early universe would be explosively ending its
life now. These are called “primordial black holes" (pbh’s). None have been
knowingly observed so far, nor their detritus, which puts limits on the present
density of pbh’s (see for example the references in[18]). However, it has been
suggested[18] that they might nevertheless be the source of the highest energy
(∼ 3× 1020 eV) cosmic rays. Note that even if pbh’s were copiously produced
in the early universe, their initial number density could easily have been inflated
away if they formed before inflation.

2.3 Black hole entropy

How about the black hole entropy? The thermodynamic relation dM =
THdS = (�/8πGM)dS (for a black hole with no angular momentum or charge)
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implies SBH = 4πGM2/� = AH/4L2
P , where AH = 4πR2

S is the black hole
horizon area. What is this huge entropy? What microstates does it count?

Whatever the microstates may be, SBH is the lower bound for the entropy
emitted to the outside world as the black hole evaporates, i.e. the minimal
missing information brought about by the presence of the black hole. By sending
energy into a black hole one could make it last forever, emitting an arbitrarily
large amount of entropy, so it only makes sense to talk about the minimal
entropy. This lower bound is attained when the black hole evaporates reversibly
into a thermal bath at a temperature infinitesimally below TH . (Evaporation
into vacuum is irreversible, so the total entropy of the outside increases even
more[19], Semitted ∼ (4/3)SBH .) This amounts to a huge entropy increase.
The only way out of this conclusion would be if the semi-classical analysis
breaks down for some reason...which is suspected by many, not including me.

The so-called “information paradox" refers to the loss of information asso-
ciated with this entropy increase when a black hole evaporates, as well as to
the loss of any other information that falls into the black hole. I consider it
no paradox at all, but many think it is a problem to be avoided at all costs.
I think this viewpoint results from missing the strongly non-perturbative role
of quantum gravity in evolving the spacetime into and beyond the classically
singular region, whether by generating baby universes or otherwise (see section
6.3.12 for more discussion of this point). Unfortunately it appears unlikely that
semi-classical qg can “prove" that information is or is not lost, though people
have tried hard. For it not to be lost there would have to be subtle effects not
captured by semi-classical qg, yet in a regime where semi-classical description
“should" be the whole story at leading order.

3. Harmonic oscillator

One can study a lot of interesting issues with free fields in curved spacetime,
and I will restrict entirely to that case except for a brief discussion. Free fields
in curved spacetime are similar to collections of harmonic oscillators with time-
dependent frequencies. I will therefore begin by developing the properties of
a one-dimensional quantum harmonic oscillator in a formalism parallel to that
used in quantum field theory.

The action for a particle of mass m moving in a time dependent potential
V (x, t) in one dimension takes the form

S =
∫

dt L L =
1
2
mẋ2 − V (x, t) (1)

from which follows the equation of motion mẍ = −∂xV (x, t). Canonical
quantization proceeds by (i) defining the momentum conjugate to x, p =
∂L/∂ẋ = mẋ, (ii) replacing x and p by operators x̂ and p̂, and (iii) imposing
the canonical commutation relations [x̂, p̂] = i�. The operators are represented
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as hermitian linear operators on a Hilbert space, the hermiticity ensuring that
their spectrum is real as befits a quantity whose classical correspondent is a
real number.1 In the Schrödinger picture the state is time-dependent, and the
operators are time-independent. In the position representation for example the
momentum operator is given by p̂ = −i�∂x. In the Heisenberg picture the state
is time-independent while the operators are time-dependent. The commutation
relation then should hold at each time, but this is still really only one commu-
tation relation since the the equation of motion implies that if it holds at one
initial time it will hold at all times. In terms of the position and velocity, the
commutation relation(s) in the Heisenberg picture take the form

[x(t), ẋ(t)] = i�/m. (2)

Here and from here on the hats distinguishing numbers from operators are
dropped.

Specializing now to a harmonic oscillator potential V (x, t) = 1
2mω2(t)x2

the equation of motion takes the form

ẍ + ω2(t)x = 0. (3)

Consider now any operator solution x(t) to this equation. Since the equation is
second order the solution is determined by the two hermitian operators x(0) and
ẋ(0), and since the equation is linear the solution is linear in these operators.
It is convenient to trade the pair x(0) and ẋ(0) for a single time-independent
non-hermitian operator a, in terms of which the solution is written as

x(t) = f(t)a + f̄(t)a†, (4)

where f(t) is a complex function satisfying the classical equation of motion,

f̈ + ω2(t)f = 0, (5)

f̄ is the complex conjugate of f , and a† is the hermitian conjugate of a. The
commutation relations (2) take the form

〈f, f〉 [a, a†] = 1, (6)

where the bracket notation is defined by

〈f, g〉 = (im/�)
(
f̄∂tg − (∂tf̄)g

)
. (7)

If the functions f and g are solutions to the harmonic oscillator equation (5),
then the bracket (7) is independent of the time t at which the right hand side is
evaluated, which is consistent with the assumed time independence of a.
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Let us now assume that the solution f is chosen so that the real number 〈f, f〉
is positive. Then by rescaling f we can arrange to have

〈f, f〉 = 1. (8)

In this case the commutation relation (6) becomes

[a, a†] = 1, (9)

the standard relation for the harmonic oscillator raising and lowering operators.
Using the bracket with the operator x we can pluck out the raising and lowering
operators from the position operator,

a = 〈f, x〉, a† = −〈f̄ , x〉. (10)

Since both f and x satisfy the equation of motion, the brackets in (10) are time
independent as they must be.

A Hilbert space representation of the operators can be built by introducing
a state |0〉 defined to be normalized and satisfying a|0〉 = 0. For each n, the
state |n〉 = (1/

√
n!)(a†)n|0〉 is a normalized eigenstate of the number operator

N = a†a with eigenvalue n. The span of all these states defines a Hilbert space
of “excitations" above the state |0〉.

So far the solution f(t) is arbitrary, except for the normalization condition
(8). A change in f(t) could be accompanied by a change in a that keeps the
solution x(t) unchanged. In the special case of a constant frequency ω(t) = ω
however, the energy is conserved, and a special choice of f(t) is selected if we
require that the state |0〉 be the ground state of the Hamiltonian. Let us see how
this comes about.

For a general f we have

H =
1
2
mẋ2 +

1
2
mω2x2 (11)

=
1
2
m
[
(ḟ2 + ω2f2)aa + (ḟ2 + ω2f2)∗a†a†

+ (|ḟ |2 + ω2|f |2)(aa† + a†a)
]
. (12)

Thus

H|0〉 =
1
2
m(ḟ2 + ω2f2)∗a†a†|0〉+ (|ḟ |2 + ω2|f |2)|0〉, (13)

where the commutation relation (9) was used in the last term. If |0〉 is to be an
eigenstate of H , the first term must vanish, which requires

ḟ = ±iωf. (14)
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For such an f the norm is

〈f, f〉 = ∓2mω

�
|f |2, (15)

hence the positivity of the normalization condition (8) selects from (14) the
minus sign. This yields what is called the normalized positive frequency solution
to the equation of motion, defined by

f(t) =

√
�

2mω
e−iωt (16)

up to an arbitrary constant phase factor.
With f given by (16) the Hamiltonian (12) becomes

H =
1
2

�ω(aa† + a†a) (17)

= �ω(N +
1
2
), (18)

where the commutation relation (9) was used in the last step. The spectrum of
the number operator is the non-negative integers, hence the minimum energy
state is the one with N = 0, and “zero-point energy" �ω/2. This is just the
state |0〉 annihilated by a as defined above. If any function other than (16) is
chosen to expand the position operator as in (4), the state annihilated by a is
not the ground state of the oscillator.

Note that although the mean value of the position is zero in the ground state,
the mean of its square is

〈0|x2|0〉 = �/2mω. (19)

This characterizes the “zero-point fluctuations" of the position in the ground
state.

4. Quantum scalar field in curved spacetime

Much of interest can be done with a scalar field, so it suffices for an intro-
duction. The basic concepts and methods extend straightforwardly to tensor
and spinor fields. To being with let’s take a spacetime of arbitrary dimension
D, with a metric gμν of signature (+ − · · · −). The action for the scalar field
ϕ is

S =
∫

dDx
√
|g|1

2
(
gμν∂μϕ∂νϕ− (m2 + ξR)ϕ2

)
, (20)

for which the equation of motion is(
� + m2 + ξR

)
ϕ = 0, � = |g|−1/2∂μ|g|1/2gμν∂ν . (21)
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(With � explicit, the mass m should be replaced by m/�, however we’ll leave �

implicit here.) The case where the coupling ξ to the Ricci scalar R vanishes is
referred to as “minimal coupling", and that equation is called the Klein-Gordon
(KG) equation. If also the mass m vanishes it is called the “massless, minimally
coupled scalar". Another special case of interest is “conformal coupling" with
m = 0 and ξ = (D − 2)/4(D − 1).

4.1 Conformal coupling

Let me pause briefly to explain the meaning of conformal coupling since it
comes up often in discussions of quantum fields in curved spacetime, primarily
either because Robertson-Walker metrics are conformally flat or because all
two-dimensional metrics are conformally flat. Consider making a position
dependent conformal transformation of the metric:

g̃μν = Ω2(x)gμν , (22)

which induces the changes

g̃μν = Ω−2(x)gμν , |g̃|1/2 = ΩD(x)|g|1/2, (23)

|g̃|1/2g̃μν = ΩD−2(x)|g|1/2gμν , (24)

R̃ = g̃μνR̃μν

= Ω−2
(
R− 2(D − 1)� ln Ω

−(D − 1)(D − 2)gαβ(ln Ω),α(ln Ω),β
)
. (25)

In D = 2 dimensions, the action is simply invariant in the massless, minimally
coupled case without any change of the scalar field: S[ϕ, g] = S[ϕ, g̃]. In any
other dimension, the kinetic term is invariant under a conformal transformation
with a constant Ω if we accompany the metric change (22) with a change of
the scalar field, ϕ̃ = Ω(2−D)/2ϕ. (This scaling relation corresponds to the
fact that the scalar field has dimension [length](2−D)/2 since the action must
be dimensionless after factoring out an overall �.) For a non-constant Ω the
derivatives in the kinetic term ruin the invariance in general. However it can
be shown that the action is invariant (up to a boundary term) if the coupling
constant ξ is chosen to have the special value given in the previous paragraph,
i.e. S[ϕ, g] = S[ϕ̃, g̃]. In D = 4 dimensions that value is ξ = 1/6.
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4.2 Canonical quantization

To canonically quantize we first pass to the Hamiltonian description. Sepa-
rating out a time coordinate x0, xμ = (x0, xi), we can write the action as

S =
∫

dx0 L, L =
∫

dD−1x L. (26)

The canonical momentum at a time x0 is given by

π(x) =
δL

δ
(
∂0ϕ(x)

) = |g|1/2gμ0∂μϕ(x) = |h|1/2nμ∂μϕ(x). (27)

Here x labels a point on a surface of constant x0, the x0 argument of ϕ is
suppressed, nμ is the unit normal to the surface, and h is the determinant of the
induced spatial metric hij . To quantize, the field ϕ and its conjugate momentum
ϕ are now promoted to hermitian operators2 and required to satisfy the canonical
commutation relation,

[ϕ(x), π(y)] = i�δD−1(x, y) (28)

It is worth noting that, being a variational derivative, the conjugate momentum
is a density of weight one, and hence the Dirac delta function on the right hand
side of (28) is a density of weight one in the second argument. It is defined
by the property

∫
dD−1y δD−1(x, y)f(y) = f(x) for any scalar function f ,

without the use of a metric volume element.
In analogy with the bracket (7) defined for the case of the harmonic oscillator,

one can form a conserved bracket from two complex solutions to the scalar wave
equation (21),

〈f, g〉 =
∫

Σ
dΣμ jμ, jμ(f, g) = (i/�)|g|1/2gμν

(
f∂νg − (∂νf)g

)
.

(29)
This bracket is sometimes called the Klein-Gordon inner product, and 〈f, f〉
the Klein-Gordon norm of f . The current density jμ(f, g) is divergenceless
(∂μjμ = 0) when the functions f and g satisfy the KG equation (21), hence
the value of the integral in (29) is independent of the spacelike surface Σ over
which it is evaluated, provided the functions vanish at spatial infinity. The KG
inner product satisfies the relations

〈f, g〉 = −〈f, g〉 = 〈g, f〉, 〈f, f〉 = 0 (30)

Note that it is not positive definite.
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4.3 Hilbert space

At this point it is common to expand the field operator in modes and to
associate annihilation and creation operators with modes, in close analogy with
the harmonic oscillator (4), however instead I will begin with individual wave
packet solutions. My reason is that in some situations there is no particularly
natural set of modes, and none is needed to make physical predictions from the
theory. (An illustration of this statement will be given in our treatment of the
Hawking effect.) A mode decomposition is a basis in the space of solutions,
and has no fundamental status.

In analogy with the harmonic oscillator case (10), we define the annihilation
operator associated with a complex classical solution f by the bracket of f with
the field operator ϕ:

a(f) = 〈f, ϕ〉 (31)

Since both f and ϕ satisfy the wave equation, a(f) is well-defined, independent
of the surface on which the bracket integral is evaluated. It follows from the
above definition and the hermiticity of ϕ that the hermitian conjugate of a(f)
is given by

a†(f) = −a(f). (32)

The canonical commutation relation (28) together with the definition of the
momentum (27) imply that

[a(f), a†(g)] = 〈f, g〉. (33)

The converse is also true, in the sense that if (33) holds for all solutions f and
g, then the canonical commutation relation holds. Using (32), we immediately
obtain the similar relations

[a(f), a(g)] = −〈f, g〉, [a†(f), a†(g)] = −〈f, g〉 (34)

Iff is a positive norm solution with unit norm 〈f, f〉 = 1, thena(f) anda†(f)
satisfy the usual commutation relation for the raising and lowering operators for
a harmonic oscillator, [a(f), a†(f)] = 1. Suppose now that |Ψ〉 is a normalized
quantum state satisfying a(f)|Ψ〉 = 0. Of course this condition does not specify
the state, but rather only one aspect of the state. Nevertheless, for each n, the
state |n, Ψ〉 = (1/

√
n!)(a†(f))n|Ψ〉 is a normalized eigenstate of the number

operator N(f) = a†(f)a(f) with eigenvalue n. The span of all these states
defines a Fock space of f -wavepacket “n-particle excitations" above the state
|Ψ〉.

If we want to construct the full Hilbert space of the field theory, how can we
proceed? We should find a decomposition of the space of complex solutions to
the wave equation S into a direct sum of a positive norm subspace Sp and its
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complex conjugate Sp, such that all brackets between solutions from the two
subspaces vanish. That is, we must find a direct sum decomposition

S = Sp ⊕ Sp (35)

such that

〈f, f〉 > 0 ∀f ∈ Sp (36)

〈f, g〉 = 0 ∀f, g ∈ Sp. (37)

The first condition implies that each f in Sp can be scaled to define its own har-
monic oscillator sub-albegra as in the previous paragraph. The second condition
implies, according to (34), that the annihilators and creators for f and g in the
subspace Sp commute amongst themselves: [a(f), a(g)] = 0 = [a†(f), a†(g)].

Given such a decompostion a total Hilbert space for the field theory can be
defined as the space of finite norm sums of possibly infinitely many states of
the form a†(f1) · · · a†(fn)|0〉, where |0〉 is a state such that a(f)|0〉 = 0 for all
f in Sp, and all f1, . . . , fn are in Sp. The state |0〉 is called a Fock vacuum.
It depends on the decomposition (35), and in general is not the ground state
(which is not even well defined unless the background metric is globally static).
The representation of the field operator on this Fock space is hermitian and
satisfies the canonical commutation relations.

4.4 Flat spacetime

Now let’s apply the above generalities to the case of a massive scalar field in
flat spacetime. In this setting a natural decomposition of the space of solutions
is defined by positive and negative frequency with respect to a Minkowski
time translation, and the corresponding Fock vacuum is the ground state. I
summarize briefly since this is standard flat spacetime quantum field theory.

Because of the infinite volume of space, plane wave solutions are of course
not normalizable. To keep the physics straight and the language simple it is
helpful to introduce periodic boundary conditions, so that space becomes a
large three-dimensional torus with circumferences L and volume V = L3. The
allowed wave vectors are then k = (2π/L)n, where the components of the
vector n are integers. In the end we can always take the limit L→∞ to obtain
results for local quantities that are insensitive to this formal compactification.

A complete set of solutions (“modes") to the classical wave equation (21)
with � the flat space d’Alembertian and R = 0 is given by

fk(t,x) =

√
�

2V ω(k)
e−iω(k)teik·x (38)

where
ω(k) =

√
k2 + m2, (39)
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together with the solutions obtained by replacing the positive frequency ω(k)
by its negative, −ω(k). The brackets between these solutions satisfy

〈fk, fl〉 = δk,l (40)

〈fk, f l〉 = −δk,l (41)

〈fk, fl〉 = 0, (42)

so they provide an orthogonal decomposition of the solution space into positive
norm solutions and their conjugates as in (37), with Sp the space spanned by
the positive frequency modes fk. As described in the previous subsection this
provides a Fock space representation.

If we define the annihilation operator associated to fk by

ak = 〈fk, ϕ〉, (43)

then the field operator has the expansion

ϕ =
∑
k

(
fk ak + fk a†k

)
. (44)

Since the individual solutions fk have positive frequency, and the Hamiltonian
is a sum over the contributions from each k value, our previous discussion of
the single oscillator shows that the vacuum state defined by

ak|0〉 = 0 (45)

for all k is in fact the ground state of the Hamiltonian. The states

a†k|0〉 (46)

have momentum �k and energy �ω(k), and are interpreted as single particle
states. States of the form a†k1

· · · a†kn
|0〉 are interpreted as n-particle states.

Note that although the field Fourier component ϕk = fk ak + f−k a†−k has
zero mean in the vacuum state, like the harmonic oscillator position it undergoes
“zero-point fluctuations" characterized by

〈0|ϕ†
kϕk|0〉 = |f−k|2 =

�

2V ω(k)
, (47)

which is entirely analogous to the oscillator result (19).

4.5 Curved spacetime, “particles", and stress tensor

In a general curved spacetime setting there is no analog of the preferred
Minkowski vacuum and definition of particle states. However, it is clear that we
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can import these notions locally in an approximate sense if the wavevector and
frequency are high enough compared to the inverse radius of curvature. Slightly
more precisely, we can expand the metric in Riemann normal coordinates about
any point x0:

gμν(x) = ημν +
1
3
Rμναβ(x0)(x− x0)α(x− x0)β + O((x− x0)3). (48)

If k2 and ω2(k) are much larger than any component of the Riemann tensor
Rμναβ(x0) in this coordinate system then it is clear that the flat space interpreta-
tion of the corresponding part of Fock space will hold to a good approximation,
and in particular a particle detector will respond to the Fock states as it would in
flat spacetime. This notion is useful at high enough wave vectors locally in any
spacetime, and for essentially all wave vectors asymptotically in spacetimes
that are asymptotically flat in the past or the future or both.

More generally, however, the notion of a “particle" is ambiguous in curved
spacetime, and one should use field observables to characterize states. One
such observable determines how a “particle detector" coupled to the field would
respond were it following some particular worldline in spacetime and the cou-
pling were adiabatically turned on and off at prescribed times. For example the
transition probability of a point monopole detector is determined in lowest or-
der perturbation theory by the two-point function 〈Ψ|ϕ(x)ϕ(x′)|Ψ〉 evaluated
along the worldline[21, 11] of the detector. (For a careful discussion of the reg-
ularization required in the case of a point detector see [22].) Alternatively this
quantity—along with the higher order correlation functions—is itself a probe
of the state of the field.

Another example of a field observable is the expectation value of the stress
energy tensor, which is the source term in the semi-classical Einstein equation

Gμν = 8πG〈Ψ|Tμν(x)|Ψ〉. (49)

This quantity is infinite because it contains the product of field operators at the
same point. Physically, the infinity is due to the fluctuations of the infinitely
many ultraviolet field modes. For example, the leading order divergence of the
energy density can be attributed to the zero-point energy of the field fluctuations,
but there are subleading divergences as well. We have no time here to properly
go into this subject, but rather settle for a few brief comments.

One way to make sense of the expectation value is via the difference between
its values in two different states. This difference is well-defined (with a suitable
regulator) and finite for any two states sharing the same singular short distance
behavior. The result depends of course upon the comparison state. Since the
divergence is associated with the very short wavelength modes, it might seem
that to uniquely define the expectation value at a point x it should suffice to just
subtract the infinities for a state defined as the vacuum in the local flat spacetime
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approximation at x. This subtraction is ambiguous however, even after making
it as local as possible and ensuring local conservation of energy (∇μ〈Tμν〉 = 0).
It defines the expectation value only up to a tensor Hμν constructed locally from
the background metric with four or fewer derivatives and satisfying the identity
∇μHμν = 0. The general such tensor is the variation with respect to the metric
of the invariant functional∫

dDx
√
|g|

(
c0 + c1R + c2R

2 + c3R
μνRμν + c4R

μνρσRμνρσ

)
. (50)

(In four spacetime dimensions the last term can be rewritten as a combination
of the first two and a total divergence.) Thus Hμν is a combination of gμν ,
the Einstein tensor Gμν , and curvature squared terms. In effect, the ambiguity
−Hμν is added to the metric side of the semi-classical field equation, where it
renormalizes the cosmological constant and Newton’s constant, and introduces
curvature squared terms.

A different approach is to define the expectation value of the stress tensor
via the metric variation of the renormalized effective action, which posesses
ambiguities of the same form as (50). Hence the two approaches agree.

4.6 Remarks

4.6.1 Continuum normalization of modes. Instead of the “box nor-
malization" used above we could “normalize" the solutions fk (38) with the
factor V −1/2 replaced by (2π)−3/2. Then the Kronecker δ’s in (40, 41) would
be replaced by Dirac δ-functions and the discrete sum over momenta in (44)
would be an integral over k. In this case the annihilation and creation operators
would satisfy [ak, a†l ] = δ3(k, l).

4.6.2 Massless minimally coupled zero mode. The massless minimally
coupled case m = 0, ξ = 0 has a peculiar feature. The spatially constant
function f(t,x) = c0 + c1t is a solution to the wave equation that is not
included among the positive frequency solutions fk or their conjugates. This
“zero mode" must be quantized as well, but it behaves like a free particle
rather than like a harmonic oscillator. In particular, the state of lowest energy
would have vanishing conjugate field momentum and hence would be described
by a Schrödinger wave function ψ(ϕ0) that is totally delocalized in the field
amplitude ϕ0. Such a wave function would be non-normalizable as a quantum
state, just as any momentum eigenstate of a non-relativistic particle is non-
normalizable. Any normalized state would be described by a Schrödinger
wavepacket that would spread in ϕ0 like a free particle spreads in position
space, and would have an expectation value 〈ϕ0〉 growing linearly in time.
This suggests that no time-independent state exists. That is indeed true in the
case where the spatial directions are compactified on a torus for example, so
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that the modes are discrete and the zero mode carries as much weight as any
other mode. In non-compact space one must look more closely. It turns out that
in 1 + 1 dimensions the zero mode continues to preclude a time independent
state (see e.g. [23], although the connection to the behavior of the zero mode is
not made there), however in higher dimensions it does not, presumably because
of the extra factors of k in the measure kD−2dk. A version of the same issue
arises in deSitter space, where no deSitter invariant state exists for the massless,
minimally coupled field [24]. That is true in higher dimensions as well, however,
which may be related to the fact that the spatial sections of deSitter space are
compact.

5. Particle creation

We turn now to the subject of particle creation in curved spacetime (which
would more appropriately be called “field excitation", but we use the standard
term). The main applications are to the case of expanding cosmological space-
times and to the Hawking effect for black holes. To begin with I will discuss
the analogous effect for a single harmonic oscillator, which already contains
the essential elements of the more complicated cases. The results will then be
carried over to the cosmological setting. The following section then takes up
the subject of the Hawking effect.

5.1 Parametric excitation of a harmonic oscillator

A quantum field in a time-dependent background spacetime can be modeled
in a simple way by a harmonic oscillator whose frequency ω(t) is a given
function of time. The equation of motion is then (3),

ẍ + ω2(t)x = 0. (51)

We consider the situation where the frequency is asymptotically constant, ap-
proaching ωin in the past and ωout in the future. The question to be answered
is this: if the oscillator starts out in the ground state |0in〉 appropriate to ωin as
t → −∞, what is the state as t → +∞? More precisely, in the Heisenberg
picture the state does not evolve, so what we are really asking is how is the state
|0in〉 expressed as a Fock state in the out-Hilbert space appropriate to ωout? It
is evidently not the same as the ground state |0out〉 of the Hamiltonian in the
asymptotic future.

To answer this question we need only relate the annihilation and creation
operators associated with the in and out normalized positive frequency modes
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f in
out

(t), which are solutions to (51) with the asymptotic behavior

f in
out

(t) t→∓∞−→
√√√√ �

2mω in
out

exp(−iω in
out

t). (52)

Since the equation of motion is second order in time derivatives it admits a
two-parameter family of solutions, hence there must exist complex constants α
and β such that

fout = αfin + βf̄in. (53)

The normalization condition 〈fout, fout〉 = 1 implies that

|α|2 − |β|2 = 1. (54)

The out annihilation operator is given (see (10)) by

aout = 〈fout, x〉 (55)

= 〈αfin + βf̄in, x〉 (56)

= αain − β̄a†in. (57)

This sort of linear relation between two sets of annihilation and creation oper-
ators (or the corresponding solutions) is called a Bogoliubov transformation,
and the coefficients are the Bogoliubov coefficients. The mean value of the out
number operator Nout = a†outaout is nonzero in the state |0in〉:

〈0in|Nout|0in〉 = |β|2. (58)

In this sense the time dependence of ω(t) excites the oscillator, and |β|2 char-
acterizes the excitation number.

To get a feel for the Bogoliubov coefficient β let us consider two extreme
cases, adiabatic and sudden.

5.1.1 Adiabatic transitions and ground state. The adiabatic case cor-
responds to a situation in which the frequency is changing very slowly compared
to the period of oscillation,

ω̇

ω
� ω. (59)

In this case there is almost no excitation, so |β| � 1. Generically in the adiabatic
case the Bogoliubov coefficient is exponentially small, β ∼ exp(−ω0T ), where
ω0 is a typical frequency and T characterizes the time scale for the variations
in the frequency.

In the Schrödinger picture, one can say that during an adiabatic change of
ω(t) the state continually adjusts to remain close to the instantaneous adiabatic
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ground state. This state at time t0 is the one annihilated by the lowering oper-
ator a(ft0) defined by the solution ft0(t) satisfying the initial conditions at t0
corresponding to the “instantaneous positive frequency solution",

ft0(t0) =
√

�/2mω(t0) (60)

ḟt0(t0) = −iω(t0)ft0(t0). (61)

The instantaneous adiabatic ground state is sometimes called the “lowest or-
der adiabatic ground state at t0". One can also consider higher order adia-
batic ground states as follows (see e.g. [3, 5]). A function of the WKB form
(�/2mW (t))1/2 exp(−i

∫ t
W (t′) dt′) is a normalized solution to (51) provided

W (t) satisfies a certain second order differential equation. That equation can
be solved iteratively, yielding an expansion W (t) = ω(t) + · · ·, where the
subsequent terms involve time derivatives of ω(t). The lowest order adiabatic
ground state at t0 is defined using the solution whose initial conditions (61)
match the lowest order truncation of the expansion for W (t). A higher order
adiabatic ground state is similarly defined using a higher order truncation.

5.1.2 Sudden transitions. The opposite extreme is the sudden one, in
which ω changes instantaneously from ωin to ωout at some time t0. We can
then find the Bogoliubov coefficients using (53) and its first derivative at t0.
For t0 = 0 the result is

α =
1
2

(√
ωin

ωout
+
√

ωout

ωin

)
(62)

β =
1
2

(√
ωin

ωout
−
√

ωout

ωin

)
. (63)

(For t0 �= 0 there are extra phase factors in these solutions.) Interestingly,
the amount of excitation is precisely the same if the roles of ωin and ωout are
interchanged. For an example, consider the case where ωout = 4ωin, for which
α = 5/4 and β = −3/4. In this case the expectation value (58) of the out
number operator is 9/16, so there is about “half an excitation".

5.1.3 Relation between in and out ground states & the squeeze operator.
The expectation value of Nout is only one number characterizing the relation

between |Oin〉 and the out states. We shall now determine the complete relation

|Oin〉 =
∑

n

cn|n〉out (64)

where the states |n〉out are eigenstates of Nout and the cn are constants.
One can find ain in terms of aout and a†out by combining (53) with its complex

conjugate to solve for fin in terms of fout and f̄out. In analogy with (57) one
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then finds
ain = αaout + β̄a†out. (65)

Thus the defining condition ain|0in〉 = 0 implies

aout|0in〉 = − β̄

α
a†out|0in〉. (66)

A transparent way to solve this is to note that the commutation relation [aout, a
†
out] =

1 suggests the formal analogy aout = ∂/∂a†out. This casts (66) as a first order
ordinary differential equation, with solution

|0in〉 = N exp
[
−
(

β̄

2α

)
a†outa

†
out

]
|0out〉 (67)

= N
∑

n

√
2n!
n!

(
− β̄

2α

)n

|2n〉out. (68)

Note that the state |0out〉 on which the exponential operator acts is annihilated
by aout, so there is no extra term from a†out-dependence.

The state |0in〉 thus contains only even numbered excitations when expressed
in terms of the out number eigenstates. The normalization constantN is given
by

|N |−2 =
∑

n

2n!
(n!)2

∣∣∣∣ β̄

2α

∣∣∣∣2n

. (69)

For large n the summand approaches |β̄/α|2n =
[|β|2/(|β|2 + 1)

]n
, where the

relation (54) was used in the last step. The sum therefore converges, and can
be evaluated3 to yield

|N | =
(
1− |β/α|2

)1/4
= |α|−1/2. (70)

An alternate way of describing |0in〉 in the out Hilbert space is via the squeeze
operator

S = exp
[z

2
a†a† − z̄

2
aa
]
. (71)

Since its exponent is anti-hermitian, S is unitary. Conjugating a by S yields

S†aS = cosh |z| a + sinh |z| z|z| a
†. (72)

This has the form of the Bogoliubov transformation (65) with α = cosh |z| and
β = sinh |z|(z/|z|). With aout in place of a in S this gives

ain = S†aoutS. (73)
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The condition ain|0in〉 = 0 thus implies aoutS|0in〉 = 0, so evidently

|0in〉 = S†|0out〉 (74)

up to a constant phase factor. That is, the in and out ground states are related
by the action of the squeeze operator S. Since S is unitary, the right hand side
of (74) is manifestly normalized.

5.2 Cosmological particle creation

We now apply the ideas just developed to a free scalar quantum field satisfying
the KG equation (21) in a homogeneous isotropic spacetime. The case when
the spatial sections are flat is slightly simpler, and it is already quite applicable,
hence we restrict to that case here.

The spatially flat Robertson-Walker (RW) line element takes the form:

ds2 = dt2 − a2(t)dxidxi = a2(η)(dη2 − dxidxi) (75)

It is conformally flat, as are all RW metrics. The coordinate η =
∫

dt/a(t) is
called the conformal time, to distinguish it from the proper time t of the isotropic
observers. The d’Alembertian � for this metric is given by

� = ∂2
t + (3ȧ/a)∂t − a−2∂2

xi , (76)

where the dot stands for ∂/∂t. The spatial translation symmetry allows the
spatial dependence to be separated from the time dependence. A field

uk(x, t) = ζk(t)eik·x (77)

satisfies the field equation (21) provided ζk(t) satisfies an equation similar to that
of a damped harmonic oscillator but with time-dependent damping coefficient
3ȧ/a and time-dependent frequency a−2k2+m2+ξR. It is worth emphasizing
that in spite of the “damping", the field equation is Hamiltonian, and the Klein-
Gordon norm (29) of any solution is conserved in the evolution.

The field equation can be put into the form of an undamped oscillator with
time-dependent frequency by using the conformal time η instead of t and fac-
toring out an appropriate power of the conformal factor a2(η):

ζk = a−1 χk. (78)

The function uk satisfies the field equation if and only if

χ′′
k + ω2(η)χk = 0, (79)

where the prime stands for d/dη and

ω2(η) = k2 + m2a2 − (1− 6ξ)(a′′/a). (80)
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(In the special case of conformal coupling m = 0 and ξ = 1/6, this becomes the
time-independent harmonic oscillator, so that case is just like flat spacetime.
All effects of the curvature are then incorporated by the prefactor a(η)−1 in
(78).)

The uk are orthogonal in the Klein-Gordon inner product (29), and they are
normalized4 provided the χk have unit norm:

〈uk, ul〉 = δk,l ⇐⇒ (iV/�)(χ̄kχ′
k − χ̄′

kχk) = 1. (81)

Note that the relevant norm for the χk differs from that for the harmonic oscil-
lator (7) only by the replacement m→ V , where V is the xi-coordinate volume
of the constant t surfaces. We also have 〈uk, ūl〉 = 0 for all k, l, hence these
modes provide an orthogonal postive/negative norm decomposition of the space
of complex solutions. As discussed in section 4.3, this yields a corresponding
Fock space representation for the field operators. The field operator can be
expanded in terms of the corresponding annihilation and creation operators:

ϕ(x, t) =
∑
k

(
uk(x, t) ak + ūk(x, t) a†k

)
. (82)

Consider now the special case where there is no time dependence in the past
and future, a(η) → constant. The in and out “vacua" are the ground states
of the Hamiltonian at early and late times, and are the states annihilated by
the ak associated with the uin,out

k constructed with early and late time positive
frequency modes χin,out

k , as explained in section 4.4:

χ
in
out
k (η)

η→∓∞−→
√√√√ �

2V ω in
out

exp(−iω in
out

η). (83)

The Bogoliubov transformation now takes the form

uout
k =

∑
k′

(
αkk′uin

k′ + βkk′ ūin
k′
)
. (84)

Matching the coefficients of exp(ik · x), we see that

αkk′ = αkδk,k′ , βkk′ = βkδk,−k′ , (85)

i.e. the Bogoliubov coefficients mix only modes of wave vectors k and −k,
and they depend only upon the magnitude of the wavevector on account of
rotational symmetry (eqn. (79) for χk does not depend on the direction of k).
The normalization condition on uout

k implies

|αk|2 − |βk|2 = 1. (86)
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As in the harmonic oscillator example (58), if the state is the in-vacuum,
then the expected excitation level of the k out-mode, i.e. the average number
of particles in that mode, is given by

〈0in|Nout
k |0in〉 = |βk|2. (87)

To convert this statement into one about particle density, we sum over k and
divide by the physical spatial volume Vphys = a3V , which yields the number
density of particles. Alternatively one can work with the continuum normalized
modes. The relation between the discrete and continuous sums is

1
Vphys

∑
k

←→ 1
(2πa)3

∫
d3k. (88)

the number density of out-particles is thus

nout =
1

(2πa)3

∫
d3k|βk|2. (89)

The mean particle number characterizes only certain aspects of the state.
As in the oscillator example, a full description of the in-vacuum in the out-
Fock space is obtained from the Bogoliubov relation between the corresponding
annihilation and creation operators. From (84) we can solve for uin and thence
find

ain
k = αk aout

k + β̄k α†
−k

out, (90)

whence

aout
k |0in〉 = − β̄k

αk
a†−k

out|0in〉, (91)

which can be solved to find

|0in〉 =

(∏
k′
N ′

k

)
exp

[
−
∑
k

(
β̄k

2αk

)
a†k

outa†−k
out

]
|0out〉 (92)

where the N ′
k are normalization factors. This solution is similar to the corre-

sponding expression (68) for the harmonic oscillator and it can be found by
a similar method. Although the operators a†k

out and a†−k
out are distinct, each

product appears twice in the sum, once for k and once for −k, hence the fac-
tor of 2 in the denominator of the exponent is required. Using the two-mode
analog of the squeeze operator (71) the state (92) can also be written in a mani-
festly normalized fashion analogous to (74). It is sometimes called a squeezed
vacuum.
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5.3 Remarks

5.3.1 Momentum correlations in the squeezed vacuum. The state
(92) can be expressed as a sum of terms each of which has equal numbers of k
and −k excitations. These degrees of freedom are thus entangled in the state,
in such a way as to ensure zero total momentum. This is required by translation
invariance of the states |0in〉 and |0out〉, since momentum is the generator of
space translations.

5.3.2 Normalization of the squeezed vacuum. The norm sum for the
part of the state (92) involving k and −k is a standard geometric series, which
evaluates to |αk|2 using (86). Hence to normalize the state one can set Nk =
|αk|−1/2 for all k, including k = 0 as in (70). The overall normalization factor
is a product of infinitely many numbers less than unity. Unless those numbers
converge rapidly enough to unity the state is not normalizable. The condition
for normalizability is easily seen to be

∑
k |βk|2 < ∞, i.e. according to (87)

the average total number of excitations must be finite. If it is not, the state |0in〉
does not lie in the Fock space built on the the state |0out〉. Note that, although
formally unitary, the squeeze operator does not act unitarily on the out Fock
space if the corresponding state is not in fact normalizable.

5.3.3 Energy density. If the scale factor a changes by over a time in-
terval Δτ , then for a massless field dimensional analysis indicates that the
in vacuum has a resulting energy density ρ ∼ �(Δτ)−4 after the change.
To see how the formalism produces this, according to (89) we have ρ =
(2πa)−3

∫
d3k|βk|2(�ω/a). The Bogoliubov coefficent βk is of order unity

around kc/a ∼ 1/Δτ and decays exponentially above that. The integral is
dominated by the upper limit and hence yields the above mentioned result.

5.3.4 Adiabatic vacuum. Modes with frequency much larger than a′/a
see the change of the scale factor as adiabatic, hence they remain relatively
unexcited. The state that corresponds to the instantaneously defined ground
state, in analogy with (61) for the single harmonic oscillator, is called the
adiabatic vacuum at a given time.

5.4 de Sitter space

The special case of de Sitter space is of interest for various reasons. The first
is just its high degree of symmetry, which makes it a convenient arena for the
study of qft in curved space. It is the maximally symmetric Lorentzian space
with (constant) positive curvature. Maximal symmetry refers to the number of
Killing fields, which is the same as for flat spacetime. The Euclidean version
of de Sitter space is just the sphere.
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de Sitter (dS) space has hypersurface-orthogonal timelike Killing fields,
hence is locally static, which further simplifies matters, but not to the point
of triviality. The reason is that all such Killing fields have Killing horizons,
null surfaces to which they are tangent, and beyond which they are spacelike.
Hence dS space serves as a highly symmetric analog of a black hole spacetime.
In particular, a symmetric variant of the Hawking effect takes place in de Sit-
ter space, as first noticed by Gibbons and Hawking[25]. See [26] for a recent
review.

Inflationary cosmology provides another important use of deSitter space,
since during the period of exponential expansion the spacetime metric is well
described by dS space. In this application the dS line element is usually written
using spatially flat RW coordinates:

ds2 = dt2 − e2Htdxidxi. (93)

These coordinates cover only half of the global dS space, and they do not make
the existence of a time translation symmetry manifest. This takes the conformal
form (75) with η = −H−1 exp(−Ht) and a(η) = −1/Hη. The range of t is
(−∞,∞) while that of η is (−∞, 0).

The flat patch of de Sitter space is asymptotically static with respect to con-
formal time η in the past, since a′/a = −1/η → 0 as η → −∞. Therefore in
the asymptotic past the adiabatic vacuum (with respect to positive η-frequency)
defines a natural initial state. This is the initial state used in cosmology. In
fact it happens to define a deSitter invariant state, also known as the Euclidean
vacuum or the Bunch-Davies vacuum.

5.4.1 Primordial perturbations from zero point fluctuations. Obser-
vations of the Cosmic Microwave Background radiation support the notion that
the origin of primordial perturbations lies in the quantum fluctuations of scalar
and tensor metric modes (see [27] for a recent review and [28] for a classic
reference.) The scalar modes arise from (and indeed are entirely determined
by, since the metric has no independent scalar degree of freedom) coupling to
matter.5 Let’s briefly discuss how this works for a massless minimally cou-
pled scalar field, which is just how these perturbations are described. First I’ll
describe the scenario in words, then add a few equations.

Consider a field mode with a frequency high compared to the expansion rate
ȧ/a during the early universe. To be specific let us assume this rate to be a
constant H , i.e. de Sitter inflation. Such a mode was presumably in its ground
state, as the prior expansion would have redshifted away any initial excitation.
As the universe expanded the frequency redshifted until it became comparable to
the expansion rate, at which point the oscillations ceased and the field amplitude
approached a time-independent value. Just before it stopped oscillating the
field had quantum zero point fluctuations of its amplitude, which were then
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preserved during the further expansion. Since the amplitude was frozen when
the mode had the fixed proper wavenumber H , it is the same for all modes apart
from the proper volume factor in the mode normalization which varies with
the cosmological time of freezeout. Finally after inflation ended the expansion
rate dropped faster than the wavenumber, hence eventually the mode could
begin oscillating again when its wavelength became shorter than the Hubble
length H−1. This provided the seeds for density perturbations that would then
grow by gravitational interactions. On account of the particular wavevector
dependence of the amplitude of the frozen spatial fluctuations, the spectrum of
these perturbations turns out to be scale-invariant (when appropriately defined).

More explicitly, the field equation for a massless minimally coupled field is
given by (79), with

ω2(η) = k2 − a′′/a = k2 − 2H2a2, (94)

where the last equality holds in de Sitter space. In terms of proper frequency
ωp = ω/a and proper wavenumber kp = k/a we have ω2

p = k2
p − 2H2. The

first term is the usual flat space one that produces oscillations, while the second
term tends to oppose the oscillations. For proper wavenumbers much higher
than H the second term is negligible. The field oscillates while the proper
wavenumber redshifts exponentially. Eventually the two terms cancel, and the
mode stops oscillating. This happens when

kp =
√

2H. (95)

As the wavenumber continues to redshift into the region kp � H , to a good
approximation the amplitude satisfies the equation χ′′

k− (a′′/a)χk = 0, which
has a growing and a decaying solution6. The growing solution is χk ∝ a, which
implies that the field mode uk (77,78) is constant in time. (This conclusion is
also evident directly from the fact that the last term of the wave operator (76)
vanishes as a grows.)

The squared amplitude of the fluctuations when frozen is, according to (47),

〈0|ϕ†
kϕk|0〉 = |u−k|2 ∼ �

kpVp
=

�H2

V k3
, (96)

where the proper values are used for consistent matching to the previous flat
space result. This gives rise to the scale invariant spectrum of density pertur-
bations.

6. Black hole evaporation

The vacuum of a quantum field is unstable to particle emission in the presence
of a black hole event horizon. This instability is called the Hawking effect.
Unlike the cosmological particle creation discussed in the previous section,



64 LECTURES ON QUANTUM GRAVITY

this effect is not the result of time dependence of the metric exciting the field
oscillators. Rather it is more like pair creation in an external electric field
[13]. (For more discussion of the role of time dependence see section 6.3.13.)
A general introduction to the Hawking effect was given in section 2.2. The
present section is devoted to a derivation and discussion related topics.

The historical roots of the Hawking effect lie in the classical Penrose process
for extracting energy from a rotating black hole. We first review that process
and indicate how it led to Hawking’s discovery. Then we turn to the qft analysis.

6.1 Historical sketch

The Kerr metric for a rotating black hole is stationary, but the asymptotic
time translation Killing vector χ becomes spacelike outside the event horizon.
The region where it is spacelike is called the ergoregion. The conserved Killing
energy for a particle with four-momentum p is E = χ · p. Physical particles
have future pointing timelike 4-momenta, hence E is positive provided χ is
also future timelike. Where χ is spacelike however, some physical 4-momenta
have negative Killing energy.

In the Penrose process, a particle of energy E0 > 0 is sent into the ergoregion
of a rotating black hole where it breaks up into two pieces with Killing energies
E1 and E2, so that E0 = E1 + E2. If E2 is arranged to be negative, then
E1 > E0, that is, more energy comes out than entered. The black hole absorbs
the negative energy E2 and thus loses mass. It also loses angular momentum,
hence the process in effect extracts the rotational energy of the black hole.

The Penrose process is maximally efficient and reversible if the horizon area
is unchanged. That condition is achievable in the limit that the absorbed par-
ticle enters the black hole on a trajectory tangent to one of the null generators
of the horizon. This role of the horizon area in governing efficiency of en-
ergy extraction exhibits the analogy between area and entropy. Together with
Bekenstein’s information theoretic arguments, it gave birth to the subject of
black hole thermodynamics.

When a field scatters from a rotating black hole a version of the Penrose
process called superradiant scattering can occur. The analogy with stimulated
emission suggests that quantum fields should exhibit spontaneous emission
from a rotating black hole. To calculate this emission rate from an “eternal"
spinning black hole one must specify a condition on the state of the quantum
field that determines what emerges from the past horizon. In order to avoid this
unphysical specification Hawking considered instead a black hole that forms
from collapse, which has no past horizon. In this case only initial conditions
before the collapse need be specified.

Much to his surprise, Hawking found that for any initial state, even a non-
rotating black hole will spontaneously emit radiation. This Hawking effect is
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a pair creation process in which one member of the pair lies in the ergoregion
inside the horizon and has negative energy, while the other member lies outside
and escapes to infinity with positive energy. The Hawking radiation emerges
in a steady flux with a thermal spectrum at the temperature TH = �κ/2π.
The surface gravity κ had already been seen to play the role of temperature in
the classical first law of black hole mechanics, which thus rather remarkably
presaged the quantum Hawking effect.

6.2 The Hawking effect

Two different notions of “frequency" are relevant to this discussion. One
is the “Killing frequency", which refers to time dependence with respect to
the time-translation symmetry of the background black hole spacetime. In the
asymptotically flat region at infinity the Killing frequency agrees with the usual
frequency defined by the Minkowski observers at rest with respect to the black
hole. The other notion is “free-fall frequency" defined by an observer falling
across the event horizon. Since the Killing flow is tangent to the horizon, Killing
frequency there is very different from free-fall frequency, and that distinction
lies at the heart of the Hawking effect.

6.2.1 Average number of outgoing particles. The question to be an-
swered is this: if a black hole forms from collapse with the quantum field in any
‘regular’ state |Ψ〉, then at late times, long after the collapse, what will be the
average particle number and other observables for an outgoing positive Killing
frequency wavepacket P of a quantum field far from the black hole? We ad-
dress this question here for the case of a noninteracting scalar field and a static
(non-rotating) black hole At the end we make some brief remarks about gener-
alizations. Figure 1 depicts the various ingredients in the following discussion.

To begin with we evaluate the expectation value 〈Ψ|N(P )|Ψ〉 of the number
operator N(P ) = a†(P )a(P ) in the quantum state |Ψ〉 of the field. This does
not fully characterize the state, but it will lead directly to considerations that
do.

The annihilation operator (31) corresponding to a normalized wavepacket P
is given by

a(P ) = 〈P, ϕ〉Σf
, (97)

where the Klein-Gordon inner product (29) is evaluated on the “final" spacelike
slice Σf . To evaluate the expectation value of N(P ) we use the field equation
satisfied by ϕ to relate N(P ) to an observable on an earlier slice Σi on which
we know enough about the quantum state. Specifically, we assume there are no
incoming excitations long after the black hole forms, and we assume that the
state looks like the vacuum at very short distances (or high frequencies) as seen
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Figure 1. Spacetime diagram of black hole formed by collapsing matter. The outgoing
wavepacket P splits into the transmitted part T and reflected part R when propagated backwards
in time. The two surfaces Σf,i are employed for evaluating the Klein-Gordon inner products
between the wavepacket and the field operator. Although P , and hence R and T , have purely
positive Killing frequency, the free-fall observer crossing T just outside the horizon sees both
positive and negative frequency components with respect to his proper time.

by observers falling across the event horizon. Hawking originally propagated
the field through the time-dependent collapsing part of the metric and back out
all the way to spatial infinity, where he assumed |Ψ〉 to be the incoming vacuum
at very high frequencies. As pointed out by Unruh[21] (see also [29, 30]) the
result can be obtained without propagating all the way back, but rather stopping
on a spacelike surface Σi far to the past of Σf but still after the formation
of the black hole. This is important since propagation back out to infinity
invokes arbitrarily high frequency modes whose behavior may not be given by
the standard relativistic free field theory.
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If Σi lies far enough to the past of Σf , the wavepacket P propagated back-
wards by the Klein-Gordon equation breaks up into two distinct parts,

P = R + T. (98)

(See Fig. 1.) R is the “reflected" part that scatters from the black hole and
returns to large radii, while T is the “transmitted" part that approaches the
horizon. R has support only at large radii, and T has support only in a very
small region just outside the event horizon where it oscillates very rapidly due
to the backwards gravitational blueshift. Since both the wavepacket P and
the field operator ϕ satisfy the Klein-Gordon equation, the Klein-Gordon inner
product in (97) can be evaluated on Σi instead of Σf without changing a(P ).
This yields a corresponding decomposition for the annihilation operator,

a(P ) = a(R) + a(T ). (99)

Thus we have

〈Ψ|N(P )|Ψ〉 = 〈Ψ|(a†(R) + a†(T ))(a(R) + a(T ))|Ψ〉. (100)

Now it follows from the stationarity of the black hole metric that the Killing
frequencies in a solution of the KG equation are conserved. Hence the wavepack-
ets R and T both have the same, purely positive Killing, frequency components
as P . As R lies far from the black hole in the nearly flat region, this means
that it has purely positive asymptotic Minkowski frequencies, hence the oper-
ator a(R) is a bona fide annihilation operator—or rather 〈R,R〉1/2 times the
annihilation operator—for incoming excitations. Assuming that long after the
black hole forms there are no such incoming excitations, we have a(R)|Ψ〉 = 0.
Equation (100) then becomes

〈Ψ|N(P )|Ψ〉 = 〈Ψ|a†(T )a(T )|Ψ〉. (101)

If a(T )|Ψ〉 = 0 as well, then no P -particles are emitted at all. The state with
this property is called the “Boulware vacuum". It is the state with no positive
Killing frequency excitations anywhere, including at the horizon.

The Boulware vacuum does not follow from collapse however. The reason is
that the wavepacket T does not have purely positive frequency with respect to
the time of a free fall observer crossing the horizon, and it is this latter frequency
that matches to the local Minkowski frequency in a neighborhood of the horizon
small compared with the radius of curvature of the spacetime.

More precisely, consider a free-fall observer (i.e. a timelike geodesic x(τ))
with proper time τ who falls across the horizon at τ = 0 at a point where the slice
Σi meets the horizon (see Fig. 1). For this observer the wavepacket T has time
dependence T (τ) (i.e. T (x(τ))) that vanishes for τ > 0 since the wavepacket
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has no support behind the horizon. Such a function cannot possibly have purely
positive frequency components. To see why, recall that if a function vanishes
on a continuous arc in a domain of analyticity, then it vanishes everywhere in
that domain (since its power series vanishes identically on the arc and hence by
analytic continuation everywhere). Any positive frequency function

h(τ) =
∫ ∞

0
dω e−iωτ h̃(ω) (102)

is analytic in the lower half τ plane, since the addition of a negative imaginary
part to τ leaves the integral convergent. The positive real τ axis is the limit of
an arc in the lower half plane, hence if h(τ) were to vanish for τ > 0 it would
necessarily vanish also for τ < 0. (Conversely, a function that is analytic on
the lower half-plane and does not blow up exponentially as |τ | → ∞ must
contain only positive frequency components, since exp(−iωτ) does blow up
exponentially as |τ | → ∞ when ω is negative.)

The wavepacket T can be decomposed into its positive and negative fre-
quency parts with respect to the free fall time τ ,

T = T+ + T−, (103)

which yields the corresponding decomposition of the annihilation operator

a(T ) = a(T+) + a(T−) (104)

= a(T+)− a†(T−). (105)

Since T− has negative KG norm, Eqn. (32) has been used in the last line to
trade a(T−) for the bona fide creation operator a†(T−). The τ -dependence of
T consists of very rapid oscillations for τ < 0, so the wavepackets T+ and T−
have very high energy in the free-fall frame.

A free fall observer crossing the horizon long after the black hole forms would
presumably see the ground state of the field at short distances, that is, such an
observer would see no very high positive free-fall frequency excitations. The
reason is that the collapse process occurs on the much longer time scale of the
Schwarzschild radius rs, so the modes with frequency much higher than 1/rs

should remain in their ground state. We therefore assume that the wavepackets
T+ and T− are in their ground states,

a(T+)|Ψ〉 = 0, a(T−)|Ψ〉 = 0. (106)

For further discussion of this assumption see section 7.
Using (105) the number expectation value (101) can be evaluated as

〈Ψ|N(P )|Ψ〉 = 〈Ψ|a(T−)a†(T−)|Ψ〉 (107)

= 〈Ψ|[a(T−), a†(T−)]|Ψ〉 (108)

= 〈T−, T−〉Σi (109)

= −〈T−, T−〉Σi , (110)
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where (106) is used in the first and second lines, (33) is used in the third line,
and (30) is used in the last step. The problem has thus been reduced to the
computation of the Klein-Gordon norm of the negative frequency part of the
transmitted wavepacket T . This requires that we be more explicit about the
form of the wavepacket.

6.2.2 Norm of the negative frequency part & thermal flux. For defi-
niteness we consider a spherically symmetric vacuum black hole in 3+1 dimen-
sions, that is a Schwarzschild black hole. The Schwarzschild line element can
variously be expressed as

ds2 = (1− rs

r
)dt2 − (1− rs

r
)−1dr2 − r2(dθ2 + sin2 θ dϕ2) (111)

= (1− rs

r
)(dt2 − dr2

∗)− r2(dθ2 + sin2 θ dϕ2) (112)

= (1− rs

r
)du dv − r2(dθ2 + sin2 θ dϕ2). (113)

The first form is in “Schwarzschild coordinates" andrs = 2GM is the Schwarzschild
radius. The second form uses the “tortoise coordinate" r∗, defined by dr∗ =
dr/(1− rs/r) or r∗ = r + rs ln(r/rs − 1), which goes to −∞ at the horizon.
The third form uses the retarded and advanced time coordinates u = t − r∗
and v = t + r∗, which are also called outgoing and ingoing null coordinates
respectively.

A scalar field satisfiying the Klein-Gordon equation (� + m2)ϕ = 0 can be
decomposed into spherical harmonics

ϕ(t, r, θ, φ) =
∑
lm

ϕlm(t, r)
r

Ylm(θ, φ), (114)

where ϕlm(t, r) satisfies the 1+1 dimensional equation

(∂2
t − ∂2

r∗ + Vlm)ϕlm = 0 (115)

with the effective potential

Vlm(r) =
(
1− rs

r

)( rs

r3
+

l(l + 1)
r2

+ m2
)
. (116)

As r → ∞ the potential goes to m2. As r → rs, the factor (r − rs) ap-
proaches zero exponentially as exp(r∗/rs) with respect to r∗. Near the horizon
ϕlm(t, r∗) therefore satisfies the massless wave equation, hence has the general
form f(u) + g(v).

Since the wavepacket P =
∑

lm Plm(t, r)Ylm(θ, φ) is purely outgoing with
support only at large radii at late times, near the horizon Plm(t, r) must be
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only a function of the ‘retarded time u = t − r∗. That is, there can be no
ingoing component. Since the metric is static, i.e. invariant with respect to
t-translations, we can decompose any solution into components with a fixed t-
frequency ω. A positive frequency outgoing mode at infinity has t-dependence
exp(−iωt), hence its form near the horizon must be exp(−iωu).

Consider now a late time outgoing positive frequency wavepacket P that is
narrowly peaked in Killing frequency ω. Propagating backwards in time, T
is the part of the wavepacket that is squeezed up against the horizon, and its
Ylm component has the form Tlm ∼ exp(−iωu) for all l, m. The coordinate
u diverges as the horizon is approached. It is related to the proper time τ of
a free-fall observer crossing the horizon at τ = 0 via τ � −τ0 exp(−κu),
where κ = 1/2rs is the surface gravity of the black hole and the constant τ0

depends on the velocity of the free-fall observer.7 Hence the τ -dependence of
the wavepacket along the free-fall worldline is

T ∼ exp
(
i
ω

κ
ln(−τ)

)
(117)

for τ < 0, and it vanishes for τ > 0.
To find the positive frequency part we use a method introduced by Unruh

[31], which exploits the fact that a function analytic and bounded as |τ | → ∞ in
the lower half complex τ plane has purely positive frequency (see the discussion
after Eqn. (102)). The positive frequency extension of T (τ) from τ < 0 to
τ > 0 is thus obtained by analytic continuation of ln(−τ) in the lower half
complex τ -plane. This continuation is given by ln τ + iπ, provided the branch
cut of ln τ is taken in the upper half-plane. The positive frequency extension of
T (τ) to τ > 0 is therefore obtained by replacing ln(−τ) with ln τ +iπ in (117),
which yields T (−τ) exp(−πω/κ) for τ > 0. Similarly, the negative frequency
extension of ln(−τ) is given by ln τ − iπ, provided the branch cut of ln τ is
taken instead in the lower half-plane. The negative frequency extension of T (τ)
to τ > 0 is therefore T (−τ) exp(+πω/κ). Knowing these two extensions, we
proceed as follows.

Define a new wavepacket T̃ , with support only inside the horizon, by “flip-
ping" the wavepacket T (u) across the horizon (see Fig. 2). That is, T̃ van-
ishes outside the horizon and inside is constant on the outgoing null lines, with
T̃ (τ) = T (−τ) for τ > 0. The above argument shows that the wavepackets

T+ = c+(T + e−πω/κT̃ ) (118)

T− = c−(T + e+πω/κT̃ ) (119)

have positive and negative free-fall frequency respectively. The two constants
c± can be chosen so that T+ + T− agrees with T outside the horizon and
vanishes (as does T ) inside the horizon. This yields c− = (1− e2πω/κ)−1 and
c + /c− = −e2πω/κ.
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~
T+ πω/κe− T

Figure 2. Spacetime sketch of phase contours of the transmitted wavepacket T and its flipped
version T̃ on either side of the horizon (dashed line). The upper and lower signs in the exponent
of the factor exp(∓πω/κ) yield the positive and negative free-fall frequency extensions of T .

Now 〈T, T̃ 〉 = 0 (since the two wavepackets do not overlap) and 〈T̃ , T̃ 〉 =
−〈T, T 〉 (since the flipped wavepacket has the reverse τ -dependence), so using
(119) one finds

〈T−, T−〉 =
〈T, T 〉

1− e2πω/κ
. (120)

Inserting this in the expression (110) for the number operator expectation value
yields Hawking’s result,

〈Ψ|N(P )|Ψ〉 =
〈T, T 〉

e2πω/κ − 1
. (121)

The number expectation value (121) corresponds to the result for a thermal
state at the Hakwing temperature TH = �κ/2π, multiplied by the so-called
“greybody factor"

Γ = 〈T, T 〉. (122)

This factor is the probability for an excitation described by the the wavepacket
P to pile up just outside the event horizon when propagated backwards in time,
rather than being scattered back out to infinity. Equivalently, Γ is the probability
for the excitation with wavepacket P to fall across the horizon when sent in
forwards in time. This means that the black hole would be in detailed balance
with a thermal bath at the Hawking temperature. Yet another interpretation
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of Γ is the probability for an excitation originating close to the horizon with
normalized wavepacket T/〈T, T 〉1/2 to escape to infinity rather than scattering
back and falling into the black hole.

6.2.3 The quantum state. The local free-fall vacuum condition (106)
can be used to find the quantum state of the near horizon modes. We can do
that here just “pair by pair", since the field is noninteracting so the state is the
tensor product of the states for each outside/inside pair.

Using (119) the vacuum conditions become

a(T+)|Ψ〉 ∝
[
a(T )− e−πω/κa†(T̃ ∗)

]
|Ψ〉 = 0 (123)

a(T−)|Ψ〉 ∝
[
−a†(T ) + e+πω/κa(T̃ ∗)

]
|Ψ〉 = 0 (124)

(here we use ∗ instead of “bar" for complex conjugation of T̃ for typographical
reasons). Note that since T and T̃ have negative norm (as explained before
(120)), we have replaced the corresponding annihilation operators by minus the
creation operators of their conjugates. These equations define what is called
the Unruh vacuum |U〉 for these wavepacket modes.

Now let |B〉 denote the quantum state of the T and T̃ ∗ modes such that

a(T )|B〉 = 0 (125)

a(T̃ ∗)|B〉 = 0. (126)

This state is called the Boulware vacuum for these modes. In analogy with (66)
and (67) the vacuum conditions (123,124) imply that the Unruh and Boulware
vacua are related by

|U〉 ∝ exp
[
e−πω/κa†(T̂ )a†( ˆ̃

T ∗)
]
|B〉 (127)

where the hats denote the corresponding normalized wavepackets.
The Unruh vacuum is thus a two-mode squeezed state, analogous to the one

(92) found at each wavevector k in the case of cosmological pair creation. There
each pair had zero total momentum since the background was space translation
invariant. In the present case, each pair has zero total Killing energy, since the
background is time translation invariant. The mode T̃ has the same positive
Killing frequency as T has (because the Killing flow is symmetric under the
flipping across the horizon operation that defines T̃ ), however its conjugate has
negative Killing frequency, and therefore negative Killing energy.

The Unruh vacuum is a pure state, but because of its entangled structure it
becomes mixed when restricted to the exterior. To find that mixed state we
expand the exponential in a series. Denoting by |nR,L〉 the level-n excitations
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of the modes T and T̃ ∗ respectively, we have

|U〉 ∝
∑

n

e−nπω/κ|nL〉|nR〉. (128)

The reduced density matrix is thus

TrL|U〉〈U | ∝
∑

n

e−2nπω/κ|nR〉〈nR|, (129)

a thermal canonical ensemble at the Hawking temperature.
The essence of the Hawking effect is the correlated structure of the local

vacuum state at short distances near the horizon and its thermal character outside
the horizon. Given this, the outgoing flux at infinity is just a consequence of
the propagation of a fraction Γ (122) of each outgoing wavepacket from the
horizon to infinity.

6.3 Remarks

In this subsection we make a large number of brief remarks about related
topics that we have no time or space to go into deeply. Where no references are
given see the sources listed at the end of the Introduction.

6.3.1 Local temperature. The Hawking temperature refers to the Killing
energy, or, since the Schwarzschild Killing vector is normalized at infinity, to
the energy defined by a static observer at infinity. A static observer at fi-
nite radius will perceive the thermal state to have the blueshifted temperature
Tloc = TH/|ξ|, where |ξ| is the local norm of the Schwarzschild time transla-
tion Killing vector. At infinity this is just the Hawking temperature, whereas
it diverges as the horizon is approached. This divergence is due to the infinite
acceleration of the static observer at the horizon and it occurs even for an accel-
erated observer in the Minkowski vacuum of flat spacetime (see section 6.3.4
below). A freely falling observer sees nothing divergent.

6.3.2 Equilibrium state: Hartle-Hawking vacuum. A black hole will
be in equilibrium with an incoming thermal flux at the Hawking temperature.
The state that includes this incoming flux is called the Hartle-Hawking vacuum.

6.3.3 Stimulated emission. Suppose that the field is not in the free-fall
vacuum at the horizon (106), but rather that there are n excitations in the mode
T+, so that a†(T+)a(T+)|Ψ〉 = n〈T+, T+〉|Ψ〉. Then instead of (110) the
expectation value of the number operator will be

〈Ψ|N(P )|Ψ〉 = n〈T, T 〉+ (n + 1)〈T−, T−〉. (130)
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That is, if n quanta are present to begin with in the T+ mode, the observer at
infinity will observe in the P mode n + 1 times the usual number of Hawking
quanta, in addition to n times the greybody factor (122). To produce a state in
which the T+ mode is occupied in standard physics one would have to send
in particles of enormous energy just before the black hole formed[32]. As
explained in section 7.4.2, however, trans-Planckian considerations could in
principle allow stimulated emission at times long after the black hole formed.
(This has nothing to do with the standard late time stimulated emission of the
super-radiant modes of a rotating black hole[33, 34].)

6.3.4 Unruh effect. The argument given above for the structure of the
vacuum near a black hole horizon applies equally well to the Minkowski vacuum
near an acceleration horizon in flat spacetime, where it is known as the Unruh
effect. From a logical point of view it might be better to introduce the Unruh
effect first, and then export it to the neighborhood of a black hole horizon to
infer the Hawking effect. However, I chose here to go in the other direction

In the Unruh effect the boost Killing field ξB = x∂t + t∂x (which gener-
ates hyperbolic rotations) plays the role of the Schwarzschild time translation,
and the corresponding “temperature" is �/2π. The Minkowski vacuum is the
analog of the Hartle-Hawking equilibrium state, rather than the Unruh evapo-
rating state. A uniformly accelerated observer following a hyperbolic orbit of
the Killing field will perceive the Minkowski vacuum as a thermal state with
temperature �/2π|ξB|. The norm |ξB| is just (x2 − t2)1/2, which is also the
inverse of the acceleration of the orbit, hence the local temperature is the Unruh
temperature TU = �a/2π. As (x2− t2)1/2 →∞ this temperature is redshifted
to zero, so a Killing observer at infinity sees only the zero temperature vacuum.
As the acceleration horizon x = ±t is approached a Killing observer sees a
diverging temperature. The same temperature divergence is seen by a static ob-
server approaching the horizon of a black hole in the Unruh or Hartle-Hawking
states (cf. section 6.3.1 above).

6.3.5 Rotating black hole. A small portion of the event horizon of
a rotating black hole is indistinguishable from that of a Schwarzschild black
hole, so the Hawking effect carries over to that case as well. The frequency ω in
(121) should be replaced by the frequency with respect to the horizon generating
Killing field ∂t + ΩH∂φ, where ∂t and ∂φ are the asymptotic time translation
and rotation Killing vectors, and ΩH is the angular velocity of the horizon.
Thus ω is replaced by ω−mΩH , where m denotes the angular momentum. In
effect there is a chemical potential mΩH . See e.g. [35] for a discussion of the
quantization of the “super-radiant" modes with ω −mΩH < 0.
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6.3.6 de Sitter space. The reasoning in the black hole case applies
mutatis mutandis to de Sitter spacetime, where an observer is surrounded by a
horizon that is locally indistinguishable from a black hole horizon. This leads
to the temperature of deSitter spacetime[25, 26].

6.3.7 Higher spin fields. The Hawking effect occurs also for higher
spin fields, the only difference being (1) the greybody factors are different,
and (2) for half-integer spin fields the Fermi distribution rather than the Bose
distribution arises for the Hawking emission.

6.3.8 Interacting fields. Our discussion here exploited the free field
equation of motion, but the Hawking effect occurs for interacting fields as well.
The essence, as in the free field case, is the Unruh effect, the interacting version
of which can easily be established with the help of a Euclidean functional
integral representation of the Minkowski vacuum[36]. (This result was found a
decade earlier, at about the same time as the original Unruh effect, via a theorem
[37] in the context of axiomatic quantum field theory, although the interpretation
in terms of the thermal observations of uniformly accelerated observers was
not noted until later[38].) The direct analog for the Hawking effect involves
a Euclidean functional integral expression for the interacting Hartle-Hawking
equilibrium state (for an introduction see [39, 40] and references therein).

More directly, in an asymptotically free theory one can presumably use the
free field analysis to discover the structure of the vacuum near the horizon as in
the free field case. The propagation of the field from that point on will involve
the interactions. If the Hawking temperature is much higher than the scale Λ
of asymptotic freedom then free particles will stream away from the black hole
and subsequently be “dressed" by the interactions and fragment into asymptotic
states[41, 42]. If the Hawking temperature is much lower than Λ then it is not
so clear (to me at least) how to determine what is emitted.

6.3.9 Stress-energy tensor. The Unruh and Hartle-Hawking states are
“regular" on the horizon, i.e. they look like the Minkowski vacuum at short dis-
tances. (Recall that it is precisely the local vacuum property (106) or (123,124)
that determines the thermal state of the outgoing modes at infinity.) Hence
the mean value of the stress energy tensor is finite. The Boulware state |B〉
referred to above is obtained by removing the T , T̃ ∗ pair excitations. This pro-
duces a state with a negative mean energy density that diverges as the horizon
is approached. In fact, if even just one Hawking quantum is removed from the
Unruh state |U〉 to obtain the Boulware state for that mode, a negative energy
density divergence will be produced at the horizon. This can be viewed as the
result of the infinite blueshift of the negative energy “hole". That is quite odd
in the context of flat space, since the Minkowski vacuum should be the lowest
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energy state, hence any other state should have higher energy. The explanation
is that there is a positive energy density divergence on the horizon that more
than compensates the negative energy off the horizon[43].

6.3.10 Back-reaction. As previously noted the Unruh state corresponds
to an entangled state of positive and negative Killing energy excitations. As
the positive energy excitations escape to infinity, there must be a corresponding
negative energy flux into the black hole. Studies of the mean value of the stress
tensor confirm this. Turning on the gravitational dynamics, this would lead
to a mass loss for the black hole via the Einstein equation. The backreaction
driven by the mean value is called the “semi-classical" evolution. There are
quantum fluctuations about this mean evolution on a time and length scale of
the Schwarzschild radius, unless a large number of matter fields is invoked to
justify a large N limit that suppresses the quantum fluctuations.

6.3.11 Statistical entropy. The entangled structure (128) of the Unruh
state leads to a mixed state (129) when observations are restricted to the region
outside the horizon. The “entanglement entropy" −Trρ ln ρ of this state is the
same as the thermal entropy of the canonical ensemble (129). Summing over all
modes this entropy diverges due to the infinite density of modes. To characterize
the divergence one can use the thermodynamic entropy density s ∝ T 3 of a
bath of radiation at temperature T . The local temperature measured by a static
observer (cf. section 6.3.1) is given by

Tloc = TH/|ξ| � TH/κ� = 1/2π�, (131)

where � is the proper distance to the horizon on a surface of constant t, and the
relation κ = (d|ξ|/d�)H has been used. Thus the entropy diverges like

S =
∫

s dv ∼
∫

T 3
loc d�d2A ∼ A/�2

c , (132)

where �c is a cutoff length above the horizon.8

What is the meaning of this entropy? It seems clear on the one hand that
it must be included in the black hole entropy, but on the other hand it must
somehow be meaningfully cut off. It is natural to try to understand the scaling
of the black hole entropy with area in this way, but this is only the contribution
from one quantum field, and there is also the classical contribution from the
gravitational field itself that emerges from the partition function for quantum
gravity[47]. The apparent dependence on the number of fields is perhaps re-
moved by the corresponding renormalization of Newton’s constant[48]. (The
last reference in [48] is a review.) However this is regularization dependent
and hence difficult to interpret physically, and moreover at least in dimensional
regularization vector fields and some non-minimally coupled scalars contribute
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negatively to renormalizing G, which does not seem to match the entangle-
ment entropy. There has been much work in this area but it remains to be fully
understood.

6.3.12 Information loss. Two types of potential information loss oc-
cur in black hole physics. First, when something falls into a black hole any
information it carries is apparently lost to the outside world. Second, when a
black hole radiates Hawking quanta, each radiated quantum is entangled with a
partner lying inside the horizon, as Eqn. (128) shows. As long as the black hole
does not evaporate completely, all information remains available on a spacelike
surface that crosses the horizon and enters the black hole. If on the other hand
the black hole evaporates completely, then no single spacelike surface stretching
to infinity and filling “all space" can capture all information, according to the
semi-classical analysis of the Hawking effect. Rather a disconnected surface
behind the horizon must be included. The information on this disconnected
surface flows into the strong curvature region at the singularity, where its fate
is not yet understood.

This situation has generated much discussion. Some researchers (myself
included) see the information loss to the outside world not as a sign of the
breakdown of quantum mechanics but just as a consequence of the mutability
of spatial topology in quantum gravity. When a black hole is about to evaporate
completely it looks very small to the world outside the horizon. However this
outside smallness has absolutely nothing to do with the size of the region inside
available for storing information. Let us look into this a bit more.

Consider for example the spacelike singularity atr = 0 inside the Schwarzschild
black hole. The metric in Eddington-Finkelstein coordinates is

ds2 = (1− rs/r)dv2 − 2dvdr − r2(dθ2 + sin2 θdφ2), (133)

where v = t + r∗ is the advanced time coordinate defined below (113). Inside
the horizon, where r < rs, a line of constant r, θ, φ is spacelike, and has a proper
length L(r,Δv) = (rs/r − 1)1/2Δv. This goes to infinity as the singularity
is approached, for any interval of advanced time Δv. Hence there is no dearth
of space inside. On the other hand, the transverse angular dimensions go to
zero size, and also we do not know how to describe the spacetime too near to
the singularity. Therefore let’s stop at the radius where the curvature ∼ rs/r3

is equal to the Planck curvature, i.e at r ∼ r
1/3
s in Planck units. Then then

proper length goes as L(r1/3
s , Δv) ∼ r

1/3
s Δv. For a solar mass black hole we

have rs ∼ 1 km ∼ 1038 in Planck units, so r
1/3
s ∼ 1013. That means that for

an external advanced time of Δv = 1 second, the proper length inside is one
million light years. After a day or so, the length is the size of the universe, and
so on over the Hawking lifetime r3

s ∼ 10114.
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What happens to the future of this spacelike r = r
1/3
s cylinder inside the black

hole is governed by quantum gravity. We don’t know what form the evolution
takes. It is conceivable that time just stops running, like a frozen engine,
producing a boundary of spacetime. It seems much more likely however that
spacetime persists beyond, either into “quantum foam" or into a plump baby
universe (see e.g. [49] and references therein) or universes[50]. In any of these
scenarios, the tiny outside size of a black hole at the end stage of Hawking
evaporation is no indication of the information carrying capacity of the interior.

Others believe that the validity of quantum mechanics requires that all infor-
mation winds up available on the exterior slice after the evaporation. Results
from string theory are often invoked to support this viewpoint. (For a critique of
these arguments see [51].) If true, it would require some breakdown of the semi-
classical description where none seems to be otherwise called for. The role of
ultra high frequencies in the Hawking effect is often brought up in this context,
however they are irrelevant since the derivation of the correlated structure of
the vacuum and the Hawking effect does not need to access those frequencies.
For more on this see the discussion of the trans-Planckian question in section
7.

6.3.13 Role of the black hole collapse. The Hawking flux continues in
a steady state long after the collapse that forms a black hole, which suggests
that the collapse phase has nothing to do with the Hawking effect. Indeed the
derivation given above makes use of only the free-fall vacuum conditions near
the horizon, and the collapse phase plays no role. On the other hand if, as
Hawking originally did, we follow the positive Killing frequency wavepacket
T all the way backwards in time, it would go through the collapse phase and
back out to infinity where Killing frequency and free-fall frequency coincide.
Were it not for the time dependence of the background during the collapse,
there would be no change of the Killing frequency, so there would be no neg-
ative frequency part of the ingoing wavepacket and there would be no particle
creation. As discussed in the following section this propagation through the
collapse phase invokes ultra high frequency field modes, and therefore may not
even be physically relevant. However it seems clear is that whatever physics
delivers the outgoing vacuum near the horizon, it must involve some violation
of the time translation symmetry of the classical black hole background, even
if it does not involve the collapse phase. In the lattice model of section 7.3 the
violation arises from microscopic time dependence of the lattice spacing. In
quantum gravity it may come just from the quantum gravitational fluctuations
(see section 7.4.3).
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7. The trans-Planckian question

A deep question arises on account of the infinite redshift at the black hole
horizon: do the outgoing modes that carry the Hawking radiation really emerge
from a reservoir of modes with frequency arbitrarily far beyond the Planck
frequency just outside the horizon, or is there another possibility? Does the
existence or properties of the Hawking effect depend on the existence of such
a trans-Planckian reservoir?

The reasoning leading to the expression (128) for the Unruh state in terms
of positive Killing frequency modes is largely shielded from this question. The
essential input is the free-fall vacuum conditions (106), which can be applied
at any length or time scale much shorter than the Schwarzschild radius and
inverse surface gravity (which are roughly the same unless the black hole is
near extremally rotating or charged). There is no need to appeal to Planckian
or trans-Planckian frequencies.

From this persepctive it is clear that, as far as the derivation of the Hawking
effect is concerned, the only question is whether or not the free-fall vacuum in
fact arises at short distances near the horizon from the initial conditions before
collapse. As mentioned earlier, the modes with frequencies much higher than
the inverse of the collapse time scale would be expected to remain unexcited.
Nevertheless, in standard relativistic field theory these modes arise from trans-
Planckian modes.

Consider an outgoing wavepacket near the horizon and peaked around fre-
quency ωff

1 as measured by a free-fall observer crossing the horizon at the
advanced time v1. At an earlier time v2 = v1 − Δv, the wavepacket would
be blueshifted and squeezed closer to the horizon, with exponentially higher
free-fall frequency,

ωff
2 /ωff

1 ∼ eκΔv = eΔv/2Rs . (134)

For a solar mass black hole and Δv = 2 seconds, the ratio is exp(105).
To predict the state of the positive free-fall frequency modes T+ and T−

from the initial state thus seems to require trans-Planckian physics. This is
a breakdown of the usual separation of scales invoked in the application of
effective field theory and it leaves some room for doubt[52, 30, 53] about the
existence of the Hawking effect.

While the physical arguments for the Hawking effect do seem quite plausible,
the trans-Planckian question is nevertheless pressing. After all, there are reasons
to suspect that the trans-Planckian modes do not even exist. They imply an
infinite contribution to black hole entanglement entropy from quantum fields,
and they produce other divergences in quantum field theory that are not desirable
in a fundamental theory.

The trans-Planckian question is really two-fold:
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i Is the Hawking effect universal, i.e. insensitive to short distance physics,
or at least can it be reliably derived in a quantum gravity theory with
acceptable short distance behavior?

ii If there is no trans-Planckian reservoir, from where do the outgoing black
hole modes arise?

7.1 String theory viewpoint

String theory has made impressive progress towards answering the first ques-
tion, at least for some special black holes. In particular[54, 55], some near-
extremal black holes become well-understood D-brane configurations in the
weak coupling limit, and supersymmetry links the weak coupling to strong
coupling results. Thus the Hawking effect can be reliably analyzed in a full
quantum gravity theory. By a rather remarkable and unexpected correspon-
dence the computations yield agreement with the semi-classical predictions, at
least in the long wavelength limit. Moreover, the D-brane entropy is under-
stood in terms of the counting of microstates, and agrees with the correspond-
ing black hole entropy at strong coupling, just as the supersymmetry reasoning
says it should. From yet another angle, the AdS/CFT duality in string theory
offers other support[56]. There the Hawking effect and black hole entropy
are interpreted in terms of a thermal state of the CFT (a conformally invariant
super-Yang-Mills theory). However, neither of these approaches from string
theory has so far been exploited to address the origin of the outgoing modes,
since a local spacetime picture of the black hole horizon is lacking. This seems
to be a question worth pursuing.

7.2 Condensed matter analogy

Condensed matter physics provides an analogy for effective field theory
with a fundamental cutoff, hence it can be used to explore the consequences
of a missing trans-Planckian reservoir. (For a review of these ideas see [57],
and for a very brief summary see [58].) The first such black hole analog was
Unruh’s sonic black hole, which consists of a fluid with an inhomogeneous
flow exceeding the speed of sound at a sonic horizon. A molecular fluid does
not support wavelengths shorter than the intermolecular spacing, hence the
sonic horizon has no “trans-molecular" reservoir of outgoing modes. Unruh
found that nevertheless outgoing modes are produced, by a process of “mode
conversion" from ingoing to outgoing modes. This phenomenon comes about
already because of the alteration of the dispersion relation for the sound waves.
It has been studied in various field theoretic models, however none are fully
satisfactory since the unphysical short distance behavior of the field is always
eventually called into play. The model that most closely mirrors the fluid
analogy is a falling lattice[59] which has sensible short distance physics. The
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mode conversion on the lattice involves what is known as a Bloch oscillation
in the condensed matter context. Here I will briefly explain how it works.

7.3 Hawking effect on a falling lattice

The model is 2d field theory on a lattice of points falling freely into a black
hole. We begin with the line element in Gaussian normal coordinates,

ds2 = dt2 − a2(t, z) dz2. (135)

A line of constant z is an infalling geodesic, at rest at infinity, and the “local
scale factor" a(t, z) satisfies

a(t, z →∞) = 1 (136)

a(0, z) = 1 (137)

a(t, zH(t)) ∼ κt for κt >∼ 1, (138)

expressing the facts that the metric is asymptotically flat, the coordinate z mea-
sures proper distance on the t = 0 time slice, and at the horizon zH(t) the time
scale for variations of the local scale factor is the surface gravity κ. The specific
form of a(t, z) is not required for the present discussion. (For details see [59].)
A scalar field on this spacetime is governed by the action

S =
1
2

∫
d2x
√−ggμν ∂μϕ∂νϕ (139)

=
1
2

∫
dtdz

[
a(z, t)(∂tϕ)2 − 1

a(t, z)
(∂zϕ)2

]
. (140)

Now we discretize the z coordinate with spacing δ:

z → zm = mδ, ∂zϕ→ Dϕ =
ϕm+1 − ϕm

δ
, (141)

where ϕm = ϕ(zm). The proper distance between the lattice points zm and
zm+1 on a constant t slice is approximately a(t, zm)δ. At t = 0 this is just δ
everywhere, that is the points start out equidistant. However, since they are on
free fall trajectories at different distances from the horizon, they spread out as
time goes on. In particular the lattice spacing at the horizon grows with time
like ∼ κt.

The discretized action is

Slattice =
1
2

∫
dt
∑
m

[
am(t)(∂tϕm)2 − 2(Dϕm(t))2

am+1(t) + am(t)

]
. (142)

The discrete field equations produce the dispersion relation

ωff(k) = ± 2
a(z, t)δ

sin(kδ/2) (143)
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for a mode of the form exp(−iωfft + ikz), provided ∂ta � ωff and ∂za �
k. (See Fig. 3.) For small wave numbers the lattice dispersion agrees with
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-2

-1

1

2

Figure 3. Dispersion relation ωδ = ±2 sin(kδ/2) plotted vs. kδ. Wavevectors differing by
2π/δ are equivalent. Only the Brillouin zone |k| ≤ π/δ is shown.

the continuum, however it is periodic in translation of k by 2π/δ. At the
wavenumber k = π/δ there is a maximum frequency 2/aδ and vanishing
group velocity dω/dk . Beyond that wavenumber the group velocity reverses,
and k is equivalent to k − 2π/δ which lies in the Brillouin zone |k| ≤ π/δ.

On the lattice the trans-Planckian redshift cannot take place, because of the
lattice cutoff. Hence the outgoing modes—provided they exist—must come
from ingoing modes. Both WKB “eikonal" trajectory and numerical evolution
of the discrete wave equation confirm that indeed this occurs. The behavior
of a typical wavepacket throughout the process of bouncing off the horizon is
illustrated in Fig. 4. The real part of the wavepacket is plotted vs. the static
coordinate at several different times. Following backwards in time, the packet
starts to squeeze up against the horizon and then a trailing dip freezes and devel-
ops oscillations that grow until they balloon out, forming into a compact high
frequency wavepacket that propagates neatly away from the horizon backwards
in time.

The mode conversion can be understood as follows, following a wavepacket
peaked around a long wavelength λ 
 δ backwards in time. The wavepacket
blueshifts as it approaches the horizon, eventually enough for the lattice struc-
ture and therefore the curvature of the dispersion relation to be felt. At this
point its group velocity begins to drop. In the WKB calculation the wavepacket
motion reverses direction at a turning point outside the horizon. This occurs
before its group velocity in the falling lattice frame is negative, so it is falling
in at that stage because its outward velocity is not great enough to overcome
the infalling of the lattice.

As the wavepapcket continues backwards in time now away from the black
hole its wavevector continues to grow until it goes past the edge of the Brillouin
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Figure 4. A typical wavepacket evolution on the lattice. The oscillations of the incoming
wavepacket are too dense to resolve in the plots.

zone, thus becoming an ingoing mode also in the lattice frame. This reversal
of group velocity is precisely what happens in a “Bloch oscillation" when a
quantum particle in a periodic potential is accelerated. As the turnaround is
occuring, another equally important effect is that the time-dependence of the
underlying lattice is felt. Thus, unlike in the continuum limit of this stationary
background, the Killing frequency of the wavepacket is no longer conserved.

Following the wavepacket all the way backwards in time out to the asymptotic
region, it winds up with a short wavelength of order δ and a large frequency
of order 1/δ. This frequency shift is absolutely critical to the existence of
the outgoing modes, since an ingoing low frequency mode would simply fall
across the horizon. Only the “exotic" modes with sufficiently high frequency
will undergo the mode conversion process.

The Hawking flux is determined by the negative frequency part of the in-
going wavepacket. The eikonal approximation just described does not capture
the negative frequency mixing which occurs during the turnaround at the hori-
zon. Just as in the continuum, the wavepacket squeezed against the horizon
has both positive and negative free-fall frequency components. As these com-
ponents propagate backwards in time away from the horizon, their frequency
slowly shifts, but their relative amplitude remains fixed. Hence the norm of
the negative freqency part of the incoming wavepacket turns out to be just
what the continuum Hawking effect indicates, with small lattice corrections.
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Put differently, the infalling vacuum is adiabatically modified by the underly-
ing microscopic time dependence of the lattice in such a way that the Unruh
conditions (106) on the state of the outgoing modes at the horizon are satisfied.

7.4 Remarks

7.4.1 Finite Entanglement entropy. Since the lattice has a short dis-
tance cutoff the entanglement entropy between the modes just inside and outside
of the horizon is finite at any time. As illustrated in Figure 5, any given entan-
gled pair of vacuum modes began in the past outside the horizon, propagated
towards the horizon where it was “split", and then separated, with one half
falling in and the other converted into an outgoing mode. As time goes on, new
pairs continually propagate in and maintain a constant entanglement entropy.

trans-
planckian
ancestors

planckian
ancestors

Figure 5. The ancestors of a Hawking quantum and its negative energy partner. In standard
relativistic field theory the ancestors are trans-Planckian and pass through the collapsing matter
at the moment of horizon formation. On the lattice the ancestors ar Planckian and propagate in
towards the black hole at late times.

7.4.2 Stimulated emission of Hawking radiation at late times. As
discussed in section 6.3.3, if the Unruh vacuum conditions (106) do not hold at
the horizon then stimulated emission of Hawking radiation will occur. In the
falling lattice model, these horizon modes arise from ingoing modes long after
the black hole formed as shown in Figure 5. Thus it is possible to stimulate the
emission of Hawking radiation by sending in radiation at late times, in contrast
to the usual continuum case of a static black hole. This seems a generic feature of
theories with a cutoff, for which the outgoing modes must arise from modes that
are ingoing after the collapse. (Something like it should happen also in string
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theory if, as many suppose, the trans-Planckian reservoir at the horizon is also
eliminated there.) Note however that the linear model described here is surely
a gross oversimplification. Turning on the gravitational interactions between
the modes and the background, one is led to a picture in which the modes
“dissipate" when propagated backwards in time to the Planckian regime. Hence
what really produces the outgoing Hawking quantum must be a complicated
collective mode of the interacting vacuum that “anti-dissipates" as it approaches
the horizon and turns around. Calculations exploring this in quantum gravity
were carried out in [60].

7.4.3 Lattice time dependence and geometry fluctuations. The mi-
croscopic time dependence of the lattice, i.e. the slow spreading of the lattice
points, plays a critical role in transforming an ingoing mode with high Killing
frequency to an outgoing mode with low Killing frequency, and in allowing for
mixing of positive and negative frequencies despite the stationarity of the con-
tinuum black hole background. This suggests the conjecture that in quantum
gravity the underlying quantum fluctuations of the geometry that do not share
the stationarity of the black hole background metric might play this role. A step
towards understanding this might be provided by a two or three dimensional
version of the lattice model, in which the density of lattice points remains fixed
but their microscopic positions fluctuate. This is precisely what happens with
an inhomogeneous flow of a real molecular fluid. The quantum gravity analysis
of [60] lends some support to this conjecture, though it is not clear whether the
Lorentz violation seen there is just an artifact of a non-covariant cutoff or a
feature introduced by the global geometry of the black hole spacetime.

7.5 Trans-Planckian question in cosmology

The modes producing the inflationary perturbation spectrum (cf. section
5.4.1) redshift exponentially from their trans-Planckian origins. It has been sug-
gested that this might leave a visible imprint on the perturbation spectrum, via a
modified high frequency dispersion relation and/or a modified initial quantum
state for the field modes. As illustrated by the Hawking process on the lattice
however, as long as the redshifting is adiabatic on the timescale of the modes,
they would remain in their ground states. If the Hubble rate H during inflation
were much less than the Planck mass MP (or whatever scale the modified dis-
persion sets in) the modes could be treated in the standard relativistic manner
by the time the perturbation spectrum is determined. At most one might expect
an effect of order H/MP , and some analyses suggest the effect will be even
smaller. This all depends on what state the modes are in. They cannot be too far
from the vacuum, since otherwise running them backwards in time they would
develop an exponentially growing energy density which would be incompatible
with the inflationary dynamics. Hence it seems the best one can say at present
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is that there may be room for noticable deviations from the inflationary predic-
tions, if H/MP is large enough. (See for example [61] and references therein
for discussions of these issues.)

Acknowledgments

I would like to thank the organizers of the CECS School on Quantum Grav-
ity both for a stimulating, enjoyable experience, and for extraordinary patience.
I’m also grateful to Brendan Foster, Bei-Lok Hu, and Albert Roura for helpful
corrections, suggestions, and questions about these notes. This work was sup-
ported in part by the NSF under grants PHY-9800967 and PHY-0300710 at the
University of Maryland.

Notes

1. In a more abstract algebraic approach, one does not require at this stage a representation but rather
requires that the quantum variables are elements of an algebra equipped with a star operation satisfying certain
axioms. For quantum mechanics the algebraic approach is no different from the concrete representation
approach, however for quantum fields the more general algebraic approach turns out to be necessary to have
sufficient generality. In these lectures I will ignore this distinction. For an introduction to the algebraic
approach in the context of quantum fields in curved spacetime see [6]. For a comprehensive treatment of the
algebraic approach to quantum field theory see [20].

2. See footnote 7.5.

3. Alex Maloney pointed out that it can be evaluated by expressing the binomial coefficient 2n!/(n!)2

as the contour integral
∮

(dz/2πiz)(z + 1/z)2n and interchanging the order of the sum with the integral.

4. The two inverse factors of a coming from (78) are cancelled by the a3 in the volume element and
the a−1 in the relation ∂/∂t = a−1∂/∂η

5. The Cosmic Microwave Background observations supporting this account of primordial perturbations
thus amount to quantum gravity observations of a limited kind.

6. The general solution is c1a + c2a
∫ η dη/a2, which is c3η−1 + c4η2 in de Sitter space.

7. This can be obtained by noting from the third form of the line element (113) that along a timelike
line (1 − rs/r)u̇v̇ = 1, where the dots represent the proper time derivative. As the horizon is crossed v̇ is
finite, hence u̇ ∼ (r − rs)−1 ∼ e−r∗/rs = e(u−v)/2rs ∼ eκu.

8. Sorkin[44] introduced the notion of black hole entanglement entropy, and with collaborators[45]
computed it in the presence of a regulator. A mode-by-mode version of the thermal entropy calculation was
first done by ’t Hooft[46], who called it the “brick wall model" because of a Dirichlet boundary condition
applied at �c.
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Abstract We describe the holographic correspondence between field theories and string/M
theory, focusing on the relation between compactifications of string/M theory
on Anti-de Sitter spaces and conformal field theories. We review the back-
ground for this correspondence and discuss its motivations and the evidence for
its correctness. We describe the main results that have been derived from the
correspondence in the regime that the field theory is approximated by classical or
semiclassical gravity. We focus on the case of the N = 4 supersymmetric gauge
theory in four dimensions. These lecture notes are based on the Review written
by O. Aharony, S. Gubser, J. Maldacena, H. Ooguri and Y. Oz, [1].

1. General Introduction

These lecture notes are taken out of the review [1]. A more complete set of
references is given there.

Even though though string theory is normally used as a theory of quantum
gravity, it is not how string theory was originally discovered. String theory was
discovered in an attempt to describe the large number of mesons and hadrons that
were experimentally discovered in the 1960’s. The idea was to view all these
particles as different oscillation modes of a string. The string idea described
well some features of the hadron spectrum. For example, the mass of the
lightest hadron with a given spin obeys a relation like m2 ∼ TJ2 +const. This
is explained simply by assuming that the mass and angular momentum come
from a rotating, relativistic string of tension T . It was later discovered that
hadrons and mesons are actually made of quarks and that they are described by
QCD.

QCD is a gauge theory based on the group SU(3). This is sometimes stated
by saying that quarks have three colors. QCD is asymptotically free, meaning
that the effective coupling constant decreases as the energy increases. At low
energies QCD becomes strongly coupled and it is not easy to perform calcu-
lations. One possible approach is to use numerical simulations on the lattice.
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This is at present the best available tool to do calculations in QCD at low en-
ergies. It was suggested by ’t Hooft that the theory might simplify when the
number of colors N is large [7]. The hope was that one could solve exactly
the theory with N = ∞, and then one could do an expansion in 1/N = 1/3.
Furthermore, as explained in the next section, the diagrammatic expansion of
the field theory suggests that the large N theory is a free string theory and that
the string coupling constant is 1/N . If the case with N = 3 is similar to the case
with N =∞ then this explains why the string model gave the correct relation
between the mass and the angular momentum. In this way the large N limit
connects gauge theories with string theories. The ’t Hooft argument, reviewed
below, is very general, so it suggests that different kinds of gauge theories will
correspond to different string theories. In this review we will study this corre-
spondence between string theories and the large N limit of field theories. We
will see that the strings arising in the large N limit of field theories are the
same as the strings describing quantum gravity. Namely, string theory in some
backgrounds, including quantum gravity, is equivalent (dual) to a field theory.

Strings are not consistent in four flat dimensions. Indeed, if one wants to
quantize a four dimensional string theory an anomaly appears that forces the
introduction of an extra field, sometimes called the “Liouville” field [8]. This
field on the string worldsheet may be interpreted as an extra dimension, so that
the strings effectively move in five dimensions. One might qualitatively think
of this new field as the “thickness” of the string. If this is the case, why do we
say that the string moves in five dimensions? The reason is that, like any string
theory, this theory will contain gravity, and the gravitational theory will live in
as many dimensions as the number of fields we have on the string. It is crucial
then that the five dimensional geometry is curved, so that it can correspond to
a four dimensional field theory, as described in detail below.

The argument that gauge theories are related to string theories in the large N
limit is very general and is valid for basically any gauge theory. In particular we
could consider a gauge theory where the coupling does not run (as a function
of the energy scale). Then, the theory is conformally invariant. It is quite hard
to find quantum field theories that are conformally invariant. In supersymmet-
ric theories it is sometimes possible to prove exact conformal invariance. A
simple example, which will be the main example in this review, is the super-
symmetric SU(N) (or U(N)) gauge theory in four dimensions with four spinor
supercharges (N = 4). Four is the maximal possible number of supercharges
for a field theory in four dimensions. Besides the gauge fields (gluons) this
theory contains also four fermions and six scalar fields in the adjoint repre-
sentation of the gauge group. The Lagrangian of such theories is completely
determined by supersymmetry. There is a global SU(4) R-symmetry that ro-
tates the six scalar fields and the four fermions. The conformal group in four
dimensions is SO(4, 2), including the usual Poincaré transformations as well
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as scale transformations and special conformal transformations (which include
the inversion symmetry xμ → xμ/x2). These symmetries of the field theory
should be reflected in the dual string theory. The simplest way for this to happen
is if the five dimensional geometry has these symmetries. Locally there is only
one space with SO(4, 2) isometries: five dimensional Anti-de-Sitter space, or
AdS5. Anti-de Sitter space is the maximally symmetric solution of Einstein’s
equations with a negative cosmological constant. In this supersymmetric case
we expect the strings to also be supersymmetric. We said that superstrings
move in ten dimensions. Now that we have added one more dimension it is
not surprising any more to add five more to get to a ten dimensional space.
Since the gauge theory has an SU(4) � SO(6) global symmetry it is rather
natural that the extra five dimensional space should be a five sphere, S5. So,
we conclude that N = 4 U(N) Yang-Mills theory could be the same as ten
dimensional superstring theory on AdS5 × S5 [9]. Here we have presented a
very heuristic argument for this equivalence; later we will be more precise and
give more evidence for this correspondence.

The relationship we described between gauge theories and string theory on
Anti-de-Sitter spaces was motivated by studies of D-branes and black holes in
strings theory. D-branes are solitons in string theory [10]. They come in various
dimensionalities. If they have zero spatial dimensions they are like ordinary
localized, particle-type soliton solutions, analogous to the ’t Hooft-Polyakov
[11, 12] monopole in gauge theories. These are called D-zero-branes. If they
have one extended dimension they are called D-one-branes or D-strings. They
are much heavier than ordinary fundamental strings when the string coupling
is small. In fact, the tension of all D-branes is proportional to 1/gs, where gs is
the string coupling constant. D-branes are defined in string perturbation theory
in a very simple way: they are surfaces where open strings can end. These
open strings have some massless modes, which describe the oscillations of the
branes, a gauge field living on the brane, and their fermionic partners. If we have
N coincident branes the open strings can start and end on different branes, so
they carry two indices that run from one to N . This in turn implies that the low
energy dynamics is described by a U(N) gauge theory. D-p-branes are charged
under p + 1-form gauge potentials, in the same way that a 0-brane (particle)
can be charged under a one-form gauge potential (as in electromagnetism).
These p + 1-form gauge potentials have p + 2-form field strengths, and they
are part of the massless closed string modes, which belong to the supergravity
(SUGRA) multiplet containing the massless fields in flat space string theory
(before we put in any D-branes). If we now add D-branes they generate a
flux of the corresponding field strength, and this flux in turn contributes to the
stress energy tensor so the geometry becomes curved. Indeed it is possible to
find solutions of the supergravity equations carrying these fluxes. Supergravity
is the low-energy limit of string theory, and it is believed that these solutions
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may be extended to solutions of the full string theory. These solutions are very
similar to extremal charged black hole solutions in general relativity, except
that in this case they are black branes with p extended spatial dimensions. Like
black holes they contain event horizons.

If we consider a set of N coincident D-3-branes the near horizon geometry
turns out to be AdS5×S5. On the other hand, the low energy dynamics on their
worldvolume is governed by a U(N) gauge theory withN = 4 supersymmetry
[13]. These two pictures of D-branes are perturbatively valid for different
regimes in the space of possible coupling constants. Perturbative field theory
is valid when gsN is small, while the low-energy gravitational description is
perturbatively valid when the radius of curvature is much larger than the string
scale, which turns out to imply that gsN should be very large. As an object
is brought closer and closer to the black brane horizon its energy measured by
an outside observer is redshifted, due to the large gravitational potential, and
the energy seems to be very small. On the other hand low energy excitations
on the branes are governed by the Yang-Mills theory. So, it becomes natural
to conjecture that Yang-Mills theory at strong coupling is describing the near
horizon region of the black brane, whose geometry is AdS5 × S5. The first
indications that this is the case came from calculations of low energy graviton
absorption cross sections [14, 15, 16]. It was noticed there that the calculation
done using gravity and the calculation done using super Yang-Mills theory
agreed. These calculations, in turn, were inspired by similar calculations for
coincident D1-D5 branes. In this case the near horizon geometry involves
AdS3 × S3 and the low energy field theory living on the D-branes is a 1+1
dimensional conformal field theory. In this D1-D5 case there were numerous
calculations that agreed between the field theory and gravity. First black hole
entropy for extremal black holes was calculated in terms of the field theory in
[17], and then agreement was shown for near extremal black holes [18, 19]
and for absorption cross sections [20, 21, 22]. More generally, we will see
that correlation functions in the gauge theory can be calculated using the string
theory (or gravity for large gsN ) description, by considering the propagation
of particles between different points in the boundary of AdS, the points where
operators are inserted [23, 24].

Supergravities on AdS spaces were studied very extensively, see [25, 26] for
reviews. See also [2, 3] for earlier hints of the correspondence.

One of the main points of these lectures will be that the strings coming from
gauge theories are very much like the ordinary superstrings that have been
studied during the last 20 years. The only particular feature is that they are
moving on a curved geometry (anti-de Sitter space) which has a boundary at
spatial infinity. The boundary is at an infinite spatial distance, but a light ray can
go to the boundary and come back in finite time. Massive particles can never
get to the boundary. The radius of curvature of Anti-de Sitter space depends on
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N so that large N corresponds to a large radius of curvature. Thus, by taking N
to be large we can make the curvature as small as we want. The theory in AdS
includes gravity, since any string theory includes gravity. So in the end we claim
that there is an equivalence between a gravitational theory and a field theory.
However, the mapping between the gravitational and field theory degrees of
freedom is quite non-trivial since the field theory lives in a lower dimension. In
some sense the field theory (or at least the set of local observables in the field
theory) lives on the boundary of spacetime. One could argue that in general
any quantum gravity theory in AdS defines a conformal field theory (CFT) “on
the boundary”. In some sense the situation is similar to the correspondence
between three dimensional Chern-Simons theory and a WZW model on the
boundary [27]. This is a topological theory in three dimensions that induces a
normal (non-topological) field theory on the boundary. A theory which includes
gravity is in some sense topological since one is integrating over all metrics and
therefore the theory does not depend on the metric. Similarly, in a quantum
gravity theory we do not have any local observables. Notice that when we say
that the theory includes “gravity on AdS” we are considering any finite energy
excitation, even black holes in AdS. So this is really a sum over all spacetimes
that are asymptotic to AdS at the boundary. This is analogous to the usual flat
space discussion of quantum gravity, where asymptotic flatness is required, but
the spacetime could have any topology as long as it is asymptotically flat. The
asymptotically AdS case as well as the asymptotically flat cases are special
in the sense that one can choose a natural time and an associated Hamiltonian
to define the quantum theory. Since black holes might be present this time
coordinate is not necessarily globally well-defined, but it is certainly well-
defined at infinity. If we assume that the conjecture we made above is valid,
then the U(N) Yang-Mills theory gives a non-perturbative definition of string
theory on AdS. And, by taking the limit N → ∞, we can extract the (ten
dimensional string theory) flat space physics, a procedure which is in principle
(but not in detail) similar to the one used in matrix theory [28].

The fact that the field theory lives in a lower dimensional space blends in
perfectly with some previous speculations about quantum gravity. It was sug-
gested [29, 30] that quantum gravity theories should be holographic, in the
sense that physics in some region can be described by a theory at the boundary
with no more than one degree of freedom per Planck area. This “holographic”
principle comes from thinking about the Bekenstein bound which states that
the maximum amount of entropy in some region is given by the area of the
region in Planck units [31]. The reason for this bound is that otherwise black
hole formation could violate the second law of thermodynamics. We will see
that the correspondence between field theories and string theory on AdS space
(including gravity) is a concrete realization of this holographic principle.

Other reviews of this subject are [32, 33, 34, 35, 1].
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2. The Correspondence

In this section we will present an argument connecting type IIB string theory
compactified on AdS5×S5 toN = 4 super-Yang-Mills theory [9]. Let us start
with type IIB string theory in flat, ten dimensional Minkowski space. Consider
N parallel D3 branes that are sitting together or very close to each other (the
precise meaning of “very close” will be defined below). The D3 branes are
extended along a (3 + 1) dimensional plane in (9 + 1) dimensional spacetime.
String theory on this background contains two kinds of perturbative excitations,
closed strings and open strings. The closed strings are the excitations of empty
space and the open strings end on the D-branes and describe excitations of the
D-branes. If we consider the system at low energies, energies lower than the
string scale 1/ls, then only the massless string states can be excited, and we can
write an effective Lagrangian describing their interactions. The closed string
massless states give a gravity supermultiplet in ten dimensions, and their low-
energy effective Lagrangian is that of type IIB supergravity. The open string
massless states give anN = 4 vector supermultiplet in (3+1) dimensions, and
their low-energy effective Lagrangian is that ofN = 4 U(N) super-Yang-Mills
theory [13, 36].

The complete effective action of the massless modes will have the form

S = Sbulk + Sbrane + Sint. (1)

Sbulk is the action of ten dimensional supergravity, plus some higher derivative
corrections. Note that the Lagrangian (1) involves only the massless fields
but it takes into account the effects of integrating out the massive fields. It
is not renormalizable (even for the fields on the brane), and it should only be
understood as an effective description in the Wilsonian sense, i.e. we integrate
out all massive degrees of freedom but we do not integrate out the massless
ones. The brane action Sbrane is defined on the (3 + 1) dimensional brane
worldvolume, and it contains the N = 4 super-Yang-Mills Lagrangian plus
some higher derivative corrections, for example terms of the form α′2Tr (F 4).
Finally, Sint describes the interactions between the brane modes and the bulk
modes. The leading terms in this interaction Lagrangian can be obtained by
covariantizing the brane action, introducing the background metric for the brane
[37].

We can expand the bulk action as a free quadratic part describing the propa-
gation of free massless modes (including the graviton), plus some interactions
which are proportional to positive powers of the square root of the Newton
constant. Schematically we have

Sbulk ∼ 1
2κ2

∫ √
gR ∼

∫
(∂h)2 + κ(∂h)2h + · · · , (2)
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where we have written the metric as g = η + κh. We indicate explicitly the
dependence on the graviton, but the other terms in the Lagrangian, involving
other fields, can be expanded in a similar way. Similarly, the interaction La-
grangian Sint is proportional to positive powers of κ. If we take the low energy
limit, all interaction terms proportional to κ drop out. This is the well known
fact that gravity becomes free at long distances (low energies).

In order to see more clearly what happens in this low energy limit it is
convenient to keep the energy fixed and send ls → 0 (α′ → 0) keeping all the
dimensionless parameters fixed, including the string coupling constant and N .
In this limit the coupling κ ∼ gsα

′2 → 0, so that the interaction Lagrangian
relating the bulk and the brane vanishes. In addition all the higher derivative
terms in the brane action vanish, leaving just the pure N = 4 U(N) gauge
theory in 3 + 1 dimensions, which is known to be a conformal field theory.
And, the supergravity theory in the bulk becomes free. So, in this low energy
limit we have two decoupled systems. On the one hand we have free gravity in
the bulk and on the other hand we have the four dimensional gauge theory.

Next, we consider the same system from a different point of view. D-branes
are massive charged objects which act as a source for the various supergravity
fields. We can find a D3 brane solution [38] of supergravity, of the form

ds2 = f−1/2(−dt2 + dx2
1 + dx2

2 + dx2
3) + f1/2(dr2 + r2dΩ2

5) ,

F5 = (1 + ∗)dtdx1dx2dx3df
−1 ,

f = 1 +
R4

r4
, R4 ≡ 4πgsα

′2N .

(3)

Note that since gtt is non-constant, the energy Ep of an object as measured by
an observer at a constant position r and the energy E measured by an observer
at infinity are related by the redshift factor

E = f−1/4Ep . (4)

This means that the same object brought closer and closer to r = 0 would
appear to have lower and lower energy for the observer at infinity. Now we
take the low energy limit in the background described by equation (3). There
are two kinds of low energy excitations (from the point of view of an observer
at infinity). We can have massless particles propagating in the bulk region with
wavelengths that becomes very large, or we can have any kind of excitation that
we bring closer and closer to r = 0. In the low energy limit these two types
of excitations decouple from each other. The bulk massless particles decouple
from the near horizon region (around r = 0) because the low energy absorption
cross section goes like σ ∼ ω3R8 [14, 15], where ω is the energy. This can
be understood from the fact that in this limit the wavelength of the particle
becomes much bigger than the typical gravitational size of the brane (which is
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of order R). Similarly, the excitations that live very close to r = 0 find it harder
and harder to climb the gravitational potential and escape to the asymptotic
region. In conclusion, the low energy theory consists of two decoupled pieces,
one is free bulk supergravity and the second is the near horizon region of the
geometry. In the near horizon region, r � R, we can approximate f ∼ R4/r4,
and the geometry becomes

ds2 =
r2

R2
(−dt2 + dx2

1 + dx2
2 + dx2

3) + R2 dr2

r2
+ R2dΩ2

5, (5)

which is the geometry of AdS5 × S5.
We see that both from the point of view of a field theory of open strings

living on the brane, and from the point of view of the supergravity description,
we have two decoupled theories in the low-energy limit. In both cases one of
the decoupled systems is supergravity in flat space. So, it is natural to identify
the second system which appears in both descriptions. Thus, we are led to the
conjecture that N = 4 U(N) super-Yang-Mills theory in 3 + 1 dimensions is
the same as (or dual to) type IIB superstring theory on AdS5 × S5 [9].

We could be a bit more precise about the near horizon limit and how it is
being taken. Suppose that we take α′ → 0, as we did when we discussed the
field theory living on the brane. We want to keep fixed the energies of the
objects in the throat (the near-horizon region) in string units, so that we can
consider arbitrary excited string states there. This implies that

√
α′Ep ∼ fixed.

For small α′ (4) reduces to E ∼ Epr/
√

α′. Since we want to keep fixed the
energy measured from infinity, which is the way energies are measured in the
field theory, we need to take r → 0 keeping r/α′ fixed. It is then convenient to
define a new variable U ≡ r/α′, so that the metric becomes

ds2 = α′
[

U2

√
4πgsN

(−dt2 + dx2
1 + dx2

2 + dx2
3)

+
√

4πgsN
dU2

U2
+
√

4πgsNdΩ2
5

]
. (6)

This can also be seen by considering a D3 brane sitting at�r. This corresponds
to giving a vacuum expectation value to one of the scalars in the Yang-Mills
theory. When we take the α′ → 0 limit we want to keep the mass of the “W -
boson” fixed. This mass, which is the mass of the string stretching between the
branes sitting at �r = 0 and the one at �r, is proportional to U = r/α′, so this
quantity should remain fixed in the decoupling limit.

A U(N) gauge theory is essentially equivalent to a free U(1) vector multiplet
times an SU(N) gauge theory, up to some ZN identifications (which affect only
global issues). In the dual string theory all modes interact with gravity, so there
are no decoupled modes. Therefore, the bulk AdS theory is describing the
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SU(N) part of the gauge theory. In fact we were not precise when we said
that there were two sets of excitations at low energies, the excitations in the
asymptotic flat space and the excitations in the near horizon region. There are
also some zero modes which live in the region connecting the “throat” (the near
horizon region) with the bulk, which correspond to the U(1) degrees of freedom
mentioned above. TheU(1)vector supermultiplet includes six scalars which are
related to the center of mass motion of all the branes [39]. From theAdS point of
view these zero modes live at the boundary, and it looks like we might or might
not decide to include them in the AdS theory. Depending on this choice we
could have a correspondence to an SU(N) or a U(N) theory. The U(1) center
of mass degree of freedom is related to the topological theory ofB-fields on AdS
[40]; if one imposes local boundary conditions for theseB-fields at the boundary
of AdS one finds a U(1) gauge field living at the boundary [41], as is familiar
in Chern-Simons theories [27, 42]. These modes living at the boundary are
sometimes called singletons (or doubletons) [43, 44, 45, 46, 47, 48, 49, 50, 51].

Anti-de-Sitter space has a large group of isometries, which is SO(4, 2) for
the case at hand. This is the same group as the conformal group in 3 + 1
dimensions. Thus, the fact that the low-energy field theory on the brane is
conformal is reflected in the fact that the near horizon geometry is Anti-de-Sitter
space. We also have some supersymmetries. The number of supersymmetries
is twice that of the full solution (3) containing the asymptotic region [39]. This
doubling of supersymmetries is viewed in the field theory as a consequence
of superconformal invariance, since the superconformal algebra has twice as
many fermionic generators as the corresponding Poincare superalgebra. We
also have an SO(6) symmetry which rotates the S5. This can be identified with
the SU(4)R R-symmetry group of the field theory. In fact, the whole supergroup
is the same for the N = 4 field theory and the AdS5 × S5 geometry, so both
sides of the conjecture have the same spacetime symmetries. We will discuss
in more detail the matching between the two sides of the correspondence in
section 3.

In the above derivation the field theory is naturally defined on R
3,1, but we

could also think of the conformal field theory as defined on S3×R by redefining
the Hamiltonian. Since the isometries of AdS are in one to one correspondence
with the generators of the conformal group of the field theory, we can conclude
that this new Hamiltonian 1

2(P0+K0) can be associated on AdS to the generator
of translations in global time. This formulation of the conjecture is more useful
since in the global coordinates there is no horizon. When we put the field theory
on S3 the Coulomb branch is lifted and there is a unique ground state. This is
due to the fact that the scalars φI in the field theory are conformally coupled,
so there is a term of the form

∫
d4xTr (φ2)R in the Lagrangian, whereR is the

curvature of the four-dimensional space on which the theory is defined. Due to
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the positive curvature of S3 this leads to a mass term for the scalars [24], lifting
the moduli space.

The parameter N appears on the string theory side as the flux of the five-form
Ramond-Ramond field strength on the S5,∫

S5

F5 = N. (7)

From the physics of D-branes we know that the Yang-Mills coupling is related
to the string coupling through [10, 52]

τ ≡ 4πi

g2
Y M

+
θ

2π
=

i

gs
+

χ

2π
, (8)

where we have also included the relationship of the θ angle to the expectation
value of the RR scalar χ. We have written the couplings in this fashion because
both the gauge theory and the string theory have an SL(2, Z) self-duality sym-
metry under which τ → (aτ + b)/(cτ + d) (where a, b, c, d are integers with
ad− bc = 1). In fact, SL(2, Z) is a conjectured strong-weak coupling duality
symmetry of type IIB string theory in flat space [53], and it should also be a
symmetry in the present context since all the fields that are being turned on in
the AdS5 × S5 background (the metric and the five form field strength) are
invariant under this symmetry. The connection between the SL(2, Z) duality
symmetries of type IIB string theory andN = 4 SYM was noted in [54, 55, 56].
The string theory seems to have a parameter that does not appear in the gauge
theory, namely α′, which sets the string tension and all other scales in the string
theory. However, this is not really a parameter in the theory if we do not com-
pare it to other scales in the theory, since only relative scales are meaningful.
In fact, only the ratio of the radius of curvature to α′ is a parameter, but not α′
and the radius of curvature independently. Thus, α′ will disappear from any
final physical quantity we compute in this theory. It is sometimes convenient,
especially when one is doing gravity calculations, to set the radius of curva-
ture to one. This can be achieved by writing the metric as ds2 = R2ds̃2, and
rewriting everything in terms of g̃. With these conventions GN ∼ 1/N2 and
α′ ∼ 1/

√
gsN . This implies that any quantity calculated purely in terms of the

gravity solution, without including stringy effects, will be independent of gsN
and will depend only on N . α′ corrections to the gravity results give corrections
which are proportional to powers of 1/

√
gsN .

Now, let us address the question of the validity of various approximations.
The analysis of loop diagrams in the field theory shows that we can trust the
perturbative analysis in the Yang-Mills theory when

g2
Y MN ∼ gsN ∼ R4

l4s
� 1. (9)
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Note that we need g2
Y MN to be small and not just g2

Y M . On the other hand, the
classical gravity description becomes reliable when the radius of curvature R
of AdS and of S5 becomes large compared to the string length,

R4

l4s
∼ gsN ∼ g2

Y MN 
 1. (10)

We see that the gravity regime (10) and the perturbative field theory regime (9)
are perfectly incompatible. In this fashion we avoid any obvious contradiction
due to the fact that the two theories look very different. This is the reason that
this correspondence is called a “duality”. The two theories are conjectured to
be exactly the same, but when one side is weakly coupled the other is strongly
coupled and vice versa. This makes the correspondence both hard to prove and
useful, as we can solve a strongly coupled gauge theory via classical supergrav-
ity. Notice that in (9)(10) we implicitly assumed that gs < 1. If gs > 1 we
can perform an SL(2, Z) duality transformation and get conditions similar to
(9)(10) but with gs → 1/gs. So, we cannot get into the gravity regime (10) by
taking N small (N = 1, 2, ..) and gs very large, since in that case the D-string
becomes light and renders the gravity approximation invalid. Another way to
see this is to note that the radius of curvature in Planck units is R4/l4p ∼ N .
So, it is always necessary, but not sufficient, to have large N in order to have a
weakly coupled supergravity description.

One might wonder why the above argument was not a proof rather than a
conjecture. It is not a proof because we did not treat the string theory non-
perturbatively (not even non-perturbatively in α′). We could also consider
different forms of the conjecture. In its weakest form the gravity description
would be valid for large gsN , but the full string theory on AdS might not agree
with the field theory. A not so weak form would say that the conjecture is valid
even for finite gsN , but only in the N → ∞ limit (so that the α′ corrections
would agree with the field theory, but the gs corrections may not). The strong
form of the conjecture, which is the most interesting one and which we will
assume here, is that the two theories are exactly the same for all values of gs

and N . In this conjecture the spacetime is only required to be asymptotic to
AdS5×S5 as we approach the boundary. In the interior we can have all kinds of
processes; gravitons, highly excited fundamental string states, D-branes, black
holes, etc. Even the topology of spacetime can change in the interior. The
Yang-Mills theory is supposed to effectively sum over all spacetimes which are
asymptotic to AdS5×S5. This is completely analogous to the usual conditions
of asymptotic flatness. We can have black holes and all kinds of topology
changing processes, as long as spacetime is asymptotically flat. In this case
asymptotic flatness is replaced by the asymptotic AdS behavior.
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2.1 The Field ↔ Operator Correspondence

A conformal field theory does not have asymptotic states or an S-matrix, so
the natural objects to consider are operators. For example, in N = 4 super-
Yang-Mills we have a deformation by a marginal operator which changes the
value of the coupling constant. Changing the coupling constant in the field
theory is related by (8) to changing the coupling constant in the string theory,
which is then related to the expectation value of the dilaton. The expectation
value of the dilaton is set by the boundary condition for the dilaton at infinity.
So, changing the gauge theory coupling constant corresponds to changing the
boundary value of the dilaton. More precisely, let us denote by O the corre-
sponding operator. We can consider adding the term

∫
d4xφ0(�x)O(�x) to the

Lagrangian (for simplicity we assume that such a term was not present in the
original Lagrangian, otherwise we consider φ0(�x) to be the total coefficient
of O(�x) in the Lagrangian). According to the discussion above, it is natural
to assume that this will change the boundary condition of the dilaton at the
boundary of AdS to φ(�x, z)|z=0 = φ0(�x), in the coordinate system

ds2 = R2
AdS

−dt2 + dx2
1 + · · ·+ dx3

3 + dz2

z2
.

More precisely, as argued in [23, 24], it is natural to propose that

〈e
∫

d4xφ0(�x)O(�x)〉CFT = Zstring

[
φ(�x, z)

∣∣∣
z=0

= φ0(�x)

]
, (11)

where the left hand side is the generating function of correlation functions in
the field theory, i.e. φ0 is an arbitrary function and we can calculate correlation
functions of O by taking functional derivatives with respect to φ0 and then
setting φ0 = 0. The right hand side is the full partition function of string theory
with the boundary condition that the field φ has the value φ0 on the boundary
of AdS. Notice that φ0 is a function of the four variables parametrizing the
boundary of AdS5.

A formula like (11) is valid in general, for any field φ. Therefore, each field
propagating on AdS space is in a one to one correspondence with an operator
in the field theory. There is a relation between the mass of the field φ and the
scaling dimension of the operator in the conformal field theory. Let us describe
this more generally in AdSd+1. The wave equation in Euclidean space for a
field of mass m has two independent solutions, which behave like zd−Δ and
zΔ for small z (close to the boundary of AdS), where

Δ =
d

2
+

√
d2

4
+ R2m2. (12)
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Therefore, in order to get consistent behavior for a massive field, the boundary
condition on the field in the right hand side of (11) should in general be changed
to

φ(�x, ε) = εd−Δφ0(�x), (13)

and eventually we would take the limit where ε→ 0. Since φ is dimensionless,
we see that φ0 has dimensions of [length]Δ−d which implies, through the left
hand side of (11), that the associated operatorO has dimension Δ (12). A more
detailed derivation of this relation will be given in section 4, where we will
verify that the two-point correlation function of the operatorO behaves as that
of an operator of dimension Δ [23, 24]. A similar relation between fields on
AdS and operators in the field theory exists also for non-scalar fields, including
fermions and tensors on AdS space.

Correlation functions in the gauge theory can be computed from (11) by
differentiating with respect to φ0. Each differentiation brings down an insertion
O, which sends a φ particle (a closed string state) into the bulk. Feynman
diagrams can be used to compute the interactions of particles in the bulk. In
the limit where classical supergravity is applicable, the only diagrams that
contribute are the tree-level diagrams of the gravity theory (see for instance
figure 1).

Figure 1. Correlation functions can be calculated (in the large gsN limit) in terms of super-
gravity Feynman diagrams. Here we see the leading contribution coming from a disconnected
diagram plus connected pieces involving interactions of the supergravity fields in the bulk of
AdS. At tree level, these diagrams and those related to them by crossing are the only ones that
contribute to the four-point function.

This method of defining the correlation functions of a field theory which is
dual to a gravity theory in the bulk of AdS space is quite general, and it applies in
principle to any theory of gravity [24]. Any local field theory contains the stress
tensor as an operator. Since the correspondence described above matches the
stress-energy tensor with the graviton, this implies that the AdS theory includes
gravity. It should be a well defined quantum theory of gravity since we should
be able to compute loop diagrams. String theory provides such a theory. But if
a new way of defining quantum gravity theories comes along we could consider
those gravity theories in AdS, and they should correspond to some conformal
field theory “on the boundary”. In particular, we could consider backgrounds
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of string theory of the form AdS5 ×M5 where M5 is any Einstein manifold
[63, 64, 65]. Depending on the choice of M5 we get different dual conformal
field theories. Similarly, this discussion can be extended to any AdSd+1 space,
corresponding to a conformal field theory ind spacetime dimensions (ford > 1).

2.2 Holography

In this section we will describe how the AdS/CFT correspondence gives a
holographic description of physics in AdS spaces.

Let us start by explaining the Bekenstein bound, which states that the maxi-
mum entropy in a region of space is Smax = Area/4GN [31], where the area
is that of the boundary of the region. Suppose that we had a state with more
entropy than Smax, then we show that we could violate the second law of ther-
modynamics. We can throw in some extra matter such that we form a black
hole. The entropy should not decrease. But if a black hole forms inside the
region its entropy is just the area of its horizon, which is smaller than the area of
the boundary of the region (which by our assumption is smaller than the initial
entropy). So, the second law has been violated.

Note that this bound implies that the number of degrees of freedom inside
some region grows as the area of the boundary of a region and not like the volume
of the region. In standard quantum field theories this is certainly not possible.
Attempting to understand this behavior leads to the “holographic principle”,
which states that in a quantum gravity theory all physics within some volume
can be described in terms of some theory on the boundary which has less than
one degree of freedom per Planck area [29, 30] (so that its entropy satisfies the
Bekenstein bound).

In the AdS/CFT correspondence we are describing physics in the bulk ofAdS
space by a field theory of one less dimension (which can be thought of as living
on the boundary), so it looks like holography. However, it is hard to check
what the number of degrees of freedom per Planck area is, since the theory,
being conformal, has an infinite number of degrees of freedom, and the area of
the boundary of AdS space is also infinite. Thus, in order to compare things
properly we should introduce a cutoff on the number of degrees of freedom in
the field theory and see what it corresponds to in the gravity theory. For this
purpose let us write the metric of AdS as

ds2 = R2

[
−
(

1 + r2

1− r2

)2

dt2 +
4

(1− r2)2
(dr2 + r2dΩ2)

]
. (14)

In these coordinates the boundary of AdS is at r = 1. We saw above that when
we calculate correlation functions we have to specify boundary conditions at
r = 1 − δ and then take the limit of δ → 0. It is clear by studying the action
of the conformal group on Poincaré coordinates that the radial position plays
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the role of some energy scale, since we approach the boundary when we do a
conformal transformation that localizes objects in the CFT. So, the limit δ → 0
corresponds to going to the UV of the field theory. When we are close to the
boundary we could also use the Poincaré coordinates

ds2 = R2−dt2 + d�x2 + dz2

z2
, (15)

in which the boundary is at z = 0. If we consider a particle or wave propagating
in (15) or (14) we see that its motion is independent of R in the supergravity
approximation. Furthermore, if we are in Euclidean space and we have a wave
that has some spatial extent λ in the �x directions, it will also have an extent
λ in the z direction. This can be seen from (15) by eliminating λ through the
change of variables x→ λx, z → λz. This implies that a cutoff at

z ∼ δ (16)

corresponds to a UV cutoff in the field theory at distances δ, with no factors
of R (δ here is dimensionless, in the field theory it is measured in terms of the
radius of the S4 or S3 that the theory lives on). Equation (16) is called the
UV-IR relation [66].

Consider the case of N = 4 SYM on a three-sphere of radius one. We can
estimate the number of degrees of freedom in the field theory with a UV cutoff
δ. We get

S ∼ N2δ−3, (17)

since the number of cells into which we divide the three-sphere is of order 1/δ3.
In the gravity solution (14) the area in Planck units of the surface at r = 1− δ,
for δ � 1, is

Area
4GN

=
VS5R3δ−3

4GN
∼ N2δ−3. (18)

Thus, we see that the AdS/CFT correspondence saturates the holographic bound
[66].

One could be a little suspicious of the statement that gravity in AdS is
holographic, since it does not seem to be saying much because in AdS space
the volume and the boundary area of a given region scale in the same fashion
as we increase the size of the region. In fact, any field theory in AdS would
be holographic in the sense that the number of degrees of freedom within some
(large enough) volume is proportional to the area (and also to the volume).
What makes this case different is that we have the additional parameter R,
and then we can take AdS spaces of different radii (corresponding to different
values of N in the SYM theory), and then we can ask whether the number of
degrees of freedom goes like the volume or the area, since these have a different
dependence on R.
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One might get confused by the fact that the surface r = 1− δ is really nine
dimensional as opposed to four dimensional. From the form of the full metric
on AdS5 × S5 we see that as we take δ → 0 the physical size of four of the
dimensions of this nine dimensional space grow, while the other five, the S5,
remain constant. So, we see that the theory on this nine dimensional surface
becomes effectively four dimensional, since we need to multiply the metric by
a factor that goes to zero as we approach the boundary in order to define a finite
metric for the four dimensional gauge theory.

3. Tests of the AdS/CFT Correspondence

In this section we review the direct tests of the AdS/CFT correspondence. In
section 2 we saw how string theory on AdS defines a partition function which
can be used to define a field theory. Here we will review the evidence showing
that this field theory is indeed the same as the conjectured dual field theory. We
will focus here only on tests of the correspondence between theN = 4 SU(N)
SYM theory and the type IIB string theory compactified on AdS5 × S5; most
of the tests described here can be generalized also to cases in other dimensions
and/or with less supersymmetry, which will be described below.

As described in section 2, the AdS/CFT correspondence is a strong/weak
coupling duality. In the ’t Hooft large N limit, it relates the region of weak
field theory coupling λ = g2

Y MN in the SYM theory to the region of high
curvature (in string units) in the string theory, and vice versa. Thus, a direct
comparison of correlation functions is generally not possible, since (with our
current knowledge) we can only compute most of them perturbatively in λ on
the field theory side and perturbatively in 1/

√
λ on the string theory side. For

example, as described below, we can compute the equation of state of the SYM
theory and also the quark-anti-quark potential both for small λ and for large λ,
and we obtain different answers, which we do not know how to compare since we
can only compute them perturbatively on both sides. A similar situation arises
also in many field theory dualities that were analyzed in the last few years (such
as the electric/magnetic SL(2, Z) duality of theN = 4 SYM theory itself), and
it was realized that there are several properties of these theories which do not
depend on the coupling, so they can be compared to test the duality. These are:

The global symmetries of the theory, which cannot change as we change
the coupling (except for extreme values of the coupling). As discussed in
section 2, in the case of the AdS/CFT correspondence we have the same
supergroup SU(2, 2|4) (whose bosonic subgroup is SO(4, 2)× SU(4))
as the global symmetry of both theories. Also, both theories are believed
to have a non-perturbative SL(2, Z) duality symmetry acting on their
coupling constant τ . These are the only symmetries of the theory on
R

4. Additional ZN symmetries arise when the theories are compactified
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on non-simply-connected manifolds, and these were also successfully
matched in [67, 40]1.

Some correlation functions, which are usually related to anomalies, are
protected from any quantum corrections and do not depend on λ. The
matching of these correlation functions will be described in section 3.2
below.

The spectrum of chiral operators does not change as the coupling varies,
and it will be compared in section 3.1 below.

The moduli space of the theory also does not depend on the coupling. In
the SU(N) field theory the moduli space is R

6(N−1)/SN , parametrized
by the eigenvalues of six commuting traceless N ×N matrices. On the
AdS side it is not clear exactly how to define the moduli space. As de-
scribed in section ??, there is a background of string theory corresponding
to any point in the field theory moduli space, but it is not clear how to see
that this is the exact moduli space on the string theory side (especially
since high curvatures arise for generic points in the moduli space).

The qualitative behavior of the theory upon deformations by relevant or
marginal operators also does not depend on the coupling (at least for
chiral operators whose dimension does not depend on the coupling, and
in the absence of phase transitions).

There are many more qualitative tests of the correspondence, such as the
existence of confinement for the finite temperature theory [68], which
we will not discuss in this section. We will also not discuss here tests
involving the behavior of the theory on its moduli space [60, 69, 61].

3.1 The Spectrum of Chiral Primary Operators

3.1.1 The Field Theory Spectrum. TheN = 4 supersymmetry algebra
in d = 4 has four generators QA

α (and their complex conjugates Q̄α̇A), where
α is a Weyl-spinor index (in the 2 of the SO(3, 1) Lorentz group) and A is an
index in the 4 of the SU(4)R R-symmetry group (lower indices A will be taken
to transform in the 4̄ representation). They obey the algebra

{QA
α , Q̄α̇B} = 2(σμ)αα̇PμδA

B,

{QA
α , QB

β } = {Q̄α̇A, Q̄β̇B} = 0,
(19)

where σi (i = 1, 2, 3) are the Pauli matrices and (σ0)αα̇ = −δαα̇ (we use the
conventions of Wess and Bagger [70]).

1Unlike most of the other tests described here, this test actually tests the finite N duality and not just the
large N limit.
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N = 4 supersymmetry in four dimensions has a unique multiplet which does
not include spins greater than one, which is the vector multiplet. It includes a
vector field Aμ (μ is a vector index of the SO(3, 1) Lorentz group), four complex
Weyl fermions λαA (in the 4̄ of SU(4)R), and six real scalars φI (where I is
an index in the 6 of SU(4)R). The classical action of the supersymmetry
generators on these fields is schematically given (for on-shell fields) by

[QA
α , φI ] ∼ λαB ,

{QA
α , λβB} ∼ (σμν)αβFμν + εαβ [φI , φJ ],

{QA
α , λ̄B

β̇
} ∼ (σμ)αβ̇DμφI ,

[QA
α , Aμ] ∼ (σμ)αα̇λ̄A

β̇
εα̇β̇,

(20)

with similar expressions for the action of the Q̄’s, where σμν are the gener-
ators of the Lorentz group in the spinor representation, Dμ is the covariant
derivative, the field strength Fμν ≡ [Dμ,Dν ], and we have suppressed the
SU(4) Clebsch-Gordan coefficients corresponding to the products 4× 6→ 4̄,
4× 4̄→ 1 + 15 and 4× 4→ 6 in the first three lines of (20).

An N = 4 supersymmetric field theory is uniquely determined by specify-
ing the gauge group, and its field content is a vector multiplet in the adjoint
of the gauge group. Such a field theory is equivalent to an N = 2 theory
with one hypermultiplet in the adjoint representation, or to an N = 1 the-
ory with three chiral multiplets Φi in the adjoint representation (in the 32/3

of the SU(3) × U(1)R ⊂ SU(4)R which is left unbroken by the choice of
a single N = 1 SUSY generator) and a superpotential of the form W ∝
εijkTr (ΦiΦjΦk). The interactions of the theory include a scalar potential pro-
portional to

∑
I,J Tr ([φI , φJ ]2), such that the moduli space of the theory is the

space of commuting matrices φI (I = 1, · · · , 6).
The spectrum of operators in this theory includes all the gauge invariant

quantities that can be formed from the fields described above. In this section
we will focus on local operators which involve fields taken at the same point in
space-time. For the SU(N) theory described above, properties of the adjoint
representation of SU(N) determine that such operators necessarily involve a
product of traces of products of fields (or the sum of such products). It is natural
to divide the operators into single-trace operators and multiple-trace operators.
In the ’t Hooft large N limit correlation functions involving multiple-trace
operators are suppressed by powers of N compared to those of single-trace
operators involving the same fields. We will discuss here in detail only the
single-trace operators; the multiple-trace operators appear in operator product
expansions of products of single-trace operators.

It is natural to classify the operators in a conformal theory into primary op-
erators and their descendants. In a superconformal theory it is also natural to
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distinguish between chiral primary operators, which are in short representations
of the superconformal algebra and are annihilated by some of the supercharges,
and non-chiral primary operators. Representations of the superconformal al-
gebra are formed by starting with some state of lowest dimension, which is
annihilated by the operators S and Kμ, and acting on it with the operators Q
and Pμ. The N = 4 supersymmetry algebra involves 16 real supercharges. A
generic primary representation of the superconformal algebra will thus include
216 primaries of the conformal algebra, generated by acting on the lowest state
with products of different supercharges; acting with additional supercharges al-
ways leads to descendants of the conformal algebra (i.e. derivatives). Since the
supercharges have helicities ±1/2, the primary fields in such representations
will have a range of helicities between λ− 4 (if the lowest dimension operator
ψ has helicity λ) and λ + 4 (acting with more than 8 supercharges of the same
helicity either annihilates the state or leads to a conformal descendant). In non-
generic representations of the superconformal algebra a product of less than
16 different Q’s annihilates the lowest dimension operator, and the range of
helicities appearing is smaller. In particular, in the small representations of the
N = 4 superconformal algebra only up to 4 Q’s of the same helicity acting on
the lowest dimension operator give a non-zero result, and the range of helicities
is between λ − 2 and λ + 2. For the N = 4 supersymmetry algebra (not in-
cluding the conformal algebra) it is known that medium representations, whose
range of helicities is 6, can also exist (they arise, for instance, on the moduli
space of the SU(N) N = 4 SYM theory [71, 72, 73, 74, 75, 76, 77, 78]); it
is not clear if such medium representations of the superconformal algebra [79]
can appear in physical theories or not (there are no known examples). More
details on the structure of representations of theN = 4 superconformal algebra
may be found in [80, 81, 82, 83, 84, 85, 79] and references therein.

In the U(1) N = 4 SYM theory (which is a free theory), the only gauge-
invariant “single trace” operators are the fields of the vector multiplet itself
(which are φI , λA, λ̄A and Fμν = ∂[μAν]). These operators form an ultra-
short representation of the N = 4 algebra whose range of helicities is from
(−1) to 1 (acting with more than two supercharges of the same helicity on
any of these states gives either zero or derivatives, which are descendants of
the conformal algebra). All other local gauge invariant operators in the theory
involve derivatives or products of these operators. This representation is usually
called the doubleton representation, and it does not appear in the SU(N) SYM
theory (though the representations which do appear can all be formed by tensor
products of the doubleton representation). In the context of AdS space one can
think of this multiplet as living purely on the boundary of the space [86, 87,
88, 89, 90, 46, 91, 92, 93, 94, 95], as expected for the U(1) part of the original
U(N) gauge group of the D3-branes (see the discussion in section 2).
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There is no known simple systematic way to compute the full spectrum of
chiral primary operators of the N = 4 SU(N) SYM theory, so we will settle
for presenting the known chiral primary operators. The lowest component of a
superconformal-primary multiplet is characterized by the fact that it cannot be
written as a supercharge Q acting on any other operator. Looking at the action
of the supersymmetry charges (20) suggests that generally operators built from
the fermions and the gauge fields will be descendants (given by Q acting on
some other fields), so one would expect the lowest components of the chiral
primary representations to be built only from the scalar fields, and this turns out
to be correct.

Let us analyze the behavior of operators of the formOI1I2···In ≡ Tr (φI1φI2 · · ·φIn).
First we can ask if this operator can be written as {Q, ψ} for any field ψ. In
the SUSY algebra (20) only commutators of φI ’s appear on the right hand side,
so we see that if some of the indices are antisymmetric the field will be a de-
scendant. Thus, only symmetric combinations of the indices will be lowest
components of primary multiplets. Next, we should ask if the multiplet built on
such an operator is a (short) chiral primary multiplet or not. There are several
different ways to answer this question. One possibility is to use the relation
between the dimension of chiral primary operators and their R-symmetry repre-
sentation [96, 97, 98, 99, 100], and to check if this relation is obeyed in the free
field theory, where [OI1I2···In ] = n. In this way we find that the representation
is chiral primary if and only if the indices form a symmetric traceless product
of n 6’s (traceless representations are defined as those who give zero when
any two indices are contracted). This is a representation of weight (0, n, 0) of
SU(4)R; in this section we will refer to SU(4)R representations either by their
dimensions in boldface or by their weights.

Another way to check this is to see if by acting with Q’s on these operators we
get the most general possible states or not, namely if the representation contains
“null vectors” or not (it turns out that in all the relevant cases “null vectors” ap-
pear already at the first level by acting with a single Q, though in principle there
could be representations where “null vectors” appear only at higher levels). Us-
ing the SUSY algebra (20) it is easy to see that for symmetric traceless represen-
tations we get “null vectors” while for other representations we do not. For in-
stance, let us analyze in detail the case n = 2. The symmetric product of two 6’s
is given by 6× 6→ 1 + 20′. The field in the 1 representation is Tr (φIφI), for
which [QA

α ,Tr (φIφI)] ∼ CAJBTr (λαBφJ) where CAIB is a Clebsch-Gordan
coefficient for 4̄× 6→ 4. The right-hand side is in the 4 representation, which
is the most general representation that can appear in the product 4× 1, so we
find no null vectors at this level. On the other hand, if we look at the sym-
metric traceless product Tr (φ{IφJ}) ≡ Tr (φIφJ) − 1

6δIJTr (φKφK) in the
20′ representation, we find that {QA

α , Tr (φ{IφJ})} ∼ Tr (λαBφK) with the
right-hand side being in the 20 representation (appearing in 4̄× 6→ 4 + 20),
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while the left-hand side could in principle be in the 4× 20′ → 20 + 60. Since
the 60 does not appear on the right-hand side (it is a “null vector”) we identify
that the representation built on the 20′ is a short representation of the SUSY
algebra. By similar manipulations (see [24, 101, 81, 84] for more details) one
can verify that chiral primary representations correspond exactly to symmetric
traceless products of 6’s.

It is possible to analyze the chiral primary spectrum also by using N = 1
subalgebras of theN = 4 algebra. If we use anN = 1 subalgebra of theN = 4
algebra, as described above, the operatorsOn include the chiral operators of the
form Tr (Φi1Φi2 · · ·Φin) (in a representation of SU(3) which is a symmetric
product of 3’s), but for a particular choice of the N = 1 subalgebra not all
the operators On appear to be chiral (a short multiplet of the N = 4 algebra
includes both short and long multiplets of theN = 1 subalgebra).

The last issue we should discuss is what is the range of values of n. The
product of more than N commuting2 N × N matrices can always be written
as a sum of products of traces of less than N of the matrices, so it does not
form an independent operator. This means that for n > N we can express
the operator OI1I2···In in terms of other operators, up to operators including
commutators which (as explained above) are descendants of the SUSY algebra.
Thus, we find that the short chiral primary representations are built on the
operators On = O{I1I2···In} with n = 2, 3, · · · , N , for which the indices are
in the symmetric traceless product of n 6’s (in a U(N) theory we would find
the same spectrum with the additional representation corresponding to n = 1).
The superconformal algebra determines the dimension of these fields to be
[On] = n, which is the same as their value in the free field theory. We argued
above that these are the only short chiral primary representations in the SU(N)
gauge theory, but we will not attempt to rigorously prove this here.

The full chiral primary representations are obtained by acting on the fieldsOn

by the generators Q and P of the supersymmetry algebra. The representation
built onOn contains a total of 256× 1

12n2(n2−1) primary states, of which half
are bosonic and half are fermionic. Since these multiplets are built on a field
of helicity zero, they will contain primary fields of helicities between (−2) and
2. The highest dimension primary field in the multiplet is (generically) of the
form Q4Q̄4On, and its dimension is n + 4. There is an elegant way to write
these multiplets as traces of products of “twisted chiral N = 4 superfields”
[101, 81]; see also [102] which checks some components of these superfields
against the couplings to supergravity modes predicted on the basis of the DBI
action for D3-branes in anti-de Sitter space [4].

2We can limit the discussion to commuting matrices since, as discussed above, commutators always lead to
descendants, and we can write any product of matrices as a product of commuting matrices plus terms with
commutators.
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It is easy to find the form of all the fields in such a multiplet by using the
algebra (20). For example, let us analyze here in detail the bosonic primary
fields of dimension n+1 in the multiplet. To get a field of dimension n+1 we
need to act on On with two supercharges (recall that [Q] = 1

2 ). If we act with
two supercharges QA

α of the same chirality, their Lorentz indices can be either
antisymmetrized or symmetrized. In the first case we get a Lorentz scalar field
in the (2, n− 2, 0) representation of SU(4)R, which is of the schematic form

εαβ{Qα, [Qβ,On]} ∼ εαβTr (λαAλβBφJ1 · · ·φJn−2)+Tr ([φK1 , φK2 ]φL1 · · ·φLn−1).
(21)

Using anN = 1 subalgebra some of these operators may be written as the lowest
components of the chiral superfields Tr (W 2

αΦj1 · · ·Φjn−2). In the second case
we get an anti-symmetric 2-form of the Lorentz group, in the (0, n − 1, 0)
representation of SU(4)R, of the form

{Q{α, [Qβ},On]} ∼ Tr ((σμν)αβFμνφ
J1 · · ·φJn−1)+Tr (λαAλβBφK1 · · ·φKn−2).

(22)
Both of these fields are complex, with the complex conjugate fields given by
the action of two Q̄’s. Acting with one Q and one Q̄ on the state On gives a
(real) Lorentz-vector field in the (1, n− 2, 1) representation of SU(4)R, of the
form

{Qα, [Q̄α̇,On]} ∼ Tr (λαAλ̄B
α̇ φJ1 · · ·φJn−2)+(σμ)αα̇Tr ((DμφJ)φK1 · · ·φKn−1).

(23)

At dimension n + 2 (acting with four supercharges) we find :

A complex scalar field in the (0, n−2, 0) representation, given by Q4On,
of the form Tr (F 2

μνφ
I1 · · ·φIn−2) + · · ·.

A real scalar field in the (2, n− 4, 2) representation, given by Q2Q̄2On,
of the form εαβεα̇β̇Tr (λαA1λβA2 λ̄

B1
α̇ λ̄B2

β̇
φI1 · · ·φIn−4) + · · ·.

A complex vector field in the (1, n − 4, 1) representation, given by
Q3Q̄On, of the form Tr (FμνDνφJφI1 · · ·φIn−2) + · · ·.
An complex anti-symmetric 2-form field in the (2, n− 3, 0) representa-
tion, given by Q2Q̄2On, of the form Tr (Fμν [φJ1 , φJ2 ]φI1 · · ·φIn−2) +
· · ·.
A symmetric tensor field in the (0, n − 2, 0) representation, given by
Q2Q̄2On, of the form Tr (D{μφJDν}φKφI1 · · ·φIn−2) + · · ·.

The spectrum of primary fields at dimension n + 3 is similar to that of
dimension n + 1 (the same fields appear but in smaller SU(4)R represen-
tations), and at dimension n + 4 there is a single primary field, which is a
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real scalar in the (0, n − 4, 0) representation, given by Q4Q̄4On, of the form
Tr (F 4

μνφ
I1 · · ·φIn−4)+ · · ·. Note that fields with more than four Fμν’s or more

than eight λ’s are always descendants or non-chiral primaries.
For n = 2, 3 the short multiplets are even shorter since some of the represen-

tations appearing above vanish. In particular, for n = 2 the highest-dimension
primaries in the chiral primary multiplet have dimension n + 2 = 4. The
n = 2 representation includes the currents of the superconformal algebra. It
includes a vector of dimension 3 in the 15 representation which is the SU(4)R

R-symmetry current, and a symmetric tensor field of dimension 4 which is the
energy-momentum tensor (the other currents of the superconformal algebra are
descendants of these). The n = 2 multiplet also includes a complex scalar
field which is an SU(4)R-singlet, whose real part is the Lagrangian density
coupling to 1

4g2
Y M

(of the form Tr (F 2
μν) + · · ·) and whose imaginary part is

the Lagrangian density coupling to θ (of the form Tr (F ∧ F )). For later use
we note that the chiral primary multiplets which contain scalars of dimension
Δ ≤ 4 are the n = 2 multiplet (which has a scalar in the 20′ of dimension
2, a complex scalar in the 10 of dimension 3, and a complex scalar in the 1
of dimension 4), the n = 3 multiplet (which contains a scalar in the 50 of
dimension 3 and a complex scalar in the 45 of dimension 4), and the n = 4
multiplet which contains a scalar in the 105 of dimension 4.

3.1.2 The String Theory Spectrum and the Matching. As discussed
in section 2.1, fields on AdS5 are in a one-to-one correspondence with operators
in the dual conformal field theory. Thus, the spectrum of operators described in
section 3.1.1 should agree with the spectrum of fields of type IIB string theory on
AdS5×S5. Fields on AdS naturally lie in the same multiplets of the conformal
group as primary operators; the second Casimir of these representations is
C2 = Δ(Δ − 4) for a primary scalar field of dimension Δ in the field theory,
and C2 = m2R2 for a field of mass m on an AdS5 space with a radius of
curvature R. Single-trace operators in the field theory may be identified with
single-particle states in AdS5, while multiple-trace operators correspond to
multi-particle states.

Unfortunately, it is not known how to compute the full spectrum of type
IIB string theory on AdS5 × S5. In fact, the only known states are the states
which arise from the dimensional reduction of the ten-dimensional type IIB
supergravity multiplet. These fields all have helicities between (−2) and 2, so
it is clear that they all lie in small multiplets of the superconformal algebra,
and we will describe below how they match with the small multiplets of the
field theory described above. String theory on AdS5 × S5 is expected to have
many additional states, with masses of the order of the string scale 1/ls or of the
Planck scale 1/lp. Such states would correspond (using the mass/dimension
relation described above) to operators in the field theory with dimensions of
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order Δ ∼ (gsN)1/4 or Δ ∼ N1/4 for large N, gsN . Presumably none of
these states are in small multiplets of the superconformal algebra (at least, this
would be the prediction of the AdS/CFT correspondence).

The spectrum of type IIB supergravity compactified on AdS5×S5 was com-
puted in [103]. The computation involves expanding the ten dimensional fields
in appropriate spherical harmonics on S5, plugging them into the supergrav-
ity equations of motion, linearized around the AdS5 × S5 background, and
diagonalizing the equations to give equations of motion for free (massless or
massive) fields3. For example, the ten dimensional dilaton field τ may be ex-
panded as τ(x, y) =

∑∞
k=0 τk(x)Y k(y) where x is a coordinate on AdS5, y is

a coordinate on S5, and the Y k are the scalar spherical harmonics on S5. These
spherical harmonics are in representations corresponding to symmetric trace-
less products of 6’s of SU(4)R; they may be written as Y k(y) ∼ yI1yI2 · · · yIk

where the yI , for I = 1, 2, · · · , 6 and with
∑6

I=1(y
I)2 = 1, are coordinates on

S5. Thus, we find a field τk(x) on AdS5 in each such (0, k, 0) representation
of SU(4)R, and the equations of motion determine the mass of this field to be
m2

k = k(k+4)/R2. A similar expansion may be performed for all other fields.
If we organize the results of [103] into representations of the superconformal

algebra [80], we find representations of the form described in the previous
section, which are built on a lowest dimension field which is a scalar in the
(0, n, 0) representation of SU(4)R for n = 2, 3, · · · ,∞. The lowest dimension
scalar field in each representation turns out to arise from a linear combination of
spherical harmonic modes of the S5 components of the graviton ha

a (expanded
around the AdS5×S5 vacuum) and the 4-form field Dabcd, where a, b, c, d are
indices on S5. The scalar fields of dimension n+1 correspond to 2-form fields
Bab with indices in the S5. The symmetric tensor fields arise from the expansion
of the AdS5-components of the graviton. The dilaton fields described above
are the complex scalar fields arising with dimension n + 2 in the multiplet (as
described in the previous subsection).

In particular, the n = 2 representation is called the supergraviton representa-
tion, and it includes the field content of d = 5,N = 8 gauged supergravity. The
field/operator correspondence matches this representation to the representation
including the superconformal currents in the field theory. It includes a mass-
less graviton field, which (as expected) corresponds to the energy-momentum
tensor in the field theory, and massless SU(4)R gauge fields which correspond
to (or couple to) the global SU(4)R currents in the field theory.

In the naive dimensional reduction of the type IIB supergravity fields, the
n = 1 doubleton representation, corresponding to a free U(1) vector multiplet
in the dual theory, also appears. However, the modes of this multiplet are all

3The fields arising from different spherical harmonics are related by a “spectrum generating algebra”, see
[104].
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pure gauge modes in the bulk of AdS5, and they may be set to zero there. This
is one of the reasons why it seems more natural to view the corresponding gauge
theory as an SU(N) gauge theory and not a U(N) theory. It may be possible
(and perhaps even natural) to add the doubleton representation to the theory
(even though it does not include modes which propagate in the bulk of AdS5,
but instead it is equivalent to a topological theory in the bulk) to obtain a theory
which is dual to the U(N) gauge theory, but this will not affect most of our
discussion in this review so we will ignore this possibility here.

Comparing the results described above with the results of section 3.1.1,
we see that we find the same spectrum of chiral primary operators for n =
2, 3, · · · , N . The supergravity results cannot be trusted for masses above the
order of the string scale (which corresponds to n ∼ (gsN)1/4) or the Planck
scale (which corresponds to n ∼ N1/4), so the results agree within their range
of validity. The field theory results suggest that the exact spectrum of chiral
representations in type IIB string theory on AdS5 × S5 actually matches the
naive supergravity spectrum up to a mass scale m2 ∼ N2/R2 ∼ N3/2M2

p

which is much higher than the string scale and the Planck scale, and that there
are no chiral fields above this scale. It is not known how to check this prediction;
tree-level string theory is certainly not enough for this since when gs = 0 we
must take N = ∞ to obtain a finite value of gsN . Thus, with our current
knowledge the matching of chiral primaries of the N = 4 SYM theory with
those of string theory on AdS5 × S5 tests the duality only in the large N limit.
In some generalizations of the AdS/CFT correspondence the string coupling
goes to zero at the boundary even for finite N , and then classical string theory
should lead to exactly the same spectrum of chiral operators as the field theory.
This happens in particular for the near-horizon limit of NS5-branes, in which
case the exact spectrum was successfully compared in [105]. In other instances
of the AdS/CFT correspondence (such as the ones discussed in [106, 107, 108])
there exist also additional chiral primary multiplets with n of order N , and these
have been successfully matched with wrapped branes on the string theory side.

The fact that there seem to be no non-chiral fields on AdS5 with a mass
below the string scale suggests that for large N and large gsN , the dimension
of all non-chiral operators in the field theory, such as Tr (φIφI), grows at least
as (gsN)1/4 ∼ (g2

Y MN)1/4. The reason for this behavior on the field theory
side is not clear; it is a prediction of the AdS/CFT correspondence.

3.2 Matching of Correlation Functions and Anomalies

The classicalN = 4 theory has a scale invariance symmetry and an SU(4)R

R-symmetry, and (unlike many other theories) these symmetries are exact also
in the full quantum theory. However, when the theory is coupled to external
gravitational or SU(4)R gauge fields, these symmetries are broken by quantum
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effects. In field theory this breaking comes from one-loop diagrams and does
not receive any further corrections; thus it can be computed also in the strong
coupling regime and compared with the results from string theory on AdS space.

We will begin by discussing the anomaly associated with the SU(4)R global
currents. These currents are chiral since the fermions λαA are in the 4̄ represen-
tation while the fermions of the opposite chirality λ̄A

α̇ are in the 4 representation.
Thus, if we gauge the SU(4)R global symmetry, we will find an Adler-Bell-
Jackiw anomaly from the triangle diagram of three SU(4)R currents, which is
proportional to the number of charged fermions. In the SU(N) gauge theory
this number is N2 − 1. The anomaly can be expressed either in terms of the
3-point function of the SU(4)R global currents,〈
Ja

μ(x)Jb
ν(y)Jc

ρ(z)
〉
−

= −N2 − 1
32π6

idabc Tr [γ5γμ(� x− � y)γν(� y− � z)γρ( � z− � x)]
(x− y)4(y − z)4(z − x)4

,

(24)
where dabc = 2Tr (T a{T b, T c}) and we take only the negative parity compo-
nent of the correlator, or in terms of the non-conservation of the SU(4)R current
when the theory is coupled to external SU(4)R gauge fields F a

μν ,

(DμJμ)a =
N2 − 1
384π2

idabcεμνρσF b
μνF

c
ρσ. (25)

How can we see this effect in string theory on AdS5×S5 ? One way to see it
is, of course, to use the general prescription of section 4 to compute the 3-point
function (24), and indeed one finds [109, 110] the correct answer to leading order
in the large N limit (namely, one recovers the term proportional to N2). It is
more illuminating, however, to consider directly the meaning of the anomaly
(25) from the point of view of the AdS theory [24]. In the AdS theory we
have gauge fields Aa

μ which couple, as explained above, to the SU(4)R global
currents Ja

μ of the gauge theory, but the anomaly means that when we turn on
non-zero field strengths for these fields the theory should no longer be gauge
invariant. This effect is precisely reproduced by a Chern-Simons term which
exists in the low-energy supergravity theory arising from the compactification
of type IIB supergravity on AdS5 × S5, which is of the form

iN2

96π2

∫
AdS5

d5x(dabcεμνλρσAa
μ∂νA

b
λ∂ρA

c
σ + · · ·). (26)

This term is gauge invariant up to total derivatives, which means that if we take
a gauge transformation Aa

μ → Aa
μ + (DμΛ)a for which Λ does not vanish on

the boundary of AdS5, the action will change by a boundary term of the form

− iN2

384π2

∫
∂AdS5

d4xεμνρσdabcΛaF b
μνF

c
ρσ. (27)
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From this we can read off the anomaly in (DμJμ) since, when we have a coupling
of the form

∫
d4xAμ

aJa
μ , the change in the action under a gauge transformation is

given by
∫

d4x(DμΛ)aJ
a
μ = − ∫ d4xΛa(DμJa

μ), and we find exact agreement
with (25) for large N .

The other anomaly in the N = 4 SYM theory is the conformal (or Weyl)
anomaly (see [111, 112] and references therein), indicating the breakdown of
conformal invariance when the theory is coupled to a curved external metric
(there is a similar breakdown of conformal invariance when the theory is cou-
pled to external SU(4)R gauge fields, which we will not discuss here). The
conformal anomaly is related to the 2-point and 3-point functions of the energy-
momentum tensor [113, 114, 115, 116]. In four dimensions, the general form
of the conformal anomaly is

〈gμνTμν〉 = −aE4 − cI4, (28)

where

E4 =
1

16π2
(R2

μνρσ − 4R2
μν +R2),

I4 = − 1
16π2

(R2
μνρσ − 2R2

μν +
1
3
R2),

(29)

where Rμνρσ is the curvature tensor, Rμν ≡ Rρ
μρν is the Riemann tensor,

and R ≡ Rμ
μ is the scalar curvature. A free field computation in the SU(N)

N = 4 SYM theory leads to a = c = (N2− 1)/4. In supersymmetric theories
the supersymmetry algebra relates gμνTμν to derivatives of the R-symmetry
current, so it is protected from any quantum corrections. Thus, the same result
should be obtained in type IIB string theory on AdS5 × S5, and to leading
order in the large N limit it should be obtained from type IIB supergravity on
AdS5 × S5. This was indeed found to be true in [117, 118, 119, 120]4, where
the conformal anomaly was shown to arise from subtleties in the regularization
of the (divergent) supergravity action on AdS space. The result of [117, 118,
119, 120] implies that a computation using gravity on AdS5 always gives rise
to theories with a = c, so generalizations of the AdS/CFT correspondence
which have (for large N ) a supergravity approximation are limited to conformal
theories which have a = c in the large N limit. Of course, if we do not require
the string theory to have a supergravity approximation then there is no such
restriction.

For both of the anomalies we described the field theory and string theory
computations agree for the leading terms, which are of order N2. Thus, they
are successful tests of the duality in the large N limit. For other instances
of the AdS/CFT correspondence there are corrections to anomalies at order

4A generalization with more varying fields may be found in [121].
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1/N ∼ gs(α′/R2)2; such corrections were discussed in [122] and success-
fully compared in [123, 124, 125]5. It would be interesting to compare other
corrections to the large N result.

4. Correlation Functions

A useful statement of the AdS/CFT correspondence is that the partition func-
tion of string theory on AdS5×S5 should coincide with the partition function of
N = 4 super-Yang-Mills theory “on the boundary” of AdS5 [23, 24]. The basic
idea was explained in section 2.1, but before summarizing the actual calcula-
tions of Green’s functions, it seems worthwhile to motivate the methodology
from a somewhat different perspective.

Throughout this section, we approximate the string theory partition function
by e−ISUGRA , where ISUGRA is the supergravity action evaluated on AdS5×S5

(or on small deformations of this space). This approximation amounts to ignor-
ing all the stringy α′ corrections that cure the divergences of supergravity, and
also all the loop corrections, which are controlled essentially by the gravitational
coupling κ ∼ gstα

′2. On the gauge theory side, as explained in section 2.1,
this approximation amounts to taking both N and g2

Y MN large, and the basic
relation becomes

e−ISUGRA � Zstring = Zgauge = e−W , (30)

where W is the generating functional for connected Green’s functions in the
gauge theory. At finite temperature, W = βF where β is the inverse tempera-
ture and F is the free energy of the gauge theory. When we apply this relation
to a Schwarzschild black hole in AdS5, which is thought to be reflected in the
gauge theory by a thermal state at the Hawking temperature of the black hole,
we arrive at the relation ISUGRA � βF . Calculating the free energy of a black
hole from the Euclidean supergravity action has a long tradition in the super-
gravity literature [126], so the main claim that is being made here is that the
dual gauge theory provides a description of the state of the black hole which
is physically equivalent to the one in string theory. We will discuss the finite
temperature case further in section 6, and devote the rest of this section to the
partition function of the field theory on R

4.
The main technical idea behind the bulk-boundary correspondence is that

the boundary values of string theory fields (in particular, supergravity fields)
act as sources for gauge-invariant operators in the field theory. From a D-brane
perspective, we think of closed string states in the bulk as sourcing gauge singlet

5Computing such corrections tests the conjecture that the correspondence holds order by order in 1/N ;
however, this is weaker than the statement that the correspondence holds for finite N , since the 1/N
expansion is not expected to converge.
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operators on the brane which originate as composite operators built from open
strings. We will write the bulk fields generically as φ(�x, z) (in the coordinate
system (15)), with value φ0(�x) for z = ε. The true boundary of anti-de Sitter
space is z = 0, and ε �= 0 serves as a cutoff which will eventually be removed. In
the supergravity approximation, we think of choosing the values φ0 arbitrarily
and then extremizing the action ISUGRA[φ] in the region z > ε subject to
these boundary conditions. In short, we solve the equations of motion in the
bulk subject to Dirichlet boundary conditions on the boundary, and evaluate the
action on the solution. If there is more than one solution, then we have more
than one saddle point contributing to the string theory partition function, and
we must determine which is most important. In this section, multiple saddle
points will not be a problem. So, we can write

Wgauge[φ0] = − log
〈
e
∫

d4x φ0(x)O(x)
〉

CFT
� extremum

φ|
z=ε

=φ0

ISUGRA[φ] . (31)

That is, the generator of connected Green’s functions in the gauge theory, in the
large N, g2

Y MN limit, is the on-shell supergravity action.
Note that in (31) we have not attempted to be prescient about inserting factors

of ε. Instead our strategy will be to use (31) without modification to compute
two-point functions of O, and then perform a wave-function renormalization
on either O or φ so that the final answer is independent of the cutoff. This
approach should be workable even in a space (with boundary) which is not
asymptotically anti-de Sitter, corresponding to a field theory which does not
have a conformal fixed point in the ultraviolet.

A remark is in order regarding the relation of (31) to the old approach of ex-
tracting Green’s functions from an absorption cross-section [16]. In absorption
calculations one is keeping the whole D3-brane geometry, not just the near-
horizon AdS5 × S5 throat. The usual treatment is to split the space into a near
region (the throat) and a far region. The incoming wave from asymptotically
flat infinity can be regarded as fixing the value of a supergravity field at the outer
boundary of the near region. As usual, the supergravity description is valid at
large N and large ’t Hooft coupling. At small ’t Hooft coupling, there is a
different description of the process: a cluster of D3-branes sits at some location
in flat ten-dimensional space, and the incoming wave impinges upon it. In the
low-energy limit, the value of the supergravity field which the D3-branes feel is
the same as the value in the curved space description at the boundary of the near
horizon region. Equation (31) is just a mathematical expression of the fact that
the throat geometry should respond identically to the perturbed supergravity
fields as the low-energy theory on the D3-branes.

Following [23, 24], a number of papers—notably [127, 128, 109, 129, 110,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141]—have undertaken
the program of extracting explicit n-point correlation functions of gauge singlet
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operators by developing both sides of (31) in a power series in φ0. Because the
right hand side is the extremization of a classical action, the power series has a
graphical representation in terms of tree-level Feynman graphs for fields in the
supergravity. There is one difference: in ordinary Feynman graphs one assigns
the wavefunctions of asymptotic states to the external legs of the graph, but in
the present case the external leg factors reflect the boundary values φ0. They
are special limits of the usual gravity propagators in the bulk, and are called
bulk-to-boundary propagators. We will encounter their explicit form in the next
two sections.

4.1 Two-point Functions

For two-point functions, only the part of the action which is quadratic in the
relevant field perturbation is needed. For massive scalar fields in AdS5, this
has the generic form

S = η

∫
d5x
√

g
[

1
2(∂φ)2 + 1

2m2φ2
]
, (32)

whereη is some normalization which in principle follows from the ten-dimensional
origin of the action. The bulk-to-boundary propagator is a particular solution
of the equation of motion, ( −m2)φ = 0, which has special asymptotic prop-
erties. We will start by considering the momentum space propagator, which is
useful for computing the two-point function and also in situations where the
bulk geometry loses conformal invariance; then, we will discuss the position
space propagator, which has proven more convenient for the study of higher
point correlators in the conformal case. We will always work in Euclidean
space6. A coordinate system in the bulk of AdS5 such that

ds2 =
R2

z2

(
d�x2 + dz2

)
(33)

provides manifest Euclidean symmetry on the directions parametrized by �x. To
avoid divergences associated with the small z region of integration in (32), we
will employ an explicit cutoff, z ≥ ε.

A complete set of solutions for the linearized equation of motion, ( −m2)φ =
0, is given by φ = ei�p·�xZ(pz), where the function Z(u) satisfies the radial equa-
tion [

u5∂u
1
u3

∂u − u2 −m2R2

]
Z(u) = 0 . (34)

6The results may be analytically continued to give the correlation functions of the field theory on Minkowskian
R

4, which corresponds to the Poincaré coordinates of AdS space.



Large N field theories and gravity 121

There are two independent solutions to (34), namely Z(u) = u2IΔ−2(u) and
Z(u) = u2KΔ−2(u), where Iν and Kν are Bessel functions and

Δ = 2 +
√

4 + m2R2 . (35)

The second solution is selected by the requirement of regularity in the interior:
IΔ−2(u) increases exponentially as u→∞ and does not lead to a finite action
configuration. Imposing the boundary condition φ(�x, z) = φ0(�x) = ei�p·�x at
z = ε, we find the bulk-to-boundary propagator

φ(�x, z) = K�p(�x, z) =
(pz)2KΔ−2(pz)
(pε)2KΔ−2(pε)

ei�p·�x . (36)

To compute a two-point function of the operator O for which φ0 is a source,
we write

〈O(�p)O(�q)〉 =
∂2W

[
φ0 = λ1e

i�p·x + λ2e
i�q·x]

∂λ1∂λ2

∣∣∣∣∣
λ1=λ2=0

= (leading analytic terms in (εp)2)

− ηε2Δ−8(2Δ− 4)
Γ(3−Δ)
Γ(Δ− 1)

δ4(�p + �q)
(

�p

2

)2Δ−4

+ (higher order terms in (εp)2),

〈O(�x)O(�y)〉 = ηε2Δ−8 2Δ− 4
Δ

Γ(Δ + 1)
π2Γ(Δ− 2)

1
|�x− �y|2Δ .

(37)

Several explanatory remarks are in order:

To establish the second equality in (37) we have used (36), substituted
in (32), performed the integral and expanded in ε. The leading analytic
terms give rise to contact terms in position space, and the higher order
terms are unimportant in the limit where we remove the cutoff. Only the
leading nonanalytic term is essential. We have given the expression for
generic real values of Δ. Expanding around integer Δ ≥ 2 one obtains
finite expressions involving log εp.

The Fourier transforms used to obtain the last line are singular, but they
can be defined for generic complex Δ by analytic continuation and for
positive integer Δ by expanding around a pole and dropping divergent
terms, in the spirit of differential regularization [142]. The result is a
pure power law dependence on the separation |�x − �y|, as required by
conformal invariance.

We have assumed a coupling
∫

d4x φ(�x, z = ε)O(�x) to compute the
Green’s functions. The explicit powers of the cutoff in the final posi-
tion space answer can be eliminated by absorbing a factor of εΔ−4 into
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the definition of O. From here on we will take that convention, which
amounts to inserting a factor of ε4−Δ on the right hand side of (36). In
fact, precise matchings between the normalizations in field theory and in
string theory for all the chiral primary operators have not been worked
out. In part this is due to the difficulty of determining the coupling of
bulk fields to field theory operators (or in stringy terms, the coupling of
closed string states to composite open string operators on the brane). See
[15] for an early approach to this problem. For the dilaton, the graviton,
and their superpartners (including gauge fields in AdS5), the couplings
can be worked out explicitly. In some of these cases all normalizations
have been worked out unambiguously and checked against field theory
predictions (see for example [23, 109, 134]).

The mass-dimension relation (35) holds even for string states that are not
included in the Kaluza-Klein supergravity reduction: the mass and the di-
mension are just different expressions of the second Casimir of SO(4, 2).
For instance, excited string states, with m ∼ 1/

√
α′, are expected to cor-

respond to operators with dimension Δ ∼ (g2
Y MN)1/4. The remarkable

fact is that all the string theory modes with m ∼ 1/R (which is to say, all
closed string states which arise from massless ten dimensional fields) fall
in short multiplets of the supergroup SU(2, 2|4). All other states have a
much larger mass. The operators in short multiplets have algebraically
protected dimensions. The obvious conclusion is that all operators whose
dimensions are not algebraically protected have large dimension in the
strong ’t Hooft coupling, large N limit to which supergravity applies.
This is no longer true for theories of reduced supersymmetry: the super-
group gets smaller, but the Kaluza-Klein states are roughly as numerous
as before, and some of them escape the short multiplets and live in long
multiplets of the smaller supergroups. They still have a mass on the order
of 1/R, and typically correspond to dimensions which are finite (in the
large g2

Y MN limit) but irrational.

Correlation functions of non-scalar operators have been widely studied fol-
lowing [24]; the literature includes [143, 144, 145, 146, 147, 148, 149, 150,
151, 152, 153]. For N = 4 super-Yang-Mills theory, all correlation functions
of fields in chiral multiplets should follow by application of supersymmetries
once those of the chiral primary fields are known, so in this case it should be
enough to study the scalars. It is worthwhile to note however that the mass-
dimension formula changes for particles with spin. In fact the definition of
mass has some convention-dependence. Conventions seem fairly uniform in
the literature, and a table of mass-dimension relations in AdSd+1 with unit
radius was made in [154] from the various sources cited above (see also [101]):

scalars: Δ± = 1
2(d±√d2 + 4m2),
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spinors: Δ = 1
2(d + 2|m|),

vectors: Δ± = 1
2(d±√(d− 2)2 + 4m2),

p-forms: Δ = 1
2(d±√(d− 2p)2 + 4m2),

first-order (d/2)-forms (d even): Δ = 1
2(d + 2|m|),

spin-3/2: Δ = 1
2(d + 2|m|),

massless spin-2: Δ = d.

In the case of fields with second order lagrangians, we have not attempted to
pick which of Δ± is the physical dimension. Usually the choice Δ = Δ+ is
clear from the unitarity bound, but in some cases (notably m2 = 15/4 in AdS5)
there is a genuine ambiguity. In practice this ambiguity is usually resolved by
appealing to some special algebraic property of the relevant fields, such as
transformation under supersymmetry or a global bosonic symmetry.

For brevity we will omit a further discussion of higher spins, and instead
refer the reader to the (extensive) literature.

4.2 Three-point Functions

Working with bulk-to-boundary propagators in the momentum representa-
tion is convenient for two-point functions, but for higher point functions posi-
tion space is preferred because the full conformal invariance is more obvious.
(However, for non-conformal examples of the bulk-boundary correspondence,
the momentum representation seems uniformly more convenient). The bound-
ary behavior of position space bulk-to-boundary propagators is specified in a
slightly more subtle way: following [109] we require

KΔ(�x, z; �y)→ z4−Δδ4(�x− �y) as z → 0 . (38)

Here �y is the point on the boundary where we insert the operator, and (�x, z) is
a point in the bulk. The unique regular KΔ solving the equation of motion and
satisfying (38) is

KΔ(�x, z; �y) =
Γ(Δ)

π2Γ(Δ− 2)

(
z

z2 + (�x− �y)2

)Δ

. (39)

At a fixed cutoff, z = ε, the bulk-to-boundary propagator KΔ(�x, ε; �y) is a con-
tinuous function which approximates ε4−Δδ4(�x−�y) better and better as ε→ 0.
Thus at any finite ε, the Fourier transform of (39) only approximately coincides
with (36) (modified by the factor of ε4−Δ as explained after (37)). This appar-
ently innocuous subtlety turned out to be important for two-point functions, as
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1 2

3

λ

Figure 2. The Feynman graph for the three-point function as computed in supergravity. The
legs correspond to factors of KΔi , and the cubic vertex to a factor of λ. The position of the
vertex is integrated over AdS5.

discovered in [109]. A correct prescription is to specify boundary conditions
at finite z = ε, cut off all bulk integrals at that boundary, and only afterwards
take ε → 0. That is what we have done in (37). Calculating two-point func-
tions directly using the position-space propagators (38), but cutting the bulk
integrals off again at ε, and finally taking the same ε→ 0 answer, one arrives at
a different answer. This is not surprising since the z = ε boundary conditions
were not used consistently. The authors of [109] checked that using the cutoff
consistently (i.e. with the momentum space propagators) gave two-point func-
tions 〈O(�x1)O(�x2)〉 a normalization such that Ward identities involving the
three-point function 〈O(�x1)O(�x2)Jμ(�x3)〉, where Jμ is a conserved current,
were obeyed. Two-point functions are uniquely difficult because of the poor
convergence properties of the integrals over z. The integrals involved in three-
point functions are sufficiently benign that one can ignore the issue of how to
impose the cutoff.

If one has a Euclidean bulk action for three scalar fields φ1, φ2, and φ3, of
the form

S =
∫

d5x
√

g

[∑
i

1
2(∂φi)2 + 1

2m2
i φ

2
i + λφ1φ2φ3

]
, (40)

and if theφi couple to operators in the field theory by interaction terms
∫

d4x φiOi,
then the calculation of 〈O1O2O3〉 reduces, via (31), to the evaluation of the
graph shown in figure 2. That is,
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〈O1(�x1)O2(�x2)O3(�x3)〉 = −λ

∫
d5x
√

gKΔ1(x; �x1)KΔ2(x; �x2)KΔ3(x; �x3)

=
λa1

|�x1 − �x2|Δ1+Δ2−Δ3 |�x1 − �x3|Δ1+Δ3−Δ2 |�x2 − �x3|Δ2+Δ3−Δ1
,

(41)
for some constant a1. The dependence on the �xi is dictated by the conformal
invariance, but the only way to compute a1 is by performing the integral over
x. The result [109] is

a1 = −Γ
[

1
2(Δ1 + Δ2 −Δ3)

]
Γ
[

1
2(Δ1 + Δ3 −Δ2)

]
Γ
[

1
2(Δ2 + Δ3 −Δ1)

]
2π4Γ(Δ1 − 2)Γ(Δ2 − 2)Γ(Δ3 − 2)

·
Γ
[

1
2(Δ1 + Δ2 + Δ3)− 2

]
.

(42)
In principle one could also have couplings of the form φ1∂φ2∂φ3. This leads
only to a modification of the constant a1.

The main technical difficulty with three-point functions is that one must fig-
ure out the cubic couplings of supergravity fields. Because of the difficulties in
writing down a covariant action for type IIB supergravity in ten dimensions (see
however [155, 156, 157]), it is most straightforward to read off these “cubic cou-
plings” from quadratic terms in the equations of motion. In flat ten-dimensional
space these terms can be read off directly from the original type IIB supergrav-
ity papers [158, 159]. For AdS5×S5, one must instead expand in fluctuations
around the background metric and five-form field strength. The old literature
[103] only dealt with the linearized equations of motion; for 3-point functions
it is necessary to go to one higher order of perturbation theory. This was done
for a restricted set of fields in [132]. The fields considered were those dual to
operators of the form Tr φ(J1φJ2 . . . φJ�) in field theory, where the parenthe-
ses indicate a symmetrized traceless product. These operators are the chiral
primaries of the gauge theory: all other single trace operators of protected di-
mension descend from these by commuting with supersymmetry generators.
Only the metric and the five-form are involved in the dual supergravity fields,
and we are interested only in modes which are scalars in AdS5. The result of
[132] is that the equations of motion for the scalar modes s̃I dual to

OI = CI
J1...J�

Trφ(J1 . . . φJ�) (43)

follow from an action of the form

S =
4N2

(2π)5

∫
d5x
√

g

{∑
I

AI(wI)2

2
[−(∇s̃I)2 − l(l − 4)s̃2

I

]
+

∑
I1,I2,I3

GI1I2I3w
I1wI2wI3

3
s̃I1 s̃I2 s̃I3

}
.

(44)
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Derivative couplings of the form s̃∂s̃∂s̃ are expected a priori to enter into
(44), but an appropriate field redefinition eliminates them. The notation in
(43) and (44) requires some explanation. I is an index which runs over the
weight vectors of all possible representations constructed as symmetric traceless
products of the 6 of SU(4)R. These are the representations whose Young
diagrams are , , , · · ·. CI

J1...J�
is a basis transformation matrix, chosen

so that CI
J1...J�

CJ
J1...J�

= δIJ . As commented in the previous section, there
is generally a normalization ambiguity on how supergravity fields couple to
operators in the gauge theory. We have taken the coupling to be

∫
d4x s̃IOI ,

and the normalization ambiguity is represented by the “leg factors” wI . It is
the combination sI = wI s̃I rather than s̃I itself which has a definite relation
to supergravity fields. We refer the reader to [132] for explicit expressions
for AI and the symmetric tensor GI1I2I3 . To get rid of factors of wI , we
introduce operators OI = w̃IOI . One can choose w̃I so that a two-point
function computation along the lines of section 4.1 leads to

〈OI1(�x)OI2(0)〉 =
δI1I2

x2Δ1
. (45)

With this choice, the three-point function, as calculated using (41), is

〈OI1( �x1)OI2( �x2)OI3( �x3)〉 = (46)

1
N

√
Δ1Δ2Δ3〈CI1CI2CI3〉

|�x1 − �x2|Δ1+Δ2−Δ3 |�x1 − �x3|Δ1+Δ3−Δ2 |�x2 − �x3|Δ2+Δ3−Δ1
,

where we have defined

〈CI1CI2CI3〉 = CI1
J1···JiK1···Kj

CI2
J1···JiL1···Lk

CI3
K1···KjL1···Lk

. (47)

Remarkably, (47) is the same result one obtains from free field theory by Wick
contracting all the φJ fields in the three operators. This suggests that there is a
non-renormalization theorem for this correlation function, but such a theorem
has not yet been proven (see however comments at the end of section 3.2). It
is worth emphasizing that the normalization ambiguity in the bulk-boundary
coupling is circumvented essentially by considering invariant ratios of three-
point functions and two-point functions, into which the “leg factors” wI do not
enter. This is the same strategy as was pursued in comparing matrix models of
quantum gravity to Liouville theory.

4.3 Four-point Functions

The calculation of four-point functions is difficult because there are several
graphs which contribute, and some of them inevitably involve bulk-to-bulk
propagators of fields with spin. The computation of four-point functions of
the operators Oφ and OC dual to the dilaton and the axion was completed in
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[160]. See also [128, 133, 135, 136, 161, 162, 139, 137, 163, 5] for earlier
contributions. One of the main technical results, further developed in [164], is
that diagrams involving an internal propagator can be reduced by integration
over one of the bulk vertices to a sum of quartic graphs expressible in terms of
the functions

DΔ1Δ2Δ3Δ4(�x1, �x2, �x3, �x4) =
∫

d5x
√

g
4∏

i=1

K̃Δi(�x, z; �xi),

K̃Δ(�x, z; �y) =
(

z

z2 + (�x− �y)2

)Δ

.

(48)

The integration is over the bulk point (�x, z). There are two independent con-
formally invariant combinations of the �xi:

s =
1
2

�x2
13�x

2
24

�x2
12�x

2
34 + �x2

14�x
2
23

t =
�x2

12�x
2
34 − �x2

14�x
2
23

�x2
12�x

2
34 + �x2

14�x
2
23

. (49)

One can write the connected four-point function as

〈Oφ(�x1)OC(�x2)Oφ(�x3)OC(�x4)〉 =
(

6
π2

)4
[
16�x2

24

(
1
2s
− 1

)
D4455 +

64
9

�x2
24

�x2
13

1
s
D3355

+
16
3

�x2
24

�x2
13

1
s
D2255 − 14D4444 − 46

9�x2
13

D3344 − 40
9�x2

13

D2244 − 8
3�x6

13

D1144 + 64�x2
24D4455

]
.

(50)

An interesting limit of (50) is to take two pairs of points close together. Fol-
lowing [160], let us take the pairs (�x1, �x3) and (�x2, �x4) close together while
holding �x1 and �x2 a fixed distance apart. Then the existence of an OPE expan-
sion implies that

〈OΔ1(�x1)OΔ2(�x2)OΔ3(�x3)OΔ4(�x4)〉 =
∑
n,m

αn〈On(�x1)Om(�x2)〉βm

�xΔ1+Δ3−Δm
13 �xΔ2+Δ4−Δn

24

,

(51)
at least as an asymptotic series, and hopefully even with a finite radius of con-
vergence for �x13 and �x24. The operators On are the ones that appear in the
OPE ofO1 withO3, and the operatorsOm are the ones that appear in the OPE
of O2 with O4. Oφ and OC are descendants of chiral primaries, and so have
protected dimensions. The product of descendants of chiral fields is not itself
necessarily the descendent of a chiral field: an appropriately normal ordered
product : OφOφ : is expected to have an unprotected dimension of the form
8 + O(1/N2). This is the natural result from the field theory point of view be-
cause there are O(N2) degrees of freedom contributing to each factor, and the
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1 3

2 4

Figure 3. A nearly degenerate quartic graph contributing to the four-point function in the limit
|�x13|, |�x24| � |�x12|.

commutation relations between them are non-trivial only a fraction 1/N2 of the
time. From the supergravity point of view, a composite operator like : OφOφ :
corresponds to a two-particle bulk state, and the O(1/N2) = O(κ2/R8) cor-
rection to the mass is interpreted as the correction to the mass of the two-particle
state from gravitational binding energy. Roughly one is thinking of graviton
exchange between the legs of figure 3 that are nearly coincident.

If (51) is expanded in inverse powers of N , then the O(1/N2) correction to
Δn and Δm shows up to leading order as a term proportional to a logarithm
of some combination of the separations �xij . Logarithms also appear in the
expansion of (50) in the |�x13|, |�x24| � |�x12| limit in which (51) applies: the

leading log in this limit is 1
(�x12)16

log
(

�x13�x24

�x2
12

)
. This is the correct form to be

interpreted in terms of the propagation of a two-particle state dual to an operator
whose dimension is slightly different from 8.

5. Wilson Loops

In this section we consider Wilson loop operators in the gauge theory. The
Wilson loop operator

W (C) = Tr
[
P exp

(
i

∮
C
A

)]
(52)

depends on a loop C embedded in four dimensional space, and it involves the
path-ordered integral of the gauge connection along the contour. The trace
is taken over some representation of the gauge group; we will discuss here
only the case of the fundamental representation (see [165] for a discussion of
other representations). From the expectation value of the Wilson loop operator
〈W (C)〉 we can calculate the quark-antiquark potential. For this purpose we
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consider a rectangular loop with sides of length T and L in Euclidean space.
Then, viewing T as the time direction, it is clear that for large T the expectation
value will behave as e−TE where E is the lowest possible energy of the quark-
anti-quark configuration. Thus, we have

〈W 〉 ∼ e−TV (L) , (53)

where V (L) is the quark anti-quark potential. For large N and large g2
Y MN ,

the AdS/CFT correspondence maps the computation of 〈W 〉 in the CFT into a
problem of finding a minimum surface in AdS [166, 167].

5.1 Wilson Loops and Minimum Surfaces

In QCD, we expect the Wilson loop to be related to the string running from
the quark to the antiquark. We expect this string to be analogous to the string
in our configuration, which is a superstring which lives in ten dimensions,
and which can stretch between two points on the boundary of AdS. In order
to motivate this prescription let us consider the following situation. We start
with the gauge group U(N + 1), and we break it to U(N) × U(1) by giving
an expectation value to one of the scalars. This corresponds, as discussed in
section 2, to having a D3 brane sitting at some radial position U in AdS, and
at a point on S5. The off-diagonal states, transforming in the N of U(N), get
a mass proportional to U , m = U/2π. So, from the point of view of the U(N)
gauge theory, we can view these states as massive quarks, which act as a source
for the various U(N) fields. Since they are charged they will act as a source for
the vector fields. In order to get a non-dynamical source (an “external quark”
with no fluctuations of its own, which will correspond precisely to the Wilson
loop operator) we need to take m → ∞, which means U should also go to
infinity. Thus, the string should end on the boundary of AdS space.

These stretched strings will also act as a source for the scalar fields. The
coupling to the scalar fields can be seen qualitatively by viewing the quarks as
strings stretching between the N branes and the single separated brane. These
strings will pull the N branes and will cause a deformation of the branes, which
is described by the scalar fields. A more formal argument for this coupling
is that these states are BPS, and the coupling to the scalar (Higgs) fields is
determined by supersymmetry. Finally, one can see this coupling explicitly
by writing the full U(N + 1) Lagrangian, putting in the Higgs expectation
value and calculating the equation of motion for the massive fields [166]. The
precise definition of the Wilson loop operator corresponding to the superstring
will actually include also the field theory fermions, which will imply some
particular boundary conditions for the worldsheet fermions at the boundary of
AdS. However, this will not affect the leading order computations we describe
here.
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So, the final conclusion is that the stretched strings couple to the operator

W (C) = Tr
[
P exp

(∮
(iAμẋμ + θIφI

√
ẋ2)dτ

)]
, (54)

where xμ(τ) is any parametrization of the loop and θI (I = 1, · · · , 6) is a unit
vector in R

6 (the point on S5 where the string is sitting). This is the expression
when the signature of R

4 is Euclidean. In the Minkowski signature case, the
phase factor associated to the trajectory of the quark has an extra factor “i” in
front of θI 7.

Generalizing the prescription of section 4 for computing correlation func-
tions, the discussion above implies that in order to compute the expectation
value of the operator (54) in N = 4 SYM we should consider the string the-
ory partition function on AdS5 × S5, with the condition that we have a string
worldsheet ending on the loop C, as in figure 4 [167, 166]. In the supergravity
regime, when gsN is large, the leading contribution to this partition function
will come from the area of the string worldsheet. This area is measured with
the AdS metric, and it is generally not the same as the area enclosed by the
loop C in four dimensions.

Figure 4. The Wilson loop operator creates a string worldsheet ending on the corresponding
loop on the boundary of AdS.

The area as defined above is divergent. The divergence arises from the
fact that the string worldsheet is going all the way to the boundary of AdS.
If we evaluate the area up to some radial distance U = r, we see that for
large r it diverges as r|C|, where |C| is the length of the loop in the field
theory [166, 167]. On the other hand, the perturbative computation in the
field theory shows that 〈W 〉, for W given by (54), is finite, as it should be since
a divergence in the Wilson loop would have implied a mass renormalization

7The difference in the factor of i between the Euclidean and the Minkowski cases can be traced to the analytic
continuation of

√
ẋ2. A detailed derivation of (54) can be found in [168].
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of the BPS particle. The apparent discrepancy between the divergence of the
area of the minimum surface in AdS and the finiteness of the field theory
computation can be reconciled by noting that the appropriate action for the
string worldsheet is not the area itself but its Legendre transform with respect
to the string coordinates corresponding to θI and the radial coordinate u [168].
This is because these string coordinates obey the Neumann boundary conditions
rather than the Dirichlet conditions. When the loop is smooth, the Legendre
transformation simply subtracts the divergent term r|C|, leaving the resulting
action finite.

As an example let us consider a circular Wilson loop. Take C to be a circle
of radius a on the boundary, and let us work in the Poincaré coordinates. We
could find the surface that minimizes the area by solving the Euler-Lagrange
equations. However, in this case it is easier to use conformal invariance. Note
that there is a conformal transformation in the field theory that maps a line to a
circle. In the case of the line, the minimum area surface is clearly a plane that
intersects the boundary and goes all the way to the horizon (which is just a point
on the boundary in the Euclidean case). Using the conformal transformation to
map the line to a circle we obtain the minimal surface we want. It is, using the
coordinates (15) for AdS5,

�x =
√

a2 − z2(�e1 cos θ + �e2 sin θ), (55)

where �e1, �e2 are two orthonormal vectors in four dimensions (which define the
orientation of the circle) and 0 ≤ z ≤ a. We can calculate the area of this
surface in AdS, and we get a contribution to the action

S ∼ 1
2πα′A =

R2

2πα′

∫
dθ

∫ a

ε

dza

z2
=

R2

α′ (
a

ε
− 1), (56)

where we have regularized the area by putting a an IR cutoff at z = ε in AdS,
which is equivalent to a UV cutoff in the field theory [66]. Subtracting the
divergent term we get

〈W 〉 ∼ e−S ∼ eR2/α′
= e

√
4πgsN . (57)

This is independent of a as required by conformal invariance.
We could similarly consider a “magnetic” Wilson loop, which is also called

a ’t Hooft loop [169]. This case is related by electric-magnetic duality to
the previous case. Since we identify the electric-magnetic duality with the
SL(2, Z) duality of type IIB string theory, we should consider in this case a
D-string worldsheet instead of a fundamental string worldsheet. We get the
same result as in (57) but with gs → 1/gs.

Using (53) it is possible to compute the quark-antiquark potential in the
supergravity approximation [167, 166]. In this case we consider a configuration
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which is invariant under (Euclidean) time translations. We take both particles
to have the same scalar charge, which means that the two ends of the string are
at the same point in S5 (one could consider also the more general case with a
string ending at different points on S5 [166]). We put the quark at x = −L/2
and the anti-quark at x = L/2. Here “quark” means an infinitely massive W-
boson connecting the N branes with one brane which is (infinitely) far away.
The classical action for a string worldsheet is

S =
1

2πα′

∫
dτdσ

√
det(GMN∂αXM∂βXN ), (58)

where GMN is the Euclidean AdS5×S5 metric. Note that the factors of α′ can-
cel out in (58), as they should. Since we are interested in a static configuration
we take τ = t, σ = x, and then the action becomes

S =
TR2

2π

∫ L/2

−L/2
dx

√
(∂xz)2 + 1

z2
. (59)

We need to solve the Euler-Lagrange equations for this action. Since the action
does not depend on x explicitly the solution satisfies

1
z2
√

(∂xz)2 + 1
= constant. (60)

Defining z0 to be the maximum value of z(x), which by symmetry occurs at
x = 0, we find that the solution is8

x = z0

∫ 1

z/z0

dyy2√
1− y4

, (61)

where z0 is determined by the condition

L

2
= z0

∫ 1

0

dyy2√
1− y4

= z0

√
2π3/2

Γ(1/4)2
. (62)

The qualitative form of the solution is shown in figure 5(b). Notice that the
string quickly approaches x = L/2 for small z (close to the boundary),

L

2
− x ∼ z3 , z → 0 . (63)

Now we compute the total energy of the configuration. We just plug in the
solution (61) in (59), subtract the infinity as explained above (which can be

8All integrals in this section can be calculated in terms of elliptic or Beta functions.
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interpreted as the energy of two separated massive quarks, as in figure 5(a)),
and we find

E = V (L) = −4π2(2g2
Y MN)1/2

Γ(1
4)4L

. (64)

We see that the energy goes as 1/L, a fact which is determined by conformal
invariance. Note that the energy is proportional to (g2

Y MN)1/2, as opposed to
g2
Y MN which is the perturbative result. This indicates some screening of the

charges at strong coupling. The above calculation makes sense for all distances
L when gsN is large, independently of the value of gs. Some subleading cor-
rections coming from quantum fluctuations of the worldsheet were calculated
in [170, 171, 172].

L

U=0

U= 8

(a) (b)

x

U

Figure 5. (a) Initial configuration corresponding to two massive quarks before we turn on
their coupling to the U(N) gauge theory. (b) Configuration after we consider the coupling to
the U(N) gauge theory. This configuration minimizes the action. The quark-antiquark energy
is given by the difference of the total length of the strings in (a) and (b).

In a similar fashion we could compute the potential between two magnetic
monopoles in terms of a D-string worldsheet, and the result will be the same as
(64) but with gY M → 4π/gY M . One can also calculate the interaction between
a magnetic monopole and a quark. In this case the fundamental string (ending
on the quark) will attach to the D-string (ending on the monopole), and they
will connect to form a (1, 1) string which will go into the horizon. The resulting
potential is a complicated function of gY M [173], but in the limit that gY M is
small (but still with g2

Y MN large) we get that the monopole-quark potential is
just 1/4 of the quark-quark potential. This can be understood from the fact
that when g is small the D-string is very rigid and the fundamental string will
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end almost perpendicularly on the D-string. Therefore, the solution for the
fundamental string will be half of the solution we had above, leading to a factor
of 1/4 in the potential. Calculations of Wilson loops in the Higgs phase were
done in [174].

Another interesting case one can study analytically is a surface near a cusp
on R

4. In this case, the perturbative computation in the gauge theory shows a
logarithmic divergence with a coefficient depending on the angle at the cusp.
The area of the minimum surface also contains a logarithmic divergence de-
pending on the angle [168]. Other aspects of the gravity calculation of Wilson
loops were discussed in [175, 176, 177, 178, 179].

5.2 Other Branes Ending on the Boundary

We could also consider other branes that are ending at the boundary [180].
The simplest example would be a zero-brane (i.e. a particle) of mass m. In
Euclidean space a zero-brane describes a one dimensional trajectory in anti-
de-Sitter space which ends at two points on the boundary. Therefore, it is
associated with the insertion of two local operators at the two points where the
trajectory ends. In the supergravity approximation the zero-brane follows a
geodesic. Geodesics in the hyperbolic plane (Euclidean AdS) are semicircles.
If we compute the action we get

S = m

∫
ds = −2mR

∫ a

ε

adz

z
√

a2 − z2
, (65)

where we took the distance between the two points at the boundary to be L =
2a and regulated the result. We find a logarithmic divergence when ε → 0,
proportional to log(ε/a). If we subtract the logarithmic divergence we get
a residual dependence on a. Naively we might have thought that (as in the
previous subsection) the answer had to be independent of a due to conformal
invariance. In fact, the dependence on a is very important, since it leads to a
result of the form

e−S ∼ e−2mR log a ∼ 1
a2mR

, (66)

which is precisely the result we expect for the two-point function of an operator
of dimension Δ = mR. This is precisely the large mR limit of the formula
(12), so we reproduce in the supergravity limit the 2-point function described
in section 4. In general, this sort of logarithmic divergence arises when the
brane worldvolume is odd dimensional [180], and it implies that the expec-
tation value of the corresponding operator depends on the overall scale. In
particular one could consider the “Wilson surfaces” that arise in the six dimen-
sional N = (2, 0) theory. In that case one has to consider a two-brane, with
a three dimensional worldvolume, ending on a two dimensional surface on the
boundary of AdS7. Again, one gets a logarithmic term, which is proportional
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to the rigid string action of the two dimensional surface living on the string in
the N = (2, 0) field theory [181, 180].

One can also compute correlation functions involving more than one Wilson
loop. To leading order in N this will be just the product of the expectation
values of each Wilson loop. On general grounds one expects that the subleading
corrections are given by surfaces that end on more than one loop. One limiting
case is when the surfaces look similar to the zeroth order surfaces but with
additional thin tubes connecting them. These thin tubes are nothing else than
massless particles being exchanged between the two string worldsheets [165,
181].

6. Theories at Finite Temperature

As discussed in section 3, the quantities that can be most successfully com-
pared between gauge theory and string theory are those with some protection
from supersymmetry and/or conformal invariance — for instance, dimensions
of chiral primary operators. Finite temperature breaks both supersymmetry
and conformal invariance, and the insights we gain from examining the T > 0
physics will be of a more qualitative nature. They are no less interesting for
that: we shall see in section 6.1 how the entropy of near-extremal D3-branes
comes out identical to the free field theory prediction up to a factor of a power of
4/3; then in section 6.2 we explain how a phase transition studied by Hawking
and Page in the context of quantum gravity is mapped into a confinement-
deconfinement transition in the gauge theory.

6.1 Construction

The gravity solution describing the gauge theory at finite temperature can
be obtained by starting from the general black three-brane solution and taking
the decoupling limit of section 2 keeping the energy density above extremality
finite. The resulting metric can be written as

ds2 = R2

[
u2(−hdt2 + dx2

1 + dx2
2 + dx2

3) +
du2

hu2
+ dΩ2

5

]
h = 1− u4

0

u4
, u0 = πT.

(67)

It will often be useful to Wick rotate by setting tE = it, and use the relation
between the finite temperature theory and the Euclidean theory with a compact
time direction.

The first computation which indicated that finite-temperature U(N) Yang-
Mills theory might be a good description of the microstates of N coincident D3-
branes was the calculation of the entropy [182, 183]. On the supergravity side,
the entropy of near-extremal D3-branes is just the usual Bekenstein-Hawking
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result, S = A/4GN , and it is expected to be a reliable guide to the entropy
of the gauge theory at large N and large g2

Y MN . There is no problem on the
gauge theory side in working at large N , but large g2

Y MN at finite temperature
is difficult indeed. The analysis of [182] was limited to a free field computation
in the field theory, but nevertheless the two results for the entropy agreed up to
a factor of a power of 4/3. In the canonical ensemble, where temperature and
volume are the independent variables, one identifies the field theory volume with
the world-volume of the D3-branes, and one sets the field theory temperature
equal to the Hawking temperature in supergravity. The result is

FSUGRA = −π2

8
N2V T 4,

FSY M =
4
3
FSUGRA .

(68)

The supergravity result is at leading order in ls/R, and it would acquire cor-
rections suppressed by powers of TR if we had considered the full D3-brane
metric rather than the near-horizon limit, (67). These corrections do not have
an interpretation in the context of CFT because they involve R as an intrinsic
scale. Two equivalent methods to evaluate FSUGRA are a) to use F = E−TS
together with standard expressions for the Bekenstein-Hawking entropy, the
Hawking temperature, and the ADM mass; and b) to consider the gravitational
action of the Euclidean solution, with a periodicity in the Euclidean time direc-
tion (related to the temperature) which eliminates a conical deficit angle at the
horizon.9

The 4/3 factor is a long-standing puzzle into which we still have only qual-
itative insight. The gauge theory computation was performed at zero ’t Hooft
coupling, whereas the supergravity is supposed to be valid at strong ’t Hooft
coupling, and unlike in the 1+1-dimensional case where the entropy is essen-
tially fixed by the central charge, there is no non-renormalization theorem for
the coefficient of T 4 in the free energy. Indeed, it was suggested in [184] that
the leading term in the 1/N expansion of F has the form

F = −f(g2
Y MN)

π2

6
N2V T 4, (69)

where f(g2
Y MN) is a function which smoothly interpolates between a weak

coupling limit of 1 and a strong coupling limit of 3/4. It was pointed out early
[185] that the quartic potential g2

Y MTr [φI , φJ ]2 in the N = 4 Yang-Mills ac-
tion might be expected to freeze out more and more degrees of freedom as the

9The result of [182], SSY M = (4/3)1/4SSUGRA, differs superficially from (68), but it is only because
the authors worked in the microcanonical ensemble: rather than identifying the Hawking temperature with
the field theory temperature, the ADM mass above extremality was identified with the field theory energy.
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coupling was increased, which would suggest that f(g2
Y MN) is monotone de-

creasing. An argument has been given [186], based on the non-renormalization
of the two-point function of the stress tensor, that f(g2

Y MN) should remain
finite at strong coupling.

The leading corrections to the limiting value of f(g2
Y MN) at strong and weak

coupling were computed in [184] and [187], respectively. The results are

f(g2
Y MN) = 1− 3

2π2
g2
Y MN + . . . for small g2

Y MN ,

f(g2
Y MN) =

3
4

+
45
32

ζ(3)
(g2

Y MN)3/2
+ . . . for large g2

Y MN .
(70)

The weak coupling result is a straightforward although somewhat tedious ap-
plication of the diagrammatic methods of perturbative finite-temperature field
theory. The constant term is from one loop, and the leading correction is from
two loops. The strong coupling result follows from considering the leading α′
corrections to the supergravity action. The relevant one involves a particular
contraction of four powers of the Weyl tensor. It is important now to work with
the Euclidean solution, and one restricts attention further to the near-horizon
limit. The Weyl curvature comes from the non-compact part of the metric,
which is no longer AdS5 but rather the AdS-Schwarzschild solution which we
will discuss in more detail in section 6.2. The action including the α′ corrections
no longer has the Einstein-Hilbert form, and correspondingly the Bekenstein-
Hawking prescription no longer agrees with the free energy computed as βI
where I is the Euclidean action. In keeping with the basic prescription for com-
puting Green’s functions, where a free energy in field theory is equated (in the
appropriate limit) with a supergravity action, the relation I = βF is regarded
as the correct one. (See [188].) It has been conjectured that the interpolating
function f(g2

Y MN) is not smooth, but exhibits some phase transition at a finite
value of the ’t Hooft coupling. We regard this as an unsettled question. The
arguments in [189, 190] seem as yet incomplete. In particular, they rely on
analyticity properties of the perturbation expansion which do not seem to be
proven for finite temperature field theories.

6.2 Thermal Phase Transition

The holographic prescription of [23, 24], applied at large N and g2
Y MN

where loop and stringy corrections are negligible, involves extremizing the su-
pergravity action subject to particular asymptotic boundary conditions. We can
think of this as the saddle point approximation to the path integral over super-
gravity fields. That path integral is ill-defined because of the non-renormalizable
nature of supergravity. String amplitudes (when we can calculate them) ren-
der on-shell quantities well-defined. Despite the conceptual difficulties we can
use some simple intuition about path integrals to illustrate an important point
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about the AdS/CFT correspondence: namely, there can be more than one saddle
point in the range of integration, and when there is we should sum e−ISUGRA

over the classical configurations to obtain the saddle-point approximation to the
gauge theory partition function. Multiple classical configurations are possible
because of the general feature of boundary value problems in differential equa-
tions: there can be multiple solutions to the classical equations satisfying the
same asymptotic boundary conditions. The solution which globally minimizes
ISUGRA is the one that dominates the path integral.

When there are two or more solutions competing to minimize ISUGRA, there
can be a phase transition between them. An example of this was studied in [191]
long before the AdS/CFT correspondence, and subsequently resurrected, gener-
alized, and reinterpreted in [24, 68] as a confinement-deconfinement transition
in the gauge theory. Since the qualitative features are independent of the di-
mension, we will restrict our attention to AdS5. It is worth noting however that
if the AdS5 geometry is part of a string compactification, it doesn’t matter what
the internal manifold is except insofar as it fixes the cosmological constant, or
equivalently the radius R of anti-de Sitter space.

There is an embedding of the Schwarzschild black hole solution into anti-de
Sitter space which extremizes the action

I = − 1
16πG5

∫
d5x
√

g

(
R+

12
R2

)
. (71)

Explicitly, the metric is

ds2 = fdt2 +
1
f

dr2 + r2dΩ2
3,

f = 1 +
r2

R2
− μ

r2
.

(72)

The radial variable r is restricted to r ≥ r+, where r+ is the largest root of
f = 0. The Euclidean time is periodically identified, t ∼ t + β, in order to
eliminate the conical singularity at r = r+. This requires

β =
2πR2r+

2r2
+ + R2

. (73)

Topologically, this space is S3 × B2, and the boundary is S3 × S1 (which is
the relevant space for the field theory on S3 with finite temperature). We will
call this space X2. Another space with the same boundary which is also a local
extremum of (71) is given by the metric in (72) with μ = 0 and again with
periodic time. This space, which we will call X1, is not only metrically distinct
from the first (being locally conformally flat), but also topologically B4 × S1

rather than S3 ×B2. Because the S1 factor is not simply connected, there are
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two possible spin structures on X1, corresponding to thermal (anti-periodic) or
supersymmetric (periodic) boundary conditions on fermions. In contrast, X2

is simply connected and hence admits a unique spin structure, corresponding
to thermal boundary conditions. For the purpose of computing the twisted
partition function, Tr (−1)F e−βH , in a saddle-point approximation, only X1

contributes. But, X1 and X2 make separate saddle-point contributions to the
usual thermal partition function, Tr e−βH , and the more important one is the
one with the smaller Euclidean action.

Actually, both I(X1) and I(X2) are infinite, so to compute I(X2)−I(X1) a
regulation scheme must be adopted. The one used in [68, 184] is to cut off both
X1 and X2 at a definite coordinate radius r = R0. For X2, the elimination of
the conical deficit angle at the horizon fixes the period of Euclidean time; but
for X1, the period is arbitrary. In order to make the comparison of I(X1) and
I(X2) meaningful, we fix the period of Euclidean time on X1 so that the proper
circumference of the S1 at r = R0 is the same as the proper length on X2 of
an orbit of the Killing vector ∂/∂t, also at r = R0. In the limit R0 →∞, one
finds

I(X2)− I(X1) =
π2r3

+(R2 − r2
+)

4G5(2r2
+ + R2)

, (74)

where again r+ is the largest root of f = 0. The fact that (74) (or more
precisely its AdS4 analog) can change its sign was interpreted in [191] as
indicating a phase transition between a black hole in AdS and a thermal gas
of particles in AdS (which is the natural interpretation of the space X1). The
black hole is the thermodynamically favored state when the horizon radius r+

exceeds the radius of curvature R of AdS. In the gauge theory we interpret
this transition as a confinement-deconfinement transition. Since the theory
is conformally invariant, the transition temperature must be proportional to
the inverse radius of the space S3 which the field theory lives on. Similar
transitions, and also local thermodynamic instability due to negative specific
heats, have been studied in the context of spinning branes and charged black
holes in [192, 193, 194, 195, 196, 197, 198]. Most of these works are best
understood on the CFT side as explorations of exotic thermal phenomena in
finite-temperature gauge theories. Connections with Higgsed states in gauge
theory are clearer in [199, 200]. The relevance to confinement is explored in
[197]. See also [201, 202, 203, 204] for other interesting contributions to the
finite temperature literature.

Deconfinement at high temperature can be characterized by a spontaneous
breaking of the center of the gauge group. In our case the gauge group is
SU(N) and its center is ZN . The order parameter for the breaking of the
center is the expectation value of the Polyakov (temporal) loop 〈W (C)〉. The
boundary of the spaces X1, X2 is S3 × S1, and the path C wraps around
the circle. An element of the center g ∈ ZN acts on the Polyakov loop by
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〈W (C)〉 → g〈W (C)〉. The expectation value of the Polyakov loop measures
the change of the free energy of the system Fq(T ) induced by the presence
of the external charge q, 〈W (C)〉 ∼ exp (−Fq(T )/T ). In a confining phase
Fq(T ) is infinite and therefore 〈W (C)〉 = 0. In the deconfined phase Fq(T ) is
finite and therefore 〈W (C)〉 �= 0.

As discussed in section 5, in order to compute 〈W (C)〉 we have to evaluate
the partition function of strings with a worldsheet D that is bounded by the loop
C. Consider first the low temperature phase. The relevant space is X1 which,
as discussed above, has the topology B4×S1. The contour C wraps the circle
and is not homotopic to zero in X1. Therefore C is not a boundary of any D,
which immediately implies that 〈W (C)〉 = 0. This is the expected behavior at
low temperatures (compared to the inverse radius of the S3), where the center
of the gauge group is not broken.

For the high temperature phase the relevant space is X2, which has the
topology S3 × B2. The contour C is now a boundary of a string worldsheet
D = B2 (times a point in S3). This seems to be in agreement with the fact
that in the high temperature phase 〈W (C)〉 �= 0 and the center of the gauge
group is broken. It was pointed out in [68] that there is a subtlety with this
argument, since the center should not be broken in finite volume (S3), but only
in the infinite volume limit (R3). Indeed, the solution X2 is not unique and we
can add to it an expectation value for the integral of the NS-NS 2-form field
B on B2, with vanishing field strength. This is an angular parameter ψ with
period 2π, which contributes iψ to the string worldsheet action. The string
theory partition function includes now an integral over all values of ψ, making
〈W (C)〉 = 0 on S3. In contrast, on R

3 one integrates over the local fluctuations
of ψ but not over its vacuum expectation value. Now 〈W (C)〉 �= 0 and depends
on the value of ψ ∈ U(1), which may be understood as the dependence on the
center ZN in the large N limit. Explicit computations of Polyakov loops at
finite temperature were done in [205, 6].

In [68] the Euclidean black hole solution (72) was suggested to be holo-
graphically dual to a theory related to pure QCD in three dimensions. In the
large volume limit the solution corresponds to the N = 4 gauge theory on
R

3 × S1 with thermal boundary conditions, and when the S1 is made small
(corresponding to high temperature T ) the theory at distances larger than 1/T
effectively reduces to pure Yang-Mills on R

3. Some of the non-trivial successes
of this approach to QCD are summarized in [1].
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Abstract These lectures provide an introduction to the subject of tachyon condensation in
the open bosonic string. The problem of tachyon condensation is first described
in the context of the low-energy Yang-Mills description of a system of multiple
D-branes, and then using the language of string field theory. An introduction is
given to Witten’s cubic open bosonic string field theory. The Sen conjectures
on tachyon condensation in open bosonic string field theory are introduced, and
evidence confirming these conjectures is reviewed.

1. Introduction

The last seven years have been a very exciting time for string theory. A new
understanding of nonperturbative features of string theory, such as D-branes, has
led to exciting new developments relating string theory to physically interesting
systems such as black holes and supersymmetric gauge field theories, as well
as to a new understanding of the relationship between Yang-Mills theories and
quantum theories of gravity.

Despite remarkable progress in these directions, however, a consistent non-
perturbative background-independent formulation of string theory is still lack-
ing. This situation makes it impossible at this point, even in principle, to
directly address cosmological questions using string theory. String field the-
ory is a nonperturbative approach to string theory which holds some promise
towards providing a background-independent definition of the theory. These
lecture notes give an introduction to string field theory and review some recent
work which incorporates D-branes into the framework of string field theory.
This work shows that string field theory is a sufficiently robust framework that
distinct string backgrounds can arise as disconnected solutions of the theory,
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at least for open strings. It remains to be seen whether this success can be
replicated in the closed string sector.

In this section we review briefly the situation in string theory as a whole,
and summarize the goals of this set of lectures. In Section 2 we review some
basic aspects of D-branes. In Section 3, we describe a particular D-brane
configuration which exhibits a tachyonic instability. This tachyon can be seen
in the low-energy super Yang-Mills description of the D-brane geometry. This
field theory tachyon provides a simple model which embodies much of the
physics of the more complicated string field theory tachyon discussed in the
later lectures. In Section 4 we give an introduction to Witten’s cubic bosonic
open string field theory and summarize the conjectures made by Sen in 1999,
which suggested that the tachyonic instability of the open bosonic string can be
interpreted in terms of an unstable space-filling D-brane, and that this system
can be analytically described through open string field theory. Section 5 gives
a more detailed analytic description of Witten’s cubic string field theory. In
Section 6 we summarize evidence from string field theory for Sen’s conjectures.
Section 7 contains a brief review of some more recent developments. Section
8 contains concluding remarks and lists some open problems.

Much new work has been done in this area since these lectures were presented
at Valdivia in January 2002. Except for a few references to more recent devel-
opments in footnotes and in the last two sections, these lecture notes primarily
cover work done before January 2002. Previous articles reviewing related work
include those of Ohmori [1], de Smet [2], and Aref’eva et al. [3]. An expanded
set of lecture notes, based on lectures given by the author and Barton Zwiebach
at TASI ’01, will appear in [4]; the larger set of notes will include further details
on a number of topics.

1.1 The status of string theory: a brief review

To understand the significance of developments over the last seven years, it
is useful to recall the situation of string theory as it was in early 1995. At that
time it was clearly understood that there were 5 distinct ways in which a su-
persymmetric closed string could be quantized to give a microscopic definition
of a theory of quantum gravity in ten dimensions. Each of these approaches to
quantizing the string gives a set of rules for calculating scattering amplitudes
between on-shell string states which describe gravitational quanta as well as
an infinite family of massive particles in a ten-dimensional spacetime. These
five string theories are known as the type IIA, IIB, I, heterotic SO(32), and
heterotic E8×E8 superstring theories. While these string theories give pertur-
bative descriptions of quantum gravity, in 1995 there was little understanding
of nonperturbative aspects of these theories.
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In the years between 1995 and 2000, several new ideas dramatically trans-
formed our understanding of string theory. We now briefly summarize these
ideas and mention some aspects of these developments relevant to the main
topic of these lectures.

Dualities: The five different perturbative formulations of superstring theory
are all related to one another through duality symmetries [5, 6], whereby the
degrees of freedom in one theory can be described through a duality transfor-
mation in terms of the degrees of freedom of another theory. Some of these
duality symmetries are nonperturbative, in the sense that the string coupling g
in one theory is related to the inverse string coupling 1/g in a dual theory. The
web of dualities relating the different theories gives a picture in which, rather
than describing five distinct possibilities for a fundamental theory, each of the
perturbative superstring theories appears to be a particular perturbative limit of
some other, as yet unknown, underlying theoretical structure.

M-theory: In addition to the five perturbative string theories, the web of dual-
ities also seems to include a limit which describes a quantum theory of gravity
in eleven dimensions. This new theory has been dubbed “M-theory”. Although
no covariant definition for M-theory has been given, this theory can be related
to type IIA and heterotic E8×E8 string theories through compactification on a
circle S1 and the space S1/Z2 respectively [7, 6, 8]. For example, in relating to
the type IIA theory, the compactification radius R11 of M-theory becomes the
product gls of the string coupling and string length in the 10D IIA theory. Thus,
M-theory in flat space, which arises in the limit R11 →∞, can be thought of as
the strong coupling limit of type IIA string theory. It is also suspected that M-
theory may be describable as a quantum theory of membranes in 11 dimensions
[7], although a covariant formulation of such a theory is still lacking.

Branes: In addition to strings, all five superstring theories, as well as M-
theory, contain extended objects of higher dimensionality known as “branes”.
M-theory has M2-branes and M5-branes, which have two and five dimensions of
spatial extent (whereas a string has one). The different superstring theories each
have different complements of D-branes as well as the fundamental string and
Neveu-Schwarz 5-brane; in particular, the IIA/IIB superstring theories contain
D-branes of all even/odd dimensions. The branes of one theory can be related
to the branes of another through the duality transformations mentioned above.
Through an appropriate sequence of dualities, any brane can be mapped to any
other brane, including the string itself. This suggests that none of these objects
are really any more fundamental than any others; this idea is known as “brane
democracy”.

M(atrix) theory and AdS/CFT: One of the most remarkable results of the
developments just mentioned is the realization that in certain space-time back-
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grounds, M-theory and string theory can be completely described through sim-
ple supersymmetric quantum mechanics and field theory models related to the
low-energy description of systems of branes. The M(atrix) model of M-theory
is a simple supersymmetric matrix quantum mechanics which is believed to
capture all of the physics of M-theory in asymptotically flat spacetime (in light-
cone coordinates). A closely related set of higher-dimensional supersymmetric
Yang-Mills theories are related to string theory in backgrounds described by the
product of anti-de Sitter space and a sphere through the AdS/CFT correspon-
dence. It is believed that these models of M-theory and string theory give true
nonperturbative descriptions of quantum gravity in space-time backgrounds
which have the asymptotic geometry relevant to each model. For reviews of
M(atrix) theory and AdS/CFT, see [9, 10].

The set of ideas just summarized have greatly increased our understanding of
nonperturbative aspects of string theory. In particular, through M(atrix) theory
and the AdS/CFT correspondences we now have nonperturbative definitions
of M-theory and string theory in certain asymptotic space-time backgrounds
which could, in principle, be used to calculate any local result in quantum
gravity. While these new insights are very powerful, however, we are still
lacking a truly background-independent formulation of string theory.

1.2 The goal of these lectures

The goal of these lectures is to describe progress towards a nonperturbative
background-independent formulation of string theory. Such a formulation is
needed to address fundamental questions such as: What is string theory/M-
theory? How is the vacuum of string theory selected? (i.e., Why can the
observable low-energy universe be accurately described by the standard model
of particle physics in four space-time dimensions with an apparently small but
nonzero positive cosmological constant?), and other questions of a cosmolog-
ical nature. Obviously, aspiring to address these questions is an ambitious
undertaking, but we believe that attaining a better understanding of string field
theory is a useful step in this direction.

More concretely, in these lectures we will describe recent progress on open
string field theory. It may be useful here to recall some basic aspects of open
and closed strings and the relationship between them.

Closed strings, which are topologically equivalent to a circle S1, give rise
upon quantization to a massless set of spacetime fields associated with the
graviton gμν , the dilaton ϕ, and the antisymmetric two-form Bμν , as well as an
infinite family of massive fields. For the supersymmetric closed string, further
massless fields associated with the graviton supermultiplet appear—these are
the Ramond-Ramond p-form fields A

(p)
μ1···μp and the gravitini ψμα. Thus, the

quantum theory of closed strings is naturally associated with a theory of gravity
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in space-time. On the other hand, open strings, which are topologically equiv-
alent to an interval [0, π], give rise under quantization to a massless gauge field
Aμ in space-time. The supersymmetric open string also has a massless gaugino
field ψα. It is now understood that generally open strings should be thought of
as ending on a Dirichlet p-brane (Dp-brane), and that the massless open string
fields describe the fluctuations of the D-brane and the gauge field living on the
world-volume of the D-brane.

It may seem, therefore, that open and closed strings are quite distinct, and
describe disjoint aspects of the physics in a fixed background space-time con-
taining some family of D-branes. At tree level, the closed strings indeed describe
gravitational physics in the bulk space-time, while the open strings describe the
D-brane dynamics. At the quantum level, however, the physics of open and
closed strings are deeply connected. Indeed, historically open strings were dis-
covered first through the form of their scattering amplitudes [11]. Looking at
one-loop processes for open strings led to the first discovery of closed strings,
which appeared as poles in nonplanar one-loop open string diagrams [12, 13].
The fact that open string diagrams naturally contain closed string intermediate
states indicates that in some sense all closed string interactions are implicitly
defined through the complete set of open string diagrams. This connection un-
derlies many of the important recent developments in string theory. In particular,
the M(atrix) theory and AdS/CFT correspondences between gauge theories and
quantum gravity are essentially limits in which closed string physics in a fixed
space-time background is captured by a simple limiting Yang-Mills description
of an open string theory on a family of branes (D0-branes for M(atrix) theory,
D3-branes for the CFT describing AdS5 × S5, etc.)

The fact that, in certain fixed space-time backgrounds, quantum gravity the-
ories can be encoded in terms of open string degrees of freedom through the
M(atrix) and AdS/CFT correspondences leads to the question of how a global
change of the space-time background would appear in the quantum field the-
ory describing the appropriate limit of the open string model in question. If
such a change of background could be described in the context of M(atrix)
theory or AdS/CFT, it would indicate that these models could be generalized to
a background-independent framework. Unfortunately, however, such a change
in the background involves adding nonrenormalizable interactions to the field
theories in question. At this point in time we do not have the technology to
understand generically how a sensible quantum field theory can be described
when an infinite number of nonrenormalizable interaction terms are added to
the Lagrangian. One example of a special case where this can be done is the
addition of a constant background B field in space-time. In the associated Yang-
Mills theory, such as that on a system of N D3-branes in the case of the simplest
AdS/CFT correspondence, this change in the background field corresponds to
replacing products of open string fields with a noncommutative star-product.
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The resulting theory is a noncommutative Yang-Mills theory. Such noncom-
mutative theories are the only well-understood example of a situation where
adding an infinite number of apparently nonrenormalizable terms to a field the-
ory action leads to a sensible modification of quantum field theory (for a review
of noncommutative field theory and its connection to string theory, see [14]).

String field theory is a nonperturbative formulation in target space of an
interacting string theory, in which the infinite family of fields associated with
string excitations are described by a space-time field theory action. For open
strings, this field theory is a natural extension of the low-energy Yang-Mills
action describing a system of D-branes, where the entire hierarchy of massive
string fields is included in addition to the massless gauge field on the D-brane.
Integrating out all the massive fields from the string field theory action gives rise
to a nonabelian Born-Infeld action for the D-branes, including an infinite set of
higher-order terms arising from string theory corrections to the simple Yang-
Mills action. Like the case of noncommutative field theory discussed above,
the new terms appearing in this action are apparently nonrenormalizable, but
the combination of terms must work together to form a sensible theory.

In the 1980’s, a great deal of work was done on formulating string field theory
for open and closed, bosonic and supersymmetric string theories. Most of these
string field theories are quite complicated. For the open bosonic string, however,
Witten [18] constructed an extremely elegant string field theory based on the
Chern-Simons action. This cubic bosonic open string field theory (OSFT) is the
primary focus of the work described in these lectures. Although Witten’s OSFT
can be described in a simple abstract language, practical computations with this
theory rapidly become extremely complicated. Despite a substantial amount of
work on this theory, little insight was gained in the 1980’s regarding how this
theory could be used to go beyond standard perturbative string methods. Work
on this subject stalled out in the late 80’s, and little further attention was paid
to OSFT until several years ago.

One simple feature of the 26-dimensional bosonic string has been problem-
atic since the early days of string theory: both the open and closed bosonic
strings have tachyons in their spectra, indicating that the usual perturbative
vacua used for these theories are unstable. In 1999, Ashoke Sen had a re-
markable insight into the nature of the open bosonic string tachyon [19]. He
observed that the open bosonic string should be thought of as ending on a
space-filling D25-brane. He pointed out that this D-brane is unstable in the
bosonic theory, as it does not carry any conserved charge, and he suggested that
the open bosonic string tachyon should be interpreted as the instability mode
of the D25-brane. This led him to conjecture that Witten’s open string field
theory could be used to precisely determine a new vacuum for the open string,
namely one in which the D25-brane is annihilated through condensation of
the tachyonic unstable mode. Sen made several precise conjectures regarding
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the details of the string field theory description of this new open string vac-
uum. As we describe in these lectures, there is now overwhelming evidence
that Sen’s picture is correct, demonstrating that string field theory accurately
describes the nonperturbative physics of D-branes. This new nonperturbative
application of string field theory has sparked a new wave of work on Witten’s
cubic open string field theory, revealing many remarkable new structures. In
particular, string field theory now provides a concrete framework in which dis-
connected string backgrounds can emerge from the equations of motion of a
single underlying theory. Although so far this can only be shown explicitly in
the open string context, this work paves the way for a deeper understanding of
background-independence in quantum theories of gravity.

2. D-branes

In this section we briefly review some basic features of D-branes. The con-
cepts developed here will be useful in describing tachyonic D-brane configu-
rations in the following section. For more detailed reviews of D-branes, see
[15, 16].

2.1 D-branes and Ramond-Ramond charges

D-branes can be understood in two ways: a) as extended extremal black brane
solutions of supergravity carrying conserved charges, and b) as hypersurfaces
on which strings have Dirichlet boundary conditions.
a) The ten-dimensional type IIA and IIB supergravity theories each have a set of
(p + 1)-form fields A

(p+1)
μ1···μ(p+1)

in the supergraviton multiplet, with p even/odd
for type IIA/IIB supergravity. These are the Ramond-Ramond fields in the
massless superstring spectrum. For each of these (p + 1)-form fields, there is
a solution of the supergravity field equations which has (p + 1)-dimensional
Lorentz invariance, and which has the form of an extremal black hole solution
in the orthogonal 9−p space directions plus time (for a review see [17]). These
“black p-brane” solutions carry charge under the R-R fields A(p+1), and are
BPS states in the supergravity theory, preserving half the supersymmetries of
the theory.
b) In type IIA and IIB string theory, it is possible to consider open strings with
Dirichlet boundary conditions on some number 9− p of the spatial coordinates
xμ(σ). The locus of points defined by such Dirichlet boundary conditions de-
fines a (p+1)-dimensional hypersurfaceΣp+1 in the ten-dimensional spacetime.
When p is even/odd in type IIA/IIB string theory, the spectrum of the resulting
quantum open string theory contains a massless set of fields Aα, α = 0, 1, . . . , p
and Xa, a = p + 1, . . . , 9. These fields can be associated with a gauge field
living on the hypersurface Σp+1, and a set of degrees of freedom describing
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the transverse fluctuations of this hypersurface in spacetime. Thus, the quan-
tum fluctuations of the open string describe a fluctuating (p + 1)-dimensional
hypersurface in spacetime — a Dirichlet-brane, or “D-brane”.

The remarkable insight of Polchinski in 1995 [20] was the observation that
Dirichlet-branes carry Ramond-Ramond charges, and therefore should be de-
scribed in the low-energy supergravity limit of string theory by precisely the
black p-branes discussed in a). This connection between the string and su-
pergravity descriptions of these nonperturbative objects paved the way to a
dramatic series of new developments in string theory, including connections
between string theory and supersymmetric gauge theories, string constructions
of black holes, and new approaches to string phenomenology.

2.2 Born-Infeld and super Yang-Mills D-brane actions

In this subsection we briefly review the low-energy super Yang-Mills descrip-
tion of the dynamics of one or more D-branes. As discussed in the previous
subsection, the massless open string modes on a Dp-brane in type IIA or IIB su-
perstring theory describe a (p+1)-component gauge field Aα, 9−p transverse
scalar fields Xa, and a set of massless fermionic gaugino fields. The scalar
fields Xa describe small fluctuations of the D-brane around a flat hypersurface.
If the D-brane geometry is sufficiently far from flat, it is useful to describe the
D-brane configuration by a general embedding Xμ(ξ), where ξα are p+1 coor-
dinates on the Dp-brane world-volume Σ(p+1), and Xμ are ten functions giving
a map from Σ(p+1) into the space-time manifold R9,1. Just as the Einstein
equations governing the geometry of spacetime arise from the condition that
the one-loop contribution to the closed string beta function vanish, a set of equa-
tions of motion for a general Dp-brane geometry and associated world-volume
gauge field can be derived from a calculation of the one-loop open string beta
function [21]. These equations of motion arise from the classical Born-Infeld
action

S = −Tp

∫
dp+1ξ e−ϕ

√
−det(Gαβ + Bαβ + 2πα′Fαβ) + SCS + fermions

(1)
where G, B and ϕ are the pullbacks of the 10D metric, antisymmetric tensor
and dilaton to the D-brane world-volume, while F is the field strength of the
world-volume U(1) gauge field Aα. SCS represents a set of Chern-Simons
terms which will be discussed in the following subsection. This action can be
verified by a perturbative string calculation [15], which also gives a precise
expression for the brane tension

τp =
Tp

g
=

1
g
√

α′
1

(2π
√

α′)p
(2)
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where g = e〈ϕ〉 is the string coupling, equal to the exponential of the dilaton
expectation value.

A particular limit of the Born-Infeld action (1) is useful for describing many
low-energy aspects of D-brane dynamics. Take the background space-time
Gμν = ημν to be flat, and all other supergravity fields (Bμν , A

(p+1)
μ1···μp+1) to

vanish. We then assume that the D-brane is approximately flat, and is close to
the hypersurface Xa = 0, a > p, so that we may make the static gauge choice
Xα = ξα. We furthermore assume that ∂αXa and 2πα′Fαβ are small and of
the same order. In this limit, the action (1) can be expanded as

S = −τpVp− 1
4g2

YM

∫
dp+1ξ

(
FαβFαβ +

2
(2πα′)2

∂αXa∂αXa

)
+ · · · (3)

where Vp is the p-brane world-volume and the coupling gYM is given by

g2
YM =

1
4π2α′2τp

=
g√
α′ (2π

√
α′)p−2 . (4)

Including fermionic terms, the second term in (3) is simply the dimensional
reduction to (p + 1) dimensions of the 10D N = 1 super Yang-Mills action

S =
1

g2
YM

∫
d10ξ

(
−1

4
FμνF

μν +
i

2
ψ̄Γμ∂μψ

)
(5)

where for α, β ≤ p, Fαβ is the world-volume U(1) field strength, and for
a > p, α ≤ p, Fαa → ∂αXa (setting 2πα′ = 1).

When multiple Dp-branes are present, the D-brane action is modified in a
fairly simple fashion [22]. Consider a system of N coincident D-branes. For
every pair of branes {i, j} there is a set of massless fields

(Aα) j
i , (Xa) j

i (6)

associated with strings stretching from the ith brane to the jth brane; the indices
i, j are known as Chan-Paton indices. Treating the fields (6) as matrices, the
analogue for multiple branes of the Born-Infeld action (1) takes the form

S ∼
∫

Tr
√
− det (G + B + F ) . (7)

This action is known as the nonabelian Born-Infeld action (NBI). In order to
give a rigorous definition to the nonabelian Born-Infeld action, it is necessary
to resolve ordering ambiguities in the expression (7). Since the spacetime
coordinates Xa associated with the D-brane positions in space-time become
themselves matrix-valued, even evaluating the pullbacks Gαβ , Bαβ involves
resolving ordering issues. Much work has been done recently to resolve these
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ordering ambiguities (see [23] for some recent papers in this direction which
contain further references to the literature), but there is still no consistent defi-
nition of the nonabelian Born-Infeld theory (7) which is valid to all orders.

The nonabelian Born-Infeld action (7) becomes much simpler in the low-
energy limit when the background space-time is flat. In the same limit discussed
above for the single D-brane, where we find a low-energy limit giving the U(1)
super Yang-Mills theory in p+1 dimensions, the inclusion of multiple D-branes
simply leads in the low-energy limit to the nonabelian U(N) super Yang-Mills
action in p + 1 dimensions. This action is the dimensional reduction of the
10D U(N) super Yang-Mills action (analogous to (5), but with an overall trace)
to p + 1 dimensions. In this reduction, as before, for α, β ≤ p, Fαβ is the
world-volume U(1) field strength, and for a > p, α ≤ p, Fαa → ∂αXa, where
now Aα, Xa, and Fαβ are N ×N matrices. We furthermore have, for a, b > p,
Fab → −i[Xa, Xb] in the dimensional reduction.

The low-energy description of a system of N coincident flat D-branes is thus
given by U(N) super Yang-Mills theory in the appropriate dimension. This con-
nection between D-brane actions in string theory and super Yang-Mills theory
has led to many new developments, including new insights into supersymmetric
field theories, the M(atrix) theory and AdS/CFT correspondences, and brane
world scenarios.

2.3 Branes from branes

In this subsection we describe a remarkable feature of D-brane systems,
namely a mechanism by which one or more D-branes of a fixed dimension can
be used to construct additional D-branes of higher or lower dimension.

In our discussion of the D-brane action (1) above, we mentioned a group of
terms SCS which we did not describe explicitly. For a single Dp-brane, these
Chern-Simons terms can be combined into a single expression of the form

SCS ∼
∫

Σp+1

A eF+B (8)

where A =
∑

k A(k) represents a formal sum over all the Ramond-Ramond
fields A(k) of various dimensions. In this integral, for each term A(k), the
nonvanishing contribution to (8) is given by expanding the exponential of F +B
to order (p + 1− k)/2, where the dimension of the resulting form saturates the
dimension of the brane. For example, on a Dp-brane, there is a coupling of the
form ∫

Σ(p+1)

A(p−1) ∧ F . (9)

This coupling implies that the U(1) field strength on the Dp-brane couples to
the R-R field associated with (p− 2)-branes. Thus, we can associate magnetic
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fields on a Dp-brane with dissolved (p−2)-branes living on the Dp-brane. This
result generalizes to a system of multiple Dp-branes by simply performing a
trace on the RHS of (8) For example, on N compact Dp-branes, the charge

1
2π

∫
Tr Fαβ , (10)

which is the first Chern class of the U(N) bundle described by the gauge field on
the N branes, is quantized and measures the number of units of D(p−2)-brane
charge living on the Dp-branes, which are encoded in the field strength Fαβ .
Similarly,

1
8π2

∫
Tr F ∧ F (11)

encodes D(p− 4)-brane charge on the Dp-branes.
Just as lower-dimensional branes can be described in terms of the degrees

of freedom associated with a system of N Dp-branes through the field strength
Fαβ , higher-dimensional branes can be described by a system of N Dp-branes
in terms of the commutators of the matrix-valued scalar fields Xa. Just as 1

2πF
measures (p− 2)-brane charge, the matrix

2πi[Xa, Xb] (12)

measures (p + 2)-brane charge [16, 24, 25]. The charge (12) should be inter-
preted as a form of local charge density. The fact that the trace of (12) vanishes
for finite sized matrices corresponds to the fact that the net Dp-brane charge of
a finite-size brane configuration in flat spacetime vanishes.

A simple example of the mechanism by which a system of multiple Dp-
branes form a higher-dimensional brane is given by the matrix sphere. If we
take a system of D0-branes with scalar matrices Xa given by

Xa =
2r

N
Ja, a = 1, 2, 3 (13)

where Ja are the generators of SU(2) in the N -dimensional representation,
then we have a configuration corresponding to the “matrix sphere”. This is a
D2-brane of spherical geometry living on the locus of points satisfying x2 +
y2 + z2 = r2. The “local” D2-brane charge of this brane is given by (12). The
D2-brane configuration given by (13) is rotationally invariant (up to a gauge
transformation). The restriction of the brane to the desired locus of points can
be seen from the relation (X1)2 + (X2)2 + (X3)2 = r211 +O(N−2).

2.4 T-duality

We conclude our discussion of D-branes with a brief description of T-duality.
T-duality is a perturbative symmetry which relates the type IIA and type IIB
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string theories. This duality symmetry was in fact crucial in the original dis-
covery of D-branes [20]. A more detailed discussion of T-duality can be found
in the textbook by Polchinski [26]. Using T-duality, we construct an explicit
example of a brane within a brane encoded in super Yang-Mills theory, illus-
trating the ideas of the previous subsection. This example will be used in the
following section to construct an analogous configuration with a tachyon.

Consider type IIA string theory on a spacetime of the form M9 × S1 where
M9 is a generic 9-manifold of Lorentz signature, and S1 is a circle of radius
R. T-duality is the statement that this theory is precisely equivalent, at the
perturbative level, to type IIB string theory on the spacetime M9 × (S1)′,
where (S1)′ is a circle of radius R′ = α′/R.

T-duality is most easily understood in terms of closed strings, where it
amounts to an exchange of winding and momentum modes of the string. The
string winding modes on S1 have energy m = Rw/α′, where w is the winding
number. the T-dual momentum modes on (S1)′ have m = n/R′; it is straight-
forward to check that the spectrum of closed string states is unchanged under
T-duality. T-duality can also be understood in terms of open strings. Under
T-duality, an open string with Neumann boundary conditions on S1 is mapped
to an open string with Dirichlet boundary conditions on (S1)′, and vice versa.
Thus, a Dirichlet p-brane which is wrapped around the circle S1 is mapped
under T-duality to a Dirichlet (p − 1)-brane of one lower dimension which is
localized to a point on the circle (S1)′. At the level of the low-energy theory
on the D-brane, the (p + 1)-dimensional Yang-Mills theory on the p-brane is
replaced under T-duality with the p-dimensional Yang-Mills theory on the dual
(p−1)-brane. Mathematically, the covariant derivative operator in the direction
S1 is replaced under T-duality with an adjoint scalar field Xa. Formally, this
adjoint scalar field is an infinite size matrix, containing information about the
open strings wrapped an arbitrary number of times around the compact direction
(S1)′.

We can summarize the relevant mappings under T-duality in the following
table

IIA/S1 ↔ IIB/(S1)′

R ↔ R′ = α′/R
Neumann/Dirichlet b.c.’s ↔ Dirichlet/Neumann b.c.’s

p-brane ↔ (p ± 1)-brane
2πα′(i∂a + Aa) ↔ Xa

The phenomena by which field strengths in one brane describe lower- or
higher-dimensional branes can be easily understood using T-duality. The fol-
lowing simple example may help to clarify this connection. (For a more detailed
discussion from this point of view see [16].)
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T-duality

L

L
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Figure 1. T-duality takes a diagonal D1-brane on a two-torus (a) to a D2-brane on the dual
torus with constant magnetic flux encoding an embedded D0-brane (b).

Consider a D1-brane wrapped diagonally on a two-torus T 2 with sides of
length L1 = L and L2 = 2πR. (Figure 1(a)). This configuration is described
in terms of the world-volume Yang-Mills theory on a D1-brane stretched in the
L1 direction through a transverse scalar field

X2 = 2πRξ1/L . (14)

To be technically precise, this scalar field should be treated as an ∞ × ∞
matrix [27] whose (n,m) entry is associated with strings connecting the nth
and mth images of the D1-brane on the covering space of S1. The diagonal
elements X2

n,n of this infinite matrix are given by 2πR(ξ1 + nL)/L, while all
off-diagonal elements vanish. While the resulting matrix-valued function of ξ1

is not periodic, it is periodic up to a gauge transformation

X2(L) = V X2(0)V −1 (15)

where V is the shift matrix with nonzero elements Vn,n+1 = 1.
Under T-duality in the x2 direction the infinite matrix X2

nm becomes the
Fourier mode representation of a gauge field on a dual D2-brane

A2 =
1

R′L
ξ1 . (16)

The magnetic flux associated with this gauge field is

F12 =
1

R′L
(17)

so that
1
2π

∫
F12 dξ1 dξ2 = 1 . (18)
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Note that the boundary condition (15) on the infinite matrix X2 transforms
under T-duality to the boundary condition on the gauge field

A2(L, x2) = e2πiξ2/L′
2 (A2(0, x2) + i∂2) e−2πiξ2/L′

2 (19)

= e2πiξ2/L′
2A2(0, x2)e−2πiξ2/L′

2 +
2π

L′
2

,

where the off-diagonal elements of the shift matrix V in (15) describe winding
modes which correspond after T-duality to the first Fourier mode e2πiξ2/L′

2 .
The boundary condition on the gauge fields in the ξ2 direction is trivial, which
simplifies the T-duality map; a similar construction can be done with a nontrivial
boundary condition in both directions, although the configuration looks more
complicated in the D1-brane picture.

This construction gives a simple Yang-Mills description of the mapping of
D-brane charges under T-duality: the initial configuration described above has
charges associated with a single D1-brane wrapped around each of the directions
of the 2-torus: D11+ D12. Under T-duality, these D1-branes are mapped to
a D2-brane and a D0-brane respectively: D212+ D0. The flux integral (18)
is the representation in the D2-brane world-volume Yang-Mills theory of the
charge associated with a D0-brane which has been uniformly distributed over
the surface of the D2-brane, just as in (10).

3. Tachyons and D-branes

We now turn to the subject of tachyons. Certain D-brane configurations are
unstable, both in supersymmetric and nonsupersymmetric string theories. This
instability is manifested as a tachyon with M2 < 0 in the spectrum of open
strings ending on the D-brane. We will explicitly describe the tachyonic mode
in the case of the open bosonic string in Section 4.1; this open bosonic string
tachyon will be the focal point of most of the developments described in these
notes. In this section we list some elementary D-brane configurations where
tachyons arise, and we describe a particular situation in which the tachyon
can be seen in the low-energy Yang-Mills description of the D-branes. This
Yang-Mills background with a tachyon provides a simple field-theory model
of a system analogous to the more complicated string field theory tachyon we
describe in the later part of these notes. This simpler model may be useful to
keep in mind in the later analysis.



Lectures on D-branes, tachyon condensation, and string field theory 165

3.1 D-brane configurations with tachyonic instabilities

Some simple examples of unstable D-brane configurations where the open
string contains a tachyon include the following:

Brane-antibrane: A pair of parallel Dp-branes with opposite orientation in
type IIA or IIB string theory which are separated by a distance d < ls give rise
to a tachyon in the spectrum of open strings stretched between the branes [28].
The difference in orientation of the branes means that the two branes are really
a brane and antibrane, carrying equal but opposite R-R charges. Since the net
R-R charge is 0, the brane and antibrane can annihilate, leaving an uncharged
vacuum configuration.

Wrong-dimension branes: In type IIA/IIB string theory, a Dp-brane of
even/odd spatial dimension p is a stable BPS state carrying a nonzero R-R
charge. On the other hand, a Dp-brane of the wrong dimension (i.e., odd/even
for IIA/IIB) carries no charges under the classical IIA/IIB supergravity fields,
and has a tachyon in the open string spectrum. Such a brane can annihilate to
the vacuum without violating charge conservation.

Bosonic D-branes: Like the wrong-dimension branes of IIA/IIB string the-
ory, a Dp-brane of any dimension in the bosonic string theory carries no con-
served charge and has a tachyon in the open string spectrum. Again, such a
brane can annihilate to the vacuum without violating charge conservation.

3.2 Example: tachyon in low-energy field theory of two
D-branes

As an example of how tachyonic configurations behave physically, we con-
sider in this subsection a simple example where a brane-antibrane tachyon can
be seen in the context of the low-energy Yang-Mills theory. This system was
originally considered in [29, 30].

The system we want to consider is a simple generalization of the (D2 +
D0)-brane configuration we described using Yang-Mills theory in Section 2.4.
Consider a pair of D2-branes wrapped on a two-torus, one of which has a D0-
brane embedded in it as a constant positive magnetic flux, and the other of
which has an anti-D0-brane within it described by a constant negative magnetic
flux. We take the two dimensions of the torus to be L1, L2. Following the
discussion of Section 2.4, this configuration is equivalent under T-duality in the
L2 direction to a pair of crossed D1-branes (see Figure 2). The Born-Infeld
energy of this configuration is

EBI = 2
√

(τ2L1L2)2 + τ2
0
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L

L’

1

2

Figure 2. A pair of crossed D1-branes, T-dual to a pair of D2-branes with uniformly embedded
D0- and anti-D0-branes.

=
1
g

[
2L1L2√

2π
+

(2π)3/2

L1L2
+ · · ·

]
(20)

in units where 2πα′ = 1. The second term in the last line corresponds to
the Yang-Mills approximation. In this approximation (dropping the D2-brane
energy) the energy is

EYM =
τ2

4

∫
Tr FαβFαβ =

1
4
√

2πg

∫
Tr FαβFαβ . (21)

We are interested in studying this configuration in the Yang-Mills approxi-
mation, in which we have a U(2) theory on T 2 with field strength

F12 =
( 2π

L1L2
0

0 − 2π
L1L2

)
=

2π

L1L2
τ3 . (22)

This field strength can be realized as the curvature of a linear gauge field

A1 = 0, A2 =
2π

L1L2
ξτ3 (23)

which satisfies the boundary conditions

Aj(L, ξ2) = Ω(i∂j + Aj(0, ξ2))Ω−1 (24)

where
Ω = e2πi(ξ1/L2)τ3 . (25)

It is easy to check that this configuration indeed satisfies

EYM =
1
2g

(2π)3/2

L1L2
Tr τ2

3 =
1
g

(2π)3/2

L1L2
(26)
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Instability

Figure 3. The brane-antibrane instability of a D0-D0̄ system embedded in two D2-branes, as
seen in the T-dual D1-brane picture.

as desired from (20). Since, however,

Tr Fαβ = 0, (27)

the gauge field we are considering is in the same topological equivalence class
as F = 0. This corresponds to the fact that the D0-brane and anti-D0-brane can
annihilate. To understand the appearance of the tachyon, we can consider the
spectrum of excitations δAα around the background (23) [29]. The eigenvectors
of the quadratic mass terms in this background are described by theta functions
on the torus satisfying boundary conditions related to (24). There are precisely
two elements in the spectrum with the negative eigenvalue −4π/L1L2. These
theta functions, given explicitly in [29], are tachyonic modes of the theory
which are associated with the annihilation of the positive and negative fluxes
encoding the D0- and anti-D0-brane. These tachyonic modes are perhaps eas-
iest to understand in the dual configuration, where they provide a direction of
instability in which the two crossed D1-branes reconnect as in Figure 3. In
the T-dual picture it is also interesting to note that the two tachyonic modes of
the gauge field have support which is localized near the two brane intersection
points. These modes have off-diagonal form

δAt ∼
(

0 �
� 0

)
. (28)

This form of the tachyonic modes naturally encodes our geometric understand-
ing of these modes as reconnecting the two D1-branes near the intersection
point.

The full Yang-Mills action around the background (23) can be written as a
quartic function of the mass eigenstates around this background. Written in
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terms of these modes, there are nontrivial cubic and quartic terms which couple
the tachyonic modes to all the massive modes in the system. If we integrate
out the massive modes, we know from the topological reasoning above that an
effective potential arises for the tachyonic mode At, with a maximum value
of (26) and a minimum value of 0. This system is highly analogous to the
bosonic open string tachyon we will discuss in the remainder of these lectures.
Our current understanding of the bosonic string through bosonic string field
theory is analogous to that of someone who only knows the Yang-Mills theory
around the background (23) in terms of a complicated quartic action for an
infinite family of modes. Without knowledge of the topological structure of the
theory, and given only a list of the coefficients in the quartic action, such an
individual would have to systematically calculate the tachyon effective potential
by explicitly integrating out all the massive modes one by one. This would give a
numerical approximation to the minimum of the effective potential, which could
be made arbitrarily good by raising the mass of the cutoff at which the effective
action is computed. It may be helpful to keep this example system in mind
in the following sections, where an analogous tachyonic system is considered
in string field theory. For further discussion of this unstable configuration in
Yang-Mills theory, see [29, 30].

4. Open string field theory and the Sen conjectures

The discussion of the previous sections gives us an overview of string theory,
and an example of how tachyons appear in a simple gauge theory context, when
an unstable brane-antibrane configuration is embedded in a higher-dimensional
brane. We now turn our attention back to string theory, where the appearance of
a tachyon necessitates a nonperturbative approach to the theory. In subsection
4.1, we review the BRST quantization approach to the bosonic open string.
Subsection 4.2 describes Witten’s cubic open string field theory, which gives
a nonperturbative off-shell definition to the open bosonic string. In subsection
4.3 we describe Sen’s conjectures on tachyon condensation in the open bosonic
string.

4.1 The bosonic open string

In this subsection we review the quantization of the open bosonic string. For
further details see the textbooks by Green, Schwarz, and Witten [31] and by
Polchinski [26]. The bosonic open string can be quantized using the BRST
quantization approach starting from the action

S = − 1
4πα′

∫ √−γγab∂aX
μ∂bXμ, (29)
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where γ is an auxiliary dynamical metric on the world-sheet. This action can be
gauge-fixed to conformal gauge γab ∼ δab. Using the BRST approach to gauge
fixing introduces ghost and antighost fields c±(σ), b±±(σ). The gauge-fixed
action, including ghosts, then becomes

S = − 1
4πα′

∫
∂aX

μ∂aXμ +
1
π

∫ (
b++∂−c+ + b−−∂+c−

)
. (30)

The matter fields Xμ can be expanded in modes using

Xμ(σ, τ) = xμ
0 + l2sp

μτ +
∑
n�=0

ils
n

αμ
n cos(nσ)e−inτ . (31)

Throughout the remainder of these notes we will use the convention

α′ =
l2s
2

= 1 , (32)

so that ls =
√

2. In the quantum theory, xμ
0 and pμ obey the canonical commu-

tation relations
[xμ

0 , pν ] = iημν . (33)

The αμ
n’s with negative/positive values of n become raising/lowering operators

for the oscillator modes on the string, and satisfy the commutation relations

[αμ
m, αν

n] = mημνδm+n,0 . (34)

We will often use the canonically normalized raising and lowering operators

aμ
n =

1√|n|αμ
n (35)

which obey the commutation relations

[aμ
m, aν

n] = ημνδm+n,0 . (36)

The raising and lowering operators satisfy (αμ
n)† = αμ

−n, (aμ
n)† = aμ

−n. We
will also frequently use position modes xn for n �= 0 and raising and lowering
operators a0, a

†
0 for the zero modes. These are related to the modes in (31)

through (dropping space-time indices)

xn =
i√
n

(an − a†n) (37)

x0 =
i√
2
(a0 − a†0)



170 LECTURES ON QUANTUM GRAVITY

The ghost and antighost fields can be decomposed into modes through

c±(σ, τ) =
∑

n

cne∓in(σ±τ) (38)

b±±(σ, τ) =
∑

n

bne∓in(σ±τ) .

The ghost and antighost modes satisfy the anticommutation relations

{cn, bm} = δn+m,0 (39)

{cn, cm} = {bn, bm} = 0 .

A general state in the open string Fock space can be written in the form

αμ1
−n1
· · ·αμi−ni

c−m1 · · · c−mj b−p1 · · · b−pl
|0; k〉 (40)

where |0; k〉 is the SL(2,R) invariant vacuum annihilated by

bn|0; k〉 = 0, n ≥ −1 (41)

cn|0; k〉 = 0, n ≥ 2 (42)

αμ
−n|0; k〉 = 0, n ≥ 1 (43)

with momentum
pμ|0; k〉 = kμ|0; k〉 . (44)

We will often write the zero momentum vacuum |0; k = 0〉 simply as |0〉. This
vacuum is taken by convention to have ghost number 0, and satisfies

〈0; k|c−1c0c1|0〉 = δ(k) (45)

For string field theory we will also find it convenient to work with the vacua of
ghost number 1 and 2

G = 1 : |01〉 = c1|0〉 (46)

G = 2 : |02〉 = c0c1|0〉 . (47)

In the notation of Polchinski [26], these two vacua are written as

|01〉 = |0〉m ⊗ |↓〉 (48)

|02〉 = |0〉m ⊗ |↑〉
where |0〉m is the matter vacuum and | ↓〉, | ↑〉 are the ghost vacua annihilated
by b0, c0.

The BRST operator of this theory is given by

QB =
∞∑

n=−∞
cnL

(m)
−n +

∞∑
n,m=−∞

(m− n)
2

: cmcnb−m−n : −c0 (49)
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where the matter Virasoro operators are given by

L(m)
q =

{
1
2

∑
n αμ

q−nαμ n, q �= 0
p2 +

∑∞
n=1 αμ

−nαμ n, q = 0
(50)

Some useful features of the BRST operator Q = QB include:

Q2 = 0; i.e., the BRST operator is nilpotent. This identity relies on a can-
cellation between matter and ghost terms which only works in dimension
D = 26 for the bosonic theory.

{Q, b0} = L
(m)
0 + L

(g)
0 − 1.

Q has ghost number 1, so acting on a state |s〉 of ghost number G gives
a state Q|s〉 of ghost number G + 1.

The physical states of the theory are given by the cohomology of Q at
ghost number 1

Hphys = Hclosed/Hexact

= {|ψ〉 : Q|ψ〉 = 0}/ (|ψ〉 ∼ |ψ〉+ Q|χ〉) (51)

Physical states can be chosen as representatives of each cohomology class
so that they are all annihilated by b0.

It is often convenient to separate out the ghost zero-modes, writing Q =
c0L0 + b0M + Q̃, where (momentarily reinstating α′)

L0 =
∞∑

n=1

(α−nαn + nc−nbn + nb−ncn) + α′p2 − 1 (52)

In this expression the term in parentheses is simply the oscillator number oper-
ator, measuring the level of a given state.

Some simple examples of physical states include the tachyon state

|01; p〉 (53)

which is physical when p2 = 1/α′ = −M2, and the massless gauge boson

εμαμ
−1|01; p〉 (54)

which is physical when p2 = M2 = 0, for transverse polarizations p · ε = 0.
Note that the transverse polarization condition follows from the appearance of
a term proportional to c−1p · α1 in Q̃, which must annihilate the state (54)
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4.2 Witten’s cubic bosonic SFT

The discussion of the previous subsection leads to a systematic quantization
of the open bosonic string in the conformal field theory framework. Using
this approach it is possible, in principle, to calculate an arbitrary perturba-
tive on-shell scattering amplitude for physical string states. To study tachyon
condensation in string theory, however, we require a nonperturbative, off-shell
formalism for the theory— a string field theory.

A very simple form for the off-shell open bosonic string field theory action
was proposed by Witten in 1986 [18]

S = −1
2

∫
Ψ � QΨ− g

3

∫
Ψ � Ψ � Ψ . (55)

This action has the general form of a Chern-Simons theory on a 3-manifold,
although for string field theory there is no explicit interpretation of the integra-
tion in terms of a concrete 3-manifold. In Eq. (55), g is interpreted as the string
coupling constant. The field Ψ is a string field, which takes values in a graded
algebra A. Associated with the algebra A there is a star product

� : A⊗A → A, (56)

under which the degree G is additive (GΨ�Φ = GΨ + GΦ). There is also a
BRST operator

Q : A → A, (57)

of degree one (GQΨ = 1 + GΨ). String fields can be integrated using∫
: A → C . (58)

This integral vanishes for all Ψ with degree GΨ �= 3.
The elements Q, �,

∫
defining the string field theory are assumed to satisfy

the following axioms:

(a) Nilpotency of Q: Q2Ψ = 0, ∀Ψ ∈ A.

(b)
∫

QΨ = 0, ∀Ψ ∈ A.

(c) Derivation property of Q:
Q(Ψ � Φ) = (QΨ) � Φ + (−1)GΨΨ � (QΦ), ∀Ψ, Φ ∈ A.

(d) Cyclicity:
∫

Ψ � Φ = (−1)GΨGΦ
∫

Φ � Ψ, ∀Ψ,Φ ∈ A.

(e) Associativity: (Φ � Ψ) � Ξ = Φ � (Ψ � Ξ), ∀Φ, Ψ, Ξ ∈ A.

When these axioms are satisfied, the action (55) is invariant under the gauge
transformations

δΨ = QΛ + Ψ � Λ− Λ � Ψ (59)
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for any gauge parameter Λ ∈ A with ghost number 0.
When the string coupling g is taken to vanish, the equation of motion for the

theory defined by (55) simply becomes QΨ = 0, and the gauge transformations
(59) simply become

δΨ = QΛ . (60)

Thus, when g = 0 this string field theory gives precisely the structure needed
to describe the free bosonic string. The motivation for introducing the extra
structure in (55) was to find a simple interacting extension of the free theory,
consistent with the perturbative expansion of open bosonic string theory.

Witten presented this formal structure and argued that all the needed axioms
are satisfied when A is taken to be the space of string fields

A = {Ψ[x(σ); c(σ), b(σ)]} (61)

which can be described as functionals of the matter, ghost and antighost fields
describing an open string in 26 dimensions with 0 ≤ σ ≤ π. Such a string
field can be written as a formal sum over open string Fock space states with
coefficients given by an infinite family of space-time fields

Ψ =
∫

d26p
[
φ(p) |01; p〉+ Aμ(p) αμ

−1|01; p〉+ · · ·
]

(62)

Each Fock space state is associated with a given string functional, just as the
states of a harmonic oscillator are associated with wavefunctions of a particle
in one dimension. For example, the matter ground state |0〉m annihilated by an

for all n ≥ 1 is associated (up to a constant C) with the functional of matter
modes

|0〉m → C exp

(
−1

4

∞∑
n>0

nx2
n

)
. (63)

For Witten’s cubic string field theory, the BRST operator Q in (55) is the
usual open string BRST operator QB , given in (49). The star product � acts on
a pair of functionals Ψ, Φ by gluing the right half of one string to the left half
of the other using a delta function interaction

Ψ Φ

δ

This star product factorizes into separate matter and ghost parts. In the matter
sector, the star product is given by the formal functional integral

(Ψ � Φ) [z(σ)] (64)
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≡
∫ ∏

0≤τ̃≤π
2

dy(τ̃) dx(π − τ̃)
∏

π
2
≤τ≤π

δ[x(τ)− y(π − τ)] Ψ[x(τ)]Φ[y(τ)] ,

x(τ) = z(τ) for 0 ≤ τ ≤ π

2
,

y(τ) = z(τ) for
π

2
≤ τ ≤ π .

Similarly, the integral over a string field factorizes into matter and ghost parts,
and in the matter sector is given by∫

Ψ =
∫ ∏

0≤σ≤π

dx(σ)
∏

0≤τ≤π
2

δ[x(τ)− x(π − τ)] Ψ[x(τ)] . (65)

This corresponds to gluing the left and right halves of the string together with
a delta function interaction

δ

Ψ

The ghost sector of the theory is defined in a similar fashion, but has an
anomaly due to the curvature of the Riemann surface describing the three-string
vertex. The ghost sector can be described either in terms of fermionic ghost
fields c(σ), b(σ) or through bosonization in terms of a single bosonic scalar field
φg(σ). From the functional point of view of Eqs. (64, 65), it is easiest to describe
the ghost sector in the bosonized language. In this language, the ghost fields b(σ)
and c(σ) are replaced by the scalar field φg(σ), and the star product in the ghost
sector is given by (64) with an extra insertion of exp(3iφg(π/2)/2) inside the
integral. Similarly, the integration of a string field in the ghost sector is given
by (65) with an insertion of exp(−3iφg(π/2)/2) inside the integral. Witten
first described the cubic string field theory using bosonized ghosts. While this
approach is useful for some purposes, we will use fermionic ghost fields in the
remainder of these lecture notes.

The expressions (64, 65) may seem rather formal, as they are written in
terms of functional integrals. These expressions, however, can be given precise
meaning when described in terms of creation and annihilation operators acting
on the string Fock space. In the Fock space language, the integral of a star
product of two or three fields is described in terms of two- and three-string
vertices

〈V2| ∈ H∗ ⊗H∗, 〈V3| ∈ (H∗)3 (66)



Lectures on D-branes, tachyon condensation, and string field theory 175

so that ∫
Φ � Ψ → 〈V2| (|Φ〉 ⊗ |Ψ〉) (67)∫

Ψ1 � Ψ2 � Ψ3 → 〈V3| (|Ψ1〉 ⊗ |Ψ2〉 ⊗ |Ψ3〉)

In the next section we will give explicit forms for the two- and three-string
vertices (66). In terms of these vertices, the string field theory action becomes

S = −1
2
〈V2|Ψ, QΨ〉 − g

3
〈V3|Ψ, Ψ, Ψ〉 . (68)

This action is often written using the BPZ dual 〈Ψ| of the string field |Ψ〉,
defined by the conformal map z → −1/z, as

S = −1
2
〈Ψ|QΨ〉 − g

3
〈Ψ|Ψ � Ψ〉 . (69)

In the remainder of these lectures, however, we will use the form (68). Using
explicit formulae for the vertices (66) and the string field expansion (62) leads
to the full string field theory action, given by an off-shell action in the target
space-time for an infinite family of fields φ(p), Aμ(p), . . . We discuss this action
in more detail in Section 5.

4.3 The Sen conjectures

The existence of the tachyonic mode in the open bosonic string indicates that
the standard choice of perturbative vacuum for this theory is unstable. In the
early days of the subject, there was some suggestion that this tachyon could
condense, leading to a more stable vacuum (see for example [32]). Kostelecky
and Samuel argued early on that the stable vacuum could be identified in string
field theory in a systematic way [33], however there was no clear physical picture
for the significance of this stable vacuum. In 1999, Ashoke Sen reconsidered the
problem of tachyons in string field theory. Sen suggested that the open bosonic
string should really be thought of as living on a D25-brane, and hence that the
perturbative vacuum for this string theory should have a nonzero vacuum energy
associated with the tension of this D25-brane. He suggested that the tachyon
is simply the instability mode of the D25-brane, which carries no conserved
charge and hence is not expected to be stable, as discussed in section 3. Sen
furthermore suggested that Witten’s cubic open string field theory is a natural
framework to use to study this tachyon, and that this string field theory should
give an analytic description of the true vacuum. More precisely, Sen made the
following 3 conjectures [19]:

i Witten’s classical open string field theory should have a locally stable
nontrivial vacuum solution. The energy density of this vacuum should
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be given by the D25-brane tension

ΔE

V
= T25 = − 1

2π2g2
. (70)

ii Lower-dimensional D-branes should exist as solitonic solutions of SFT
which break part of the Lorentz symmetry of the perturbative vacuum.

iii Open strings should decouple from the theory in the nontrivial vacuum,
since the D25-brane is absent in this vacuum.

In Section 6 of these lectures we discuss the evidence for these conjectures,
focusing particularly on the first and third conjectures. First, however, we need
to develop the technical tools to do specific calculations in string field theory.

5. Basics of SFT

In this section, we give a more detailed discussion of Witten’s open bosonic
string field theory. Subsection 5.1 is a warmup, in which we review some
basic features of the simple harmonic oscillator and discuss squeezed states. In
Subsection 5.2 we derive the two-string vertex, and in subsection 5.3 we give
an explicit formula for the three-string vertex. In subsection 5.4 we put these
pieces together and discuss the calculation of the full SFT action. 5.5 contains a
brief description of some more general features of Witten’s open bosonic string
field theory. For more details about this string field theory, the reader is referred
to the reviews [34, 35, 36].

5.1 Squeezed states and the simple harmonic oscillator

Let us consider a simple harmonic oscillator with annihilation operator

a = −i

(√
α

2
x +

1√
2α

∂x

)
(71)

and ground state

|0〉 =
(α

π

)1/4
e−αx2/2 . (72)

In the harmonic oscillator basis |n〉, the Dirac position basis states |x〉 have a
squeezed state form

|x〉 =
(α

π

)1/4
exp

(
−α

2
x2 − i

√
2αa†x +

1
2
(a†)2

)
|0〉 . (73)

A general wavefunction is associated with a state through the correspondence

f(x)→
∫ ∞

−∞
dx f(x)|x〉 . (74)
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In particular, we have

δ(x) →
(α

π

)1/4
exp

(
1
2
(a†)2

)
|0〉 (75)

1 →
∫

dx |x〉 =
(

4π

α

)1/4

exp
(
−1

2
(a†)2

)
|0〉

This shows that the delta and constant functions both have squeezed state rep-
resentations in terms of the harmonic oscillator basis. The norm of a squeezed
state

|s〉 = exp
(

1
2
s(a†)2

)
|0〉 (76)

is given by

〈s|s〉 =
1√

1− s2
(77)

Thus, the states (75) are non-normalizable (as we would expect), however they
are right on the border of normalizability. As for the Dirac basis states |x〉,
which are computationally useful although technically not well-defined states
in the single-particle Hilbert space, we expect that many calculations using the
states (75) will give sensible physical answers.

It will be useful for us to generalize the foregoing considerations in several
ways. A particularly simple generalization arises when we consider a pair of
degrees of freedom x, y described by a two-harmonic oscillator Fock space
basis. In such a basis, repeating the preceding analysis leads us to a function-
state correspondence for the delta functions relating x, y of the form

δ(x± y)→ exp
(
±1

2
a†(x)a

†
(y)

)
(|0〉x ⊗ |0〉y) . (78)

we will find these squeezed state expressions very useful in describing the two-
and three-string vertices of Witten’s open string field theory.

5.2 The two-string vertex |V2〉
We can immediately apply the oscillator formulae from the preceding section

to calculate the two-string vertex. Recall that the matter fields are expanded in
modes through

x(σ) = x0 +
√

2
∞∑

n=1

xn cos nσ . (79)

(We suppress Lorentz indices in most of this section for clarity.) Using this
mode decomposition, we associate the string field functional Ψ[x(σ)] with a
function Ψ({xn}) of the infinite family of string oscillator mode amplitudes.
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The overlap integral combining (65) and (64) can then be expressed in modes
as ∫

Ψ � Φ =
∫ ∞∏

n=0

dxndyn δ(xn − (−1)nyn)Ψ({xn})Φ({yn}) . (80)

Geometrically this just encodes the overlap condition x(σ) = y(π − σ) de-
scribed through

� �
Ψ

Φ

From (78), it follows that we can write the two-string vertex as a squeezed
state

〈V2|matter = (〈0| ⊗ 〈0|) exp

⎛⎝ ∞∑
n,m=0

−a(1)
n Cnma(2)

m

⎞⎠ (81)

where Cnm = δnm(−1)n is an infinite-size matrix connecting the oscillator
modes of the two single-string Fock spaces, and the sum is taken over all
oscillator modes including zero. In the expression (81), we have used the
formalism in which |0〉 is the vacuum annihilated by a0. To translate this
expression into a momentum basis, we use only n,m > 0, and replace

(〈0| ⊗ 〈0|) exp
(
−a

(1)
0 a

(2)
0

)
→

∫
d26p (〈0; p| ⊗ 〈0;−p|) . (82)

The extension of this analysis to ghosts is straightforward. For the ghost
and antighost respectively, the overlap conditions corresponding with x1(σ) =
x2(π− σ) are [37] c1(σ) = −c2(π− σ) and b1(σ) = b2(π− σ). This leads to
the overall formula for the two-string vertex

〈V2| =
∫

d26p (〈0; p| ⊗ 〈0;−p|) (c(1)
0 +c

(2)
0 ) exp

(
−

∞∑
n=1

(−1)n[a(1)
n a(2)

n + c(1)
n b(2)

n + c(2)
n b(1)

n ]

)
.

(83)
This expression for the two-string vertex can also be derived directly from
the conformal field theory approach, computing the two-point function of an
arbitrary pair of states on the disk.

5.3 The three-string vertex |V3〉
The three-string vertex, which is associated with the three-string overlap

diagram
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Ψ2

Ψ1

Ψ3

can be computed in a very similar fashion to the two-string vertex above. The
details of the calculation, however, are significantly more complicated. There
are several different ways to carry out the calculation. One approach is to
first rewrite the modes cos nσ on the full string in terms of modes l, r on the
two halves of the string with σ < π/2, σ > π/2. This rewriting can be
accomplished using an infinite orthogonal transformation matrix X . The delta
function overlap condition can then be applied to the half-string modes as above,
giving a squeezed state expression for |V3〉 with a squeezing matrix which can
be expressed in terms of X . The three-string vertex can also be computed using
the conformal field theory approach. The three-string vertex was computed
using various versions of these approaches in [37, 38, 39, 40, 41] 1.

In these lectures we will not have time to go through a detailed derivation of
the three-string vertex using any of these methods2. We simply quote the final
result from [37, 66]. Like the two-string vertex, the three-string vertex takes
the form of a squeezed state

〈V3| =
∫

d26p(1)d26p(2)d26p(3)
(
〈0; p(1)| ⊗ 〈0; p(2)| ⊗ 〈0; p(3)|

)
δ(p(1) + p(2) + p(3))c(1)

0 c
(2)
0 c

(3)
0

κ exp

⎛⎝−1
2

3∑
r,s=1

[a(r)
m V rs

mna(s)
n + 2a(r)

m V rs
m0p

(s) + p(r)V rs
00 p(s) + c(r)

m Xrs
mnb(s)

n ]

⎞⎠ , (84)

1Another interesting approach to understanding the cubic vertex has been explored extensively since these
lectures were given. By diagonalizing the Neumann matrices, the star product encoded in the 3-string vertex
takes the form of a continuous Moyal product. This simplifies the complexity of the cubic vertex, but at the
cost of complicating the propagator. For a recent review of this work and further references, see [42]
2A more detailed discussion of the derivation of the Neumann coefficients using CFT and oscillator methods
will appear in [4]
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where κ = 39/2/26, and where the Neumann coefficients V rs
mn, Xrs

mn are calcu-
lable constants given as follows3. Define An, Bn for n ≥ 0 through(

1 + ix

1− ix

)1/3

=
∑

n even

Anxn + i
∑

m odd

Amxm (85)

(
1 + ix

1− ix

)2/3

=
∑

n even

Bnxn + i
∑

m odd

Bmxm

These coefficients can be used to define 6-string Neumann coefficients N r,±s
nm

through

N r,±r
nm =

{ 1
3(n±m)(−1)n(AnBm ±BnAm), m + n even, m �= n

0, m + n odd
(86)

N r,±(r+σ)
nm =

{
1

6(n±σm)(−1)n+1(AnBm ± σBnAm), m + n even, m �= n√
3

6(n±σm)(AnBm ∓ σBnAm), m + n odd

]
.

where in N r,±(r+σ), σ = ±1, and r +σ is taken modulo 3 to be between 1 and
3. The 3-string matter Neumann coefficients V rs

nm are then given by

V rs
nm = −√mn(N r,s

nm + N r,−s
nm ), m �= n, andm,n �= 0

V rr
nn = −1

3

[
2

n∑
k=0

(−1)n−kA2
k − (−1)n −A2

n

]
, n �= 0

V r,r+σ
nn =

1
2

[(−1)n − V rr
nn] , n �= 0 (87)

V rs
0n = −

√
2n

(
N r,s

0n + N r,−s
0n

)
, n �= 0

V rr
00 = ln(27/16)

The ghost Neumann coefficients Xrs
mn, m ≥ 0, n > 0 are given by

Xrr
mn =

(−N r,r
nm + N r,−r

nm

)
, n �= m

Xr(r±1)
mn = m

(
±N r,r∓1

nm ∓N r,−(r∓1)
nm

)
, n �= m (88)

3Note that in some references, signs and various factors in κ and the Neumann coefficients may be slightly
different. In some papers, the cubic term in the action is taken to have an overall factor of g/6 instead of g/3;
this choice of normalization gives a 3-tachyon amplitude of g instead of 2g, and gives a different value for κ.
Often, the sign in the exponential of (84) is taken to be positive, which changes the signs of the coefficients
V rs

nm, Xrs
nm. When the matter Neumann coefficients are defined with respect to the oscillator modes αn

rather than an, the matter Neumann coefficients V rs
nm, V rs

n0 must be divided by
√

nm and
√

n. Finally,
when α′ is taken to be 1/2, an extra factor of 1/

√
2 appears for each 0 subscript in the matter Neumann

coefficients.
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Xrr
nn =

1
3

[
−(−1)n −A2

n + 2
n∑

k=0

(−1)n−kA2
k − 2(−1)nAnBn

]

Xr(r±1)
nn = −1

2
(−1)n − 1

2
Xrr

nn

The Neumann coefficients have a number of simple symmetries. There is a
cyclic symmetry under r → r+1, s→ s+1, which corresponds to the obvious
geometric symmetry of rotating the vertex. The coefficients are also symmetric
under the exchange r ↔ s, n↔ m. Finally, there is a “twist” symmetry,

V rs
nm = (−1)n+mV sr

nm (89)

Xrs
nm = (−1)n+mXsr

nm .

This symmetry follows from the invariance of the 3-vertex under reflection.

5.4 Calculating the SFT action

Given the action (68) and the explicit formulae (83, 84) for the two- and
three-string vertices, we can in principle calculate the string field action term
by term for each of the fields in the string field expansion

Ψ =
∫

d26p
[

φ(p) |01; p〉 + Aμ(p) αμ
−1|01; p〉+ χ(p)b−1c0|01; p〉

+ Bμν(p)αμ
−1α

ν
−1|01; p〉+ · · ·

]
. (90)

Since the resulting action has an enormous gauge invariance given by (59),
it is often helpful to fix the gauge before computing the action. A particularly
useful gauge choice is the Feynman-Siegel gauge

b0|Ψ〉 = 0 . (91)

This is a good gauge choice locally, fixing the linear gauge transformations
δ|Ψ〉 = Q|Λ〉. This gauge choice is not, however, globally valid; we will return
to this point later. In this gauge, all fields in the string field expansion which
are associated with states having an antighost zero-mode c0 are taken to vanish.
For example, the field χ(p) in (90) vanishes. In Feynman-Siegel gauge, the
BRST operator takes the simple form

Q = c0L0 = c0(N + p2 − 1) (92)

where N is the total (matter + ghost) oscillator number.
Using (92), it is straightforward to write the quadratic terms in the string field

action. They are

1
2
〈V2|Ψ, QΨ〉 =

∫
d26p

{
φ(−p)

[
p2 − 1

2

]
φ(p) + Aμ(−p)

[
p2

2

]
Aμ(p) + · · ·

}
.

(93)
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The cubic part of the action can also be computed term by term, although the
terms are somewhat more complicated. The leading terms in the cubic action
are given by

1
3
〈V3|Ψ, Ψ, Ψ〉 = (94)∫

d26pd26q
κg

3
e(ln 16/27)(p2+q2+p·q)

{
φ(−p)φ(−q)φ(p + q) +

16
9

Aμ(−p)Aμ(−q)φ(p + q)

−8
9
(pμ + 2qμ)(2pν + qν)Aμ(−p)Aν(−q)φ(p + q) + · · ·

}

In computing the φ3 term we have used

V rs
00 = δrs ln(

27
16

) (95)

The A2φ term uses

V rs
11 = −16

27
, r �= s, (96)

while the (A · p)2φ term uses

V 12
10 = −V 13

10 = −2
√

2
3
√

3
(97)

The most striking feature of this action is that for a generic set of three fields,
there is a nonlocal cubic interaction term, containing an exponential of a
quadratic form in the momenta. This means that the target space formulation
of string theory has a dramatically different character from a standard quantum
field theory. From the point of view of quantum field theory, string field theory
seems to contain an infinite number of nonrenormalizable interactions. Just
like the simpler case of noncommutative field theories, however, the magic of
string theory seems to combine this infinite set of interactions into a sensible
model. [Note, though, that we are working here with the bosonic theory, which
becomes problematic quantum mechanically due to the closed string tachyon;
the superstring should be better behaved, although a complete understanding
of superstring field theory is still lacking despite recent progress [43, 44]]. For
the purposes of the remainder of these lectures, however, it will be sufficient
for us to restrict attention to the classical action at zero momentum, where the
action is quite well-behaved.

5.5 General features of Witten’s open bosonic SFT

There are several important aspects of Witten’s open bosonic string field
theory which are worth reviewing here, although they will not be central to the
remainder of these lectures.
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The first important aspect of this string field theory is that the perturbative
on-shell amplitudes computed using this SFT are in precise agreement with
the results of standard perturbative string theory (CFT). This result was shown
by Giddings, Martinec, Witten, and Zwiebach in [45, 46, 47]; the basic idea
underlying this result is that in Feynman-Siegel gauge, the Feynman diagrams
of SFT precisely cover the appropriate moduli space of open string diagrams
of an arbitrary genus Riemann surface with boundaries, with the ghost factors
contributing the correct measure. The essential feature of this construction is
the replacement of the Feynman-Siegel gauge propagatorL−1

0 with a Schwinger
parameter

1
L0

=
∫ ∞

0
dt e−tL0 . (98)

The Schwinger parameter t plays the role of a modular parameter measuring the
length of the strip, for each propagator. This sews the string field theory diagram
together into a Riemann surface for each choice of Schwinger parameters; the
result of [45, 46, 47] was to show that this parameterization always precisely
covers the moduli space correctly. Thus, we know that to arbitrary orders in
the string coupling the SFT perturbative expansion agrees with standard string
perturbation theory, although string field theory goes beyond the conformal
field theory approach since it is a nonperturbative, off-shell formulation of the
theory.

A consequence of the perturbative agreement between SFT and standard
perturbative string theory is that loop diagrams in open string field theory must
include closed string poles at appropriate values of the external momenta. It is
well-known that while closed string theory in a fixed space-time background
(without D-branes) can be considered as a complete and self-contained theory
without including open strings, the same is not true of open string theory. Open
strings can always close up in virtual processes to form intermediate closed
string states. The closed string poles were found explicitly in the one-loop
2-point function of open string field theory in [48]. The appearance of these
poles raises a very important question for open string field theory, namely: Can
closed strings appear as asymptotic states in open string field theory? Indeed,
standard arguments of unitarity would seem to imply that open string field theory
cannot be consistent at the quantum level unless open strings can scatter into
outgoing closed string states. This question becomes particularly significant in
the context of Sen’s tachyon condensation conjectures, where we expect that all
open string degrees of freedom disappear from the theory in the nonperturbative
locally stable vacuum. We will discuss this issue further in Section 8.
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6. Evidence for the Sen conjectures

Now that we have a more concrete understanding of how to carry out cal-
culations in open string field theory, we can address the conjectures made by
Sen regarding tachyon condensation. In subsection 6.1, we discuss evidence for
Sen’s first conjecture, which states that there exists a stable vacuum with energy
density −T25. In Subsection 6.2, we discuss physics in the stable vacuum and
Sen’s third conjecture, which states that open strings decouple completely from
the theory in this vacuum. There is also a large body of evidence by now for
Sen’s second conjecture (see [49, 50, 51] for some of the early papers in this
direction), but due to time and space constraints we will not cover this work
here4.

6.1 Level truncation and the stable vacuum

Sen’s first conjecture states that the string field theory action should lead to
a nontrivial vacuum solution, with energy density

−T25 = − 1
2π2g2

. (99)

In this subsection we discuss evidence for the validity of this conjecture.
The string field theory equation of motion is

QΨ + gΨ � Ψ = 0 . (100)

Despite much work over the last few years, there is still no analytic solution
of this equation of motion5. There is, however, a systematic approximation
scheme, known as level truncation, which can be used to solve this equation
numerically. The level (L, I) truncation of the full string field theory involves
dropping all fields at level N > L, and disregarding any cubic interaction terms
between fields whose total level is greater than I . For example, the simplest
truncation of the theory is the level (0, 0) truncation. Including only p = 0
components of the tachyon field, with the justification that we are looking for a
Lorentz-invariant vacuum, the theory in this truncation is simply described by
a potential for the tachyon zero-mode

V (φ) = −1
2
φ2 + gκ̄φ3 . (101)

where κ̄ = κ/3 = 37/2/26. This cubic function is graphed in Figure 4. Clearly,

4A more extensive summary of this work will appear in [4]
5as of January, 2003
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V (φ0)

−T25

0 φ0 = 1/3gκ̄

φ

V (φ)
Level (0, 0) approximation
Level (2, 6) approximation

Exact value of −T25

�

�

�

Figure 4. The effective tachyon potential in level (0, 0) and (2, 6) truncations. The open
circles denote minima in each level truncation. The filled circle denotes a branch point where
the level (2, 6) truncation approximation reaches the limit of Feynman-Siegel gauge validity.
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this potential has a local minimum at

φ0 =
1

3gκ̄
. (102)

At this point the potential is

V (φ0) = − 1
54

1
g2κ̄2

= −211

310

1
g2
≈ (0.68)

(
− 1

2π2g2

)
(103)

Thus, we see that simply including the tachyon zero-mode gives a nontrivial
vacuum with 68% of the vacuum energy density predicted by Sen. This vacuum
is denoted by an open circle in Figure 4.

At higher levels of truncation, there are a multitude of fields with various
tensor structures. However, again assuming that we are looking for a vacuum
which preserves Lorentz symmetry, we can restrict attention to the interactions
between scalar fields at p = 0. We will work in Feynman-Siegel gauge to
simplify calculations. The situation is further simplified by the existence of
the “twist” symmetry mentioned in Section 5.3, which guarantees that no cubic
vertex between p = 0 scalar fields can connect three fields with a total level
which is odd. This means that odd fields are not relevant to diagrams with
only external tachyons at tree level. Thus, we need only consider even-level
scalar fields in looking for Lorentz-preserving solutions to the SFT equations
of motion. With these simplifications, in a general level truncation the string
field is simply expressed as a sum of a finite number of terms

Ψs =
∑

i

φi|si〉 (104)

where φi are the zero-modes of the scalar fields associated with even-level states
|si〉. For example, including fields up to level 2, we have

Ψs = φ|01〉+ B (α−1 · α−1)|01〉+ β b−1c−1|01〉 . (105)

The potential for all the scalars appearing in the level-truncated expansion (104)
can be simply expressed as a cubic polynomial in the zero-modes of the scalar
fields

V =
∑
i,j

dijφiφj + gκ̄
∑
i,j,k

tijkφiφjφk . (106)

Using the expressions for the Neumann coefficients given in Section 5.3, the
potential for all the scalar fields up to level L can be computed in a level (L, I)
truncation. For example, the potential in the level (2, 6) truncation is given by

V = −1
2
φ2 + 26B2 − 1

2
β2
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+κ̄g

[
φ3 − 130

9
φ2B − 11

9
φ2β +

30212
243

φB2 +
2860
243

φBβ (107)

+
19
81

φβ2 − 2178904
6561

B3 − 332332
6561

B2β − 2470
2187

Bβ2 − 1
81

β3

]
.

As an example of how these terms arise, consider the φ2B term. The coefficient
in this term is given by

g 〈V3|(|01〉 ⊗ |01〉 ⊗ α−1 · α−1|01〉) = −gκ̄ (3 · 26) V 11
11 (108)

= −gκ̄
130
9

where we have used V 11
11 = 5/27.

In the level (2, 6) truncation of the theory, with potential (107), the nontrivial
vacuum is found by simultaneously solving the three quadratic equations found
by setting to zero the derivatives of (107) with respect to φ,B, and β. There
are a number of different solutions to these equations, but only one is in the
vicinity of φ = 1/3gκ̄. The solution of interest is

φ ≈ 0.39766
1
gκ̄

B ≈ 0.02045
1
gκ̄

(109)

β ≈ −0.13897
1
gκ̄

Plugging these values into the potential gives

E(2,6) = −0.95938T25 , (110)

or 95.9% of the result predicted by Sen. This vacuum is denoted by an open
circle in Figure 4.

It is a straightforward, although computationally intensive, project to gener-
alize this calculation to higher levels of truncation. This calculation was carried
out to level (4, 8) by Kostelecky and Samuel [33] many years ago. They noted
that the vacuum seemed to be converging, but they lacked any physical pic-
ture giving meaning to this vacuum. Following Sen’s conjectures, the level (4,
8) calculation was done again using somewhat different methods by Sen and
Zwiebach [52], who showed that the energy at this level is−0.986 T25. The cal-
culation was automated by Moeller and Taylor [53], who calculated up to level
(10, 20), where there are 252 scalar fields. Up to this level, the vacuum energy
converges monotonically, as shown in Table 1. These numerical calculations
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level gκ̄〈φ〉 V/T25

(0, 0) 0.3333 -0.68462
(2, 4) 0.3957 -0.94855
(2, 6) 0.3977 -0.95938
(4, 8) 0.4005 -0.98640

(4, 12) 0.4007 -0.98782
(6, 12) 0.4004 -0.99514
(6, 18) 0.4004 -0.99518
(8, 16) 0.3999 -0.99777
(8, 20) 0.3997 -0.99793
(10, 20) 0.3992 -0.99912

Table 1. Tachyon VEV and vacuum energy in stable vacua of level-truncated theory

indicate that level truncation of string field theory leads to a good systematic
approximation scheme for computing the nonperturbative tachyon vacuum 6.

It is interesting to consider the tachyon condensation problem from the point
of view of the effective tachyon potential. If instead of trying to solve the
quadratic equations for all N of the fields appearing in (106), we instead fix
the tachyon field φ and solve the quadratic equations for the remaining N − 1
fields, we can determine a effective potential V (φ) for the tachyon field. This
was done numerically up to level (10, 20) in [53]6. At each level, the tachyon
effective potential smoothly interpolates between the perturbative vacuum and
the nonperturbative vacuum near φ = 0.4/gκ̄. For example, the tachyon ef-
fective potential at level (2, 6) is graphed in Figure 4. In all level truncations
other than (0, 0) and (2, 4), the tachyon effective potential has two branch point
singularities at which the continuous solution for the other fields breaks down;
for the level (2, 6) truncation, these branch points occur at φ ≈ −0.127/gκ̄ and
φ ≈ 2.293/gκ̄; the lower branch point is denoted by a solid circle in Figure 4. As
a result of these branch points, the tachyon effective potential is only valid for a
finite range of φ, ranging between approximately−0.1/gκ̄ and 0.6/gκ̄. In [58]
it was demonstrated numerically that the branch points in the tachyon effective

6These were the best values for the vacuum energy and effective potential at the time of the lectures. At
strings 2002, Gaiotto and Rastelli reported results up to level (18, 54) [54]. They found the surprising result
that while the energy monotonically approaches −T25 up to level 12, at level (14, 42) the energy becomes
−1.0002 T25, and that the energy continues to decrease, reaching −1.0005 T25 at level (18, 54). In [55],
it was shown that this calculation could be theoretically extrapolated to higher levels using the result found
in [56] that perturbative amplitudes converge in level truncation with errors described by a power series in
1/L. This extrapolation suggests that the energy turns around again near L = 28, and then increases again,
asymptotically approaching −T25 as L → ∞. Further analysis supporting this conclusion was given in
[57], where the effective tachyon potential was extrapolated to higher order using results calculated up to
level 18.
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potential arise because the trajectory in field space associated with this potential
encounters the boundary of the region of Feynman-Siegel gauge validity. As
mentioned earlier, Feynman-Siegel gauge is only valid in a finite-size region
around the perturbative vacuum. It seems almost to be a fortunate accident
that the nonperturbative vacuum lies within the region of validity of this gauge
choice. It is also worth mentioning here that in the “background-independent”
formulation of SFT, the tachyon potential can be computed exactly [59]. In
this formulation, there is no branch point in the effective potential, which is
unbounded below for negative values of the tachyon. On the other hand, the
nontrivial vacuum in the background-independent approach arises only as the
tachyon field goes to infinity, so it is harder to study the physics of the stable
vacuum from this point of view.

Another interesting perspective on the tachyon effective potential is found
by performing a perturbative computation of the coefficients in this effective
potential in the level-truncated theory. This gives a power series expansion of
the effective tachyon potential

V (φ) =
∞∑

n=2

cn(κ̄g)n−2φn (111)

= −1
2
φ2 + (κ̄g)φ3 + c4(κ̄g)2φ4 + c5(κ̄g)3φ5 + · · ·

In [53], the coefficients up to c60 were computed in the level truncations up
to (10, 20). Because of the branch point singularity near φ = −0.1/gκ̄, this
series has a radius of convergence much smaller than the value of φ at the
nonperturbative vacuum. Thus, the energy at the stable vacuum lies outside the
naive range of perturbation theory7.

6.2 Physics in the stable vacuum

We have seen that numerical results from level-truncated string field theory
strongly suggest the existence of a classically stable vacuum solution Ψ0 to the
string field theory equation of motion (100). The state Ψ0, while still unknown
analytically, has been determined numerically to a high degree of precision.
This state seems like a very well-behaved string field configuration. While there
is no positive-definite inner product on the string field Fock space, the state Ψ0

certainly has finite norm under the natural inner product 〈V2|Ψ0, c0L0Ψ0〉, and
is even better behaved under the product 〈V2|Ψ0, c0Ψ0〉. Thus, it is natural to
assume that Ψ0 defines a classically stable vacuum for the theory, around which

7In [55], however, it was shown that the method of Padé approximants enables us to compute the vacuum
energy to excellent precision given a reasonably small number of the coefficients cn. Thus, the stable vacuum
is in some sense accessible from purely perturbative calculations.
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we can expand the action to find a new “vacuum string field theory”. Expanding

Ψ = Ψ0 + Ψ̃, (112)

we get the action

S̃(Ψ̃) = S(Ψ0 + Ψ̃) = S0 − 1
2

∫
Ψ̃ � Q̃Ψ̃− g

3

∫
Ψ̃ � Ψ̃ � Ψ̃ . (113)

where
Q̃Φ = QΦ + g(Ψ0 � Φ + Φ � Ψ0) . (114)

This string field theory around the stable vacuum has precisely the same form as
Witten’s original cubic string field theory, only with a different BRST operator
Q̃, which so far is only determined numerically. Note that this formulation of
vacuum string field theory is distinct from the VSFT model of Rastelli, Sen, and
Zwiebach (RSZ) [60]. These authors make an Ansatz that the BRST operator
takes a pure ghost form, along the lines of Q→ c0, and they conjecture that the
theory with such a BRST operator is equivalent to the VSFT model given by
the BRST operator (114). We discuss the RSZ model again briefly in the next
section.

Sen’s third conjecture states that there should be no open string excitations
of the theory around Ψ = Ψ0. This implies that there should be no solutions of
the linearized equation Q̃Ψ̃ in the VSFT (113) other than pure gauge states of
the form Ψ̃ = Q̃Λ̃. In this subsection we discuss evidence for this conjecture.

It may seem surprising to imagine that all the perturbative open string degrees
of freedom will vanish at a particular point in field space, since these are all the
degrees of freedom available in the theory. This is not a familiar phenomenon
from quantum field theory. To understand how the open strings can decouple,
it may be helpful to begin by considering the simple example of the (0, 0)
level-truncated theory. In this theory, the quadratic terms in the action become

−
∫

d26p φ(−p)

[
p2 − 1

2
+ gκ̄

(
16
27

)p2

· 3〈φ〉
]

φ(p) . (115)

Taking 〈φ〉 = 1/3κ̄g, we find that the quadratic term is a transcendental ex-
pression which does not vanish for any real value of p2. Thus, this theory
has no poles, and the tachyon has decoupled from the theory. Of course, this
is not the full story, as there are still finite complex poles. It does, however
suggest a mechanism by which the nonlocal parts of the action (encoded in the
exponential of p2) can remove physical poles.

To get the full story, it is necessary to continue the analysis to higher level.
At level 2, there are 7 scalar fields, the tachyon and the 6 fields associated with



Lectures on D-branes, tachyon condensation, and string field theory 191

the Fock space states

(α−1 · α−1)|01, p〉 b−1 · c−1|01, p〉
c0 · b−1|01, p〉 (p · α−2)|01, p〉 (116)

(p · α−1)2|01, p〉 (p · α−1)c0b1|01, p〉
Note that in this analysis we cannot fix Feynman-Siegel gauge, as we only
believe that this gauge is valid for the zero-modes of the scalar fields in the
vacuum Ψ0. An attempt at analyzing the spectrum of the theory in Feynman-
Siegel gauge using level truncation was made in [33], with no sensible results.
Diagonalizing the quadratic term in the action on the full set of 7 fields of
level ≤ 2, we find that poles develop at M2 = 0.9 and M2 = 2.0 (in string
units, where the tachyon has M2 = −1) [61]. These poles correspond to states
satisfying Q̃Ψ̃ = 0. The question now is, are these states physical? If they
are exact states, of the form Ψ̃ = Q̃Λ̃, then they are simply gauge degrees
of freedom. If not, however, then they are states in the cohomology of Q̃
and should be associated with physical degrees of freedom. Unfortunately, we
cannot precisely determine whether the poles we find in level truncation are due
to exact states, as the level-truncation procedure breaks the condition Q̃2 = 0.
Thus, we can only measure approximately whether a state is exact. A detailed
analysis of this question was carried out in [61]. In this paper, all terms in the
SFT action of the form φi ψj(p) ψk(−p) were determined, where φi is a scalar
zero-mode, and ψj,k are nonzero-momentum scalars. In addition, all gauge
transformations involving at least one zero-momentum field were computed up
to level (6, 12). At each level up to L = 6, the ghost number 1 states in the
kernel Ker Q̃

(1)
(L,2L) were computed. The extent to which each of these states

lies in the exact subspace was measured using the formula

% exactness =
∑

i

(s · ei)2

(s · s) (117)

where {ei} are an orthonormal basis for Im Q̃
(0)
(L,2L), the image of Q̃ acting on

the space of ghost number 0 states in the appropriate level truncation. (Note
that this measure involves a choice of inner product on the Fock space; several
natural inner products were tried, giving roughly equivalent results). The result
of this analysis was that up to the mass scale of the level truncation, M2 ≤ L−1,
all the states in the kernel of Q̃(1) were≥ 99.9% within the exact subspace, for
L ≥ 4. This result seems to give very strong evidence for Sen’s third conjecture
that there are no perturbative open string excitations around the stable classical
vacuum Ψ0. This analysis was only carried out for even level scalar fields; it
would be nice to check that a similar result holds for odd-level fields and for
tensor fields of arbitrary rank.
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Another more abstract argument that there are no open string states in the
stable vacuum was given by Ellwood, Feng, He and Moeller [62]. These authors
argued that in the stable vacuum, the identity state |I〉 in the SFT star algebra,
which satisfies I � A = A for a very general class of string fields A, seems to
be an exact state,

|I〉 = Q̃|Λ〉 . (118)

If indeed the identity is exact, then it follows immediately that the cohomology
of Q̃ is empty, since Q̃A = 0 then implies that

A = (Q̃Λ) � A

= Q̃(Λ � A)− Λ � Q̃A (119)

= Q̃(Λ � A) .

So to prove that the cohomology of Q̃ is trivial, it suffices to show that Q̃|Λ〉 =
|I〉. While there are some subtleties involved with the identity string field,
Ellwood et al. found a very elegant expression for this field,

|I〉 =
(
· · · e 1

8
L−16e

1
4
L−8e

1
2
L−4

)
eL−2 |0〉 . (120)

(Recall that |0〉 = b−1|01〉.) They then looked numerically for a state |Λ〉
satisfying (118). For example, truncating at level L = 3,

|I〉 = |0〉+ L−2|0〉+ · · · (121)

= |0〉 − b−3c1|0〉 − 2b−2c0|0〉+ 1
2
(α−1 · α−1)|0〉+ · · ·

while the only candidate for |Λ〉 is

|Λ〉 = α b−2|0〉, (122)

for some constant α. The authors of [62] showed that the state (121) is best
approximated as exact when α ∼ 1.12; for this value, their measure of exactness
becomes ∣∣∣Q̃|Λ〉 − |I〉∣∣∣

|I| → 0.17, (123)

which the authors interpreted as a 17% deviation from exactness. Generalizing
this analysis to higher levels, they found at levels 5, 7, and 9, a deviation from
exactness of 11%, 4.5% and 3.5% respectively. At level 9, for example, the
identity field has 118 components, and there are only 43 gauge parameters, so
this is a highly nontrivial check on the exactness of the identity. Like the results
of [61], these results strongly support the conclusion that the cohomology of
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the theory is trivial in the stable vacuum. In this case, the result applies to fields
of all spins and all ghost numbers.

Given that the Witten string field theory seems to have a classical solution
with no perturbative open string excitations, in accordance with Sen’s conjec-
tures, it is quite interesting to ask what the physics of the vacuum string field
theory (113) should describe. One natural assumption might be that this theory
should include closed string states in its quantum spectrum. We discuss this
question again briefly in the final section.

7. Further developments

In this section we review briefly some further developments which we do
not have time to explore in great detail in these lectures. In Subsection 7.1
we discuss the pure ghost BRST operator Ansatz of RSZ (Rastelli, Sen, and
Zwiebach) for vacuum string field theory. In Subsection 7.2 we discuss “sliver”
states and related states; these states are projectors in the SFT star algebra, and
are closely related to D-branes in the RSZ VSFT model. These topics will be
discussed in further detail in [4]

7.1 The vacuum string field theory model of RSZ

In [60], Rastelli, Sen, and Zwiebach made an intriguing proposal regarding
the form of Witten’s string field theory around the stable tachyon vacuum. Since
the exact form of the BRST operator Q̃ given by (114) is not known analytically,
and is difficult to work with numerically, these authors suggested that it might
be possible to “guess” an appropriate form for this operator (after suitable
field redefinition), using the properties expected of the BRST operator in any
vacuum. They suggested a simple class of BRST operators Q̂ which satisfy
the properties (a-c) described in Section 4.2 (actually, they impose the slightly
weaker but still sufficient condition

∫
(Q̂Ψ � Φ + (−1)GΨΨ � Q̂Φ) instead of

condition (b)). In particular, they propose that after a field redefinition, the
BRST operator of the string field theory in the classically stable vacuum should
be an operator Q̂ expressable purely in terms of ghost operators. For example,
the simplest operator in the class they suggest is Q̂ = c0, which clearly satisfies
Q̂2, and which also satisfies condition (c) and the weaker form of condition (b)
mentioned above.

The RSZ model of vacuum string field theory has a number of attractive
features.

This model satisfies all the axioms of string field theory, and has a BRST
operator with vanishing cohomology.
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In the RSZ model, the equation of motion factorizes into the usual equa-
tion of motion

Q̂Ψghost + gΨghost � Ψghost = 0 (124)

for the ghost part of the field, and a projection equation

Ψmatter = Ψmatter � Ψmatter (125)

for the matter part of the field, where the full string field is given by

Ψ = Ψghost ⊗Ψmatter . (126)

Thus, finding a solution of the equation of motion reduces to the problem
of solving the equation of motion in the ghost sector and identifying
projection operators in the string field star algebra. It was also recently
shown [63, 64, 65] that by taking the BRST operator Q̂ to be given by a
ghost insertion localized at the string midpoint, the ghost equation also
has essentially the form of the projection equation. Thus, this seems to
be a very natural choice for the BRST operator of the RSZ model.

A number of projection operators have been identified in the string field
star algebra. These projection operators have many of the properties de-
sired of D-branes. We will briefly review some aspects of these projection
operators in the next subsection.

Given the projection operators just mentioned, the ratio of tensions be-
tween D-branes of different dimensionality can be computed and has the
correct value [66]8.

Despite the successes of the RSZ model, there are some difficult technical
aspects of this picture. First, it seems very difficult to actually prove that
this model is related to the VSFT around the stable vacuum in the Witten
model, not least because we lack any analytic control over the Witten theory.
Second, the RSZ model seems to have a somewhat singular structure in several
respects. Formally, the action on any well-behaved Fock space state satisfying
the equation of motion will vanish [69]. Further, the natural solutions of the
projection equation corresponding to the matter sector of the equation of motion
have rather singular properties [70]. Some of these singular properties are
related to the fact that some of the physics in the RSZ model seems to have
been “pushed” into the midpoint of the string. In the Witten model, the condition

8This result was known at the time of the lectures. There was quite a bit of recent work on the problem of
computing the exact D-brane tension [67]. A very nice recent paper by Okawa [68] resolved the question
and demonstrated that not only the ratio of tensions, but also the tension of an individual brane, is correctly
reproduced in the RSZ VSFT theory when singularities are correctly controlled.
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that, for example, Q2 = 0 involves a fairly subtle anomaly cancellation between
the matter and ghost sectors at the midpoint. In the RSZ model, the matter and
ghost sectors are essentially decoupled, so that the theory seems to have separate
singularities in each sector, which cancel when the sectors are combined. These
are all indications of a theory with problematic singularities. While the Witten
theory seems to be free of singularities of this type, it remains to be seen whether
resolving the singularities of the RSZ model or finding an analytic approach to
the Witten theory will be a more difficult problem to solve.

7.2 Projection operators in SFT

From the point of view of the RSZ model of VSFT just discussed, projection
operators in the matter sector of the star algebra play a crucial role in constructing
solutions of the equations of motion. Such projection operators may also be
useful in understanding solutions in the original Witten theory. Quite a bit
of work has been done on constructing and analyzing projectors in the star
algebra since the RSZ model was originally proposed. Without going into the
technical details, we now briefly review some of the important features of matter
projectors.

The first matter projector which was explicitly constructed is the “sliver”
state. This state was identified in conformal field theory in [71], and then
constructed explicitly using matter oscillators in [72]. The sliver state takes the
form of a squeezed state

exp
[
1
2

a† · S · a†
]
|0〉 . (127)

By requiring that such a state satisfy the projection equation Ψ � Ψ = Ψ, and
by making some further assumptions about the nature of the state, an explicit
formula for the matrix S was found in [72].

Projectors like the sliver have many properties which are reminiscent of D-
branes. This relationship between projection operators and D-branes is familiar
from noncommutative field theory, where projectors also play the role of D-
brane solitons [73] (for a review of noncommutative field theory, see [14]). In
the RSZ model, by tensoring an arbitrary matter projector with a fixed ghost
state satisfying the ghost equation of motion (124), states corresponding to an
arbitrary configuration of D-branes can be constructed. Particular projectors
like the sliver can be constructed which are localized in any number of space-
time dimensions, corresponding to the codimension of a D-brane. Under gauge
transformations, a rank 1 projector can be rotated into an orthogonal rank 1 pro-
jector, so that configurations containing multiple branes can be constructed as
higher rank projectors formed from the sum of orthogonal rank one projectors
[75, 76]. This gives a very suggestive picture of how arbitrary D-brane con-
figurations can be constructed in string field theory. While this picture is quite
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compelling, however, there are a number of technical obstacles which make
this still a somewhat incomplete story. As mentioned above, in the RSZ model,
many singularities appear due to the separation of the matter and ghost sectors.
In the context of the matter projectors, these singularities manifest as singular
properties of the projectors. For example, the sliver state described above has a
matrix S which has eigenvalues of ±1 for any dimension of D-brane [70, 77].
Such eigenvalues cause the state to be nonnormalizable elements of the mat-
ter Fock space. In the Dirichlet directions, this lack of normalizability occurs
because the state is essentially localized to a point and is analogous to a delta
function. In the Neumann directions, the singularity manifests as a “breaking”
of the strings composing the D-brane, so that the functional describing the pro-
jector state is a product of a function of the string configurations on the left and
right halves of the string, with no connection mediated through the midpoint.
These geometric singularities seem to be generic features of matter projectors,
not just of the sliver state [78, 77]. These singular geometric features are one of
the things which makes direct calculation in the RSZ model somewhat compli-
cated, as all these singularities must be sensibly regulated. These singularities
do not seem to appear in the Witten theory, where the BRST operator and nu-
merically calculated solutions seem to behave smoothly at the string midpoint.
On the other hand, it may be that further study of the matter projection operators
and their cousins in the ghost sector which satisfy (124) will lead to analytic
progress on the Witten theory.

8. Conclusions and open problems

The work described in these lectures has brought our understanding of string
field theory to a new level. We now have fairly conclusive evidence that open
string field theory can successfully describe distinct vacua with very different
geometrical properties, which are not related to one another through a marginal
deformation. The resulting picture, in which a complicated set of degrees of
freedom defined primarily through an algebraic structure, can produce different
geometrical backgrounds at different solutions of the equations of motion, rep-
resents an important step beyond perturbative string theory. Such an approach,
where different backgrounds with different low-energy degrees of freedom arise
from a single underlying formalism, is clearly necessary to discuss questions
of a cosmological nature in string theory. It is clearly essential, however, to
generalize from the work described here in which the theory describes distinct
open string backgrounds, to a formalism where different closed string back-
grounds appear as solutions to an equation of motion for a single set of degrees
of freedom.

Clearly, it is an important goal to have a formulation of string/M-theory in
which all the currently understood vacua can arise in terms of a single well-
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defined set of degrees of freedom. It is not yet clear, however, how far it
is possible go towards this goal using the current formulations of string field
theory. It may be that the correct lesson to take from the work described here is
simply that there are nonperturbative formulations in which distinct vacua can
be brought together as solutions of a single classical theory, and that one should
search for some deeper fundamental algebraic formulation where geometry,
and even the dimension of space-time emerge from the fundamental degrees
of freedom in the same way that D-brane geometry emerges from the degrees
of freedom of Witten’s open string field theory. A more conservative scenario,
however, might be that we could perhaps use the current framework of string
field theory, or some limited refinement thereof, to achieve this goal of providing
a universal nonperturbative definition of string theory and M-theory. Following
this latter scenario, we propose here a series of questions aimed at continuing
the recent developments in open string field theory as far as possible towards
this ultimate goal. It is not certain that this research program can be carried to
its conclusion, but it will be very interesting to see how far open string field
theory can go in reproducing important nonperturbative aspects of string theory.

Some open problems:

1) The first important unsolved problem in this area is to find an analytic
description of the tachyonic vacuum. Despite several years of work on
this problem, great success with numerical approximations, and some
insight from the RSZ vacuum string field theory model, we still have
no good analytic understanding of the difference between the D-brane
vacuum and the empty vacuum in Witten’s open cubic string field the-
ory. It seems almost unbelievable that there is not some elegant analytic
solution to this problem. Finding such an analytic solution would almost
certainly greatly enhance our understanding of this theory, and would
probably lead to other significant advances.

2) Another interesting and important unsolved problem is to find, either an-
alytically or numerically, a solution of the Witten theory describing two
D25-branes. If open string field theory is truly a background-independent
theory, at least in the open string sense, it should be just as feasible to
go from a vacuum with one D-brane to a vacuum with two D-branes as
it is to go from a vacuum with one D-brane to the empty vacuum (or
from the vacuum with two D-branes to the vacuum with one D-brane,
which is essentially the same problem as going from one to none). De-
spite some work on this problem [79], there is as yet no evidence that
a double D-brane solution exists for the Witten theory on a single D-
brane. Several approaches which have been tried (and will be described
in more detail in [79]) include: i) following a positive mass field up-
ward, looking for a stable point; this method seems to fail because of
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gauge-fixing problems—the effective potential often develops a singu-
larity before reaching the energy +T25, ii) following the intuition of the
RSZ model and constructing a gauge transform of the original D-brane
solution which is �−orthogonal to the original D-brane vacuum. It can
be shown formally that such a state, when added to the original D-brane
vacuum gives a new solution with the correct energy for a double D-
brane; unfortunately, however, we have been unable to identify such a
state numerically in level truncation.

There are several other problems closely related to the double D-brane
problem. One related problem is the problem of studying a D0-brane
lump solution from the tachyon field on a D1-brane wrapped on a small
circle. When the circle is sufficiently small, the mass of the D0-brane
is larger than that of the wrapped D1-brane. In this case, it seems much
more difficult to construct the D0-brane lump solution than it is when
the D0-brane has mass smaller than the D1-brane [80]. Another possibly
related problem is the problem of translating a single D-brane of less
than maximal dimension in a transverse direction. It was shown by Sen
and Zwiebach [81] (in a T-dual picture) that after moving a D-brane
a finite distance of order of the string length in a transverse direction,
the level-truncated string field theory equations develop a singularity.
Thus, in level truncation it does not seem possible to move a D-brane a
macroscopic distance in a transverse direction9. In this case, a toy model
[83] suggests that the problem is that the infinitesimal marginal parameter
for the brane translation ceases to parameterize the marginal trajectory
in field space after a finite distance, just as the coordinate x ceases to
parameterize the circle x2 + y2 = 1 near x = 1. This is similar in spirit
to the breakdown of Feynman-Siegel gauge along the tachyon potential
discussed in section 6.1.

To show that open string field theory is sufficiently general to address
arbitrary questions involving different vacua, it is clearly necessary to
show that the formalism is powerful enough to describe multiple brane
vacua, the D0-brane lump on an arbitrary radius circle, and translated
brane vacua. It is currently unclear whether the obstacles to finding these
vacua are conceptual or technical. It may be that the level-truncation
approach is not well-suited to finding these vacua. If this is true, however,
we may need a clearer mathematical formalism for describing the theory.
There is currently some ambiguity in the definition of the theory, in terms
of precisely which states are allowed in the string field. Level-truncation

9although this can be done formally [82], it is unclear how the formal solution relates to an explicit expression
in the oscillator language
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in some sense gives a regularization of, and a concrete definition to, the
theory. Without level truncation, we would need some more definitive
mathematical tools for analyzing various features of the theory, such as
the other vacua mentioned here.

3) Another open question involves the role that closed strings play in open
string field theory. As has been known since the earliest days of the sub-
ject, closed strings appear as poles in perturbative open string scattering
amplitudes. This was shown explicitly for Witten’s SFT in [48], where it
was shown that closed string poles arise in the one-loop 2-point function.
If Witten’s theory is well-defined as a quantum theory, it would follow
from unitarity that the closed string states should also arise in some nat-
ural sense as asymptotic states of the quantum open string field theory.
It is currently rather unclear, however, whether, and if so how, this might
be realized. There are subtleties in the quantum formulation of the the-
ory which have never completely been resolved [35]. Both older SFT
literature [84, 85] and recent work [86, 70, 64, 87, 88] have suggested
ways in which closed strings might be incorporated into the open string
field theory formalism, but a definitive resolution of this question is still
not available. If it is indeed possible to encode closed string degrees of
freedom in some way in the quantum open string field theory, it suggests
that one could use the Witten formalism in principle to not only compute
general closed string scattering amplitudes, but perhaps even to address
questions of closed string vacua. This is clearly an optimistic scenario,
but one can imagine that the open string theory might really contain all of
closed string physics as well as open string physics. This scenario is per-
haps not so farfetched, as it really represents simply a lifting to the level
of string field theory of the AdS/CFT story, where the massive as well as
the massless modes are included. Furthermore, the fact that, as discussed
in Section 5.5, the open string diagrams precisely cover the moduli space
of Riemann surfaces with an arbitrary number of handles (and at least one
boundary), suggests that by shrinking the boundaries to closed strings,
one might neatly describe all perturbative closed string amplitudes in the
open string language. On the other hand, it seems quite possible that the
closed string sector of the theory is encoded in a singular fashion (like the
encoding of the D-brane in the RSZ VSFT model), so that extracting the
closed string physics from the open string field theory may involve such
complicated manipulations that one is better off directly working with
a closed string formalism. It would certainly be nice to have a clearer
picture of how far one can go in this direction purely from the open string
point of view.
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4) Another obvious, but crucial, question is how this whole story can be
generalized to superstrings. The naive Witten cubic superstring field
theory has technical problems arising from contact terms between picture-
changing operators [89, 90]. It has been suggested that these problems can
be resolved directly in the cubic theory [43]. Berkovits has also suggested
a new non-polynomial string field theory framework which seems to deal
successfully with the contact term problem, at least in the NS-NS sector
[44]. Some preliminary work indicates that numerical calculations on the
tachyon condensation problem for the open superstring can be carried out
in the Berkovits model with analogous results to those described here for
the bosonic open string, although the results to date for the superstring
are much more limited [91]. It would be nice to have a more complete
picture for the superstring, and some sense of how issues like the closed
string question would work in the supersymmetric framework.

5) Perhaps the most important lesson we have learned from the body of work
discussed in these lectures is that open string field theory is a consistent
framework in which geometrically distinct open string backgrounds can
arise as classical solutions of a single theory. A fundamental outstanding
problem in string theory is to find a framework in which different closed
string backgrounds arise in a similar fashion from some fixed set of de-
grees of freedom within a single well-defined theory. In principle, we
would hope that all the different closed string backgrounds would arise
as solutions of the equations of motion for the fundamental underlying
degrees of freedom of string field theory, either by incorporating closed
strings into the open string field theory framework as described above, or
by working directly in some formulation of closed string field theory. It
is quite challenging to imagine a single set of degrees of freedom which
would encode, in different phases, all the possible string backgrounds we
are familiar with. A particularly pressing case is that of M-theory. In
principle, a nonperturbative background-independent formulation of type
II string theory should allow one to take the string coupling to infinity in
such a way that the fundamental degrees of freedom of the theory are still
actually at some finite point in their configuration space in the limit. This
would lead to the vacuum associated with M-theory in flat space-time.
It would be quite remarkable if this can be achieved in the framework of
string field theory. Given the nontrivial relationship between string fields
and low-energy effective degrees of freedom, however, such a result can-
not be ruled out. If this picture could be successfully implemented, it
would give a very satisfying understanding of how the complicated net-
work of dualities of string and M-theory could be represented in terms
of a single underlying set of degrees of freedom.
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Abstract It is shown in detail that the dynamics in the vicinity of a spacelike singularity
of the D-dimentional Einstein-dilaton-p-form system can be described, at each
spatial point, as a billiard motion in a region of hyperbolic space. This is done
within the Hamiltonian formalism. A key rôle is played in the derivation by the
Iwasawa decomposition of the spatial metric. We also comment on the strong
coupling/small tension limit of the theory.

1. Introduction

1.1 BKL analysis in four and higher spacetime dimensions

The non-linearities of the Einstein equations are notably known to prevent
the construction of an exact, general solution. Only peculiar solutions, cor-
responding to idealized situations, have been explicitly derived. From this
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perspective, the work of Belinskii, Khalatnikov and Lifshitz [BKL70, BKL82]
– known as “BKL" –, which describes the asymptotic, general behaviour of the
gravitational field in four spacetime dimensions as one approaches a spacelike
singularity, appears to be quite remarkable. As argued by these authors, the
spatial points decouple in this regime, in the sense that the dynamical evolution
of the spatial metric at each spatial point is asymptotically governed by a set of
ordinary differential equations with respect to time involving only the metric
and its time derivatives at that point. These differential equations are the same
as those that arise in some spatially homogeneous cosmological models, which
provide therefore invaluable insight into the qualitative features of the general
solution.

In the vacuum case, the spatially homogeneous models that capture the be-
haviour of the general solution are of “Bianchi types" IX or VIII (homogeneity
groups equal to SU(2) or SL(2, R)). The asymptotic evolution of the metric
can then be pictured as an infinite sequence of oscillations of the scale factors
along independent spatial directions [BKL70, BKL82]. This regime is called
“oscillatory" or “of mixmaster type" [M69a] and exhibits strong chaotic fea-
tures [LLK71, CB83]. The coupling to matter fields does not change the picture,
except if one includes a massless scalar field (equivalent to a perfect fluid with
“stiff" equation of state p = ρ), in which case the relevant homogeneity group
is simply the abelian group of translations in R3 (“Bianchi I" model). The
chaotic evolution is replaced by a monotone expansion or contraction of the
scale factors [BK73], mimicking at each spatial point the Kasner solution. This
behaviour is called “Kasner-like".

It is natural to investigate whether the BKL analysis remains valid in higher
dimensions. The study of this question was started some time ago in the con-
text of pure gravity (with no symmetry assumption) in [DHS85, DHHST86],
where it was shown that the general BKL ideas remain valid: spatial points
decouple as one approaches a spacelike singularity, i.e., the dynamical evo-
lution at each spatial point of the scale factors is again governed by ordinary
differential equations. However, while the general behaviour of solutions of
the vacuum Einstein equations remains oscillatory for spacetime dimensions
D ≤ 10, it ceases to be so for spacetime dimensions D ≥ 11, where it becomes
Kasner-like. Furthermore, just as in four spacetime dimensions, the coupling
to a massless scalar field suppresses the chaotic behaviour in any number of
spacetime dimensions (when it is present), and makes the solution monotone.

The authors of [DHS85] did not consider the inclusion of massless p-forms,
which are part of the low-energy bosonic sector of superstring/M-theory mod-
els. This task was undertaken in [DH00a, DH00b], with the finding that these
p-forms play a crucial role and can reinstate chaos when it is otherwise sup-
pressed. In particular, even though pure gravity is non chaotic in D = 11
spacetime dimensions, the 3-form of 11-dimensional supergravity renders the
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system chaotic. Similarly, the bosonic sectors of all ten-dimensional supergrav-
ities related to string models define chaotic dynamical systems, thanks again to
the p-forms.

The best way to grasp the asymptotic behaviour of the fields as one ap-
proaches a spacelike singularity is based on the qualitative Hamiltonian meth-
ods initiated by Misner [M69b]. These naturally lead, in four dimensions, to a
billiard description of the asymptotic evolution, in which the spatial scale factors
define a geodesic motion in a region of the Lobachevsky plane H2, interrupted
by geometric reflections against the walls bounding this region [C72, M94].
Chaos follows from the fact that the billiard has finite volume1.

It turns out that this useful billiard description is quite general and can be
extended to higher spacetime dimensions, with p-forms and dilaton. If d =
D−1 is the number of spatial dimensions, the billiard is a region of hyperbolic
space Hd in the presence of the dilaton, or Hd−1 if no dilaton is present. [If
there are k dilatons, the dimension of the relevant hyperbolic space is d+k−1.]
Besides the dimension of the hyperbolic billiard, the other ingredients that enter
its definition are the walls that bound it. These walls can be of different types
[DH00a, DH01]: symmetry walls related to the off-diagonal components of the
spatial metric, gravitational walls related to the spatial curvature, and p-form
walls (electric and magnetic) arising from the p-form energy-density. All these
walls are hyperplanes and the billiard is a convex polyhedron with finitely many
vertices, some of which are at infinity.

The fact that the asymptotic dynamics admits a billiard description was an-
nounced in [DH00a, DH01], where it was derived using the somewhat heuristic
arguments standard in BKL-type discussions. The purpose of this paper is to
provide a more complete derivation of the billiard picture, in the general (in-
homogeneous) D-dimensional situation, with dilaton and p-form gauge fields.
For that purpose, we shall rely on the Iwasawa decomposition (see e.g. [H78])
of the spatial metric. This provides an efficient derivation of the symmetry
walls in any number of spacetime dimensions, which we do by working out
explicitly the Hamiltonian that governs the dynamics in the “BKL" or “small
volume" limit.

1.2 Organization of the paper

After fixing the conventions, we discuss in the next two sections the Kasner
(= invariant under spatial translations) solution in D spacetime dimensions,
with a dilaton. This solution plays a particularly important rôle because it turns
out to describe the free motion between collisions. First, we consider diagonal

1Throughout this paper, the word billiard used as a noun in the singular will denote the dynamical system
consisting of a ball moving freely on a “table" (region in some Riemannian space), with elastic bounces
against the edges. Billiard will also sometimes mean the table itself.
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metrics and develop the geometry of the scale factors (section 2). Next, we
do not assume that the spatial metric is diagonal and show, using the Iwasawa
decomposition of the spatial metric, that the off-diagonal components induce
“symmetry walls" in the BKL limit (section 3). In fact, many of the billiard
ideas can already be introduced in this simple context.

In section 4, we derive the billiard picture in full generality, without imposing
any homogeneity conditions on the metric and the matter fields. We show how
the gravitational and p-form walls emerge (in addition to the symmetry walls)
near a spacelike singularity when one takes the BKL limit. We also prove that
Yang-Mills or Chern-Simons couplings do not affect the billiard picture.

In section 5, we relate the BKL limit to other limits that have been considered
in the past (“strong coupling limit" [I76], “zero velocity of light limit" [T78]).
We also discuss the connection with the so-called “velocity-dominated" behav-
ior [E72]. The last section (section 6) provides a brief conclusion as well as a
short survey of some related developments (emergence of Kac-Moody algebras
for specified models, lists of chaotic and non-chaotic models).

Four appendices illustrate and discuss further some aspects of the problem.
Appendix A analyzes the Iwasawa decomposition and the asymptotics of the
off-diagonal Kasner metric in the case of three spatial dimensions. Appendices
B and C shed further light on the freezing off of the off-diagonal components
and of the electromagnetic variables (in a sense made precise in the text) as
one goes to the singularity. Finally, appendix D is devoted to the Hamiltonian
reduction of the system in the general case.

We should stress that our analysis is purely classical and is accordingly, as
it stands, valid only up to the Planck scale. We also drop the fermionic fields.
It is reasonable to expect, however, that some of the ideas discussed here will
remain relevant in a more general context, at least qualitatively.

The subject of Hamiltonian cosmology has a long history in the context
of four-dimensional, spatially homogeneous spacetimes and provides useful
insight on the general discussion presented here. Excellent reviews on this
subject, with an extensive bibliography, are [R72b, RS75, J01].

1.3 Models and Conventions

We consider models of the general form

S[gμν , φ, A(p)] =
∫

dDx

√
−(D)g

[
R− ∂μφ∂μφ

−1
2

∑
p

1
(p + 1)!

eλ(p)φF
(p)
μ1···μp+1F

(p) μ1···μp+1

]
+ “more" (1)
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where we have chosen units such that 16πG = 1. The spacetime dimension
is left unspecified. We work (as a convenient common formulation) in the
Einstein conformal frame, and we normalize the kinetic term of the “dilaton"
φ with a weight 1 with respect to the Ricci scalar. The Einstein metric gμν has
Lorentz signature (−, +, · · · , +) and is used to lower or raise the indices. Its
determinant is(D)g, where the index D is used to avoid any confusion with the
determinant of the spatial metric introduced below. The integer p ≥ 0 labels
the various p-forms A(p) present in the theory, with field strengths F (p) equal
to dA(p),

F
(p)
μ1···μp+1 = ∂μ1A

(p)
μ2···μp+1 ± p permutations . (2)

In fact, the field strength could be modified by additional coupling terms of
Yang-Mills or Chapline-Manton type [BRWN82, CM83] (e.g., FC = dC(2) −
C(0)dB(2) for two 2-forms C(2) and B(2) and a 0-form C(0), as it occurs in
ten-dimensional type IIB supergravity), but we include these additional contri-
butions to the action in “more". Similarly, “more" might contain Chern-Simons
terms, as in the action for eleven-dimensional supergravity [CJS78]. If there
are many p-form gauge fields with same form degree p, we use different letters
A, B, C, ... to distinguish them, as we just did. The real parameter λ(p) mea-
sures the strength of the coupling to the dilaton. When p = 0, we assume that
λ(0) �= 0, so that there is only one dilaton. This is done mostly for notational
convenience. If there were other dilatons among the 0-forms, these should be
separated off from the p-forms because they play a distinct rôle. They would
appear as additional scale factors and would increase the dimensions of the rele-
vant hyperbolic billiard (they define additional spacelike directions in the space
of the scale factors: see Eq. (13) below, in which (dφ)2 should be replaced by∑

i(dφi)2, where i runs over the dilatons).
Our work applies both to past and future singularities. In particular, it applies

to Schwarzschild-type of singularities inside black holes. To follow historical
usage, we shall assume for definiteness that the spacelike singularity occurs in
the past, at t = 0 (t→ 0+).

2. Kasner solution – Diagonal case

2.1 Diagonal case

One of the basic ingredients in the asymptotic description of the fields as
one goes to the singularity is the Kasner solution (generalized to include the
dilaton, in D spacetime dimensions).

The Kasner solution is the general solution of the Einstein-dilaton equations
(no p-form) in the spatially homogeneous context, where all the fields depend
only on the time coordinate (“Bianchi I" models). Assuming the initial data
(spatial metric and extrinsic curvature of initial slice) to be diagonal (“diagonal
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case"), one easily finds that the metric and the dilaton are given by

ds2 = −dt2 +
d∑

i=1

a2
i (t)(dxi)2, ai(t) = tp

i
(1)

φ = −pφ ln t + C (2)

where pi, pφ and C are integration constants subject to the conditions

d∑
i=1

pi = 1 (3)

and
d∑

i=1

(pi)2 − (
d∑

i=1

pi)2 + (pφ)2 = 0. (4)

(the minus sign in front of pφ in (2) is included for the sake of uniformity
in the formulas below). The second condition is the Hamiltonian constraint
G00 − (1/2)T00 = 0. The (pi, pφ) are known as the Kasner exponents. In
the absence of the dilaton, one must simply set pφ (and C) equal to zero in
the above expressions. In this latter case, there is at least one Kasner exponent
pi that is negative, so that at least one of the scale factors ai blows up as
t→ 0. In contrast, the scale factors associated with positive Kasner exponents
monotonously contract to zero. In the presence of the dilaton, however, all the
pi can be positive simultaneously. In all cases there is an overall contraction
since the determinant g of the spatial metric tends to zero,

g = t2 → 0 for t→ 0. (5)

It is convenient to redefine the time coordinate t as

t→ τ = − ln t. (6)

This puts the singularity t→ 0+ at τ → +∞. Similarly, as t→ +∞, we have
τ → −∞. In terms of τ , the logarithms of the scale factors

βi = − ln ai (7)

and the dilaton behave linearly,

βi = piτ, φ = pφτ. (8)

The Kasner exponents appear therefore as the τ -time velocities of the βi, φ.
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2.2 Geometry of the space of the scale factors

2.2.1 Supermetric and Hamiltonian. The Kasner solution can be
viewed as a null geodesic in the “superspace" coordinatized by the metric com-
ponents gij and by φ. Indeed, the action that governs the time-evolution of
spatially-homogeneous models of type I, which is obtained from the action (1)
by setting A(p) = 0 and assuming the other fields to depend on time only, reads,
in terms of an arbitrary reparametrized time x0 = x0(t),

S[gij , φ, Ñ ] =
∫

dx0 1
Ñ

[
1
4

(
tr (G−1Ġ)2 − (trG−1Ġ)2

)
+ φ̇2

]
(9)

where we have set

ds2 = −(Ñ
√

g)2(dx0)2 + gijdxidxj (10)

and Ḟ ≡ dF/dx0. We have adopted matrix notations in which G stands for
the d × d matrix with matrix elements (gij). The use of the rescaled lapse
Ñ = N/

√
g makes the subsequent formulas simpler. We assume that x0

increases as one goes to the singularity, i.e., we take the minus sign in the
relation dt = −Ñ

√
gdx0 relating the proper time to x0.

The action (9) is the action for a free particle with coordinates (gij , φ) moving
in a curved space with metric

dσ2 =
1
4
[
tr (G−1dG)2 − (trG−1dG)2

]
+ dφ2 (11)

Observe that we designate by dσ2 the line element in superspace to distinguish
it from the line element in physical space time, which we denote by ds2. The
first two terms in the right-hand side of (11) define what is known as the De Witt
supermetric in the space of the gij’s, considered first in [D67]. Furthermore,
because of time reparametrization invariance, the velocities are constrained by

1
4

(
tr (G−1Ġ)2 − (trG−1Ġ)2

)
+ φ̇2 = 0 (12)

as follows from extremizing (9) with respect to Ñ . Thus, the motion is given
by a null geodesic of the metric (11), as announced.

For diagonal metrics, the supermetric (11) reduces to

dσ2 = tr (dβ)2 − (tr dβ)2 + dφ2 (13)

The action becomes therefore

S[βμ, Ñ ] =
∫

dx0 1
Ñ

Gμν β̇
μβ̇ν (14)
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where we have used the notation β0 ≡ φ for the dilaton (if it is present) and
defined Gμν through dσ2 = Gμνdβμdβν (μ, ν = 0, 1, · · · , d with a dilaton,
μ, ν = 1, · · · , d without dilaton). It is natural to collect together the scale
factors and the dilaton, since the dilaton can be viewed as a scale factor in one
extra dimension. Although the metric (11) has a non-vanishing curvature, the
metric (13) induced in the space of the scale factors (including the dilaton if
any) is flat. The diagonal Kasner solution is thus just a lightlike straight line in
the space of the scale factors. The Hamiltonian form of the action is

S[βμ, πμ, Ñ ] =
∫

dx0

[
πμβ̇μ − Ñ

4
Gμνπμπν

]
(15)

with

Gμνπμπν ≡
d∑

i=1

π2
i −

1
d− 1

(
d∑

i=1

πi

)2

+ π2
φ (16)

where (πi, πφ) ≡ (πμ) are the momenta respectively conjugate to βi and φ,
i.e., πμ = 2Ñ−1Gμν β̇

ν .
The metric (13) has Minkowskian signature (−, +, +, · · · ,+). The minus

sign is due to the presence of gravity, and more specifically to the conformal fac-
tor in the metric; for the other fields, the kinetic term is always positive definite.
This reflects the familiar fact that the gravitational action is not bounded from
below (switching to Euclidean signature will not change the De Witt superme-
tric). Conformal transformations of the metric, in which the scale factors are
all scaled in the same fashion, make dσ2 negative. It is this characteristic fea-
ture of gravity which is responsible for the Lorentzian type of the Kac-Moody
algebras which emerge in the analysis of the billiard symmetries [DH01]. The
Lorentzian signature of the metric in the space of the scale factors enables one
to define the light cone through any point. We define the time-orientation to be
such that future-pointing vectors vμ have

∑
i v

i > 0. Small volumes (small g)
mean large positive values of

∑
i β

i. In contrast, large volumes (large g) mean
large negative values of

∑
i β

i. We are interested in the small volume limit.

2.2.2 Hyperbolic space. With the gauge choice Ñ = 1, the solution of
the dynamical equations read

βμ = vμ x0 + βμ
0 (17)

while the constraint is

Gμνv
μvν = 0. (18)
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It follows from (18) that
∑

i v
i �= 02. In fact, since g ∼ exp[−2(

∑
i v

i)x0]
decreases as x0 increases,

∑
i v

i > 0. The Kasner exponents pμ, which are
normalized to

∑
i p

i = 1, are related to the vμ through pμ = vμ/(
∑

i v
i).

Consider the trajectories that get inside the future light cone of some point,
say the origin3. One can radially project these trajectories on the hyperbolic
space Hd (if a dilaton is present) or Hd−1 (no dilaton), realized as the future
sheet of the unit hyperboloid of vectors with norm squared equal to −1. This
is most readily done by introducing hyperbolic coordinates,

βμ = ργμ, (19)

where γμ are coordinates on the future sheet of the unit hyperboloid,

γμγμ = −1 (20)

In terms of ρ and γμ, the metric becomes

dσ2 = −dρ2 + ρ2dΣ2 (21)

where dΣ2 is the metric on the unit hyperboloid. Reinstating the rescaled lapse
Ñ , the Hamiltonian is

H =
Ñ

4

[
−π2

ρ +
1
ρ2

π2
γ

]
(22)

where πγ are the momenta conjugate to the (constrained) γμ. Equivalently,

H =
Ñ

4ρ2

[−π2
T + π2

γ

]
(23)

with T = ln ρ and πT its conjugate momentum. In terms of these variables, the
motion is simple in the gauge Ñ = ρ2, since the Hamiltonian becomes then just
(1/4)[−(πT )2 + (πγ)2]. One can view T as an intrinsic time variable in terms
of which one can describe the dynamics. The evolution is a geodesic motion
on Γ.

2The Kasner metric (1) corresponds to the particular choice of integration constants
∑

i vi = 1, βμ
0 = 0,

which implies t = exp(−x0), i.e., x0 = τ and
√

g = t. These “initial conditions" can be reached by using
the symmetries of the problem. These are (i) independent rescalings of the coordinates xi → x′i = kixi;
(ii) redefinition of the time x0, x0 → x′0 = Bx0+C, where B and C are constants, with B = k1k2 · · · kd

so as to preserve the gauge condition dt = −√
gdx0; and (iii) φ → φ′ = φ + A, where A is a constant.

However, if one considers many Kasner solutions simultaneously, as we shall do below when analysing
collisions from one Kasner regime to another one, one cannot make these simple choices of integration
constants for all the solutions at the same time - one can make it only, say, for the “first" one. For this reason,
we shall keep generic βμ

0 in (17) and we shall not impose
∑

i vi = 1.
3This occurs for x0 big enough when vμβμ

0 < 0 since βμβμ = 2vμβμ
0 x0 + β0 μβμ

0 . The condition
vμβμ

0 < 0 can always be assumed to hold by shifting the origin of the βi’s if necessary.
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On the solutions, x0 (in the gauge Ñ = 1) ∼ ln
√

g, ρ ∼ | ln√g|1/2 and
T ∼ ln | ln√g| ∼ ln | ln t| (vμβμ

0 < 0). Small volume is thus equivalent to
large ρ or what is the same, large T , i.e., large intrinsic time. We shall call the
limit ρ→∞ the BKL limit.

3. Kasner solution – Non-diagonal case

3.1 Iwasawa decomposition

In the homogeneous, vacuum context, the metric remains diagonal if the
initial data are so. This is in general not true when matter or inhomogeneities
are included, in which case off-diagonal components generically appear even if
there is none initially. For this reason, it is important to understand the rôle of
off-diagonal terms already in the simpler homogeneous context, by examining
the evolution of initial data that are not diagonal. This is most simply done by
performing a constant linear transformation on the Kasner solution, which is
a symmetry for Bianchi I models. If L is the linear transformation needed to
diagonalize the initial data, it is easy to see that the solution is given by

G(t) = tL GK(t)L (1)

where t denotes transposition and GK(t) is the above diagonal Kasner solution.
The dilaton, being a scalar, is still given by the same expression. Note that
detG(t) = (detL)2t2.

To understand the qualitative behaviour of (1), it is convenient to perform
the Iwasawa decomposition of the metric,

G = tN A2N (2)

where N is an upper triangular matrix with 1’s on the diagonal (Ni i = 1,
Ni j = 0 for i > j) and where A is a diagonal matrix with positive elements,
which we parametrize as

A = exp(−β), β = diag (β1, β2, · · · , βd). (3)

One can view the Iwasawa decomposition4 as the Gram-Schmidt orthogonali-
sation of the initial basis, which is indeed a triangular process,

ds2 = gijdxidxj =
d∑

k=1

e(−2βk)(θk)2 (4)

4The Iwasawa decomposition applies to general symmetric spaces (see e.g. [H78]). In our case the relevant
symmetric space is the coset space SL(d, R)/SO(d) since the space of positive definite symmetric matrices
can be identified with GL(d, R)/O(d), which is isomorphic to SL(d, R)/SO(d) × R

+.
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with
θk =

∑
i

Nk i dxi. (5)

Starting with θd = dxd, one successively constructs the next θj’s by adding
linear combinations of the dxp’s (p > j) in such a way that θd−1 is orthogonal
to θd, θd−2 is orthogonal to both θd and θd−1, etc. Explicitly,

θd = dxd (6)

θd−1 = dxd−1 +Nd−1 d dxd, (7)

θd−2 = dxd−2 +Nd−2 d−1 dxd−1 +Nd−2 d dxd, (8)

· · · . (9)

Note that the dual basis {ej} reads

ej =
∑
m

(N−1)m j
∂

∂xm
. (10)

The variables βi of the Iwasawa decomposition give the scale factors in the
new, orthogonal, basis, while the Nij characterize the change of basis that
diagonalizes the metric and hence, parametrize the off-diagonal components of
the original gij .

In the diagonal case, N = 1 and the β’s behave linearly with τ ,

βi = pi τ (diagonal Kasner). (11)

In the general case, N �= 1 and the evolution of the variables βi, Ni j of the
Iwasawa decomposition is more complicated. However, it becomes simple for
τ → ±∞. Indeed, the β’s become asymptotically linear functions of τ , as
in the diagonal case, with coefficients that are given by a permutation of the
pi’s, whereas the Ni j become constant. More precisely, let q1, q2, · · · , qd be
the ordered Kasner exponents, q1 ≤ q2 ≤ · · · ≤ qd, qi = pσ(i), with σ an
appropriate permutation of 1, 2, · · · , n. Then one finds (for generic L’s):

as τ → −∞ (t→∞), βi ∼ qd−i τ and Ni j → const;

as τ → +∞ (t→ 0+), βi ∼ qi τ and Ni j → const.

In both limits, one has β1 ≤ β2 ≤ · · · ≤ βd. The motion does not change the
Kasner exponents pi, but just redistributes them among the β’s so as to achieve
β1 ≤ β2 ≤ · · · ≤ βd for both τ → ∞ and τ → −∞. [The fact that one gets
β1 ≤ β2 ≤ · · · ≤ βd (in that order) follows from the choice for the matrix N
made in the Iwasawa decomposition; had we takenN to be e.g. lower triangular
instead of upper-triangular, the inequalities would have been all reversed.]
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One can arrive at the above conclusions concerning the asymptotic form of
the solutions either by direct computation from (1) and (2), or by using the
Hamiltonian formulation of the theory. We shall derive here the Hamiltonian
analysis and give the direct calculation (in the specific 3 + 1 case) in the first
appendix.

3.2 Symmetry walls

The simplest way to understand the asymptotic dynamics of the scale factors
in the non-diagonal case is to use the geometric picture developed in subsection
2.2.

3.2.1 BKL limit. Using the Iwasawa decomposition, the supermetric
(11) becomes

dσ2 = tr (dβ)2 − (tr dβ)2 +
1
2
tr
[A2 dN N−1A−2 t(N−1) d(tN )

]
+(dφ)2, (12)

i.e.,

dσ2 =
d∑

i=1

(dβi)2 − (
d∑

i=1

dβi)2

+
1
2

∑
i<j

e2(βj−βi)
(
(dNN−1)ij

)2 + dφ2 (13)

For d = 3, this expression reduces to the one explicitly given in [HPT82].
The Hamiltonian governing the evolution is therefore

H =
Ñ

4

[
d∑

i=1

(πi)2 − 1
d− 1

(
d∑

i=1

πi)2 + (πφ)2
]

+
Ñ

2

∑
i<j

e−2(βj−βi)

(∑
m

PimNjm

)2

(14)

where the Pim are the momenta conjugate to the Nim, Pim = ∂L/∂Ṅim. Be-
cause the terms involving the off-diagonal parameters are positive, the constraint
H = 0 implies that the velocity β̇μ is timelike or null.

We are interested in the BKL limit, i.e. small volume (large
∑

i β
i) or large

ρ. Making the change of variables (19) yields, instead of (23)

H =
Ñ

ρ2

⎡⎣1
4
(− π2

T + π2
γ) +

ρ2

2

∑
i<j

e−2ρ(γj−γi)

(∑
m

PimNjm

)2
⎤⎦ (15)
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As ρ becomes large, the terms ρ2 exp[−2ρ(γj−γi)] either go to zero if γj−γi

is positive, or explode to +∞ if γj − γi is negative. Thus one can replace
the exponentials by Θ[−2(γj − γi)], where Θ(x) = 0 for x < 0 and +∞ for
x > 05. Of course, Θ(2x) = Θ(x), but we keep the factor 2 here to recall that
the arguments of the exponentials from which the Θ-functions originate come
with a well-defined normalization. Since the functions γj−γi and βj−βi have
the same sign (ρ > 0) and since Θ(x) = λΘ(x) for λ > 0, one can replace
Θ[−2(γj −γi)] by Θ[−2(βj−βi)]. The Hamiltonian governing the dynamics
of the scale factors βμ for type-I, non-diagonal models, reads, in the BKL limit,

H =
Ñ

4

[
d∑

i=1

π2
i −

1
d− 1

(
d∑

i=1

πi

)2

+ π2
φ

+
∑
i<j

Θ[−2(βj − βi)]

]
(16)

The terms Θ[−2(βj − βi)] are present for all (i, j) with i < j provided all
non-negative terms (

∑
m PimNjm)2 are different from zero. This is the case

generically, i.e., for all initial data except a set of measure zero. For this reason,
we shall assume that it is fulfilled from now on. As a rule, we shall always
make similar “genericity" assumptions below concerning the coefficients of the
various potentials that enter the discussion.

3.2.2 First encounter with billiards. Because of the simplicity of (16),
the dynamics is easy to describe in the BKL limit. First, since the off-diagonal
parameters Nij and their conjugate drop out from the Hamiltonian, they are
constant for large ρ. This is what we saw in subsection (3.1). The only effect of
the off-diagonal components is to induce the Θ-function potentials for the scale
factors. The asymptotic freezing of the off-diagonal terms is further discussed
in appendix B. Second, the Θ-terms constrain the scale factors to be in the
region

wS
(ij)(β) ≡ wS

(ij)μβμ ≡ βj − βi ≥ 0 (i < j). (17)

In that region the motion is free, i.e., is given by a lightlike straight line (17)
for some vμ fulfilling (18), exactly as for diagonal Kasner metrics. When the
trajectory hits a wall βj − βi = 0, it undergoes a reflection. This reflection
permutes two vμ’s (see below). After a finite number of collisions, the vμ’s get
ordered, v1 ≤ v2 · · · ≤ vd, and the motion then goes on freely forever. Indeed,
the subsequent evolution of the β’s, once the vμ’s are ordered, can never hit a

5One should more properly write Θ∞(x), but since this is the only step function encountered in this article,
we use the simpler notation Θ(x).
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wall (where two β’s are equal) any more. This is what we announced in the
analysis of the asymptotic behaviour of the solutions in subsection 3.1. We stress
that this simple evolution arises only in the BKL limit. Before the asymptotic
regime is reached, one cannot replace the exponentials by Θ-functions. The
collisions that take place then are not strictly localized in time and therefore
may not be clearly separated from each other. In addition, there is a slow drift
of the off-diagonal parameters.

The region wS
(ij)(β) ≥ 0 (i < j),

∑
i β

i ≥ 0 is a convex region of the space

of the scale factors. We shall call the hyperplanes wS
(ij)(β) = 0 the “symmetry

walls". These hyperplanes are timelike since

GμνwS
(ij)μwS

(ij)ν = 2 (18)

and intersect therefore the hyperboloid Gμνβ
μβν = −1,

∑
i β

i ≥ 0. The
symmetry billiard is defined to be the region of hyperbolic space determined
by these inequalities.

Among the d(d− 1)/2 symmetry walls, only d− 1 are relevant. Indeed, the
inequalities (17) all follow from wS

(i i+1) ≥ 0. The symmetry billiard is thus
defined by the d− 1 inequalities

β2 − β1 ≥ 0, β3 − β2 ≥ 0, · · · , βd − βd−1 ≥ 0 (19)

and extend to infinity. It has infinite volume.
In order to analyse the collision against the wall βi+1 − βi = 0, we make

linear redefinitions so that βi+1 − βi is one of the new variables,

βμ → β′μ (μ �= i, i + 1), u = βi+1 + βi, z = βi+1 − βi (20)

In these new variables, the potential associated with the symmetry wall βi+1−
βi = 0 is simply Θ(−2z). Furthermore, since z is orthogonal to the other
variables, the sole effect of the collision is to change the sign of ż, leaving
the other velocities fixed. In terms of the original variables, this is just the
permutation of the velocities vi and vi+1,

vi → vi+1, vi+1 → vi (other vk unchanged). (21)

This transformation belongs to the orthochronous Lorentz group because it pre-
serves both the Lorentzian metric and the arrow of time (Gμνv

′μv′ν = Gμνv
μvν ,∑

i v
′i =

∑
i v

i). More generally, an arbitrary number of collisions against the
symmetry walls will lead to an arbitrary permutation of the vi’s, since the trans-
positions (i, i + 1) generate the symmetry group Sd in d elements.

Remarks

i Large volume limit
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It follows from the above analysis that in the small volume limit, the
Kasner exponents get re-ordered so that the first spatial direction carries
the smallest Kasner exponent, the second spatial direction carries the
next to smallest Kasner exponent etc. In the particular homogeneous
case considered here, one can also investigate the large volume limit by
the same techniques. Although this cannot be extended to the general
inhomogeneous case discussed below, we briefly indicate how this is
achieved in the present special case.

In the large volume limit, the β’s go to the past in the space of the scale
factors. So one sets

βμ = −ργμ, (22)

where γμ are still coordinates on the future sheet of the unit hyperboloid,
γμγμ = −1. Making the same transformations as above, one finds that
all the symmetry walls come with the other sign, i.e., in the large volume
limit, the potential reduces to

∑
i>j Θ[−2(βj−βi]. This forces the β’s to

be ordered as β1 ≥ β2 ≥ · · · ≥ βd. Accordingly, the collisions against
the walls reorders now the velocities pi in decreasing order, as we stated
in subsection 3.1.

ii Are the symmetry walls a gauge artifact?

Since the metric can diagonalized at all times by a time-independent
coordinate transformation xa → x′a = La

bx
b, one might fear that the

symmetry walls, which are related to the off-diagonal components, are
somewhat a gauge artifact with no true physical content. This conclu-
sion, however, would be incorrect. First, the transformation needed to
diagonalize the metric may not be a globally well-defined coordinate
transformation if the spatial sections have non-trivial topology, e.g., are
tori, since it would conflict in general with periodicity conditions. Sec-
ond, even if the spatial sections are homeomorphic to Rd, the transfor-
mation xa → x′a = La

bx
b, although a diffeomorphism, is not a proper

gauge transformation in the sense that it is generated by a non-vanishing
charge. One should regard as distinct (although related by a symmetry)
two solutions that differ by the transformation xa → x′a = La

bx
b. Initial

conditions for which the metric is diagonal – and hence the symmetry
walls absent – form a set of measure zero.

iii Alternative description of symmetry walls

We have just shown that the Iwasawa decomposition of the spatial met-
ric leads to a projected description of the GL(d, R)/O(d)-geodesics as
motions in the space of the scale factors with exponential (“Toda-like")
potentials. An alternative description exists, which is based on the decom-
position G = tR AR of the spatial metric, where R ∈ SO(d) and A is
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diagonal [R72a, KM02]. One then gets “Calogero-like" sinh−2(βi−βj)-
potentials. In the BKL limit, these potentials can be replaced by sharp
wall potentials but whether the system lies to the left or to the right of
the wall βi−βj = 0 depends in this alternative description on the initial
conditions.

4. Asymptotic dynamics in the general case -
Gravitational billiards

We shall now show that the same ideas apply in the general case described by
the action (1). In the vicinity of a spacelike singularity, the spatial points decou-
ple and the billiard picture remains valid at each spatial point. Inhomogeneities
and p-forms bring in only new walls.

4.1 Pseudo-Gaussian coordinates

We thus assume that there is a spacelike singularity at a finite distance in
proper time. We adopt a spacetime slicing adapted to the singularity, which
“occurs" on a slice of constant time. We build the slicing from the singularity
by taking pseudo-Gaussian coordinates defined by Ñ = 1 and N i = 0, where
Ñ is again the rescaled lapse Ñ = N/

√
g and N i is the standard shift. More

precisely, we assume that in some spacetime patch, the metric reads

ds2 = −g(x0, xi)(dx0)2 + gij(x0, xi)dxidxj , g ≡ det (gij), (1)

where the local volume g collapses at each spatial point as x0 → +∞, in such a
way that the proper time dt = −√gdx0 remains finite (and tends conventionally
to 0+). We shall make the further assumption that since the local volume tends
to zero, the variable ρ introduced above can be used everywhere in a given region
of space (in a neighborhood of the singularity) as a well-defined (“intrinsic")
time variable that goes all the way to +∞. We can then investigate the BKL
limit ρ→∞. Differently put, we study the general solution of the equations of
motion in the regime met above where the scale factors βμ go to infinity inside
the future light cone in superspace, βμ = ργμ, Gμνγ

μγν = −1,
∑

i γ
i > 0,

ρ → ∞ (at each spatial point in the local region under consideration). Some
aspects of the consistency of this limit are discussed in the appendix D.

One of the motivations for studying spacelike singularities comes from the
singularity theorems [HP70]. Of course, not all singularities are spacelike, and
furthermore, there is no claim here that all spacelike singularities are necessarily
of the BKL type. We are just interested in this regime, which, as we shall see,
has a high degree of self-consistency and is quite general in the sense that it
involves as many arbitrary functions of space as the general solution does (see
subsection 4.6).
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The only coordinate freedom left in the pseudo-Gaussian gauge (after having
fixed the hypersurface t = 0) is that of making time-independent changes of
spatial coordinates xk → x′k = fk(xm). Since the rescaled lapse is a spatial
density of weight minus one, such changes of coordinates have the unusual
feature of also changing the slicing (in some determined way - the scalar lapse
N changes in a well-defined manner).

The fields φ and A
(p)
μ1···μp are also a priori functions of both space and time.

No symmetry condition is imposed. Although the equations at each point will
be asymptotically the same as those of homogeneous cosmological models, this
does not follow from imposing extra dimensional reduction conditions but is
rather a direct consequence of the general dynamical equations.

We shall partially fix the gauge in the p-form sector by imposing the temporal
gauge condition A

(p)
0μ2···μp

= 0. This leaves the freedom of performing time-
independent gauge transformations.

4.2 Hamiltonian action

To focus on the features relevant to the billiard picture, we assume first
that there is no Chern-Simons terms or couplings of the exterior form gauge
fields through a modification of the curvatures F (p), which are thus taken to
be Abelian, F (p) = dA(p). We verify in subsection 4.7 below that these in-
teraction terms do not change the analysis. The Hamiltonian action in the
pseudo-Gaussian gauge reads

S[gij , π
ij , φ, πφ, A

(p)
m1···mp , π

m1···mp

(p) ] =∫
dx0

(∫
ddx(πij ˙gij + πφφ̇ +

∑
p

π
m1···mp

(p) Ȧ
(p)
m1···mp)−H

)
(2)

where the Hamiltonian is

H =
∫

ddx H (3)

H = L + M (4)

L = πijπij − 1
d− 1

(πi
i)

2 +
1
4
(πφ)2 +

∑
p

p! e−λ(p)φ

2
π

m1···mp

(p) π(p) m1···mp
(5)

M =−Rg + gijg∂iφ∂jφ +
∑

p

eλ(p)φ

2 (p + 1)!
g F

(p)
m1···mp+1F

(p) m1···mp+1 (6)

The dynamical equations of motion are obtained by varying the above action
w.r.t. the spatial metric components, the dilaton, the spatial p-form components
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and their conjugate momenta. In addition, there are constraints on the dynamical
variables, which are

H = 0 (“Hamiltonian constraint"), (7)

Hi = 0 (“momentum constraint"), (8)

ϕ
m1···mp−1

(p) = 0 (“Gauss law" for each p-form) (p > 0) (9)

Here, we have set

Hi = −2πj
i |j + πφ∂iφ +

∑
p

π
m1···mp

(p) F
(p)
im1···mp

(10)

ϕ
m1···mp−1

(p) = −p π
m1···mp−1mp

(p) |mp
(11)

In order to understand the asymptotic behaviour of the fields, we perform,
at each spatial point, the Iwasawa decomposition of the metric. This is a point
canonical transformation, extended to the momenta in the standard way, i.e.,
πij ġij = πiβ̇

i +
∑

i<j PijṄij . We then split the Hamiltonian in two parts, one
denoted by K, which is the kinetic term for the local scale factors βμ, and the
other denoted by V , which contains everything else. It is indeed natural to group
the kinetic term for the off-diagonal variables with the original potential terms
because they asymptotically play the role of a potential for the scale factors. As
we shall see, the same feature holds for the p-form kinetic terms. In fact, this is
not surprising, at least when p=1, since 1-forms can be viewed as off-diagonal
components of the metric in one dimension higher. Thus, we write

H = K + V (12)

K =
1
4

⎡⎣ d∑
i=1

π2
i −

1
d− 1

(
d∑

i=1

πi

)2

+ π2
φ

⎤⎦ (13)

V = VS + VG +
∑

p

Vp + Vφ (14)

VS =
1
2

∑
i<j

e−2(βj−βi)(
∑
m

PimNjm)2 (15)

VG = −Rg (16)

V(p) = V el
(p) + V magn

(p) (17)

V el
(p) =

p! e−λ(p)φ

2
π

m1···mp

(p) π(p) m1···mp
(18)

V magn
(p) =

eλ(p)φ

2 (p + 1)!
g F

(p)
m1···mp+1F

(p) m1···mp+1 (19)

Vφ = gijg∂iφ∂jφ. (20)
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We know that in the BKL limit, the symmetry potential VS becomes a sum
of sharp wall potentials,

VS �
∑
i<j

Θ[−2(βj − βj)] (ρ→∞) (21)

The computation that leads to (21) was carried out above in the spatially ho-
mogeneous context but remains clearly valid here since VS contains no spatial
gradients. This potential is “ultralocal", i.e., its value at any spatial point in-
volves only the scale factors at that same spatial point. It is quite remarkable that
the same sharp wall behavior emerges asymptotically for the other potentials.

4.3 Curvature (gravitational) walls

We first establish this fact for the gravitational potential.

4.3.1 Computation of curvature. To that end, one must explicitly ex-
press the spatial curvature in terms of the scale factors and the off-diagonal vari-
ables Nij . The calculation is most easily done in the frame θk =

∑
iNkidxi

in which the spatial metric is diagonal,

ds2 =
d∑

k=1

a2
k(θ

k)2, ak = e−βk
(22)

Let Ci
mn(x) be the structure functions of the basis {θk},

dθi = −1
2
Ci

mnθmθn (23)

Here, d is the spatial exterior differential. The functions Ci
mn(x) depend

clearly only on the off-diagonal variables Nij and not on the scale factors.
Using the Cartan formulas for the connection 1-form ωi

j ,

dθi +
∑

j

ωi
j ∧ θj = 0 (24)

dγij = ωij + ωji (25)

where γij = δija
2
i is the metric in the frame {θk}, one finds

ωk
� =

∑
j

1
2

(
Cj

k�

a2
j

a2
k

+ C�
kj

a2
�

a2
k

− Ck
�j

)
θj

+
∑

j

1
2a2

k

(
δk�(a2

k),j + δkj(a2
k),� − δ�j(a2

� ),k

)
θj (26)
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One then gets the Riemann tensor Rk
�mn, the Ricci tensor R�n and the scalar

curvature R through

Rk
� = dωk

� +
∑

j

ωk
jω

j
� (27)

=
1
2

∑
m,n

Rk
�mnθm ∧ θn (28)

(Rk
� is the curvature 2-form) and

R�n = Rk
�kn, R =

∑
�

1
a2

�

R��. (29)

Direct, but somewhat cumbersome, computations yield

R = −1
4

∑
j,k,�

a2
j

a2
� a2

k

(Cj
k�)

2 +
∑

j

1
a2

j

Fj(∂2β, ∂β, ∂C, C) (30)

where Fj is some complicated function of its arguments whose explicit form
will not be needed here. The only property of Fj that will be of importance
is that it is a polynomial of degree two in the derivatives ∂β and of degree
one in ∂2β. Thus, the exponential dependence on the βi’s, which determines
the asymptotic behaviour in the BKL limit, occurs only through the a2

j -terms
written explicitly in (30).

Without loss of generality, we can assume j �= k and j �= � in the first sum
on the right-hand side of (30), since the terms with either j = k or j = � can
be absorbed through a redefinition of Fj . Also, one has clearly k �= � because
the structure functions Cj

k� are antisymmetric in k, �. We can thus write the
gravitational potential as

VG ≡ −gR =
1
4

∑
i�=j,i�=k,j �=k

e−2αijk(β)(Ci
jk)

2 −
∑

j

e−2μj(β)Fj (31)

where the linear forms αijk(β) and μj(β) are given by

αijk(β) = 2βi +
∑

m, (m�=i,m�=j,m�=k)

βm, (i �= j, i �= k, j �= k) (32)

and
μj(β) =

∑
m, (m�=j)

βm. (33)

respectively.



Billiard dynamics 227

4.3.2 BKL limit. In the BKL limit where the scale factors βμ go to
infinity inside the future light cone, the gravitational potential becomes a sum
of sharp wall potentials,

VG �
∑

i�=j,i�=k,j �=k

Θ[−2αijk(β)] +
∑

i

(±Θ[−2μi(β)]) (34)

The terms in the second sum seem to pose a problem because they do not
have a definite sign. They are, however, in fact always zero in the BKL limit
because μi(β) > 0. Indeed, each linear form μi(β) is lightlike and hence,
each hyperplane μi(β) = 0 is tangent to the light cone along some generatrix.
This means that the future light cone is entirely on one side of the hyperplane
μi(β) = 0 (i.e., either μi(β) > 0 for all points inside the future light cone or
μi(β) < 0). Now, the point β1 = β2 = · · · = βd = 1 is inside the future
light cone and makes all the μi’s positive. Hence μi(β) > 0 inside the future
light cone for each i and Θ[−2μi(β)] = 0: we can drop the second term in the
gravitational potential, which reduces to

VG �
∑

i�=j,i�=k,j �=k

Θ[−2αijk(β)]. (35)

Note that in D = 3 spacetime dimensions, the gravitational walls αijk(β) = 0
(i �= j, i �= k, j �= k) are absent, since one cannot find three distinct spatial
indices. The first term in (30) is of the same type as the second term: the only
gravitational walls are then all of the subdominant type μj and thus, in the BKL
limit,

VG � 0 (D = 3). (36)

We thus see that the gravitational potential becomes, in the BKL limit, a
positive sum of sharp wall potentials,

VG �
∑

i �=j,i�=k,j �=k

Θ[−2αijk(β)] (D > 3), VG � 0 (D = 3) (37)

This is remarkable for many reasons. First, the final form of the potential is
rather simple, even though the curvature is a rather complicated function of the
metric and its derivatives. Second, the limiting expression of the potential is
positive, even though there are (subdominant) terms in VG with indefinite sign.
Third, it is ultralocal in the scale factors, i.e. involves only the scale factors
but not their derivatives. It is this fact that accounts for the decoupling of the
various spatial points.

It follows from this analysis that the scale factors are constrained by the
conditions

αijk(β) ≥ 0 (D > 3) (38)

besides the symmetry inequalities (19). The hyperplanesαijk(β) = 0 are called
the “curvature" or “gravitational" walls.
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4.3.3 Remarks.

i In D > 3 dimensions, one can argue more directly that the first term in
VG asymptotically dominates the second one in the BKL limit ρ→∞ by
observing that the μj’s are all positive when the αijk are positive, since
they can be written as linear combinations with positive coefficients of the
αijk (the converse is not true, one may have μj > 0 for all j’s together
with αijk < 0 for some αijk’s)6. Thus, in the region αijk > 0, the
exponentials in VG all go to zero as ρ → ∞ and one can replace VG

by zero. Conversely, when one of the μj’s is negative, there is always
at least one αijk that is also negative. Actually, assuming without loss
of generality that the βi’s are ordered, β1 ≤ β2 ≤ · · · ≤ βd, the most
negative μi is μd = β1 + β2 + · · · + βd−1. But one has α1 d d−1 =
2β1 + β2 + · · ·+ βd−2 ≤ μd, in fact α1 d d−1 ≤ αijk (for all i, j, k) and
α1 d d−1 ≤ μj (for all j’s). Thus, as ρ → ∞ (keeping the γμ fixed), the
behaviour of VG is controlled by the exponential exp(−2α1 d d−1), which
blows up the fastest. Since it is multiplied by a positive coefficient, we
conclude that VG → +∞ (even though the subdominant term with Fj

has no definite sign7). If the βi were not ordered, it would be a different
αijk that would take over, leading to the same conclusion.

ii The potential Vφ = ggij∂iφ∂jφ of the dilaton has the same form as the
subdominant gravitational terms that we have just neglected, since the
exponentials that control its asymptotic behaviour are also exp[−2μj(β)].
Consequently, we can drop Vφ in the BKL limit.

iii The above curvature computation involves only the Cartan formulas.
It would also hold true if θk =

∑
iNkif

i, where f i = f i
j(x)dxj is

an arbitrary fixed frame. The structure functions Ci
mn(x) would get

contributions from bothNki (and its spatial derivatives) and f i. We have
taken above f i

j = δi
j . Then, Ci

mn = Ci
mn(N ). The other extreme case

isNki = δij , in which case Ci
mn = Ci

mn(f). In fact, not all gravitational
walls αijk appear if we make the choice f i = dxi since it then follows
from the formulas (9) that Cd

ij = 0 (i, j arbitrary), Cd−1
ij = 0 (with

both i, j �= d) etc. Hence, (Cd
ij)

2 = 0 and the gravitational walls αdij

6In D = 3, there is no αijk , so this property does not hold. However, when there are p-forms present,
one can develop the same more direct alternative proof that the μj ’s can be dropped because one can then
express the μj as positive linear combinations of the p-form wall forms.
7Note two things: (i) the exponent μd is of the same order as α1 d d−1 when β1 
 β2 
 βd−1. This
corresponds to the case of “small oscillations" considered by BKL [BKL70, BKL82], for which they verify
(in 3 dimensions) that the evolution is indeed controlled by the αijk-terms even in that region. (ii) For the

Kasner solution, one has exp(−2μd) 
 t1−pd → 0 and so the Kasner solution never reaches the region
where μd is arbitrarily negatively large.
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are absent. Similarly, only the gravitational walls αd−1 id are present
among the walls αd−1 ij . To get all the gravitational walls, one needs
a non-holonomic frame f i. The dominant gravitational wall α1 d−1 d is,
however, always present, and this is what matters for the billiard (when
gravitational walls are relevant at all).

iv The coefficients of the dominant exponentials involve only the undiffer-
entiated structure functions Ci

jk. Thus, one can mimic at each point x the
gravitational potential in the context of spatially homogeneous cosmolo-
gies, where the Ci

jk are constant, by considering homogeneity groups
that are “sufficiently" non-Abelian so that none of the coefficients of the
relevant exponentials vanishes (Bianchi types VIII and IX for d = 3,
other homogeneity groups for d > 3 - see [DDRH88]).

4.4 p-form walls

4.4.1 Electric walls. We now turn to the electric potential V el
(p), which

we express in the basis {θk}. One has

V el
(p) =

p!
2

∑
i1,i2,···,ip

e−2ei1···ip (β)(E i1···ip
(p) )2 (39)

where E i1···ip are the components of the electric field π
m1···mp

(p) in the basis {θk},

E i1···ip
(p) =

∑
m1,···,mp

Ni1m1Ni2m2 · · · Nipmpπ
m1···mp

(p) (40)

and where ei1···ip(β) are the electric linear forms

ei1···ip(β) = βi1 + · · ·+ βip +
λ(p)

2
φ (all ij’s distinct) (41)

(the indices ij’s are all distinct because E i1···ip
(p) is completely antisymmetric).

The variables E i1···ip do not depend on the βμ. It is thus rather easy to take the
BKL limit. The exponentials in (39) are multiplied by positive factors which are
different from zero in the generic case. Thus, in the BKL limit, V el

(p) becomes

V el
(p) �

∑
i1<i2<···<ip

Θ[−2ei1···ip(β)]. (42)

Note that the transformation from the variables (Nij , Pij , A
(p)
m1···mp , π

m1···mp

(p) )

to the variables (Nij , Pij ,A(p)
m1···mp , E i1···ip

(p) ) is a point canonical transformation
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whose explicit form is obtained from∑
i<j

PijṄij +
∑

p

π
m1···mp

(p) Ȧ
(p)
m1···mp =

∑
i<j

P ′
ijṄij +

∑
p

E i1···ip
(p) Ȧ(p)

m1···mp

(43)
(The momenta Pij conjugate toNij get redefined by terms involving E ,N and

A since the components A(p)
m1···mp of the p-forms in the basis {θk} involve the

N ’s,
A(p)

i1···ip =
∑

m1,···,mp

(N−1)m1i1 · · · (N−1)mpipA(p)m1···mp
.

This does not affect the symmetry walls in the BKL limit.)

4.4.2 Magnetic walls. The magnetic potential is dealt with similarly.
Expressing it in the {θk}-frame, one obtains

V magn
(p) =

1
2 (p + 1)!

∑
i1,i2,···,ip+1

e−2mi1···ip+1
(β)(F(p) i1···ip+1

)2 (44)

where F(p) i1···ip+1
are the components of the magnetic field F(p)m1···mp+1

in
the basis {θk},

F(p) i1···ip+1
=

∑
m1,···,mp+1

(N−1)m1i1 · · · (N−1)mp+1ip+1F(p)m1···mp+1
(45)

and where mi1···ip+1(β) are the magnetic linear forms

mi1···ip+1(β) =
∑

j /∈{i1,i2,···ip+1}
βj − λ(p)

2
φ (46)

(all ij’s are distinct). One sometimes rewrites mi1···ip+1(β) as bip+2···id , where
{ip+2, ip+3, · · · , id} is the set complementary to {i1, i2, · · · ip+1}; e.g.,

b1 2 ··· d−p−1 = β1 + · · ·+ βd−p−1 − λ(p)

2
φ = md−p ··· d (47)

The exterior derivative F of A in the non-holonomic frame {θk} involves of
course the structure coefficients, i.e., of frame F(p) i1···ip+1

= ∂[i1Ai2···ip+1] +
“CA”-terms where ∂i1 ≡

∑
m1

(N−1)m1i1(∂/∂xm1) is here the frame deriva-
tive.

Again, the BKL limit is quite simple and yields (assuming generic magnetic
fields)

V magn
(p) �

∑
i1<···<id−p−1

Θ[−2bi1···id−p−1
(β)]. (48)
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Note that, just as the off-diagonal variables, the electric and magnetic fields
get frozen in the BKL limit since the Hamiltonian no longer depends on the
p-form variables. These drop out because one can rescale the coefficient of any
Θ-function to be one (when it is not zero), absorbing thereby the dependence
on the p-form variables.

The scale factors are constrained by the further conditions

ei1···ip(β) ≥ 0, bi1···id−p−1
(β) ≥ 0. (49)

The boundary hyperplanes ei1···ip(β) = 0 and bi1···id−p−1
(β) = 0 are called the

“electric" and “magnetic" walls, respectively.

4.5 Billiards

At this point, we see that the interesting dynamics as one goes towards the
spacelike singularity is carried by the scale factors since the off-diagonal vari-
ables (including the p-form variables) asymptotically drop out. Furthermore,
the evolution of the scale factors at each spatial point is, in the BKL limit, a
broken null straight line of the metric Gμνdβμdβν interrupted by collisions
again the sharp walls

wA(β) ≡ wAμβμ = 0 (50)

defined by the symmetry, gravitational and p-form potentials through V =∑
A Θ(−2wA(β)). All these walls are timelike hyperplanes. Indeed, we have

found above that the gradients to the symmetry walls have squared norm equal
to 2, see Eq. (18). Similarly, the gradients to the gravitational walls αijk = 0
are spacelike and, in fact, have the same squared norm +2. Finally, the gradients
to the electric wall ei1···ip have also positive squared norm

p(d− p− 1)
d− 1

+
(λ(p)

2

)2
, (51)

which is equal to the squared norm of the corresponding magnetic walls. Inci-
dentally, this shows that the norm of the p-form walls is invariant under electric-
magnetic duality.

Because the walls are timelike, the velocity undergoes under a collision a
geometric reflection in the hyperplane, which is an element of the orthochronous
Lorentz group. The reflection preserves the norm and the time-orientation
(hence, the velocity vector remains null and future-oriented).

The billiard is obtained by radial projection onto hyperbolic space. The
billiard ball is constrained to be in the region wA(β) ≥ 0. Not all the walls
are relevant since some of the inequalities wA(β) ≥ 0 are consequences of
the others [DH01]. Only the dominant wall forms, in terms of which all the
other wall forms can be expressed as linear combinations with non-negative
coefficients, are relevant for determining the billiard. Usually, these are the
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symmetry walls and some of the p-form walls. The billiard is in general non-
compact because some walls meet at infinity. However, even when it is non-
compact, it can have finite volume.

In fact, the geodesic motion in a billiard in hyperbolic space has been much
studied. It is known that this motion is chaotic or non-chaotic according to
whether the billiard has finite or infinite volume [Ma69, HM79, Z84, EMcM93].

Notes:

i Because of reparametrization invariance – in particular, time redefinitions
–, some indicators of chaos must be used with care in general relativity,
see [CL96, IM01] for a discussion of the original mixmaster model.

ii The hyperbolic billiard description of the (3+1)-dimensional mixmas-
ter system was first worked out by Chitre [C72] and Misner [M94].
Our derivation of the asymptotic expression for the potential follows
[K93, IKM94]. The extension to higher dimensions with perfect fluid
sources was considered in [KM94], without symmetry walls. Exterior
form sources were investigated in [IM95, IM99] for special classes of
metric and p-form configurations.

4.6 Constraints

We have just seen that in the BKL limit, the evolution equations become
ordinary differential equations with respect to time. Although the spatial points
are decoupled in the evolution equations, they are, however, still coupled in
the constraints. These constraints just restrict the initial data and need only be
imposed at one time, since they are preserved by the dynamical equations of
motion. Indeed, one easily finds that

Ḣ = 0 (52)

since [H(x),H(x′)] = 0 in the ultralocal limit. This corresponds simply to the
fact that the collisions preserve the lightlike character of the velocity vector.
Furthermore, the gauge constraints (9) are also preserved in time since the
Hamiltonian constraint is gauge-invariant. Finally, the momentum constraint
fulfills

Ḣk(x) = ∂kH ≈ 0 (53)

It is important to observe that the restrictions on the initial data do not con-
strain the coefficients of the walls in the sense that these may assume non-zero
values. For instance, it is well known that it is consistent with Gauss law to take
non-vanishing electric and magnetic energy densities; thus the coefficients of
the electric and magnetic walls are indeed generically non-vanishing. In fact,
the constraints are conditions on the spatial gradients of the variables entering
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the wall coefficients, not on these variables themselves. In some non-generic
contexts, however, the constraints could force some of the wall coefficients to be
zero; the corresponding walls would thus be absent. [E.g., for vacuum gravity
in four dimensions, the momentum constraints for some Bianchi homogeneous
models force some symmetry wall coefficients to vanish. But this is peculiar to
the homogeneous case.]

It is easy to see that the number of arbitrary physical functions involved
in the solution of the BKL equations of motion is the same as in the general
solution of the complete Einstein-matter equations. Indeed, the number of
constraints on the initial data and the residual gauge freedom are the same in
both cases. Further discussion of the constraints in the BKL context may be
found in [AR01, DHRW02].

4.7 Chern-Simons or Yang-Mills couplings,
Chapline-Manton terms

The addition of Chern-Simons terms, Yang-Mills or Chapline-Manton cou-
plings does not modify the billiard picture and, furthermore, does not bring in
new walls. The only change in the asymptotic dynamics is a modification of
the constraints.

Yang-Mills couplings
We start with the Yang-Mills coupling terms. The contribution to the energy

density from the Yang-Mills field takes the same form as for a collection of
abelian 1-forms, with the replacement of the momenta E i by the Yang-Mills
momenta E i

a, a = 1, · · · , N (with N the dimension of the internal Lie algebra)
and of the magnetic fields by the corresponding non-abelian field strengths. As
their abelian counterparts, these do not involve the scale factors βμ. Because of
this key property, the same analysis goes through. Each electric and magnetic
1-form wall is simply repeated a number of times equal to the dimension of the
Lie algebra. Gauss law is, however, modified and reads now:

DiE i
a ≡ ∇iE i

a + f b
acE i

bA
c
i = 0. (54)

Here,∇i is the standard metric covariant derivative. Similarly, the momentum
constraints are modified and involves the non-abelian field strengths.

Chapline-Manton couplings and Chern-Simons terms
The discussion of Chapline-Manton couplings or Chern-Simons terms pro-

ceeds in the same way. The energy-density of the p-forms has the same de-
pendence on the scale factors as in the absence of couplings, i.e., provides the
same exponentials. The only difference is that the wall coefficients are different
functions of the p-form canonical variables; but this difference is again washed
out in the sharp wall limit, where the coefficients can be replaced by one (pro-
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vided they are non zero). The momentum and Gauss constraints are genuinely
different and impose different conditions on the initial data.

Note: although Chern-Simons terms do not generically change the features of
the billiard (shape, volume), they may play a more significant rôle in peculiar
contexts where only specialized field configurations are considered. This occurs
for instance in [IM99], where it is shown that the 11-dimensional supergravity
Chern-Simons term, in the case of spatially homogeneous metrics and magnetic
fields, may constrain some electromagnetic walls to “accidentally" disappear.
This makes the otherwise finite-volume billiard to be of infinite volume.

5. Velocity-dominance - Strong coupling/small tension
limit

It is sometimes useful to separate in the Hamiltonian the time derivatives
(conjugate momenta) from the space derivatives. This yields

H = K ′ + εV ′ (55)

where ε = ±1 according to whether the spacetime signature is Lorentzian
(ε = 1) or Euclidean (ε = −1). Here,

K ′ = K + VS + V el
(p) (56)

and
V ′ = VG + V magn

(p) + Vφ. (57)

The reason that this splitting is useful is that for some models, the asymptotic
dynamics is entirely controlled by K ′, i.e., by the limit ε = 0. This occurs
whenever the billiard that emerges in the BKL limit is defined by the symmetry
and electric walls, as it happens for instance for eleven-dimensional supergravity
[DH00a], or the pure Einstein-Maxwell system in spacetime dimensions D ≥ 5
[DH00b, KS00]. Curvature and magnetic walls are then subdominant, i.e.,
spatial gradients become negligible as one goes toward the singularity.

If the curvature and magnetic walls can indeed be neglected, the evolution
equations are exactly the same as the equations of motion obtained by perform-
ing a direct torus reduction to 1 + 0 dimensions. We stress, however, that no
homogeneity assumption has ever been made. This effective torus dimensional
reduction follows from the dynamics and is not imposed by hand.

The limit ε = 0 is known as the “zero signature limit" [T78] and lies half-way
between spacetimes of Minkowskian or Lorentzian signature. It corresponds to
a vanishing velocity of light (or vanishing “medium tension"); the underlying
geometry is built on the Carroll contraction of the Lorentz group [H79]. [The ter-
minology “strong coupling" is also used [I76] and stems from the fact that with
appropriate redefinitions,H can formally be rewritten asH = GK ′+(1/G)V ′
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where G is Newton’s constant.] A revival of interest in this ultrarelativistic
limit has arisen recently [D98, LS01, A02].

When the billiard has infinite volume, the dynamics in the vicinity of the
singularity is even simpler because there is only a finite number of collisions
with the walls. The system generically settles after a finite time in a Kasner-
like motion that lasts all the way to the singularity. The asymptotic dynamics is
controlled solely by the kinetic energy K of the scale factors (after all collisions
have taken place). This case, where both spatial gradients and matter (here p-
form) terms can be neglected, has been called “velocity-dominated" in [E72] and
enables a rigorous analysis of its asymptotic dynamics by means of “Fuchsian"
techniques [AR01, DHRW02]. By contrast, rigorous results concerning the
finite-volume case are rare (see, however, the recent analytic advances in [R01]).
Besides the existing rigorous results, one should also mention the good wealth
of numerical support of the BKL ideas [BGIMW98, B02].

6. Miscellany and Conclusions

In this paper, we have shown that theories involving gravity admits a remark-
able asymptotic description in the vicinity of a spacelike singularity in terms
of billiards in hyperbolic space. Depending on whether the actual billiard has
finite or infinite volume, the dynamical evolution of the local scale factors is
chaotic and of the mixmaster type, or monotone and Kasner-like. The billiard,
and in particular its volume, is a fundamental characteristic of the theory, in
the sense that it is determined solely by the field content and the parameters in
the Lagrangian, and not by the initial conditions (in the generic case; i.e., there
may be initial conditions for which some walls are absent – and the billiard is
changed –, but these are exceptional). Although we have not investigated the
physical implications of this property for cosmological scenarios (in particu-
lar, string-inspired cosmologies [GV92, BDV98, LWC00, W02, GV02]), nor
its quantum analog, we believe that this result is already interesting in its own
right because it uncovers an intrinsic feature of gravitational theories. Further-
more, the regularity properties of the billiards appear to give a powerful access
to hidden symmetries, as we now briefly discuss.

6.1 Kac-Moody billiards

The billiard description holds for all systems governed by the action (1).
In general, the billiard has no notable regularity property. In particular, the
dihedral angles between the faces, which depend on the (continuous) dilaton
couplings (when there is a dilaton), need not be integer submultiples of π. In
some instances, however, the billiard can be identified with the fundamental
Weyl chamber of a symmetrizable Kac-Moody algebra of indefinite type, with
Lorentzian signature metric [DH01]. One then says that the billiard is a “Kac-
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Moody billiard". [See [Kac90, MP95] for information on Kac-Moody (KM)
algebras.] In [DH01], superstring models were considered and the rank 10 KM
algebras E10 and BE10 were shown to emerge, in line with earlier conjectures
made in [J80, J85]8. This was then further extended to pure gravity in any
number of spacetime dimensions, for which the relevant KM algebra is AEd,
and it was understood that chaos (finite volume of the billiard) is equivalent to
hyperbolicity of the underlying KM algebra [DHJN01]. The original case of
D = 4 pure gravity corresponds to the hyperbolic algebra AE3 investigated
in [FF83, N92]9. Further examples of emergence of Lorentzian KM algebras,
based on the models of [BMG88, CJLP99], are given in [DdBHS02].

The walls that determine the billiards are the dominant walls. For KM
billiards, they correspond to the simple roots of the KM algebra. The sub-
dominant walls also have an algebraic interpretation in terms of higher height
positive roots [DHN02]. This enables one to go beyond the BKL limit and to
see the beginning of a possible identification of the dynamics of the scale factors
and of all the off-diagonal variables (including the p-form variables) with that
of a non-linear sigma model obtained by formally taking the coset of the KM
group with its maximal compact subgroup [DHN02].

6.2 Chaos versus non-chaos

We close our paper by indicating when the models described by the action (1)
exhibit mixmaster behaviour (finite volume billiard) or Kasner-like behaviour
(infinite volume billiard) (for generic initial conditions).

Pure gravity billiards have finite volume for spacetime dimension D ≤ 10
and infinite volume for spacetime dimension D ≥ 11 [DHS85]. This can
be understood in terms of the underlying Kac-Moody algebra [DHJN01].

Gravity + dilaton has always an infinite volume billiard [BK73].

Gravity + p-forms (with p �= 0 and p < D − 2) and no dilaton has a
finite volume billiard [DH00b]. In particular, 11-dimensional supergrav-
ity exhibits mixmaster behaviour, while vacuum gravity in 11 dimen-
sions does not. The 3-form is crucial for closing the billiard. Similarly,
the Einstein-Maxwell system in 4 (in fact any number of) dimensions
has an finite-volume billiard (see [J86, L97, W99] for a discussion of
four-dimensional homogeneous models with Maxwell field exhibiting
mixmaster behaviour).

8Note that the Weyl groups of the E-family have been discussed in a similar vein in the context of U -duality
[LPS96, OPR98].
9Note that in the original analysis of [BKL70, BKL82, C72, M94], the symmetry walls are not included; the
KM algebra that arises has a 3× 3 Cartan matrix given by Aii = 2, Aij = −2 (i �= j) and its fundamental
Weyl chamber (radially projected on H2) is the ideal equilateral triangle having its 3 vertices at infinity.
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The volume of the mixed Einstein-dilaton-p-form system depends on the
dilaton couplings. For a given spacetime dimension D and a given menu
of p-forms there exists a “subcritical” domain D in the space of of the
dilaton couplings (an open neighbourhood of the origin λ(p) = 0) such
that: (i) when the dilaton couplingsλ(p) belong toD the general behaviour
is Kasner-like, but (ii) when the λ(p) do not belong to D the behaviour
is oscillatory [DH00a, DHRW02]. For all the superstring models, the
dilaton couplings do not belong to the critical domain and the billiard has
finite volume.
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Appendix: A. Iwasawa decomposition and asymptotics of non-
diagonal 3d Kasner metric

The Iwasawa decomposition for three-dimensional metrics has been explicitly analyzed in
[HPT82]. Setting

N =

⎛⎝ 1 n1 n2

0 1 n3

0 0 1

⎞⎠ (A.1)

together with

A =

⎛⎝ exp(−β1) 0 0
0 exp(−β2) 0
0 0 exp(−β3)

⎞⎠ , (A.2)

one finds

g11 = e−2β1
, g12 = n1e

−2β1
, g13 = n2e

−2β1
, (A.3)

g22 = (n1)
2e−2β1

+ e−2β2
, g23 = n1n2e

−2β1
+ n3e

−2β2
, (A.4)

g33 = (n2)
2e−2β1

+ (n3)
2e−2β2

+ e−2β3
(A.5)



238 LECTURES ON QUANTUM GRAVITY

from which one gets

β1 = −1

2
ln g11, β2 = −1

2
ln

[
g11g22 − g2

12

g11

]
, (A.6)

β3 = −1

2
ln

[
g

g11g22 − g2
12

]
, n1 =

g12

g11
, (A.7)

n2 =
g13

g11
, n3 =

g23g11 − g12g13

g11g22 − g2
12

. (A.8)

On the other hand, (1) yields

gij = t2p1
lilj + t2p2

mimj + t2p3
rirj (A.9)

with

L =

⎛⎝ l1 l2 l3
m1 m2 m3

r1 r2 r3

⎞⎠ . (A.10)

Combining these relations, one obtains the time dependence of the Iwasawa variables

β1 = −1

2
ln X, β2 = −1

2
ln

[
Y

X

]
, (A.11)

β3 = −1

2
ln

[
t2(p

1+p2+p3)(det L)2

Y

]
, (A.12)

n1 =
t2p1

l1l2 + t2p2
m1m2 + t2p3

r1r2

X
, (A.13)

n2 =
t2p1

l1l3 + t2p2
m1m3 + t2p3

r1r3

X
, n3 =

Z

Y
(A.14)

with

X = t2p1
(l1)

2 + t2p2
(m1)

2 + t2p3
(r1)

2, (A.15)

Y = t2p1+2p2
(l1m2 − l2m1)

2 + t2p1+2p3
(l1r2 − l2r1)

2

+t2p2+2p3
(m1r2 − m2r1)

2, (A.16)

Z = t2p1+2p2
(l1m2 − l2m1)(l1m3 − l3m1)

+t2p1+2p3
(l1r2 − l2r1)(l1r3 − l3r1)

+t2p2+2p3
(m1r2 − m2r1)(m1r3 − m3r1). (A.17)

Without loss of generality, one can assume p1 ≤ p2 ≤ p3. If necessary, this can be achieved
by multiplying L by an appropriate permutation matrix. We shall in fact consider the case
p1 < p2 < p3, leaving the discussion of the limiting situations to the reader. One then finds, for
generic L’s (l1 �= 0, r1 �= 0, l1m2 − l2m1 �= 0, m1r2 − m2r1 �= 0), the following asymptotic
behaviour:

τ → −∞ :

β1 ∼ p3τ, β2 ∼ p2τ, β3 ∼ p1τ,

n1 → r2

r1
, n2 → r3

r1
, n3 → m1r3 − m3r1

m1r2 − m2r1
(A.18)
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τ → ∞ :

β1 ∼ p1τ, β2 ∼ p2τ, β3 ∼ p3τ,

n1 → l2
l1

, n2 → l3
l1

, n3 → l1m3 − l3m1

l1m2 − l2m1
. (A.19)

It is rather clear that the ni’s should asymptotically tend to constants since they are homogeneous
functions of degree zero in the gij’s - in fact, ratios of polynomials of degree one or two in the

t2pi

. It is a bit more subtle that the scale factors exp(−2βi), which are homogeneous of degree

one in the gij’s, are not all driven by the fastest growing term (t2p3
for t → ∞ or t2p1

for
t → 0+). This is actually true only for the first scale factor exp(−2β1). The second scale factor

exp(−2β2) feels the next subleading term t2p2
because the fastest growing term drops from its

numerator, equal to the minor g11g22 − (g12)
2. Similar cancellations occur for the last scale

factor exp(−2β3), which feels only the smallest term t2p1
(t → ∞) or t2p3

(t → 0+).
We come thus to the conclusion that the asymptotic behaviour of the Iwasawa variables is in-

deed simple: the scale factors asymptotically behave as the scale factors of the diagonal Kasner
solutions, while the parameters ni parametrizing the off-diagonal components approach con-
stants. The “out"-values of the Kasner exponents differ from their “in"-values by a permutation
such that the inequalities β1 ≤ β2 ≤ β3 hold both for τ → +∞ and τ → −∞.

The frame {l, m, r} where the spatial metric and the extrinsic curvature are simultaneously
diagonal is called the “Kasner frame". Given that the time slicing has been fixed, this geometric
frame is unique – up to individual normalization of each basis vector – when the eigenvalues of
the extrinsic curvature are distinct, if one prescribes in addition some definite ordering of the
eigenvalues (i.e. p1 < p2 < p3 as above). For asymptotic values of τ , the Iwasawa frames
{θ1, θ2, θ3} (which are by contrast not unique since one can redefine the coordinates xi) become
approximately time-independent and hence, the extrinsic curvature become approximately di-
agonal. Yet, the Iwasawa frames do not tend to align with the Kasner frame. To understand this
point, we assume for definiteness that τ → +∞. In that case, one gets from (A.19) that

θ1 → λl, θ2 → μl + νm, θ3 → ϕl + χm + ψr (A.20)

where λ = l−1
1 , μ = −m1/(l1m2 − l2m1), ν = l1/(l1m2 − l2m1), and ϕ, χ, ψ are some

constants. This implies that the misalignment of the Iwasawa frames with respect to the Kasner
frame is a small effect, in the sense that it induces a small change in the metric – even though
the coefficients λ, μ, ν, ϕ, χ and ψ are of order unity. Indeed, the change of frame {l, m, r} →
{l, m + αl, r + βl + γm}, with α, β, γ constants10, induces changes Δgab which fulfill the
smallness condition Δgab <<

√
gaa

√
gbb (where gab is the metric in the frame {l, m, r}).

For instance, Δg11 ∼ t2p2 << t2p1 . Thus, it is perfectly consistent to find that the Iwasawa
frames become asymptotically constant as τ → +∞ without aligning with the principal axes
of the extrinsic curvature. [Note that the extrinsic curvature becomes asymptotically diagonal
in the Iwasawa frame precisely in the sense that the off-diagonal components fulfill |Kij | <<√|Kii|

√|Kjj | (i �= j) for large τ . The mixed components Ki
j tend to a non-diagonal matrix,

however.]

10In order to preserve diagonality of the metric, there are of course unwritten additional small correction
terms to the new vectors; for instance, the new vector l contains a term proportional to m with coefficient
t−2(p1−p2).
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Appendix: B. Freezing the off-diagonal variables: a toy model
We have seen in the text that the off-diagonal variables and the p-form variables get frozen to

constant values in the BKL limit. We provide here a more detailed understanding of this property
by discussing a simpler model which shares the same features.

Consider a system with two canonically conjugate pairs (q, p), (Q, P ) and time-dependent
Hamiltonian

H =
1

2
p2 +

1

2
P 2ρke−ρq (k positive integer) (B.1)

where ρ is ρ ≡ exp(T ), with T the time. One can think of (q, p) as mimicking the scale factors,
while (Q, P ) mimicks the off-diagonal components or the p-form variables. In (B.1), there is
only one potential wall for q (namely, the second term). We shall consider later the case with
several walls.

One has Ṗ = 0, hence P = P0 where P0 is a constant which we assume to be different
from zero. In the limit of large times, the motion in q is a free motion interrupted by a collision
against the potential wall,

q = |T − T0| + q0 (B.2)
where T0 is the time of the collision and q0 the turning point. We take a unit initial velocity. The
location of the turning point is determined by

P 2
0 ρk

0e−ρ0q0 = 1. (B.3)

The time length ΔT of the collision is roughly of the order 1/ρ0: the later the collision, the
sharper the wall. Let us evaluate the change in Q in the collision. To that end, we need to
compute

ΔQ = P0

∫ ∞

−∞
d Tρke−ρ(|T−T0|+q0) (B.4)

since Q̇ = Pρk exp(−ρq). The integrand is maximum at T = T0. We can approximate the
integral by the value at the maximum times the time length of the collision. Using (B.3), one
gets

ΔQ ≈ 1

P0ρ0
. (B.5)

Hence, the variable Q receives a kick during the collision (which can be of order one at early
times), but the later the collision, the smaller the kick.

Assume now that there is another wall with the same time dependence, say at q = d, so that
q bounces between these two walls,

Vadditional =
1

2
P 2ρke−ρ(d−q).

Because the speed of q remains constant (in the large T limit), the collisions are equally spaced
in T . At each collision, Q receives a kick of order 1/ρ0. The total change in Q is obtained by
summing all the individual changes, which yields

(ΔQ)Total ∼
∑

n

en d (B.6)

(the time interval between two collisions is d since we assumed unit velocity). This sum con-
verges. After a while, one can neglect the further change in Q, i.e., assume Q̇ = 0. The
Hamiltonian describing the large time limit is obtained by taking the sharp wall limit in the
above H , and reads therefore

H =
1

2
p2 + Θ(−q) + Θ(q − d). (B.7)
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The pair (Q, P ) drops out because it is asymptotically frozen. Our analysis justifies taking the
sharp wall limit directly in H for this system, which is the procedure we followed in the text to
get the gravitational billiards.

Appendix: C. Kasner frame versus Iwasawa frames
In the original analysis of BKL [BKL70, BKL82], the description of the evolution of the

fields is not carried out in the Iwasawa frames defined algebraically using the Iwasawa decom-
position, but rather in the geometrically defined Kasner frame where the spatial metric and the
extrinsic curvature are simultaneously diagonal and the Kasner exponents are ordered (during
the Kasner “epoch" under study). Belinskii, Khalatnikov and Lifshitz found that the Kasner
axes undergo, under collisions with the gravitational walls, changes of order unity with respect
to time-independent spatial frames (frames having zero Lie bracket with ∂/∂t), no matter how
close one gets to the singularity [BKL72]; therefore, the Kasner axes generically never come to
rest if there is an infinite number of collisions. The purpose of this appendix is to reconcile this
result with the above conclusion that the off-diagonal components Nij tend to constants as one
approaches the singularity. The key point is, of course, that Kasner frames and Iwasawa frames
do not coincide in general. We shall treat explicitly the 3 + 1-case.

In the Kasner frame, the metric takes the form of Eq. (A.9) with t2p1 , t2p2 and t2p3 replaced
respectively by a2, b2 and c2. Far from the gravitational walls, the functions a2, b2 and c2 are
given by t2p1 , t2p2 and t2p3 where p1, p2 and p3 depend only on the spatial coordinates, and the
frame components li, mi and ni are also time-independent. Neither of these properties hold in
the collision region. The collision against the gravitational wall induces the familiar transition
between the Kasner exponents

p′
1 =

−p1

1 + 2p1
, p′

2 =
p2 + 2p1

1 + 2p1
, p′

3 =
p3 + 2p1

1 + 2p1
(C.1)

and also a change in the frame components given by [BKL72]

l′i = li, m′
i = mi + σmli, r′i = ri + σrli (C.2)

where σm and σr are of order unity. This formula holds for pure gravitational collisions (far
from the symmetry walls), i.e., under the assumption that both b2 and c2 are very small compared
with a2 [BKL72] so that only one term in the potential is non-negligible, namely, the curvature
term proportional to a4 (the only case we shall consider explicitly). To avoid “interference" with
the symmetry wall b2 = c2, we impose also the condition c2 << b2, although this is actually not
necessary for showing that the Iwasawa parameters ni are constant. Now, under the assumption
b2 << a2 and c2 << b2, it is easy to see, using the formulas (A.11) through (A.17) with t2p1 ,
t2p2 and t2p3 replaced by a2, b2 and c2, that n1, n2 and n3 are respectively given by

n1 =
l2
l1

, n2 =
l3
l1

, n3 =
l1m3 − l3m1

l1m2 − l2m1
(C.3)

(just like in (A.19)). It is clear that if we substitute in these formulas l′i, m′
i and r′i for li, mi and

ri according to (C.2), we get no change in the off-diagonal variables n1, n2 and n3, as we wanted
to show. There is thus no contradiction between the change of Kasner axes and the freezing of
the off-diagonal Iwasawa variables. The same conclusion holds for collisions against the other
types of walls, where the Kasner axes “rotate" as in (C.2).

Appendix: D. Hamiltonian reduction
We provide in this appendix a derivation of the BKL limit through a (partial) Hamiltonian

reduction of the dynamics, along the lines discussed in subsection 2.2 for homogeneous models
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of Bianchi type I. ["Partial" because we only take care of the Hamiltonian constraint; the other
constraints must still be imposed.] Our considerations are of a purely local nature.

We proceed as in section 4 but, to begin with, we impose only the orthogonal gauge condition
N i = 0, without fixing the lapse. The metric reads thus

ds2 = −(Ñ
√

g)2(dx0)2 + gij(x
0, xi)dxidxj . (D.1)

The action is, in terms of the Iwasawa variables,

S[βμ,Nij , πμ, Pij , A
(p)
m1···mp

, π
m1···mp

(p) ] =∫
dx0

( ∫
ddx(πμβ̇μ +

∑
i<j

PijṄij +
∑

p

π
m1···mp

(p) Ȧ(p)
m1···mp

) − H
)

(D.2)

where the Hamiltonian is

H =

∫
ddx ÑH (D.3)

(with H given by (12)).
As explained in the text, our main assumption is that βμβμ is < 0 for large x0 and that

ρ2 = −βμβμ monotonously tends to +∞ as x0 → +∞ (once x0 is big enough). In terms of
T ≡ ln ρ and the hyperboloid variables γμ (constrained by γμγμ = −1), the action is

S[T, γμ,Nij , πT , π̃μ, Pij , A
(p)
m1···mp

, π
m1···mp

(p) ] =∫
dx0

(∫
ddx(πT Ṫ + π̃μγ̇μ +

∑
i<j

PijṄij +
∑

p

π
m1···mp

(p) Ȧ(p)
m1···mp

) − H

)
(D.4)

with

H =

∫
ddx

Ñ

4ρ2
H̃ (D.5)

H̃ = −π2
T + (π̃μ)2 + 4ρ2(VS + VG + Vφ +

∑
p

V(p)) (D.6)

Here, π̃μ are the (constrained) momenta conjugate to the hyperboloid variables. The coordinate
T is clearly a timelike variable in the space of the scale factors; large T is the same as large

∑
i βi

or small g, exactly as in the homogeneous case (the formulas are the same since the supermetric
is ultralocal).

Since T is assumed to monotonously increase to +∞ as x0 → +∞, we can use it as a time
coordinate, i.e., impose the gauge condition T = x0. The reduced action in that gauge is

S[γμ,Nij , π̃μ, Pij , A
(p)
m1···mp

, π
m1···mp

(p) ] =∫
dT

[ ∫
ddx(π̃μ

dγμ

dT
+
∑
i<j

Pij
dNij

dT

+
∑

p

π
m1···mp

(p)

dA
(p)
m1···mp

dT
) − HT

]
(D.7)

where HT = −pT is the Hamiltonian in the gauge T = x0 (for which Ṫ = 1),

HT =

√
(π̃μ)2 + ρ2(VS + VG + Vφ +

∑
p

V(p)). (D.8)
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HT is explicitly time-dependent (through ρ = exp(T )).
So far, no approximation has been made. We now investigate the large time (large T ) limit,

which can be taken since T is assumed to monotonously increase to +∞. This is similar to
investigating the large time dynamics of a Hamiltonian system with time-dependent Hamiltonian
H(q, p, t) by taking the t → ∞ limit directly in the Hamiltonian (if it exists). As explained in
the text, the potential becomes in that limit a sum of sharp wall potentials, so that one can replace
(D.8) by

HT =

√
(π̃μ)2 +

∑
A

Θ(−2wA(γ)), (D.9)

which is time-independent. Because the walls are timelike and the free motion is lightlike,
the asymptotic motion of the scale factors is a succession of future-oriented lightlike straight
line segments and hence, it is indeed timelike. This provides a self-consistency check of the
assumption that ρ increases and tends to infinity.

Of course, the replacement of (D.8) by (D.9) is permissible only if the coefficients of the
exponentials do not grow too fast, so that, as T → +∞, the variables Nij , Pij , A

(p)
m1···mp and

π
m1···mp

(p) as well as the spatial derivatives of the scale factors do not outgrow the exponentials.

This other consistency check is also verified since we have shown that Nij , Pij , A
(p)
m1···mp and

π
m1···mp

(p) get asymptotically frozen. Similarly, from (17), one sees that, between collisions,

∂β ∼ ln t and ∂2β ∼ ln t (with a coefficient of order one which changes in each collision) so
that the terms (∂β)2 or ∂2β that multiply the subdominant gravitational walls do not outgrow
the exponentials. [This is actually a bit trickier because it is not entirely clear that the coefficients
of ln t remain of order one during collisions. This is because the evolution is independent at
each spatial point, so that the β’s might not remain differentiable and the spatial gradients might
become more singular. This has been argued to lead to a kind of turbulent gravitational behaviour
in which energy is pumped into shorter and shorter length scales [KK87, B92].]

Since the Hamiltonan does not depend explicitly on time, πT ≡ −HT is constant in time. On
the other hand, πT = πμβμ transforms non-trivially under spatial coordinate transformations,
so one can achieve, locally at least, πT = 1 by a spatial diffeomorhism. The rescaled lapse is
determined by the gauge condition T = x0 and the equation for T ,

1 = Ṫ =
Ñ

2ρ2
πT =

Ñ

2ρ2
(D.10)

This shows that in the gauge T = x0, the rescaled lapse Ñ reduces to 2ρ2 and depends ac-
cordingly (asymptotically) only on time, which implies that the equal-time slices in the gauge
T = x0 are the same as the equal-time slices of the pseudo-Gaussian gauge (Ñ = 1) considered
in the text. The difference between the two cooordinate systems is a mere space-independent
relabeling of the time coordinate. [If one imposes the further spatial coordinate condition that√

g does not depend on the spatial coordinates, these slices are also the slices of a Gaussian
coordinate system.]

There are thus two equivalent descriptions of the asymptotic evolution:

the reduced description, in which the motion is at each spatial point a unit velocity
“relativistic" billiard motion in hyperbolic space γμ with Hamiltonian (D.9);

the unreduced description, in which the motion is a lightlike motion in the space of
all the scale factors βμ, interrupted by collisions against the hyperplanes wA(β) = 0
(⇔ wA(γ) = 0).

In the second description, the Minkowskian time (∼ ∑
βμ) between two collisions grows

and there is, at each collision, a redshift of the momentum because the walls are receding. In the
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first, projected description, the walls are fixed, so that the (average) time between two collisions
is constant, as well as the average change in the momenta conjugate to the reduced variables. To
be more precise, the momenta π̃μ conjugate to the γμ’s remain of order unity, while the momenta
πμ ∼ ρ−1π̃μ conjugate to the βμ’s go to zero.

Notes
i We have stressed that the symmetry, dominant gravitational and p-form walls are all

timelike. This provides an important consistency check of the BKL picture. The only
spacelike wall that we know of is the cosmological constant term Λg ∼ exp[−2(

∑
i βi)].

Depending on the initial conditions – which do indeed set the scales –, this wall either
prevents the system to reach the BKL small volume regime (there could be a bounce like
in the de Sitter solution) or does not prevent the collapse, in which case it does not affect
the BKL picture since the cosmological potential Λg goes to zero as g goes to zero.

ii Number of collisions Since the the Hamiltonian is asymptotically T -independent in the
reduced description, the number of collisions per unit time T is asymptotically constant.
Hence, T is a measure of the number of collisions. One has g ∼ t2 and T ∼ ln ln t so
the number of collisions goes like ln ln t.
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Abstract This is a short summary of lectures on some of the recent ideas emerging in the
discussion of quantum gravity with a positive cosmological constant. The lec-
tures given at the School on Quantum Gravity, at Centro de Estudios Cientı́ficos,
Valdivia, Chile in January 2002. The following summary is largely based on
material appearing in refs. [1, 2, 3].

1. Prologue

Recent observations suggest that our universe is proceeding toward a phase
where its evolution will be dominated by a small positive cosmological constant
— see, e.g., [4]. These results have increased the urgency with which theoret-
ical physicists are addressing the question of understanding the physics of de
Sitter-like universes — see, e.g., [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].
While de Sitter (dS) space does not itself represent a phenomenologically in-
teresting cosmology, it does present a simple framework within which we may
investigate the physics of quantum gravity with a positive cosmological con-
stant. In particular, the cosmological horizon of de Sitter space is an interesting
and oft-discussed feature which appears in any spacetime that approaches dS
space asymptotically, as might our own universe. Such a cosmological horizon
naturally has a Bekenstein-Hawking entropy and a temperature [18]. Given the
recent successes in understanding the analogous horizon entropy for black holes
in terms of microscopic degrees of freedom [20], one might ask if a similar in-
terpretation arises for de Sitter entropy. There have been a number of dramatic
ideas proposed to answer this question. These lectures will focus on two of
these: the Λ-N correspondence [7, 8] and the dS/CFT duality [5]. While both
of these approaches must still be regarded as bold conjectures, each represents
a radical shift of the framework in which we attempt to understand quantum
gravity with a positive cosmological constant. Hence they have the potential
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of providing deep new insights into unresolved issues surrounding the latter.
Aspects of these developments are the topic of the present lecture summary.

In all, I gave four lectures in Valdiva on widely separated topics. In the
first, I described some of the recent calculations of black hole entropy using
techniques involving D-branes. In particular, I focussed on the original calcula-
tions of Strominger and Vafa [19]. These were the first calculations of any sort
which successfully determined the Bekenstein-Hawking entropy with a statisti-
cal mechanical model in terms of some underlying microphysical states. There
are already several extensive reviews of the D-brane description of black hole
microphysics [20]. I would also highly recommend Juan Maldacena’s Ph.D.
thesis [21] as a well-written and pedagogical introduction to this topic. The
interested reader may also enjoy the discussion in ref. [22]. Of course, Clif-
ford Johnson’s lectures at this school give a very good introduction to required
D-brane physics, as does his new book [23].

The second lecture focussed on the non-Abelian action describing the physics
on nearly coincident D-branes, as well as some of the interesting physical effects
that are revealed by studying this action. Of course, the same material already
appears in various conference proceedings [24], but I also still recommend
reading the original paper on the dielectric effect for D-branes [25].

The last two lectures had the common theme of recent attempts to understand
quantum gravity with a positive cosmological constant. In particular, I described
aspects of the Λ-N correspondence [7, 8] and the dS/CFT duality [5], and these
topics are the only ones represented in the following summary of my lectures.
The interested reader may find more details in the original work appearing in
refs. [1, 2, 3].

Now in order to fulfill the mission of this school to provide a cultural as
well as a scientific exchange between scientists and students from both North
and South America, I must digress to elucidate my title. Tall tales are a form
of story-telling that originated amongst European settlers in early expansion
into the United States and Canada. These stories have a number of distinctive
features such as [26]:

a) A larger-than-life or superhuman character with a specific job.

b) A problem that is solved in a funny way.

c) Exaggerated details that describe things as greater than they are.

In particular, the key to a successful tall tale is exaggeration. Now while it
may be amusing to try to determine ways in which these features may apply
in the following scientific discussion, the irony of the title is, of course, that
none of them apply there. Rather ‘tall’ is a technical term that we apply in the
description of a class of asymptotically de Sitter spacetimes. Given this brief
cultural discourse, we now continue with the scientific discussion.
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2. De Sitter space basics

The simplest construction of the (n+1)-dimensional de Sitter spacetime is
through an embedding in Minkowski space in n + 2 dimensions, where it may
be defined as the hyperboloid

ηABXAXB = �2. (1)

The resulting surface is maximally symmetric, i.e.,

Rijkl =
1
�2

(gik gjl − gil gjk) , (2)

which also ensures that the geometry is locally conformally flat. Hence dS
space solves Einstein’s equations with a positive cosmological constant,

Rij =
2Λ

n− 1
gij with Λ =

n(n− 1)
2�2

. (3)

The topology of the space is R× Sn, that is spatial slices are n-spheres which
evolve in time. From this embedding (1), we see that the time evolution proceeds
as follows: In the distant past, the n-sphere is large — the radius diverges as
X0 → −∞. These spatial slices shrink as time evolves forward, reaching the
minimum radius of � at X0 = 0. This is followed by an expanding phase where
the size of the n-sphere again diverges as X0 → +∞.

One may present the metric on dS space in many different coordinate sys-
tems, the choice of which will depend on the application under consideration.
One particularly useful choice is conformal coordinates, which allows us to
understand the causal structure of dS space:

ds2 =
�2

sin2 τ

[−dτ2 + dθ2 + sin2 θ dΩ2
n−1

]
, (4)

where dΩ2
n−1 denotes the unit metric on an (n–1)-sphere. Here the conformal

time covers the entire cosmological evolution in a finite interval, τ ∈ [0, π],
with the conformal factor diverging at the endpoints of this interval. Note that
the polar angle on the n-sphere, θ, runs over the same range between the north
(θ = 0) and south (θ = π) poles. Stripping off the overall conformal factor
leaves the metric on the corresponding Penrose diagram. Hence, the latter is
usually represented by a square [27], as illustrated in figure 1. Any horizontal
cross section of the square is an n-sphere, so that any point in the interior of
the diagram represents an (n − 1)-sphere. At the right and left edges, the
points correspond to the north and south poles of the n-sphere, respectively.
The infinite future boundary I+ and past boundary I− correspond to the slices
τ = 0 and π, respectively. Note that diagram is just ‘tall’ enough that a light
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a) b) c)

Figure 1. Constant t slices in (a) the spherical slicing, (b) the flat slicing, and (c) the hyperbolic
slicing of de Sitter space.

cone emerging from a point on I− expands into the space and then reconverges
at precisely the antipodal point on the n-sphere at I+.

We are naturally lead to introduce three other coordinate systems by interpret-
ing dS space as a cosmological evolution. These three choices come from foli-
ating the embedding space above with flat hypersurfaces, nAXA = constant.
The three distinct choices correspond to the cases where the normal vector nA

is time-like, null or space-like. With these distinct choices, a given hypersur-
face intersects the hyperboloid (1) on a spatial section which has a spherical,
flat or hyperbolic geometry, respectively. Following the standard notation for
Friedmann-Robertson-Walker (FRW) cosmologies, we denote these three cases
as k = +1, 0 and −1, respectively. Then the three corresponding metrics on
dS space can be written in a unified way as follows:

ds2 = −dt2 + a2
k(t)dΣ2

k,n , (5)

where the n-dimensional Euclidean metric dΣ2
k,n is

dΣ2
k,n =

⎧⎨⎩
�2dΩ2

n for k = +1∑n
i=1 dx2

i for k = 0
�2dΞ2

n for k = −1 ,
(6)

where following the previous notation, dΩ2
n is the unit metric on Sn. The ‘unit

metric’ dΞ2
n is the n–dimensional hyperbolic space (Hn) which can be obtained

by analytic continuation of that on Sn. For k=± 1 we assume that n ≥ 2.
The scale factor in each of these cases would be given by

ak(t) =

⎧⎨⎩
cosh(t/�) for k = +1
exp(t/�) for k = 0
sinh(t/�) for k = −1 .

(7)

Note that, as is standard for FRW metrics, the time coordinate in eq. (5) cor-
responds to the proper time in a particular comoving frame. The k = +1
coordinates correspond to standard global coordinates which cover the entire
spacetime. In this case, the proper time t is related to the conformal time τ in



Tall tales from de Sitter space 253

eq. (4) by cosh t/� = 1/ sin τ . The choice k = 0 corresponds to the standard
inflationary coordinates, where the flat spatial slices experience an exponential
expansion. In this case, t = −∞ corresponds to a horizon (i.e., the boundary
of the causal future) for a comoving observer emerging from I−. Hence these
coordinates only cover half of the full dS space but, of course, substituting a
minus sign in the exponential of eq. (7) yields a metric which naturally covers
the lower half. The choice k = −1 yields a perhaps less familiar coordinate
choice where the spatial sections have constant negative curvature. In this case,
t = 0 represents a horizon. However, this horizon is the future null cone of
an actual point inside dS space. Figure 1 illustrates slices of constant t on a
conformal diagram of dS space. Note that exponential expansion dominates
the late time evolution of all three slicings, independent of the spatial curvature,
i.e., ak(t) ∼ exp(t/�) as t → ∞ for all k. The interested reader is referred to
ref. [2] for further discussion of these metrics.

I
+

−
I

r=

r=0

Figure 2. Constant r slices and motion generated by ∂t in static patch coordinates.

Finally we consider the ‘static patch’ coordinates for dSn+1:

ds2 = −V (r) dt2 +
1

V (r)
dr2 + r2dΩ2

n−1 , (8)

where

V (r) = 1− r2

�2
. (9)
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This coordinate system is adapted to discussing the physics of an inertial ob-
server in dS space. The observer’s worldline corresponds to r = 0. The other
distinguished radius is r = �, which corresponds to a cosmological horizon. As
illustrated in figure 2, this horizon corresponds to the boundary of the intersec-
tion of the observer’s causal future and her causal past. In the static patch, the
time t is a Killing coordinate which is simply related to the original construction
(1) described above. The motions generated by the Killing vector ∂t correspond
to boosts in the embedding space, along the direction joining the origin to the
observer’s worldline. Extending the coordinates past the horizon at r = �, we
see that ∂t is spacelike in the quadrants neighboring the static patch, and is past
directed in the quadrant around the antipodal point to the observer.

The cosmological horizon in dS space differs in two important respects from
the event horizon of a black hole. First of all, the horizon is observer dependent.
That is, different dS horizons are associated with inertial observers emerging
from different points on I− and reaching different points on I+. However, one
may show that the trajectories of any two such inertial observers are related by
an isometry of the dS space. Hence the same isometry will map one observer’s
horizon on to the other’s, and the geometric properties of the horizons must be
the same. Secondly, the area of, say, a Schwarzschild black hole is determined
by its mass, a variable parameter of the solution. In contrast, the area of the
dS horizon is set by the cosmological constant, which is a fixed fundamental
parameter of the theory. However, in both cases, ordinary entropy is lost to the
observer when matter crosses behind the horizon. Hence just as with a black
hole horizon, in order to maintain a generalized second law of thermodynamics
[28], the dS horizon must be assigned a Bekenstein-Hawking entropy equal to
its area divided by 4GN [18]. For empty dS space in n+1 dimensions, the result
is

S =
A

4GN

=
Ωn−1�

n−1

4GN

(10)

where Ωn−1 = 2πn/2/Γ(n/2) is the area of a unit (n–1)-sphere. The usual
considerations of quantum fields in curved spacetime — see the lectures by
T. Jacobson in this volume — lead one to conclude that there is also a Hawking
temperature associated with the horizon [18] given by

T =
1

2π�
(11)

in any number of dimensions.
Hence we find that the de Sitter spacetime, which may have a natural interpre-

tation in terms of the vacuum solution, is actually a thermal system. Given the
recent successes in understanding the analogous Bekenstein-Hawking entropy
for black holes in terms of microscopic degrees of freedom [20], one might ask
the question: Does de Sitter entropy have a microphysical interpretation?
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i dS entropy is a formal analogy, which should not be interpreted as a real
statistical mechanical quantity. This seems unlikely given that it stands on
an equal footing with black hole entropy in, for example, considerations
of the generalized second law.

ii dS entropy arises from quantum entanglement with degrees of freedom
hidden behind the horizon. This point of view was recently pursued in
the context of braneworld scenarios [29].

iii dS entropy arises by quantizing horizon degrees of freedom, in analogy
to Carlip’s treatment of black holes in 2+1 dimensions [30]. A directly
analogous calculation has been performed for 2+1 dimensions [31], but
more recently higher dimensions were considered in ref. [32].

iv dS entropy counts the number of microscopic configurations that are
macroscopically de Sitter space, in analogy to the recent work on stringy
black holes[20]. One recent attempt in this direction is the dS/CFT duality
[5, 11].

v dS entropy gives the finite dimension of the Hilbert space describing
quantum gravity in de Sitter space. A conjecture along these lines was
recently formulated as the Λ-N correspondence [7, 8].

The focus of the remainder of this paper will be on aspects of responses 4 and
5.

3. The Hunt for Λ-N

We begin with response 5. Here the general framework for the discussion is in
attempting to determine properties of de Sitter quantum gravity by applying the
general consequences which we may expect from a complete quantum theory,
namely semi-classical gravity and the holographic principle [33, 34, 35]. A
more complete description of the results in this section appears in ref. [1].

One recent line of thought in this direction was initiated by Banks and Fis-
chler [8, 7]. They focus on the semi-classical result [18] that empty dS space has
a finite entropy, which is inversely proportional to the cosmological constant:

S0 =
Ωd−2

4GN

[
(d− 1)(d− 2)

2Λ

] d−2
2

(12)

in d dimensions.1 As above, Ωd−2 is the area of a unit (d–2)-sphere. Fur-
ther in the presence of a positive cosmological constant, any matter structures

1Recall that d = n + 1 in the previous section.
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tend to be inflated away so that generically the spacetime approaches dS space
asymptotically. In such an asymptotically dS spacetime, any physicist is again
surrounded by a horizon, the boundary of her causal past forms which possesses
precisely the same entropy (12). It follows immediately from the generalized
second law that at any stage in the preceding evolution the combined entropy of
any matter and the cosmological horizon is less than that of empty dS space [36]:

Smatter + Shor ≤ S0 . (13)

Hence S0 is the largest entropy (counting both horizons and matter) observable
in any asymptotically dS spacetimes.

>From this conclusion, one may deduce a lower bound for the underlying
quantum theory. Namely, the physics of these cosmological evolutions should
be described by a theory with no less than eS0 independent quantum states.
Motivated by discussions of black hole complementarity [33, 37], Banks and
Fischler reason that any additional states would be superfluous, as they would
render the theory more complex than the phenomena it describes — an uneco-
nomical and arbitrary excess. Hence, the class of universes with an asymptotic
dS future (dS+) should be fully described by a quantum gravity theory with a
Hilbert spaceH of finite dimension [8, 7]

dimH = eS0 . (14)

For any quantum system, we define N , the number of degrees of freedom, to
be the logarithm of the dimension of the Hilbert space. (With this definition,
degrees of freedom are spin-like, rather than fields or harmonic oscillators.)
Then we may restate the first conclusion as follows: The quantum description
of the dS+ universes requires only a finite number of degrees of freedom,

N = S0 . (15)

The further conjecture is that the correct quantum theory underlying dS+ uni-
verses contains precisely N degrees of freedom. In its strongest form, this rea-
soning leads to a new perspective on the origin of vacuum energy [7], known
as the “Λ-N correspondence” [38]. The cosmological constant Λ should be
understood as a direct consequence of the finite number of states eN in the
Hilbert space describing the world. Λ effectively provides a cutoff on observ-
able entropy, ensuring that the theory need never describe phenomena requiring
a larger number of states; the smaller the Hilbert space, the larger the cosmo-
logical constant. This conjecture would point at a new class of theories, distinct
from those describing asymptotically flat or AdS spacetimes. The finiteness of
N may then be a crucial qualitative feature underlying a successful description
of dS+ spacetimes, which may well include our own universe.

The above observations are specifically made in the context of dS+ spaces,
i.e., spacetimes that asymptote to dS space in the future [8, 7]. However, for
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reasons first noted in ref. [38] (see also ref. [1]), it is unnatural for any partic-
ular theory to describe only spacetimes of this type. A positive cosmological
constant certainly does not guarantee the presence of asymptotic dS regions;
worse, their existence can be affected by small deformations of Cauchy data.
Hence it seems that the conjectured quantum gravity theories with finite Hilbert
spaces must be describing a larger class of semiclassical spacetimes. In view
of the fact that the Λ-N correspondence attempts to make a statement about
the fundamental theory rather than about a particular class of spacetimes, the
simplest proposal is to consider the set of all solutions of Einstein’s equations
coupled to a positive cosmological constant Λ(N), irrespective of asymptotic
conditions and types of matter present [38].

Bousso then proposed a precise test of the Λ-N correspondence. Namely,
the latter should imply that physicists should be limited in their observations
in any spacetime solving the relevant low energy equations of motion. Hence
Bousso’s “N -bound” is [38]:

In any universe with a positive cosmological constant Λ (as well as arbitrary
additional matter that may well dominate at all times), the observable entropy S
is bounded by N=S0, the entropy of empty dS space.

For the special case of central observers in spherically symmetric spacetimes
withΛ(N), theN -bound was proven [38] using the covariant entropy bound [34,
35]. This proof relies on general geometric properties of spacetimes with pos-
itive cosmological constant, and on a bound on matter entropy in de Sitter
space [36]. While the original analysis was made with d = 4, it is easily
extended to all d ≥ 4.

However, as shown in ref. [1] and as will be described below, there are
counterexamples to the N -bound for d > 4. They are not counterexamples to
the covariant entropy bound, but they evade the proof of ref. [38] by violating
the assumption of spherical symmetry. Their key novel ingredient is flux, which
is used to stabilize a product metric with one large or non-compact factor. In
this way, these spacetimes contradict the original intuition that the presence of
a positive cosmological constant should result in any matter structures being
inflated away so that the solution asymptotes to an empty dS space.

This shows, in particular, that the mere specification of a positive cosmo-
logical constant does not suffice to guarantee a finite observable entropy. Λ
cannot be in correspondence with N unless some additional conditions hold
that exclude our counterexamples. Note that our results do not emphatically
rule out finite Hilbert space theories as being relevant for quantum gravity.

3.1 Product spacetimes with flux

We consider solutions to the following action in d = p + q dimensions:

I =
1

16πGN

∫
dp+qx

√−g

(
R− 2Λ− 1

2 q!
F 2

q

)
. (16)
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This describes Einstein gravity with a cosmological constant Λ, taken to be
positive, coupled to a q-form field strength, Fq = dAq−1. The equations of
motion may be written as

RMN =
1

2(q − 1)!
FMP2···PqF

P2···Pq

N − (q − 1)
2(d− 2) q!

gMNF 2
q +

2
d− 2

gMNΛ ,

d ∗ Fq = 0 . (17)

The most symmetric solution is d-dimensional dS space, with F = 0 and the
metric as given in, e.g., eq. (8). Recall from eq. (3) that the radius of curvature
is related to the cosmological constant by

�2 =
(d− 1)(d− 2)

2Λ
. (18)

Next, we find product solutions of the form Kp×Mq, where Kp is Lorentzian
with coordinates xμ, Mq is Riemannian with coordinates yα, and both factors
are Einstein:

Rμν =
p− 1
L2

gμν , Rαβ =
q − 1
R2

gαβ . (19)

Additionally, we take the field strength Fq to be proportional to the volume
form on Mq:

Fq = c volMq , (20)

where volSq is normalized so that
∮

volSq = Rq Ωq. This field strength auto-
matically satisfies the Maxwell equation (17) and the Bianchi identity dF = 0.
Einstein’s equations now permit a family of solutions, parametrized by the
dimensionless flux

F ≡ c2

4Λ
. (21)

The curvature radii L, R satisfy

p− 1
L2

=
2Λ

d− 2
[1− (q − 1)F ] ,

q − 1
R2

=
2Λ

d− 2
[1 + (p− 1)F ] . (22)

Since F > 0 by definition and we assume Λ > 0, equation (22) requires
R2 > 0 as well. Hence, Mq must have positive curvature. We will generally
take Mq = Sq, the q-dimensional sphere. From stability considerations, one
finds that this is the most interesting choice [1].

On the other hand, we see that L2 has indefinite sign. For smallF , one finds
L2 > 0. This means that Kp is positively curved and can be taken to be dSp.
At the value

F = Fm ≡ 1
q − 1

, (23)
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the curvature radius diverges. In this case Kp is flat; it can be taken to be
p-dimensional Minkowski space, for example. ForF > Fm, L2 becomes neg-
ative. This corresponds to a change of sign of the Ricci scalar. The Lorentzian
factor will be negatively curved, and it is useful to define L̃2 ≡ −L2. We can
take Kp to be p-dimensional anti-de Sitter space (with real curvature radius L̃)
in this case. Note that L̃ satisfies

p− 1

L̃2
=

2Λ
d− 2

[(q − 1)F − 1] . (24)

We observe that as Λ→ 0 (with c fixed), R and L̃ remain finite and our solutions
reproduce the usual Freund-Rubin compactification [39] with geometry AdSp×
Sq.

Independently of the sign of L2, all metrics we consider for Kp may be
written in the form given in eq. (8), with n = d− 1 replaced by p− 1. Solving
Einstein’s equations does not require Kp to be maximally symmetric, rather
it must simply satisfy (19). Hence, for p > 2, Kp can be taken to be a p-
dimensional Schwarzschild-(anti)-de Sitter solution with:

V (r) = 1− μ

rp−3
− r2

L2
. (25)

This introduces an additional parameter, the “mass” μ, into the space of solu-
tions. We will ignore this freedom in the L2 > 0 case, where we set μ = 0
because empty dSp × Sq has the largest horizon area in that family. However,
in the L2 < 0 case, we will find that black holes offer a convenient way of
adding unlimited entropy without affecting the stability of an asymptotically
AdSp × Sq solution.

3.2 N -bound fails!

At first sight, it seems obvious that the solutions in the preceding section
spell disaster for the conjectured N -bound [38]. If we consider the dSp × Sq

solutions, i.e., those withF < Fm, the entropy is determined by the area of the
cosmological horizon in dSp times the volume of the Sq:

S(Λ,F) =
1

4GN

Ωp−2 Ωq

(
d− 2
2Λ

) d−2
2
(

p− 1
1− (q − 1)F

) p−2
2
(

q − 1
1 + (p− 1)F

) q
2

.

(26)
Hence the ratio between (26) and the entropy of the dSd horizon (12) is

S(Λ,F)
S0(Λ)

=
Ωp−2 Ωq

(d− 1)
d−2
2 Ωd−2

(
p− 1

1− (q − 1)F
) p−2

2
(

q − 1
1 + (p− 1)F

) q
2

.

(27)
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If this ratio is greater than unity, the N -bound (15) appears to be violated. For
fixed Λ, the ratio begins less than unity forF = 0, and asF increases, the ratio
further decreases until

F = Fs ≡ 1
(p− 1)(q − 1)

. (28)

Above Fs the ratio begins to increase. It crosses unity at some value Fcrit and
actually diverges at F = Fm. Hence for a range of values, the ratio is actually
larger than one.

Rather than immediately declaring the demise of the N -bound, we observe
that the stability of these solutions should first be examined. The solutions of
the preceding section contain no entropy in the form of ordinary matter sys-
tems — hence all potential contributions to entropy come from the Bekenstein-
Hawking entropy of event horizons. Event horizons are determined by the
global structure of a spacetime, not by its shape at an instant of time. In an
unstable product solution, the thermal fluctuations associated with the horizon
itself would destabilize the spacetime, and the far future (including any event
horizon) would differ from the solution assumed unstable. Such a scenario does
not present an immediate inconsistency, i.e., it could be that the true evolution
contains a horizon with an even larger area than that originally anticipated for
the static product solution. However, to be confident that we have properly
determined the entropy and, where applicable, that we have correctly identified
violations of the N -bound, we limit our attention to stable solutions.

The stability analysis of the solutions in section 3.1 is an interesting and
subtle project in its own right. However, due to space constraints, we present
only a brief summary of the results here and refer the interested reader to [1]
for the complete details.

Beginning with the dSp×Sq solutions, one finds that for q = 2 and 3, all of
the solutions are stable regardless of the value of p. That is, any solution with
F < Fm corresponds to a stable spacetime when q = 2 or 3. For q = 4, there
is a window of stability with

1
3(p− 1)

≤ F ≤ 1
2(p− 1)

. (29)

Finally for q ≥ 5, all of the dSp×Sq solutions are unstable. In any event, given
the stability of the solutions with q = 2 and 3, it is clear from eqs. (26) and (27)
that there are solutions for which the entropy can be made arbitrarily large and,
hence, which present a clear violation of the N -bound!

In the case of the AdSp × Sq solutions, an intricate pattern of instabilities
emerges once more. For q = 2 and 3, the spacetimes are stable for all values of
F ≥ Fm regardless of p. For q ≥ 4, a perturbative tachyon always exists for q
odd, but for even q there is a window of stability forF sufficiently large. Further



Tall tales from de Sitter space 261

one may argue that the stability analysis of these solutions extends to the case
where a black hole is introduced in the AdSp spacetime, as in eq. (25). This
point is important as there is no entropy associated with an empty AdSp × Sq

spacetime. However, of course, the presence of a black hole implies the solution
has a Bekenstein-Hawking entropy associated with the event horizon. Further,
at fixed F , the horizon area of the stable Schwarzschild-AdSp × Sq solutions
(with p > 2) can be made arbitrarily large (i.e., with μ→∞). Hence the stable
Schwarzschild-AdSp×Sq solutions present another violation of the N -bound!

3.3 Discussion

Although some progress has been reported (see, e.g., Refs. [40, 41, 42, 43]),
there is presently no fully satisfactory embedding of de Sitter space into string
theory. It is important to understand whether this is only a technical problem, or
whether significant new developments (comparable, e.g., to the discovery of D-
branes [23]) will be required for progress. Interpreting the Λ-N correspondence
as a statement that the fundamental theory describing dS space has only a finite
number of degrees of freedom, one is faced with a clear challenge to string
theory, i.e., it would rule out string theory as a viable description.

However, we have found [1] that some spacetimes with positive cosmological
constant Λ(N) contain observable entropy greater than N . Hence they cannot
be described by a theory with a Hilbert space of finite dimension eN . Further the
entropy was unbounded for the solutions describing a black hole in the stable
AdSp × Sq backgrounds, and so specifying a positive cosmological constant
does not even guarantee a finite observable entropy. While our analysis shows
that the N -bound as conjectured by Bousso [38] is incorrect, we have only
illustrated that, if correct, the conjectured Λ-N correspondence [7] must be
more subtle than first thought. In particular, it cannot be broadly interpreted
as a statement about the fundamental theory which at low energies gives rise
to Einstein gravity coupled to a positive cosmological constant. Rather at best,
it will have an interpretation as a statement about a certain class of solutions
within this low energy theory.

Experience with string theory has taught us that the same low energy La-
grangian (in fact, the same fundamental theory) can have different ‘superselec-
tion’ sectors described by different dual theories. For example, in the AdS/CFT
correspondence, the rank of the gauge group of the CFT dual to a particular
Freund-Rubin compactification (with Λ = 0) depends on the flux. In the present
context of gravity with positive Λ, it could be that a particular dual theory with
a specific number of degrees of freedom N will only capture the spacetime
physics of a certain sector of a given low energy theory. It follows from the
above results that specifying the (positive) value of Λ alone is not sufficient to
characterize the dual theory. That is, we found that there cannot be a straight-
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forward correspondence between Λ and the number of degrees of freedom, N
(a Λ-N correspondence).

Similarly additional data is required to specify the class of spacetimes dual
to a finite Hilbert space theory. Certainly a natural approach to defining the
corresponding class would be to include fluxes along with the cosmological
constant2 among the parameters whose specification is necessary in order to
ensure that the observable entropy can not exceed N . This appears to produce
rather complicated conditions whose sufficiency is not obvious [1].

Of course, this interpretation of the Λ-N correspondence leaves open the
possibility that the full theory of quantum gravity which describes, e.g., dS+

universes will make use of an infinite-dimensional Hilbert space. Hence it
cannot be regarded as presenting a fundamental obstacle to a description of
dS space by string theory. It is still remarkable, however, that a finite Hilbert
space is in principle sufficient to describe such spacetimes. By contrast, the
Hilbert space describing asymptotically flat or AdS spacetimes must necessarily
contain an infinite number of states, to accommodate arbitrarily large entropy
(for example, in the form of large black holes).

Finally, we should remark that the above discussion following from the
demise of the N -bound only applies for d > 4. One finds that p = 2 is a
special case in the analysis of sections 3.1 and 3.2. We refer the interested
reader to ref. [1] for the details, but the essential comment is that there is no
obvious way to violate the N -bound in this case. Further the sphere component
of the product solutions must have q ≥ 2 in order to satisfy eq. (22) with pos-
itive Λ. Combining these two results means that we have no counterexamples
to the N -bound for d = 4 [1]. The significance of this exception is not clear.

4. Introduction to the dS/CFT correspondence

Recently Strominger [5] conjectured that quantum gravity in asymptotically
dS universes has a dual description in terms of a Euclidean conformal field
theory on the future boundary (I+) and/or the past boundary (I−). Much of
the motivation for this dS/CFT duality comes from our understanding of the
AdS/CFT duality [46]. Of course, the nature of dS space is quite different
from its AdS counterpart. In particular, the conformal boundaries, which one
expects to play a central role in any dS/CFT correspondence, are hypersurfaces
of Euclidean signature. As a result, one expects the dual field theory to be a
Euclidean field theory. Further in de Sitter space, there are two such hypersur-
faces: the future boundary, I+, and the past boundary, I−. Hence one must
ask whether the proposed duality will involve a single field theory [5, 6] or two

2The specification of flux will identify an isolated sector only if flux-changing instantons [44, 45] are
completely suppressed. This is the case for the Λ = 0 product solutions studied in the AdS/CFT context,
but one might expect an onset of non-perturbative instabilities if Λ > 0.
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[47]. Unfortunately at present, the most striking difference from the AdS/CFT
duality is the fact that we have no rigorous realizations of the dS/CFT duality
— some progress has been made with pure three-dimensional de Sitter gravity
[15]. However, the idea of a dS/CFT correspondence is a powerful and sug-
gestive one that could have fundamental implications for the physics of our
universe. A present difficulty is that rather little is known about the Euclidean
field theory which is to be dual to physics in the bulk. Hence the goal in the
discussion below will be to explore further the requirements for a candidate
dual field theory, under the assumption that the bulk physics must reproduce
standard background quantum field theory in the low energy limit. In particular,
much of the following will focus on the interpretation of scalar field theory in
a de Sitter background in the context of the dS/CFT correspondence. As the
AdS/CFT correspondence [46] motivates many of the calculations and their
interpretation, we begin with a brief review of the latter duality (section 4.1)
and then present the most relevant aspects of dS/CFT (section 4.2). The reader
interested in the mathematical details can consult the appendices to which we
will refer in the following.

4.1 Brief AdS/CFT review

Consider probing anti-de Sitter space with a massive scalar field. We consider
the following metric on (n+1)-dimensional AdS space,3

ds2 = dr2 + e2r/�̃ημνdxμdxν , (30)

and the standard equation of motion for the scalar,[
�−M2

]
φ = 0 . (31)

Then to leading order in the asymptotic region r → ∞, the two independent
solutions take the form [48]

φ± � e−Δ±r/�̃φ0±(xμ) where Δ± =
n

2
±
√

n2

4
+ M2�̃2 . (32)

Now the interpretation of these results depends on the value of the mass, and
there are three regimes of interest:

(i) M2 > 0 , (ii) 0 > M2 > − n2

4�̃2
and (iii) M2 < − n2

4�̃2
. (33)

3The essential feature for the following analysis is the exponential expansion of the radial slices with proper
distance r. While we have chosen to consider pure AdS space in Poincaré coordinates for specificity, this
expansion, of course, arises quite generally in the asymptotic large-radius region for any choice of boundary
metric and for any asymptotically AdS spacetime.
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In case (i), Δ− is negative and so the corresponding “perturbation” is actually
divergent in the asymptotic regime. Hence in constructing a quantum field
theory on AdS space, only the φ+ modes would be useful for the construction
of an orthogonal basis of normalizable mode functions [49]. In particular, the
bulk scalar wave operator is essentially self-adjoint and picks out the boundary
condition that the φ− modes are not excited dynamically. In the context of
the AdS/CFT then, the φ0− functions are associated with source currents (of
dimension Δ−). These may then be used to generate correlation functions of
the dual CFT operator of dimension Δ+ through the equivalence [48, 50]

ZAdS(φ) =
∫

Dφ eiIAdS(φ−,φ+) =
〈
ei
∫

φ0−O−
〉

CFT
. (34)

On the other hand, the boundary functions φ0+ are associated with the expec-
tation value for states where the dual operator has been excited [49].

In case (ii), the lower limit corresponds precisely to the Breitenlohner-
Freedman bound [51, 52]. While the scalar appears tachyonic, it is not truly
unstable and it is still possible to construct a unitary quantum field theory on
AdS space. Further, in this regime, both sets of solutions (32) are well-behaved
in the asymptotic region. However, together they would form an over-complete
set of modes. The theory must therefore be supplemented with a boundary con-
dition at AdS infinity which selects out one set of modes to define a self-adjoint
extension of the scalar wave operator (and thus the time evolution operator). For
0 > M2�̃2 > 1 − n2/4, there is a unique boundary condition which produces
an AdS invariant quantization [51]. However, for

1− n2/4 > M2�̃2 > −n2/4 , (35)

the boundary condition is ambiguous. The AdS/CFT interpretation is essen-
tially the same as above. That is, the φ0+ and φ0− functions may be associated
with expectation values and source currents of the dual CFT operator, respec-
tively. For the ambiguous regime (35), there is a freedom in this equivalence
associated with a Legendre transformation of the generating functional [53].

Finally in case (iii), the mass exceeds the Breitenlohner-Freedman bound [51,
52] and the scalar field is actually unstable; no sensible quantization is possible.
However, if one were to attempt an AdS/CFT interpretation analogous to those
above, the dimension Δ+ of the dual CFT operator would be complex, which
might be interpreted as indicating that the corresponding theory is not unitary.
Hence one still seems to have agreement on both sides of the correspondence
as to the unsuitability of the regime M2�̃2 < −n2/4.

For any of these regimes, an important part of the AdS/CFT duality is the
UV/IR correspondence [54]. The main lesson here is that asymptotic regions
(near the boundary) of AdS space (connected with long wavelength or IR be-
havior in the bulk) are associated with short distance (UV) physics in the field
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theory dual. Similarly, regions deeper inside AdS (connected with short wave-
lengths or UV behavior in the bulk) are associated with long distance (IR)
physics in the dual theory. This relation essentially follows from the action of
the symmetry group SO(n,2) in each theory, and can be visualized by the stan-
dard association of the field theory with the boundary of AdS. In the Poincaré
coordinates above, the scaling transformation (r, xμ)→ (r− �̃ log λ, λxμ) for
λ ∈ R

+ constitutes an AdS translation. This symmetry makes it clear that
motion toward the boundary (large r) of AdS is associated with smaller and
smaller scales in the field theory, which lives on the space labelled by the xμ.
In this context, we emphasize that the CFT does not live on the boundary of
the AdS space. Usually one has chosen a particular foliation of AdS [55], and
the bulk space calculations are naturally compared to those for the field theory
living on the geometry of the surfaces comprising this foliation. Via the UV/IR
correspondence, each surface in the bulk foliation is naturally associated with
degrees of freedom in the CFT at a particular energy scale [56].

As remarked above, changing the boundary conditions of the scalar fields
through the addition of φ− modes corresponds to a deformation of the CFT,
which, in general, breaks the conformal symmetry. However, if the deforma-
tion corresponds to a relevant (or marginal) operator,4 the theory remains nearly
conformal in the UV. In turn then, one expects the gravity dual to remain asymp-
totically anti-de Sitter. Indeed, one finds that the associated bulk perturbations
remain small near the boundary. However, the field theory behavior at inter-
mediate scales and in the IR can be quite nontrivial. The corresponding bulk
perturbation becomes large as one proceeds inward from the boundary and it
is natural to seek a gravitating dual by solving the exact classical equations of
motion of the gravitating theory — see, for example, [58]. Thus, it is natural
to relate the ‘radial evolution’ of the gravitating spacetime with a field theory
renormalization group flow [59]. One of the interesting results to emerge from
this discussion is a gravitational ‘c-theorem’. That is, one seems to be able
to define a c-function as a local geometric quantity in the asymptotically AdS
space, that gives a measure of the number of degrees of freedom relevant for
physics of the dual field theory at different energy scales [59]. In particular,
one is able to show that the bulk equations of motion dictate that this c-function
must decrease in evolving from the UV into the IR regions.

4.2 Some dS/CFT basics

Given the brief overview of the AdS/CFT correspondence, we now turn to
asymptotically de Sitter spaces, where one would like to study the possibility
of a similar duality between quantum gravity in the bulk and a Euclidean CFT

4Ref. [57] discusses certain irrelevant deformations in the AdS/CFT.
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[5]. As in the previous review, we focus the present discussion on the case of a
pure de Sitter space background:

ds2 = −dt2 + cosh2 t/� dΩ2
n , (36)

where dΩ2
n is the standard round metric on an n-sphere. This metric solves

Einstein’s equations, Rij = 2Λ/(n− 1) gij , in n+1 dimensions. The curvature
scale � is related to the cosmological constant by �2 = n(n− 1)/(2Λ). Again,
the important feature of this geometry is the exponential expansion in the spa-
tial metric in the asymptotic regions, i.e., t → ±∞. Much of the following
discussion carries over to spacetimes that only resemble dS asymptotically5 and
indeed, if the proposed dS/CFT duality is to be useful, it must extend to such
spacetimes. We will explore certain aspects of the dS/CFT for such backgrounds
in section 7.

Consider a free scalar field propagating on the above background (36), which
we wish to treat in a perturbative regime where the self-gravity is small. Hence,
the equation of motion is [

�−M2
]
φ = 0 . (37)

In general, the effective mass may receive a contribution from a nonminimal
coupling to the gravitational field [60]. Therefore we write

M2 = m2 + ξR , (38)

where m2 is the mass squared of the field in the flat space limit and ξ is the di-
mensionless constant determining the scalar field’s coupling to the Ricci scalar,
R. In the dS background (36), we have R = n(n + 1)/�2. A case of particular
interest in the following section will be that of the conformally coupled massless
scalar field, for which m2 = 0, ξ = (n−1)/4n and hence M2 = (n2−1)/4�2.
With these parameters, the solutions of eq. (37) transform in a simple way under
local conformal scalings of the background metric [60].

In parallel with the AdS case, scalar fields propagating in de Sitter space
can have two possible behaviors near the boundaries. Let us for the moment
think of defining these boundary conditions at past infinity (I−). Equation (37)
above is readily solved [5] near I− to yield two independent solutions with the
asymptotic form φ ∼ eh±t/�, where

h± =
n

2
±
√

n2

4
−M2�2 . (39)

Note that this asymptotic time dependence is independent of the details of the
spatial mode. In the pure dS background (36), the same exponents also govern
the behavior of the fields at future infinity — see the appendix for details.

5Many explicit examples of such backgrounds may be found in ref. [2].
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The fact that the boundaries are spacelike in de Sitter space means that
the ‘boundary conditions’ have a different conceptual status than in the AdS
setting. In particular, requiring that the bulk evolution is well-defined in dS
space will not impose any restrictions on past or future boundary conditions.
So in contrast to the AdS/CFT correspondence, in the dS/CFT correspondence,
both the φ+ and φ− modes appear on an equal footing. Certainly, a complete
description of physics in the bulk must include both sets of modes as dynamical
quantum fields. Following the analogy with the AdS/CFT correspondence
and in accord with the preceding discussion, it is natural then to associate
both modes φ± with source currents for dual field theory operators O±, with
conformal dimensions h∓ [5]. As we will discuss shortly, this matching of
modes with dual operators is further supported by a bulk construction of a
generating functional for correlation functions in the CFT.

As in the AdS case, one can classify the scalars displaying distinct types of
boundary behavior in three different regimes:

(i) M2 >
n2

4�2
, (ii)

n2

4�2
> M2 > 0 and (iii) M2 < 0 . (40)

These three regimes also appear in discussions in the mathematics literature —
see, e.g., [61, 62]. There the scalar field is classified according to M2 regarded
as its SO(n+1, 1) Casimir. A common nomenclature for the three possibilities
delineated above is the (i) principal, (ii) complementary (or supplementary)
and (iii) discrete series of representations of SO(n + 1, 1). As is evident from
eq. (39), the distinguishing feature of scalar fields in the principal series is that
they are oscillatory near past (or future) infinity. In contrast, the exponents for
fields in the complementary series are real and positive, and so their asymptotic
behavior is a purely exponential damping near both boundaries.

Let us consider case (iii) M2 < 0 in detail. While h± are both real, the
modes φ− ∼ eh−t diverge as one approaches I−, since h− < 0. One finds
similar divergent behavior for one of the modes at the future boundary I+.
The discrete series then corresponds to special values of the mass in this range
where a subset of the modes display the convergent h+ behavior at both I± —
see the appendix and refs. [61, 62]. However, we emphasize that even in these
special cases, the full space of solutions still includes modes diverging at both
asymptotic boundaries. In a physical situation then, the uncertainty principle
would not allow us to simply set the amplitude of the divergent modes to zero.
Hence the formal mathematical analysis of these fields is only of limited physical
interest and we will not consider them further in the following. Of course, the
divergence of the generic field configuration is simply an indication that treating
the tachyonic fields as linearized perturbations is inappropriate. Nonlinear field
theories with potentials including unstable critical points may play an important
role in the dS/CFT correspondence, e.g., in constructing models of inflationary
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cosmology. The essential point though is that one must study the full nonlinear
evolution of such fields, including their backreaction on the spacetime geometry.

Considering the principal series, (i) M2 > n2/4�2, in more detail, one
expects to find a pair of dual operatorsO± with complex conformal dimensions
h∓. Having operators with a complex conformal weight suggests that the
dual CFT is nonunitary [5]. We add the brief observation that, since, in the
quantum field theory, the two sets of independent modes φ± correspond roughly
to creation and annihilation operators (positive and negative frequency modes)
in the bulk (see, e.g., [11, 63, 64, 65]), the corresponding operators in the dual
theory should have nontrivial commutation relations.

Finally we consider the complementary series, (ii) n2/4�2 > M2 ≥ 0. In
this case, the time dependence for both sets of modes is purely a real exponential
decay near both I±. In the bulk, the two linearly independent solutions may
be chosen to be real, as is readily verified by explicit computations — see
the appendix. Because the φ± solutions are real, they each have zero norm
in the usual Klein-Gordon inner product, while a nonvanishing inner product
arises from (φ+, φ−). It follows that, upon quantization, the corresponding
operator coefficients are analogous to position and momentum operators, rather
than creation and annihilation operators. That is, these degrees of freedom are
canonically conjugate. In any event, both types of modes are again required to
describe standard quantum field theory in the bulk.

As before, the dual CFT should contain a pair of operators O± dual to the
h∓ modes. In this case, the operators have real conformal weights and must
be distinct, as their weights are different. One can readily see that both O±
will have local correlation functions: One simply notes that the corresponding
source currents are obtained from the bulk scalar field through

J−(Ω) ≡ lim
t→−∞ e−h−t/�φ(Ω, t) , (41)

J+(Ω) ≡ lim
t→−∞ e−h+t/�[φ(Ω, t)− eh−t/�J−(Ω)] ,

where Ω denotes a point on the n-sphere. As these constructions are local in
position, their two-point functions will also be local. Note that the above discus-
sion of inner products indicates that the operators O± should have nontrivial
commutation relations with each other but vanishing commutators amongst
themselves.

Next we consider the generator of correlation functions in the dual field
theory. A natural construction proposed in [5] for a free bulk field theory is

F = lim
t,t′→−∞

∫
dΣμdΣ′νφ(x)

↔
∂ μ G(x, x′)

↔
∂ ν φ(x′) . (42)
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In the original proposal of [5], G(x, x′) was chosen as the Hadamard two-point
function

G(x, x′) = 〈0|{φ(x), φ(x′)}|0〉 (43)

in the Euclidean vacuum. This two-point function is symmetric in its arguments.
Generalizing this construction to other two-point functions was considered in
[11, 66]. These alternatives all provide essentially the same short distance
singularities discussed below.

One proceeds by evaluating the generating functionalF . First, the boundary
conditions (39) at I− yield

lim
t→−∞φ(Ω, t) � φ0+(Ω) eh+t + φ0−(Ω) eh−t , (44)

where we imagine that M2 > 0 so that the above shows no divergent behavior.
Now the dS-invariant two-point function may also be expanded in the limit that
t, t′ → −∞, the result being

G(x, x′) � c+
e−h+(t+t′)

(wiw′i − 1)h+
+ c−

e−h−(t+t′)

(wiw′i − 1)h−
, (45)

where c+ and c− are constants and wi denote direction cosines on Sn. Using
the notation of [66], one has w1 = cos θ1, w2 = sin θ1 cos θ2, ..., wd =
sin θ1 . . . sin θn−1 sin θn. Note in particular that, with this choice of coordi-
nates, when the points on the sphere coincide, one has wiw′i = 1, while for
antipodal points, one has wiw′i = −1. Taking into account the measure factors,
the final result for the generating functional reduces to

F = −(h+ − h−)2

22n

∫
dΩdΩ′

[
c+

φ0−(Ω) φ0−(Ω′)
(wiw′i − 1)h+

+ c−
φ0+(Ω) φ0+(Ω′)
(wiw′i − 1)h−

]
. (46)

Note that the Klein-Gordon inner product has eliminated the cross-terms (which
were potentially divergent). Further, the coincidence singularities in eq. (46)
are proportional to the Euclidean two-point function on a n-sphere, i.e.,

Δh± �
1

(wiw′i − 1)h±
, (47)

for operators with conformal weights h±. Hence F appears to be a generating
functional for CFT correlation functions, with φ0± acting as source currents for
operators with conformal dimensions h∓. The above relies on having a free
field theory in the bulk dS space, but extending the construction to an interacting
field theory was considered in [66].
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5. A generalized de Sitter c-theorem

The discussion of the dS/CFT correspondence has also been extended beyond
pure dS space to more general backgrounds with asymptotically dS regions.
Indeed, if the proposed dS/CFT duality is to be useful, it must extend to such
spacetimes. In analogy to the AdS/CFT duality, such backgrounds might have
an interpretation in terms of ‘renormalization group flows’ in the dual field
theory [9, 10, 2, rgflows]. In the AdS context, one of the interesting features
is the UV/IR correspondence [54]. That is, physics at large (small) radii in the
AdS space is dual to local, ultraviolet (nonlocal, infrared) physics in the dual
CFT. As was extensively studied in gauged supergravity — see, e.g., [58] —
‘domain wall’ solutions which evolve from one phase near the AdS boundary
to another in the interior can be interpreted as renormalization group flows of
the CFT when perturbed by certain operators. In analogy to Zamolodchikov’s
results for two-dimensional CFT’s [67], it was found that a c-theorem could
be established for such flows [59] using Einstein’s equations. The c-function
defined in terms of the gravity theory then seems to give a local geometric
measure of the number of degrees of freedom relevant for physics at different
energy scales in the dual field theory.

In the dS/CFT duality, there is again a natural correspondence between UV
(IR) physics in the CFT and phenomena occurring near the boundary (deep in the
interior) of dS space. Therefore, in the context of more general solutions that
are asymptotically dS, one has an interpretation in terms of renormalization
group flows, which should naturally be subject to a c-theorem [9, 10]. The
original investigations [9, 10] considered only solutions with flat spatial sections
(k = 0), and we generalize these results in the following to include spherical and
hyperbolic sections (k = ±1). We also consider the flows involving anisotropic
scalings of the boundary geometry, but our results are less conclusive in these
cases.

5.1 The c-function

The foliations of spacetimes of the form given in eq. (5) are privileged in
that time translations (a) act as a scaling on the spatial metric, and thus in the
field theory dual, and (b) preserve the foliation and merely move one slice to
another. In the context of the dS/CFT correspondence, these properties naturally
lead to the idea that time evolution in these spaces should be interpreted as a
renormalization group flow [9, 10]. Certainly, the same properties apply for
time evolution independent of the curvature of the spatial sections. Hence if
a c-theorem applies for the k = 0 solutions [9, 10], one might expect that it
should extend to k = ±1 and perhaps other cases if properly generalized.



Tall tales from de Sitter space 271

For k = 0, the proposed c-function [9, 10], when generalized to n+1 dimen-
sions, is

c � 1

GN

∣∣ ȧ
a

∣∣n−1 . (48)

The Einstein equations ensure that ∂t (ȧ/a) < 0, provided that any matter in the
spacetime satisfies the null energy condition [27]. This result then guarantees
that c will always decrease in a contracting phase of the evolution and increase
in an expanding phase.

For our general study, we wish to define a c-function which can be evaluated
on each slice of some foliation of the spacetime. Of course, our function should
satisfy a ‘c-theorem’, e.g., our function should monotonically decrease as the
surfaces contract in the spacetime evolution. Further, it should be a geometric
function built from the intrinsic and extrinsic curvatures of a slice. Toward this
end, we begin with the idea that the c-function is known for any slice of de
Sitter space, and note that, in this case, eq. (48) takes the form

c ∼ 1
GNΛ(n−1)/2

. (49)

Thus, if our slice can be embedded in some de Sitter space (as is the case for any
isotropic homogeneous slice — see eq. (5)), the value of the c-function should
be given by eq. (49). In other words, we can associate an effective cosmological
constant Λeff to any slice that can be embedded in de Sitter space and we can
then use this Λeff to define our c-function.

It is useful to think a bit about this embedding in order to express Λeff

directly in terms of the intrinsic and extrinsic curvatures of our slice. The
answer is readily apparent from the general form of the ‘vacuum’ Einstein
equations with a positive cosmological constant: Gij = −Λgij . Contracting
these equations twice along the unit normal ni to the hypersurface gives the
Hamiltonian constraint, which is indeed a function only of the intrinsic and
extrinsic curvature of the slice.6 The effective cosmological constant defined
by such a local matching to de Sitter space is therefore given by

Λeff = Gijn
inj . (50)

For metrics of the general form (5), this becomes

Λeff =
n(n− 1)

2

[(
ȧ

a

)2

+
k

a2

]
. (51)

6The momentum constraints vanish in a homogeneous universe, and time derivatives of the extrinsic curvature
only appear in the dynamical equations of motion.
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Taking the c-function to be a function of this effective cosmological constant,
dimensional analysis then fixes it to be

c ∼ 1

GNΛ(n−1)/2
eff

=
1

GN

(
Gijn

inj
)−(n−1)/2

. (52)

For the k = 0 isotropic case, it is clear that this reduces to the c-function (48)
given previously in [9, 10]. For other isotropic cases, it is uniquely determined
by the answer for the corresponding slices of de Sitter space. The same holds
for an anisotropic slice that can be embedded in de Sitter (see, e.g., [2] for
examples). While the choice (52) is not uniquely determined by the constraints
imposed thus far for any slice which cannot be so embedded, it does represent
a natural generalization and, as we will see below, this definition allows a
reasonable ‘c-theorem’ to be proven.

5.2 The c-theorem

For any of the homogeneous flows as considered in the previous section, it is
straightforward to show that our c-function (52) always decreases (increases)
in a contracting (expanding) phase of the evolution. However, we would like
to give a more general discussion which in particular allows us to consider
anisotropic geometries, as well as these isotropic cases.

To prove our theorem, we note that the Einstein equations relate our effective
cosmological constant to the energy density ρ on the hypersurface,

Λeff = Gij ninj = Tij ninj = ρ. (53)

Consider now the ‘matter energy’ E = ρV contained in the volume V of a small
co-moving rectangular region on the homogeneous slice. That is, we take

V =
∫

R

√
g dnx (54)

for some small co-moving region R of the form R = {x|xi
a < xi < xi

b} where
xi denote co-moving spatial coordinates. We also introduce δxi = xi

b−xi
a, the

co-moving size of R in the ith direction. Since R is small, each coordinate xi

can be associated with a scale factor ai(t) such that the corresponding physical
linear size of R is ai(t)δxi.

Without loss of generality, let us assume that the coordinates xi are aligned
with the principle pressures Pi, which are the eigenvalues of the stress tensor
on the hypersurface. Let us also introduce the corresponding area Ai of each
face. Note that a net flow of energy into R from the neighboring region is
forbidden by homogeneity. As a result, energy conservation implies that dE =
−PiAid(aδxi) as the slice evolves. However, clearly dE = ρdV + V dρ, so
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that we have
dΛeff = dρ = −

∑
i

(ρ + Pi) d ln ai. (55)

Now we will assume that any matter fields satisfy the weak energy condition
so that ρ + Pi ≥ 0. Thus, if all of the scale factors are increasing, we find
that the effective cosmological constant can only decrease in time.

This result provides a direct generalization of the results of [9, 10] to slicings
that are not spatially flat. In particular, in the isotropic case (where all scale
factors are equal, a ≡ ai = aj), it follows that c(a) as given in eq. (51) is,
as desired, a monotonically increasing function in any expanding phase of the
universe.

Note, however, that the anisotropic case is not so simple to interpret. For
example, it may be that the scale factors are expanding in some directions and
contracting in others. In this case our effective cosmological constant may
either increase or decrease, depending on the details of the solution.

5.3 Complete Flows versus Bouncing Universes

The general flows are further complicated by the fact that they may ‘bounce’,
i.e., the evolution of the scale factor(s) may reverse itself. The simplest example
of this would be the k= + 1 foliation of dS space in eq. (5). In this global
coordinate system, the scale factor (7) begins contracting from a(t = −∞) =
∞ to a(t = 0) = 1, but then expands again toward the asymptotic region at t =
+∞. In contrast, we refer to the k=0 and –1 foliations as ‘complete’. By this
we mean that within a given coordinate patch, the flow proceeds monotonically
from a =∞ in the asymptotic region to a = 0 at the boundary of the patch —
the latter may be either simply a horizon (as in the case of pure dS space) or a
true curvature singularity.

For any homogeneous flows, such as those illustrated in eq. (5), it is not
hard to show that the k=0 and –1 flows are always complete and that only the
k= + 1 flows can bounce. The essential observation is that for a(t) to bounce
the Hubble parameter ȧ/a must pass through zero. Now the (tt)-component of
the Einstein equations yields(

ȧ

a

)2

= Ttt − k

a2
. (56)

As long as the weak energy condition applies,7 it is clear that the right-hand-side
is always positive for k = 0 and –1 and so ȧ/a will never reach zero. On the
other hand, no such statement can be made for k= + 1 and so it is only in this

7Note that if k = 0 and the energy density is identically zero, it follows that a is a constant. Hence in this
case, we will not have an asymptotically dS geometry.
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III
a) b) c)

I +

I +

I +

Figure 3. Conformal diagrams of (a) de Sitter space, (b) perturbed de Sitter space, and (c) a
very tall asymptotically de Sitter spacetime. The worldline of the ‘central observer’ is the right
boundary of each diagram and various horizons related to her worldline are shown. Shaded
regions cannot send signals to this observer.

case that bounces are possible. Further, one might observe that this analysis
does not limit the number of bounces which such a solution might undergo.
In certain cases with a simple matter content, e.g., dust or radiation, one may
show that only a single bounce is possible. However in (slightly) more complex
models, multiple bounces are possible [2]. In the case of anisotropic solutions
— see, e.g., [2] — the characterization of the flows as complete or otherwise is
more complicated.

6. The global perspective

One feature of dS space, which presents a puzzle for the dS/CFT duality, is
the fact that there are two conformal boundaries, I±. In particular, one might
ask whether there is a dual CFT to be associated with each boundary or a single
CFT for both. Early discussions of the role of these surfaces[5, 6] emphasized
the causal connection between points on the two boundaries. In particular, a
light cone emerging from a point on I− expands into the space and reconverges
at the antipodal point on the sphere at I+. As a consequence, the singularity
structure of certain boundary correlation functions is left invariant when, e.g.,
a local operator on I− is replaced by a corresponding local operator at the
antipodal point on I+ [5]. Not only does this observation suggest that there is a
single dual field theory, but further that dual operators associated with the two
boundaries are simply related by the antipodal map on the sphere.

However, as will be discussed in section 7, this intuition does not seem to
withstand closer scrutiny. In particular, one finds that the causal connection
between the conformal boundaries of dS space is modified for generic per-
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turbations. The relevant results follow from Corollary 1 of [68], which we
paraphrase as follows:

Let the spacetime (M, gij) be null geodesically complete and satisfy the weak
null energy condition and the null generic condition. Suppose in addition that
(M, gij) is globally hyperbolic with a compact Cauchy surface Σ. Then there
exist Cauchy surfaces Σ1 and Σ2 (of the same compact topology, and with Σ2

in the future of Σ1) such that if a point q lies in the future of Σ2, then the entire
Cauchy surface Σ1 lies in the causal past of q.

Hence the conformal diagrams, for universes that are asymptotically de Sitter
in both the future and past, are ‘tall’, i.e., they are taller than they are wide.
Physically, an entire compact Cauchy surface will be visible to observers at
some finite time, and, hence, perturbations of dS space may bring features that
originally lay behind a horizon into an experimentally accessible region. This
is shown in figure 3(b). Pushing this somewhat further, one can imagine that in
certain circumstances asymptotically de Sitter spacetimes of the sort shown in
figure 3(c) may arise. That is, in these spacetimes, a compact Cauchy surface
lies in the intersection of the past and future of a generic worldline.

It follows that the relation between dual operators on the two boundaries
must be manifestly nonlocal when we consider such ‘tall’ backgrounds. In a
tall spacetime, the light rays emerging from a point on I− reconverge,8 but
this occurs at a finite time, long before they reach I+. After passing through
the focal point, the rays diverge again to enclose a finite region on I+. This
observation refutes any intuition that the dual operators associated with the two
boundaries could be related by a simple local map (e.g., the antipodal map) on
the sphere.

We will return to this discussion in section 7. In the following, we will
discuss certain unusual features of the flows, in the sense of section 5, which
become apparent from the global structure of the spacetimes. We assume that
the slices are isotropic, and take each of the three possible cases (spheres, flat
slices, and hyperbolic slices) in turn.

6.1 Flat slices (k = 0)

We now wish to construct the conformal diagram for flows with flat spa-
tial sections. In order to draw useful two-dimensional diagrams, we shall use
the common trick of studying rotationally symmetric spacetimes and draw-
ing conformal diagrams associated with the ‘r-t plane,’ i.e., associated with a
hypersurface orthogonal to the spheres of symmetry.

8For simplicity, our description is restricted to spherically symmetric foliations [2]. Generically the con-
verging light rays would not be focussed to a single point.
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a) b)

r=0

τ =0

t=0
= finiteτ

r = 0

Figure 4. In the distant past τ is (a) finite and (b) infinite.

For later use, we begin with an arbitrary (n+1)-dimensional spatially homo-
geneous and spherically symmetric metric in proper time gauge:

ds2 = −dt2 + a2(t)
(
dr2 + R̂2(r)dΩ2

n−1

)
, (57)

where dΩ2
n−1 is the metric on the unit n − 1 sphere and the form of R̂(r)

depends on the spatial geometry: R̂(r) = sin(r), r, sinh(r) for spherical, flat,
and hyperbolic geometries respectively. In fact, the function R̂(r) will not play
a role below as our diagrams will depict the conformal structure only of the
(1 + 1)-dimensional metric ds2

1+1 = −dt2 + a2(t)dr2. However, it will be
important to note that r takes values only in [0, π] for the spherical geometry
but takes values in [0,∞] for the flat and hyperbolic cases. The usual change of
coordinates to conformal time τ(t) defined by dτ = dt

a leads to the conformally
Minkowski metric

ds2
1+1 = a2(t)(−dτ2 + dr2). (58)

Let us assume that our foliation represents an expanding phase that is asymp-
totically de Sitter in the far future. That is, for t → +∞ the scale factor a di-
verges exponentially. There are now two possibilities. Suppose first that a = 0
at some finite t. If a−1 diverges as a small enough power of t then τ will only
reach a finite value in the past and the spacetime is conformal to a half-strip in
Minkowski space.

In contrast, if a vanishes more quickly, or if it vanishes only asymptotically,
then τ can be chosen to take values in [−∞, 0]. From (58) we see that the
region covered by our foliation is then conformal to a quadrant of Minkowski
space. We take this quadrant to be the lower left one so that we may draw the
conformal diagram as in figure 4(b).

We now wish to ask whether the region shown in figure 4(b) is ‘complete’ in
some physical sense. In particular, we may wish to know whether light rays can
reach the null ‘boundary’ in finite affine parameter. A short calculation shows
that the affine parameter λ of a radial null ray is related to the original time
coordinate t by dλ = adt. The affine parameter is clearly finite if a vanishes
at finite t. In the remaining case, we have seen that ρ is bounded below. As
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a result, a must vanish at least exponentially and the affine parameter is again
finite.

a) b)

r=0

τ =0

r=0

τ =0

Figure 5. (a) In a square diagram, a light ray reaches the antipodal point only at I+. (b)
The generic conformal diagram for an asymptotically de Sitter space with flat surfaces of ho-
mogeneity. A light ray starting in the lower left corner reaches the antipodal point at a finite
time.

Thus, this null surface represents either a singularity or a Cauchy horizon
across which our spacetime should be continued. This statement is essentially
a restricted version of the results of [69] (see also [70] for other interesting
constraints on the ‘beginning’ of inflation). Note that there is no tension between
our possible Cauchy horizon and the claim of a “singularity” in these references,
as their use of the term singularity refers only to the geodesic incompleteness
of the expanding phase.

>From (55) we see that unless ρ + Pi vanishes as a→ 0, the energy density
must diverge and a curvature singularity will indeed result. However, a proper
tuning of the matter fields can achieve a finite ρ at a = 0. It is therefore
interesting to consider solutions which are asymptotically de Sitter near t = 0,
so that a vanishes exponentially. In this case, the a = 0 surface represents a
Cauchy horizon across which we should continue our spacetime. We will focus
exclusively on such cases below.

Since the boundary is a Cauchy horizon, there is clearly some arbitrariness
in the choice of extension. We make the natural assumption here that the
spacetime beyond the horizon is again foliated by flat hypersurfaces. Although
at least one null hypersurface (t = −∞) will be required, it can be shown that
the surfaces of homogeneity must again become spacelike across the horizon
if the spacetime is smooth. The key point here is that the signature can be
deduced from the behavior of a2(t), which gives the norm |ξ|2 of any Killing
vector field ξ associated with the homogeneity. We impose a “past asymptotic
de Sitter boundary condition” so that the behavior of this quantity near the
Cauchy horizon must match that of some de Sitter spacetime. Consider in
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particular the behavior along some null geodesic crossing the Cauchy horizon
and having affine parameter λ. It is straightforward to verify that λ ∼ a, so
that matching derivatives of |ξ|2 across the horizon requires ξ to again become
spacelike beyond the horizon.

It follows that the region beyond the Cauchy surface is just another region of
flat spatial slices, but this time in the contracting phase. It is therefore conformal
to the upper right quadrant of Minkowski space. However, having drawn the
above diagram for our first region we have already used a certain amount of the
available conformal freedom. Thus, it may not be the case that the region beyond
the Cauchy surface can be drawn as an isosceles right triangle. The special case
where this is possible is shown in figure 5(a). The exceptional nature of this
case can be seen from the fact that it allows a spherical congruence of null
geodesics to proceed from the upper right corner of I+ (where it would have
zero expansion) to the lower right corner of I− (where it would also have zero
expansion). Assuming, as usual, the weak energy condition, it follows that this
congruence encountered no focusing anywhere along its path, i.e., ρ + P = 0.
Given the high degree of symmetry that we have already assumed, this can
happen only in pure de Sitter space. The correct diagram for the general case
is shown in figure 5(b) (see [2] for a complete derivation).

h

w

a) b)

Figure 6. Conformal diagrams for spherical surfaces of homogeneity (a) for the case where τ
diverges in the past and (b) for the case where τ converges in the past.
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6.2 Spherical slices (k = +1)

The conformal diagrams in this case are relatively simple. Since the radial
coordinate now takes values only in an interval, we see from (58) that the
conformal diagram is either a rectangle or a half-vertical strip, depending on
whether or not τ is finite at the past boundary.

All such rectangles with the same ratio h/w (see figure 6(b)) can be mapped
into each other via conformal transformations. For the case of pure de Sitter
space we have h=w. On the other hand, for any spacetime satisfying the generic
condition (so that null geodesics suffer some convergence along their trajectory),
we know from [68] that the region to the past of any point p sufficiently close
to I+ must contain an entire Cauchy surface. Thus,9 for such cases we have h
> w.

6.3 Hyperbolic slices (k = −1)

Figure 7. The general conformal diagram for an appropriately complete asymptotically de
Sitter spacetime with hyperbolic surfaces of homogeneity. A conformal frame has been chosen
such that the diagram has a Z2 reflection symmetry through the center.

Recall that the hyperbolic flows are complete, i.e., a reaches 0 at finite t (say,
t = 0), and vanishes at least as fast as t. The asymptotically de Sitter boundary
conditions also require that a diverge exponentially as t→ +∞. Note that since
a vanishes quickly, τ will diverge at t = 0 and the region is again conformal
to a quadrant of Minkowski space. As usual, this may or may not be singular,
depending on the matter present.

Consider in particular the asymptotically de Sitter case where a vanishes
linearly. One then finds that the affine parameter λ along a null ray near the
horizon is asymptotically λ ∼ a2. The Killing vector field that implements

9This conclusion may also be reached by considering the sphere of null geodesics that begins in, say, the
lower left corner and progresses toward the upper right and using the non-increase of the expansion θ implied
by the weak null energy condition.
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spatial translations in the direction along this null ray has a norm given by
a2 ∼ λ along it and so, if the spacetime is smooth, must become timelike
beyond the horizon. Thus, the homogeneous surfaces must become timelike
on the other side. It is not hard to show that an asymptotically de Sitter region
foliated by timelike hyperbolic slices (i.e., copies of de Sitter space) has an ‘r-t
plane’ that is conformal to a diamond in Minkowski space [2].

Assuming that no singularities are encountered within this diamond or on
its boundaries, this provides three further Cauchy horizons across which we
would like to extend our spacetime. A study of the norms of the Killing fields
tells us that the foliation must again become spacelike beyond these horizons.
Just as we saw for the flat foliations, we are therefore left with the task of
attaching pieces conformal to various quadrants of Minkowski space. By the
same reasoning as for k = +1 [2], the complete conformal diagram can be
drawn as shown in figure 7.

7. CFT on two boundaries

As remarked in the previous section, de Sitter space has two conformal
boundaries and so one may ask the question as to whether the dS/CFT corre-
spondence involves a single dual field theory or two. One simple argument in
favor of one CFT is as follows [71]: The isometry group of (n+1)-dimensional
dS space is SO(n+1, 1), which agrees with the symmetries of a single Euclidean
CFT in n dimensions. Further note that the global Killing vector fields corre-
sponding to these isometries in dS space act nontrivially on both I±. Hence
there is a simple correlated action on source currents or dual operators identi-
fied with each of the boundaries. Hence, given the single symmetry group, it is
natural to think that the dual description involves a single CFT.

Further, we recall our experience from the AdS/CFT correspondence. A
central point in this context is that the CFT does not ‘live’ on the boundary of
the AdS space. Usually one has chosen a particular foliation of AdS [55], and
the bulk space calculations are naturally compared to those for the field theory
living on the geometry of the surfaces comprising this foliation. Via the UV/IR
correspondence, each surface in the bulk foliation is naturally associated with
degrees of freedom in the CFT at a particular energy scale [56]. The boundary
of AdS space plays a special role in calculations as this is a region of the
geometry where the separation of operator insertions and expectation values
is particularly simple. One notable exception where two CFT’s seem to play
a role is the eternal black hole [72, 73, 74]. In this case, however, the bulk
geometry has two causally disconnected boundaries. In fact, one can show that
for any solution of Einstein’s equations with more than one asymptotically AdS
boundary, the boundaries are all causally disconnected from each other [75].
In the case of dS space, the past and future boundaries are certainly causally
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connected and so it seems I± can be considered as two (special) slices in a
certain foliation (36) of the spacetime. Hence this reasoning suggests that one
should only consider a single CFT in the dual description.

7.1 Nonlocality in the boundary map

Next we turn to Strominger’s observation [5] that the generating functional
(42) can, in certain circumstances, be extended to incorporate sources on I+.
Certainly, the construction of the generating functional in the previous section
produces essentially the same result if we replace both of the limits in eq. (42)
with t, t′ → +∞. This would produce an analogous generating functional with
source currents defined by the asymptotic behavior of the scalar near I+, i.e.,

lim
t→+∞φ(Ω, t) � ϕ̃0+(Ω) e−h+t + ϕ̃0−(Ω) e−h−t . (59)

However, it is also interesting to consider the case where only one of the limits
in eq. (42) is replaced with one approaching I+,

F̃ = lim
t→+∞,t′→−∞

∫
dΣμdΣ′νφ(x)

↔
∂ μ G(x, x′)

↔
∂ ν φ(x′) . (60)

Now an essential observation [5, 6] is the causal connection between points on
the two boundaries I±. In particular, a null geodesic emerging from a point on
I− expands out into the dS spacetime and refocuses precisely at the antipodal
point on the n-sphere at I+. Hence the two-point function in eq. (60) (or any
dS-invariant Green’s function) will introduce singularities when the point on
I+ approaches the antipode to the point on I−, as the proper separation of
these points vanishes. In fact, in certain circumstances (see the details below),
evaluating the above expression yields the simple result:

F̃ = −(h+ − h−)2

22n

∫
dΩdΩ′

[
c̃+

ϕ̃0−(Ω)φ0−(Ω′)
(wiw′i + 1)h+

+ c̃−
ϕ̃0+(Ω) φ0+(Ω′)
(wiw′i + 1)h−

]
. (61)

This expression incorporates the same Euclidean two-point function except that
the singularities now arise as the sources ϕ̃0±(Ω) approach antipodes on the
n-sphere.

These results suggest that one need only consider a single copy of the CFT
and that an operator on I+ is identified with the same operator on I− after an
antipodal mapping. One finds further support for this interpretation by consid-
ering the isometries of dS space, for example, the isometry10 which produces a
dilatation around a point on I−. On I+, the same symmetry corresponds to a
dilatation around the antipodal point on the n-sphere.

10This isometry corresponds to the action of a time translation ∂t in the static patch coordinates [76].
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However, this suggestion for identifying operators at I+ and I− is easily
seen to require some revision as follows. As discussed in the introduction, bulk
correlators are naturally related by time evolution. The key ingredient is simply
the free field evolution of the scalar, which, given some configuration specified
on a n-dimensional hypersurface, is characterized by the formula

φ(x′) =
∫

dΣμ φ(x)
↔
∂ μ GR(x, x′) , (62)

where GR(x, x′) is a retarded Green’s function, i.e., it vanishes for t > t′.
Now as an example, the integral appearing in the generating functional (42) is
covariant and so should be invariant when evaluated on any time slices t and
t′. The advantage of pushing these slices to I− (or I+) lies in the fact that one
can easily separate the source currents according to their conformal weights.

We can explicitly consider the relation between currents on the past and future
boundaries simply by following the classical evolution (62) of the fields from
I− to I+. Unfortunately, it is clear that, generically, there is no simple local
relation between the currents on I− and those on I+. This remark comes from
the observation that, in general, the retarded Green’s function will have support
throughout the interior of the light cone. This intuition is readily confirmed by
explicit calculations. Ref. [61] presents explicit Green’s functions for generic
masses in four-dimensional de Sitter space. So, for example, for scalar fields in
the principal series, the retarded Green’s function becomes, for large timelike
proper separation,

GR(t,Ω; t′, Ω′) ∝ sinn/2 τ sinn/2 τ ′

(wiw′i − cos τ cos τ ′)n/2
θ(τ ′ − τ) , (63)

where τ is the conformal time coordinate, sin τ = 1/ cosh t/� — see eq. (4),
below. Here the θ-function ensures the proper time-ordering of the points.
In any event, eq. (63) illustrates how the field ‘leaks’ into the interior of the
lightcone with the classical evolution. Generically this leads to a nonlocal
mapping between the currents on I− and I+. This complication will only
be avoided in certain exceptional cases, for example, if the retarded Green’s
function only has support precisely on the light cone — a point to which we
return below.

The nonlocal relation between the currents on I− and those on I+ can be
made more explicit through the mode expansion of the fields on dS space —
see the appendix. A well-documented feature of cosmological spacetimes is
mode-mixing or particle creation [60]. For the present case of dS space, this
corresponds to the fact that a mode of the scalar field with a given boundary
behavior on I−, e.g., having h− scaling, will usually have a mixture of h±
scaling components at I+. The appendix provides a detailed discussion of
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the mode expansions on dS space as well as the Bogolubov transformation
relating the modes with a simple time dependence (scaling behavior) near I−
to those near I+. Using these results, we may discuss the mapping between the
currents on the conformal boundaries. Following the notation of the appendix,
we decompose the asymptotic fields in terms of spherical harmonics on the
n-sphere

φ0±(Ω) =
∑
L,j

a±LjYLj , ϕ̃0±(Ω) =
∑
L,j

ã±LjYLj . (64)

Denoting the antipodal map on the n-sphere as Ω→ JΩ, one has11 YLj(Ω) =
(−)L YLj(JΩ). Now let us imagine that φ0± and ϕ̃0± are related by the an-
tipodal map, i.e., φ0±(Ω) = z ϕ̃0±(JΩ) with some constant phase z. Then one
must have

a±Lj = z (−)L ã±Lj , (65)

where, in particular, the constant z is independent of L.
However, in general, the Bogolubov transformation given in the appendix

gives a more complex mapping. For example, from eq. (A.17) for the principal
series, one finds

a±Lj = C−
− (ω)e±2iθL ã±Lj + C+

− (ω)ã∓Lj . (66)

Now given eq. (A.18) for n odd, with both C−
− (ω) and C+

− (ω) nonvanishing,
certainly eq. (65) is inapplicable. One comes closer to realizing the desired
result with even n, for which C−

− (ω) = 1 and C+
− (ω) = 0. However, for

either n odd or even, the phase θL always introduces a nontrivial L dependence
(beyond the desired (−)L) as shown in eq. (A.19). Thus while the mapping
between I− and I+ may look relatively simple in this mode expansion, it will
clearly be nonlocal when expressed in terms of the boundary data φ0±(Ω) and
ϕ̃0±(Ω).

The complementary series gives some more interesting possibilities with

a−Lj = C̄−
− (μ) ã−Lj + C̄+

− (μ) ã+Lj ,

a+Lj = C̄−
+ (μ) ã−Lj + C̄+

+ (μ) ã+Lj . (67)

In particular, for n odd and μ half-integer, one finds C̄+
− (μ) = 0 = C̄−

+ (μ)
and C̄−

− (μ) = (−)
n
2
+μ(−)L = C̄+

+ (μ). Note that these special cases include

11This result becomes clear when the n-sphere is embedded in Rn+1 with (x1)2+(x2)2+· · ·+(xn+1)2 =
1. In this case, the spherical harmonics YLj may be represented in terms of symmetric traceless tensors,
Zi1i2···iL

xi1xi2 · · ·xiL , and hence it is clear that the antipodal map, which takes the form J : xi → −xi,
produces an overall factor of (−)L.
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μ = 1/2, which corresponds to the conformally coupled massless scalar field
to which we will return in the following section. Similarly, for n even and
μ integer: C̄−

− = C̄+
+ = (−1)

n
2
+μ+1(−1)L and C̄+

− = 0 = C̄−
+ . Hence the

coefficients for these special cases give a precise realization of eq. (65). Further
for these cases then, the generating functional considered in eq. (60) will take
the simple form given in eq. (61).

Hence, when considering the principal series or generic masses in the com-
plementary series, it seems that nonlocality will be an unavoidable aspect of the
relation between field theory operators associated with two conformal bound-
aries. The essential point is that the time evolution of the scalar generically
introduces nonlocality in the mapping because the retarded Green’s function
smears a point-like source on I− out over a finite region on I+. However, note
that one reproduces precisely the same boundary correlators, but after some
nonlocal reorganization of the degrees of freedom within the dual field theory.
It seems appropriate to refer to such relations as nonlocal dualities within the
field theory. On the other hand, the complementary series does seem to provide
some situations where the mapping of the boundary data between I− and I+

is local. In the absence of a working example of the proposed dS/CFT duality,
one might interpret these results as a hint towards the specific types of fields that
would appear in a successful realization of the dS/CFT. Unfortunately, how-
ever, this selection rule based on locality of the mapping between boundaries
does not seem to survive in more interesting applications, as we will see in the
following.

7.2 Nonlocal dualities in ‘tall’ spacetimes

It is of interest to extend the application of the dS/CFT correspondence
from dS space to more general spacetimes with asymptotically dS regions.
As a consequence of a theorem of Gao and Wald [68], such a (nonsingular)
background will be ‘tall’ [2]. That is, the conformal diagram for such spacetimes
must be taller in the timelike direction than it is wide in the spacelike direction.
Of course, this feature has important implications for the causal connection
between the past and future boundaries, and hence for the relation between the
dual field theory operators defined at these surfaces. In particular, the latter
relation becomes manifestly nonlocal.

We may explicitly illustrate the causal structure of the tall spacetimes by
working in conformal coordinates. For asymptotically dS spacetimes which
are homogeneous on spherical hypersurfaces, the metric may be written

ds2 = C(τ)
[−dτ2 + dθ2 + sin2 θ dΩ2

n−1

]
. (68)

Recall from eq. (4) that for pure dS space, C(τ) = �2/ sin2 τ . For a tall
spacetime, the conformal time above would run over an extended range 0 ≤
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τ ≤ π+Δ where Δ > 0. The assumption that the background is asymptotically
dS means that the conformal factor has the following behavior near I±:

lim
τ→0

C(t) =
�2

sin2 τ
, (69)

lim
τ→π+Δ

C(t) =
�̃2

sin2(τ −Δ)
,

where we have allowed for the possibility that the cosmological ‘constant’ is
different at I+ than at I−. This possibility may be realized in a model where
a scalar field rolls from one critical point of its potential to another [2]. In any
event, the corresponding conformal diagram will be a rectangle with height
δτ = π + Δ and width δθ = π (see figure 8).

This increase in the height of the conformal diagram modifies the causal
connection between I± in an essential way. Consider the null rays emerging
from the north pole (θ = 0) at I− (τ = 0). This null cone expands out across
the n-sphere reaching the equator (θ = π/2) at τ = π/2, and then begins to
reconverge as it passes into the southern hemisphere. The null rays focus at
the south pole (θ = π) at τ = π, however, in this tall spacetime, this event
corresponds to a finite proper time for an observer at the south pole. Beyond
this point, the null cone expands again and intersects I+ (τ = π + Δ) on the
finite-sized (n–1)-sphere at θ = π −Δ.

I+

−Iθ=0 θ=π

τ=0

τ=π

τ=π+Δ
θ=π−Δ

Figure 8. Conformal diagrams of a perturbed de Sitter space. The excess height is represented
by Δ.

The discussion of the previous section made clear that an essential ingredient
in finding a simple, local mapping of boundary data on I− to that on I+ in
dS space was the refocusing of the above null cone precisely at the future
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boundary. Even in that case, we pointed out that the time evolution of the scalar
generically introduces nonlocality in the mapping because the retarded Green’s
function smears a point-like source on I− out over a finite region on I+. Here
we see that in a tall spacetime, a nonlocal map is inevitable since the causal
connection between the past and future boundaries is itself nonlocal. So we
should expect that even in the special cases found to have a local map for pure
dS space, the mapping should become nonlocal for these same theories in a tall
background. That is, for these more general asymptotically dS spacetimes, the
relation between the dual field theory operators defined at each of the boundaries
becomes nonlocal. Hence we are naturally lead to consider a nonlocal self-
duality of the CFT. Further we note that, given the results of Gao and Wald
[68], this would be the generic situation. For example, injecting a single scalar
field quantum into dS space would actually lead to backreaction effects which
would produce a tall spacetime.

7.3 The conformally coupled massless scalar

We now turn to consider conformally coupled massless scalar field theory as
an example which illustrates several of the points discussed above. In particular,
it is an example where the mapping between the past and future boundaries is
local in pure dS space, but becomes nonlocal in a tall background. Another
useful feature is that one can perform explicit calculations in a tall spacetime
without referring to the detailed evolution of the conformal factor C(τ). Rather,
a knowledge of the boundary conditions (69) is sufficient.

The conformally coupled massless scalar corresponds to the curvature cou-
pling ξ = n−1

4n , and m2 = 0 in eq. (38). Hence in pure dS space or in an
asymptotically dS region, M2�2 = (n2 − 1)/4 and the corresponding scaling
exponents (39) become h± = (n± 1)/2, independent of the value of the cos-
mological constant. As one might infer from the real exponents, this field lies
in the complementary series for any value of the cosmological constant. The
remarkable property of this scalar field theory is that the solutions of the wave
equation (37) transform in a simple way under local conformal scalings of the
background metric [60].

The backgrounds of interest (4) are conformally flat12 and therefore the
Green’s function describing the evolution in the tall background is simply the
flat space Green’s function for a massless scalar field, up to some overall time
dependent factors. In particular then, for d even (n odd), the Green’s function
will have support precisely on the light cone. For example, in four-dimensional

12Note that the coordinate transformation T = eτ puts the metric (4) in the form of the flat Milne universe,
up to a conformal factor.
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dS space, the retarded Green’s function can be written as

GR(τ, Ω; τ ′, Ω′) = −sin τ sin τ ′

4π�2
δ(wiw′i − cos(τ ′ − τ)) θ(τ ′ − τ) . (70)

Similarly, in higher even-dimensional dS spaces, the Green’s function will con-
tain δ-functions (and derivatives of δ-functions) with support only on the light
cone [77]. Given this form of the retarded Green’s functions, the evolution of
the scalar field (62) from I− to I+ will produce precisely the antipodal mapping
for all of these cases. Note that this result is confirmed by the mode analysis
in the first part of this section. The conformally coupled massless scalar has
μ = 1/2 and we are considering even dimensions or n odd. This combination
matches one of the special cases in which the modes transformed according to
the antipodal mapping.

Using the conformal transformation properties of the field [60], the analogous
Green’s function for any spacetime of the form (4) is easily constructed. For
d = 4, it may be written as

GR(τ, Ω; τ ′, Ω′) = − 1
4π

1√
C(τ)

√
C(τ ′)

δ(wiw′i − cos(τ ′ − τ)) θ(τ ′ − τ) . (71)

For other even values of d, the corresponding Green’s function has a similar
form. For the conformally coupled scalar in such tall spaces, the delocalization
of the boundary map does not depend on the detailed evolution, i.e., the details
of C(τ). Rather the nonlocality is completely characterized by Δ, the excess
in the range of the conformal time. For example, a source current placed at the
north pole (θ = 0) on I− is smeared over an (n–1)-sphere centered at the south
pole (θ = π) and of angular radius δθ = Δ on I+.

Using eq. (71), we can make this discussion completely explicit for four
dimensions. Consider an arbitrary tall space (4), with n = 3, satisfying the
boundary conditions given in eq. (69). First, with the conformal time coordinate,
the asymptotic boundary conditions (44) for the scalar field at I− become

lim
τ→0

φ(Ω, τ) � φ0+(Ω) τh+ + φ0−(Ω) τh− , (72)

and similarly at I+, we have

lim
τ→π+Δ

φ(Ω, τ) � φ̃0+(Ω) (π + Δ− τ)h+ + φ̃0−(Ω) (π + Δ− τ)h− . (73)

These boundary conditions apply for a general scalar field theory. In the present
case of a conformally coupled massless scalar with n = 3, we have h+ = 2 and
h− = 1. Hence, inserting (71) and (72) into (62), we may evaluate the result at
a point (Ω′, τ ′ = π + Δ− ε) near I+ and compare to eq. (73). The final result
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for the boundary fields on I+ is

φ̃0+(Ω′) =
| sin Δ|
sin Δ

�

�̃

{
sin Δ 〈φ0−〉Δ(JΩ′)− cosΔ 〈φ0+〉Δ(JΩ′)

}
, (74)

φ̃0−(Ω′) =
| sin Δ|
sin Δ

�

�̃

{
cosΔ 〈φ0−〉Δ(JΩ′) + sin Δ 〈φ0+〉Δ(JΩ′) + sin Δ ∂θ〈φ0−〉Δ(JΩ′)

}
,

where J is the antipodal map on the two-sphere and 〈φ0±〉Δ(JΩ′) denote the
average of φ0± on the two-sphere separated from JΩ′ by an angle Δ. The
factors | sinΔ|

sinΔ are to be understood as being continuous from below; i.e., this
factor is −1 at Δ = 0 and +1 at Δ = π.

This expression simplifies tremendously in the case of dS space with Δ = 0
(as well as �̃ = �) to yield

φ̃0+(Ω′) = φ0+(JΩ′) , φ̃0−(Ω′) = −φ0−(JΩ′) . (75)

Thus, in pure four-dimensional dS space, the map from I− to I+ acts on the
conformally coupled massless scalar field as simply the antipodal map on φ0+

and−1 times the antipodal map on φ0−. Note that the time reflection symmetry
of de Sitter allows solutions for the mode functions to be decomposed into even
and odd parts and, furthermore, both even and odd solutions will exist. Thus,
with our conventions, and h± real, when evolution from I− to I+ leads to the
antipodal map it will be associated with a phase z = +1 for one set of modes
and the opposite phase z = −1 for the other.

8. Discussion of dS/CFT

The dS/CFT correspondence is a striking proposal which carries the potential
for extraordinary new insights into cosmology and the cosmological constant
problem. Unfortunately, the outstanding problem remains to find a concrete
example where the bulk gravity theory and the dual field theory are understood
or at least known — see, however, [15]. Lacking the guidance that such a
working model would provide, one is left to study various aspects of physics in
(asymptotically) dS spacetimes from this new point of view and to determine
properties which this correspondence implies for the dual Euclidean CFT.

Such investigations have yielded a number of unusual properties for the dual
field theory. It is likely to be nonunitary, e.g., if the bulk theory involves scalars
in the principal series [5]. A nonstandard inner product is required to reproduce
ordinary quantum field theory in the bulk [11, 47]. One might also observe that
this Euclidean field theory should not simply be a standard Wick rotation of a
conventional field theory since attempting to ‘un-Wick rotate’ would produce
a bulk theory with two time directions and all of the associated confusions. We
may add to this list the observation of section 4.2 that, since bulk correlators are
not symmetric in Lorentzian signature quantum field theory, a straightforward
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duality would require non-symmetric correlation functions in the dual Euclidean
theory. But correlators generated by functional differentiation of a partition
function are always symmetric, so the Euclidean theory could have no definition
through a partition sum. Finally, in the present paper, we have also inferred the
existence of unusual nonlocal dualities within the field theory itself.

Our investigation focussed on the mapping of operators between I+ and I−
provided by time evolution in the bulk spacetime. The essential point is that the
time evolution of the scalar generically introduces nonlocality in the mapping
because the retarded Green’s function smears a point-like source on I− out
over a finite region on I+. However, despite this nonlocal reorganization of
the degrees of freedom within the dual field theory, one reproduces the same
boundary correlators. Hence we referred to this relation as a nonlocal duality
within the field theory. While this nonlocality already applies for many fields
in pure dS space, it seems unavoidable in tall spacetimes because the causal
connection between I+ and I− is inherently nonlocal. We emphasize that
tall spacetimes are quite generic as a result of the theorem in [68]. As soon
as one perturbs dS even slightly by, e.g., the introduction of matter fields or
gravitational waves, the resulting background solution will have the property
that its conformal diagram is taller than it is wide. As the inferred self-duality
is nonlocal, i.e., local operators are mapped to nonlocal operators, it seems that
the underlying field theory does not have a unique concept of locality. That is,
one has a specific dictionary whereby the same short distance singularities can
be reproduced by a set of local or nonlocal operators.

Faced with the daunting task of consolidating all of these unusual characteris-
tics in a single Euclidean field theory, one is tempted to revise the interpretation
of the dS/CFT correspondence. One suggestion [47] is that the duality should
involve two CFT’s and that dS spacetime is defined as a correlated state in the
Hilbert space of the two field theories. The correlated state is constructed so
as to preserve a single SO(n + 1, 1) symmetry group, which is then reflected
in the isometries of the dS space. As discussed in section 7, we still feel that
our experience with the AdS/CFT is highly suggestive that the two boundaries
should not be associated with distinct field theories. Further, it is difficult to
see how this framework could incorporate big bang or big crunch backgrounds
with a single asymptotic dS region. Note that the latter spacetimes will still
give rise to horizons, as well as the associated thermal radiation and entropy.

However, this approach with two CFT’s remains an intriguing suggestion.
Within this context, the mapping of the boundary data between I± would pro-
vide information about correlations in the field theory state. Hence our calcu-
lations would still find application in this context. The nonlocalities discussed
here, while not unnatural, give an indication of the complexity of these corre-
lations.
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We should also remark that, in all of our investigations, we treated only the
time evolution of a free scalar field theory. The mapping of boundary operators
will become even more complex if one was to consider an interacting field
theory. Of course, in accord with the discussion here, we would still expect
that time evolution of the fields or operators in an interacting theory would still
provide the basis for this mapping.

While it is amusing to speculate on such matters, we note that the central
thesis of [78] is that one cannot successfully understand the physics of dS space
within the context of quantum field theory in curved spacetime. It is interesting
to consider how their comments may relate our discussion. Essentially, they
suggest that bulk properties of dS space should be analogous to the physics
in a thermal system with a finite number of states and deduce from this that
the evolution map of linearized quantum field theory should not be trusted in
detail near the past and future boundaries. As a result, they suggest that a
dual theory may not be as local as one might expect by studying limits of bulk
correlation functions in background quantum field theory. The comments of
[79] raise further questions about correlation functions between points with a
large separation in time. In particular, the problematic correlators would include
precisely those between operators on I− and I+. Here the smearing observed
in the tall spacetimes is likely to play a role since, if backreaction is properly
accounted for, even injecting a single scalar field quantum into dS should deform
it to a (slightly) tall spacetime. It may be that the nonlocalities discussed here
may be a hint that the ‘correct physical observables’ are themselves nonlocal13

so that the boundary map would preserve the form of such operators.
Note that there is a certain tension between our strong reliance on time

evolution, through which observables near any two Cauchy surfaces can be
related, and the idea that the bulk evolution is related to a renormalization
group flow in the dual theory [9, 10]. The point is that time evolution naturally
produces a scaling of distances on Cauchy surfaces (at least in simple examples)
and so these surfaces are naturally associated with different distance scales in
the dual theory. However, the time evolution map relating different surfaces is
invertible. In contrast, the usual notion of the renormalization group is actually
that of a semi-group, in which different scales are related by integrating out
modes, i.e., by throwing away short distance details so that the descriptions at
two different scales are not fully equivalent.

To gain some perspective on this issue, we would like to return briefly to the
AdS/CFT case and the interpretation of renormalization group flows. Recall
that the primary assumption is that the relevant asymptotically AdS spacetime is
in fact dual to the vacuum of some field theory. The important point is that one

13Similar implications can be drawn from the finite time resolution discussed in [80].
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begins by placing the entire spacetime in correspondence with the vacuum of
some single theory. One then uses the IR/UV connection to argue that different
regions of the bulk spacetime are naturally related to different energy regimes in
the dual theory. The suggestion that this description at differing energy scales
is somehow connected to a renormalization group flow seems natural and, in
that context, there was no evolution map relating the inner and outer regions to
provide such an obvious tension.

In the present dS/CFT context, such a tension does exist. However, the
more primitive association of different parts of the spacetime with the behavior
of the field theory at differing energy scales still seems plausible. A more
concrete version of this idea is suggested by the behavior of the bulk evolution
map itself. As we have seen, the evolution map from t to t′ ‘coarse grains’
the observables on t′ in the sense that the theory is now presented in terms of
variables (those that are local at time t) which are nonlocal averages over the
intersection of past light cones from time t with the original hypersurface at t′.
However, a sufficient number of overlapping coarse grainings are considered
so that no information is lost. Such a procedure can also be performed in a
Euclidean field theory and one might speculate that keeping only the simplest
terms in the resulting action might bear some similarity to those obtained from
more traditional renormalization group methods. This would be in keeping
with the identification of a c-function [2, 9, 10] in which a spacetime region is
associated with a copy of de Sitter space by considering only the metric and
extrinsic curvature on a hypersurface.

Note that this interpretation readily allows us to run our flow both ‘forward’
(toward the IR) and ‘backward’ (toward the UV). However, it is far from clear
that the coarse graining procedure is unique. This fits well with the interpretation
suggested in [2] for ‘renormalization group flow spacetimes’ with spherical
homogeneity surfaces. There, one naturally considers two UV regions (one at
I− and one at I+) which both ‘flow’ to the same theory at some minimal sphere
where the two parts of the spacetime join. One simply reads the flow as starting
in the UV, proceeding toward the IR, but then reversing course. Interestingly,
it is possible to arrive at a different UV theory from which one began. Such
an odd state of affairs is more natural when one recalls that we have already
argued that the theory must possess a nonlocal duality, so that, in fact, it has
two distinct local descriptions.

In any event, the c-theorem suggests that the effective number of degrees
of freedom in the CFT increases in a generic solution, as it evolves toward an
asymptotically dS regime in the future. We would like to point out, however, that
this does not necessarily correspond to the number degrees of freedom acces-
sible to observers in experiments. Here we are thinking in terms of holography
and Bousso’s entropy bounds [34]. Consider a four-dimensional inflationary
model with k=0 and consider also the causal domain relevant for an experiment
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beginning at t=−∞ and ending at some arbitrary time t=to. For a sufficiently
small to, it is not hard to show that the number of accessible states is given
by 3π/GΛinitial. Naively, one expects that this number of states will grow to
3π/GΛfinal as to → ∞. However, this behavior is not universal. It is not
hard to construct examples [2] where, in fact, the initial cosmological constant
still fixes the number of accessible states for arbitrarily large to. This behavior
arises because the apparent horizon is spacelike in these geometries. Hence, in
such models, the number of degrees of freedom required to describe physical
processes throughout a given time slice grows with time, while the number of
states that are accessible to experimental probing by a given physicist remains
fixed.

This discussion reminds us of the sharp contrast in the ‘degrees of freedom’
in the dS/CFT duality [5] and in the Λ-N correspondence [7, 38]. In the Λ-N
framework, the physics of asymptotically de Sitter universes is to be described
by a finite dimensional space of states. This dimension is precisely determined
as the number of states accessible to probing by a single observer. (The latter
is motivated in part by the conjecture of black hole complementary [37].) In
contrast, in the dS/CFT context, one would expect that a conformal field theory
with a finite central charge should have an infinite dimensional Hilbert space,14

and that these states are all involved in describing physical phenomena across
entire time slices. Further, as shown above, the central charge, while a measure
of number of degrees of freedom on a given time slice, need not be correlated
with the number of states experimentally accessible to observers on that slice.
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Appendix: Scalar field modes in dS space
In this appendix, we present a detailed analysis of the bulk physics of massive scalar fields

propagating in a dS space of arbitrary dimension, emphasizing characteristics of their evolution

14Though this infinity might perhaps be removed if one imposes, as described in [6], that the conformal
generators vanish on physical states.
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which should be relevant to the proposed dS/CFT correspondence. Our aim is to characterize
fully the mode mixing phenomenon inherent to physics in dS space. While the details of this
analysis are readily available in the literature for the modes of the principal series (see, for
example, ref. [11]), we did not find explicit accounts of the complementary and discrete series.

Field equation and asymptotic behavior
The spherical foliation of (n+1)-dimensional dS space is given by the metric

ds2 = −dt2 + cosh2 t dΩ2
n , (A.1)

where in this appendix we set the dS radius to unity (� = 1). We consider a massive scalar field
propagating in this background according to[

� − M2]φ(x) = 0 . (A.2)

It is convenient to write the solutions to eq. (A.2) in the form

φ(x) = yL(t) YLj(Ω) , (A.3)

where the YLj’s are spherical harmonics on the n-sphere satisfying

∇2YLj = −L(L + n − 1)YLj , (A.4)

where ∇2 is the standard Laplacian on the n-sphere. The differential equation for yL(t) is then

ÿL + n tanh t ẏL +

[
M2 +

L(L + n − 1)

cosh2 t

]
yL = 0 . (A.5)

As discussed in section 2.2, of particular relevance to the dS/CFT correspondence is the behavior
of the scalar field near the boundaries I+ and I− as t → ±∞. In these limits, eq. (A.5) becomes

ÿL ± nẏL + M2yL = 0 , (A.6)

which implies that

lim
t→−∞

yL ∼ eh±t , lim
t→+∞

yL ∼ e−h±t , (A.7)

where the weights h± are defined by

h± =
n

2
±
√

n2

4
− M2 ≡ n

2
± μ . (A.8)

Formally, one may classify such a scalar field according to the irreducible representations
of SO(n + 1, 1), the isometry group of de Sitter space, which are labelled by the eigenvalues
associated with the Casimir operator15 Q = �, which simply corresponds to the mass parameter
M2. The principal series is defined by the inequality M2 > n2/4. In this case, the weights

15In fact, there are two coordinate invariant Casimir operators associated with the de Sitter isometry group
but only one is relevant in characterizing massive scalar fields. The other Casimir operator automatically
vanishes for all spin-zero fields but may play a role in the classification of higher spin representations
[81]. Another interesting formal question is the behavior of these representations in the limit where the
cosmological constant is taken to zero. A complete treatment of representation contraction in de Sitter space
can be found in ref. [82].
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h± have an imaginary part, and the corresponding modes, while still being damped near the
boundaries, have an oscillatory behavior in the bulk. For the complementary series, the effective
mass falls in the range 0 < M2 ≤ n2/4. As will be made more explicit later, the modes are
non-oscillatory asymptotically in this case since both h± are real quantities. The remaining
discrete series corresponds to M2 < 0. This last condition means that h− < 0 (and h+ > n),
which implies that the tachyonic fields scaling like yL ∼ e∓h−t are growing without bound as
one approaches I±. Still, one is able to find ‘normalizable’ modes in a certain limited number
of cases, as will be discussed below.

The case of M2 = 0, i.e., a massless scalar field, is interesting and deserves further comment.
One finds that in this case it is impossible to construct a vacuum state which is invariant under
the full de Sitter group SO(n + 1,1). A great deal of discussion about the peculiar nature of this
quantum field theory can be found in the literature [83, 84, 63]. The weights associated with the
M2 = 0 field are h+ = n and h− = 0. Dual to the latter, there should be a marginal operator
in the CFT, i.e., a deformation which does not scale under conformal transformations.

To fully solve eq. (A.5), we make the change of variables

yL(t) = coshLt e(L+ n
2 +μ)tgL(t) . (A.9)

Setting σ = −e2t, this equation for the time-dependent profile takes the form of the hypergeo-
metric equation:

σ(1 − σ)g′′ + [c − (1 + a + b)σ] g′ − abg = 0 , (A.10)

where a ‘prime’ denotes a derivative with respect to σ and the coefficients are

a = L +
n

2
, b = L +

n

2
+ μ , c = 1 + μ . (A.11)

The two independent solutions can then be expressed in terms of hypergeometric functions,

yL+(t) = N+ coshLt e(L+h+)tF (L +
n

2
, L + h+; 1 + μ;−e2t) , (A.12)

yL−(t) = N− coshLt e(L+h−)tF (L +
n

2
, L + h−; 1 − μ;−e2t) , (A.13)

where N± are normalization constants, which will be fixed below. More specifically, we have
here chosen the two linearly independent solutions of eq. (A.10) in the neighborhood of the
singular point −e2t = 0 [85], which corresponds to one of the two limits of interest, i.e., t →
−∞. Following eq. (A.3), we denote the complete mode functions as φL± = yL±(t)YLj(Ω).

One important aspect of the time evolution of the scalar field in the bulk is the mode mixing
that occurs between the two boundaries, I±. For example, this would be related to particle
production in the dS space [11, 63, 64, 65]. In the following, we emphasize the differences
between the principal, complementary and discrete series.

Principal series
The principal series is frequently discussed in the physics literature, e.g., [11, 63, 64, 65], and

would seem to be the most relevant case for the particle spectrum observed in nature. We review
some of the salient points here for comparison with the other representations in the following
subsection. For the principal series, it is useful to introduce ω ≡ −iμ. Then the above modes
become

yL−(t) =
2L+(n−1)/2

√
ω

coshLt e(L+ n
2 −iω)tF (L +

n

2
, L +

n

2
− iω; 1 − iω;−e2t) ,(A.14)
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yL+(t) =
2L+(n−1)/2

√
ω

coshLt e(L+ n
2 +iω)tF (L +

n

2
, L +

n

2
+ iω; 1 + iω;−e2t) ,(A.15)

where y∗
L−(t) = yL+(t). Here the normalization constants have been fixed by imposing

(φL+, φL+) = 1 = (φL−, φL−), as usual, with the standard Klein-Gordon inner product
[60]. As emphasized above, these solutions have the simple time-dependence of eq. (A.7) in the
asymptotic region t → −∞ near I−. Because the differential equation (A.5) is invariant under
t → −t, one can easily define another pair of linearly independent solutions by applying this
transformation to the above modes. We label the resulting modes yL

−(t) and yL
+(t) = yL

−∗(t)
where

y−(t) = y∗
+(−t) . (A.16)

It readily follows that yL
− ∼ e−h−t and yL

+ ∼ e−h+t near I+. The two sets of modes yL±(t)
and yL

±(t) can respectively be used to construct the ‘in’ and ‘out’ vacua with no incoming
and outgoing particles. The Bogolubov coefficients relating these two sets of modes are defined
through

yL−(t) = C−
− (ω) e−2iθL yL

−(t) + C+
−(ω) yL

+(t) , (A.17)

with a similar expression for yL+ (with C+
+ (ω) = C−

− (ω) and C−
+ (ω) = C+

−(ω)). When n
is even [11], one finds that C−

− (ω) = 1 and C+
−(ω) = 0. This corresponds to the physical

statement that there is no particle creation (no mode mixing) in dS space for an odd number of
spacetime dimensions. For n odd, there is nontrivial mode mixing with

C−
− (ω) = coth πω , C+

−(ω) = (−1)
n+1

2
1

sinh πω
, (A.18)

where |C−
− (ω)|2 − |C+

−(ω)|2 = 1 holds since the modes are properly normalized throughout
their evolution. The expression for the phase in eq. (A.17) is

e−2iθL = (−1)L− n
2

Γ(−iω)Γ(L + n
2

+ iω)

Γ(iω)Γ(L + n
2
− iω)

. (A.19)

It is clear that, for large enough ω, the mixing coefficient C+
−(ω) becomes negligible, which is in

accord with the intuition that there will be limited particle production in high energy modes. We
will find that in the other two series there is no phase comparable to eq. (A.19). This complicates
the expressions for mode mixing between the boundaries and will lead to interesting features.

Complementary series and tachyonic fields
For the modes of both the complementary and the tachyonic series, the weights h+ and h−

are real and so the above mode functions are entirely real,

yL+(t) = N̄+ coshLt e(L+ n
2 +μ)tF (L +

n

2
, L +

n

2
+ μ; 1 + μ;−e2t) , (A.20)

yL−(t) = N̄− coshLt e(L+ n
2 −μ)tF (L +

n

2
, L +

n

2
− μ; 1 − μ;−e2t) . (A.21)

Hence, with respect to the usual Klein-Gordon product, these two solutions have zero norm, i.e.,
(φL+, φL+) = 0 = (φL−, φL−).

Of course, this is not unnatural. One gains intuition by considering the usual plane wave
decomposition in flat spacetime. There, one may choose between two bases, the one involving



296 LECTURES ON QUANTUM GRAVITY

complex exponentials and the one involving cosines and sines. The latter basis in fact has the same
characteristics as the present modes, in the complementary series, in terms of normalization with
respect to the Klein-Gordon inner product. Consequently, to define a reasonable normalization
for the mode functions (A.20) and (A.21), we require (φL−, φL+) = i and

N̄+ =
2L+ n−1

2√
μ

= N̄− , (A.22)

where we have resolved the remaining ambiguity by simply demanding that N̄+ = N̄−. With
this choice of normalization, it is clear that upon quantizing the scalar field in the dS background
the corresponding mode coefficients will have commutation relations analogous to those of
coordinate and momentum operators, rather than raising and lowering operators.

As in the previous subsection, by substituting t → −t, we define modes yL
±(t) ≡ yL±(−t)

which have the simple time-dependence of eq. (A.7) in the asymptotic region approaching I+.
Using a simple identity of hypergeometric functions [85], one can relate the two sets of modes
as

yL−(t) = C̄−
− (μ) yL

−(t) + C̄+
−(μ) yL

+(t) ,

yL+(t) = C̄−
+ (μ) yL

−(t) + C̄+
+ (μ) yL

+(t) , (A.23)

where the elements of the mixing matrix C (the Bogolubov coefficients) are given by

C̄+
−(μ) =

Γ(1 − μ)Γ(−μ)

Γ( 2−n
2

− μ − L)Γ(n
2
− μ + L)

, C̄−
− (μ) = −(−1)L sin(π n

2
)

sin πμ
, (A.24)

C̄−
+ (μ) = − Γ(1 + μ)Γ(μ)

Γ( 2−n
2

+ μ − L)Γ(n
2

+ μ + L)
, C̄+

+ (μ) = −(−1)L sin(π n
2

)

sin πμ
. (A.25)

We now describe some features of the resulting mode mixing for the complementary series. In
this case, recall that 0 < M2 ≤ n2/4, which implies that 0 ≤ μ < n/2. Of course, certain
features depend on the spacetime dimension n+1 as before:
a) n odd: Generically for the case of an even spacetime dimension, there is nontrivial mode
mixing. An exception occurs for μ = (2m + 1)/2, with m a positive integer. For these
special cases, there is no mixing, since C̄+

− = 0 = C̄−
+ and one finds that C̄−

− = C̄+
+ =

(−1)
n
2 +μ(−1)L.

b) n even: Generically for this case of an odd number of spacetime dimensions, one finds
C̄+

+ = 0 = C̄−
− and C̄+

− C̄−
+ = −1 (where C̄+

− and C̄−
+ both have a nontrivial dependence

on L). This means that a mode that is scaling like eh±t on I− will have the ‘opposite’ scaling
e−h∓t on I+. We refer to this phenomenon as ‘maximal mixing’. This phenomenon is absent
when μ is an integer. This case must be treated with some care as the solution for yL− appearing
in eq. (A.21) breaks down.16 The correct solution [85] has an additional logarithmic singularity
near I−, i.e., , subdominant power law behavior in t. In any event, the final result for n even
and μ integer is: C̄−

− = C̄+
+ = (−1)

n
2 +μ+1(−1)L and C̄+

− = 0 = C̄−
+ .

Finally we briefly consider the tachyonic or discrete series [62]. Recall that in this case
M2 < 0, so that h− < 0 and the modes scaling as e±h−t diverge as one approaches either I−

or I+, depending on the sign of the exponent. Generically there is nontrivial mode mixing and
so even if a mode is convergent at one asymptotic boundary it will be divergent at the opposite

16Similar remarks apply for n odd and μ integer, but in that case one still finds nontrivial mode mixing.
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boundary. However, an interesting exceptional case is when a yL+ mode (scaling like eh+t as
t → −∞) evolves to the corresponding yL

+ mode (with e−h+t behavior for t → ∞). Such
a mode would have convergent behavior towards both the future and past boundaries. This
behavior would result when C̄−

+ vanishes. A brief examination of eq. (A.25) shows that this
requires that 1 + |h−| − L is zero or a negative integer. As above, this constrains μ to be an
integer or half-integer, depending on the spacetime dimension. We express this constraint, in
terms of the (tachyonic) mass, as17

−M2 =

{ 1
4
((2m + 1)2 − n2) for n odd with m = (n − 1)/2, (n + 1)/2, . . .

m2 − n2

4
for n even with m = n/2, n/2 + 1, . . .

(A.26)

However, the above constraint is not sufficient; rather we must also impose a constraint on the
‘angular momentum’ quantum number L, namely,

L ≥ 1 + |h−| . (A.27)

Hence the completely convergent modes only appear for sufficiently large angular momenta.
Note that it is still true that, using the usual Klein-Gordon inner product, these modes have a
vanishing norm (φL+, φL+) = 0. However, in the mathematics literature (e.g., [62]), these
modes are singled out by having finite norm in the sense given by the spacetime integral:∫

dn+1x
√−g |φL+|2 = 1.

This construction shows that even in the tachyonic mass range, one can find certain normal-
izable modes (in the above sense) for special choices of parameters. However, we reiterate that
while these formal results for the discrete series may be interesting mathematically, they are not
useful in understanding the physics of dS space. As emphasized above, in the discussion of the
dS/CFT correspondence, one must consider the full space of solutions, and presently even in the
exceptional cases, the normalizable modes are accompanied by modes diverging at both asymp-
totic boundaries. Thus, the normalizable modes do not form a complete set of modes on a Cauchy
surface. Such divergences, which occur in the generic case as well, are simply an indication that
a linearized analysis of tachyonic fields is inappropriate. Of course, nonlinear field theories with
potentials including unstable (or metastable) critical points may play an important role in the
paradigm of inflationary cosmology, and such theories can produce interesting asymptotically
dS spacetimes [2]. Our point here is simply that one should consider the full nonlinear evolution
of such fields, including their backreaction on the spacetime geometry.
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Abstract These are some notes in lieu of the lectures I was scheduled to give, but had to
cancel at the last moment. In some places, they are more complete, in others
much less so, regrettably. I hope they at least give a feel for the subject and
convey some of the excitement felt at the moment by those of us working on it.

An extensive set of references and a glossary of terms can be found at the end
of the notes. For a philosophically oriented discussion of some of the background
to the causal set idea, see reference [1]. For general background see [2] [3] [4]
[5] [6] [7].

1. Introduction

It seems fair to say that causal set theory has reached a stage in which ques-
tions of phenomenology are beginning to be addressed meaningfully. This wel-
come development is due on one hand to improved astronomical observations
which shed light on the magnitude of the cosmological constant (in apparent
confirmation of a long-standing prediction of the theory) and on the other hand
to theoretical advances which for the first time have placed on the agenda the
development of a quantum dynamical law for causal sets (and also for a scalar
field residing on a background causal set). What we have so far are: (i) an
apparently confirmed order of magnitude prediction for the cosmological con-
stant; (ii) a method of counting black hole horizon “states” at the kinematical
level; (iii) the beginnings of a framework in which two-dimensional Hawking
radiation can be addressed; (iv) a classical causal set dynamics which arguably
is the most general consistent with the discrete analogs of general covariance
and relativistic causality; and in consequence of this, both (v) the formulation
of a “cosmic renormalization group” which indicates how one might in prin-
ciple solve some of the large number puzzles of cosmology without recourse
to a post-quantum era of “inflation”; and (vi) a hint of how non-gravitational
matter might arise at the fundamental level from causal sets rather than having
to be added in by hand or derived at a higher level à la Kaluza-Klein from
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an effective spacetime topology arising from the fundamental structures via
coarse-graining. In addition, a good deal of computer code has been written for
use in causal set simulations, including a library of over 5000 lines of Lisp code
that can be used by anyone with access to the Emacs editor. At present, the
principal need, in addition to fleshing out the developments already outlined,
is for a quantum analog of the classical dynamics alluded to above. It looks as
if a suitable quantum version of Bell causality (see below) could lead directly
to such a dynamics, that is to say, to a theory of quantum spacetime, and in
particular to a theory of quantum gravity.

The remainder of these notes rapidly reviews the subject in its current state,
progressing broadly from kinematics to dynamics to phenomenology. Although
this sequence does not always reflect exactly the chronological development of
the theory, it is not far off, and it also fits in well with Taketani’s “3-stages”
schema of scientific discovery [8].

2. Origins of the causet idea

The tradition of seeing the causal order of spacetime as its most fundamental
structure is almost as old as the idea of spacetime itself (in its Relativistic form).
In [9], Robb presented a set of axioms for Minkowski space analogous to Eu-
clid’s axioms for plane geometry. In so doing, he effectively demonstrated that,
up to an overall conformal factor, the geometry of 4-dimensional flat spacetime
(which I’ll denote by M

4, taken always with a definite time-orientation) can
be recovered from nothing more than the underlying point set and the order
relation ≺ among points (where x ≺ y ⇐⇒ the vector from x to y is time-
like or lightlike and future-pointing). Later, Reichenbach [10] from the side
of philosophy and Zeeman [11] from the side of mathematics emphasized the
same fact, the latter in particular by proving the theorem, implicit in [9], that
any order-isomorphism of M

4 onto itself must — up to an overall scaling —
belong to the (isochronous) Poincaré group.

In a certain sense, however, these results appear to say more than they really
do. Informally, they seem to tell us that M

4 can be reconstructed from the
relation ≺, but in actually carrying out the reconstruction (see below), one
needs to know that what one is trying to recover is a flat spacetime and not
just a conformally flat one. Clearly, there’s nothing in the relation ≺ per se
which can tell us that. This difficulty shows itself, in a sense, in the failure of
Zeeman’s theorem for M

2 and M
1 (i.e. 1+1 and 0+1 dimensional Minkowski

space). But it shows up still more clearly with the curved spacetimes of General
Relativity, where the natural generalization of the flat space theorems is that
a Lorentzian geometry M can be recovered from its causal order only up to a
local conformal factor.
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Notice that when one says that a Lorentzian manifold M is recovered, one
is talking about all the mathematical structures that go into the definition of
a spacetime geometry: its topology, its differential structure and its metric.
Various special results show how to recover, say, the topology (see e.g. [12])
but the most complete theorems are those of [13] and [14], the latter delineating
very precisely how close M can come to violating causality without the theorem
breaking down.

The upshot of all these reconstruction theorems is that, in the continuum,
something is lacking if we possess only the causal order, namely the conformal
factor or equivalently the “volume element”

√−g d4x. On the other hand, if
we do give the volume element (say in the form of a measure μ on M ) then
it is clear that metric gab will be determined in full. The causal order alone,
however, is — in the continuum — incapable of furnishing such a measure.

This failing is perhaps one reason to question the reality of the continuum,
but of course it is not the only one. In modern times, doubts show up clearly
in Riemann’s inaugural lecture (Habilitationsschrift) [15], where he contrasts
the idea of what he calls a discrete manifold with that of a continuous mani-
fold, which latter he takes to be a relatively unfamiliar and unintuitive idea in
comparison with the former! The most evocative quotes from this lecture are
perhaps the following:

Grössenbegriffe sind nur da möglich, wo sich ein allgemeiner Begriff vorfindet,
der verschiedene Bestimmungsweisen zulässt. Je nachdem unter diesen Bes-
timmungsweisen von einer zu einer andern ein stetiger Übergang stattfindet oder
nicht, bilden sie eine stetige oder discrete Mannigfaltigkeit; die enzelnen Bestim-
mungsweisen heissen im ersten Falle Punkte, im letzten Elemente dieser Man-
nigfaltigkeit. (p.273)

or in translation,1

Concepts of magnitude are only possible where a general concept is met with
that admits of different individual instances [Bestimmungsweisen]. According
as, among these individual instances, a continuous passage from one to another
takes place or not, they form a continuous or discrete manifold; the individual
instances are called in the first case points, in the second elements of the manifold;

Die Frage über die Gültigkeit der Voraussetzungen der Geometrie im Unendlichk-
leinen hängt zusammen mit der Frage nach dem innern Grunde der Massverhältnisse
des Raumes. Bei dieser Frage, welche wohl noch zur Lehre vom Raume gerech-
net werden darf, kommt die obige Bemerkung zur Anwendung, dass bei einer
discreten Mannigfaltigkeit das Princip der Massverhältnisse schon in dem Be-
griffe dieser Mannigfaltigkeit enthalten ist, bei einer stetigen aber anders woher
hinzukommen muss. Es muss also entweder das dem Raume zu Grunde liegende
Wirkliche eine discrete Mannigfaltigkeit bilden, oder der Grund der Massverhältnisse
ausserhalb, in darauf wirkenden bindenden Kräften, gesucht werden.

1These translations are not guaranteed, but they’re a lot better than what “Google” did (try it for fun!).
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or in translation,
The question of the validity of the presuppositions of geometry in the infinitely
small hangs together with the question of the inner ground of the metric rela-
tionships of space. [I almost wrote “spacetime”!] In connection with the latter
question, which probably [?] can still be reckoned to be part of the science
of space, the above remark applies, that for a discrete manifold, the principle
of its metric relationships is already contained in the concept of the manifold
itself, whereas for a continuous manifold, it must come from somewhere else.
Therefore, either the reality which underlies physical space must form a discrete
manifold or else the basis of its metric relationships must be sought for outside
it, in binding forces [bindenden Kräfte] that act on it;

and finally,
Bestimmte, durch ein Merkmal oder eine Grenze unterschiedene Theile einer
Mannigfaltigkeit heissen Quanta. Ihre Vergleichung der Quantität nach geschieht
bei den discreten Grössen durch Zählung, bei den stetigen durch Messung. (p.274)

or in translation,
Definite portions of a manifold, distinguished by a criterion [Merkmal] or a
boundary, are called quanta. Their quantitative comparison happens for discrete
magnitudes through counting, for continuous ones through measurement.

With the subsequent development of physics, more compelling reasons emerged
for questioning the continuum, including the singularities and infinities of Gen-
eral Relativity, of Quantum Field Theory (including the standard model), and
of black hole thermodynamics. Einstein, for example, voiced doubts of this
sort very early [16]:

But you have correctly grasped the drawback that the continuum brings. If
the molecular view of matter is the correct (appropriate) one, i.e., if a part of
the universe is to be represented by a finite number of moving points, then the
continuum of the present theory contains too great a manifold of possibilities. I
also believe that this too great is responsible for the fact that our present means
of description miscarry with the quantum theory. The problem seems to me
how one can formulate statements about a discontinuum without calling upon a
continuum (space-time) as an aid; the latter should be banned from the theory
as a supplementary construction not justified by the essence of the problem,
which corresponds to nothing “real”. But we still lack the mathematical structure
unfortunately. How much have I already plagued myself in this way!

and at a later stage stresseindentd the importance of the causal order in this con-
nection, writing [17] that it would be “especially difficult to derive something
like a spatio-temporal quasi-order” from a purely algebraic or combinatorial
scheme.

The causal set idea is, in essence, nothing more than an attempt to combine
the twin ideas of discreteness and order to produce a structure on which a theory
of quantum gravity can be based. That such a step was almost inevitable is indi-
cated by the fact that very similar formulations were put forward independently
in [4], [5] and [2], after having been adumbrated in [18]. The insight under-
lying these proposals is that, in passing from the continuous to the discrete,
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one actually gains certain information, because “volume” can now be assessed
(as Riemann said) by counting; and with both order and volume information
present, we have enough to recover geometry.

In this way the topology, the differential structure and, the metric of contin-
uum physics all become unified with the causal order (much as mass is unified
with energy in Special Relativity). Moreover the Lorentzian signature (namely
(− + ++) in 4 dimensions) is singled out as the only one compatible with a
consistent distinction between past and future, hence the only one that can make
contact with the idea of causal order. indent

indent
To see how these basic ideas work themselves out, we need first a more

precise statement of what a causal set is.

3. What is a causal set?

As a mathematical structure, a causal set (or causet for short) is simply a
locally finite ordered set. In other words, it is a set C endowed with a binary
relation ≺ possessing the following three properties:

(i) transitivity: (∀x, y, z ∈ C)(x ≺ y ≺ z ⇒ x ≺ z)

(ii) irreflexivity: (∀x ∈ C)(x �≺ x)

(iii) local finiteness: (∀x, z ∈ C) (card {y ∈ C |x ≺ y ≺ z} <∞)

where ‘card’ stands for “cardinality”.In the presence of transitivity, irreflexivity
automatically implies acyclicity, i.e. the absence of cycles x0 ≺ x1 ≺ x2 ≺
· · · ≺ xn = x0, and this is often taken as an axiom in place of (ii). The
condition (iii) of local finiteness is a formal way of saying that a causet is
discrete. Thus the real number line, for example does not qualify as a causet,
although it is a partial order.2

A structure satisfying the above axioms can be thought of as a graph, and in
this sense is conveniently represented as a so-called Hasse diagram in which
the elements of C appear as vertices and the relations appear as edges. (The
sense of the relation is usually shown, just as in the spacetime diagrams of
Relativity theory, by making the line between x and y be a rising one when
x ≺ y.) Actually, it is not necessary to draw in all the relations, but only those
not implied by transitivity (the “links”), and this convention is almost always
adopted to simplify the appearance of the diagram. A causet can also be thought
of as a matrix M (the “causal matrix”) with the rows and columns labeled by

2The above definition utilizes indentthe so called “irreflexive convention” that no element precedes itself.
Axioms (i) and (ii) define what is variously called an “order”, a “partial order”, a “poset”, an “ordered set”
or an “acyclic transitive digraph”. Axiom (iii), which expresses the condition of local finiteness, can also
be stated in the form “every order-interval has finite cardinality”.
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the elements of C and with the matrix element Mjk being 1 if j ≺ k and 0
otherwise. Perhaps, however, the most suggestive way to think of a causet
for the purposes of quantum gravity is as a relation of “descent”, effectively
a family tree that indicates which of the elements C are “ancestors” of which
others.

The multiplicity of imagery associated with causets (or partial orders more
generally) is part of the richness of the subject and makes it natural to use
a variety of language in discussing the structural relationships induced by the
basic order relation≺. Thus, the relationship x ≺ y itself, is variously described
by saying that x precedes y, that x is an ancestor of y, that y is a descendant
of x, or that x lies to the past of y (or y to the future of x). Similarly, if x is an
immediate ancestor of y (meaning that there exists no intervening z such that
x ≺ z ≺ y) then one says that x is a parent of y, or y a child of x, or that y
covers x, or that x ≺ y is a link. (See the glossary.)

Still other interpretations of the relation≺ are possible and can also be useful.
For example a causet of finite cardinality is equivalent to a T0 topological space
of finite cardinality, allowing one to use the language of topology in talking
about causets (which indeed may turn out to have more than just a metaphorical
significance). A causet can also be treated as a function by identifying C with
the function ‘past’ that associates to each x ∈ C the set past(x) of all its
ancestors, and this is in fact the representation on which the Lisp code of [19]
is based.

For the purposes of quantum gravity, a causal set is, of course, meant to be the
deep structure of spacetime. Or to say this another way, the basic hypothesis is
that spacetime ceases to exist on sufficiently small scales and is superseded by
an ordered discrete structure to which the continuum is only a coarse-grained,
macroscopic approximation.

Now, at first sight, a structure based purely on the concept of order might seem
to be too impoverished to reproduce the geometrical and topological attributes in
terms of which general relativistic spacetime is normally conceived. However,
if one reflects that light cones can be defined in causal terms and that (in the
continuum) the light cones determine the metric up to a conformal rescaling,
then it becomes understandable that (given minimal regularity conditions like
the absence of closed causal curves) the causal order of a Lorentzian manifold
(say J+ in the usual notation) captures fully the conformal metric, as well as the
topology and the differential structure. The volume element

√−gdnx cannot
be recovered from J+, but in the context of a discrete order, it can be obtained
in another way — by equating the number of causet elements to the volume of
the corresponding region of the spacetime continuum that approximates C. As
discussed above, these observations provide the kinematical starting point for
a theory of discrete quantum gravity based on causal sets. The dynamics must
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then be obtained in the form of a “quantum law of motion” for the causet. Let
us consider the kinematics further.

4. Causal set kinematics in general

Both the study of the mathematics of causets for its own sake and its study
for the sake of clarifying how the geometrical and topological properties of a
continuous spacetime translate into order properties of the underlying causet
can be regarded as aspects of causal set kinematics: the study of causets without
reference to any particular dynamical law.

A large amount is known about causet kinematics as a result of extensive
work by both physicists and mathematicians. (See for example [20] [21] [22]
[23] [24] [25] [26] [27].) (Some of the mathematicians were directly influenced
by the causal set idea, others were studying ordered sets for their own reasons.)
We know for example, that the length of the longest chain3 provides a good
measure of the proper time (geodesic length) between any two causally related
elements of a causet that can be approximated by a region of Minkowski space
[28]. And for such a causet, we also possess at least two or three good dimension
estimators, one of which is well understood analytically [29].

The next few sections are devoted to some of these topics.

5. “How big” is a causet element?

Of course the question is badly worded, because a causet element has no
size as such. What it’s really asking for is the conversion factor v0 for which
N = V/v0. Only if we measure length in units such that v0 ≡ 1 can we express
the hypothesis that number=volume in the form N = V . On dimensional
grounds, one naturally expects v0 ∼ (G�)2 [where I’ve taken c ≡ 1]. But we
can do better than just relying on dimensional analysis per se. Consider first
the entropy of a black hole horizon, which is given by S = A/4G� = 2πA/κ,
with κ = 8πG, the rationalized gravitational constant. This formula suggests
forcefully that about one bit of entropy belongs to each horizon “plaquette”
of size κ�, and that the effectively finite size of these “plaquettes” reflects
directly an underlying spacetime discreteness. Consideration of the so called
entanglement entropy leads to the same conclusion, namely that there exists an
effective “ultraviolet cutoff” at around l =

√
κ�. [30]

A related but less direct train of thought starts by considering the gravitational
action-integral 1

2κ

∫
RdV . Here the “coupling constant” 1/2κ is an inverse

length2 and conventional Renormalization Group wisdom suggests that, barring
any “fine tuning”, the order of magnitude of such a coupling constant will be set
by the underlying “lattice spacing”, or in this case, the fundamental discreteness

3The term ‘chain’ is defined in the glossary.
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scale, leading to the same conclusion as before that l ≡ (v0)1/4 is around
l =
√

κ� ∼ 10−32cm.
A noteworthy implication of the formula l ∼ √κ� is that l→ 0 if �→ 0

(κ being fixed). That is, the classical limit is necessarily a continuum limit:
spacetime discreteness is inherently quantal.

6. The reconstruction of M
4

In order to get a better feel for how it is that “geometry = order + number”,
it is useful to work through the reconstruction — in the continuum — of M

4

from its causal order and volume-element. The proof can be given in a quite
constructive form which I’ll only sketch here.

We start with a copy M of M
4 and let ≺ be its causal order. We construct

in turn: light rays l, null 3-planes, spacelike 2-planes, spacelike lines, arbitrary
2-planes, arbitrary lines, parallel lines, parallelograms, vectors. Once we have
vector addition (affine structure) it is easy to get quadratic forms and in particular
the flat metric ηab. (The normalization of ηab uses the volume information.)

You may enjoy working these constructions out for yourself, so I won’t give
them all here. At the risk of spoiling your fun however, let me give just the first
two, which perhaps are less straightforward than the rest. We define a light ray
l to be a maximal chain such that ∀x, y ∈ l, interval(x, y) is also a chain; and
from any such l we get then the null hyperplane N(l) = l ∪ l�, where l� is the
set of all points of M spacelike to l.

7. Sprinkling, coarse-graining, and the
“Hauptvermutung”

A basic tenet of causet theory is that spacetime does not exist at the most
fundamental level, that it is an “emergent” concept which is relevant only to the
extent that some manifold-with-Lorentzian-metric M furnishes a good approx-
imation to the physical causet C. Under what circumstances would we want
to say that this occurred? So far the most promising answer to this question is
based on the concepts of sprinkling and coarse-graining.

Given a manifold M with Lorentzian metric gab (which is, say, globally
hyperbolic) we can obtain a causal set C(M) by selecting points of M and
endowing them with the order induced from that of M (where in M , x ≺ y
iff there is a future causal curve from x to y). In order to realize the equality
N = V , the selected points must be distributed with unit density in M . One
way to accomplish this (and conjecturally the only way!) is to generate the
points of C(M) by a Poisson process. (To realize the latter, imagine dividing
M up into small regions of volume ε and independently putting a point into
each region with probability ε. In the limit ε→ 0 this is the Poisson process
of unit intensity in M .) Let us write M ≈ C for the assertion that M is a
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good approximation to C. The idea then is that M ≈ C if C “might have been
produced by a sprinkling of M” (in a sense to be specified more fully below).

It’s important here that the elements of C(M) are selected at random from
M . In particular, this fact is an ingredient in the heuristic reasoning leading to
the prediction of a fluctuating cosmological constant (see below). But such a
kinematic randomness might seem gratuitous. Wouldn’t a suitable regular em-
bedding of points into M yield a subset that was equally uniformly distributed,
if not more so? To see what goes wrong, consider the “diamond lattice” in M

2

consisting of all points with integer values of the null coordinates u = t−x and
v = t + x. This would seem to be a uniform lattice, but under a boost u→λu,
v→ v/λ it goes into a distribution that looks entirely different, with a very high
density of points along the u=constant lines (say) and large empty spaces in
between. In particular, our diamond lattice is far from Lorentz invariant, which
a truly uniform distribution should be — and which C(M) produced by a Pois-
son process actually is. Examples like this suggest strongly that, in contrast to
the situation for Euclidean signature, only a random sprinkling can be uniform
for Lorentzian signature.

I have just argued that the idea of random sprinkling must play a role in
making the correspondence between the causet and the continuum, and for
purely kinematic reasons. A second concept which might be needed as well,
depending on how the dynamics works out, is that of coarse-graining. Indeed,
one might expect that, on very small scales, the causet representing our uni-
verse will no more look like a manifold than the trajectory of a point particle
looks microscopically like a smooth curve in nonrelativistic quantum mechan-
ics. Rather, we might recover a manifold only after some degree of “averaging”
or “coarse-graining” (assuming also that we keep away from the big bang and
from black hole interiors, etc., where we don’t expect a manifold at all). That is,
we might expect not C ≈M but C ′ ≈M ′, where C ′ is some coarse-graining of
C and M ′ is M with a correspondingly rescaled metric. The relevant notion of
coarse-graining here seems to be an analog of sprinkling applied to C itself: let
C ′ be obtained from C by selecting a subset at random, keeping each element
x ∈ C with some fixed probability, say 1/2 if we want a 2:1 coarse-graining.

Implicit in the idea of a manifold approximating a causet is that the former
is relatively unique; for if two very different manifolds could approximate the
same C, we’d have no objective way to understand why we observe one particu-
lar spacetime and not some very different one. (On the other hand, considering
things like AdS/CFT duality, who knows...!) The conjecture that such ambigu-
ities don’t occur has been called the “Hauptvermutung”. In the G�→ 0 limit,
it has already been proven in [31]. Moreover, the fact that we know how to
obtain dimensional and proper time information in many situations (see below)
is strong circumstantial evidence for its truth at finite G�. Nevertheless it would
be good to prove it in full, in something like the following form.
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Conjecture If M1 ≈ C and M2 ≈ C then M1 ≈M2

Here M1 ≈ M2 means that the manifolds M1 and M2 are “approximately
isometric”. As the quotation marks indicate, it is surprisingly difficult to give
this conjecture rigorous meaning, due ultimately to the Lorentzian signature
of gab (cf. [32]). Here’s a sketch of how it might be done: interpret M ≈
C to mean that Prob(C(M) = C) is relatively large (in comparison with
Prob(C(M) = C ′)) for most of the other C ′; and interpret M1 ≈ M2 to
mean that the random variables C(M1) and C(M2) share similar probability
distributions (on the space of causets). These definitions almost make the
conjecture look tautological, but it isn’t! (cf. [33])

8. Dimension and length

Assuming that — as seems very likely — causal sets do possess a structure
rich enough to give us back a macroscopically smooth Lorentzian geometry, it is
important to figure out how in practice one can extract geometrical information
from an order relation. But before we can speak of a geometry we must have a
manifold, and the most basic aspect of a manifold’s topology is its dimension.
So an obvious first question is whether there is a good way to recognize the
effective continuum dimension of a causal set (or more precisely of a causal
set that is sufficiently “manifold like” for the notion of its dimension to be
meaningful). In fact several workable approaches exist. Here are three of
them. All three estimators will assign a dimension to an interval I in a causet
C and are designed for the case where I ≈ A for some interval (“double light
cone”) A in Minkowski space M

d.
Myrheim-Meyer dimension [5] [29]. Let N = |I| be the number of elements
in I and let R be the number of relations in I (i.e. pairs x, y such that x ≺ y).

Let f(d) = 3
2

(3d/2
d

)−1
. Then f−1(R/

(
N
2

)
) is a good estimate of d when

N 
 (27/16)d.
Remark The Myrheim-Meyer estimator is coarse-graining invariant on aver-
age (as is the next)
Midpoint scaling dimension. Let I = interval(a, b) and let m ∈ I be the (or a)
“midpoint” defined to maximize N ′ = min{|interval(a, m)|, |interval(m, b)|}.
Then log2(N/N ′) estimates d.
A third dimension estimator. Let K be the total number of chains in I . Then
lnN/ ln lnK estimates d. However, the logarithms mean that good accuracy
sets in only for exponentially large N .

9. A length estimator

Again this is for C ≈ M
d (or some convex subspace of M

d). Let x ≺ y.
The most obvious way to define a distance (or better a time-lapse) from x to
y is just to count the number of elements L in the longest chain joining them,
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where a joining chain is by definition a succession of elements zi such that
x ≺ z1 ≺ z2 ≺ z3 · · · ≺ y. Clearly a maximal path in this sense is analogous
to a timelike geodesic, which maximizes the proper-time between its endpoints.
It is known that this estimator L converges rapidly to a multiple of the true proper
time T as the latter becomes large. However the coefficient of proportionality
depends on the dimension d and is known exactly only for d = 1 and d = 2.
For d > 2 only bounds are known, but they are rather tight.

Thus, it seems that we have workable tools for recovering information on
both dimensionality and length (in the sense of timelike geodesic distance).
However, these tools have been proven so far primarily in a flat context, and it
remains to be shown that they continue to work well in the presence of generic
curvature.

10. Dynamics

A priori, one can imagine at least two routes to a “quantum causet dynamics”.
On one hand, one could try to mimic the formulation of other theories by seeking
a causet-invariant analogous to the scalar curvature action, and then attempting
to build from it some discrete version of a gravitational “sum-over-histories”.
On the other hand, one could try to identify certain general principles or rules
powerful enough to lead, more or less uniquely, to a family of dynamical laws
sufficiently constrained that one could then pick out those members of the family
that reproduced the Einstein equations in an appropriate limit or approximation.
(By way of analogy, one could imagine arriving at general relativity either by
seeking a spin-2 analog of Poisson’s equation or by seeking the most general
field equations compatible with general covariance and locality.)

The recent progress in dynamics has come from the second type of approach,
and with the causet’s “time-evolution” conceived as a process of what may be
termed sequential growth. That is, the causet is conceived of as “developing in
time”,4 rather than as “existing timelessly” in the manner of a film strip. At the
same time the growth process is taken to be random rather than deterministic
— classically random to start with, but ultimately random in the quantum sense
familiar from atomic physics and quantum field theory. (Thus the quantum
dynamical law is being viewed as more analogous to a classical stochastic
process like Brownian motion than to a classical deterministic dynamics like
that of the harmonic oscillator. [34] [35]) Expressed more technically, the idea
is to seek a quantum causet dynamics by first formulating the causet’s growth
as a classical stochastic process and then generalizing the formulation to the
case of a “quantum measure” [36] or “decoherence functional” [37].

4It might be more accurate to say that the growth of the causet is time.
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The growth process in question can be viewed as a sequence of “births” of
new causet elements and each such birth is a transition from one partial causet
to another. A dynamics or “law of growth” is then simply an assignment of
probabilities to each possible sequence of transitions. Without further restric-
tion, however, there would be a virtually limitless set of possibilities for these
probabilities. The two principles that have allowed us to narrow this field of
possibilities down to a (hopefully) manageable number are discrete general co-
variance and Bell causality. To understand the first of these, notice that taking
the births to be sequential implicitly introduces a labeling of the causet elements
(the first-born element being labeled 0, the second-born labeled 1, etc). Discrete
general covariance is simply the requirement that this labeling be “pure gauge”,
that it drop out of the final probabilities in the same way that the choice of
coordinates drops out of the equations of general relativity. This requirement
has the important side effect of rendering the growth process Markovian, so
that it is fully definable in terms of transition probabilities obeying the Markov
sum rule. The requirement of Bell causality is slightly harder to explain, but it
is meant to capture the intuition that a birth taking place in one region of the
causet cannot be influenced by other births that occur in regions spacelike to
the first region.

Taken together, these assumptions lead to a set of equations and inequalities
that — remarkably — can be solved explicitly and in general [38] [39]. The
resulting probability for a transition C→C ′ in which the new element is born
with � ancestors and m parents (immediate ancestors) is given by the ratio

λ(�,m)
λ(n, 0)

, (1)

where n = card(C) is the number of elements before the birth in question and
where the function λ is defined by the formula

λ(�, m) =
�∑

k=m

(
� −m

k −m

)
tk (2)

with tn≥0 and t0 > 0. A particular dynamical law, then, is determined by the
sequence of “coupling constants” tn (or more precisely, by their ratios).

(It turns out that the probabilities resulting from these rules can be re-
expressed in terms of an “Ising model” whose spins reside on the relations
x≺y of the causet, and whose “vertex weights” are governed directly by the
parameters tn [38]. In this way, a certain form of “Ising matter” emerges
indirectly from the dynamical law, albeit its dynamics is rather trivial if one
confines oneself to a fixed background causet. This illustrates how one might
hope to recover in an appropriate limit, not only spacetime and gravity, but also
certain forms of non-gravitational matter (here unified with gravity in a way
reminiscent of earlier proposals for “induced gravity” [40]).)
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With some progress in hand concerning both the kinematics and dynamics
of causets, it is possible to start to think about applications, or if you will
“phenomenology”. Several projects of this nature are under way, with some
interesting results already obtained. In the remaining sections I will mention
some of these results and projects.

11. Fluctuations in the cosmological constant

>From the most basic notions of causal set theory, there follows already an
order of magnitude prediction for the value of the cosmological constant Λ.
More precisely, one can argue that Λ should fluctuate about its “target value”,
with the magnitude of the fluctuations decreasing with time in proportion to
N−1/2, where N is the relevant number of ancestors (causet elements) at a given
cosmological epoch. If one assumes that (for reasons yet to be understood) the
target value for Λ is zero, and if one takes for the N of today the spacetime
volume of the currently visible universe from the big bang until the present, then
one deduces for Λ a magnitude consistent with the most recent observations, as
predicted already in [41] (and with refined arguments in [35] and [42]).

Four basic features of causet theory enter as ingredients into the refined
version of the argument: the fundamental discreteness, the relation n = V , the
Poisson fluctuations in n associated with sprinkling, and the fact that n serves
as a parameter time in the dynamics of sequential growth.

>From the first of these we derive a finite value of n (at any given cosmic
time). From the fourth we deduce that, since time is not summed over in the
path-integral of non-relativistic quantum mechanics, neither should one expect
to sum over n in the gravitational path integral that one expects to result as
an approximation to the still to be formulated quantum dynamics of causets.
But holding n fixed means holding spacetime volume V fixed, a procedure that
leads in the continuum to what is called “unimodular gravity”.

In the classical limit, this unimodular procedure leads to the action principle

δ

(∫
(

1
2κ

R− Λ0)dV − λV

)
= 0

where Λ0 is the “bare” cosmological constant, V =
∫

dV , κ = 8πG, and λ is a
Lagrange multiplier implementing the fixation of V . Plainly, the last two terms
combine into − ∫ ΛdV where Λ = Λ0 + λ, turning the effective cosmological
constant Λ into a free constant of integration rather than a fixed microscopic
parameter of the theory. Moreover, the fact that Λ and V enter into the action-
integral in the combination−ΛV means that they are conjugate in the quantum
mechanical sense, leading to the indeterminacy relation

δΛ δV ∼ � .
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Finally the Poisson fluctuations in n of size δn ∼ √n at fixed V imply that, at
fixed n, there will be fluctuations in V of the same magnitude: δV ∼ √n ∼√

V , which correspond to fluctuations in Λ of magnitude δΛ ∼ �/δV ∼ 1/
√

V
(taking � = 1). The observed Λ would thus be a sort of residual quantum gravity
effect, even though one normally associates the quantum with the very small,
rather than the very big!

Of course, this prediction of a fluctuating Λ remains at a heuristic level until
it can be grounded in a complete “quantum causet dynamics”. Nevertheless,
given its initial success, it seems worthwhile to try to extend it by constructing
a model in which not only the instantaneous magnitude of the fluctuations
could be predicted, but also their correlations between one time and another. In
this way, one could assess whether the original prediction was consistent with
important cosmological constraints such as the extent of structure formation and
the abundances of the light nuclei. In this respect, it is worth noting that current
fits of nucleosynthesis models to the observed abundances favor a non-integer
number of light neutrinos falling between two and three. If this indication
holds up, it will require some form of effective negative energy density at
nucleosynthesis time, and a negative fluctuation in the contemporaneous Λ is
perhaps the simplest way to realize such an effective density.
Added note: A concrete model of the sort suggested above has been developed
in [43].

12. Links across the horizon

An important question on which one can hope to shed light while still re-
maining at the level of kinematics is that of identifying the “horizon states”
that underpin the entropy of a black hole. Indeed, just as the entropy of a box
of gas is, to a first approximation, merely counting the molecules in the box,
one might anticipate that the entropy of a black hole is effectively counting
suitably defined “molecules” of its horizon. With this possibility in mind, one
can ask whether any simply definable sub-structures of the causets associated
with a given geometry could serve as candidates for such “horizon molecules”
in the sense that counting them would approximately measure the “information
content” of the black hole.

Perhaps the most obvious candidates of this sort are the causal links crossing
the horizon in the neighborhood of the hypersurface Σ for which the entropy is
sought. (Recall that a link is an irreducible relation of the causet.) Of course,
the counting of any small scale substructures of the causet is prone to produce
a result proportional to the area of the horizon, but there is no reason a priori
why the coefficient of proportionality could not be divergent or vanishing, or
why, if it is finite, it could not depend on the details of the horizon geometry.



Causal Sets: Discrete Gravity 319

Djamel Dou [44] has investigated this question for two very different black
hole geometries, one in equilibrium (the 4 dimensional Schwarzschild metric)
and one very far from equilibrium (the conical horizon that represents the earliest
portion of a black hole formed from the collapse of a spherical shell of matter).
For the Schwarzschild case, he made an ad hoc approximation that reduced the
problem to 2 dimensional Schwarzschild and found, for a certain definition of
“near horizon link”, that the number N of such links has an expectation value
which reduces in the �→ 0 limit to c(π2/6)A, where A is the horizon area
and c is a constant arising in the dimensional reduction. (By �→ 0 I mean
equivalently l2/R2→ 0 where l is the fundamental causet scale and R the
horizon radius.) For the expanding horizon case (again dimensionally reduced
from 4 to 2) he obtained exactly the same answer, c(π2/6)A, despite the very
different geometries. Not only is this a nontrivial coincidence, it represents the
first time, to my knowledge, that something like a number of horizon states
has been evaluated for any black hole far from equilibrium. The first step
in solidifying and extending these results would be to control the dimensional
reduction from 4 to 2, evaluating in particular the presently unknown coefficient
c. Second, one should check that both null and spacelike hypersurfaces Σ yield
the same results. (The null case is the best studied to date. Conceptually, it
is important for possible proofs of the generalized second law [45].) Also one
should assess the sensitivity of the answer to changes in the definition of “near
horizon link”, since there exist examples showing that the wrong definition can
lead to an answer of either zero or infinity. And of course one should extend
the results to other black hole geometries beyond the two studied so far.

Here is one of the definitions of “near horizon link” investigated by Djamel:
Let H be the horizon of the black hole and Σ, as above, the hypersurface for
which we seek the entropy S. The counting is meant to yield the black hole
contribution to S, corresponding to the section H ∩Σ of the horizon. We count
pairs of sprinkled points (x, y) such that

(i) x ≺ Σ, H and y # Σ, H .

(ii) x ≺ y is a link5

(iii) x is maximal‡ in (past Σ) and y is minimal‡ in (futureΣ)∩ (futureH).

13. What are the “observables” of quantum gravity?

Just as in the continuum the demand of diffeomorphism-invariance makes it
harder to formulate meaningful statements,6

5see glossary
6Think, for example, of the statement that light slows down when passing near the sun.
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so also for causets the demand of discrete general covariance has the same
consequence, bringing with it the risk that, even if we succeeded in characteriz-
ing the covariant questions in abstract formal terms, we might never know what
they meant in a physically useful way. I believe that a similar issue will arise
in every approach to quantum gravity, discrete or continuous (unless of course
general covariance is renounced).7

Within the context of the classical growth models described above, this prob-
lem has been largely solved [47], the “observables” being generated by “stem-
predicates”. (‘stem’ is defined in the glossary).
Added note: The conjecture in [47] has been settled in the affirmative by [48].

14. How the large numbers of cosmology might be
understood: a “Tolman-Boltzmann” cosmology

Typical large number is ratio r of diameter of universe to wavelength of CMB
radiation. Idea is cycling of universe renormalizes [49] coupling constants such
that r automatically gets big after many bounces (no fine tuning). Large numbers
thus reflect large age of universe. See [50] and [51].

15. Fields on a background causet

See [52], [53], [54].

16. Topology change

See [55].
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GLOSSARY

Major deviations from these definitions are rare in the literature but minor
ones are common. (In this glossary, we use the symbol < rather than ≺.)

ancestor/descendant If x < y then x is an ancestor of y and y is a descendant
of x.

antichain A trivial order in which no element is related to any other (cf.
‘chain’).

causet = causal set = locally finite order
chain = linear order.
An order, any two of whose elements are related. In particular, any linearly

ordered subset of an order is a chain. n-chain = chain of n elements.
child/parent If x < y is a link we can say that x is a parent of y and y a child

of x. One also says that “y covers x”.
comparable See ‘related’.
covering relation, covers See ‘child’, ‘link’.
descendant See ‘ancestor’.
down-set = downward-set = past-set = order-ideal = ancestral set.
A subset of an order that contains all the ancestors of its members
full stem A partial stem whose complement is the (exclusive) future of its

top layer.
future See ‘past’.
inf = greatest lower bound (cf. ‘sup’.)
interval See ‘order-interval’.
level In a past-finite causet the level of an element x is the number of links in

the longest chain a < b < ... < c < x. Thus, level 0 comprises the minimal
elements, level 1 is level 0 of the remainder, etc.

linear extension Let S be a set and < an order-relation on S. A linear
extension of < is a second order-relation ≺ which extends < and makes S
into a chain.

link=covering relation An irreducible relation of an order, that is, one not
implied by the other relations via transitivity. Of course we exclude pairs
(xx) from being links, in the case where such pairs are admitted into the
order relation at all.

(There’s no inconsistency here with the notion that a “chain” ought to be made
up of “links”: the links in a chain are indeed links relative to the chain itself,
even if they aren’t links relative to the enveloping order.)

locally finite An order is locally finite iff all its order-intervals are finite. (cf.
‘past-finite’.)
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maximal/minimal A maximal/minimal element of an order is one without
descendants/ancestors.

natural labeling A natural labeling of a past-finite order is an assignment to
its elements of labels 0 1 2 ... such that x < y ⇒ label(x) < label(y). Thus
it is essentially the same thing as a locally finite linear extension.

order-interval (or just plain interval)
The interval determined by two elements a and b is the set, interval(a, b) =
{x|a < x < b}.

order = ordered set = poset = partially ordered set = partial order.
An order is a set of elements carrying a notion of “ancestry” or “precedence”.

Perhaps the simplest way to express this concept axiomatically is to define
an order as a transitive, irreflexive relation < . Many other, equivalent defini-
tions are possible. In particular, many authors use the reflexive convention,
in effect taking ≤ as the defining relation.

It is convenient to admit the empty set as a poset.
order-isomorphic Isomorphic as posets
origin = minimum element.
A single element which is the ancestor of all others.
originary A poset possessing an origin is originary.
parent See ‘child’.
p artial stem (or just plain stem) A past set of finite cardinality.
partial post An element x of which no descendant has an ancestor spacelike

to x. The idea is x is the progenitor of a “child universe”.
partially ordered set See ‘order’.
past/future past(x) = {y|y < x} , future(x) = {y|x < y}.
past-finite An order is past-finite iff all its down-sets are finite. (cf. ‘locally

finite’.)
path = saturated chain A chain all of whose links are also links of the

enveloping poset (saturated means it might be “extended” but it can’t be
“filled in”)

poset See ‘order’.
post An element such that every other element is either its ancestor or its

descendant: a one-element slice.
preorder = preposet = acyclic relation = acyclic digraph.
A preorder is a relation whose transitive closure is an order.
pseudo-order = transitive relation (possibly with cycles).
related = comparable.
Two elements x and y are ‘related’ (or ‘comparable’) if x < y or y < x.
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slice = maximal antichain. (where maximal means it can’t be enlarged and
remain an antichain.)

Equivalently, every x in the causet is either in the slice or comparable to one of
its elements.

Equivalently, its inclusive past is a full stem .
spacelike = incomparable.
Two elements x and y are spacelike to each other (x � y) iff they are unrelated

(ie neither x < y nor y < x).
stem See ‘partial stem’.
sup = least upper bound (cf. ‘inf’.)
transitively reduced The “transitive reduction” of an order is its Hasse di-

graph, an acyclic relation containing only links.
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Abstract We show that the cosmological constant may be reduced by thermal production of
membranes by the cosmological horizon, analogous to a particle “going over the
top of the potential barrier," rather than tunneling through it. The membranes are
endowed with charge associated with the gauge invariance of an antisymmetric
gauge potential. In this new process, the membrane collapses into a black hole;
thus, the net effect is to produce black holes out of the vacuum energy associated
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configurations (“thermalons") and calculate the probability for the process in the
leading semiclassical approximation.
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1. Introduction

One of the outstanding open problems of theoretical physics is to reconcile
the very small observational bound on the cosmological constant Λ with the
very large values that standard high energy physics theory predicts for it [1].
This challenge has led us to consider the cosmological constant as a dynamical
variable, whose evolution is governed by equations of motion. In that context
mechanisms have been sought that would enable Λ to relax from a large initial
value to a small one during the course of the evolution of the Universe. The
simplest context in which this idea may be analyzed is through the introduction
of an antisymmetric gauge potential, a three-form [2] in four spacetime dimen-
sions. The three-form couples to the gravitational field with a term proportional
to the square of the field strength. In the absence of sources, the field strength
is constant in space and time and provides a contribution to the cosmological
term, which then becomes a constant of motion rather than a universal constant.

Changes in the cosmological constant occur when one brings in sources for
the three-form potential. These sources are two-dimensional membranes which
sweep a three-dimensional history during their evolution (“domain walls"). The
membranes carry charge associated with the gauge invariance of the three-form
field, and they divide spacetime into two regions with different values of the
cosmological term.

The membranes may be produced spontaneously in two physically different
ways. One way is by tunneling through a potential barrier as happens in pair
production in two-dimensional spacetime. The other is by a thermal excitation
of the vacuum analogous to going “over the top" of the potential barrier rather
than tunneling through it.

The tunneling process was originally studied in [3] and was further explored
in [4]. The purpose of this article is to study the spontaneous decay of the
cosmological constant through the other process, namely, the production of
membranes due to the thermal effects of the cosmological horizon.

It is useful to visualize the decay process in terms of its simplest context,
which is a particle in a one-dimensional potential barrier, as recalled in Fig.
1. When the barrier is in a thermal environment, the particle can go from one
side of the barrier to the other by “climbing over the top" rather than tunneling.
There is a probability given by the Boltzmann factor e−βE for the particle to be
in a state of energy E. If E is greater than the height of the barrier the particle
will move from one side to the other even classically. The effect is optimized
when the energy is just enough for the particle to be at the top of the barrier
and roll down to the other side. In this case, the Boltzmann factor is as large
as possible while still allowing for the process without quantum mechanical
tunneling. It turns out that, in the leading approximation, the probability is
given by the exponential of the Euclidean action evaluated on an appropriate
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classical solution, just as for tunneling [5]. In the case of tunneling, the classical
solution is called an instanton and it is time dependent [6]. In the present case,
the classical solution corresponds to the configuration in which the particle sits
at the top of the barrier, and thus it is time independent. Since the solution is
unstable, when slightly perturbed the particle will fall half of the time to the
left side and half of the time to the right side.

x

V(x)

xT

0x

V0

σ

Figure 1. The figure shows a one-dimensional potential barrier. If the particle is initially
at the minimum x = 0 it may end up on the other side of the barrier, reaching the lower
minimum x = xT by two different mechanisms. It can either (i) tunnel through the potential
quantum mechanically or (ii) jump over it by a thermal fluctuation when the barrier is in a thermal
environment.

In more complex situations, “sitting at the top of the barrier" is replaced
by a “time independent classical solution with one instability mode" [5]. In
the context of gauge theories such solutions appear in the analysis of violation
of baryon-number conservation and have been called “sphalerons" [7]. In the
present case we will use the name “thermalon," to emphasize that the static
solutions will be intimately connected with the intrinsic thermal properties
of event horizons in gravitational theory. We show below that there exists
a thermalon which reduces the cosmological constant through production of
membranes in de Sitter space due to the thermal properties of the cosmological
horizon. In this thermalon, a membrane is emitted by the cosmological horizon
and collapses, forming a black hole.
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2. The Thermalon

2.1 Basic geometry and matching equations

Once produced, the membrane divides space into two regions with the interior
having a lower value of Λ. Subsequently, the membrane evolves with the region
of lower Λ filling more and more of the space, thus lowering the value of the
cosmological constant.

In Ref. [8] we gave the equations of motions of a charged membrane of
tension μ and charge q coupled to the gravitational field and employed them to
analyze instantons associated with tunneling. The same equations will be used
here for the study of thermalons. We reproduce them verbatim here, together
with the corresponding explanations, to make the discussion self-contained.

We consider a Euclidean spacetime element of the form

ds2 = f2(r)dt2 + f−2dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (1)

The antisymmetric field strength tensor takes the form

Fμνλρ = (dA)μνλρ = E
√

gεμνλρ. (2)

The history of the membrane will divide the spacetime into two regions, one
that will be called the interior, labeled by the subscript “−” and the other the
exterior, labeled by the subscript “+.” The exterior is the initial region and
defines the “background," while the interior is the final region. The boundary
may be described by the parametric equations

r = R(τ), t± = T±(τ), (3)

where τ is the proper length in the r-t sector, so that its line element reads

ds2 = dτ2 + R2(τ)
(
dθ2 + sin2 θdφ2

)
, (4)

with
1 = f2

± (R(τ)) Ṫ 2
± + f−2

± (R(τ)) Ṙ2 . (5)

In the “+” and “−” regions the solution of the field equations read

f2
± = 1− 2M±

r
− r2

l2±
, (6)

E2
± =

1
4π

(
3
l2±
− λ

)
. (7)

The actual cosmological constant Λ = 3/l2 is thus obtained by adding λ,
normally taken to be negative, coming from “the rest of physics" and not subject
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to change, and the contribution 4πE2, which is subject to dynamical equations.
The discontinuities in the functions f2 and E across the membrane are given
by

f2
−Ṫ− − f2

+Ṫ+ = μR . (8)

E+ − E− = q . (9)

Here μ and q are the tension and charge on the membrane, respectively.
Equation (9) follows from integrating the Gauss law for the antisymmetric
tensor across the membrane, whereas Eq. (8) represents the discontinuity in
the extrinsic curvature of the membrane when it is regarded as embedded in
either the “−" or the “+" spaces [9]. In writing these equations, the following
orientation conventions have been adopted, and will be maintained from here on:
(i) The coordinate t increases anticlockwise around the cosmological horizon,
and (ii) the variable τ increases when the curve is traveled along leaving the
interior on its right side.

Equation (8) may be thought of as the first integral of the equation of motion
for the membrane, which is thus obtained by differentiating it with respect to
τ (“equations of motion from field equations”). Hence, satisfying Eqs. (6)–
(9) amounts to solving all the equations of motion and, therefore, finding an
extremum of the action. More explicitly, the first integral of the equation of
motion for the membrane may be written as

ΔM =
1
2
(α2 − μ2)R3 − μf2

+Ṫ+R2 =
1
2
(α2 + μ2)R3 − μf2

−Ṫ−R2 , (10)

where ΔM ≡ M− −M+ is the mass difference between the initial and final
geometries, and

α2 =
1
l2+
− 1

l2−
. (11)

The Euclidean evolution of the membrane lies between two turning points.
Once the initial mass M+ and the initial cosmological constant Λ+ = 3/l2+ are
given, the turning points R are determined through

ΔM =
1
2
(α2 − μ2)R3 − ε+μf+R2 =

1
2
(α2 + μ2)R3 − ε−μf−R2, (12)

by setting Ṙ = 0 in Eq. (10). Here we have defined ε± = sgnṪ±.
The graph of the function (12) for fixed M+, shown in Fig. 2, will be

referred to as the “mass diagram" for the decay of Schwarzschild–de Sitter
space. There are two branches which merge smoothly, corresponding to taking
both signs in Eq. (12), much as x = ±

√
1− y2 gives the smooth circle

x2 + y2 = 1. The lower and upper branches merge at the intersections with
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the curve ΔM = (1/2)(α2 − μ2)R3 that determines the sign of Ṫ+, which is
positive below the curve and negative above it. This curve, the “ Ṫ+ = 0 curve,"
plays an important role because it determines which side of the “+” geometry
must be retained: According to the conventions established above, if Ṫ+ is
positive, one must retain the side of the membrane history with (locally) greater
values of the radial coordinate; if Ṫ+ is negative, one must keep the other side.
The curve Ṫ+ = 0 is also shown on the mass diagram, as is the curve Ṫ− = 0,
which, as can be seen from Eq. (10), has for equationΔM = (1/2)(α2+μ2)R3.
A similar rule applies for determining which side of the minus geometry is
retained: it is the side of increasing r if Ṫ− is negative and the other side if it is
positive.
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Figure 2. The closed curve shows the points R where Ṙ = 0 for a given mass gap ΔM .
The thermalons are located at the maximum (cosmological thermalon) and minimum (black hole
thermalon) of the curve. The curves where R is such that, for a given ΔM , Ṫ± = 0 are also
shown. All the “+" parameters are held fixed.

2.2 Black hole and cosmological thermalons

There are four distinguished points in the mass diagram, two for which the
tangent is vertical and two for which it is horizontal. The former, located at r+

and r++, correspond to membrane creation through tunneling and they give rise
to the instantons discussed in [8]. The latter are thermalons. The thermalon at
the top of the diagram will be called a “cosmological thermalon" because it is
associated with the cosmological event horizon. The thermalon at the bottom
of the mass diagram will be called a “black hole thermalon." It needs an initial
black hole to provide the thermal environment.
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For the particular values of ΔM corresponding to the thermalons, the two
turning points coalesce and the membrane trajectory is a circle. The geometry
of the thermalons is depicted in Fig. 3.

For the cosmological thermalon, the sign of Ṫ− may be either positive or
negative, depending on the values of the parameters. If Ṫ− is negative, one
must glue the region of the minus geometry that contains the cosmological
horizon r−− to the original background geometry. The thermalon then has one
black hole horizon (r+) and one cosmological horizon (r−−). If, on the other
hand, Ṫ− is positive, one must glue the other side of the membrane history to
the original background geometry. This produces a solution with two black
hole horizons, one at r+ and one at r−. The inversion of the sign of Ṫ− happens
when r− = r−−, that is, when the “−" geometry becomes the Nariai geometry.
Therefore we will call this particular case the “Nariai threshold" and will discuss
it in Sec. 4 below. Note that Ṫ+ is always negative; hence it is always the r+

side of the plus geometry that must be kept.
For the black hole thermalon Ṫ− is always positive. This is because Ṫ− is

greater than Ṫ+, which is positive in this case.
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Figure 3. Thermalon geometry. (a) and (b) represent the geometry of the cosmological
thermalon below and above the Nariai threshold, respectively, while (c) depicts the black hole
thermalon. Only the r-t section is shown. In each figure, the radial coordinate increases if one
moves upward.

For both thermalons, the Minkowskian solution is unstable and the Euclidean
solution is stable. When slightly perturbed, the Euclidean solution oscillates
around the thermalon. For the Minkowskian case, the membrane can evolve
in two ways: it can start accelerating (rolling down) toward either the exterior
or the interior. If the acceleration is directed toward the exterior, spacetime
will become filled with the interior (“−") geometry, and the cosmological term
will decrease. If, on the other hand, it accelerates toward the interior, then,
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and as time increases, the exterior will become the whole geometry and the
cosmological constant will return to its original value. In this case the process
will not have changed anything.

The minimum and the maximum of the mass curve are Euclidean stable
points, because both correspond to maxima of the potential in the sense of Fig.
1. The cosmological thermalon corresponds to a maximum of the potential
ultimately because, as established in [10, 13], the internal energy of the cosmo-
logical horizon is −M rather than M . Thus, in the analogy with the potential
problem one should plot−ΔM on the vertical axis, so that the potential in Fig.
2 is upside down and the analogy holds. The instability of both thermalons is
proven explicitly in Appendix A.

Lastly, there is another important distinction between black hole and cosmo-
logical thermalons which resides in how they behave when gravity is decoupled,
that is, when Newton’s constant G is taken to vanish. In that case the black
hole thermalon becomes the standard nucleation of a bubble of a stable phase
within a metastable medium, whereas the cosmological thermalon no longer
exists. The decoupling of gravity is discussed in Appendix B.

3. Lorentzian continuation

The prescription for obtaining the Lorentzian signature solution, which de-
scribes the decay process in actual spacetime, is to find a surface of time sym-
metry in the Euclidean signature solution and evolve the Cauchy data on that
surface in Lorentzian time. The fact that the surface chosen is one of time
symmetry ensures that the Lorentzian signature solution will be real. Another
way of describing the same statement is to say that one matches the Euclidean
and Lorentzian signature solutions on a surface of time symmetry.

For the cosmological thermalon that induces decay of de Sitter space we
will take the surface of time symmetry as the line in r-t space which, described
from the Euclidean side, starts from t = t0, r = 0, proceeds by increasing r,
keeping t = t0, until it reaches the cosmological horizon, and then descends
back to r = 0 along the line t = t0 + β/2. Thus, the surface of time symmetry
crosses the membrane formation radius R twice, which implies that actually
two membranes, of opposite polarities, are formed. The cosmological constant
is decreased in the finite-volume region between them. The Penrose diagram
for the Lorentzian section, below the Nariai threshold, is given in Fig. 4.

To obtain the diagram above the Nariai threshold one should replace, in Fig.
4, r−− by r− and r = ∞ by the black hole singularity r = 0 of the “−"
geometry.
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Figure 4. Cosmological thermalon Penrose diagrams. (b) is the Penrose diagram for the
Lorentzian geometry of the cosmological thermalon when the initial mass is zero. The generic
case M+ �= 0 below the Nariai threshold is shown for completeness in (a). The dotted lines
are the points r = r+, where the boundary is located in the Euclidean version of this geometry.
Each diagram has two static membranes with opposite polarities at r = R.

4. Action and Probability

We will be interested in the probability Γ per unit of time and unit of spa-
tial volume for the production of a thermalon. In the leading semiclassical
approximation, that probability is given by

Γ = Ae−B/�[1 +O(�)] , (13)

where −B = Ithermalon is the value of the Euclidean action on the thermalon
solution (in our conventions, the sign of the Euclidean action is such that, in the
semiclassical limit, it corresponds to −βF , the inverse temperature times the
free energy). The prefactor A is a slowly varying function with dimensions of a
length to the negative fourth power built out of l+, α2, and μ. The choice of the
action depends on the boundary conditions used, and also involves “background
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subtractions," which ensure that when the coupling with the membrane is turned
off (μ = q = 0), the probability (13) is equal to unity, since, in that case,
P becomes the probability for things to remain as they are when nothing is
available to provoke a change.

To address the issue of boundary conditions we refer the readers to Figs. 3(a),
3(b), and 3(c). There we have drawn small circles around the exterior black
hole and cosmological horizons, respectively, to indicate that the corresponding
point is treated as a boundary, as discussed in [10, 13]. The point in question
takes the place in each case of spatial infinity for a black hole in asymptotically
flat space. It represents the “platform" on which the “external observer" sits.
On the boundary there is no demand that the equations of motion should hold,
and thus it is permissible for a conical singularity to appear there, as indeed
happens.

Once a boundary is chosen one sums in the path integral over all possible
configurations elsewhere. As a consequence, no conical singularity is allowed
anywhere else but at the boundary. Therefore, the gravitational action should
include a contribution equal to one-fourth of the area of that horizon which is
not at the boundary.

To be definite, consider the cosmological thermalon. In that case the bound-
ary is placed at r+, and therefore one is including the thermodynamical effects
of the cosmological horizon (which is the reason for the term “cosmological
thermalon"). We then fix at the boundary the value of r+ itself or, equivalently,
the mass M+, in addition to fixing the cosmological constant Λ+.

With these boundary conditions the total action for the problem is just the
standard “bulk" Hamiltonian action of the coupled system formed by the gravi-
tational field, the antisymmetric tensor field and the membrane, with one-fourth
of the corresponding horizon area added [14]. This action includes the minimal
coupling term of the three-form field to the membrane, by which the canonical
momentum of the membrane differs from the purely kinetic (“mass times the
velocity") term, and whose evaluation needs a definition of the potential on the
membrane. Such a definition requires a mild form of regularization which is
dictated by the problem itself, and which we proceed to analyze now.

The minimal coupling term is

q

∫
V3

A , (14)

where the integral extends over the membrane history V3 and A is evaluated
on V3. The potential A is such that the magnitude E of its exterior derivative
jumps by q when passing from the interior (“−" region) of V3 to the exterior
(“+" region) as stated in Eq. (9). We will impose the following conditions on A.
(i) A must be regular at that origin (horizon) which is in the interior of V3. More
precisely, A− should be equal to zero up to a regular gauge transformation, in
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order for the integral over a very small loop enclosing the horizon to vanish as
the loop shrinks to a point. This is quite straightforward. The subtlety comes in
with A+, the value of A in the exterior of V3. The fields in the exterior should be
those corresponding to the solution of the equations of motion that would hold
everywhere if the transition where never to occur. Therefore, we will demand
that (ii) the function A+ will be the same, for a given value of E+, as when
the membrane is absent. This means that A+ should be regular at the horizon
in the absence of the membrane, which implies—as one may show—that A is
discontinuous across the membrane. With the above definition of A one may
now rewrite the minimal coupling term (14) as an integral over the interior V4

of the membrane, by means of the Stokes formula. This gives∫
V3

A = qEav = (E+ − E−)
1
2

(E+ + E−) =
1
2
(
E2

+ − E2
−
)

=
3
8π

α2 ,

(15)
with α2 given by Eq. (11). The appearance of the average field Eav, may
be thought of as coming from defining the integral over V4 as the average of
the integrals obtained when the boundary of the V4 is displaced infinitesimally
toward the interior and exterior of the membrane worldsheet. This is equivalent
to “thickening" the membrane and taking the boundary half way inside.

It is interesting to point out that, in the case of membrane production in flat
space, the definition of the potential A on the membrane through the “thick-
ening" employed in Eq. (15) is equivalent to subtracting the background field
action

∫
F 2

+. Thus, we will assume that when Eq. (15) is used it remains only
to subtract the gravitational background action, which is equal to one-fourth of
the horizon area in the absence of the membrane (the background Hamiltonian
is zero). The difference in the horizon areas with and without the membrane
may be thought of as the change in the available phase space of horizon states
induced by the creation of the membrane.

To be able to write explicitly the form of I , one further notices that, since
on shell the Hamiltonian constraints hold, the bulk Hamiltonian action reduces
to the ‘‘pq̇" term. Furthermore, for both the gravitational and antisymmetric
fields, which are time independent in the exterior and interior of the membrane,
q̇ vanishes, and, therefore, only the membrane contribution which contains both
the membrane kinetic term and the minimal coupling terms, remains.

With all these observations taken into account, the action that appears in the
probability of the cosmological thermalon becomes

Ithermalon I =
1
4

[A(r−−)−A(r++)]− μ

4π
V3 + α2 3

8π
V4 (16)

below the Nariai threshold, and

Ithermalon I =
1
4

[A(r−)−A(r++)]− μ

4π
V3 + α2 3

8π
V4 (17)
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above it.
For the central case of interest in this paper, namely, the decay of de Sitter

space through the cosmological thermalon, we set the initial mass M+ equal
to zero. Note that the cosmological thermalon lies in the upper branch of the
mass curve, while the tunneling decay investigated in [3] lies on the lower
branch. Therefore, the thermalon process discussed here and the tunneling of
[3] are not to be thought of as happening in the same potential barrier in the
sense of the analogy illustrated by Fig. 1. Yet the two probabilities may be
compared, and the comparison is of interest. Since there is no black hole in the
initial state, the initial geometry has the full O(5) symmetry and the nucleation
process can occur anywhere in spacetime. Hence, the computed probability is
a probability per unit of spacetime volume. Note that the thermalon solution
breaks the symmetry down to O(3) × O(2), while the tunneling solution of
[3] breaks it to the larger symmetry group O(4). Hence it is expected to have
higher probability [11], which is indeed confirmed by the analysis given below.

After de Sitter decays through the thermalon once, the process may happen
again and again. If the black hole formed after the decay is small, one may,
to a first approximation, ignore its presence and use the same formula for the
probability, taking the final cosmological radius l− of the previous step as the
l+ of the new step. It is quite all right to ignore the presence of the black hole
when r− is small because the probability of the second black hole being near
the first one will be very small, since it is a probability per unit of volume. The
approximation will break down when the Nariai bound is in sight.

5. Nariai threshold

For given membrane parameters μ, q, bare cosmological constant λ, and
initial mass M+, there is a value lN of l+ for which the final geometry becomes
the Nariai solution. In that case, R = r− = r−−, since there is nowhere else
for R to be, and thus the curve Ṫ− = 0, which always crosses the mass curve
at a root of f2−, does it now precisely at the cosmological thermalon nucleation
radius R. If one starts from a small l+ one finds the situation illustrated in Fig.
3a. As l+ increases, the size of the black hole present in the “−" region also
increases, and at l+ = lN , the “−" geometry becomes the Nariai solution. If
l+ increases further, and we will refer to this further increase as “crossing the
Nariai threshold," Ṫ− becomes positive, which means that, as seen from the
“−" side, the orientation of the membrane is reversed. This implies that one
must glue the part of the “−" region which one was discarding below the Nariai
threshold to the “+" region, thus giving rise to the situation described in Fig.
3b.
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It should be emphasized that crossing the Nariai threshold is not a violent
operation. The bound[12]

M− ≤ l−
3
√

3
(18)

for the existence of a de Sitter black hole is maintained throughout [f+(R) is
real since R < l+, which implies, using Eq. (12), that f−(R) is also real and
hence the function f2− has two positive real roots]. The action, and hence the
probability, remains continuous. However, the nature of the thermalon geome-
try is now somewhat different, since the “−" geometry has a black hole horizon
instead of a cosmological horizon. As one moves from the boundary r+ toward
the membrane, the radius r of the attached S2 increases. But, after crossing
the membrane, it starts decreasing—in contradistinction to what happens below
the threshold—until it reaches its minimun value at the black hole radius of the
“−" geometry.

6. Decay of de Sitter space through the cosmological
thermalon

6.1 Nucleation radius and mass of final state black hole

We now focus on the central case of interest in this paper, namely, the decay
of de Sitter space through the cosmological thermalon. The cosmological ther-
malon radius of nucleation, R, may be obtained by differentiating Eq. (12) in
its plus sign version,

3
2
(α2 − μ2)R + 2μf+ + μf+

′R = 0. (19)

WhenM+ = 0, Eq. (19) can be rewritten in terms of the dimensionless auxiliary
variable x = f+l+/R, or, equivalently,

R2 =
l2+

1 + x2
. (20)

Then, Eq. (19) gives

x =
3
4

[
−γ +

(
γ2 +

8
9

)1/2
]

, (21)

where

γ =
l+(α2 − μ2)

2μ
. (22)

From Eq. (12) we obtain for the mass of the black hole appearing in the final
state,

M− =
μl2+
3x

(1 + x2)−1/2 . (23)
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The Nariai threshold radius l+ = lN may be also evaluated explicitly. It is
given by

1
l2N

=
1
2

(
μ2 + 8πq2 +

√
8πq2(6πq2 − 2λ + 3μ2)

)
. (24)

6.2 Response of the final geometry to changes in the initial
cosmological constant

For l+ < lN one easily verifies that, at R, t− < ΔM and hence Ṫ− < 0.
Therefore the thermalon geometry is the one pictured in Fig. 3a. As l+ increases
the final state approaches the Nariai solution. We have plotted in Fig. 5 the
quantity l− − 3

√
3M− as a function of l+. As l+ crosses the Nariai value lN ,

the situation becomes the one depicted in Fig. 3b. If l+ increases further, the
function l− and thus also l−− 3

√
3M− blow up for some value l∞ > lN of l+;

for that value, the final cosmological constant l− is infinite and Λ− vanishes.
Above l∞ the final cosmological constant is negative and thus a transition from
de Sitter space to Schwarzschild–anti–de Sitter space takes place. The transition
probability is well defined because, since Ṫ− is still positive, a finite-volume
piece of Schwarzschild–anti–de Sitter space enters into the action, namely, the
one between the membrane and the black hole horizon r−.

The radius l+ = l∞ for which the final cosmological constant vanishes is
given by

1
l2∞

=
4
3
q
(
πq +

√−πλ
)

. (25)

Because the horizons r−, r−− and inverse temperature β− of the final state are
determined by algebraic equations of a high degree, we have found it necessary
to compute the action I(l+) by direct numerical attack. The result gives a curve
of the form shown in Fig. 6. One sees that the probability decreases very
quickly as l+ increases.

Since, as the graph shows, the action is very small for large cosmological
constant, the process is not exponentially suppressed at the beginning. As
the process goes on, the action becomes monotonically more negative and the
probability becomes exponentially suppressed. The action is continuous both
at the Nariai value lN and at the critical point l∞ where the final cosmological
constant becomes negative.

6.3 Small charge and tension limit

In order to avoid fine-tuning it is necessary to assume that the jumps in the
cosmological constant are of the order of the currently observed value Λobs,
which is, in Planck units adopted from now on, Λobs ∼ 10−120. Thus we



Thermal Decay of the Cosmological Constant into Black Holes 343

l+

l- 3 3- M-

0

1

2 4

lN

Figure 5. The quantity l− − 3
√

3M− is shown in the graph as a function of the initial
cosmological radius l+. It vanishes when the final geometry is that of Nariai, at l+ = lN , and it
goes to infinity when the final geometry has vanishing cosmological constant, at l+ = l∞. Here
we have set, in Planck units, q = 0.01, μ = 0.3, and λ = −1.

take α2 ∼ 10−120 (“small jump condition"). The bare cosmological constant
itself could be as big as the Planck scale (|λ| ∼ 1) unless protected by some
broken symmetry, e.g., |λ| ∼ 10−60 [supersymmetry (SUSY)]. From Eq. (7)
we find that the E field is of the order of

√−λ, which gives, using (15), q ∼
10−120/

√−λ: the small jump condition requires a small charge q. As the
decay of the cosmological constant proceeds, the radius of the universe l+ goes
from “small" values∼ (

√|λ|)−1 to large values∼ 1060 and the dimensionless
product α2l2+ varies from∼ 10−120 (Planck) or∼ 10−60 (SUSY) to a quantity
of order unity. We will assume that

l2+α2 � 1 , (26)

which holds during the whole decay of the cosmological constant, beginning
from early stages l+ ∼ 1 (Planck), or l+ ∼ 1030 (SUSY), all the way up to
“almost" the late stages l+ ∼ 1058, say. We shall call Eq. (26) the “small
charge limit."

We will also assume

l+μ� 1, (27)

which we shall call the “small tension limit."
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Figure 6. The graph depicts the value of the action for the cosmological thermalon as a
function of the initial cosmological radius. We have used the same values of the parameters as
those used in Fig. 5.

Within the small charge and tension limits there are two interesting subcases
which are amenable to analytical treatment.

(a) First, we may assume that

l+α2

μ
� 1, (28)

This limit may be achieved, for instance, by taking μ to be of the order of α,
that is, μ ∼ 10−60, again, up to late stages of the evolution of l+. In this limit,

γ � 1. (29)

Direct computations yield

R2 ≈ 2
3
l2+

(
1 +

γ√
2

)
,

M−
l+
≈ 2
√

3
9

μl+

(
1 +
√

2γ
)

. (30)

The nucleation radius is roughly
√

2/3l+ and the initial and final universe radii
l+ and l− are equal to leading order. Since both α2l2+ and μ2l2+ are small,
Eq. (24) implies l+ � lN so that the final geometry contains the cosmological
horizon r−−.

We then get for the action Ithermalon

−8π
√

3
9

l2+(μl+), (31)
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which can be compared to the tunneling-process action with the same parame-
ters

−π

2
l2+(μl+). (32)

We conclude that in this regime the tunneling process is more probable than the
cosmological thermalon.

(b) Conversely, we may assume

μ

l+α2
� 1, (33)

which is equivalent to
γ 
 1. (34)

This limit may be achieved, for instance, by setting q ∼ μ (“BPS condition")
for late stages of the evolution of the cosmological constant [l+ > 10 (Planck),
l+ > 1031 (SUSY)]. Here we get for the nucleation radius and final mass,

R2 ≈ l2+

(
1− 1

9γ2

)
,

M−
l+
≈ μl+γ ≈ α2l2+, (35)

which shows that, in this limit, the nucleation radius gets close to the cosmo-
logical horizon. The value of the action for this process is, to leading order,

−4πl2+
9

(
μ

α2l+

)2

, (36)

which may be compared with the action for the tunneling process in the same
limit,

−4πl2+

(
μ

α2l+

)4

(α2l2+). (37)

We again see in this regime that the tunneling process is more probable than
the cosmological thermalon.

7. Can the thermalon account for the small present value
of the cosmological term?

The cosmological thermalon has a distinct advantage over the instanton pro-
posed in [3] as a mechanism for relaxing the cosmological constant in that it
does not have the so called “horizon problem." Indeed, since for the thermalon
the cosmological constant is reduced in the region with bigger values of the
radial coordinate, and then the membrane proceeds to collapse, one is sure that,
even though the universe is expanding (and even more because it is so), the
whole of the universe will relax its cosmological constant.

The other problem that the instanton has is that the rate of membrane nucle-
ation was too small to account for the present small value of the cosmological
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term. It is not clear at the moment of this writing whether the thermalon will
also be an improvement in this regard. Indeed, to make a mild assessment of
whether the rate is sufficiently strong, we first recall that, in Planck units, the
observed value of the cosmological constant now is 10−120 and the age of the
universe 1060. Even though the process of relaxation of the cosmological con-
stant may not have occurred through the entire life span of the post big-bang
universe, we may use for very rough estimates 1060 as the time available for the
process to keep occurring. If we assume that the cosmological radius started at
the Planck scale l+ = 1 and at present has the value 1060, and recall that each
bubble nucleation reduces l−2

+ by α2, one needs 10120 events to occur during
1060 Planck time units. Furthermore, since at any given time the volume of
space available for the location of the center of the bubble is of the order of l3+
(spatial volume in the comoving frame of de Sitter space), we conclude that the
rate Γ is given by

Γ ∼ 10120

1060l3+
=

1060

l3+
(Planck units). (38)

In order for Eq. (38) to be realizable for l+ in the range 1 < l+ < 1060 we get,
using Eq. (13),

10−120 < Ae−B < 1060. (39)

One must keep in mind that, as stated above, the parameter α2 is fixed to
be 10−120 and that the parameter B should not be too small in order for the
semiclassical approximation to be valid, which imposes a constraint relating the
other two parameters μ and l+. It is therefore necessary to perform a careful
analysis of the prefactor A to see whether the inequality (39) can be satisfied
with an l+ within the range available in the history of the universe. If this is not
so, one could not argue that the thermalon can account for all of the relaxation
of the cosmological constant and, a fortiori, one could not argue that all of the
vacuum energy was condensed into black holes.

8. Conclusions

In this paper, we have exhibited a new process through which the cosmo-
logical constant can decay. At the same time, a black hole is created. The
classical solution describing the process is an unstable (“ready-to-fall") static
solution which we have called a “cosmological thermalon;" it is an analogue of
the sphaleron of gauge theories. Gravity and, in particular, the thermal effects
of the cosmological horizon are essential for the existence of the solution, which
disappears in the flat space limit.

The net effect of the process is thus to transform nonlocalized dark energy
into localized dark matter, thus providing a possible link between the small
present value of the cosmological constant and the observed lack of matter
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in the universe. Of course, the emergence in this way of (nearly) flat space
as a natural end point of dynamical evolution is most intriguing in view of
cosmological observations.

Note added
After this paper was finished we became aware of the interesting work of

Garriga and Megevand [15], where “a “static" instanton, representing pair cre-
ation of critical bubbles—a process somewhat analogous to thermal activation
in flat space" is discussed.
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Appendix: A. Instability of thermalons
It is illuminating to see explicitly that both the minimum and the maximum of the mass curve

are Euclidean stable points, since “unthoughtful" analogy with a standard potential problem
might have suggested that only the minimum of the mass curve should be a stable Euclidean
equilibrium.

Consider first the black hole thermalon and perturb it, RBHT → RBHT + η(τ). The mass
equation yields

ΔM(RBHT) + δm =
1

2
(α2 − μ2)R3 − μ

√
f2
+ − Ṙ2 R2 (A.1)

where δm is the mass perturbation. Using that ΔM is an extremum at the thermalon, one finds

δm =
1

2

∂2ΔM

∂R2

∣∣∣∣
BHT

η2 +
μR2

2f+

∣∣∣∣
BHT

η̇2. (A.2)

Because the second derivative of ΔM is positive at the minimum RBHT, the right-hand side of
Eq. (A.2) is non-negative, so that the perturbation η(τ) is forced to remain in the bounded range
|η| ≤ √

2δm(∂2ΔM/∂R2)−1, which implies stability.
For the cosmological thermalon, it is now the upper branch of the mass curve that is relevant,

and Eq. (A.1) is replaced by

ΔM(RCT) + δm =
1

2
(α2 − μ2)R3 + μ

√
f2
+ − Ṙ2 R2 (A.3)

so that, instead of Eq. (A.2), one has

δm =
1

2

∂2ΔM

∂R2

∣∣∣∣
CT

η2 − μR2

2f+

∣∣∣∣
CT

η̇2. (A.4)
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At the cosmological thermalon, ΔM is maximum and so its second derivative is negative. Again
the perturbation η is bounded and the Euclidean solution is stable.

The signs in Eq. (A.4) are in agreement with the proof given in [10, 13] that the internal
energy of the cosmological horizon is −M ; thus the “thoughtful" analogy with the potential
problem simply amounts to realizing that for the cosmological thermalon one should plot −ΔM
on the vertical axis, so that the “potential" in Fig. 2 is upside down and the analogy holds.

We end this appendix by computing the frequency of oscillations around the cosmological
thermalon. From Eq. (A.4) we find that these are given by

ω2 =

(
∂2ΔM

∂R2

)
f+

μR2

∣∣∣∣
CT

,

which may be evaluated in terms of the nucleations radius R of the cosmological thermalon,

ω2 =
2l2+ − R2

R2(l2+ − R2)
. (A.5)

Note that there is a resonance in the limit when R approaches the cosmological radius l+. This
may be achieved when the BPS condition of Eq. (33) is satisfied (μ/l+α2 � 1, which holds,
for instance, on setting q ∼ μ). In that case we get

ω =
3

2

α2

μ
, (A.6)

and, from Eq. (33), we see that, in fact, ω � l−1
+ .

Appendix: B. Gravitation Essential for Existence of Cosmolog-
ical Thermalons.

An interesting feature of the cosmological thermalon is that it does not exist in the limit of
no gravity, where Newton’s constant G is taken to vanish. Indeed, when G is explicitly written,
the mass equation becomes

GΔM =
1

2
(α2 − G2μ2)R3 ± Gμf+R2 (B.1)

with

α2 =
4πG

3
(E2

+ − E2
−) (B.2)

and

f2
+ = 1 − 2GM+

R
− R2

l2+
,

3

l2+
= λ + 4πGE2

+. (B.3)

Note that the bare cosmological constant λ depends on G through

λ = 8πGρvac , (B.4)

where ρvac is the vacuum energy density coming from “the rest of physics." Therefore, in the
limit G → 0, the lower branch of the mass curve becomes

ΔM = −V (R) = −(μR2 − νR3) , ν =
2π

3
(E2

+ − E2
−) > 0. (B.5)

The (Minkowskian) potential V (R) appearing in Eq. (B.5) exhibits the competition between
surface and volume effects which gives rise to the nucleation of a bubble of a stable phase
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within a metastable medium. Thus, in the no-gravity limit, the distinguished points in the lower
branch of the mass curve have a clear interpretation: the black hole thermalon is the unstable
static solution sitting at the maximum of the potential, while the instanton becomes the standard
bounce solution for metastable vacuum decay.

On the other hand, the upper branch of the mass curve yields

V (R) = μR2 + νR3, (B.6)

and has no maximum. More precisely, the maximum, R, has gone to infinity (R ∼ 1/
√

G).
There is therefore no zero-gravity limit of the cosmological thermalon. One may understand
the behavior of the potential by enclosing the bubble in a sphere of radius L and recalling that
in this case the change from the metastable to the stable phase occurs in the exterior of the
bubble (i.e., on the side with bigger values of the radial coordinates). This yields the potential
V (R) = μR2 − ν(L3 −R3), which has the correct volume dependence for bubble nucleation.
The extra term −νL3 is constant, and infinite in the limit L → ∞. Gravity changes the shape
of the potential and makes it finite, so that there is an unstable static solution, the cosmological
thermalon.
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