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Preface

This book is composed of two parts: Part I (Chaps. 1 through 3) is an introduction to
tensors and their physical applications, and Part II (Chaps. 4 through 6) introduces
group theory and intertwines it with the earlier material. Both parts are written at the
advanced-undergraduate/beginning-graduate level, although in the course of Part II
the sophistication level rises somewhat. Though the two parts differ somewhat in
flavor, I have aimed in both to fill a (perceived) gap in the literature by connecting
the component formalisms prevalent in physics calculations to the abstract but more
conceptual formulations found in the math literature. My firm belief is that we need
to see tensors and groups in coordinates to get a sense of how they work, but also
need an abstract formulation to understand their essential nature and organize our
thinking about them.

My original motivation for the book was to demystify tensors and provide a uni-
fied framework for understanding them in all the different contexts in which they
arise in physics. The word tensor is ubiquitous in physics (stress tensor, moment-
of-inertia tensor, field tensor, metric tensor, tensor product, etc.) and yet tensors are
rarely defined carefully, and the definition usually has to do with transformation
properties, making it difficult to get a feel for what these objects are. Furthermore,
physics texts at the beginning graduate level usually only deal with tensors in their
component form, so students wonder what the difference is between a second rank
tensor and a matrix, and why new, enigmatic terminology is introduced for some-
thing they have already seen. All of this produces a lingering unease, which I believe
can be alleviated by formulating tensors in a more abstract but conceptually much
clearer way. This coordinate-free formulation is standard in the mathematical liter-
ature on differential geometry and in physics texts on General Relativity, but as far
as I can tell is not accessible to undergraduates or beginning graduate students in
physics who just want to learn what a tensor is without dealing with the full ma-
chinery of tensor analysis on manifolds.

The irony of this situation is that a proper understanding of tensors does not
require much more mathematics than what you likely encountered as an undergrad-
uate. In Chap. 2 I introduce this additional mathematics, which is just an extension
of the linear algebra you probably saw in your lower-division coursework. This ma-
terial sets the stage for tensors, and hopefully also illuminates some of the more
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enigmatic objects from quantum mechanics and relativity, such as bras and kets,
covariant and contravariant components of vectors, and spherical harmonics. After
laying the necessary linear algebraic foundations, we give in Chap. 3 the modern
(component-free) definition of tensors, all the while keeping contact with the coor-
dinate and matrix representations of tensors and their transformation laws. Applica-
tions in classical and quantum physics follow.

In Part II of the book I introduce group theory and its physical applications, which
is a beautiful subject in its own right and also a nice application of the material in
Part I. There are many good books on the market for group theory and physics (see
the references), so rather than be exhaustive I have just attempted to present those
aspects of the subject most essential for upper-division and graduate-level physics
courses. In Chap. 4 I introduce abstract groups, but quickly illustrate that concept
with myriad examples from physics. After all, there would be little point in making
such an abstract definition if it did not subsume many cases of interest! We then
introduce Lie groups and their associated Lie algebras, making precise the nature of
the symmetry ‘generators’ that are so central in quantum mechanics. Much time is
also spent on the groups of rotations and Lorentz transformations, since these are so
ubiquitous in physics.

In Chap. 5 I introduce representation theory, which is a mathematical formaliza-
tion of what we mean by the ‘transformation properties’ of an object. This subject
sews together the material from Chaps. 3 and 4, and is one of the most important
applications of tensors, at least for physicists. Chapter 6 then applies and extends
the results of Chap. 5 to a few specific topics: the perennially mysterious ‘spheri-
cal’ tensors, the Wigner–Eckart theorem, and Dirac bilinears. The presentation of
these later topics is admittedly somewhat abstract, but I believe that the mathemati-
cally precise treatment yields insights and connections not usually found in the usual
physicist’s treatment of the subjects.

This text aims (perhaps naively!) to be simultaneously intuitive and rigorous.
Thus, although much of the language (especially in the examples) is informal, al-
most all the definitions given are precise and are the same as one would find in
a pure math text. This may put you off if you feel less mathematically inclined; I
hope, however, that you will work through your discomfort and develop the neces-
sary mathematical sophistication, as the results will be well worth it. Furthermore,
if you can work your way through the text (or at least most of Chap. 5), you will be
well prepared to tackle graduate math texts in related areas.

As for prerequisites, it is assumed that you have been through the usual under-
graduate physics curriculum, including a “mathematical methods for physicists”
course (with at least a cursory treatment of vectors and matrices), as well as the
standard upper-division courses in classical mechanics, quantum mechanics, and
relativity. Any undergraduate versed in those topics, as well as any graduate stu-
dent in physics, should be able to read this text. To undergraduates who are eager to
learn about tensors but have not yet completed the standard curriculum, I apologize;
many of the examples and practically all of the motivation for the text come from
those courses, and to assume no knowledge of those topics would preclude discus-
sion of the many applications that motivated me to write this book in the first place.
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However, if you are motivated and willing to consult the references, you could cer-
tainly work through this text, and would no doubt be in excellent shape for those
upper-division courses once you take them.

Exercises and problems are included in the text, with exercises occurring within
the chapters and problems occurring at the end of each chapter. The exercises in
particular should be done as they arise, or at least carefully considered, as they often
flesh out the text and provide essential practice in using the definitions. Very few of
the exercises are computationally intensive, and many of them can be done in a few
lines. They are designed primarily to test your conceptual understanding and help
you internalize the subject. Please do not ignore them!

Besides the aforementioned prerequisites I have also indulged in the use of some
very basic mathematical shorthand for brevity’s sake; a guide is below. Also, be
aware that for simplicity’s sake I have set all physical constants such as c and �

equal to 1. Enjoy!

Nadir JeevanjeeBerkeley, USA
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Notation

Some Mathematical Shorthand

R The set of real numbers

C The set of complex numbers

Z The set of positive and negative integers

∈ “is an element of”, “an element of”, i.e. 2 ∈ R reads “2 is an

element of the real numbers”

/∈ “is not an element of”

∀ “for all”

⊂ “is a subset of”, “a subset of”

≡ Denotes a definition

f : A → B Denotes a map f that takes elements of the set A into

elements of the set B

f : a �→ b Indicates that the map f sends the element a to the element b

◦ Denotes a composition of maps, i.e. if f : A → B and

g : B → C, then g ◦ f : A → C is given by

(g ◦ f )(a) ≡ g(f (a))

A × B The set {(a, b)} of all ordered pairs where a ∈ A, b ∈ B .

Referred to as the cartesian product of sets A and B .

Extends in the obvious way to n-fold products A1 × · · · × An

R
n

R × · · · × R
︸ ︷︷ ︸

n times
C

n
C × · · · × C
︸ ︷︷ ︸

n times{A | Q} Denotes a set A subject to condition Q. For instance, the set

of all even integers can be written as {x ∈ R | x/2 ∈ Z}
� Denotes the end of a proof or example

xv
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Dirac Dictionary1

Standard Notation Dirac Notation

Vector ψ ∈ H |ψ〉
Dual Vector L(ψ) 〈ψ |
Inner Product (ψ,φ) 〈ψ |φ〉
A(ψ), A ∈ L(H) A|ψ〉
(ψ,Aφ) 〈ψ |A|φ〉
Ti

j ei ⊗ ej

∑

i,j Tij |j 〉〈i|
ei ⊗ ej |i〉|j 〉 or |i, j 〉

1We summarize here all of the translations given in the text between quantum-mechanical Dirac
notation and standard mathematical notation.



Part I
Linear Algebra and Tensors





Chapter 1
A Quick Introduction to Tensors

The reason tensors are introduced in a somewhat ad-hoc manner in most physics
courses is twofold: first, a detailed and proper understanding of tensors requires
mathematics that is slightly more abstract than the standard linear algebra and vec-
tor calculus that physics students use everyday. Second, students do not necessarily
need such an understanding to be able to manipulate tensors and solve problems
with them. The drawback, of course, is that many students feel uneasy whenever
tensors are discussed, and they find that they can use tensors for computation but
do not have an intuitive feel for what they are doing. One of the primary aims of
this book is to alleviate those feelings. Doing that, however, requires a modest in-
vestment (about 30 pages) in some abstract linear algebra, so before diving into the
details we will begin with a rough overview of what a tensor is, which hopefully
will whet your appetite and tide you over until we can discuss tensors in full detail
in Chap. 3.

Many older books define a tensor as a collection of objects which carry indices
and which ‘transform’ in a particular way specified by those indices. Unfortunately,
this definition usually does not yield much insight into what a tensor is. One of the
main purposes of the present text is to promulgate the more modern definition of
a tensor, which is equivalent to the old one but is more conceptual and is in fact
already standard in the mathematics literature. This definition takes a tensor to be a
function which eats a certain number of vectors (known as the rank r of the tensor)
and produces a number. The distinguishing characteristic of a tensor is a special
property called multilinearity, which means that it must be linear in each of its r

arguments (recall that linearity for a function with a single argument just means
that T (v + cw) = T (v) + cT (w) for all vectors v and w and numbers c). As we
will explain in a moment, this multilinearity enables us to express the value of the
function on an arbitrary set of r vectors in terms of the values of the function on
r basis vectors like x̂, ŷ, and ẑ. These values of the function on basis vectors are
nothing but the familiar components of the tensor, which in older treatments are
usually introduced first as part of the definition of the tensor.

To make this concrete, consider a rank 2 tensor T , whose job it is to eat two
vectors v and w and produce a number which we will denote as T (v,w). For such
a tensor, multilinearity means

N. Jeevanjee, An Introduction to Tensors and Group Theory for Physicists,
DOI 10.1007/978-0-8176-4715-5_1, © Springer Science+Business Media, LLC 2011
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4 1 A Quick Introduction to Tensors

T (v1 + cv2,w) = T (v1,w) + cT (v2,w) (1.1)

T (v,w1 + cw2) = T (v,w1) + cT (v,w2) (1.2)

for any number c and all vectors v and w. This means that if we have a coordinate
basis for our vector space, say x̂, ŷ and ẑ, then T is determined entirely by its values
on the basis vectors, as follows: first, expand v and w in the coordinate basis as

v = vx x̂ + vy ŷ + vzẑ

w = wx x̂ + wy ŷ + wzẑ.

Then by (1.1) and (1.2) we have

T (v,w) = T (vx x̂ + vy ŷ + vzẑ,wx x̂ + wy ŷ + wzẑ)

= vxT (x̂,wx x̂ + wy ŷ + wzẑ) + vyT (ŷ,wx x̂ + wy ŷ + wzẑ)

+ vzT (ẑ,wx x̂ + wy ŷ + wzẑ)

= vxwxT (x̂, x̂) + vxwyT (x̂, ŷ) + vxwzT (x̂, ẑ) + vywxT (ŷ, x̂)

+ vywyT (ŷ, ŷ) + vywzT (ŷ, ẑ) + vzwxT (ẑ, x̂) + vzwyT (ẑ, ŷ)

+ vzwzT (ẑ, ẑ).

If we then abbreviate our notation as

Txx ≡ T (x̂, x̂)

Txy ≡ T (x̂, ŷ)

Tyx ≡ T (ŷ, x̂)

(1.3)

and so on, we have

T (v,w) = vxwxTxx + vxwyTxy + vxwzTxz + vywxTyx + vywyTyy

+ vywzTyz + vzwxTzx + vzwyTzy + vzwzTzz (1.4)

which may look familiar from discussion of tensors in the physics literature. In that
literature, the above equation is often part of the definition of a second rank tensor;
here, though, we see that its form is really just a consequence of multilinearity.
Another advantage of our approach is that the components {Txx, Txy, Txz, . . .} of
T have a meaning beyond that of just being coefficients that appear in expressions
like (1.4); from (1.3), we see that components are the values of the tensor when
evaluated on a given set of basis vectors. This fact is crucial in getting a feel for
tensors and what they mean.

Another nice feature of our definition of a tensor is that it allows us to derive
the tensor transformation laws which historically were taken as the definition of a
tensor. Say we switch to a new set of basis vectors {x̂′, ŷ′, ẑ′} which are related to
the old basis vectors by

x̂′ = Ax′x x̂ + Ax ′y ŷ + Ax ′zẑ

ŷ′ = Ay′x x̂ + Ay ′y ŷ + Ay ′zẑ (1.5)

ẑ′ = Az′x x̂ + Az′y ŷ + Az′zẑ.
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This does not affect the action of T , since T exists independently of any basis, but
if we would like to compute the value of T (v,w) in terms of the new components
(v′

x, v
′
y, v

′
z) and (w′

x,w
′
y,w

′
z) of v and w, then we will need to know what the new

components {Tx′x′, Tx′y ′, Tx ′z′, . . .} look like. Computing Tx ′x′ , for instance, gives

Tx′x′ = T
(

x̂′, x̂′)

= T (Ax′x x̂ + Ax ′y ŷ + Ax ′zẑ,Ax′x x̂ + Ax′y ŷ + Ax′zẑ)

= Ax′xAx ′xTxx + Ax′yAx′xTyx + Ax ′zAx′xTzx + Ax′xAx ′yTxy

+ Ax ′yAx′yTyy + Ax ′zAx′yTzy + Ax′xAx ′zTxz + Ax ′yAx′zTyz

+ Ax ′zAx′zTzz. (1.6)

You probably recognize this as an instance of the standard tensor transformation
law, which used to be taken as the definition of a tensor. Here, the transformation
law is another consequence of multilinearity! In Chap. 3 we will introduce more
convenient notation, which will allow us to use the Einstein summation convention,
so that we can write the general form of (1.6) as

Ti′j ′ = Ak
i′A

l
j ′Tkl, (1.7)

a form which may be more familiar to some readers.
One common source of confusion is that in physics textbooks, tensors (usually

of the second rank) are often represented as matrices, so then the student wonders
what the difference is between a matrix and a tensor. Above, we have defined a
tensor as a multilinear function on a vector space. What does that have to do with
a matrix? Well, if we choose a basis {x̂, ŷ, ẑ}, we can then write the corresponding
components {Txx, Txy, Txz, . . .} in the form of a matrix [T ] as

[T ] ≡
⎛

⎝

Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

⎞

⎠ . (1.8)

Equation (1.4) can then be written compactly as

T (v,w) = (vx, vy, vz)

⎛

⎝

Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

⎞

⎠

⎛

⎝

wx

wy

wz

⎞

⎠ (1.9)

where the usual matrix multiplication is implied. Thus, once a basis is chosen, the
action of T can be neatly expressed using the corresponding matrix [T ]. It is crucial
to keep in mind, though, that this association between a tensor and a matrix depends
entirely on a choice of basis, and that [T ] is useful mainly as a computational tool,
not a conceptual handle. T is best thought of abstractly as a multilinear function,
and [T ] as its representation in a particular coordinate system.

One possible objection to our approach is that matrices and tensors are often
thought of as linear operators which take vectors into vectors, as opposed to objects
which eat vectors and spit out numbers. It turns out, though, that for a second rank
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tensor these two notions are equivalent. Say we have a linear operator R; then we
can turn R into a second rank tensor TR by

TR(v,w) ≡ v · Rw (1.10)

where · denotes the usual dot product of vectors. You can roughly interpret this
tensor as taking in v and w and giving back the “component of Rw lying along v”.
You can also easily check that TR is multilinear, i.e. it satisfies (1.1) and (1.2). If we
compute the components of TR we find that, for instance,

(TR)xx = TR(x̂, x̂)

= x̂ · Rx̂

= x̂ · (Rxx x̂ + Rxy ŷ + Rxzẑ)

= Rxx

so the components of the tensor TR are the same as the components of the linear
operator R! In components, the action of TR then looks like

TR(v,w) = (vx, vy, vz)

⎛

⎝

Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

⎞

⎠

⎛

⎝

wx

wy

wz

⎞

⎠ (1.11)

which is identical to (1.9). This makes it obvious how to turn a linear operator R into
a second rank tensor—just sandwich the component matrix in between two vectors!
This whole process is also reversible: we can turn a second rank tensor T into a
linear operator RT by defining the components of the vector RT (v) as

(

RT (v)
)

x
≡ T (v, x̂), (1.12)

and similarly for the other components. One can check that these processes are
inverses of each other, so this sets up a one-to-one correspondence between linear
operators and second rank tensors and we can thus regard them as equivalent. Since
the matrix form of both is identical, one often does not bother trying to clarify
exactly which one is at hand, and often times it is just a matter of interpretation.

How does all this work in a physical context? One nice example is the rank 2
moment-of-inertia tensor I , familiar from rigid body dynamics in classical mechan-
ics. In most textbooks, this tensor usually arises when one considers the relationship
between the angular velocity vector ω and the angular momentum L or kinetic en-
ergy KE of a rigid body. If one chooses a basis {x̂, ŷ, ẑ} and then expresses, say, KE
in terms of ω, one gets an expression like (1.4) with v = w = ω and Tij = Iij . From
this expression, most textbooks then figure out how the Iij must transform under a
change of coordinates, and this behavior under coordinate change is then what iden-
tifies the Iij as a tensor. In this text, though, we will take a different point of view.
We will define I to be the function which, for a given rigid body, assigns to a state
of rotation (described by the angular momentum vector ω) twice the corresponding
kinetic energy KE. One can then calculate KE in terms of ω, which yields an ex-
pression of the form (1.4); this then shows that I is a tensor in the old sense of the
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term, which also means that it is a tensor in the modern sense of being a multilinear
function. We can then think of I as a second rank tensor defined by

KE = 1

2
I(ω,ω). (1.13)

From our point of view, we see that the components of I have a physical meaning;
for instance, Ixx = I(x̂, x̂) is just twice the kinetic energy of the rigid body when
ω = x̂. When one actually needs to compute the kinetic energy for a rigid body,
one usually picks a convenient coordinate system, computes the components of I
using the standard formulas,1 and then uses the convenient matrix representation to
compute

KE = 1

2
(ωx,ωy,ωz)

⎛

⎜

⎝

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎞

⎟

⎠

⎛

⎝

ωx

ωy

ωz

⎞

⎠ , (1.14)

which is the familiar expression often found in mechanics texts.
As mentioned above, one can also interpret I as a linear operator which takes

vectors into vectors. If we let I act on the angular velocity vector, we get
⎛

⎜

⎝

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎞

⎟

⎠

⎛

⎝

ωx

ωy

ωz

⎞

⎠ (1.15)

which you probably recognize as the coordinate expression for the angular momen-
tum L. Thus, I can be interpreted either as the rank 2 tensor which eats two copies
of the angular velocity vector ω and produces the kinetic energy, or as the linear
operator which takes ω into L. The two definitions are equivalent.

Many other tensors which we will consider in this text are also nicely understood
as multilinear functions which happen to have convenient component and matrix
representations. These include the electromagnetic field tensor of electrodynam-
ics, as well as the metric tensors of Newtonian and relativistic mechanics. As we
progress we will see how we can use our new point of view to get a handle on these
usually somewhat enigmatic objects.

1See Example 3.14 or any standard textbook such as Goldstein [6].





Chapter 2
Vector Spaces

Since tensors are a special class of functions defined on vector spaces, we must
have a good foundation in linear algebra before discussing them. In particular, you
will need a little bit more linear algebra than is covered in most sophomore or ju-
nior level linear algebra/ODE courses. This chapter starts with the familiar material
about vectors, bases, linear operators etc. but eventually moves on to slightly more
sophisticated topics that are essential for understanding tensors in physics. As we
lay this groundwork, hopefully you will find that our slightly more abstract view-
point also clarifies the nature of many of the objects in physics you have already
encountered.

2.1 Definition and Examples

We begin with the definition of an abstract vector space. We are taught as under-
graduates to think of vectors as arrows with a head and a tail, or as ordered triples
of real numbers, but physics, and especially quantum mechanics, requires a more
abstract notion of vectors. Before reading the definition of an abstract vector space,
keep in mind that the definition is supposed to distill all the essential features of
vectors as we know them (like addition and scalar multiplication) while detaching
the notion of a vector space from specific constructs, like ordered n-tuples of real or
complex numbers (denoted as R

n and C
n, respectively). The mathematical utility of

this is that much of what we know about vector spaces depends only on the essential
properties of addition and scalar multiplication, not on other properties particular to
R

n or C
n. If we work in the abstract framework and then come across other math-

ematical objects that do not look like R
n or C

n but that are abstract vector spaces,
then most everything we know about R

n and C
n will apply to these spaces as well.

Physics also forces us to use the abstract definition since many quantum-mechanical
vector spaces are infinite-dimensional and cannot be viewed as C

n or R
n for any n.

An added dividend of the abstract approach is that we will learn to think about vector
spaces independently of any basis, which will prove very useful.

N. Jeevanjee, An Introduction to Tensors and Group Theory for Physicists,
DOI 10.1007/978-0-8176-4715-5_2, © Springer Science+Business Media, LLC 2011
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10 2 Vector Spaces

That said, an (abstract) vector space is a set V (whose elements are called vec-
tors), together with a set of scalars C (for us, C is always R or C) and operations of
addition and scalar multiplication that satisfy the following axioms:

1. v + w = w + v for all v, w in V (Commutativity)
2. v + (w + x) = (v + w) + x for all v, w, x in V (Associativity)
3. There exists a vector 0 in V such that v + 0 = v for all v in V

4. For all v in V there is a vector −v such that v + (−v) = 0
5. c(v + w) = cv + cw for all v and w in V and scalars c (Distributivity)
6. 1v = v for all v in V

7. (c1 + c2)v = c1v + c2v for all scalars c1, c2 and vectors v

8. (c1c2)v = c1(c2v) for all scalars c1, c2 and vectors v

Some parts of the definition may seem tedious or trivial, but they are just meant
to ensure that the addition and scalar multiplication operations behave the way we
expect them to. In determining whether a set is a vector space or not, one is usually
most concerned with defining addition in such a way that the set is closed under
addition and that axioms 3 and 4 are satisfied; most of the other axioms are so
natural and obviously satisfied that one, in practice, rarely bothers to check them.1

That said, let us look at some examples from physics, most of which will recur
throughout the text.

Example 2.1 R
n

This is the most basic example of a vector space, and the one on which the abstract
definition is modeled. Addition and scalar multiplication are defined in the usual
way: for v = (v1, v2, . . . , vn), w = (w1,w2, . . . ,wn) in R

n, we have
(

v1, v2, . . . , vn
) + (

w1,w2, . . . ,wn
) = (

v1 + w1, v2 + w2, . . . , vn + wn
)

and

c
(

v1, v2, . . . , vn
) = (

cv1, cv2, . . . , cvn
)

.

You should check that the axioms are satisfied. These spaces, of course, are basic
in physics; R

3 is our usual three-dimensional cartesian space, R
4 is spacetime in

special relativity, and R
n for higher n occurs in classical physics as configuration

spaces for multiparticle systems (for example, R
6 is the configuration space in the

1Another word about axioms 3 and 4, for the mathematically inclined (feel free to skip this if you
like): the axioms do not demand that the zero element and inverses are unique, but this actually
follows easily from the axioms. If 0 and 0′ are two zero elements, then

0 = 0 + 0′ = 0′

and so the zero element is unique. Similarly, if −v and −v′ are both inverse to some vector v, then

−v′ = −v′ + 0 = −v′ + (v − v) = (−v′ + v) − v = 0 − v = −v

and so inverses are unique as well.
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classic two-body problem, as you need six coordinates to specify the position of two
particles in three-dimensional space).

Example 2.2 C
n

This is another basic example—addition and scalar multiplication are defined as
for R

n, and the axioms are again straightforward to verify. Note, however, that C
n is

a complex vector space, i.e. the set C in the definition is C so scalar multiplication by
complex numbers is defined, whereas R

n is only a real vector space. This seemingly
pedantic distinction can often end up being significant, as we will see.2 C

n occurs
in physics primarily as the ket space for finite-dimensional quantum-mechanical
systems, such as particles with spin but without translational degrees of freedom.
For instance, a spin 1/2 particle fixed in space has ket space identifiable with C

2,
and more generally a fixed particle with spin s has ket space identifiable with C

2s+1.

Example 2.3 Mn(R) and Mn(C), n × n matrices with real or complex entries

The vector space structure of Mn(R) and Mn(C) is similar to that of R
n and C

n:
denoting the entry in the ith row and j th column of a matrix A as Aij , we define
addition and (real) scalar multiplication for A,B ∈ Mn(R) by

(A + B)ij = Aij + Bij

(cA)ij = cAij

i.e. addition and scalar multiplication are done component-wise. The same defini-
tions are used for Mn(C), which is of course a complex vector space. You can again
check that the axioms are satisfied. Though these vector spaces do not appear ex-
plicitly in physics very often, they have many important subspaces, one of which we
consider in the next example.

Example 2.4 Hn(C), n × n Hermitian matrices with complex entries

Hn(C), the set of all n×n Hermitian matrices,3 is obviously a subset of Mn(C), and
in fact it is a subspace of Mn(C) in that it forms a vector space itself.4 To show this it
is not necessary to verify all of the axioms, since most of them are satisfied by virtue
of Hn(C) being a subset of Mn(C); for instance, addition and scalar multiplication
in Hn(C) are just given by the restriction of those operations in Mn(C) to Hn(C), so

2Note also that any complex vector space is also a real vector space, since if you know how to
multiply vectors by a complex number, then you certainly know how to multiply them by a real
number. The converse, of course, is not true.
3Hermitian matrices being those which satisfy A† ≡ (AT )∗ = A, where superscript T denotes the
transpose and superscript ∗ denotes complex conjugation of the entries.
4Another footnote for the mathematically inclined: as discussed later in this example, though,
Hn(C) is only a real vector space, so it is only a subspace of Mn(C) when Mn(C) is considered as
a real vector space, cf. footnote 2.
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the commutativity of addition and the distributivity of scalar multiplication over ad-
dition follow immediately. What does remain to be checked is that Hn(C) is closed
under addition and contains the zero “vector” (in this case, the zero matrix), both
of which are easily verified. One interesting thing about Hn(C) is that even though
the entries of its matrices can be complex, it does not form a complex vector space;
multiplying a Hermitian matrix by i yields an anti-Hermitian matrix, so Hn(C) is
not closed under complex scalar multiplication. As far as physical applications go,
we know that physical observables in quantum mechanics are represented by Her-
mitian operators, and if we are dealing with a finite-dimensional ket space such as
those mentioned in Example 2.2 then observables can be represented as elements of
Hn(C). As an example one can take a fixed spin 1/2 particle whose ket space is C

2;
the angular momentum operators are then represented as Li = 1

2σi , where the σi are
the Hermitian Pauli matrices

σx ≡
(

0 1
1 0

)

, σy ≡
(

0 −i

i 0

)

, σz ≡
(

1 0
0 −1

)

. (2.1)

Example 2.5 L2([a, b]), square-integrable complex-valued functions on an interval

This example is fundamental in quantum mechanics. A complex-valued function f

on [a, b] ⊂ R is said to be square-integrable if
∫ b

a

∣

∣f (x)
∣

∣
2
dx < ∞. (2.2)

Defining addition and scalar multiplication in the obvious way,

(f + g)(x) = f (x) + g(x)

(cf )(x) = cf (x),

and taking the zero element to be the function which is identically zero (i.e.
f (x) = 0 for all x) yields a complex vector space. (Note that if we considered only
real-valued functions then we would only have a real vector space.) Verifying the ax-
ioms is straightforward though not entirely trivial, as one must show that the sum of
two square-integrable functions is again square-integrable (Problem 2.1). This vec-
tor space arises in quantum mechanics as the set of normalizable wavefunctions for
a particle in a one-dimensional infinite potential well. Later on we will consider the
more general scenario where the particle may be unbound, in which case a = −∞
and b = ∞ and the above definitions are otherwise unchanged. This vector space is
denoted as L2(R).

Example 2.6 Hl (R
3) and H̃l , the harmonic polynomials and the spherical harmon-

ics

Consider the set Pl(R
3) of all complex-coefficient polynomial functions on R

3 of
fixed degree l, i.e. all linear combinations of functions of the form xiyj zk where
i + j + k = l. Addition and (complex) scalar multiplication are defined in the usual
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way and the axioms are again easily verified, so Pl(R
3) is a vector space. Now

consider the vector subspace Hl (R
3) ⊂ Pl(R

3) of harmonic degree l polynomials,
i.e. degree l polynomials satisfying �f = 0, where � is the usual three-dimensional
Laplacian. You may be surprised to learn that the spherical harmonics of degree l

are essentially elements of Hl (R
3)! To see the connection, note that if we write a

degree l polynomial

f (x, y, z) =
∑

i,j,k
i+j+k=l

cijkx
iyj zk

in spherical coordinates with polar angle θ and azimuthal angle φ, we will get

f (r, θ,φ) = rlY (θ,φ)

for some function Y(θ,φ), which is just the restriction of f to the unit sphere. If we
write the Laplacian out in spherical coordinates we get

� = ∂2

∂r2
+ 2

r

∂

∂r
+ 1

r2
�S2 (2.3)

where �S2 is shorthand for the angular part of the Laplacian.5 You will show be-
low that applying this to f (r, θ,φ) = rlY (θ,φ) and demanding that f be harmonic
yields

�S2Y(θ,φ) = −l(l + 1)Y (θ,φ), (2.5)

which is the definition of a spherical harmonic of degree l! Conversely, if we take
a degree l spherical harmonic and multiply it by rl , the result is a harmonic func-
tion. If we let H̃l denote the set of all spherical harmonics of degree l, then we have
established a one-to-one correspondence between H̃l and Hl (R

3)! The correspon-
dence is given by restricting functions in Hl (R

3) to the unit sphere, and conversely
by multiplying functions in H̃l by rl , i.e.

Hl

(

R
3) 1–1←→ H̃l

f −→ f (r = 1, θ,φ)

rlY (θ,φ) ←− Y(θ,φ).

In particular, this means that the familiar spherical harmonics Y l
m(θ,φ) are

just the restriction of particular harmonic degree l polynomials to the unit

5The differential operator �S2 is also sometimes known as the spherical Laplacian, and is given
explicitly by

�S2 = ∂2

∂θ2 + cot θ
∂

∂θ
+ 1

sin2 θ

∂2

∂φ2 . (2.4)

We will not need the explicit form of �S2 here. A derivation and further discussion can be found
in any electrodynamics or quantum mechanics book, like Sakurai [14].
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sphere. For instance, consider the case l = 1. Clearly H1(R
3) = P1(R

3) since all
first-degree (linear) functions are harmonic. If we write the functions

x + iy√
2

, z,
x − iy√

2
∈ H1

(

R
3)

in spherical coordinates, we get

1√
2
reiφ sin θ, r cos θ,

1√
2
re−iφ sin θ ∈ H1

(

R
3)

which when restricted to the unit sphere yield

1√
2
eiφ sin θ, cos θ,

1√
2
e−iφ sin θ ∈ H̃1.

Up to (overall) normalization, these are the usual degree 1 spherical harmonics Y 1
m,

−1 ≤ m ≤ 1. The l = 2 case is treated in Exercise 2.5 below. Spherical harmon-
ics are discussed further throughout this text; for a complete discussion, see Stern-
berg [16].

Exercise 2.1 Verify (2.5).

Exercise 2.2 Consider the functions

1

2
(x + iy)2, z(x + iy),

1√
2

(

x2 + y2 − 2z2), z(x − iy),
1

2
(x − iy)2 ∈ P2

(

R
3). (2.6)

Verify that they are in fact harmonic, and then write them in spherical coordinates and
restrict to the unit sphere to obtain, up to normalization, the familiar degree 2 spherical
harmonics Y 2

m, −2 ≤ m ≤ 2.

Non-example GL(n,R), invertible n × n matrices

The ‘general linear group’ GL(n,R), defined to be the subset of Mn(R) consisting
of invertible n × n matrices, is not a vector space though it seems like it could be.
Why not?

2.2 Span, Linear Independence, and Bases

The notion of a basis is probably familiar to most readers, at least intuitively: it is
a set of vectors out of which we can ‘make’ all the other vectors in a given vector
space V . In this section we will make this idea precise and describe bases for some
of the examples in the previous section.

First, we need the notion of the span of a set of vectors. If S = {v1, v2, . . . , vk} ⊂
V is a set of k vectors in V , then the span of S, denoted Span{v1, v2, . . . , vk} or
SpanS, is defined to be just the set of all vectors of the form c1v1 +c2v2 +· · ·+ckvk .
Such vectors are known as linear combinations of the vi , so SpanS is just the set of
all linear combinations of the vectors in S. For instance, if S = {(1,0,0), (0,1,0)} ⊂
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R
3, then SpanS is just the set of all vectors of the form (c1, c2,0) with c1, c2 ∈ R. If

S has infinitely many elements then the span of S is again all the linear combinations
of vectors in S, though in this case the linear combinations can have an arbitrarily
large (but finite) number of terms.6

Next we need the notion of linear dependence: a (not necessarily finite) set of vec-
tors S is said to be linearly dependent if there exists distinct vectors v1, v2, . . . , vm

in S and scalars c1, c2, . . . , cm, not all of which are 0, such that

c1v1 + c2v2 + · · · + cmvm = 0. (2.7)

What this definition really means is that at least one vector in S can be written as a
linear combination of the others, and in that sense is dependent (you should take a
second to convince yourself of this). If S is not linearly dependent then we say it is
linearly independent, and in this case no vector in S can be written as a linear com-
bination of any others. For instance, the set S = {(1,0,0), (0,1,0), (1,1,0)} ⊂ R

3

is linearly dependent whereas the set S ′ = {(1,0,0), (0,1,0), (0,1,1)} is linearly
independent, as you can check.

With these definitions in place we can now define a basis for a vector space V

as an ordered linearly independent set B ⊂ V whose span is all of V . This means,
roughly speaking, that a basis has enough vectors to make all the others, but no
more than that. When we say that B = {v1, . . . , vk} is an ordered set we mean that
the order of the vi is part of the definition of B, so another basis with the same
vectors but a different order is considered inequivalent. The reasons for this will
become clear as we progress.

One can show7 that all finite bases must have the same number of elements, so
we define the dimension of a vector space V , denoted dim V , to be the number of
elements of any finite basis. If no finite basis exists, then we say that V is infinite-
dimensional.

Also, we should mention that basis vectors are often denoted ei rather than vi ,
and we will use this notation from now on.

Exercise 2.3 Given a vector v and a finite basis B = {ei}i=1,...,n, show that the expression
of v as a linear combination of the ei is unique.

Example 2.7 R
n and C

n

R
n has the following natural basis, also known as the standard basis:

{

(1,0, . . . ,0), (0,1, . . . ,0), . . . , (0, . . . ,1)
}

.

You should check that this is indeed a basis, and thus that the dimension of R
n

is, unsurprisingly, n. The same set serves as a basis for C
n, where of course

6We do not generally consider infinite linear combinations like
∑∞

i=1 civi = limN→∞
∑N

i=1 civi

because in that case we would need to consider whether the limit exists, i.e. whether the sum
converges in some sense. More on this later.
7See Hoffman and Kunze [10].
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now the linear combination coefficients ci are allowed to be complex num-
bers. Note that although this basis is the most natural, there are infinitely many
other perfectly respectable bases out there; you should check, for instance, that
{(1,1,0, . . . ,0), (0,1,1,0, . . . ,0), . . . , (0, . . . ,1,1), (1,0, . . . ,0,1)} is also a basis
when n > 2.

Example 2.8 Mn(R) and Mn(C)

Let Eij be the n×n matrix with a 1 in the ith row, j th column and zeros everywhere
else. Then you can check that {Eij }i,j=1,...,n is a basis for both Mn(R) and Mn(C),
and that both spaces have dimension n2. Again, there are other nice bases out there;
for instance, the symmetric matrices Sij ≡ Eij + Eji , i ≤ j , and antisymmetric
matrices Aij ≡ Eij − Eji , i < j taken together also form a basis for both Mn(R)

and Mn(C).

Exercise 2.4 Let Sn(R),An(R) be the sets of n×n symmetric and antisymmetric matrices,
respectively. Show that both are real vector spaces, compute their dimensions, and check
that dim Sn(R) + dimAn(R) = dimMn(R), as expected.

Example 2.9 H2(C)

Let us find a basis for H2(C). First, we need to know what a general element of
H2(C) looks like. In terms of complex components, the condition A = A† reads

(

a b

c d

)

=
(

ā c̄

b̄ d̄

)

(2.8)

where the bar denotes complex conjugation. This means that a, d ∈ R and b = c̄, so
in terms of real numbers we can write a general element of H2(C) as

(

t + z x − iy

x + iy t − z

)

= tI + xσx + yσy + zσz (2.9)

where I is the identity matrix and σx , σy , σz are the Pauli matrices defined in (2.1).
You can easily check that the set B = {I, σx, σy, σz} is linearly independent, and
since (2.9) shows that B spans H2(C), B is a basis for H2(C). We also see that
H2(C) has (real) dimension 4.

Exercise 2.5 Using the matrices Sij and Aij from Example 2.8, construct a basis for Hn(C)

and compute its dimension.

Example 2.10 Y l
m(θ,φ)

We saw in the previous section that the Y l
m are elements of H̃l , which can be ob-

tained from Hl (R
3) by restricting to the unit sphere. What is more is that the set

{Y l
m}−l≤m≤l is actually a basis for H̃l . In the case l = 1 this is clear: we have

H1(R
3) = P1(R

3) and clearly { 1√
2
(x + iy), z, 1√

2
(x − iy)} is a basis, and restricting

this basis to the unit sphere gives the l = 1 spherical harmonics. For l > 1 proving



2.3 Components 17

our claim requires a little more effort; see Problem 2.2. Another, simpler basis for
H1(R

3) would be the cartesian basis {x, y, z}; physicists use the spherical harmonic
basis because those functions are eigenfunctions of the orbital angular momentum
operator Lz, which on Hl (R

3) is represented8 by Lz = −i(x ∂
∂y

− y ∂
∂x

). We shall
discuss the relationship between the two bases in detail later.

Not quite example L2([−a, a])

From doing 1-D problems in quantum mechanics one already ‘knows’ that the set
{ei nπx

a }n∈Z is a basis for L2([−a, a]). There is a problem, however; we are used to
taking infinite linear combinations of these basis vectors, but our definition above
only allows for finite linear combinations. What is going on here? It turns out that
L2([−a, a]) has more structure than your average vector space: it is an infinite-
dimensional Hilbert space, and for such spaces we have a generalized definition
of a basis, one that allows for infinite linear combinations. We will discuss Hilbert
spaces in Sect. 2.6

2.3 Components

One of the most useful things about introducing a basis for a vector space is that
it allows us to write elements of the vector space as n-tuples, in the form of either
column or row vectors, as follows: Given v ∈ V and a basis B = {ei}i=1,...,n for V ,
we can write

v =
n

∑

i=1

viei

for some numbers vi , called the components of v with respect to B. We can then
represent v by the column vector, denoted [v]B , as

[v]B ≡

⎛

⎜

⎜

⎜

⎝

v1

v2

...

vn

⎞

⎟

⎟

⎟

⎠

or the row vector

[v]TB ≡ (

v1, v2, . . . , vn
)

where the superscript T denotes the usual transpose of a vector. The subscript B
just reminds us which basis the components are referred to, and will be dropped if
there is no ambiguity. With a choice of basis, then, every n-dimensional vector space

8As mentioned in the preface, the �, which would normally appear in this expression, has been set
to 1.
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can be made to ‘look like’ R
n or C

n. Writing vectors in this way greatly facilitates
computation, as we will see. One must keep in mind, however, that vectors exist
independently of any chosen basis, and that their expressions as row or column
vectors depend very much on the choice of basis B.

To make this last point explicit, let us consider two bases for R
3: the standard

basis

e1 = (1,0,0)

e2 = (0,1,0)

e3 = (0,0,1)

and the alternate basis we introduced in Example 2.7

e′
1 = (1,1,0)

e′
2 = (0,1,1)

e′
3 = (1,0,1).

We will refer to these bases as B and B′, respectively. Let us consider the compo-
nents of the vector e′

1 in both bases. If we expand in the basis B, we have

e′
1 = 1 · e1 + 1 · e2 + 0 · e3

so

[

e′
1

]

B =
⎛

⎝

1
1
0

⎞

⎠ (2.10)

as expected. If we expand e′
1 in the basis B′, however, we get

e′
1 = 1 · e′

1 + 0 · e′
2 + 0 · e′

3

and so

[

e′
1

]

B′ =
⎛

⎝

1
0
0

⎞

⎠

which is of course not the same as (2.10).9 For fun, we can also express the standard
basis vector e1 in the alternate basis B′; you can check that

e1 = 1

2
e′

1 − 1

2
e′

2 + 1

2
e′

3

and so

9The simple form of [e′
1]B′ is no accident; you can easily check that if you express any set of basis

vectors in the basis that they define, the resulting column vectors will just look like the standard
basis.



2.3 Components 19

[e1]B′ =
⎛

⎝

1/2
−1/2
1/2

⎞

⎠ .

The following examples will explore the notion of components in a few other
contexts.

Example 2.11 Rigid body motion

One area of physics where the distinction between a vector and its expression as an
ordered triple is crucial is rigid body motion. In this setting our vector space is R

3

and we usually deal with two bases, an arbitrary but fixed space axes K ′ = {x̂′, ŷ′, ẑ′}
and a time-dependent body axes K = {x̂(t), ŷ(t), ẑ(t)} which is fixed relative to the
rigid body. These are illustrated in Fig. 2.1. When we write down vectors in R

3, like
the angular momentum vector L or the angular velocity vector ω, we must keep in
mind what basis we are using, as the component expressions will differ drastically
depending on the choice of basis. For example, if there is no external torque on a
rigid body, [L]K ′ will be constant whereas [L]K will in general be time-dependent.

Example 2.12 Different bases for C
2

As mentioned in Example 2.4, the vector space for a spin 1/2 particle is identifiable
with C

2 and the angular momentum operators are given by Li = 1
2σi . In particular,

this means that

Fig. 2.1 Depiction of the fixed space axes K ′ and the time-dependent body axes K , in gray. K is
attached to the rigid body and its basis vectors will change in time as the rigid body rotates
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Lz =
( 1

2 0
0 − 1

2

)

and so the standard basis vectors e1, e2 are eigenvectors of Lz with eigenvalues of
1/2 and −1/2, respectively. Let us say, however, that we were interested in measur-
ing Lx , where

Lx =
(

0 1
2

1
2 0

)

.

Then we would need to use a basis B′ of Lx eigenvectors, which you can check are
given by

e′
1 = 1√

2

(

1
1

)

e′
2 = 1√

2

(

1
−1

)

.

If we are given the state e1 and are asked to find the probability of measuring
Lx = 1/2, then we need to expand e1 in the basis B′, which gives

e1 = 1√
2
e′

1 + 1√
2
e′

2

and so

[e1]B′ =
⎛

⎝

1√
2

1√
2

⎞

⎠ .

This, of course, tells us that we have a probability of 1/2 for measuring Lx = +1/2
(and the same for Lx = −1/2). Hopefully this convinces you that the distinction
between a vector and its component representation is not just pedantic: it can be of
real physical importance!

Example 2.13 L2([−a, a])

We know from experience in quantum mechanics that all square integrable functions
on an interval [−a, a] have an expansion10

f =
∞
∑

m=−∞
cmei mπx

a

in terms of the ‘basis’ {exp(i mπx
a

)}m∈Z. This expansion is known as the Fourier
series of f , and we see that the cm, commonly known as the Fourier coefficients,
are nothing but the components of the vector f in the basis {ei mπx

a }m∈Z.

10This fact is proved in most real analysis books, see Rudin [13].
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2.4 Linear Operators

One of the basic notions in linear algebra, fundamental in quantum mechanics, is
that of a linear operator. A linear operator on a vector space V is a function T from
V to itself satisfying the linearity condition

T (cv + w) = cT (v) + T (w).

Sometimes we write T v instead of T (v). You should check that the set of all linear
operators on V , with the obvious definitions of addition and scalar multiplication,
forms a vector space, denoted L(V ). You have doubtless seen many examples of
linear operators: for instance, we can interpret a real n×n matrix as a linear operator
on R

n that acts on column vectors by matrix multiplication. Thus Mn(R) (and,
similarly, Mn(C)) can be viewed as vector spaces whose elements are themselves
linear operators. In fact, that was exactly how we interpreted the vector subspace
H2(C) ⊂ M2(C) in Example 2.4; in that case, we identified elements of H2(C) as
the quantum-mechanical angular momentum operators. There are numerous other
examples of quantum-mechanical linear operators: for instance, the familiar position
and momentum operators x̂ and p̂ that act on L2([−a, a]) by

(x̂f )(x) = xf (x)

(p̂f )(x) = −i
∂f

∂x
(x)

as well as the angular momentum operators Lx,Ly , and Lz which act on Pl(R
3) by

Lx(f ) = −i

(

y
∂f

∂z
− z

∂f

∂y

)

Ly(f ) = −i

(

z
∂f

∂x
− x

∂f

∂z

)

(2.11)

Lz(f ) = −i

(

x
∂f

∂y
− y

∂f

∂x

)

.

Another class of less familiar examples is given below.

Example 2.14 L(V ) acting on L(V )

We are familiar with linear operators taking vectors into vectors, but they can also be
used to take linear operators into linear operators, as follows: Given A,B ∈ L(V ),
we can define a linear operator adA ∈ L(L(V )) acting on B by

adA(B) ≡ [A,B]
where [·,·] indicates the commutator. This action of A on L(V ) is called the adjoint
action or adjoint representation. The adjoint representation has important applica-
tions in quantum mechanics; for instance, the Heisenberg picture emphasizes L(V )

rather than V and interprets the Hamiltonian as an operator in the adjoint represen-
tation. In fact, for any observable A the Heisenberg equation of motion reads
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dA

dt
= i adH (A). (2.12)

�
One important property of a linear operator T is whether or not it is invertible,

i.e. whether there exists a linear operator T −1 such that T T −1 = T −1T = I (where
I is the identity operator).11 You may recall that, in general, an inverse for a map
F between two arbitrary sets A and B (not necessarily vector spaces!) exists if and
only if F is both one-to-one, meaning

F(a1) = F(a2) �⇒ a1 = a2 ∀a1, a2 ∈ A,

and onto, meaning that

∀b ∈ B there exists a ∈ A such that F(a) = b.

If this is unfamiliar you should take a moment to convince yourself of this. In the
particular case of a linear operator T on a vector space V (so that now instead of
considering F : A → B we are considering T : V → V , where T has the additional
property of being linear), these two conditions are actually equivalent. Furthermore,
they turn out also (see Exercise 2.7 below) to be equivalent to the statement

T (v) = 0 �⇒ v = 0,

so T is invertible if and only if the only vector it sends to 0 is the zero vector.
The following exercises will help you parse these notions.

Exercise 2.6 Suppose V is finite-dimensional and let T ∈ L(V ). Show that T being one-
to-one is equivalent to T being onto. Feel free to introduce a basis to assist you in the proof.

Exercise 2.7 Suppose T (v) = 0 �⇒ v = 0. Show that this is equivalent to T being one-
to-one, which by the previous exercise is equivalent to T being one-to-one and onto, which
is then equivalent to T being invertible.

An important point to keep in mind is that a linear operator is not the same
thing as a matrix; just as with vectors, the identification can only be made once a
basis is chosen. For operators on finite-dimensional spaces this is done as follows:
choose a basis B = {ei}i=1,...,n. Then the action of T is determined by its action on
the basis vectors:

T (v) = T

(

n
∑

i=1

viei

)

=
n

∑

i=1

viT (ei) =
n

∑

i,j=1

viTi
j ej (2.13)

where the numbers Ti
j , again called the components of T with respect to B,12 are

defined by

11Throughout this text I will denote the identity operator or identity matrix; it will be clear from
context which is meant.
12Nomenclature to be justified in the next chapter.
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T (ei) =
n

∑

j=1

Ti
j ej . (2.14)

We then have

[v]B =

⎛

⎜

⎜

⎜

⎝

v1

v2

...

vn

⎞

⎟

⎟

⎟

⎠

and
[

T (v)
]

B =

⎛

⎜

⎜

⎜

⎜

⎝

∑n
i=1 viTi

1

∑n
i=1 viTi

2

...
∑n

i=1 viTi
n

⎞

⎟

⎟

⎟

⎟

⎠

,

which looks suspiciously like matrix multiplication. In fact, we can define the ma-
trix of T in the basis B, denoted [T ]B , by the matrix equation

[

T (v)
]

B = [T ]B[v]B

where the product on the right-hand side is given by the usual matrix multiplication.
Comparison of the last two equations then shows that

[T ]B =

⎛

⎜

⎜

⎜

⎜

⎝

T1
1 T2

1 . . . Tn
1

T1
2 T2

2 . . . Tn
2

...
...

...
...

T1
n T2

n . . . Tn
n

⎞

⎟

⎟

⎟

⎟

⎠

. (2.15)

Thus, we really can use the components of T to represent it as a matrix, and once we
do so the action of T becomes just matrix multiplication by [T ]B ! Furthermore, if
we have two linear operators A and B and we define their product (or composition)
AB as the linear operator

(AB)(v) ≡ A
(

B(v)
)

,

you can then show that [AB] = [A][B]. Thus, composition of operators becomes
matrix multiplication of the corresponding matrices.

Exercise 2.8 For two linear operators A and B on a vector space V , show that [AB] =
[A][B] in any basis.

Example 2.15 Lz, Hl(R
3) and spherical harmonics

Recall that H1(R
3) is the set of all linear functions on R

3 and that {rY 1
m}−1≤m≤1 =

{ 1√
2
(x + iy), z, 1√

2
(x − iy)} and {x, y, z} are both bases for this space.13 Now con-

sider the familiar angular momentum operator Lz = −i(x ∂
∂y

− y ∂
∂x

) on this space.
You can check that

13We have again ignored the overall normalization of the spherical harmonics to avoid unnecessary
clutter.
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Lz(x + iy) = x + iy

Lz(z) = 0

Lz(x − iy) = −(x − iy)

which implies by (2.14) that the components of Lz in the spherical harmonic basis
are

(Lz)1
1 = 1

(Lz)1
2 = (Lz)1

3 = 0

(Lz)2
i = 0 ∀i

(Lz)3
3 = −1

(Lz)3
1 = (Lz)3

2 = 0.

Thus in the spherical harmonic basis,

[Lz]{rY 1
m} =

⎛

⎝

1 0 0
0 0 0
0 0 −1

⎞

⎠ .

This of course just says that the wavefunctions x + iy, z and x − iy have Lz eigen-
values of 1,0, and −1, respectively. Meanwhile,

Lz(x) = iy

Lz(y) = −ix

Lz(z) = 0

so in the cartesian basis,

[Lz]{x,y,z} =
⎛

⎝

0 −i 0
i 0 0
0 0 0

⎞

⎠ , (2.16)

a very differently looking matrix. Though the cartesian form of Lz is not usu-
ally used in physics texts, it has some very important mathematical properties, as
we will see in Part II of this book. For a preview of these properties, see Prob-
lem 2.3.

Exercise 2.9 Compute the matrices of Lx = −i(y ∂
∂z

− z ∂
∂y

) and Ly = −i(z ∂
∂x

− x ∂
∂z

)

acting on H1(R
3) in both the cartesian and spherical harmonic bases.

Before concluding this section we should remark that there is much more one can
say about linear operators, particularly concerning eigenvectors, eigenvalues and
diagonalization. Though these topics are relevant for physics, we will not need them
in this text and good references for them abound, so we omit them. The interested
reader can consult the first chapter of Sakurai [14] for a practical introduction, or
Hoffman and Kunze [10] for a thorough discussion.
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2.5 Dual Spaces

Another basic construction associated with a vector space, essential for understand-
ing tensors and usually left out of the typical ‘mathematical methods for physicists’
courses, is that of a dual vector. Roughly speaking, a dual vector is an object that
eats a vector and spits out a number. This may not sound like a very natural opera-
tion, but it turns out that this notion is what underlies bras in quantum mechanics,
as well as the raising and lowering of indices in relativity. We will explore these
applications in Sect. 2.7.

Now we give the precise definitions. Given a vector space V with scalars C,
a dual vector (or linear functional) on V is a C-valued linear function f on V ,
where ‘linear’ again means

f (cv + w) = cf (v) + f (w). (2.17)

(Note that f (v) and f (w) are scalars, so that on the left-hand side of (2.17) the
addition takes place in V , whereas on the right side it takes place in C.) The set of
all dual vectors on V is called the dual space of V , and is denoted V ∗. It is easily
checked that the usual definitions of addition and scalar multiplication and the zero
function turn V ∗ into a vector space over C.

The most basic examples of dual vectors are the following: let {ei} be a (not
necessarily finite) basis for V , so that an arbitrary vector v can be written as v =
∑n

i=1 viei . Then for each i, we can define a dual vector ei by

ei(v) ≡ vi . (2.18)

This just says that ei ‘picks off’ the ith component of the vector v. Note that in order
for this to make sense, a basis has to be specified.

A key property of dual vectors is that a dual vector f is entirely determined by
its values on basis vectors: by linearity we have

f (v) = f

(

n
∑

i=1

viei

)

=
n

∑

i=1

vif (ei)

≡
n

∑

i=1

vifi (2.19)

where in the last line we have defined

fi ≡ f (ei)

which we unsurprisingly refer to as the components of f in the basis {ei}. To justify
this nomenclature, notice that the ei defined in (2.18) satisfy

ei(ej ) = δi
j (2.20)
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where δi
j is the usual Kronecker delta. If V is finite-dimensional with dimension n, it

is then easy to check (by evaluating both sides on basis vectors) that we can write14

f =
n

∑

i=1

fie
i

so that the fi really are the components of f . Since f was arbitrary, this means that
the ei span V ∗. In Exercise 2.10 below you will show that the ei are actually linearly
independent, so {ei}i=1,...,n is actually a basis for V ∗. We sometimes say that the ei

are dual to the ei . Note that we have shown that V and V ∗ always have the same
dimension. We can use the dual basis {ei} ≡ B∗ to write f in components,

[f ]B∗ =

⎛

⎜

⎜

⎜

⎝

f1
f2
...

fn

⎞

⎟

⎟

⎟

⎠

and in terms of the row vector [f ]TB∗ we can write (2.19) as

f (v) = [f ]TB∗ [v]B = [f ]T [v]
where in the last equality we dropped the subscripts indicating the bases. Again, we
allow ourselves to do this whenever there is no ambiguity about which basis for V

we are using, and in all such cases we assume that the basis being used for V ∗ is
just the one dual to the basis for V .

Finally, since ei(v) = vi we note that we can alternatively think of the ith com-
ponent of a vector as the value of ei on that vector. This duality of viewpoint will
crop up repeatedly in the rest of the text.

Exercise 2.10 By carefully working with the definitions, show that the ei defined in (2.18)
and satisfying (2.20) are linearly independent.

Example 2.16 Dual spaces of R
n, C

n, Mn(R) and Mn(C)

Consider the basis {ei} of R
n and C

n, where ei is the vector with a 1 in the ith
place and 0’s everywhere else; this is just the basis described in Example 2.7. Now
consider the element f j of V ∗ which eats a vector in R

n or C
n and spits out the j th

component; clearly f j (ei) = δ
j
i so the f j are just the dual vectors ej described

above. Similarly, for Mn(R) or Mn(C) consider the dual vector f ij defined by
f ij (A) = Aij ; these vectors are clearly dual to the Eij and thus form the corre-
sponding dual basis. While the f ij may seem a little unnatural or artificial, you
should note that there is one linear functional on Mn(R) and Mn(C) which is famil-
iar: the trace functional, denoted Tr and defined by

14If V is infinite-dimensional then this may not work as the sum required may be infinite, and as
mentioned before care must be taken in defining infinite linear combinations.
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Tr(A) =
n

∑

i=1

Aii.

What are the components of Tr with respect to the f ij ?

2.6 Non-degenerate Hermitian Forms

Non-degenerate Hermitian forms, of which the Euclidean dot product, Minkowski
metric and Hermitian scalar product of quantum mechanics are but a few examples,
are very familiar to most physicists. We introduce them here not just to formalize
their definition but also to make the fundamental but usually unacknowledged con-
nection between these objects and dual spaces.

A non-degenerate Hermitian form on a vector space V is a C-valued function
(· | ·) which assigns to an ordered pair of vectors v,w ∈ V a scalar, denoted (v|w),
having the following properties:

1. (v|w1 + cw2) = (v|w1) + c(v|w2) (linearity in the second argument)
2. (v|w) = (w|v) (Hermiticity; the bar denotes complex conjugation)
3. For each v �= 0 ∈ V , there exists w ∈ V such that (v|w) �= 0 (non-degeneracy)

Note that conditions 1 and 2 imply that (cv|w) = c̄(v|w), so (· | ·) is conjugate-
linear in the first argument. Also note that for a real vector space, condition 2 implies
that (· | ·) is symmetric, i.e. (v|w) = (w|v)15; in this case, (· | ·) is called a metric.
Condition 3 is a little nonintuitive but will be essential in the connection with dual
spaces. If, in addition to the above 3 conditions, the Hermitian form obeys

4. (v|v) > 0 for all v ∈ V,v �= 0 (positive-definiteness)

then we say that (· | ·) is an inner product, and a vector space with such a Hermi-
tian form is called an inner product space. In this case we can think of (v|v) as
the ‘length squared’ of the vector v, and the notation ‖v‖ ≡ √

(v|v) is sometimes
used. Note that condition 4 implies 3. Our reason for separating condition 4 from
the rest of the definition will become clear when we consider the examples. One
very important use of non-degenerate Hermitian forms is to define preferred sets
of bases known as orthonormal bases. Such bases B = {ei} by definition satisfy
(ei |ej ) = ±δij and are extremely useful for computation, and ubiquitous in physics
for that reason. If (· | ·) is positive-definite (hence an inner product), then orthonor-
mal basis vectors satisfy (ei |ej ) = δij and may be constructed out of arbitrary bases
by the Gram–Schmidt process. If (· | ·) is not positive-definite then orthonormal
bases may still be constructed out of arbitrary bases, though the process is slightly
more involved. See Hoffman and Kunze [10], Sects. 8.2 and 10.2 for details.

15In this case, (· | ·) is linear in the first argument as well as the second and would be referred to as
bilinear.
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Exercise 2.11 Let (· | ·) be an inner product. If a set of non-zero vectors e1, . . . , ek is
orthogonal, i.e. (ei |ej ) = 0 when i �= j , show that they are linearly independent. Note
that an orthonormal set (i.e. (ei |ej ) = ±δij ) is just an orthogonal set in which the vectors
have unit length.

Example 2.17 The dot product (or Euclidean metric) on R
n

Let v = (v1, . . . , vn), w = (w1, . . . ,wn) ∈ R
n. Define (· | ·) on R

n by

(v|w) ≡
n

∑

i=1

viwi.

This is sometimes written as v · w. You should check that (· | ·) is an inner product,
and that the standard basis given in Example 2.7 is an orthonormal basis.

Example 2.18 The Hermitian scalar product on C
n

Let v = (v1, . . . , vn), w = (w1, . . . ,wn) ∈ C
n. Define (· | ·) on C

n by

(v|w) ≡
n

∑

i=1

v̄iwi . (2.21)

Again, you can check that (· | ·) is an inner product, and that the standard basis given
in Example 2.7 is an orthonormal basis. Such inner products on complex vector
spaces are sometimes referred to as Hermitian scalar products and are present on
every quantum-mechanical vector space. In this example we see the importance of
condition 2, manifested in the conjugation of the vi in (2.21); if that conjugation was
not there, a vector like v = (i,0, . . . ,0) would have (v|v) = −1 and (· | ·) would not
be an inner product.

Exercise 2.12 Let A,B ∈ Mn(C). Define (· | ·) on Mn(C) by

(A|B) = 1

2
Tr

(

A†B
)

. (2.22)

Check that this is indeed an inner product. Also check that the basis {I, σx , σy, σz} for
H2(C) is orthonormal with respect to this inner product.

Example 2.19 The Minkowski metric on 4-D spacetime

Consider two vectors16 vi = (xi, yi, zi , ti ) ∈ R
4, i = 1,2. The Minkowski metric,

denoted η, is defined to be17

η(v1, v2) ≡ x1x2 + y1y2 + z1z2 − t1t2. (2.23)

16These are often called ‘events’ in the physics literature.
17We are, of course arbitrarily choosing the + + +− signature; we could equally well choose
− − −+.
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η is clearly linear in both its arguments (i.e. it is bilinear) and symmetric, hence
satisfies conditions 1 and 2, and you will check condition 3 in Exercise 2.13 below.
Notice that for v = (1,0,0,1), η(v, v) = 0 so η is not positive-definite, hence not
an inner product. This is why we separated condition 4, and considered the more
general non-degenerate Hermitian forms instead of just inner products.

Exercise 2.13 Let v = (x, y, z, t) be an arbitrary non-zero vector in R
4. Show that η is

non-degenerate by finding another vector w such that η(v,w) �= 0.

We should point out here that the Minkowski metric can be written in components
as a matrix, just as a linear operator can. Taking the standard basis B = {ei}i=1,2,3,4
in R

4, we can define the components of η, denoted ηij , as

ηij ≡ η(ei, ej ). (2.24)

Then, just as was done for linear operators, you can check that if we define the
matrix of η in the basis B, denoted [η]B , as the matrix

[η]B =

⎛

⎜

⎜

⎝

η11 η21 η31 η41
η12 η22 η32 η42
η13 η23 η33 η43
η14 η24 η34 η44

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟

⎟

⎠

(2.25)

then we can write

η(v1, v2) = [v2]T [η][v1] = (x2, y2, z2, t2)

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

x1
y1
z1
t1

⎞

⎟

⎟

⎠

(2.26)

as some readers may be used to from computations in relativity. Note that the sym-
metry of η implies that [η]B is a symmetric matrix for any basis B.

Example 2.20 The Hermitian scalar product on L2([−a, a])

For f,g ∈ L2([−a, a]), define

(f |g) ≡ 1

2a

∫ a

−a

f̄ g dx. (2.27)

You can easily check that this defines an inner product on L2([−a, a]), and that
{ei nπx

a }n∈Z is an orthonormal set. What is more, this inner product turns L2([−a, a])
into a Hilbert Space, which is an inner product space that is complete. The notion of
completeness is a technical one, so we will not give its precise definition, but in the
case of L2([−a, a]) one can think of it as meaning roughly that a limit of a sequence
of square-integrable functions is again square-integrable. Making this precise and
proving it for L2([−a, a]) is the subject of real analysis textbooks and far outside
the scope of this text.18 We will thus content ourselves here with just mentioning

18See Rudin [13], for instance, for this and for proofs of all the claims made in this example.
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completeness and noting that it is responsible for many of the nice features of Hilbert
spaces, in particular the generalized notion of a basis which we now describe.

Given a Hilbert space H and an orthonormal (and possibly infinite) set {ei} ⊂ H,
the set {ei} is said to be an orthonormal basis for H if

(ei |f ) = 0 ∀i �⇒ f = 0. (2.28)

You can check (see Exercise 2.14 below) that in the finite-dimensional case this
definition is equivalent to our previous definition of an orthonormal basis. In the
infinite-dimensional case, however, this definition differs substantially from the old
one in that we no longer require Span{ei} = H (recall that spans only include finite
linear combinations). Does this mean, though, that we now allow arbitrary infinite
combinations of the basis vectors? If not, which ones are allowed? For L2([−a, a]),
for which {ei nπx

a }n∈Z is an orthonormal basis, we mentioned in Example 2.13 that
any f ∈ L2([−a, a]) can be written as

f =
∞
∑

n=−∞
cne

i nπx
a (2.29)

where

1

2a

∫ a

−a

|f |2 dx =
∞
∑

n=−∞
|cn|2 < ∞. (2.30)

(The first equality in (2.30) should be familiar from quantum mechanics and follows
from Exercise 2.15 below.) The converse to this is also true, and this is where the
completeness of L2([−a, a]) is essential: if a set of numbers cn satisfy (2.30), then
the series

g(x) ≡
∞
∑

n=−∞
cne

i nπx
a (2.31)

converges, yielding a square-integrable function g. So L2([−a, a]) is the set of all
expressions of the form (2.29), subject to the condition (2.30). Now we know how to
think about infinite-dimensional Hilbert spaces and their bases: a basis for a Hilbert
space is an infinite set whose infinite linear combinations, together with some suit-
able convergence condition, form the entire vector space.

Exercise 2.14 Show that the definition (2.28) of a Hilbert space basis is equivalent to our
original definition of a basis for a finite-dimensional inner product space V .

Exercise 2.15 Show that for f = ∑∞
n=−∞ cne

i nπx
a , g = ∑∞

m=−∞ dmei mπx
a ∈ L2([−a, a]),

(f |g) =
∞
∑

n=−∞
c̄ndn (2.32)

so that (· | ·) on L2([−a, a]) can be viewed as the infinite-dimensional version of (2.21),
the standard Hermitian scalar product on C

n.
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2.7 Non-degenerate Hermitian Forms and Dual Spaces

We are now ready to explore the connection between dual vectors and non-
degenerate Hermitian forms. Given a non-degenerate Hermitian form (· | ·) on a
finite-dimensional vector space V , we can associate to any v ∈ V a dual vector
ṽ ∈ V ∗ defined by

ṽ(w) ≡ (v|w). (2.33)

This defines a very important map,

L : V → V ∗

v �→ ṽ

which will crop up repeatedly in this chapter and the next. We will sometimes write
ṽ as L(v) or (v|·), and refer to it as the metric dual of v.19

Now, L is conjugate-linear since for v = cx + z, v, z, x ∈ V ,

ṽ(w) = (v|w) = (cx + z|w) = c̄(x|w) + (z|w) = c̄x̃(w) + z̃(w) (2.34)

so

ṽ = L(cx + z) = c̄x̃ + z̃ = c̄L(x) + L(z). (2.35)

In Exercise 2.16 below you will show that the non-degeneracy of (· | ·) implies that
L is one-to-one and onto, so L is an invertible map from V to V ∗. This allows us to
identify V with V ∗, a fact we will discuss further below.

Before we get to some examples, it is worth pointing out one potential point of
confusion: if we have a basis {ei}i=1,...,n and corresponding dual basis {ei}i=1,...,n,
it is not necessarily true that a dual vector ei in the dual basis is the same
as the metric dual L(ei); in particular, the dual basis vector ei is defined rela-
tive to a whole basis {ei}i=1,...,n, whereas the metric dual L(ei) only depends on
what ei is, and does not care if we change the other basis vectors. Furthermore,
L(ei) depends on your non-degenerate Hermitian form (that is why we call it a met-
ric dual), whereas ei does not (remember that we introduced dual basis vectors in
Sect. 2.5, before we even knew what non-degenerate Hermitian forms were!). You
may wonder if there are special circumstances when we do have ei = L(ei); this is
Exercise 2.17.

With that caveat let us proceed to some examples, where you will see that you
are already familiar with L from a couple of different contexts.

Exercise 2.16 Use the non-degeneracy of (· | ·) to show that L is one-to-one, i.e. that
L(v) = L(w) �⇒ v = w. Combine this with the argument used in Exercise 2.7 to show
that L is onto as well.

Exercise 2.17 Given a basis {ei}i=1,...,n, under what circumstances do we have ei = ẽi for
all i?

19The · in the notation (v|·) signifies the slot into which a vector w is to be inserted, yielding the
number (v|w).
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Example 2.21 Bras and kets in quantum mechanics

Let H be a quantum-mechanical Hilbert space with inner product (· | ·). In Dirac
notation, a vector ψ ∈ H is written as a ket |ψ〉 and the inner product (ψ,φ) is writ-
ten 〈ψ |φ〉. What about bras, written as 〈ψ |? What, exactly, are they? Most quantum
mechanics texts gloss over their definition, just telling us that they are in 1–1 cor-
respondence with kets and can be combined with kets as 〈ψ |φ〉 to get a scalar. We
are also told that the correspondence between bras and kets is conjugate-linear, i.e.
that the bra corresponding to c|ψ〉 is c̄〈ψ |. From what we have seen in this section,
it is now clear that bras really are dual vectors, labeled in the same way as regular
vectors, because the map L allows us to identify the two. In short, 〈ψ | is really just
L(ψ), or equivalently (ψ |·).

Example 2.22 Raising and lowering indices in relativity

Consider R
4 with the Minkowski metric, let B = {eμ}μ=1,...,4 and B′ = {eμ}μ=1,...,4

be the standard basis and dual basis for R
4 (we use a Greek index to conform with

standard physics notation20), and let v = ∑4
μ=1 vμeμ ∈ R

4. What are the compo-
nents of the dual vector ṽ in terms of the vμ? Well, as we saw in Sect. 2.5, the
components of a dual vector are just given by evaluation on the basis vectors, so

ṽμ = ṽ(eμ) = (v|eμ) =
∑

ν

vν(eν |eμ) =
∑

ν

vνηνμ. (2.36)

In matrices, this reads

[ṽ]B′ = [η]B[v]B (2.37)

so matrix multiplication of a vector by the metric matrix gives the corresponding
dual vector in the dual basis. Thus, the map L is implemented in coordinates by [η].
Now, we mentioned above that L is invertible; what does L−1 look like in coordi-
nates? Well, by the above, L−1 should be given by matrix multiplication by [η]−1,
the matrix inverse to [η]. Denoting the components of this matrix by ημν (so that
ητμηντ = δ

μ
ν ) and writing f̃ ≡ L−1(f ) where f is a dual vector, we have

[f̃ ] = [η]−1[f ] (2.38)

or in components

f̃ μ =
∑

ν

ηνμfν. (2.39)

The expressions in (2.36) and (2.39) are probably familiar to you. In physics
one usually works with components of vectors, and in relativity the numbers vμ

20As long as we are talking about ‘standard’ physics notation, you should also be aware that in
many texts the indices run from 0 to 3 instead of 1 to 4, and in that case the zeroth coordinate
corresponds to time.
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are called the contravariant components of v and the numbers vμ ≡ ∑

ν vνηνμ of
(2.36) are referred to as the covariant components of v. We see now that the con-
travariant components of a vector are just its usual components, while its covariant
components are actually the components of the associated dual vector ṽ. For a
dual vector f , the situation is reversed—the covariant components fμ are its actual
components, and the contravariant components are the components of f̃ . Since L

allows us to turn vectors into dual vectors and vice versa, we usually do not bother
trying to figure out whether something is ‘really’ a vector or a dual vector; it can be
either, depending on which components we use.

The above discussion shows that the familiar process of “raising” and “lowering”
indices is just the application of the map L (and its inverse) in components. For an
interpretation of [η]−1 as the matrix of a metric on R

4∗, see Problem 2.7.

Exercise 2.18 Consider R
3 with the Euclidean metric. Show that the covariant and con-

travariant components of a vector in an orthonormal basis are identical. This explains why
we never bother with this terminology, nor the concept of dual spaces, in basic physics
where R

3 is the relevant vector space. Is the same true for R
4 with the Minkowski metric?

Example 2.23 L2([−a, a]) and its dual

In our above discussion of the map L we stipulated that V should be finite-
dimensional. Why? If you examine the discussion closely, you will see that the only
place where we use the finite-dimensionality of V is in showing that L is onto. Does
this mean that L is not necessarily onto in infinite dimensions? Consider the Dirac
Delta functional δ ∈ L2([−a, a])∗. Does

δ(g) = g(0)
?= (

δ(x)|g)

(2.40)

for some function δ(x)? If we write g as g(x) = ∑∞
n=−∞ dne

i nπx
a , then simply eval-

uating g at x = 0 gives

g(0) =
∞
∑

n=−∞
dn

?= (

δ(x)|g)

(2.41)

which, when compared with (2.32), tells us that the function δ(x) must have Fourier
coefficients cn = 1 for all n. Such cn, however, do not satisfy (2.30) and hence δ(x)

cannot be a square-integrable function. So the dual vector δ is not in the image of
the map L, hence L is not onto in the case of L2([−a, a]).

2.8 Problems

2.1 Prove that L2([−a, a]) is closed under addition. You will need the trian-
gle inequality, as well as the following inequality, valid for all λ ∈ R: 0 ≤
∫ a

−a
(|f | + λ|g|)2 dx.
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2.2 In this problem we show that {rlY l
m} is a basis for Hl (R

3), which implies that
{Y l

m} is a basis for H̃l . We will gloss over a few subtleties here; for a totally rigorous
discussion see Sternberg [16] or our discussion in Chap. 4.

(a) Let f ∈ Hl (R
3), and write f as f = rlY (θ,φ). Then we know that

�S2Y = −l(l + 1)Y. (2.42)

If you have never done so, use the expression (2.4) for �S2 and the expressions
(2.11) for the angular momentum operators to show that

�S2 = L2
x + L2

y + L2
z ≡ L2

so that (2.42) says that Y is an eigenfunction of L2, as expected. You will need
to convert between cartesian and spherical coordinates. The theory of angular
momentum21 then tells us that Hl (R

3) has dimension 2l + 1.
(b) Exhibit a basis for Hl (R

3) by considering the function f l
0 ≡ (x + iy)l and show-

ing that

Lz

(

f l
0

) = lf l
0, L+

(

f l
0

) ≡ (Lx + iLy)
(

f l
0

) = 0.

The theory of angular momentum then tells us that (L−)kf l
0 ≡ f l

k satisfies
Lz(f

l
k ) = (l − k)f l

k and that {f l
k }0≤k≤2l is a basis for Hl (R

3).
(c) Writing f l

k = rlY l
l−k we see that Y l

m satisfies L2Y l
m = −l(l + 1)Y l

m and LzY
l
m =

mY l
m as expected. Now use this definition of Y l

m to compute all the spherical
harmonics for l = 1,2 and show that this agrees, up to normalization, with
the spherical harmonics as tabulated in any quantum mechanics textbook. If
you read Example 2.6 and did Exercise 2.5 then all you have to do is compute
f 1

k ,0 ≤ k ≤ 2 and f 2
k ,0 ≤ k ≤ 4 and show that these functions agree with the

ones given there.

2.3 In discussions of quantum mechanics you may have heard the phrase “angular
momentum generates rotations”. What this means is that if one takes a component
of the angular momentum such as Lz and exponentiates it, i.e. if one considers the
operator

exp(−iφLz) ≡
∞
∑

n=0

1

n! (−iφLz)
n

= I − iφLz + 1

2! (−iφLz)
2 + 1

3! (−iφLz)
3 + · · ·

(the usual power series expansion for ex ) then one gets the operator which represents
a rotation about the z axis by an angle φ. Confirm this in one instance by explicitly
summing this power series for the operator [Lz]{x,y,z} of Example 2.15 to get

21See Sakurai [14] or Gasiorowicz [5] or our discussion in Chap. 4.
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exp
(−iφ[Lz]{x,y,z}

) =
⎛

⎝

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

⎞

⎠ ,

the usual matrix for a rotation about the z-axis.

2.4 Let V be finite-dimensional, and consider the ‘double dual’ space (V ∗)∗. De-
fine a map

J : V → (

V ∗)∗

v �→ Jv

where Jv acts on f ∈ V ∗ by

Jv(f ) ≡ f (v).

Show that J is linear, one-to-one, and onto. This means that we can identify (V ∗)∗
with V itself, and so the process of taking duals repeats itself after two iterations.
Note that no non-degenerate Hermitian form was involved in the definition of J !

2.5 Consider a linear operator A on a vector space V . We can define a linear oper-
ator on V ∗ called the transpose of A and denoted by AT as follows:

(

AT (f )
)

(v) ≡ f (Av) where v ∈ V, f ∈ V ∗.

If B is a basis for V and B∗ the corresponding dual basis, show that
[

AT
]

B∗ = [A]TB.

Thus the transpose of a matrix really has meaning; it is the matrix representation of
the transpose of the linear operator represented by the original matrix!

2.6 This problem will explore the notion of the Hermitian adjoint of a linear oper-
ator.

(a) Let A be a linear operator on a finite-dimensional, real or complex vector space
V with inner product (· | ·). Using the transpose AT from the previous problem,
as well as the map L : V → V ∗ defined in Sect. 2.7, we can construct a new
linear operator A†; this is known as the Hermitian adjoint of A, and is defined
as

A† ≡ L−1 ◦ AT ◦ L : V → V. (2.43)

Show that A† satisfies
(

A†v|w) = (v|Aw), (2.44)

which is the equation that is usually taken as the definition of the adjoint opera-
tor. The advantage of our definition (2.43) is that it gives an interpretation to A†;
it is the operator you get by transplanting AT , which originally acts on V ∗, over
to V via L.
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(b) Show that in an orthonormal basis {ei}i=1,...,n,
[

A†] = [A]†,

where the dagger outside the brackets denotes the usual conjugate transpose of
a matrix (if V is a real vector space, then the dagger outside the brackets will
reduce to just the transpose). You may want to prove and use the fact Aj

i =
ei(Aej ).

(c) If A satisfies A = A†, A is then said to be self-adjoint or Hermitian. Since A†

is defined with respect to an inner product, self-adjointness indicates a certain
compatibility between A and the inner product. Show that even when V is a
complex vector space, any eigenvalue of A must be real if A is self-adjoint.

(d) In part (b) you showed that in an orthonormal basis the matrix of a Hermitian
operator is a Hermitian matrix. Is this necessarily true in a non-orthonormal
basis?

2.7 Let g be a non-degenerate bilinear form on a vector space V (we have in
mind the Euclidean metric on R

3 or the Minkowski metric on R
4). Pick an arbitrary

(not necessarily orthonormal) basis, let [g]−1 be the matrix inverse of [g] in this
basis, and write gμν for the components of [g]−1. Also let f,h ∈ V ∗. Define a non-
degenerate bilinear form g̃ on V ∗ by

g̃(f,h) ≡ g(f̃ , h̃) (2.45)

where f̃ = L−1(f ) as in Example 2.22. Show that

g̃μν ≡ g̃
(

eμ, eν
) = gμν (2.46)

so that [g]−1 is truly a matrix representation of a non-degenerate bilinear form
on V ∗.

2.8 In this problem we will acquaint ourselves with P(R), the set of polynomials in
one variable x with real coefficients. We will also meet several bases for this space
which you should find familiar.

(a) P(R) is the set of all functions of the form

f (x) = c0 + c1x + c2x
2 + · · · + cnx

n (2.47)

where n is arbitrary. Verify that P(R) is a (real) vector space. Then show that
P(R) is infinite-dimensional by showing that, for any finite set S ⊂ P(R), there
is a polynomial that is not in SpanS. Exhibit a simple infinite basis for P(R).

(b) Compute the matrix corresponding to the operator d
dx

∈ L(P (R)) with respect
to the basis you found in part (a).

(c) One can turn P(R) into an inner product space by considering inner products
of the form

(f |g) ≡
∫ b

a

f (x)g(x)W(x)dx (2.48)
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where W(x) is a nonnegative weight function. One can then take the basis
B = {1, x, x2, x3, . . .} and apply the Gram–Schmidt process to get an orthogo-
nal basis. With the proper choice of range of integration [a, b] and weight func-
tion W(x), we can obtain (up to normalization) the various orthogonal poly-
nomials one meets in studying the various differential equations that arise in
electrostatics and quantum mechanics.

(i) Let [a, b] = [−1,1] and W(x) = 1. Consider the set S = {1, x, x2, x3} ⊂ B.
Apply the Gram–Schmidt process to this set to get (up to normalization)
the first four Legendre Polynomials

P0(x) = 1

P1(x) = x

P2(x) = 1

2

(

3x2 − 1
)

P3(x) = 1

2

(

5x3 − 3x
)

.

The Legendre Polynomials show up in the solutions to the differential
equation (2.42), where we make the identification x = cos θ . Since −1 ≤
cos θ ≤ 1, this explains the range of integration in the inner product.

(ii) Now let [a, b] = (−∞,∞) and W(x) = e−x2
. Use Gram–Schmidt on S to

get the first four Hermite Polynomials

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x.

These polynomials arise in the solution to the Schrödinger equation for
a one-dimensional harmonic oscillator. Note that the range of integration
corresponds to the range of the position variable, as expected.

(iii) Finally, let [a, b] = (0,∞) and W(x) = e−x . Again, use Gram–Schmidt
on S to get the first four Laguerre Polynomials

L0(x) = 1

L1(x) = −x + 1

L2(x) = 1

2

(

x2 − 4x + 2
)

L3(x) = 1

6

(−x3 + 9x2 − 18x + 6
)

.

These polynomials arise as solutions to the radial part of the Schrödinger
equation for the hydrogen atom. In this case x is interpreted as a radial
variable, hence the range of integration (0,∞).





Chapter 3
Tensors

Now that we are familiar with vector spaces we can finally approach our main sub-
ject, tensors. We will give the modern component-free definition, from which will
follow the usual transformation laws that used to be the definition.

From here on out we will employ the Einstein summation convention, which is
that whenever an index is repeated in an expression, once as a superscript and once
as a subscript, then summation over that index is implied. Thus an expression like
v = ∑n

i=1 viei becomes v = viei . We will comment on this convention in Sect. 3.2.
Also, in this chapter we will treat mostly finite-dimensional vector spaces and ignore
the complications and technicalities that arise in the infinite-dimensional case. In the
few examples where we apply our results to infinite-dimensional spaces, you should
rest assured that these applications are legitimate (if not explicitly justified), and that
rigorous justification can be found in the literature.

3.1 Definition and Examples

A tensor of type (r, s) on a vector space V is a C-valued function T on

V × · · · × V
︸ ︷︷ ︸

r times

×V ∗ × · · · × V ∗
︸ ︷︷ ︸

s times

(3.1)

which is linear in each argument, i.e.

T (v1 + cw,v2, . . . , vr , f1, . . . , fs)

= T (v1, . . . , vr , f1, . . . , fs) + cT (w,v2, . . . , f1, . . . , fs) (3.2)

and similarly for all the other arguments. This property is called multilinearity. Note
that dual vectors are (1,0) tensors, and that vectors can be viewed as (0,1) tensors:

v(f ) ≡ f (v) where v ∈ V, f ∈ V ∗. (3.3)

Similarly, linear operators can be viewed as (1,1) tensors as

A(v,f ) ≡ f (Av). (3.4)

N. Jeevanjee, An Introduction to Tensors and Group Theory for Physicists,
DOI 10.1007/978-0-8176-4715-5_3, © Springer Science+Business Media, LLC 2011
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We take (0,0) tensors to be scalars, as a matter of convention. You will show in
Exercise 3.1 below that the set of all tensors of type (r, s) on a vector space V ,
denoted T r

s (V ) or just T r
s , form a vector space. This should not come as much

of a surprise since we already know that vectors, dual vectors and linear operators
all form vector spaces. Also, just as linearity implies that dual vectors and linear
operators are determined by their values on basis vectors, multilinearity implies the
same thing for general tensors. To see this, let {ei}i=1,...,n be a basis for V and
{ei}i=1,...,n the corresponding dual basis. Then, denoting the ith component of the
vector vp as vi

p and the j th component of the dual vector fq as fqj , we have (by
repeated application of multilinearity)

T (v1, . . . , vr , f1, . . . , fs) = v
i1
1 . . . vir

r f1j1 . . . fsjs T
(

ei1 , . . . , eir , e
j1 , . . . , ejs

)

≡ v
i1
1 . . . vir

r f1j1 . . . fsjs Ti1,...,ir
j1...js

where, as before, the numbers

Ti1...ir
j1...js ≡ T

(

ei1, . . . , eir , e
j1 , . . . , ejr

)

(3.5)

are called the components of T in the basis {ei}i=1,...,n. You should check that this
definition of the components of a tensor, when applied to vectors, dual vectors, and
linear operators, agrees with the definitions given earlier. Also note that (3.5) gives
us a concrete way to think about the components of tensors: they are the values of
the tensor on the basis vectors.

Exercise 3.1 By choosing suitable definitions of addition and scalar multiplication, show
that T r

s (V ) is a vector space.

If we have a non-degenerate bilinear form on V , then we may change the type
of T by precomposing with the map L or L−1. If T is of type (1,1) with com-
ponents Ti

j , for instance, then we may turn it into a tensor T̃ of type (2,0) by
defining T̃ (v,w) = T (v,L(w)). This corresponds to lowering the second index,
and we write the components of T̃ as Tij , omitting the tilde since the fact that we
lowered the second index implies that we precomposed with L. This is in accord
with the conventions in relativity, where given a vector v ∈ R

4 we write vμ for the
components of ṽ when we should really write ṽμ. From this point on, if we have
a non-degenerate bilinear form on a vector space then we permit ourselves to raise
and lower indices at will and without comment. In such a situation we often do
not discuss the type of a tensor, speaking instead of its rank, equal to r + s, which
obviously does not change as we raise and lower indices.

Example 3.1 Linear operators in quantum mechanics

Thinking about linear operators as (1,1) tensors may seem a bit strange, but in fact
this is what one does in quantum mechanics all the time! Given an operator H on
a quantum mechanical Hilbert space spanned by orthonormal vectors {ei} (which
in Dirac notation we would write as {|i〉}), we usually write H |i〉 for H(ei), 〈j |i〉
for ẽj (ei) = (ej |ei), and 〈j |H |i〉 for (ej |Hei). Thus, (3.4) would tell us that (using
orthonormal basis vectors instead of arbitrary vectors)
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Hi
j = H

(

ei, e
j
)

= ej (Hei)

= 〈j |H |i〉
where we converted to Dirac notation in the last equality to obtain the familiar quan-
tum mechanical expression for the components of a linear operator. These compo-
nents are often referred to as matrix elements, since when we write operators as
matrices the elements of the matrices are just the components arranged in a particu-
lar fashion, as in (2.15).

Example 3.2 The Levi-Civita tensor

Consider the (3,0) Levi-Civita tensor ε on R
3 defined by

ε(u, v,w) ≡ (u × v) · w, u, v,w ∈ R
3. (3.6)

You will check below that ε really is multilinear, hence a tensor. It is well-known
from vector calculus that (u × v) · w is the (oriented) volume of a parallelepiped
spanned by u, v, and w (see Fig. 3.1), so one can think of the Levi-Civita tensor as
a kind of ‘volume operator’ which eats three vectors and spits out the volume that
they span.

What about the components of the Levi-Civita tensor? If {e1, e2, e3} is the stan-
dard basis for R

3 then (3.6) yields

εijk = ε(ei, ej , ek)

= (ei × ej ) · ek

= ε̄ijk

where ε̄ijk is the usual Levi-Civita symbol (defined below). Thus the Levi-Civita
symbol represents the components of an actual tensor, the Levi-Civita tensor! Fur-
thermore, keeping in mind the interpretation of the Levi-Civita tensor as a volume
operator, as well as the fact that the components εijk are just the values of the tensor
on the basis vectors, then we find that the usual definition of the Levi-Civita symbol,

Fig. 3.1 The parallelepiped spanned by u, v and w
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ε̄ijk =
⎧

⎨

⎩

+1 if {ijk} = {1,2,3}, {2,3,1}, or {3,1,2}
−1 if {ijk} = {3,2,1}, {1,3,2}, or {2,1,3}
0 otherwise,

is just telling us, for instance, that a parallelepiped spanned by {e1, e2, e3} has ori-
ented volume +1!

Exercise 3.2 Verify that the Levi-Civita tensor as defined by (3.6) really is multilinear.

Example 3.3 The moment of inertia tensor

The moment of inertia tensor, denoted I , is the symmetric (2,0) tensor on R
3 which,

when evaluated on the angular velocity vector, yields the kinetic energy of a rigid
body, i.e.

1

2
I(ω,ω) = KE. (3.7)

Alternatively we can raise an index on I and define it to be the linear operator which
eats the angular velocity and spits out the angular momentum, i.e.

L = Iω. (3.8)

Equations (3.7) and (3.8) are most often seen in components (referred to a cartesian
basis), where they read

KE = [ω]T [I][ω]
[L] = [I][ω].

Note that since we raise and lower indices with an inner product and usually use
orthonormal bases, the components of I when viewed as a (2,0) tensor and when
viewed as a (1,1) tensor are the same, cf. Exercise 2.18. We’ll discuss I further in
Sect. 3.6.

Example 3.4 Multipole moments

It is a standard result from electrostatics that the scalar potential �(r) of a charge
distribution ρ(r′) localized around the origin in R

3 can be expanded in a Taylor
series as1

�(r) = 1

4π

[

Q0

r
+ Q1(r)

r3
+ 1

2!
Q2(r, r)

r5
+ 1

3!
Q3(r, r, r)

r7 + · · ·
]

(3.9)

where the Qr are r th rank tensors known as the multipole moments of the charge
distribution ρ(r′). The first few multipole moments are familiar to most physicists:
the first, Q0, is just the total charge or monopole moment of the charge distribution
and is given by

1Here and below we set all physical constants such as c and ε0 equal to 1.
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Q0 =
∫

ρ
(

r′)d3r ′. (3.10)

The second, Q1, is a dual vector known as the dipole moment (often denoted as p),
which has components

pi =
∫

x′
iρ

(

r′)d3r ′. (3.11)

The third multipole moment, Q2, is known as the quadrupole moment and has
components given by

Qij =
∫

(

3x′
ix

′
j − r ′2δij

)

d3r ′. (3.12)

Notice that the Qij are symmetric in i and j , and that
∑

i Qii = 0. Analogous
properties hold for the higher order multipole moments as well (i.e. the octopole
moment Q3 has components Qijk which are totally symmetric and which satisfy
∑

i Qiij = ∑

i Qiji = ∑

i Qjii = 0). We will explain these curious features of the
Qr at the end of this chapter.

Example 3.5 Metric tensors

We met the Euclidean metric on R
n in Example 2.17 and the Minkowski metric on

R
4 in Example 2.19, and it is easy to verify that both are (2,0) tensors (why isn’t

the Hermitian scalar product of Example 2.21 included?). We also have the inverse
metrics, defined in Problem 2.7, and you can verify that these are (0,2) tensors.

Exercise 3.3 Show that for a metric g on V ,

gi
j = δi

j , (3.13)

so the (1,1) tensor associated to g (via g!) is just the identity operator. You will need the
components gij of the inverse metric, defined in Problem 2.7 or Example 2.22.

3.2 Change of Basis

Now we are in a position to derive the usual transformation laws that historically
were taken as the definition of a tensor. Suppose we have a vector space V and two
bases for V , B = {ei}i=1,...,n and B′ = {ei′ }i′=1,...,n. Since B is a basis, each of the
ei′ can be expressed as

ei′ = A
j

i′ej (3.14)

for some numbers A
j

i′ . Likewise, there exist numbers A
j ′
i (note that here the upper

index is primed) such that

ei = A
j ′
i ej ′ . (3.15)
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We then have

ei = A
j ′
i ej ′ = A

j ′
i Ak

j ′ek (3.16)

and can then conclude that

A
j ′
i Ak

j ′ = δk
i . (3.17)

Considering (3.16) with the primed and unprimed indices switched also yields

A
j

i′A
k′
j = δk′

i′ , (3.18)

so, in a way, Aj ′
i and A

j

i′ are inverses of each other. Notice that A
j

i′ and A
j ′
i are not to

be interpreted as the components of tensors, as their indices refer to different bases.2

How do the corresponding dual bases transform? Let {ei}i=1,...,n and {ei′ }i=1,...,n be
the bases dual to B and B′. Then the components of ei′ with respect to {ei}i=1,...,n

are

ei′(ej ) = ei′(Ak′
j ek′

) = Ak′
j δi′

k′ = Ai′
j , (3.19)

i.e.

ei′ = Ai′
j ej . (3.20)

Likewise,

ei = Ai
j ′ej ′

. (3.21)

Notice how well the Einstein summation convention and our convention for priming
indices work together in the transformation laws. Now we are ready to see how the
components of a general (r, s) tensor T transform:

Ti ′1,...,i′r
j ′

1...j
′
s = T

(

ei′1 , . . . , ei′r , e
j ′

1 , . . . , ej ′
s
)

= T
(

A
k1
i′1

ek1 , . . . ,A
kr

i′r ekr ,A
j ′

1
l1

el1 , . . . ,A
j ′
s

ls
els

)

= A
k1
i′1

. . .A
kr

i′r
A

j ′
1

l1
. . .A

j ′
s

ls
T
(

ek1 , . . . , ekr
, el1 , . . . , els

)

= A
k1
i′1

. . .A
kr

i′r A
j ′

1
l1

. . .A
j ′
s

ls
Tk1...kr

l1...ls . (3.22)

Equation (3.22) is the standard tensor transformation law, which is taken as the
definition of a tensor in much of the physics literature; here we have derived it as
a consequence of our definition of a tensor as a multilinear function on V and V ∗.
The two are equivalent, however, as you will check in Exercise 3.4 below. With the
general transformation law in hand, we will now look at specific types of tensors and

2This is also why we wrote the upper index directly above the lower index, rather than with a
horizontal displacement as is customary for tensors. For more about these numbers and a possible
interpretation, see the beginning of the next section.
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Fig. 3.2 The standard basis B and a new one B′ obtained by rotation through an angle θ

derive their matrix transformation laws; to this end, it will be useful to introduce the
matrices

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

A1′
1 A1′

2 . . . A1′
n

A2′
1 A2′

2 . . . A2′
n

...
...

...
...

An′
1 An′

2′ . . . An′
n

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, A−1 =

⎛

⎜

⎜

⎜

⎜

⎝

A1
1′ A1

2′ . . . A1
n′

A2
1′ A2

2′ . . . A2
n′

...
...

...
...

An
1′ An

2′ . . . An
n′

⎞

⎟

⎟

⎟

⎟

⎠

. (3.23)

By virtue of (3.17) and (3.18), these matrices satisfy

AA−1 = A−1A = I (3.24)

as our notation suggests.

Exercise 3.4 Consider a function which assigns to a basis {ei}i=1,...,n a set of numbers
{Tk1...kr

l1...ls } which transform according to (3.22) under a change of basis. Use this assign-
ment to define a multilinear function T of type (r, s) on V , and be sure to check that your
definition is basis-independent (i.e. that the value of T does not depend on which basis
{ei}i=1,...,n you choose).

Example 3.6 Change of basis matrix for a 2-D rotation

As a simple illustration of the formalism, consider the standard basis B in R
2 and

another basis B′ obtained by rotating B by an angle θ . This is illustrated in Fig. 3.2.
By inspection we have

e1′ = cos θe1 + sin θe2 (3.25)

e2′ = − sin θe1 + cos θe2 (3.26)

and so by (3.14) we have

A1
1′ = cos θ, A1

2′ = − sin θ

A2
1′ = sin θ, A2

2′ = cos θ.
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Equation (3.23) then tells us that

A−1 =
(

cos θ − sin θ

sin θ cos θ

)

.

The numbers A
j ′
i and the corresponding matrix A can be computed by either invert-

ing A−1, or equivalently by inverting the system (3.25)–(3.26) and proceeding as
above. �

Example 3.7 Vectors and dual vectors

Given a vector v (considered as a (0,1) tensor as per (3.3)), (3.22) tells us that its
components transform as

vi′ = Ai′
j vj (3.27)

while the components of a dual vector f transform as

fi′ = A
j

i′fj . (3.28)

Notice that the components of v transform with the Ai′
j whereas the basis vectors

transform with the A
j

i′ , so the components of a vector obey the law opposite (‘con-
tra’) to the basis vectors. This is the origin of the term ‘contravariant’. Note also
that the components of a dual vector transform in the same way as the basis vectors,
hence the term ‘covariant’. It makes sense that the basis vectors and the compo-
nents of a vector should transform oppositely; v exists independently of any basis
for V and should not change under a change of basis, so if the ei change one way
the vi should change oppositely. Similar remarks apply to dual vectors.

Aside Incidentally, we can now explain a little bit more about the Einstein summation conven-
tion. We knew ahead of time that the components of dual vectors would transform like basis vec-
tors, so we gave them both lower indices. We also knew that the components of vectors would
transform like dual basis vectors, so we gave them both upper indices. Since the two transfor-
mation laws are opposite, we know (see below) that a summation over an upper index and lower
index will yield an object that does not transform at all, so the summation represents an object on
a process that is invariant, i.e. the expression viei represents the vector v, which is defined without
reference to any basis. Also, the expression fiv

i is just f (v), the action of the functional f on
the vector v, also defined without reference to any basis. Processes such as these are so important
and ubiquitous that it becomes very convenient to omit the summation sign for repeated upper
and lower indices, and we thus have the summation convention. Occasionally one encounters two
repeated upper indices or two repeated lower indices that are to be summed over; we choose to
indicate summation explicitly in these cases, rather than conventionally omit the summation sign,
because in these cases there is usually some assumption at work, e.g. the assumption of an or-
thonormal basis (as in (3.32) below). In such cases the formulas are not completely general, and
only represent invariant processes when the accompanying assumption is satisfied.

Returning to our discussion of how components of vectors and dual vectors trans-
form, we can write (3.27) and (3.28) in terms of matrices as

[v]B′ = A[v]B (3.29)

[f ]B′ = A−1T [f ]B (3.30)



3.2 Change of Basis 47

where the superscript T again denotes the transpose of a matrix. From the ‘aside’
above, we know that f (v) is basis-independent, but we also know that f (v) =
[f ]TB[v]B . This last equation then must be true in any basis, and we can in fact
prove this using (3.29) and (3.30): in a new basis B′, we have

[f ]TB′ [v]B′ = (

A−1T [f ]B
)T

A[v]B

= [f ]TBA−1A[v]B

= [f ]TB[v]B. (3.31)

This makes concrete our claim above that [f ] transforms ‘oppositely’ to [v], so that
the basis-independent object f (v) really is invariant under a change of basis.

Before moving on to our next example we should point out a minor puzzle: you
showed in Exercise 2.18 that if we have an inner product (· | ·) on a real vector space
V and an orthonormal basis {ei}i=1,...,n then the components of vectors and their
corresponding dual vectors are identical, which is why we were able to ignore the
distinction between them for so long. Equations (3.29) and (3.30) seem to contradict
this, however, since it looks like the components of dual vectors transform very
differently from the components of vectors. How do we explain this? Well, if we
change from one orthonormal basis to another, we have

δi′j ′ = (ei′ |ej ′) = Ak
i′A

l
j ′(ek|el) =

n
∑

k=1

Ak
i′A

k
j ′ (3.32)

which in matrices reads

A−1T

A−1 = I

so we must have

A−1T = A

⇐⇒ A−1 = AT .

Such matrices are known as orthogonal matrices, and we see here that a transforma-
tion from one orthonormal basis to another is always implemented by an orthogonal
matrix.3 For such matrices (3.29) and (3.30) are identical, resolving our contradic-
tion.

Incidentally, for a complex inner product space you will show that orthonormal
basis changes are implemented by matrices satisfying A−1 = A†. Such matrices are
known as unitary matrices and should be familiar from quantum mechanics.

Exercise 3.5 Show that for any invertible matrix A, (A−1)T = (AT )−1, justifying the slop-
piness of our notation above.

Exercise 3.6 Show that for a complex inner product space V , the matrix A implementing
an orthonormal change of basis satisfies A−1 = A†.

3See Problem 3.1 for more on orthogonal matrices, as well as Chap. 4.
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Example 3.8 Linear operators

We already noted that linear operators can be viewed as (1,1) tensors as per (3.4).
(3.22) then tells us that, for a linear operator T on V ,

Ti′
j ′ = Ak

i′A
j ′
l Tk

l

which in matrix form reads

[T ]B′ = A[T ]BA−1 (3.33)

which is the familiar similarity transformation of matrices. This, incidentally, al-
lows us to extend the trace functional from n × n matrices to linear operators as
follows: Given T ∈ L(V ) and a basis B for V , define the trace of T as

Tr(T ) ≡ Tr
([T ]B

)

.

You can then use (3.33) to show (see Exercise 3.9) that Tr(T ) does not depend on
the choice of basis B.

Exercise 3.7 Show that for v ∈ V , f ∈ V ∗, T ∈ L(V ), f (T v) = [f ]T [T ][v] is invariant
under a change of basis. Use the matrix transformation laws as we did in (3.31).

Exercise 3.8 Let B = {x, y, z}, B′ = {x + iy, z, x − iy} be bases for H1(R
3), and consider

the operator Lz for which matrix expressions were found with respect to both bases in
Example 2.15. Find the numbers Ai′

j and A
j

i′ and use these, along with (3.33), to obtain
[Lz]B′ from [Lz]B .

Exercise 3.9 Show that (3.33) implies that Tr([T ]B) does not depend on the choice of
basis B, so that Tr(T ) is well-defined.

Example 3.9 (2,0) tensors

(2,0) tensors g, which include important examples such as the Minkowski metric
and the Euclidean metric, transform as follows according to (3.22):

gi′j ′ = Ak
i′A

l
j ′gkl

or in matrix form

[g]B′ = A−1T [g]BA−1. (3.34)

Notice that if g is an inner product and B and B′ are orthonormal bases then [g]B′ =
[g]B = I and (3.34) becomes

I = A−1T

A−1,

again telling us that A must be orthogonal. Also note that if A is orthogonal, (3.34)
is identical to (3.33), so we do not have to distinguish between (2,0) tensors and
linear operators (as most of us have not in the past!). In the case of the Minkowski
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metric η we are not dealing with an inner product but we do have orthonormal bases,
with respect to which4 η takes the form

[η] =

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟

⎟

⎠

. (3.35)

If we are changing from one orthonormal basis to another we then have
⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟

⎟

⎠

= A−1T

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟

⎟

⎠

A−1 (3.36)

or equivalently
⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟

⎟

⎠

= AT

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟

⎟

⎠

A. (3.37)

Matrices A satisfying (3.37) are known as Lorentz Transformations. Notice that
these matrices are not quite orthogonal, so the components of vectors will transform
slightly differently than those of dual vectors under these transformations. This is
in contrast to the case of R

n with a positive-definite metric, where if we go from
one orthonormal basis to another, then the components of vectors and dual vectors
transform identically, as you showed in Exercise 2.18. �

Exercise 3.10 As in previous exercises, show using the matrix transformation laws that
g(v,w) = [w]T [g][v] is invariant under a change of basis.

3.3 Active and Passive Transformations

Before we move on to the tensor product, we have a little unfinished business to

conclude. In the last section when we said that the A
j ′
i were not the components of

a tensor, we were lying a little; there is a tensor lurking around, namely the linear
operator U that takes the new basis vectors into the old, i.e. U(ei′) = ei ∀i (the
action of U on an arbitrary vector is then given by expanding that vector in the basis
B′ and using linearity). What are the components of this tensor? Well, in the old
basis B we have

Ui
j = U

(

ei, e
j
) = ej (Uei) = ej

(

U
(

Ak′
i ek′

)) = Ak′
i ej

(

U(ek′)
) = Ak′

i ej (ek)

= A
j ′
i (3.38)

4We assume here that the basis vector et satisfying η(et , et ) = −1 is the fourth vector in the basis,
which is not necessary but is somewhat conventional in physics.
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so the A
j ′
i actually are the components of a tensor!5 Why did we lie, then? Well,

the approach we have been taking so far is to try and think about things in a basis-
independent way, and although U is a well-defined linear operator, its definition
depends entirely on the two bases we have chosen, so we may as well work directly
with the numbers that relate the bases. Also, using one primed index and one un-
primed index makes it easy to remember transformation laws like (3.20) and (3.21),
but is not consistent with our notation for the components of tensors.

If we write out the components of U as a matrix, you should verify that

[ei]B = [U ]B[ei′ ]B = A[ei′ ]B (3.39)

which should be compared to (3.29), which reads [v]B′ = A[v]B . Equation (3.39) is
called an active transformation, since we use the matrix A to change one vector into
another, namely ei′ into ei . Note that in (3.39) all vectors are expressed in the same
basis. Equation (3.29), on the other hand, is called a passive transformation, since
we use the matrix A not to change the vector v but rather to change the basis which
v is referred to, hence changing its components. The notation in most physics texts
is not as explicit as ours; one usually sees matrix equations like

r′ = Ar (3.40)

for both passive and active transformations, and one must rely on context to figure
out how the equation is to be interpreted. In the active case, one considers the coor-
dinate system fixed and interprets the matrix A as taking the physical vector r into
a new vector r′, where the components of both are expressed in the same coordinate
system, just as in (3.39). In the passive case, the physical vector r does not change
but the basis does, so one interprets the matrix A as taking the components of r
in the old coordinate system and giving back the components of the same vector
r in the new (primed) coordinate system, just as in (3.29). All this is illustrated in
Fig. 3.3.

Before we get to some examples, note that in the passive transformation (3.29)
the matrix A takes the old components to the new components, whereas in the active
transformation (3.39) A takes the new basis vectors to the old ones. Thus when A

is interpreted actively it corresponds to the opposite transformation as in the pas-
sive case. This dovetails with the fact that components and basis vectors transform
oppositely, as discussed under (3.28).

Example 3.10 Active and passive orthogonal transformations in two dimensions

Let B = {e1, e2} be the standard basis for R
2, and consider a new basis B′ given by

e1′ ≡ 1√
2
e1 + 1√

2
e2

5If the sleight-of-hand with the primed and unprimed indices in the last couple steps of (3.38)
bothers you, puzzle it out and see if you can understand it. It may help to note that the prime on an
index does not change its numerical value, it is just a reminder that it refers to the primed basis.
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e2′ ≡ − 1√
2
e1 + 1√

2
e2.

You can show (as in Example 3.6) that this leads to an orthogonal change of basis
matrix given by

A =
⎛

⎝

1√
2

1√
2

− 1√
2

1√
2

⎞

⎠ (3.41)

which corresponds to rotating our basis counterclockwise by φ = 45°, see
Fig. 3.3(a).

Now consider the vector r = 1
2
√

2
e1 + 1

2
√

2
e2, also depicted in the figure. In the

standard basis we have

[r]B =
⎛

⎝

1
2
√

2
1

2
√

2

⎞

⎠ .

What does r look like in our new basis? From the figure we see that r is proportional
to e′

1, and that is indeed what we find; using (3.29) we have

[r]B′ = A[r]B =
⎛

⎝

1√
2

1√
2

− 1√
2

1√
2

⎞

⎠

⎛

⎝

1
2
√

2
1

2
√

2

⎞

⎠ =
(

1/2
0

)

(3.42)

as expected. Remember that the column vector at the end of (3.42) is expressed in
the primed basis.

This was the passive interpretation of (3.40); what about the active interpreta-
tion? Taking our matrix A and interpreting it as a linear operator represented in the
standard basis we again have

Fig. 3.3 Illustration of the passive and active interpretations of r′ = Ar in two dimensions. In (a)
we have a passive transformation, in which the same vector r is referred to two different bases.
The coordinate representation of r transforms as r′ = Ar, though the vector itself does not change.
In (b) we have an active transformation, where there is only one basis and the vector r is itself
transformed by r′ = Ar. In the active case the transformation is opposite that of the passive case
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[

r′]
B = A[r]B =

(

1/2
0

)

(3.43)

except that now the vector (1/2,0) represents the new vector r′ in the same basis B.
This is illustrated in Fig. 3.3(b). As mentioned above, when A is interpreted actively,
it corresponds to a clockwise rotation, opposite to its interpretation as a passive
transformation. �

Exercise 3.11 Verify (3.41) and (3.42).

Example 3.11 Active transformations and rigid body motion

Passive transformations are probably the ones encountered most often in classical
physics, since a change of cartesian coordinates induces a passive transformation.
Active transformations do crop up, though, especially in the case of rigid body
motion. In this scenario, one specifies the orientation of a rigid body by the time-
dependent orthogonal basis transformation A(t) which relates the space frame K ′ to
the body frame K(t) (we use here the notation of Example 2.11). As we saw above,
there corresponds to the time-dependent matrix A(t) a time-dependent linear opera-
tor U(t) which satisfies U(t)(ei′) = ei(t). If K and K ′ were coincident at t = 0 and
r0 is the position vector of a point p of the rigid body at that time (see Fig. 3.4(a)),
then the position of p at a later time is just r(t) = U(t)r0 (see Fig. 3.4(b)), which as
a matrix equation in K ′ would read

[

r(t)
]

K ′ = A(t)[r0]K ′ . (3.44)

In more common and less precise notation this would be written

r(t) = A(t)r0.

In other words, the position of a specific point on the rigid body at an arbitrary time
t is given by the active transformation corresponding to the matrix A(t). �

Example 3.12 Active and passive transformations and the Schrödinger and Heisen-
berg pictures

The duality between passive and active transformations is also present in quantum
mechanics. In the Schrödinger picture, one considers observables like the momen-
tum or position operator as acting on the state ket while the basis kets remain fixed.
This is the active viewpoint. In the Heisenberg picture, however, one considers the
state ket to be fixed and considers the observables to be time-dependent (recall that
(2.12) is the equation of motion for these operators). Since the operators are time-
dependent, their eigenvectors (which form a basis6) are time-dependent as well, so
this picture is the passive one in which the vectors do not change but the basis does.

6For details on why the eigenvectors of Hermitian operators form a basis, at least in the finite-
dimensional case, see Hoffman and Kunze [10].
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Fig. 3.4 In (a) we have the coincident body and space frames at t = 0, along with the point p of
the rigid body. In (b) we have the rotated rigid body, and the vector r(t) pointing to point p now
has different components in the space frame, given by (3.44)

Just as an equation like (3.40) can be interpreted in both the active and passive sense,
a quantum mechanical equation like

<x̂(t)> = 〈ψ |(U†x̂U
)|ψ〉 (3.45)

= (〈ψ |U †)x̂
(

U |ψ〉), (3.46)

where U is the time-evolution operator for time t , can also be interpreted in two
ways: in the active sense of (3.46), in which the U s act on the vectors and change
them into new vectors, and in the passive sense of (3.45), where the U s act on the
operator x̂ by a similarity transformation to turn it into a new operator, x̂(t).

3.4 The Tensor Product—Definition and Properties

One of the most basic operations with tensors, again commonplace in physics but
often unacknowledged (or, at best, dealt with in an ad hoc fashion) is that of the ten-
sor product. Before giving the precise definition, which takes a little getting used to,
we give a rough, heuristic description. Given two finite-dimensional vector spaces
V and W (over the same set of scalars C), we would like to construct a product vec-
tor space, which we denote V ⊗ W , whose elements are in some sense ‘products’
of vectors v ∈ V and w ∈ W . We denote these products by v ⊗w. This product, like
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any respectable product, should be bilinear in the sense that

(v1 + v2) ⊗ w = v1 ⊗ w + v2 ⊗ w (3.47)

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2 (3.48)

c(v ⊗ w) = (cv) ⊗ w = v ⊗ (cw), c ∈ C. (3.49)

Given these properties, the product of any two arbitrary vectors v and w can then be
expanded in terms of bases {ei}i=1,...,n and {fj }j=1,...,m for V and W as

v ⊗ w = (

viei

) ⊗ (

wjfj

)

= viwjei ⊗ fj

so {ei ⊗ fj }, i = 1, . . . , n, j = 1, . . . ,m should be a basis for V ⊗ W , which would
then have dimension nm. Thus the basis for the product space would be just the
product of the basis vectors, and the dimension of the product space would be just
the product of the dimensions.

Now we make this precise. Given two finite-dimensional vector spaces V and W ,
we define their tensor product V ⊗W to be the set of all C-valued bilinear functions
on V ∗ × W ∗. Such functions do form a vector space, as you can easily check. This
definition may seem unexpected or counterintuitive at first, but you will soon see
that this definition does yield the vector space described above. Also, given two
vectors v ∈ V , w ∈ W , we define their tensor product v ⊗ w to be the element of
V ⊗ W defined as follows:

(v ⊗ w)(h,g) ≡ v(h)w(g) ∀h ∈ V ∗, g ∈ W ∗. (3.50)

(Remember that an element of V ⊗ W is a bilinear function on V ∗ × W ∗, and so
is defined by its action on a pair (h, g) ∈ V ∗ × W ∗.) The bilinearity of the tensor
product is immediate and you can probably verify it without writing anything down:
just check that both sides of (3.47)–(3.49) are equal when evaluated on any pair
of dual vectors. To prove that {ei ⊗ fj }, i = 1, . . . , n, j = 1, . . . ,m is a basis for
V ⊗ W , let {ei}i=1,...,n, {f j }i=1,...,m be the corresponding dual bases and consider
an arbitrary T ∈ V ⊗ W . Using bilinearity,

T (h,g) = higjT
(

ei, f j
) = higjT

ij (3.51)

where T ij ≡ T (ei, f j ). If we consider the expression T ij ei ⊗ fj , then
(

T ij ei ⊗ fj

)(

ek, f l
) = T ij ei

(

ek
)

fj

(

f l
)

= T ij δi
kδj

l

= T kl

so T ij ei ⊗ fj agrees with T on basis vectors, hence on all vectors by bilinear-
ity, so T = T ij ei ⊗ fj . Since T was an arbitrary element of V ⊗ W , V ⊗ W =
Span{ei ⊗ fj }. Furthermore, the ei ⊗ fj are linearly independent as you should
check, so {ei ⊗fj } is actually a basis for V ⊗W and V ⊗W thus has dimension mn.
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The tensor product has a couple of important properties besides bilinearity. First,
it commutes with taking duals, that is,

(V ⊗ W)∗ = V ∗ ⊗ W ∗. (3.52)

Secondly, and more importantly, the tensor product it is associative, i.e. for vector
spaces Vi , i = 1,2,3,

(V1 ⊗ V2) ⊗ V3 = V1 ⊗ (V2 ⊗ V3). (3.53)

This property allows us to drop the parentheses and write expressions like
V1 ⊗ · · · ⊗ Vn without ambiguity. One can think of V1 ⊗ · · · ⊗ Vn as the set of
C-valued multilinear functions on V ∗

1 × · · · × V ∗
n .

These two properties are both plausible, particularly when thought of in terms
of basis vectors, but verifying them rigorously turns out to be slightly tedious. See
Warner [18] for proofs and further details.

Exercise 3.12 If {ei}, {fj } and {gk} are bases for V1, V2 and V3, respectively, convince
yourself that {ei ⊗fj ⊗gk} is a basis for V1 ⊗V2 ⊗V3, and hence that dim V1 ⊗V2 ⊗V3 =
n1n2n3 where dim Vi = ni . Extend the above to n-fold tensor products.

3.5 Tensor Products of V and V ∗

In the previous section we defined the tensor product for two arbitrary vector spaces
V and W . Often, though, we will be interested in just the iterated tensor product of
a vector space and its dual, i.e. in tensor products of the form

V ∗ ⊗ · · · ⊗ V ∗
︸ ︷︷ ︸

r times

⊗V ⊗ · · · ⊗ V
︸ ︷︷ ︸

s times

. (3.54)

This space is of particular interest because it is actually identical to T r
s ! In fact, from

the previous section we know that the vector space in (3.54) can be interpreted as
the set of multilinear functions on

V × · · · × V
︸ ︷︷ ︸

r times

×V ∗ × · · · × V ∗
︸ ︷︷ ︸

s times

,

but these functions are exactly T r
s . Since the space in (3.54) has basis Br

s =
{ei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs }, we can conclude that Br

s is a basis for T r
s . In

fact, we claim that if T ∈ T r
s has components Ti1...ir

j1...js , then

T = Ti1...ir
j1...js ei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs (3.55)

is the expansion of T in the basis Br
s . To prove this, we just need to check that

both sides agree when evaluated on an arbitrary set of basis vectors; on the left hand
side we get T (ei1, . . . , eir , e

j1 , . . . , ejs ) = Ti1,...,ir
j1...js by definition, and on the right
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hand side we have
(

Tk1...kr

l1...ls ek1 ⊗ · · · ⊗ ekr ⊗ el1 ⊗ · · · ⊗ els

)(

ei1 , . . . , eir , e
j1 , . . . , ejs

)

= Tk1...kr

l1...ls ek1(ei1) . . . ekr (eir )el1

(

ej1
)

. . . els

(

ejs
)

= Tk1...kr

l1...ls δ
k1
i1

. . . δ
kr

ir
δ
j1
l1

. . . δ
js

ls

= Ti1,...,ir
j1...js (3.56)

so our claim is true. Thus, for instance, a (2,0) tensor like the Minkowski met-
ric can be written as η = ημνe

μ ⊗ eν . Conversely, a tensor product like f ⊗ g =
figj e

i ⊗ ej ∈ T 2
0 thus has components (f ⊗ g)ij = figj . Notice that we now have

two ways of thinking about components: either as the values of the tensor on sets
of basis vectors (as in (3.5)) or as the expansion coefficients in the given basis (as
in (3.55)). This duplicity of perspective was pointed out in the case of vectors just
above Exercise 2.10, and it is essential that you be comfortable thinking about com-
ponents in either way.

Exercise 3.13 Compute the dimension of T r
s .

Exercise 3.14 Let T1 and T2 be tensors of type (r1, s1) and (r2, s2), respectively, on a vector
space V . Show that T1 ⊗ T2 can be viewed as an (r1 + r2, s1 + s2) tensor, so that the tensor
product of two tensors is again a tensor, justifying the nomenclature.

One important operation on tensors which we are now in a position to discuss is
that of contraction, which is the generalization of the trace functional to tensors of
arbitrary rank: Given T ∈ T r

s (V ) with expansion

T = Ti1...ir
j1...js ei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs

(3.57)

we can define a contraction of T to be any (r − 1, s − 1) tensor resulting from
feeding ei into one of the arguments, ei into another and then summing over i as
implied by the summation convention. For instance, if we feed ei into the r th slot
and ei into the (r + s)th slot and sum, we get the (r − 1, s − 1) tensor T̃ defined as

T̃ (v1, . . . , vr−1, f1, . . . , fs−1) ≡ T
(

v1, . . . , vr−1, ei , f1, . . . , fs−1, e
i
)

.

You may be suspicious that T̃ depends on our choice of basis, but Exercise 3.15
shows that contraction is in fact well-defined. Notice that the components of T̃ are

T̃i1...ir−1
j1...js−1 = Ti1...ir−1l

j1...js−1l .

Similar contractions can be performed on any two arguments of T provided one ar-
gument eats vectors and the other dual vectors. In terms of components, a contrac-
tion can be taken with respect to any pair of indices provided that one is covariant
and the other contravariant. If we are working on a vector space equipped with a
metric g, then we can use the metric to raise and lower indices and so can contract
on any pair of indices, even if they are both covariant or contravariant. For instance,
we can contract a (2,0) tensor T with components Tij as T̃ = Ti

i = gijTij , which
one can interpret as just the trace of the associated linear operator (or (1,1) tensor).
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For a linear operator or any other rank 2 tensor, this is the only option for contrac-
tion. If we have two linear operators A and B , then their tensor product A⊗B ∈ T 2

2
has components

(A ⊗ B)ik
jl = Ai

jBk
l,

and contracting on the first and last index gives a (1,1) tensor AB whose compo-
nents are

(AB)k
j = Al

jBk
l.

You should check that this tensor is just the composition of A and B , as our nota-
tion suggests. What linear operator do we get if we consider the other contraction
Ai

jBj
l?

Exercise 3.15 Show that if {ei}i=1,...,n and {ei′ }i=1,...,n are two arbitrary bases that

T
(

v1, . . . , vr−1, ei , f1, . . . , fs−1, e
i
) = T

(

v1, . . . , vr−1, ei′ , f1, . . . , fs−1, e
i′ )

so that contraction is well-defined.

Example 3.13 V ∗ ⊗ V

One of the most important examples of tensor products of the form (3.54) is V ∗ ⊗V ,
which as we mentioned is the same as T 1

1 , the space of linear operators. How does
this identification work, explicitly? Well, given f ⊗ v ∈ V ∗ ⊗ V , we can define a
linear operator by (f ⊗ v)(w) ≡ f (w)v. More generally, given

Ti
j ei ⊗ ej ∈ V ∗ ⊗ V, (3.58)

we can define a linear operator T by

T (v) = Ti
j ei(v)ej = viTi

j ej

which is identical to (2.13). This identification of V ∗ ⊗ V and linear operators is
actually implicit in many quantum mechanical expressions. Let H be a quantum
mechanical Hilbert space and let ψ,φ ∈ H so that L(φ) ∈ H∗. The tensor product
of L(φ) and ψ , which we would write as L(φ) ⊗ ψ , is written in Dirac notation as
|ψ〉〈φ|. If we are given an orthonormal basis B = {|i〉}, the expansion (3.58) of an
arbitrary operator H can be written in Dirac notation as

H =
∑

i,j

Hij |i〉〈j |,

an expression which may be familiar from advanced quantum mechanics texts.7 In
particular, the identity operator can be written as

I =
∑

i

|i〉〈i|,

which is referred to as the resolution of the identity with respect to the basis {|i〉}.

7We do not bother here with index positions since most quantum mechanics texts do not employ
Einstein summation convention, preferring instead to explicitly indicate summation.
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A word about nomenclature: In quantum mechanics and other contexts the tensor
product is often referred to as the direct or outer product. This last term is meant
to distinguish it from the inner product, since both the outer and inner products eat
a dual vector and a vector (strictly speaking the inner product eats 2 vectors, but
remember that with an inner product we may identify vectors and dual vectors) but
the outer product yields a linear operator whereas the inner product yields a scalar.

Exercise 3.16 Interpret ei ⊗ ej as a linear operator, and convince yourself that its matrix
representation is

[

ei ⊗ ej

] = Eji .

Recall that Eji is one of the elementary basis matrices introduced way back in Example 2.8,
and has a 1 in the j th row and ith column and zeros everywhere else.

3.6 Applications of the Tensor Product in Classical Physics

Example 3.14 Moment of inertia tensor revisited

We took an abstract look at the moment of inertia tensor in Example 3.3; now,
armed with the tensor product, we can examine the moment of inertia tensor more
concretely. Consider a rigid body with a fixed point O , so that it has only rotational
degrees of freedom (O need not necessarily be the center of mass). Let O be the
origin, pick time-dependent body-fixed axes K = {x̂(t), ŷ(t), ẑ(t)} for R

3, and let g

denote the Euclidean metric on R
3. Recall that g allows us to define a map L from

R
3 to R

3∗. Also, let the ith particle in the rigid body have mass mi and position
vector ri with [ri]K = (xi, yi, zi) relative to O , and let r2

i ≡ g(ri , ri ). All this is
illustrated in Fig. 3.5. The (2,0) moment of inertia tensor is then given by

I(2,0) =
∑

i

mi

(

r2
i g − L(ri ) ⊗ L(ri )

)

(3.59)

while the (1,1) tensor reads

I(1,1) =
∑

i

mi

(

r2
i I − L(ri ) ⊗ ri

)

. (3.60)

You should check that in components (3.59) reads

Ijk =
∑

i

mi

(

r2
i δjk − (ri )j (ri )k

)

.

Writing a couple of components explicitly yields

Ixx =
∑

i

mi

(

y2
i + z2

i

)

Ixy = −
∑

i

mixiyi,
(3.61)
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Fig. 3.5 The rigid body with fixed point O and body-fixed axes K = {x̂, ŷ, ẑ}, along with ith
particle at position ri with mass mi

expressions which should be familiar from classical mechanics. So long as the basis
is orthonormal, the components Ij

k of the (1,1) tensor in (3.60) will be the same
as for the (2,0) tensor, as remarked earlier. Note that if we had not used body-fixed
axes, the components of ri (and hence the components of I , by (3.61)) would in
general be time-dependent; this is the main reason for using the body-fixed axes in
computation.

Example 3.15 Maxwell stress tensor

In considering the conservation of total momentum (mechanical plus electromag-
netic) in classical electrodynamics one encounters the symmetric rank 2 Maxwell
Stress Tensor, defined in (2,0) form as8

T(2,0) = E ⊗ E + B ⊗ B − 1

2
(E · E + B · B)g

where E and B are the dual vector versions of the electric and magnetic field vec-
tors. T can be interpreted in the following way: T (v,w) gives the rate at which
momentum in the v-direction flows in the w-direction. In components we have

Tij = EiEj + BiBj − 1

2
(E · E + B · B)δij ,

which is the expression found in most classical electrodynamics textbooks.

8Recall that we have set all physical constants such as c and ε0 equal to 1.
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Example 3.16 The electromagnetic field tensor

As you has probably seen in discussions of relativistic electrodynamics, the electric
and magnetic field vectors are properly viewed as components of a rank 2 antisym-
metric tensor F , the electromagnetic field tensor.9 To write F in component-free
notation requires machinery outside the scope of this text,10 so we settle for its ex-
pression as a matrix in an orthonormal basis, which in (2,0) form is

[F(2,0)] =

⎛

⎜

⎜

⎝

0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

⎞

⎟

⎟

⎠

. (3.62)

The Lorentz force law

dpμ

dτ
= qFμ

νv
ν

where p = mv is the 4-momentum of a particle, v is its 4-velocity and q its charge,
can be rewritten without components as

dp

dτ
= qF(1,1)(v) (3.63)

which just says that the Minkowski force dp
dτ

on a particle is given by the action of
the field tensor on the particle’s 4-velocity!

3.7 Applications of the Tensor Product in Quantum Physics

In this section we will discuss further applications of the tensor product in quantum
mechanics, in particular the oft-unwritten rule that to add degrees of freedom one
should take the tensor product of the corresponding Hilbert spaces. Before we get
to this, however, we must set up a little more machinery and address an issue that
we have so far swept under the rug. The issue is that when dealing with spatial
degrees of freedom, as opposed to ‘internal’ degrees of freedom like spin, we often
encounter Hilbert spaces like L2([−a, a]) and L2(R) which are most conveniently
described by ‘basis’ vectors which are eigenvectors of either the position operator x̂

or the momentum operator p̂. The trouble with these bases is that they are often non-
denumerably infinite (i.e. cannot be indexed by the integers, unlike all the bases we
have worked with so far) and, what is worse, the ‘basis vectors’ do not even belong

9In this example and the one above we are actually not dealing with tensors but with tensor fields,
i.e. tensor-valued functions on space and spacetime. For the discussion here, however, we will
ignore the spatial dependence of the fields, focusing instead on the tensorial properties.
10One needs the exterior derivative, a generalization of the curl, divergence and gradient operators
from vector calculus. See Schutz [15] for a very readable account.
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to the Hilbert space! Consider, for example, L2(R). The position operator x̂ acts on
functions ψ(x) ∈ L2(R) by

x̂ψ(x) = xψ(x). (3.64)

If we follow the practice of most quantum mechanics texts and treat the Dirac delta
functional δ as L(δ(x)) where δ(x), the ‘Dirac delta function’, is infinite at 0 and 0
elsewhere, you can check (see Exercise 3.17) that

x̂δ(x − x0) = x0δ(x − x0)

so that δ(x −x0) is an ‘eigenfunction’ of x̂ with eigenvalue x0 (in Dirac notation we
write the corresponding ket as |x0〉). The trouble is that, as we saw in Example 2.23,
there is no such δ(x) ∈ L2(R)! Furthermore, since the basis {δ(x − x0)}x0∈R is in-
dexed by R and not some subset of Z, we must expand ψ ∈ L2(R) by integrating
instead of summing. Integration, however, is a limiting procedure and one should
really worry about what it means for an integral to converge. Rectifying all this in
a rigorous manner is possible,11 but outside the scope of this text, unfortunately.
We do wish to work with these objects, however, so we will content ourselves with
the traditional approach: ignore the fact that the delta functions are not elements of
L2(R), work without discomfort with the basis {δ(x − x0)}x0∈R,12 and fearlessly
expand arbitrary functions ψ in the basis {δ(x − x0)}x0∈R as

ψ(x) =
∫ ∞

−∞
dx ′ ψ

(

x′)δ
(

x − x′), (3.65)

where the above equation can be interpreted both as the expansion of ψ and just the
definition of the delta function. In Dirac notation (3.65) reads

|ψ〉 =
∫ ∞

−∞
dx′ ψ

(

x′)∣
∣x′〉. (3.66)

Note that we can think of the numbers ψ(x) as the components of |ψ〉 with respect to
the basis {|x〉}x∈R. Alternatively, if we define the inner product of our basis vectors
to be

〈

x
∣

∣x ′〉 ≡ δ
(

x − x ′)

as is usually done, then using (3.66) we have

ψ(x) = 〈x|ψ〉 (3.67)

which gives another interpretation of ψ(x). These two interpretations of ψ(x) are
just the ones mentioned below (3.56); that is, the components of a vector can be
interpreted either as expansion coefficients, as in (3.66), or as the value of a given
dual vector on the vector, as in (3.67).

11This requires the so-called ‘rigged’ Hilbert space; see Ballentine [2].
12Working with the momentum eigenfunctions eipx instead does not help; though these are legiti-
mate functions, they still are not square-integrable since

∫ ∞
−∞ |eipx |2 dx = ∞!
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Exercise 3.17 By considering the integral
∫ ∞

−∞
(

x̂δ(x − x0)
)

f (x)dx

(where f is an arbitrary square-integrable function), show formally that

x̂δ(x − x0) = x0δ(x − x0).

Exercise 3.18 Check that {δ(x − x0)}x0∈R satisfies (2.28).

Exercise 3.19 Verify (3.67).

While we are at it, let us pose the following question: we mentioned in a foot-
note on the previous page that one could use momentum eigenfunctions instead of
position eigenfunctions as a basis for L2(R); what does the corresponding change
of basis look like?

Example 3.17 The momentum representation

As is well-known from quantum mechanics, the eigenfunctions of the momentum
operator p̂ = −i d

dx
are the wavefunctions {eipx}p∈R, and these wavefunctions form

a basis for L2(R). In fact, the expansion of an arbitrary function ψ ∈ L2(R) in this
basis is just the Fourier expansion of ψ , written

ψ(x) = 1

2π

∫ ∞

−∞
dp φ(p)eipx (3.68)

where the component function φ(p) is known as the Fourier Transform of ψ . One
could in fact work exclusively with φ(p) instead of ψ(x), and recast the operators x̂

and p̂ in terms of their action on φ(p) (see Exercise 3.20 below); such an approach
is known as the momentum representation. Now, what does it look like when we
switch from the position representation to the momentum representation, i.e. when
we change bases from {δ(x − x0)}x0∈R to {eipx}p∈R? Since the basis vectors are
indexed by real numbers p and x0 as opposed to integers i and j , our change of basis
will not be given by a matrix with components Ai′

j but rather a function A(x0,p).
By (3.19) and the fact that both bases are orthonormal, this function is given by
the inner product of δ(x − x0) and eipx . In Dirac notation this would be written as
〈x0|p〉, and we have

〈x0|p〉 =
∫ ∞

−∞
dx δ(x − x0)e

ipx = eipx0,

a familiar equation. �

Exercise 3.20 Use (3.68) to show that in the momentum representation, p̂φ(p) = pφ(p)

and x̂φ(p) = i
dφ
dp

.

The next issue to address is that of linear operators: having constructed a new
Hilbert space13 H1 ⊗ H2 out of two Hilbert spaces H1 and H2, can we construct

13You may have noticed that we defined tensor products only for finite-dimensional spaces. The
definition can be extended to cover infinite-dimensional Hilbert spaces, but the extra technicalities
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linear operators on H1 ⊗ H2 out of the linear operators on H1 and H2? Well, given
linear operators Ai on Hi , i = 1,2, we can define a linear operator A1 ⊗ A2 on

H1 ⊗ H2 by

(A1 ⊗ A2)(v ⊗ w) ≡ (A1v) ⊗ (A2w). (3.69)

You can check that with this definition, (A ⊗ B)(C ⊗ D) = AC ⊗ BD. In most
quantum mechanical applications either A1 or A2 is the identity, i.e. one considers
operators of the form A1 ⊗ I or I ⊗ A2. These are often abbreviated as A1 and A2
even though they are acting on H1 ⊗ H2. We should also mention here that the inner
product (· | ·)⊗ on H1 ⊗ H2 is just the product of the inner products on (· | ·)i on
the Hi , that is,

(v1 ⊗ v2|w1 ⊗ w2)⊗ ≡ (v1,w1)1 · (v2,w2)2.

The last subject we should touch upon is that of vector operators, which are
defined to be sets of operators that transform as three-dimensional vectors under the
adjoint action of the total angular momentum operators Ji . That is, a vector operator
is a set of operators {Bi}i=1–3 (often written collectively as B) that satisfies

adJi
(Bj ) = [Ji,Bj ] = i

3
∑

k=1

εijkBk (3.70)

where εijk is the familiar Levi-Civita symbol. The three-dimensional position op-
erator r̂ = {x̂, ŷ, ẑ}, momentum operator p̂ = {p̂x, p̂y, p̂z}, and orbital angular mo-
mentum operator L = {Lx,Ly,Lz} are all vector operators, as you can check.

Exercise 3.21 For spinless particles, J = L = x̂ × p̂. Expressions for the components may
be obtained by expanding the cross product or referencing Example 2.15 and Exercise 2.9.
Use these expressions and the canonical commutation relations [xi,pj ] = −iδij to show
that x̂, p̂ and L are all vector operators.

Now we are finally ready to consider some examples, in which we will take as an
axiom that adding degrees of freedom is implemented by taking tensor products
of the corresponding Hilbert spaces. You will see that this process reproduces
familiar results.

Example 3.18 Addition of translational degrees of freedom

Consider a spinless particle constrained to move in one dimension; the quantum
mechanical Hilbert space for this system is L2(R) with basis {|x〉}x∈R. If we con-
sider a second dimension, call it the y dimension, then this degree of freedom has
its own Hilbert space L2(R) with basis {|y〉}y∈R. If we allow the particle both de-
grees of freedom then the Hilbert space for the system is L2(R)⊗L2(R), with basis
{|x〉 ⊗ |y〉}x,y∈R. An arbitrary ket |ψ〉 ∈ L2(R) ⊗ L2(R) has expansion

needed do not add any insight to what we are trying to do here, so we omit them. The theory of
infinite-dimensional Hilbert spaces falls under the rubric of functional analysis, and details can be
found, for example, in Reed and Simon [12].
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|ψ〉 =
∫ ∞

−∞

∫ ∞

−∞
dx dy ψ(x, y)|x〉 ⊗ |y〉

with expansion coefficients ψ(x, y). If we iterate this logic, we get in 3 dimensions

|ψ〉 =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dx dy dzψ(x, y, z)|x〉 ⊗ |y〉 ⊗ |z〉.

If we rewrite ψ(x, y, z) as ψ(r) and |x〉 ⊗ |y〉 ⊗ |z〉 as |r〉 where r = (x, y, z), then
we have

|ψ〉 =
∫

d3r ψ(r)|r〉
which is the familiar expansion of a ket in terms of three-dimensional position eigen-
kets. Such a ket is an element of L2(R) ⊗ L2(R) ⊗ L2(R), which is also denoted as
L2(R3).14

Example 3.19 Two-particle systems

Now consider two spinless particles in three-dimensional space, possibly interacting
through some sort of potential. The two-body problem with a 1/r potential is a clas-
sic example of this. The Hilbert space for such a system is then L2(R3) ⊗ L2(R3),
with basis {|r1〉 ⊗ |r2〉}ri∈R3 . In many textbooks the tensor product symbol is omit-
ted and such basis vectors are written as |r1〉|r2〉 or even |r1, r2〉. A ket |ψ〉 in this
Hilbert space then has expansion

|ψ〉 =
∫

d3r1

∫

d3r2 ψ(r1, r2)|r1, r2〉
which is the familiar expansion of a ket in a two-particle Hilbert space. One can
interpret ψ(r1, r2) as the probability amplitude of finding particle 1 in position r1
and particle 2 in position r2 simultaneously.

Example 3.20 Addition of orbital and spin angular momentum

Now consider a spin s particle in three dimensions. As remarked in Example 2.2,
the ket space corresponding to the spin degree of freedom is C

2s+1, and one usually
takes a basis {|m〉}−s≤m≤s of Sz eigenvectors with eigenvalue m. The total Hilbert
space for this system is L2(R3) ⊗ C

2s+1, and we can take as a basis {|r〉 ⊗ |m〉}
where r ∈ R

3 and −s ≤ m ≤ s. Again, the basis vectors are often written as |r〉|m〉
or even |r,m〉. An arbitrary ket |ψ〉 then has expansion

14L2(R3) is actually defined to be the set of all square-integrable functions on R
3, i.e. functions f

satisfying
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dx dy dz |f |2 < ∞.

Not too surprisingly, this space turns out to be identical to L2(R) ⊗ L2(R) ⊗ L2(R).
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|ψ〉 =
s

∑

m=−s

∫

d3r ψm(r)|r,m〉

where ψm(r) is the probability of finding the particle at position r and with m units
of spin angular momentum in the z-direction. These wavefunctions are sometimes
written in column vector form

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ψs

ψs−1
...

ψ−s+1
ψ−s

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

The total angular momentum operator J is given by L ⊗ I + I ⊗ S where L is
the orbital angular momentum operator. One might wonder why J is not given by
L ⊗ S; there is a good answer to this question, but it requires delving into the (fas-
cinating) subject of Lie groups and Lie algebras, which we postpone until part II. In
the meantime, you can get a partial answer by checking (Exercise 3.22 below) that
the operators Li ⊗ Si do not satisfy the angular momentum commutation relations
whereas the Li ⊗ I + I ⊗ Si do.

Exercise 3.22 Check that

[Li ⊗ I + I ⊗ Si ,Lj ⊗ I + I ⊗ Sj ] =
3

∑

k=1

εijk(Lk ⊗ I + I ⊗ Sk).

Also show that

[Li ⊗ Si ,Lj ⊗ Sj ] �=
3

∑

k=1

εijkLk ⊗ Sk.

Be sure to use the bilinearity of the tensor product carefully.

Example 3.21 Addition of spin angular momentum

Next consider two particles of spin s1 and s2, respectively, fixed in space so that
they have no translational degrees of freedom. The Hilbert space for this system is
C

2s1+1 ⊗ C
2s2+1, with basis {|m1〉 ⊗ |m2〉} where −si ≤ mi ≤ si , i = 1,2. Again,

such tensor product kets are usually abbreviated as |m1〉|m2〉 or |m1,m2〉. There are
several important linear operators on C

2s1+1 ⊗ C
2s2+1:

• S1 ⊗ I Vector spin operator on first particle
• I ⊗ S2 Vector spin operator on second particle
• S ≡ S1 ⊗ I + I ⊗ S2 Total vector spin operator
• S2 ≡ ∑

i SiSi Total spin squared operator

(Why aren’t S2
1 and S2

2 in our list above?) The vectors |m1,m2〉 are clearly eigen-
vectors of S1z and S2z and hence Sz (we abuse notation as mentioned below (3.70))
but, as you will show in Exercise 3.23, they are not necessarily eigenvectors of S2.
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However, since the Si obey the angular momentum commutation relations (as you
can check), the general theory of angular momentum tells us that we can find a basis
for C

2s1+1 ⊗ C
2s2+1 consisting of eigenvectors of Sz and S2. Furthermore, it can be

shown that the S2 eigenvalues that occur are s(s + 1) where

s = |s1 − s2|, |s1 − s2| + 1, . . . , s1 + s2 (3.71)

and for a given s the possible Sz eigenvalues are m where −s ≤ m ≤ s as usual (see
Sakurai [14] for details). We will write these basis kets as {|s,m〉} where the above
restrictions on s and m are understood, and where we physically interpret {|s,m〉} as
a state with total angular momentum equal to

√
s(s + 1) and with m units of angular

momentum pointing along the z-axis. Thus we have two natural and useful bases for
C

2s1+1 ⊗ C
2s2+1:

B = {|m1,m2〉
}

, −s1 ≤ m1 ≤ s1, −s2 ≤ m2 ≤ s2

B′ = {|s,m〉}, |s1 − s2| ≤ s ≤ s1 + s2, −s ≤ m ≤ s.

What does the transformation between these two bases look like? Well, by their
definition, the A

j

i′ relating the two bases are given by ej (ei′); using s, m collectively
in lieu of the primed index and m1, m2 collectively in lieu of the unprimed index,
we have, in Dirac notation,

Am1,m2
s,m = 〈m1,m2|s,m〉. (3.72)

These numbers, the notation for which varies widely throughout the literature, are
known as Clebsch–Gordan Coefficients. Methods for computing them can be found
in any standard quantum mechanics textbook.

Let us illustrate the foregoing with an example. Take two spin 1 particles, so that
s1 = s2 = 1. The Hilbert space for the first particle is C

3, with S1z eigenvector basis
{| − 1〉, |0〉, |1〉}, and so the two-particle system has nine-dimensional Hilbert space
C

3 ⊗ C
3 with corresponding basis

B = {|i〉|j〉 ∣∣ i, j = −1,0,1
}

= {|1〉|1〉, |1〉|0〉, |1〉|−1〉, |0〉|1〉, etc.
}

.

There should also be another basis consisting of Sz and S2 eigenvectors, however.
From (3.71) we know that the possible s values are s = 0,1,2, and it is a standard
exercise in angular momentum theory to show that the nine (normalized) Sz and S2

eigenvectors are

|s = 2, sz = 2〉 = |1〉|1〉
|2,1〉 = 1√

2

(|1〉|0〉 + |0〉|1〉)

|2,0〉 = 1√
6

(|1〉|−1〉 + 2|0〉|0〉 + |−1〉|1〉)

|2,−1〉 = 1√
2

(|−1〉|0〉 + |0〉|−1〉)
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|2,−2〉 = |−1〉|−1〉
|1,1〉 = 1√

2

(|1〉|0〉 − |0〉|1〉)

|1,0〉 = 1√
2

(|1〉|−1〉 − |−1〉|1〉)

|1,−1〉 = 1√
2

(|0〉|−1〉 − |−1〉|0〉)

|0,0〉 = 1√
3

(|0〉|0〉 − |1〉|−1〉 − |−1〉|1〉).
These vectors can be found using standard techniques from the theory of ‘addition
of angular momentum’; for details see Gasiorowicz [5] or Sakurai [14]. The coef-
ficients appearing on the right hand side of the above equations are precisely the
Clebsch–Gordan coefficients (3.72), as a moment’s thought should show.

Exercise 3.23 Show that

S2 = S2
1 ⊗ I + I ⊗ S2

2 + 2
∑

i

S1i ⊗ S2i .

The right hand side of the above equation is usually abbreviated as S2
1 + S2

2 + 2S1 · S2. Use
this to show that |m1,m2〉 is not generally an eigenvector of S2.

Example 3.22 Entanglement

Consider two Hilbert spaces H1 and H2 and their tensor product H1 ⊗ H2. Only
some of the vectors in H1 ⊗ H2 can be written as ψ ⊗ φ; such vectors are referred
to as separable states or product states. All other vectors must be written as linear
combinations of the form

∑

i ψi ⊗ φi , and these vectors are said to be entangled,
since in this case the measurement of the degrees of freedom represented by H1
will influence the measurement of the degrees of freedom represented by H2. The
classic example of an entangled state comes from the previous example of two fixed
particles with spin; taking s1 = s2 = 1/2 and writing the standard basis for C

2 as
{|+〉, |−〉}, we consider the particular state

|+〉|−〉 − |−〉|+〉. (3.73)

If an observer measures the first particle to be spin up then a measurement of the
second particle’s spin is guaranteed to be spin-down, and vice versa, so measuring
one part of the system affects what one will measure for the other part. This is the
sense in which the system is entangled. For a product state ψ ⊗ φ, there is no such
entanglement: a particular measurement of the first particle cannot affect what one
measures for the second, since the second particle’s state will be φ no matter what.
You will check below that (3.73) is not a product state.

Exercise 3.24 Prove that (3.73) cannot be written as ψ ⊗ φ for any ψ,φ ∈ C
2. Do this by

expanding ψ and φ in the given basis and showing that no choice of expansion coefficients
for ψ and φ will yield (3.73).
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3.8 Symmetric Tensors

Given a vector space V there are certain subspaces of T r
0 (V ) and T 0

r (V ) which
are of particular interest: the symmetric and antisymmetric tensors. We will discuss
symmetric tensors in this section and antisymmetric tensors in the next. A symmet-
ric (r,0) tensor is an (r,0) tensor whose value is unaffected by the interchange (or
transposition) of any two of its arguments, that is,

T (v1, . . . , vi , . . . , vj , . . . , vr ) = T (v1, . . . , vj , . . . , vi , . . . , vr)

for any i and j . Symmetric (0, r) tensors are defined similarly. You can easily check
that the symmetric (r,0) and (0, r) tensors each form vector spaces, denoted Sr(V ∗)
and Sr(V ), respectively. For T ∈ Sr(V ∗), the symmetry condition implies that the
components Ti1...ir are invariant under the transposition of any two indices, hence
invariant under any rearrangement of the indices (since any rearrangement can be
obtained via successive transpositions). Similar remarks apply, of course, to Sr(V ).
Notice that for rank 2 tensors, the symmetry condition implies Tij = Tji so that
[T ]B for any B is a symmetric matrix. Also note that it does not mean anything to
say that a linear operator is symmetric, since a linear operator is a (1,1) tensor and
there is no way of transposing the arguments. One might find that the matrix of a
linear operator is symmetric in a certain basis, but this will not necessarily be true
in other bases. If we have a metric to raise and lower indices then we can, of course,
speak of symmetry by turning our linear operator into a (2,0) or (0,2) tensor.

Example 3.23 S2(R2∗)

Consider the set {e1 ⊗ e1, e2 ⊗ e2, e1 ⊗ e2 + e2 ⊗ e1} ⊂ S2(R2∗) where {ei}i=1,2 is
the standard dual basis. You can check that this set is linearly independent, and that
any symmetric tensor can be written as

T = T11e
1 ⊗ e1 + T22e

2 ⊗ e2 + T12
(

e1 ⊗ e2 + e2 ⊗ e1) (3.74)

so this set is a basis for S2(R2∗), which is thus three-dimensional. In particular, the
Euclidean metric g on R

2 can be written as

g = e1 ⊗ e1 + e2 ⊗ e2

since g11 = g22 = 1 and g12 = g21 = 0. Note that g would not take this simple form
in a non-orthonormal basis. �

Exercise 3.25 Let V = R
n with the standard basis B. Convince yourself that

[ei ⊗ ej + ej ⊗ ei ]B = Sij

where Sij is the symmetric matrix defined in Example 2.8.

There are many symmetric tensors in physics, almost all of them of rank 2. Many
of them we have met already: the Euclidean metric on R

3, the Minkowski metric
on R

4, the moment of inertia tensor, and the Maxwell stress tensor. You should refer
to the examples and check that these are all symmetric tensors. We have also met
one class of higher rank symmetric tensors: the multipole moments.
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Example 3.24 Multipole moments and harmonic polynomials

Recall from Example 3.4 that the scalar potential �(r) of a charge distribution ρ(r′)
localized around the origin in R

3 can be expanded in a Taylor series in 1/r as

�(r) = 1

4π

[

Q0

r
+ Q1(r)

r3 + 1

2!
Q2(r, r)

r5 + 1

3!
Q3(r, r, r)

r7 + · · ·
]

where the Ql are the symmetric rank l multipole moment tensors. Each symmetric
tensor Ql can be interpreted as a degree l polynomial fl , just by evaluating on l

copies of r = (x1, x2, x3) as indicated:

fl(r) ≡ Ql(r, . . . , r) = Qi1···il xi1 · · ·xil , (3.75)

where the indices ij are the usual component indices, not exponents. Note that the
expression xi1 · · ·xil in the right hand side is invariant under any rearrangement of
the indices ij . This is because we fed in l copies of the same vector r into Ql . This
fits in nicely with the symmetry of Qi1···il . In fact, the above equation gives a one-to-
one correspondence between lth rank symmetric tensors and degree l polynomials;
we will not prove this correspondence here, but it should not be too hard to see
that (3.75) turns any symmetric tensor into a polynomial, and that, conversely, any
fixed degree polynomial can be written in the form of the right hand side of (3.75)
with Qi1···il symmetric. This (roughly) explains why the multipole moments are
symmetric tensors: the multipole moments are really just fixed degree polynomials,
which in turn correspond to symmetric tensors.

What about the tracelessness of the Ql , i.e. the fact that
∑

k Qi1···k···k···in = 0?
Well, �(r) obeys the Laplace equation ��(r) = 0, which means that every term in
the expansion must also obey the Laplace equation. Each term is of the form

fl(r)
r2l+1

,

and if we write the polynomial fl(r) as rlY (θ,φ) then a quick computation shows
that Y(θ,φ) must be a spherical harmonic of degree l and hence fl must be a har-
monic polynomial! Expanding fl(r) in the form (3.75) and applying the Laplacian
then shows that if fl is harmonic, then Ql must be traceless. �

Exercise 3.26 What is the polynomial associated to the Euclidean metric tensor g =
∑3

i=1 ei ⊗ ei? What is the symmetric tensor in S3(R3) associated to the polynomial x2y?

Exercise 3.27 Substitute fl(r) = rlY (θ,φ) into the equation

�

(

fl(r)
r2l+1

)

= 0 (3.76)

and show that Y (θ,φ) must be a spherical harmonic of degree l. Then use (3.75) to show that
if fl is a harmonic polynomial, then the associated symmetric tensor Ql must be traceless.
If you have trouble showing that Ql is traceless for arbitrary l, try starting with the l = 2
(quadrupole) and l = 3 (octopole) cases.
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3.9 Antisymmetric Tensors

Now we turn to antisymmetric tensors. An antisymmetric (or alternating) (r,0) ten-
sor is one whose value changes sign under transposition of any two of its arguments,
i.e.

T (v1, . . . , vi , . . . , vj , . . . , vr) = −T (v1, . . . , vj , . . . , vi , . . . , vr). (3.77)

Again, antisymmetric (0, r) tensors are defined similarly and both sets form vector
spaces, denoted �rV ∗ and �rV (for r = 1 we define �1V ∗ = V ∗ and �1V = V ).
The following properties of antisymmetric tensors follow directly from (3.77); the
first one is immediate, and the second two you will prove in Exercise 3.28 below:

1. T (v1, . . . , vr ) = 0 if vi = vj for any i �= j

�⇒ 2. T (v1, . . . , vr) = 0 if {v1, . . . , vr } is linearly dependent
�⇒ 3. If dimV = n, then the only tensor in �rV ∗ and �rV for r > n is the

0 tensor.

An important operation on antisymmetric tensors is the wedge product: Given
f,g ∈ V ∗ we define the wedge product of f and g, denoted f ∧ g, to be the anti-
symmetric (2,0) tensor defined by

f ∧ g ≡ f ⊗ g − g ⊗ f . (3.78)

Note that f ∧ g = −g ∧ f , and that f ∧ f = 0. Expanding (3.78) in terms of the ei

gives

f ∧ g = figj

(

ei ⊗ ej − ej ⊗ ei
) = figj e

i ∧ ej (3.79)

so that {ei ∧ ej }i<j spans all wedge products of dual vectors (note the “i < j”
stipulation, since ei ∧ ej and ej ∧ ei are not linearly independent). In fact, you can
check that {ei ∧ ej }i<j is linearly independent and spans �2V ∗, hence is a basis
for �2V ∗. The wedge product can be extended to r-fold products of dual vectors as
follows: given r dual vectors f1, . . . , fr , we define their wedge product f1 ∧· · ·∧fr

to be the sum of all tensor products of the form fi1 ⊗ · · ·⊗ fir where each term gets
a + or a − sign depending on whether an odd or an even number15 of transpositions
of the factors are necessary to obtain it from f1 ⊗ · · · ⊗ fr ; if the number is odd the
term is assigned −1, if even a +1. Thus,

f1 ∧ f2 = f1 ⊗ f2 − f2 ⊗ f1 (3.80)
f1 ∧ f2 ∧ f3 = f1 ⊗ f2 ⊗ f3 + f2 ⊗ f3 ⊗ f1 + f3 ⊗ f1 ⊗ f2

− f3 ⊗ f2 ⊗ f1 − f2 ⊗ f1 ⊗ f3 − f1 ⊗ f3 ⊗ f2 (3.81)

and so on. You should convince yourself that {ei1 ∧ · · · ∧ eir }i1<···<ir is a basis for
�rV ∗. Note that this entire construction can be carried out for vectors as well as

15The number of transpositions required to get a given rearrangement is not unique, of course,
but hopefully you can convince your self that it is always odd or always even. A rearrangement
which always decomposes into an odd number of transpositions is an odd rearrangement, and
even rearrangements are defined similarly. We will discuss this further in Chap. 4, specifically in
Example 4.22.



3.9 Antisymmetric Tensors 71

dual vectors. Also note that all the comments about symmetry above Example 3.23
apply here as well.

Exercise 3.28 Let T ∈ �rV ∗. Show that if {v1, . . . , vr } is a linearly dependent set then
T (v1, . . . , vr ) = 0. Use the same logic to show that if {f1, . . . , fr } ⊂ V ∗ is linearly depen-
dent, then f1 ∧ · · · ∧ fr = 0. If dim V = n, show that any set of more than n vectors must
be linearly dependent, so that �rV = �rV ∗ = 0 for r > n.

Exercise 3.29 Expand the (2,0) electromagnetic field tensor of (3.62) in the basis {ei ∧ ej }
where i < j and i, j = 1,2,3,4.

Exercise 3.30 Let dim V = n. Show that the dimension of �rV ∗ and �rV is
(
n
r

) = n!
(n−r)!r! .

Example 3.25 Identical particles

In quantum mechanics we often consider systems which contain identical particles,
i.e. particles of the same mass, charge and spin. For instance, we might consider n

non-interacting hydrogen atoms moving in a potential well, or the two electrons of
the helium atom orbiting around the nucleus. In such cases we would assume that
the total Hilbert space Htot would be just the n-fold tensor product of the single
particle Hilbert space H. It turns out, however, that nature does not work that way;
for certain particles (known as bosons) only states in Sn(H) are observed, while for
other particles (known as fermions) only states in �nH are observed. All known
particles are either fermions or bosons. This restriction of the total Hilbert space
to either Sn(H) or �nH is known as the symmetrization postulate and has far-
reaching consequences. For instance, if we have two fermions, we cannot measure
the same values for a complete set of quantum numbers for both particles, since
then the state would have to include a term of the form |ψ〉|ψ〉 and thus could not
belong to �2 H. This fact that two fermions cannot be in the same state is known as
the Pauli Exclusion Principle. As another example, consider two identical spin 1/2
fermions fixed in space, so that Htot = �2

C
2. �2

C
2 is one-dimensional with basis

vector

|0,0〉 =
∣

∣

∣

∣

1

2

〉∣

∣

∣

∣
−1

2

〉

−
∣

∣

∣

∣
−1

2

〉∣

∣

∣

∣

1

2

〉

where we have used the notation of Example 3.21. If we measure S2 or Sz for this
system we will get 0. This is in marked contrast to the case of two distinguishable
spin 1/2 fermions; in this case the Hilbert space is C

2 ⊗ C
2 and we have additional

possible state kets

|1,1〉 =
∣

∣

∣

∣

1

2

〉∣

∣

∣

∣

1

2

〉

|1,0〉 =
∣

∣

∣

∣

1

2

〉∣

∣

∣

∣
−1

2

〉

+
∣

∣

∣

∣
−1

2

〉∣

∣

∣

∣

1

2

〉

|1,−1〉 =
∣

∣

∣

∣
−1

2

〉∣

∣

∣

∣
−1

2

〉

which yield nonzero values for S2 and Sz. �
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The next two examples are a little more mathematical than physical but they are
necessary for the discussion of pseudovectors below. Hopefully you will also find
them of interest in their own right.

Example 3.26 The Levi-Civita tensor

Consider R
n with the standard inner product. Let {ei}i=1,...,n be an orthonormal

basis for R
n and consider the tensor

ε ≡ e1 ∧ · · · ∧ en ∈ �n
R

n∗.
You can easily check that

εi1...in =
⎧

⎨

⎩

0 if {i1, . . . , in} contains a repeated index

−1 if {i1, . . . , in} is an odd rearrangement of {1, . . . , n}
+1 if {i1, . . . , in} is an even rearrangement of {1, . . . , n}.

For n = 3, you can also check (Exercise 3.31) that εijk has the same values as the
Levi-Civita symbol, and so ε here is an n-dimensional generalization of the three-
dimensional Levi-Civita tensor we introduced in Example 3.2. As in that example,
ε should be thought of as eating n vectors and spitting out the n-dimensional volume
spanned by those vectors. This can be seen explicitly for n = 2 also; considering two
vectors u and v in the (x, y) plane, we have

ε(u, v) = εiju
ivj

= uxvy − uyvx

= (u × v)z

and we know that this last expression can be interpreted as the (signed) area of the
parallelogram spanned by u and v.

Finally, note that �n
R

n∗ is one-dimensional, and that ε is the basis for it de-
scribed under (3.81).

You may object that our construction of ε seems to depend on a choice of met-
ric and orthonormal basis. The former is true: ε does depend on the metric, and
we make no apologies for that. As to whether it depends on a particular choice of
orthonormal basis, we must do a little bit of investigating; this will require a brief
detour into the subject of determinants.

Exercise 3.31 Check that the ε tensor on R
3 satisfies

εijk =
⎧

⎨

⎩

+1 if {ijk} is a cyclic permutation16of {1,2,3}
−1 if {ijk} is an anti-cyclic permutation of {1,2,3}
0 otherwise.

Is it true for ε on R
4 that εijkl = 1 if {ijkl} is a cyclic permutation of {1,2,3,4}?

16A cyclic permutation of {1, . . . , n} is any rearrangement of {1, . . . , n} obtained by succes-
sively moving numbers from the beginning of the sequence to the end. That is, {2, . . . , n,1},
{3, . . . , n,1,2}, and so on are the cyclic permutations of {1, . . . , n}. Anti-cyclic permutations are
cyclic permutations of {n,n − 1, . . . ,1}.
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Example 3.27 The determinant

You have doubtless encountered determinants before, and have probably seen them
defined iteratively; that is, the determinant of a 2 × 2 square matrix A, denoted |A|
(or detA), is defined to be

|A| ≡ A11A22 − A12A21 (3.82)

and then the determinant of a 3 × 3 matrix B is defined in terms of this, i.e.

|B| ≡ B11

∣

∣

∣

∣

B22 B23
B32 B33

∣

∣

∣

∣
− B12

∣

∣

∣

∣

B21 B23
B31 B33

∣

∣

∣

∣
+ B13

∣

∣

∣

∣

B21 B22
B31 B32

∣

∣

∣

∣
. (3.83)

This expression is known as the cofactor expansion of the determinant, and is not
unique; one can expand about any row (or column), not necessarily (B11,B12,B13).

In our treatment of the determinant we will take a somewhat more sophisticated
approach.17 Take an n×n matrix A and consider its n columns as n column vectors
in R

n, so that the first column vector A1 has ith component Ai1 and so on. Then,
constructing the ε tensor using the standard basis and inner product on R

n, we define
the determinant of A, denoted |A| or detA, to be

|A| ≡ ε(A1, . . . ,An) (3.84)

or in components

|A| =
∑

i1,...,in

εi1,...,inAi11 . . .Ainn. (3.85)

You should check explicitly that this definition reproduces (3.82) and (3.83) for
n = 2,3. You can also check in the Problems that many of the familiar properties
of determinants (sign change under interchange of columns, invariance under addi-
tion of rows, factoring of scalars) follow quite naturally from the definition and the
multilinearity and antisymmetry of ε.

Since the determinant is defined in terms of the epsilon tensor, which has an
interpretation in terms of volume, this suggests that the determinant has an inter-
pretation in terms of volume as well. Consider our matrix A as a linear operator
on R

n; then A sends the standard orthonormal basis {e1, . . . , en} to a new, poten-
tially non-orthonormal basis {Ae1, . . . ,Aen}. See Fig. 3.6. Then just as {e1, . . . , en}
spans a regular n-cube whose volume is 1, the vectors {Ae1, . . . ,Aen} span a skewed
n-cube whose volume is given by

ε(Ae1, . . . ,Aen) = ε

(

∑

i1

Ai11ei1 , . . . ,
∑

in

Ainnein

)

=
∑

i1,...,in

Ai11 · · ·Ainnεi1,...,in

= detA!

17For a complete treatment, however, you should consult Hoffman and Kunze [10], Chap. 5.
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Fig. 3.6 The action of A on the standard basis in R
3

Thus, the determinant of a matrix is the (oriented) volume of the skew n-cube
obtained by applying A to the standard n-cube! You may have noticed that this
volume can be negative, which is why we called the determinant an oriented (or
signed) volume; the interpretation of this is given in the next example.

Example 3.28 Orientations and the ε tensor

Note This material is a bit abstract and may be skipped on a first reading.

With the determinant in hand we may now explore to what extent the definition of
ε depends on our choice of orthonormal basis. Consider another orthonormal basis
{ei′ = A

j

i′ej }. If we define an ε′ in terms of this basis, we find

ε′ = e1′ ∧ · · · ∧ en′

= A1′
i1

. . .An′
in

ei1 ∧ · · · ∧ ein

= A1′
i1

. . .An′
in

εi1...ine1 ∧ · · · ∧ en

= |A|ε (3.86)

where in the third equality we used the fact that if ei1 ∧ · · · ∧ ein does not vanish
it can always be rearranged to give e1 ∧ · · · ∧ en, and the resulting sign change if
any is accounted for by the Levi-Civita symbol. Now since both {ei} and {ei′ } are
orthonormal bases, A must be an orthonormal matrix, so we can use the product
rule for determinants |AB| = |A||B| (see Problem 3.4 for a simple proof) and the
fact that |AT | = |A| to get

1 = |I | = ∣

∣AAT
∣

∣ = |A|∣∣AT
∣

∣ = |A|2 (3.87)

which implies |A| = ±1. Thus by (3.86) ε′ = ε if the two orthonormal bases used in
their construction are related by an orthogonal transformation A with |A| = 1; such
a transformation is called a rotation,18 and two bases related by a rotation, or by any

18No doubt you are used to thinking about a rotation as a transformation that preserves distances
and fixes a line in space (the axis of rotation). This definition of a rotation is particular to R

3, since



3.9 Antisymmetric Tensors 75

Fig. 3.7 The two orientations of R
3. The upper-left most basis is usually considered the standard

basis

transformation with |A| > 0, are said to have the same orientation. If two bases are
related by a basis transformation with |A| < 0 then the two bases are said to have
the opposite orientation. We can then define an orientation as a maximal19 set of
bases all having the same orientation, and you can show (see Problem 3.6) that R

n

has exactly two orientations. In R
3 these two orientations are the right-handed bases

and the left-handed bases, and are depicted schematically in Fig. 3.7. Thus we can
say that ε does not depend on a particular choice of orthonormal basis, but it does
depend on a metric and a choice of orientation, where the orientation chosen is the
one determined by the standard basis.

The notion of orientation allows us to understand the interpretation of the de-
terminant as an ‘oriented’ volume: the sign of the determinant just tells us whether
or not the orientation of {Aei} is the same as {ei}. Also, for orientation-changing
transformations on R

3 one can show that A can be written as A = A0(−I ), where
A0 is a rotation and −I is referred to as the inversion transformation. The inversion
transformation plays a key role in the next example.

Example 3.29 Pseudovectors in R
3

Note All indices in this example refer to orthonormal bases. The calculations and
results below do not apply to non-orthonormal bases.

even in R
2 a rotation cannot be considered to be “about an axis” since ẑ /∈ R

2. For the equivalence
of our general definition and the more intuitive definition in R

3, see Goldstein [6].
19I.e. could not be made bigger.
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A pseudovector (or axial vector) is a tensor on R
3 whose components trans-

form like vectors under rotations but do not change sign under inversion. Common
examples of pseudovectors are the angular velocity vector ω, the magnetic field vec-
tor B, as well as all cross products, such as the angular momentum vector L = r×p.
It turns out that pseudovectors like these are actually elements of �2

R
3, which are

known as bivectors.
To see the connection, consider the wedge product of two vectors r,p ∈ R

3. This
looks like

r ∧ p = (

r1e1 + r2e2 + r3e3
) ∧ (

p1e1 + p2e2 + p3e3
)

= (

r1p2 − r2p1)e1 ∧ e2 + (

r3p1 − r1p3)e3 ∧ e1 + (

r2p3 − r3p2)e2 ∧ e3.

This looks just like r × p if we make the identifications

e1 ∧ e2 −→ e3

e3 ∧ e1 −→ e2 (3.88)

e2 ∧ e3 −→ e1.

In terms of matrices, this corresponds to the identification
⎛

⎝

0 −z y

z 0 −x

−y x 0

⎞

⎠ −→
⎛

⎝

x

y

z

⎞

⎠. (3.89)

This identification can be embodied in a one-to-one and onto map J from �2
R

3

to R
3. If α ∈ �2

R
3 then we can expand it as

α = α23e2 ∧ e3 + α31e3 ∧ e1 + α12e1 ∧ e2,

and we then define J in component as

J : �2
R

3 → R
3

αij �→ (

J (α)
)i ≡ 1

2
εi

jkα
jk.

(3.90)

You will check below that this definition really does give the identifications writ-
ten above. Note that J is essentially just a contraction with the epsilon tensor. With
this, we see that r × p is really just J (r ∧ p)! Thus, cross products are essentially
just bivectors.

Exercise 3.32 Check that J , as defined by (3.90), acts on basis vectors as in (3.88). Also
check that when written in terms of matrices, J produces the map (3.89).

Now that we know how to identify bivectors and regular vectors, we must ex-
amine what it means for bivectors to transform ‘like’ vectors under rotations, but
without a sign change under inversion. On the face of things, it seems like bivectors
should transform very differently from vectors; after all, a bivector is a (0,2) tensor,
and you can show that it has matrix transformation law

[α]B′ = A[α]BAT . (3.91)
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This looks very different from the transformation law for the associated vector J (α),
which is just (cf. (3.29))

[

J (α)
]

B′ = A
[

J (α)
]

B. (3.92)

In particular, the bivector α transforms with two copies of A, and the vector J (α)

with just one. How could these transformation laws be ‘the same’? Well, remember
that α is not any old (0,2) tensor, but an antisymmetric one, and for these a small
miracle happens. This is best appreciated by considering an example. Let A be a
rotation about the z-axis by an angle θ , so that

A =
⎛

⎝

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞

⎠ .

Then you can check that, with αi ≡ (J (α))i ,

[α]B′ = A[α]BAT

=
⎛

⎝

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞

⎠

⎛

⎜

⎝

0 −α3 α2

α3 0 −α1

−α2 α1 0

⎞

⎟

⎠

⎛

⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞

⎠

=
⎛

⎜

⎝

0 −α3 α2 cos θ + α1 sin θ

α3 0 α2 sin θ − α1 cos θ

−α2 cos θ − α1 sin θ −α2 sin θ + α1 cos θ 0

⎞

⎟

⎠

(3.93)

J→
⎛

⎜

⎝

−α2 sin θ + α1 cos θ

α2 cos θ + α1 sin θ

α3

⎞

⎟

⎠ (3.94)

which is exactly a rotation about the z-axis of J (α)! This seems to suggest that if
we transform the components of α ∈ �2

R
3 by a rotation first and then apply J , or

apply J and then rotate the components, we get the same thing. In other words, the
map J commutes with rotations, and that is what it means for both bivectors
and vectors to behave ‘the same’ under rotations.

Exercise 3.33 Derive (3.91). You may need to consult Sect. 3.2.

Exercise 3.34 Verify (3.93) by performing the necessary matrix multiplication.

To prove that J commutes with arbitrary rotations (the example above just
proved it for rotations about the z-axis), we need to show that

Ai′
j αj = 1

2
εi′

k′l′A
k′
mAl′

nαmn (3.95)

where A is a rotation. On the left hand side J is applied first followed by a rotation,
and on the right hand side the rotation is done first, followed by J .
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We now compute

1

2
εi′

k′l′A
k′
mAl′

nαmn = 1

2
εp′k′l′δ

i′p′
Ak′

mAl′
nαmn

= 1

2

∑

q

εp′k′l′A
i′
q A

p′
q Ak′

mAl′
nαmn

= 1

2

∑

q

εqmn|A|Ai′
q αmn

= 1

2
|A|εq

mnA
i′
q αmn

= |A|Ai′
q αq (3.96)

where in the second equality we used a variant of (3.32) which comes from writ-
ing out AAT = I in components, in the third equality we used the easily verified

fact that εp′k′l′A
p′
q Ak′

mAl′
n = |A|εqmn, and in the fourth equality we raised an index

to resume use of Einstein summation convention and were able to do so because
covariant and contravariant components are equal in orthonormal bases. Now, for
rotations |A| = 1 so in this case (3.96) and (3.95) are identical and the compo-
nents of J (α) transform like the components of a vector. For inversion, however,
|A| = |−I | = −1 so (3.96) tells us that the components of J (α) do not change sign
under inversion, as those of an ordinary vector would. Another way to see this is
given in the exercise below.

Exercise 3.35 Use (3.91) to show that the components of J (α) do not change sign under
inversion.

We have thus shown that pseudovectors are bivectors, since bivectors transform
like vectors under rotation but do not change sign under inversion. We have also
seen that cross products are very naturally interpreted as bivectors. There are other
pseudovectors lying around, though, that do not naturally arise as cross products.
For instance, what about the angular velocity vector ω?

Example 3.30 The angular velocity vector

The angular velocity vector ω is usually introduced in the context of rigid body
rotations. One usually fixes the center of mass of the body, and then the velocity v
of a point of the rigid body is given by

v = ω × r (3.97)

where r is the position vector of the point as measured from the center of mass. The
derivation of this equation usually involves consideration of an angle and axis of
rotation, and from these considerations one can argue that ω is a pseudovector. Here
we will take a different approach in which ω will appear first as an antisymmetric
matrix, making the bivector nature of ω manifest.

Let K and K ′ be two orthonormal bases for R
3 as in Example 2.11, with K

time-dependent. One should think of K as being attached to the rotating rigid body,
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Fig. 3.8 Our rigid body with fixed space frame K ′ and body frame K in gray

whereas K ′ is fixed. We will refer to K as the body frame and K ′ as the space frame.
Both frames have their origin at the center of mass of the rigid body. This is depicted
in Fig. 3.8.

Now let r represent a point of the rigid body; then [r]K will be its coordinates
in the body frame, and [r]K ′ its coordinates in the space frame. Let A be the (time-
dependent) matrix of the basis transformation taking K ′ to K , so that

[r]K ′ = A[r]K. (3.98)

We would now like to calculate the velocity [v]K ′ of our point in the rigid body, as
seen in the space frame, and compare it to (3.97). This is given by just differentiat-
ing [r]K ′ :

[v]K ′ = d

dt
[r]K ′

= d

dt
A[r]K by (3.98)

= dA

dt
[r]K since [r]K is constant

= dA

dt
A−1[r]K ′ . (3.99)

So far this does not really look like (3.97). What to do? First, observe that dA
dt

A−1

is actually an antisymmetric matrix:

0 = d

dt
(I )

= d

dt

(

AAT
)
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= dA

dt
AT + A

dAT

dt

= dA

dt
AT +

(

dA

dt
AT

)T

. (3.100)

We can then define an angular velocity bivector ω̃ whose components in the space
frame are given by

[ω̃]K ′ = dA

dt
A−1. (3.101)

Then we simply define the angular velocity vector ω to be

ω ≡ J (ω̃). (3.102)

Note that ω is, in general, time-dependent. It follows from this definition that

dA

dt
A−1 =

⎛

⎜

⎝

0 −ω3′
ω2′

ω3′
0 −ω1′

−ω2′
ω1′

0

⎞

⎟

⎠

(we use primed indices since we are working with the K ′ components), so then

dA

dt
A−1[r]K ′ =

⎛

⎜

⎝

0 −ω3′
ω2′

ω3′
0 −ω1′

−ω2′
ω1′

0

⎞

⎟

⎠

⎛

⎜

⎝

x1′

x2′

x3′

⎞

⎟

⎠

=
⎛

⎜

⎝

ω2′
x3′ − ω3′

x2′

ω3′
x1′ − ω1′

x3′

ω1′
x2′ − ω2′

x1′

⎞

⎟

⎠

= [ω × r]K ′ !
Combining this with (3.99), we then have

[v]K ′ = [ω × r]K ′ (3.103)

which is just (3.97) written in the space frame! Thus the ‘pseudovector’ ω can
be viewed as nothing more than the vector associated to the antisymmetric matrix
dA
dt

A−1, and multiplication by this is just the cross product with ω! �

Exercise 3.36 Use (3.91) to show that the bivector ω̃ in the body frame is

[ω̃]K = A−1 dA

dt
.

Combine this with (3.99) to show that (3.97) is true in the body frame as well.

In the last example we saw that to any time-dependent rotation matrix A we
could associate an antisymmetric matrix dA

dt
A−1, which we can identify with the

angular velocity vector which represents ‘infinitesimal’ rotations. This association
between finite transformations and their infinitesimal versions, which in the case of
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rotations takes us from orthogonal matrices to antisymmetric matrices, is precisely
the relationship between a Lie group and its Lie algebra. We turn our attention to
these objects in the next part of this book.

3.10 Problems

3.1 In this problem we explore the properties of n × n orthogonal matrices. This is
the set of real invertible matrices A satisfying AT = A−1, and is denoted O(n).

(a) Is O(n) a subspace of Mn(R)?
(b) Show that the product of two orthogonal matrices is again orthogonal, that the

inverse of an orthogonal matrix is again orthogonal, and that the identity ma-
trix is orthogonal. These properties show that O(n) is a group, i.e. a set with
an associative multiplication operation and identity element such that the set
is closed under multiplication and every element has a multiplicative inverse.
Groups are the subject of Chap. 4.

(c) Show that the columns of an orthogonal matrix A, viewed as vectors in R
n, are

mutually orthogonal under the usual inner product. Show the same for the rows.
Show that for an active transformation, i.e.

[ei′ ]B = A[ei]B

where B = {ei}i=1,...,n so that

[ei]TB = (0, . . . , 1
︸︷︷︸

ith slot

, . . . ,0),

the columns of A are the [ei′ ]B . In other words, the components of the new basis
vectors in the old basis are just the columns of A. This also shows that for the
corresponding passive transformation, in which

[ei]B′ = A−1[ei]B

the columns of A−1 are the components of the old basis vectors in the new basis.
(d) Show that the orthogonal matrices A with |A| = 1, the rotations, form a sub-

group unto themselves, denoted SO(n). Do the matrices with |A| = −1 also
form a subgroup?

3.2 In this problem we will compute the dimension of the space of (0, r) symmetric
tensors Sr(V ). This is slightly more difficult to compute than the dimension of the
space of (0, r) antisymmetric tensors �rV , which was Exercise 3.30.

(a) Let dimV = n and {ei}i=1,...,n be a basis for V . Argue that dimSr(V ) is given
by the number of ways you can choose r (possibly repeated) vectors from the
basis {ei}i=1,...,n.
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(b) We have now reduced the problem to a combinatorics problem: how many ways
can you choose r objects from a set of n objects, where any object can be chosen
more than once? The answer is

dimSr(V ) =
(

n + r − 1

n − 1

)

≡ (n + r − 1)!
r!(n − 1)! . (3.104)

Try to derive this on your own. If you need help, the solution to this is known as
the “stars and bars” or “balls and walls” method; you can also refer to Sternberg
[16], Chap. 5.

3.3 Prove the following basic properties of the determinant directly from the defi-
nition (3.84). We will restrict our discussion to operations with columns, though it
can be shown that all the corresponding statements for rows are true as well.

(a) Any matrix with a column of zeros has |A| = 0.
(b) Multiplying a column by a scalar c multiplies the whole determinant by c.
(c) The determinant changes sign under interchange of any two columns.
(d) Adding two columns together, i.e. sending Ai → Ai + Aj for any i and j , does

not change the value of the determinant.

3.4 One can extend the definition of determinants from matrices to more general
linear operators as follows: We know that a linear operator T on a vector space V

(equipped with an inner product and orthonormal basis {ei}i=1,...,n) can be extended
to an operator on the p-fold tensor product T 0

p (V ) by

T (v1 ⊗ · · · ⊗ vp) = (T v1) ⊗ · · · ⊗ (T vp).

Since �nV ⊂ T 0
n (V ), the action of T then extends to �nV similarly by

T (v1 ∧ · · · ∧ vn) = (T v1) ∧ · · · ∧ (T vn).

Consider then the action of T on the contravariant version of ε, the tensor ε̃ ≡
e1 ∧ · · · ∧ en. We know from Exercise 3.30 that �nV is one-dimensional, so that
T (ε̃) = (T e1) ∧ · · · ∧ (T en) is proportional to ε̃, and we define the determinant of
T to be this proportionality constant, so that

(T e1) ∧ · · · ∧ (T en) ≡ |T |e1 ∧ · · · ∧ en. (3.105)

(a) Show by expanding the left hand side of (3.105) in components that this more
general definition reduces to the old one of (3.85) in the case of V = R

n.
(b) Use this definition of the determinant to show that for two linear operators B

and C on V ,

|BC| = |B||C|.
In particular, this result holds when B and C are square matrices.

(c) Use (b) to show that the determinant of a matrix is invariant under similarity
transformations (see Example 3.8). Conclude that we could have defined the
determinant of a linear operator T as the determinant of its matrix in any basis.
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3.5 Let V be a vector space with an inner product and orthonormal basis
{ei}i=1,...,n. Prove that a linear operator T is invertible if and only if |T | �= 0, as
follows:

(a) Show that T is invertible if and only if {T (ei)}i=1,...,n is a linearly independent
set (see Exercise 2.7 for the ‘if’ part of the statement).

(b) Show that |T | �= 0 if and only if {T (ei)}i=1,...,n is a linearly independent set.
(c) This is not a problem, just a comment. In Example 3.27 we interpreted the

determinant of a matrix A as the oriented volume of the n-cube determined by
{Aei}. As you just showed, if A is not invertible then the Aei are linearly depen-
dent, hence span a space of dimension less than n and thus yield n-dimensional
volume 0. Thus, the geometrical picture is consistent with the results you just
obtained!

3.6 Let B be the standard basis for R
n, O the set of all bases related to B by a

basis transformation with |A| > 0, and O ′ the set of all bases related to B by a
transformation with |A| < 0.

(a) Using what we have learned in the preceding problems, show that a basis trans-
formation matrix A cannot have |A| = 0.

(b) O is by definition an orientation. Show that O ′ is also an orientation, and con-
clude that R

n has exactly two orientations. Note that both O and O ′ contain
orthonormal and non-orthonormal bases.

(c) For what n is A = −I an orientation-changing transformation?
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Chapter 4
Groups, Lie Groups, and Lie Algebras

In physics we are often interested in how a particular object behaves under a par-
ticular set of transformations. For instance, one often reads that under rotations a
dipole moment transforms like a vector and a quadrupole moment like a second
rank tensor, and that electric and magnetic fields transform independently like vec-
tors under rotations but collectively like a second rank antisymmetric tensor under
Lorentz transformations. Similarly, in quantum mechanics one is often interested
in the “spin” of a ket (which specifies how it transforms under rotations), or its
behavior under the time-reversal or space inversion (parity) transformations. This
knowledge is particularly useful as it leads to the many famous “selection rules”
which greatly simplify evaluation of matrix elements. Transformations are also cru-
cial in quantum mechanics because, as we will see, all physical observables can be
considered as “infinitesimal generators” of particular transformations; for example,
the angular momentum operators “generate” rotations (as we discussed briefly in
Problem 2.3) and the momentum operator “generates” translations.

Like tensors, this material is often treated in a somewhat ad hoc way which fa-
cilitates computation but obscures the underlying mathematical structures. These
underlying structures are known to mathematicians as group theory, Lie theory and
representation theory, and are known collectively to physicists as just “group the-
ory”. Our aim in this second part of the book is to present the basic facts of this
theory as well as its manifold applications to physics, both to clarify and unify the
diverse phenomena in physics which it underlies and also to provide a nice applica-
tion of what we have learned about tensors.

Before we discuss how particular objects transform, however, we must discuss
the transformations themselves, in both their ‘finite’ and ‘infinitesimal’ form. That
discussion is the subject of the present chapter. We will begin with a discussion of
the ‘finite’ transformations, all of which share a few common properties: First, the
performance of two successive transformations is always equivalent to the perfor-
mance of a single, third transformation (just think of rotations and how any two
successive rotations about two axes can be considered as a single rotation about a
third axis). Second, every transformation has an inverse which undoes it (in the case
of rotations, the inverse to any given rotation is a rotation about the same axis in the

N. Jeevanjee, An Introduction to Tensors and Group Theory for Physicists,
DOI 10.1007/978-0-8176-4715-5_4, © Springer Science+Business Media, LLC 2011
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opposite direction). Sets of transformations like these occur so often in mathematics
and physics that they are given a name: groups.

4.1 Groups—Definition and Examples

The definition of a group that we are about to give may appear somewhat abstract,
but is just meant to embody the most important properties of sets of transformations.
After giving the definition and establishing some basic properties, we will proceed
shortly to some concrete examples.

A group is a set G together with a ‘multiplication’ operation, denoted ·, that
satisfies the following axioms:

1. (Closure) g,h ∈ G implies g · h ∈ G.
2. (Associativity) For g,h, k ∈ G, g · (h · k) = (g · h) · k.
3. (Existence of the identity) There exists an element e ∈ G such that g ·e = e ·g = g

∀g ∈ G.
4. (Existence of inverses) ∀g ∈ G there exists an element h ∈ G such that g · h =

h · g = e.

If we think of a group as a set of transformations, as we usually do in physics,
then the multiplication operation is obviously just composition; for instance, if R

and S are three-dimensional rotations, then R · S is just S followed by R. Note that
we do not necessarily have R · S = S · R for all rotations R and S; in cases such as
this, G is said to be non-commutative (or non-abelian). If we did have S ·R = R ·S
for all R,S ∈ G, then we would say that G is commutative (or abelian).

There are several important properties of groups that follow almost immediately
from the definition. Firstly, the identity is unique, for if e and f are both elements
satisfying axiom 3 then we have

e = e · f since f is an identity

= f since e is an identity.

Secondly, inverses are unique: Let g ∈ G and let h and k both be inverses of g.
Then

g · h = e (4.1)

so multiplying both sides on the left by k gives

k · (g · h) = k,

(k · g) · h = k by associativity,

e · h = k since k is an inverse of g,

h = k.

We henceforth denote the unique inverse of an element g as g−1.
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Thirdly, if g ∈ G and h is merely a right inverse for g, i.e.

g · h = e, (4.2)

then h is also a left inverse for g and is hence the unique inverse g−1. This is seen
as follows:

h · g = (

g−1 · g) · (h · g)

= (

g−1 · (g · h)
) · g by associativity

= (

g−1 · e) · g by (4.2)

= g−1 · g
= e,

so h = g−1.
The last few properties concern inverses and can be verified immediately:

(

g−1)−1 = g

(g · h)−1 = h−1 · g−1

e−1 = e.

Exercise 4.1 Prove the cancelation laws for groups, i.e. that

g1 · h = g2 · h �⇒ g1 = g2

h · g1 = h · g2 �⇒ g1 = g2.

Before we get to some examples, we should note that properties 2 and 3 in the
definition above are usually obviously satisfied and one rarely needs to check them
explicitly. The important thing in showing that a set is a group is verifying that
it is closed under multiplication and contains all its inverses. Also, as a matter of
notation, from now on we will usually omit the · when writing a product, and simply
write gh for g · h.

Example 4.1 R: The real numbers as an additive group

Consider the real numbers R with the group ‘multiplication’ operation given by
regular addition, i.e.

x · y ≡ x + y, x, y ∈ R. (4.3)

It may seem counterintuitive to define ‘multiplication’ as addition, but the definition
of a group is rather abstract so there is nothing that prevents us from doing this, and
this point of view will turn out to be useful. With addition as the product, R becomes
an abelian group: The first axiom to verify is closure, and this is satisfied since
the sum of two real numbers is always a real number. The associativity axiom is
also satisfied, since it is a fundamental property of real numbers that addition is
associative. The third axiom, dictating the existence of the identity, is satisfied since
0 ∈ R fits the bill. The fourth axiom, which dictates the existence of inverses, is
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satisfied since for any x ∈ R, −x is its (additive) inverse. Thus R is a group under
addition, and is in fact an abelian group since x + y = y + x, ∀x, y ∈ R.

Note that R is not a group under regular multiplication, since 0 has no multi-
plicative inverse. If we remove 0, though, then we do get a group, the multiplicative
group of nonzero real numbers, denoted R

∗. We leave it to you to verify that R
∗

is a group. You should also verify that this entire discussion goes through for C as
well, so that C under addition and C

∗ ≡ C\{0} under multiplication are both abelian
groups.

Example 4.2 Vector spaces as additive groups

The previous example of R and C as additive groups can be generalized to the case
of vector spaces, which are abelian groups under vector space addition. The group
axioms follow directly from the vector space axioms, as you should check, with 0
as the identity. While viewing vector spaces as additive groups means we ignore
the crucial feature of scalar multiplication, we will see that this perspective will
occasionally prove useful.

Example 4.3 GL(V ), GL(n,R), and GL(n,C): The general linear groups

The general linear group of a vector space V , denoted GL(V ), is defined to be
the subset of L(V ) consisting of all invertible linear operators on V . We can easily
verify that GL(V ) is a group: to verify closure, note that for any T ,U ∈ GL(V ), T U

is linear and (T U)−1 = U−1T −1, so T U is invertible. To verify associativity, note
that for any T ,U,V ∈ GL(V ) and v ∈ V , we have

(

T (UV )
)

(v) = T
(

U
(

V (v)
)) = (

(T U)V
)

(v) (4.4)

(careful unraveling the meaning of the parentheses!) so that T (UV ) = (T U)V . To
verify the existence of the identity, just note that I is invertible and linear, hence in
GL(V ). To verify the existence of inverses, note that for any T ∈ GL(V ), T −1 exists
and is invertible and linear, hence is in GL(V ) also. Thus GL(V ) is a group.

Let V have scalar field C and dimension n. If we pick a basis for V , then for
each T ∈ GL(V ) we get an invertible matrix [T ] ∈ Mn(C). Just as all the invertible
T ∈ L(V ) form a group, so do the corresponding invertible matrices in Mn(C);
this group is denoted as GL(n,C), and the group axioms can be readily verified
for it.1 When C = R we get GL(n,R), the real general linear group in n dimen-
sions, and when C = C we get GL(n,C), the complex general linear group in n

dimensions. �

While neither GL(V ), GL(n,R), nor GL(n,C) occur explicitly very often in
physics, they have many important subgroups, i.e. subsets which themselves are
groups. The most important of these arise when we have a vector space V equipped

1You may recall having met GL(n,R) at the end of Sect. 2.1. There we asked why it is not a vector
space, and now we know—it is more properly thought of as a group!
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with a non-degenerate Hermitian form (· | ·). In this case, we can consider the set of
isometries Isom(V ), consisting of those operators T which ‘preserve’ (· | ·) in the
sense that

(T v|T w) = (v|w) ∀v,w,∈ V . (4.5)

If (· | ·) can be interpreted as giving the ‘length’ of vectors, then an isometry T can
be thought of as an operator that preserves lengths.2 Note that any such T is invert-
ible (why?), hence Isom(V ) ⊂ GL(V ). Isom(V ) is in fact a subgroup of GL(V ), as
we will now verify. First off, for any T ,U ∈ Isom(V ),

(

(T U)v|(T U)w
) = (

T (Uv)|T (Uw)
)

= (Uv|Uw) since T is an isometry

= (v|w) since U is an isometry

so T U is an isometry as well, hence Isom(V ) is closed under multiplication. As
for associativity, this axiom is automatically satisfied since Isom(V ) ⊂ GL(V ) and
multiplication in GL(V ) is associative, as we proved above. As for the existence of
the identity, just note that the identity operator I is trivially an isometry. To verify
the existence of inverses, note that T −1 exists and is an isometry since

(

T −1v|T −1w
) = (

T T −1v|T T −1w
)

since T ∈ Isom(V )

= (v|w).

Thus Isom(V ) is a group. Why is it of interest? Well, as we will show in the next few
examples, the matrix representations of Isom(V ) actually turn out to be the orthog-
onal matrices, the unitary matrices, and the Lorentz transformations, depending on
whether or not V is real or complex and whether or not (· | ·) is positive-definite. Our
discussion here shows3 that all of these sets of matrices are groups, and that they
can all be thought of as representing linear operators which preserve the relevant
non-degenerate Hermitian form.

Example 4.4 The orthogonal group O(n)

Let V be an n-dimensional real inner product space. The isometries of V can be
thought of as operators which preserve lengths and angles, since the formula

cos θ = (v|w)

‖v‖‖w‖
for the angle between v and w is defined purely in terms of the inner product. Now,
if T is an isometry and we write out (v,w) = (T v|T w) in components referred to
an orthonormal basis B, we find that

2Hence the term ‘iso-metry’ = ‘same length’.
3We are glossing over some subtleties with this claim. See Example 4.17 for the full story.
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[v]T [w] = (v|w)

= (T v|T w)

= δij (T v)i(T v)j

= δij T
i
kv

kT j
lw

l

=
∑

i

vkT i
kT

i
lw

l

= [v]T [T ]T [T ][w] ∀v,w,∈ V. (4.6)

As you will show in Exercise 4.2, this is true if and only if [T ]T [T ] = I , or

[T ]T = [T ]−1. (4.7)

This is the familiar orthogonality condition, and the set of all orthogonal matrices
(which, as we know from the above discussion and from Problem 3.1, form a group)
is known as the orthogonal group O(n). We will consider O(n) in detail for n = 2
and 3 in the next section.

Exercise 4.2 Show that

[v]T [w] = [v]T [T ]T [T ][w] ∀v,w ∈ V (4.8)

if and only if [T ]T [T ] = I . One direction is easy; for the other, let v = ei , w = ej where
{ei}i=1,...,n is orthonormal.

Exercise 4.3 Verify directly that O(n) is a group, by using the defining condition (4.7).
This is the same as Problem 3.1(b).

Example 4.5 The unitary group U(n)

Now let V be a complex inner product space. Recall from Problem 2.6 that we can
define the adjoint T † of a linear operator T by the equation

(

T †v|w) ≡ (v|T w). (4.9)

If T is an isometry, then we can characterize it in terms of its adjoint, as follows:
first, we have

(v|w) = (T v|T w)

= (

T †T v|w) ∀v,w ∈ V.

Calculations identical to those of Exercise 4.2 then show that this can be true if and
only if T †T = T T † = I , which is equivalent to the more familiar condition

T † = T −1. (4.10)

Such an operator is said to be unitary. Thus every isometry of a complex inner
product space is unitary, and vice versa. Now, if V has dimension n and we choose
an orthonormal basis for V , then we have [T †] = [T ]† (cf. Problem 2.4), and so
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(4.10) implies

[T ]† = [T ]−1. (4.11)

Thus, in an orthonormal basis, a unitary operator is represented by a unitary matrix!
(Note that this is NOT necessarily true in a non-orthonormal basis.) By the discus-
sion preceding Example 4.4, the set of all unitary matrices forms a group, denoted
U(n). We will not discuss U(n) in depth in this text, but we will discuss one of its
cousins, SU(2) (to be defined below), extensively.

Note that there is nothing in the above discussion that requires V to be com-
plex, so we can actually use the same definitions (of adjoints and unitarity) to define
unitary operators on any inner product space, real or complex. Thus, a unitary op-
erator is just an isometry of a real or complex inner product space.4 In the case of
a real vector space, the unitary matrix condition (4.11) reduces to the orthogonality
condition (4.7), as you might expect.

Exercise 4.4 Verify directly that U(n) is a group, using the defining condition (4.11).

Example 4.6 The Lorentz group O(n − 1,1)

Now let V be a real vector space with a Minkowski metric η, which is defined, as
in Example 2.19, as a symmetric, non-degenerate (2,0) tensor whose matrix in an
orthonormal basis has the form

[η] =

⎛

⎜

⎜

⎜

⎜

⎝

1
1

· · ·
1

−1

⎞

⎟

⎟

⎟

⎟

⎠

(4.12)

with zeros on all the off-diagonals. This is to be compared with (2.25), which is
just (4.12) with n = 4. Now, since η is a non-degenerate Hermitian form, we can
consider its group of isometries. If T ∈ Isom(V ), then in analogy to the computation
leading to (4.6), we have (in an arbitrary basis B),

[v]T [η][w] = η(v,w)

= η(T v,T w)

= [v]T [T ]T [η][T ][w] ∀v,w ∈ V. (4.13)

Again, the same argument as you used in Exercise 4.2 shows that the above holds if
and only if

[T ]T [η][T ] = [η] (4.14)

4In fact, the only reason for speaking of both “isometries” and “unitary operators” is that uni-
tary operators act solely on inner product spaces, whereas isometries can act on spaces with
non-degenerate Hermitian forms that are not necessarily positive-definite, such as R

4 with the
Minkoswki metric.
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which in components reads

Tμ
ρTν

σ ηρσ = ημν. (4.15)

If B is orthonormal, (4.14) becomes

[T ]T

⎛

⎜

⎜

⎜

⎜

⎝

1
1

· · ·
1

−1

⎞

⎟

⎟

⎟

⎟

⎠

[T ] = [η] (4.16)

which you will recognize from (3.37) as the definition of a Lorentz transformation,
though now we are working in an arbitrary dimension n rather than just dimension
four. We thus see that the set of all Lorentz transformations forms a group, known
as the Lorentz group and denoted by O(n − 1,1) (the notation just refers to the
number of positive and negative 1s present in the matrix form of η given in (4.12)).
The Lorentz transformations lie at the heart of special relativity, and we will take a
close look at these matrices for n = 4 in the next section. �

Exercise 4.5 Verify directly that O(n − 1,1) is group, using the defining condition (4.14).

Aside You may recall that we originally defined orthogonal matrices, unitary matrices, and
Lorentz transformations as those matrices which implement a basis change from one orthonor-
mal basis to another (on vector spaces with real inner products, Hermitian inner products, and
Minkowski metrics, respectively). In the preceding examples, however, we have seen that these
matrices can alternatively be defined as those which represent (in an orthonormal basis) operators
which preserve a non-degenerate Hermitian form. These two definitions correspond to the active
and passive viewpoints of transformations: our first definition of these matrices (as those which
implement orthonormal basis changes) gives the passive viewpoint, while the second definition (as
those matrices which represent isometries) gives the active viewpoint.

Example 4.7 The special unitary and orthogonal groups SU(n) and SO(n)

The groups O(n) and U(n) have some very important subgroups, the special uni-
tary and special orthogonal groups, denoted SU(n) and SO(n), respectively, which
are defined as those matrices in U(n) and O(n) that have determinant equal to 1.
You will verify below that these are subgroups of U(n) and O(n). These groups
are basic in mathematics and (for certain n) fundamental in physics: as we will see,
SO(n) is the group of rotations in n dimensions, SU(2) is crucial in the theory of
angular momentum in quantum mechanics, and though we will not discuss it here,
SU(3) is fundamental in particle physics, especially in the mathematical description
of quarks.

Exercise 4.6 Show that SO(n) and SU(n) are subgroups of O(n) and U(n).

Before moving on to a more detailed look at some specific instances of the groups
described above, we switch gears for a moment and consider groups that are not
subsets of GL(n,C). These groups have a very different flavor than the groups we
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have been considering, but are useful in physics nonetheless. We will make more
precise the sense in which they differ from the previous examples when we get to
Sect. 4.4.

Example 4.8 Z2: The group with two elements

Consider the set Z2 ≡ {+1,−1} ⊂ Z with the product being just the usual multi-
plication of integers. You can easily check that this is a group, in fact an abelian
group. Though this group may seem trivial and somewhat abstract, it pops up in a
few places in physics, as we will see in Sect. 4.3.

Example 4.9 Sn: The symmetric group on n letters

This group does not usually occur explicitly in physics but is intimately tied to per-
mutation symmetry, the physics of identical particles, and much of the mathematics
we discussed in Sect. 3.8. The symmetric group on n letters (also known as the per-
mutation group), denoted Sn, is defined to be the set of all one-to-one and onto maps
of the set {1,2, . . . , n} to itself, where the product is just the composition of maps.
The maps are known as permutations. You should check that any composition of
permutations is again a permutation and that permutations are invertible, so that Sn

is a group. This verification is simple, and just relies on the fact that permutations
are, by definition, one-to-one and onto.

Any permutation σ is specified by the n numbers σ(i), i = 1, . . . , n, and can
conveniently be notated as

(

1 2 · · · n

σ(1) σ (2) · · · σ(n)

)

.

In such a scheme, the identity in S3 would just look like
(

1 2 3
1 2 3

)

while the cyclic permutation σ1 given by 1 → 2, 2 → 3, 3 → 1 would look like

σ1 =
(

1 2 3
2 3 1

)

and the transposition σ2 which switches 1 and 2 and leaves 3 alone would look like

σ2 =
(

1 2 3
2 1 3

)

.

How do we take products of permutations? Well, the product σ1 · σ2 would take on
the following values:

(σ1 · σ2)(1) = σ1
(

σ2(1)
) = σ1(2) = 3 (4.17)

(σ1 · σ2)(2) = σ1(1) = 2 (4.18)

(σ1 · σ2)(3) = σ1(3) = 1 (4.19)



96 4 Groups, Lie Groups, and Lie Algebras

so we have

σ1 · σ2 =
(

1 2 3
2 3 1

)

·
(

1 2 3
2 1 3

)

=
(

1 2 3
3 2 1

)

. (4.20)

You should take the time to inspect (4.20) and understand how to take such a product
of permutations without having to write out (4.17)–(4.19).

Though a proper discussion of the applications of Sn to physics must wait until
Sect. 4.3, we point out here that if we have a vector space V and consider its n-fold
tensor product T 0

n (V ), then Sn acts on product states by

σ(v1 ⊗ v2 ⊗ · · · ⊗ vn) = vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n).

A generic element of T 0
n (V ) will be a sum of such product states, and the action

of σ ∈ Sn on these more general states is determined by imposing the linearity
condition. In the case of n identical particles in quantum mechanics, where the to-
tal Hilbert space is naively the n-fold tensor product T 0

n (H) of the single-particle
Hilbert space H, this action effectively interchanges particles, and we will later re-
state the symmetrization postulate from Example 3.25 in terms of this action of Sn

on T 0
n (H).

Exercise 4.7 Show that Sn has n! elements.

4.2 The Groups of Classical and Quantum Physics

We are now ready for a detailed look at some of the specific groups which arise in
physics.

Example 4.10 SO(2): Special orthogonal group in two dimensions

As discussed above, SO(2) is the group of all orthogonal 2 × 2 matrices with deter-
minant equal to 1. You will check in Exercise 4.8 that SO(2) is abelian and that the
general form of an element of SO(2) is

(

cos θ − sin θ

sin θ cos θ

)

. (4.21)

You will recognize that such a matrix represents a counterclockwise rotation of θ

radians in the x–y plane. Though we will not discuss SO(2) very much, it serves
as a nice warmup for the next example, which is ubiquitous in physics and will be
discussed throughout the text.

Exercise 4.8 Consider an arbitrary matrix

A =
(

a b

c d

)

and impose the orthogonality condition, as well as |A| = 1. Show that (4.21) is the most gen-
eral solution to these constraints. Then, verify explicitly that SO(2) is a group (even though
we already know it is by Exercise 4.6) by showing that the product of two matrices of the
form (4.21) is again a matrix of the form (4.21). This will also show that SO(2) is abelian.
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Example 4.11 SO(3): Special orthogonal group in three dimensions

This group is of great importance in physics, as it is the group of all rotations in
three-dimensional space! For that statement to mean anything, however, we must
carefully define what a ‘rotation’ is. One commonly used definition is the following:

Definition A rotation in n dimensions is any linear operator R which can be ob-
tained continuously from the identity5 and takes orthonormal bases to orthonormal
bases, i.e. for any orthonormal basis {ei}i=1,...,n, {Rei}i=1,...,n must also be an or-
thonormal basis.

You will show in Problem 4.1 that this definition is equivalent to saying R ∈
SO(n).

Given that SO(3) really is the group of three-dimensional rotations, then, can
we find a general form for an element of SO(3)? As you may know from classical
mechanics courses, an arbitrary rotation can be described in terms of the Euler
angles, which tell us how to rotate a given orthonormal basis into another of the
same orientation (or handedness). In classical mechanics texts,6 it is shown that this
can be achieved by rotating the given axes by an angle φ around the original z-axis,
then by an angle θ around the new x-axis, and finally by an angle ψ around the new
z-axis. If we take the passive point of view, these three rotations take the form

⎛

⎝

cosψ sinψ 0
− sinψ cosψ 0

0 0 1

⎞

⎠ ,

⎛

⎝

1 0 0
0 cos θ sin θ

0 − sin θ cos θ

⎞

⎠ ,

⎛

⎝

cosφ sinφ 0
− sinφ cosφ 0

0 0 1

⎞

⎠

(4.22)

so multiplying them together gives a general form for R ∈ SO(3):
(

cosψ cosφ − cos θ sinφ sinψ cosψ sinφ + cos θ cosφ sinψ sinψ sin θ
− sinψ cosφ − cos θ sinφ cosψ − sinψ sinφ + cos θ cosφ cosψ cosψ sin θ

sin θ sinφ − sin θ cosφ cos θ

)

.

(4.23)

Another general form for R ∈ SO(3) is that of a rotation by an arbitrary angle θ

about an arbitrary axis n̂; you will see in Sect. 4.6 that this is given by
⎛

⎜

⎝

n2
x(1 − cos θ) + cos θ nxny(1 − cos θ) − nz sin θ nxnz(1 − cos θ) + ny sin θ

nynx(1 − cos θ) + nz sin θ n2
y(1 − cos θ) + cos θ nynz(1 − cos θ) − nx sin θ

nznx(1 − cos θ) − ny sin θ nzny(1 − cos θ) + nx sin θ n2
x(1 − cos θ) + cos θ

⎞

⎟

⎠

(4.24)

5Meaning that there exists a continuous map γ : [0,1] → GL(n,R) such that γ (0) = I and
γ (1) = R. In other words, there is a path of invertible matrices connecting R to I .
6Such as Goldstein [6].
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where n̂ = (nx, ny, nz) and the components of n̂ are not all independent since n2
x +

n2
y + n2

z = 1. This constraint, along with the three components of n̂ and the angle θ ,
then give us three free parameters with which to describe an arbitrary rotation, just
as with the Euler angles. For a nice geometric interpretation of the above matrix, see
Problem 4.3.

Example 4.12 O(3): Orthogonal group in 3 dimensions

If SO(3) is the group of all three-dimensional rotations, then what are we to make
of O(3), the group of all orthogonal 3 × 3 matrices without the restriction on the
determinant? Well, as we pointed out in Example 3.27, the orthogonality condition
actually implies7 that |R| = ±1, so in going from SO(3) to O(3) we are just adding
all the orthogonal matrices with |R| = −1. These new matrices are sometimes re-
ferred to as improper rotations, as opposed to the elements with |R| = 1 which are
known as proper rotations. Now, amongst the improper rotations is our old friend
the inversion transformation, −I , which should be familiar from Example 3.27.
Any improper rotation can be written as the product of a proper rotation and the
inversion transformation, as R = (−I )(−R) (note that if R is an improper rotation,
then −R is a proper rotation). Thus, an improper rotation can be thought of as a
proper rotation followed8 by the inversion transformation. One important feature of
O(3) is that its two parts, the proper and improper rotations, are disconnected, in
the sense that one cannot continuously go from matrices with |R| = 1 to matrices
with |R| = −1 (if one can continuously go from one group element to any other,
then the group is said to be connected. It is disconnected if it is not connected).
One can, however, multiply by −I to go between the two components. This is rep-
resented schematically in Fig. 4.1. Note that the stipulation in our definition that a
rotation must be continuously obtainable from the identity excludes all the improper
rotations, as it should.

Example 4.13 SU(2): Special unitary group in two complex dimensions

As mentioned in Example 4.7, SU(2) is the group of all 2 × 2 complex matrices A

which satisfy |A| = 1 and

A† = A−1.

You can check (see Exercise 4.9 below) that a generic element of SU(2) looks like
(

α β

−β̄ ᾱ

)

, α,β ∈ C, |α|2 + |β|2 = 1. (4.25)

7This fact can be understood geometrically: since orthogonal matrices preserve distances and an-
gles, they should preserve volumes as well. As we learned in Example 3.27, the determinant mea-
sures how volume changes under the action of a linear operator, so any volume preserving operator
should have determinant ±1. The sign is determined by whether or not the orientation is reversed.
8One can actually think of the inversion as following or preceding the proper rotation, since −I

commutes with all matrices.
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Fig. 4.1 The two components of O(3). The proper rotations are just SO(3). Multiplying by the
inversion transformation −I takes one back and forth between the two components

We could also use three real parameters with no conditions rather than two complex
parameters with a constraint; one such parametrization is

(

ei(ψ+φ)/2 cos θ
2 iei(ψ−φ)/2 sin θ

2

ie−i(ψ−φ)/2 sin θ
2 e−i(ψ+φ)/2 cos θ

2

)

(4.26)

where we have used the same symbols for our parameters as we did for the Euler
angles. This is no accident, as there is a close relationship between SU(2) and SO(3),
which we will discuss in detail in the next section. This relationship underlies the
appearance of SU(2) in quantum mechanics, where rotations are implemented on
spin 1/2 particles by elements of SU(2), and in fact a rotation with Euler angles φ,
θ and ψ is implemented by the matrix (4.26)!

Exercise 4.9 Consider an arbitrary complex matrix

(

α β

γ δ

)

and impose the unit determinant and unitary conditions. Show that (4.25) is the most general
solution to these constraints. Then show that any such solution can also be written in the
form (4.26).

Example 4.14 SO(3,1)o: The restricted Lorentz group

The restricted Lorentz group SO(3,1)o is defined to be the set of all A ∈ O(3,1)

which satisfy |A| = 1 as well as A44 > 1. You will verify in Problem 4.4 that
SO(3,1)o is a subgroup of O(3,1). Where does its definition come from? Well, just
as O(3) can be interpreted physically as the set of all orthonormal coordinate trans-
formations, O(3,1) can be interpreted as the set of all transformations between iner-
tial reference frames. However, we often are interested in restricting those changes
of reference frame to those which preserve the orientation of time and space, which
is what the additional conditions |A| = 1 and A44 > 1 do. The condition A44 > 0
means that A does not reverse the direction of time (so that clocks in the new coor-
dinates are not running backwards) and this, together with |A| = 1, implies that A

does not reverse the orientation of the space axes. Such transformations are known
as restricted Lorentz transformations.
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The most familiar such transformation is probably

L =

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 γ −βγ

0 0 −βγ γ

⎞

⎟

⎟

⎠

, −1 < β < 1, γ ≡ 1
√

1 − β2
. (4.27)

This is interpreted passively9 as a coordinate transformation to a new reference
frame that is unrotated relative to the old frame but is moving uniformly along the z-
axis with relative velocity β .10 Such a transformation is often referred to as a boost
along the z-axis, and is also sometimes written as

L =

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 coshu − sinhu

0 0 − sinhu coshu

⎞

⎟

⎟

⎠

, u ∈ R (4.28)

where u is a quantity known as the rapidity and is related to β by tanhu = β .
(You should check that the above matrices really are elements of SO(3,1)o.) We
could also boost along any other spatial direction; if the relative velocity vector is
β ≡ (βx,βy,βz), then the corresponding matrix should be obtainable from (4.27)
by an orthogonal similarity transformation that takes ẑ into β̂ . You will show in
Exercise 4.10 below that this yields

L =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

β2
x (γ−1)

β2 + 1 βxβy(γ−1)

β2
βxβz(γ−1)

β2 −βxγ

βyβx(γ−1)

β2

β2
y (γ−1)

β2 + 1
βyβz(γ−1)

β2 −βyγ

βzβx(γ−1)

β2
βzβy(γ−1)

β2
β2

z (γ−1)

β2 + 1 −βzγ

−βxγ −βyγ −βzγ γ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4.29)

If we generalize the relation between u and β to three dimensions as

β = tanhu

u
u, u = |u| (4.30)

9It is worth noting that, in contrast to rotations, Lorentz transformations are pretty much always
interpreted passively. A vector in R

4 is considered an event, and it does not make much sense
to start moving that event around in spacetime (the active interpretation), though it does make
sense to ask what a different observer’s coordinates for that particular event would be (passive
interpretation).
10Note that β is measured in units of the speed of light, hence the restriction −1 < β < 1.
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then you can check that this arbitrary boost can also be written as

L =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

u2
x(coshu−1)

u2 + 1
uxuy(coshu−1)

u2
uxuz(coshu−1)

u2 −ux

u
sinhu

uyux(coshu−1)

u2

u2
y(coshu−1)

u2 + 1 uyuz(coshu−1)

u2 −uy

u
sinhu

uzux(coshu−1)

u2
uzuy(coshu−1)

u2
u2

z(coshu−1)

u2 + 1 − uz

u
sinhu

−ux

u
sinhu −uy

u
sinhu −uz

u
sinhu coshu

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(4.31)

Now we know what boosts look like, but how about an arbitrary restricted
Lorentz transformation? Well, the nice thing about SO(3,1)o is that any element A

can be decomposed as A = LR′, where

R′ =
(

R

1

)

, R ∈ SO(3) (4.32)

and L is of the form (4.29). This is the usual decomposition of an arbitrary restricted
Lorentz transformation into a rotation and a boost, which you will perform in Prob-
lem 4.5. Note that L has three arbitrary parameters, so that our arbitrary restricted
Lorentz transformation LR′ has six parameters total.

Exercise 4.10 Construct an orthogonal matrix R which implements an orthonormal change
of basis from the standard basis {x̂, ŷ, ẑ} to one of the form {r̂1, r̂2, β̂} where the r̂i are any
two vectors mutually orthonormal with β̂ and each other. Embed R in SO(3,1)o as in (4.32)
and use this to obtain (4.29) by performing a similarity transformation on (4.27). Parts of
Problem 3.1 may be useful here.

Exercise 4.11 Check that L in (4.29) really does represent a boost of velocity β as follows:
Use L as a passive transformation to obtain new coordinates (x ′, y′, z′, t ′) from the old ones
by

⎛

⎜

⎜

⎝

x′
y′
z′
t ′

⎞

⎟

⎟

⎠

= L

⎛

⎜

⎜

⎝

x

y

z

t

⎞

⎟

⎟

⎠

.

Show that the spatial origin of the unprimed frame, defined by x = y = z = 0, moves with
velocity −β in the primed coordinate system, which tells us that the primed coordinate
system moves with velocity +β with respect to the unprimed system.

Example 4.15 O(3,1): The extended Lorentz group

In the previous example we restricted our changes of inertial reference frame to
those which preserved the orientation of space and time. This is sufficient in classical
mechanics, but in quantum mechanics we are often interested in the effects of space
and time inversion on the various Hilbert spaces we are working with. If we add
spatial inversion, also called parity and represented by the matrix

P =

⎛

⎜

⎜

⎝

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞

⎟

⎟

⎠

(4.33)
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as well as time-reversal, represented by

T =

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟

⎟

⎠

, (4.34)

to the restricted Lorentz group, we actually recover O(3,1), which is thus known
as the improper or extended Lorentz group. You should verify that P,T ∈ O(3,1),
but P,T /∈ SO(3,1)o. In fact, |P | = |T | = −1, which is no accident; as in the case
of the orthogonal group, the defining equation (4.14) restricts the determinant, and
in fact implies that |A| = ±1. In this case, however, the group has four connected
components instead of two! Obviously those matrices with |A| = 1 must be dis-
connected from those with |A| = −1, but those which reverse the orientation of the
space axes must also be disconnected from those which do not, and those which
reverse the orientation of time must be disconnected from those which do not. This
is represented schematically in Fig. 4.2. Note that, as in the case of O(3), multi-
plication by the transformations P and T take us to and from the various different
components.

Example 4.16 SL(2,C): Special linear group in two complex dimensions

This group cannot be viewed as a group of isometries, but it is important in physics
nonetheless. SL(2,C) is defined to be the set of all 2 × 2 complex matrices A with
|A| = 1. By now it should be obvious that this set is a group. The general form of
A ∈ SL(2,C) is

A =
(

a b

c d

)

, a, b, c, d ∈ C, ad − bc = 1.

The unit determinant constraint means that A is determined by three complex pa-
rameters or six real parameters, just as for SO(3,1)o. This is no coincidence; in fact,
SL(2,C) bears the same relationship to SO(3,1)o as SU(2) bears to SO(3), in that
SL(2,C) implements restricted Lorentz transformations on spin 1/2 particles! This
will be discussed in the next section. You will also show later11 that a boost with
rapidity u is implemented by an SL(2,C) matrix of the form

L̃ =
(

cosh u
2 + uz

u
sinh u

2 − 1
u
(ux − iuy) sinh u

2

− 1
u
(ux + iuy) sinh u

2 cosh u
2 − uz

u
sinh u

2

)

, u ∈ R
3. (4.35)

It can also be shown,12 just as for SO(3,1)o, that any A ∈ SL(2,C) can be decom-
posed as A = L̃R̃, where R̃ ∈ SU(2) and L̃ is as above. This, together with the
facts that an arbitrary rotation can be implemented by R̃ ∈ SU(2) parametrized as in
(4.26), yields the general form L̃R̃ for an element of SL(2,C) in terms of the same
parameters we used for SO(3,1)o.

11See Problem 4.8.
12See Problem 4.6.
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Fig. 4.2 The four components of O(3,1). The proper Lorentz transformations in the upper-left
corner are just SO(3,1)o . Note that the transformations in the lower-right hand corner change both
the orientation of the space axes as well as time, and so must be disconnected from SO(3,1)o even
though they have |A| = 1. Also note that multiplying by the parity and time-reversal operators P

and T take one back and forth between the various components

4.3 Homomorphism and Isomorphism

In the last section we claimed that there is a close relationship between SU(2) and
SO(3), as well as between SL(2,C) and SO(3,1)o. We now make this relationship
precise, and show that a similar relationship exists between Sn and Z2. We will also
define what it means for two groups to be ‘the same’, which will then tie into our
somewhat abstract discussion of Z2 in the last section.

Given two groups G and H , a homomorphism from G to H is a map  : G → H

such that

(g1g2) = (g1)(g2) ∀g1, g2 ∈ G. (4.36)

Note that the product in the left hand side of (4.36) takes place in G, whereas the
product on the right hand side takes place in H . A homomorphism should be thought
of as a map from one group to another which preserves the multiplicative structure.
Note that  need not be one-to-one or onto; if it is onto then  is said to be a
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homomorphism onto H , and if in addition it is one-to-one then we say  is an
isomorphism. If  is an isomorphism then it is invertible and thus sets up a one-to-
one correspondence which preserves the group structure, so we regard G and H as
‘the same’ group, just with different labels for the elements. When two groups G

and H are isomorphic we write G  H .

Exercise 4.12 Let  : G → H be a homomorphism, and let e be the identity in G and e′
the identity in H . Show that

(e) = e′


(

g−1) = (g)−1 ∀g ∈ G.

Example 4.17 Isometries and the orthogonal, unitary, and Lorentz groups

A nice example of a group isomorphism is when we have an n-dimensional vector
space V (over some scalars C) and a basis B, hence a map

GL(V ) → GL(n,C)

T �→ [T ]B.

It is easily checked that this map is one-to-one and onto. Furthermore, it is a homo-
morphism since [T U ] = [T ][U ], a fact you proved in Exercise 2.8. Thus this map is
an isomorphism and GL(V )  GL(n,C). If V has a non-degenerate Hermitian form
(· | ·) then we can restrict this map to Isom(V ) ⊂ GL(V ), which yields

Isom(V )  O(n)

when V is real and (· | ·) is positive-definite,

Isom(V )  U(n)

when V is complex and (· | ·) is positive-definite, and

Isom(V )  O(n − 1,1)

when V is real and (· | ·) is a Minkoswki metric. These isomorphisms were implicit
in the discussion of Examples 4.3–4.6, where we identified the operators in Isom(V )

with their matrix representations in the corresponding matrix group. �

Example 4.18 Linear maps as homomorphisms

A linear map from a vector space V to a vector space W is a map  : V → W that
satisfies the usual linearity condition

(cv1 + v2) = c(v1) + (v2). (4.37)

(A linear operator is then just the special case in which V = W .) In particular we
have (v1 + v2) = (v1) + (v2), which just says that  is a homomorphism
between the additive groups V and W ! (cf. Example 4.2). If  is one-to-one and
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onto then it is an isomorphism, and in particular we refer to it as a vector space
isomorphism.

The notions of linear map and vector space isomorphism are basic ones, and
could have been introduced much earlier (as they are in standard linear algebra
texts). Because of our specific goals in this book, however, we have not needed them
yet. These objects will start to play a role soon, though, and will recur throughout
the rest of the book.

Exercise 4.13 Use an argument similar to that of Exercise 2.6 to prove that a linear map
φ : V → W is an isomorphism if and only if dimV = dimW and φ satisfies

φ(v) = 0 �⇒ v = 0.

Exercise 4.14 Before moving on to more complicated examples, let us get some practice
by acquainting ourselves with a few more basic homomorphisms. First, show that the map

exp : R → R
∗

x �→ ex,

from the additive group of real numbers to the multiplicative group of nonzero real num-
bers, is a homomorphism. Is it an isomorphism? Why or why not? Repeat the analysis for
exp : C → C

∗. Also, show that the map

det : GL(n,C) → C∗

A �→ detA

is a homomorphism for both C = R and C = C. Is it an isomorphism in either case? Would
you expect it to be?

Exercise 4.15 Recall that U(1) is the group of 1 × 1 unitary matrices. Show that this is just
the set of complex numbers z with |z| = 1, and that U(1) is isomorphic to SO(2).

Suppose  is a homomorphism but not one-to-one. Is there a way to quantify
how far it is from being one-to-one? Define the kernel of  to be the set K ≡
{g ∈ G | (g) = e′}, where e′ is the identity in H . In other words, K is the set of all
elements of G that get sent to e′ under . If  is one-to-one, then K = {e}, since
there can be only one element in G that maps to e′ and by Exercise 4.12 that is e. If
 is not one-to-one, then the size of K tells us how far it is from being so. Also, if
we have (g1) = (g2) = h ∈ H , then


(

g1g
−1
2

) = (g1)(g2)
−1 = hh−1 = e

so g1g
−1
2 is in the kernel of , i.e. g1g

−1
2 = k ∈ K . Multiplying this on the right

by g2 then gives g1 = kg2, so we see that any two elements of G that give the
same element of H under  are related by left multiplication by an element of K .
Conversely, if we are given g ∈ G and (g) = h, then for all k ∈ K ,

(kg) = (k)(g) = e′(g) = (g) = h.

Thus if we define Kg ≡ {kg | k ∈ K}, then Kg are precisely those elements (no
more, and no less) of G which get sent to h. Thus the size of K tells us how far 
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is from being one-to-one, and the elements of K tell us exactly which elements of
G will map to a specific element h ∈ H .

Homomorphisms and isomorphisms are ubiquitous in mathematics and occur
frequently in physics, as we will see in the examples below.

Exercise 4.16 Show that the kernel K of any homomorphism  : G → H is a subgroup
of G. Then determine the kernels of the maps exp and det of Exercise 4.14.

Exercise 4.17 Suppose  : V → W is a linear map between vector spaces, hence a homo-
morphism between abelian groups. Conclude from the previous exercise that the kernel K

of  is a subspace of V , also known as the null space of . The dimension of K is known
as the nullity of K . Also show that the range of  is a subspace of W , whose dimension is
known as the rank of . Finally, prove the rank-nullity theorem of linear algebra, which
states that

rank() + nullity() = dimV. (4.38)

(Hint: Take a basis {e1, . . . , ek} for K and complete it to a basis {e1, . . . , en} for V , where
n = dimV . Then show that {(ek+1), . . . ,(en)} is a basis for the range of .)

Example 4.19 SU(2) and SO(3)

In most physics textbooks the relationship between SO(3) and SU(2) is described
in terms of the ‘infinitesimal generators’ of these groups. We will discuss infinitesi-
mal transformations in the next section and make contact with the standard physics
presentation then; here we present the relationship in terms of a group homomor-
phism ρ : SU(2) → SO(3), defined as follows: consider the vector space (check!)
of all 2 × 2 traceless anti-Hermitian matrices, denoted as su(2) (for reasons we will
explain later). You can check that an arbitrary element X ∈ su(2) can be written as

X = 1

2

( −iz −y − ix

y − ix iz

)

, x, y, z ∈ R. (4.39)

If we take as basis vectors

Sx ≡ − i

2
σx = 1

2

(

0 −i

−i 0

)

Sy ≡ − i

2
σy = 1

2

(

0 −1
1 0

)

Sz ≡ − i

2
σz = 1

2

(−i 0
0 i

)

then we have

X = xSx + ySy + zSz

so the column vector corresponding to X in the basis B = {Sx,Sy, Sz} is
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[X] =
⎛

⎝

x

y

z

⎞

⎠ .

Note that

detX = 1

4

(

x2 + y2 + z2) = 1

4

∥

∥[X]∥∥2

so the determinant of X ∈ su(2) is proportional to the norm squared of [X] ∈ R
3

with the usual Euclidean metric. Now, you will check below that A ∈ SU(2) acts on
X ∈ su(2) by the map X �→ AXA†, and that this map is linear. Thus, this map is a
linear operator on su(2), and can be represented in the basis B by a 3 × 3 matrix
which we will call ρ(A), so that [AXA†] = ρ(A)[X] where ρ(A) acts on [X] by
the usual matrix multiplication. Furthermore,

∥

∥ρ(A)[X]∥∥2 = ∥

∥

[

AXA†]
∥

∥
2 = 4 det

(

AXA†) = 4 detX = ∥

∥[X]∥∥2 (4.40)

so ρ(A) preserves the norm of X. This implies (see Exercise 4.19 below) that
ρ(A) ∈ O(3), and one can in fact show13 that detρ(A) = 1, so that ρ(A) ∈ SO(3).
Thus we may construct a map

ρ : SU(2) → SO(3)

A �→ ρ(A).

Furthermore, ρ is a homomorphism, since

ρ(AB)[X] = [

(AB)X(AB)†] = [

ABXB†A†] = ρ(A)
[

BXB†]

= ρ(A)ρ(B)[X] (4.41)

and hence ρ(AB) = ρ(A)ρ(B). Is ρ an isomorphism? One can show14 that ρ is
onto but not one-to-one, and in fact has kernel K = {I,−I }. From the discussion
preceding this example, we then know that ρ(A) = ρ(−A) ∀A ∈ SU(2) (this fact
is also clear from the definition of ρ), so for every rotation R ∈ SO(3) there corre-
spond exactly two matrices in SU(2) which map to R under ρ. Thus, when trying
to implement a rotation R on a spin 1/2 particle we have two choices for the SU(2)

matrix we use, and it is sometimes said that the map ρ−1 from SO(3) to SU(2) is
double-valued. In mathematical terms one does not usually speak of functions with
multiple-values, though, so instead we say that SU(2) is the double cover of SO(3),
since the map ρ is onto (‘cover’) and two-to-one (‘double’).

13See Problem 4.7 of this chapter, or consider the following rough (but correct) argument:
ρ : SU(2) → O(3) as defined above is a continuous map, and so the composition

det ◦ ρ : SU(2) → R

A �→ det
(

ρ(A)
)

is also continuous. Since SU(2) is connected any continuous function must itself vary continuously,
so det ◦ρ cannot jump between 1 and −1, which are its only possible values. Since det(ρ(I )) = 1,
we can then conclude that det(ρ(A)) = 1 ∀A ∈ SU(2).
14See Problem 4.7 again.
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Exercise 4.18 Let A ∈ SU(2), X ∈ su(2). Show that AXA† ∈ su(2) and note that
A(X + Y )A† = AXA† + AYA†, so that the map X → AXA† really is a linear operator
on su(2).

Exercise 4.19 Let V be a real vector space with a metric g and let R ∈ L(V ) preserve
norms on V , i.e. g(Rv,Rv) = g(v, v) ∀v ∈ V . Show that this implies that

g(Rv,Rw) = g(v,w) ∀v,w ∈ V,

i.e. that R is an isometry. Hint: consider g(v + w,v + w) and use the bilinearity of g.

Example 4.20 SL(2,C) and SO(3,1)o

Just as there is a two-to-one homomorphism from SU(2) to SO(3), there is a two-to-
one homomorphism from SL(2,C) to SO(3,1)o which is defined similarly. Consider
the vector space H2(C) of 2×2 Hermitian matrices. As we saw in Example 2.9, this
is a four-dimensional vector space with basis B = {σx,σy, σz, I }, and an arbitrary
element X ∈ H2(C) can be written as

X =
(

t + z x − iy

x + iy t − z

)

= xσx + yσy + zσz + tI (4.42)

so that

[X] =

⎛

⎜

⎜

⎝

x

y

z

t

⎞

⎟

⎟

⎠

.

Now, SL(2,C) acts on H2(C) in the same way that SU(2) acts on su(2): by sending
X → AXA† where A ∈ SL(2,C). You can again check that this is actually a linear
map from H2(C) to itself, and hence can be represented in components by a matrix
which we will again call ρ(A). You can also check that

detX = t2 − x2 − y2 − z2 = −η
([X], [X])

so the determinant of X ∈ H2(C) gives minus the norm squared of [X] in the
Minkowski metric on R

4. As before, the action of ρ(A) on [X] preserves this
norm (by a calculation identical to (4.40)), and you will show in Problem 4.8 that
detρ(A) = 1 and ρ(A)44 > 1, so ρ(A) ∈ SO(3,1)o. Thus we can again construct a
map

ρ : SL(2,C) → SO(3,1)o

A �→ ρ(A)

and it can be shown15 that ρ is onto. Furthermore, ρ is a homomorphism, by a
calculation identical to (4.41). The kernel of ρ is again K = {I,−I } so SL(2,C) is
a double-cover of SO(3,1)o.

15See Problem 4.8 again.
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Exercise 4.20 The elements of SL(2,C) that correspond to rotations should fix timelike
vectors, i.e. leave them unchanged. Identify the elements of H2(C) that correspond to time-
like vectors, and show that it is precisely the subgroup SU(2) ⊂ SL(2,C) which leaves them
unchanged, as expected.

Example 4.21 Z2, parity and time-reversal

Consider the set {I,P } ⊂ O(3,1). This is an abelian two-element group with
P 2 = I , and so looks just like Z2. In fact, if we define a map  : {I,P } → Z2
by

(I) = 1

(P ) = −1

then  is a homomorphism since

(P · P) = (I) = 1 = (−1)2 = (P )(P ).

 is also clearly one-to-one and onto, so  is in fact an isomorphism! We could also
consider the two-element group {I, T } ∈ O(3,1); since T 2 = I , we could define a
similar isomorphism from {I, T } to Z2. Thus,

Z2  {I,P }  {I, T }.
In fact, you will show below that all two-element groups are isomorphic. That is
why we chose to present Z2 somewhat abstractly; there are many groups in physics
that are isomorphic to Z2, so it makes sense to use an abstract formulation so that
we can talk about all of them at the same time without having to think in terms of
a particular representation like {I,P } or {I, T }. We will see the advantage of this in
the next example.

Exercise 4.21 Show that any group G with only two elements e and g must be isomorphic
to Z2. To do this you must define a map  : G → Z2 which is one-to-one, onto, and which
satisfies (4.36). Note that S2, the symmetric group on two letters, has only two elements.
What is the element that corresponds to −1 ∈ Z2?

Example 4.22 Sn, Z2, and the sgn homomorphism

In Sect. 3.8 we discussed rearrangements, transpositions, and the evenness or odd-
ness of a rearrangement in terms of the number of transpositions needed to obtain
it. We are now in a position to make this much more precise, which will facilitate
neater descriptions of the ε tensor, the determinant of a matrix, and the symmetriza-
tion postulate.

We formally define a transposition in Sn to be any permutation σ which switches
two numbers i and j and leaves all the others alone. You can check that σ2 and σ1 ·σ2
from Example 4.9 are both transpositions. It is a fact that any permutation can be
written (non-uniquely) as a product of transpositions, though we will not prove this
here.16 As a simple example, though, you can check that

16See Herstein [9] for a proof and nice discussion.
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σ1 =
(

1 2 3
2 3 1

)

=
(

1 2 3
3 2 1

)(

1 2 3
2 1 3

)

is a decomposition of σ1 into transpositions.
Though the decomposition of a given permutation is far from unique (for in-

stance, the identity can be decomposed as a product of any transposition σ and its
inverse), the evenness or oddness of the number of transpositions in a decomposition
is invariant. For instance, even though we could write the identity as

e = e

e = σ1σ
−1
1

e = σ1σ
−1
1 σ2σ

−1
2

and so on for any transpositions σ1, σ2, . . ., every decomposition will consist of an
even number of transpositions. Likewise, any decomposition of the transposition
( 1 2 3

2 1 3

)

will consist of an odd number of transpositions. A general proof of this fact
is relegated to Problem 4.9. What this allows us to do, though, is define a homomor-
phism sgn: Sn → Z2 by

sgn(σ ) =
{+1 if σ consists of an even number of transpositions

−1 if σ consists of an odd number of transpositions.

You should be able to verify with a moment’s thought that

sgn(σ1σ2) = sgn(σ1) sgn(σ2),

so that sgn is actually a homomorphism. If sgn(σ ) = +1 we say σ is even, and if
sgn(σ ) = −1 we say σ is odd.

With the sgn homomorphism in hand we can now tidy up several definitions
from Sect. 3.8. First of all, we can now define the wedge product of r dual vectors
fi , i = 1, . . . , r to be

f1 ∧ · · · ∧ fr ≡
∑

σ∈Sr

sgn(σ )fσ(1) ⊗ fσ(2) ⊗ · · · ⊗ fσ(r). (4.43)

You should compare this with the earlier definition and convince yourself that the
two definitions are equivalent. Also, from our earlier definition of the ε tensor it
should be clear that the nonzero components of ε are

εi1...in = sgn(σ ) where σ =
(

1 · · · n

i1 · · · in

)

(4.44)

and so the definition of the determinant, (3.85), becomes

|A| =
∑

σ∈Sn

sgn(σ )A1σ(1) . . .Anσ(n). (4.45)

Finally, at the end of Example 4.9 we described how Sn acts on an n-fold tensor
product T 0

n (V ) by

σ(v1 ⊗ v2 ⊗ · · · ⊗ vn) = vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n), (4.46)
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where the action of σ on a generic element on T 0
n (V ) (which would be a sum

of product states like the above) is determined by linearity. If we have a totally
symmetric tensor T = T i1...inei1 ⊗ · · · ⊗ ein ∈ Sn(V ), we then have

σ(T ) = T i1...ineσ (i1) ⊗ · · · ⊗ eσ(in)

= T σ−1(j1)...σ
−1(jn)ej1 ⊗ · · · ⊗ ejn

where we have relabeled indices using jk ≡ σ(ik)

= T j1...jnej1 ⊗ · · · ⊗ ejn
by total symmetry of T j1...jn

= T

so all elements of Sn(V ) are fixed by the action of Sn. If we now consider a totally
antisymmetric tensor T = T i1...inei1 ⊗ · · · ⊗ ein ∈ �n(V ), then the action of σ ∈ Sn

on it is given by

σ(T ) = T i1...ineσ (i1) ⊗ · · · ⊗ eσ(in)

= T σ−1(j1)...σ
−1(jn)ej1 ⊗ · · · ⊗ ejn

= sgn(σ )T j1...jnej1 ⊗ · · · ⊗ ejn by antisymmetry of T j1...jn

= sgn(σ )T

so if σ is odd then T changes sign under it, and if σ is even then T is invariant.
Thus, we can restate the symmetrization postulate as follows: any state of an n-
particle system is either invariant under a permutation of the particles (in which
case the particles are known as bosons), or changes sign depending on whether the
permutation is even or odd (in which case the particles are known as fermions).

4.4 From Lie Groups to Lie Algebras

You may have noticed that the examples of groups we met in the last two sec-
tions had a couple of different flavors: there were the matrix groups like SU(2) and
SO(3) which were parametrizable by a certain number of real parameters, and then
there were the ‘discrete’ groups like Z2 and the symmetric groups Sn that had a
finite number of elements and were described by discrete labels rather than contin-
uous parameters. The first type of group forms an extremely important subclass of
groups known as Lie Groups, named after the Norwegian mathematician Sophus
Lie who was among the first to study them systematically in the late 1800s. Besides
their ubiquity in math and physics, Lie groups are important because their contin-
uous nature means that we can study group elements that are ‘infinitely close’ to
the identity; these are known to physicists as the ‘infinitesimal transformations’ or
‘generators’ of the group, and to mathematicians as the Lie algebra of the group.
As we make this notion precise, we will see that Lie algebras are vector spaces and
as such are sometimes simpler to understand than the ‘finite’ group elements. Also,
the ‘generators’ in some Lie algebras are taken in quantum mechanics to represent
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certain physical observables, and in fact almost all observables can be built out of el-
ements of certain Lie algebras. We will see that many familiar objects and structures
in physics can be understood in terms of Lie algebras.

Before we can study Lie algebras, however, we should make precise what we
mean by a Lie group. Here we run into a snag, because the proper and most general
definition requires machinery well outside the scope of this text.17 We do wish to be
precise, though, so we follow Hall [8] and use a restricted definition. This definition
does not really capture the essence of what a Lie Group is, but will get the job done
and allow us to discuss Lie algebras without having to wave our hands.

That said, we define a matrix Lie group to be a subgroup G ⊂ GL(n,C) which
is closed, in the following sense: for any sequence of matrices An ∈ G which con-
verges to a limit matrix A, either A ∈ G or A /∈ GL(n,C). This says that a limit of
matrices in G must either itself be in G, or otherwise be noninvertible. As remarked
above, this definition is technical and does not provide much insight into what a Lie
group really is, but it will provide the necessary hypotheses in proving the essential
properties of Lie algebras.

Let us now prove that some of the groups we have encountered above are indeed
matrix Lie groups. We will verify this explicitly for one class of groups, the orthog-
onal groups, and leave the rest as problems for you. The orthogonal group O(n) is
defined by the equation R−1 = RT , or RT R = I . Let us consider the function from
GL(n,R) to itself defined by f (A) = AT A. Each entry of the matrix f (A) is easily
seen to be a continuous function of the entries of A, so f is continuous. Consider
now a sequence Ri in O(n) that converges to some limit matrix R. We then have

f (R) = f
(

lim
i→∞Ri

)

= lim
i→∞f (Ri) since f is continuous

= lim
i→∞ I

= I

so R ∈ O(n). Thus O(n) is a matrix Lie group. The unitary and Lorentz groups,
as well as their cousins with unit determinant, are similarly defined by continuous
functions, and can analogously be shown to be matrix Lie groups. For an example
of a subgroup of GL(n,C) which is not closed, hence not a matrix Lie group, see
Problem 4.10.

We remarked earlier, though, that the above definition does not really capture
the essence of what a Lie group is. What is that essence? As mentioned before, one
should think of Lie groups as groups which can be parametrized in terms of a certain
number of real variables. This number is known as the dimension of the Lie group,
and we will see that this number is also the usual (vector space) dimension of its
corresponding Lie algebra. Since a Lie group is parametrizable, we can think of it as

17The necessary machinery being the theory of differentiable manifolds; in this context, a Lie
group is essentially a group that is also a differentiable manifold. See Schutz [15] or Frankel [4]
for very readable introductions for physicists, and Warner [18] for a systematic but terse account.
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a kind of multi-dimensional space (like the surface of a sphere) that also has a group
structure. Unlike the surface of a sphere, though, a Lie group has a distinguished
point, the identity e, and as we mentioned above, studying transformations ‘close
to’ the identity will lead us to Lie algebras.

For the sake of completeness, we should point out here that there are Lie groups
out there which are not matrix Lie groups, i.e. which cannot be described as a subset
of GL(n,C) for some n. Their relevance for basic physics has not been established,
however, so we do not consider them here.18

Now that we have a better sense of what Lie groups are, we would like to zoom
in to Lie algebras by considering group elements that are ‘close’ to the identity. For
concreteness consider the rotation group SO(3). An arbitrary rotation about the z

axis looks like

Rz(θ) =
⎛

⎝

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞

⎠ .

If we take our rotation angle to be ε � 1, we can approximate Rz(ε) by expanding
to first order, which yields

Rz(ε) ≈
⎛

⎝

1 −ε 0
ε 1 0
0 0 1

⎞

⎠ = I + εLz (4.47)

where you may recognize

Lz ≡
⎛

⎝

0 −1 0
1 0 0
0 0 0

⎞

⎠

from (2.16), up to a factor of i. The appearance here of Lz and the discrepancy of
a factor of i will be explained soon. Now, we should be able to describe a finite
rotation through an angle θ as an n-fold iteration of smaller rotations through an
angle θ/n. As we take n larger, then θ/n becomes smaller and the approximation
(4.47) for the smaller rotation through ε = θ/n becomes better. Thus, we expect

Rz(θ) = [

Rz(θ/n)
]n ≈

(

I + θLz

n

)n

to become an equality in the limit n → ∞. However, you should check, if it is not
already a familiar fact, that

lim
n→∞

(

I + X

n

)n

=
∞
∑

n=0

Xn

n! = eX (4.48)

for any real number or matrix X. Thus, we can write

Rz(θ) = eθLz (4.49)

18See Hall [8] for further information and references.
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where from here on out the exponential of a matrix or linear operator is defined by
the power series in (4.48). Notice that the set {Rz(θ) = eθLz | θ ∈ R} is a subgroup
of SO(3); this can be seen by explicitly checking that

Rz(θ1)Rz(θ2) = Rz(θ1 + θ2), (4.50)

or using the property19 of exponentials that eXeY = eX+Y , or recognizing intuitively
that any two successive rotations about the z-axis yields another rotation about the
z-axis. Notice that (4.50) says that if we consider Rz(θ) to be the image of θ under
a map

Rz : R → SO(3), (4.51)

then Rz is a homomorphism! Any such continuous homomorphism from the addi-
tive group R to a matrix Lie group G is known as a one-parameter subgroup. One-
parameter subgroups are actually very familiar to physicists; the set of rotations
in R

3 about any particular axis (not just the z-axis) is a one-parameter subgroup
(where the parameter can be taken to be the rotation angle), as is the set of all boosts
in a particular direction (in which case the parameter can be taken to be the absolute
value u of the rapidity). We will also see that translations along a particular direction
in both momentum and position space are one-parameter subgroups as well.

If we have a matrix X such that etX ∈ G ∀t ∈ R, then the map

exp : R → G

t �→ etX (4.52)

is a one-parameter subgroup, by the above-mentioned property of exponentials.
Conversely, if we have a one-parameter subgroup γ : R → G, then we know that
γ (0) = I (since γ is a homomorphism), and, defining

X ≡ dγ

dt
(0), (4.53)

we have

dγ

dt
(t) = lim

h→0

γ (h + t) − γ (t)

h

= lim
h→0

γ (h)γ (t) − γ (t)

h

= lim
h→0

γ (h) − I

h
γ (t)

= lim
h→0

γ (h) − γ (0)

h
γ (t)

= Xγ (t).

19This is actually only true when X and Y commute; more on this later.
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You should recall20 that the first order linear matrix differential equation dγ
dt

(t) =
Xγ (t) has the unique solution γ (t) = etX . Thus, every one-parameter subgroup is
of the form (4.52), so we have a one-to-one correspondence between one-parameter
subgroups and matrices X such that etX ∈ G ∀t ∈ R. The matrix X is sometimes
said to ‘generate’ the corresponding one-parameter subgroup (e.g. Lz ‘generates’
rotations about the z-axis, according to (4.49)), and to each X there corresponds
an ‘infinitesimal transformation’ I + εX. Really, though, X is best thought of as a
derivative (by (4.53)), and (4.47) is best thought of as the first two terms of a Taylor
expansion, as in

Rz(θ) = Rz(0) + θ
dRz

dθ
(0) + · · · (4.54)

(you should verify that dRz

dθ
(0) = Lz!). These matrices corresponding to one-

parameter subgroups have many useful properties and their study leads to many
interesting applications, both in mathematics and physics, so we give them a name:
Lie algebras.

4.5 Lie Algebras—Definition, Properties, and Examples

Given a matrix Lie group G ⊂ GL(n,C), we define its Lie algebra g to be the set of
all matrices X ∈ Mn(C) such that etX ∈ G ∀t ∈ R. The first goal of this section is to
establish some of the basic properties of Lie algebras. This will require a somewhat
formal discussion, however, so we begin with a quick look at the Lie algebras of a
couple of familiar Lie groups, so that you have examples to keep in mind later.

First, let us consider GL(n,C) and its Lie algebra gl(n,C). How can we describe
gl(n,C)? If X is any element of Mn(C), then etX is invertible for all t , and its
inverse is merely e−tX . Thus

gl(n,C) = Mn(C). (4.55)

Likewise,

gl(n,R) = Mn(R). (4.56)

Second, consider our good friend O(3), whose Lie algebra is denoted o(3). How
can we describe o(3)? For any X ∈ o(3), we have etX ∈ O(3) ∀t ∈ R, which means
that

(

etX
)T

etX = et(XT )etX = I ∀t. (4.57)

Differentiating this with respect to t yields

XT etXT

etX + etXT

XetX = 0, (4.58)

20See any standard text on linear algebra and linear ODEs.
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which we can evaluate at t = 0 to give

XT + X = 0. (4.59)

Thus, any X ∈ o(3) must be antisymmetric! Will any real, antisymmetric X do? For
any such X,

(

etX
)T

etX = et(XT )etX

= e−tXetX

= I

so etX ∈ O(3) ∀t ∈ R, hence X ∈ o(3). Thus, o(3) is the set of all real antisymmetric
matrices.

Now, gl(n,C),gl(n,R), and o(3) all share a few nice properties. First off, they
are all real vector spaces, as you can easily check (gl(n,C) can also be considered
a complex vector space, but we will not consider it as such in this text). Secondly,
they are closed under commutators, in the sense that if X and Y are elements of the
Lie algebra, then so is

[X,Y ] ≡ XY − YX. (4.60)

This is trivial to verify in the case of gl(n,C), and simple to verify in the case of
o(3). Thirdly, these Lie algebras (and, in fact, all sets of matrices) satisfy the Jacobi
Identity,

[[X,Y ],Z] + [[Y,Z],X] + [[Z,X], Y ] = 0 ∀X,Y,Z ∈ g. (4.61)

This can be verified directly by expanding the commutators, and does not depend on
any special properties of g, only on the definition of the commutator. We will have
more to say about the Jacobi identity later.

The reason we have singled out these peculiar-seeming properties is that they
will turn out to be important, and it turns out that all Lie algebras of matrix Lie
groups enjoy them:

Proposition 4.1 Let g be the Lie algebra of a matrix Lie group G. Then g is a real
vector space, is closed under commutators, and all elements of g obey the Jacobi
identity.

Proving this turns out to be somewhat technical, so we will just sketch a proof
here and refer you to Hall [8] for the details. Let g be the Lie algebra of a matrix
Lie group G, and let X,Y ∈ g. We’d first like to show that X + Y ∈ g. Since g is
closed under real scalar multiplication (why?), proving X +Y ∈ g will be enough to
show that g is a real vector space. The proof of this hinges on the following identity,
known as the Lie Product Formula, which we state but do not prove:

eX+Y = lim
m→∞

(

e
X
m e

Y
m
)m

. (4.62)

This formula should be thought of as expressing the addition operation in g in terms

of the product operation in G. With this in hand, we note that Am ≡ (e
X
m e

Y
m )m is a
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convergent sequence, and that every term in the sequence is in G since it is a product
of elements in G. Furthermore, the limit matrix A = eX+Y is in GL(n,C) by (4.55).
By the definition of a matrix Lie group, then, A = eX+Y ∈ G, and thus g is a real
vector space.

The second task is to show that g is closed under commutators. First, we claim
that for any X ∈ gl(n,C) and A ∈ GL(n,C),

eAXA−1 = AeXA−1. (4.63)

You can easily verify this by expanding the power series on both sides. This implies
that if X ∈ g and A ∈ G, then AXA−1 ∈ g as well, since

etAXA−1 = AetXA−1 ∈ G ∀t ∈ R. (4.64)

Now let A = etY , Y ∈ g. Then etY Xe−tY ∈ g ∀t , and we can compute the derivative
of this expression at t = 0:

d

dt
etY Xe−tY

∣

∣

∣

∣

t=0
= YetY Xe−tY

∣

∣

t=0 − etY Xe−tY Y
∣

∣

t=0

= YX − XY. (4.65)

Since we also have

d

dt
etY Xe−tY

∣

∣

∣

∣

t=0
= lim

h→0

ehY Xe−hY − X

h
(4.66)

and the right side is always in g since g is a vector space,21 this shows that YX −
XY = [Y,X] is in g.

The third and final task would be to verify the Jacobi identity, but as we pointed
out above this holds for any set of matrices and can be easily verified by direct
computation. Thus the proposition is established. �

Before moving on to a discussion of specific Lie algebras, we should discuss the
significance of the commutator. We proved above that all Lie algebras are closed
under commutators, but so what? Why is this property worth singling out? Well,
it turns out that the algebraic structure of the commutator on g is closely related
to the algebraic structure of the product on G. This is most clearly manifested in
the Baker–Campbell–Hausdorff (BCH) formula, which for X and Y sufficiently
small22 expresses eXeY as a single exponential:

eXeY = eX+Y+ 1
2 [X,Y ]+ 1

12 [X,[X,Y ]]− 1
12 [Y,[X,Y ]]+···. (4.68)

21To be rigorous, we also need to note that g is closed in the topological sense, but this can be
regarded as a technicality.
22The size of a matrix X ∈ Mn(C) is usually expressed by the Hilbert–Schmidt norm, defined as

‖X‖ ≡
n

∑

i,j=1

|Xij |2. (4.67)

If we introduce the basis {Eij } of Mn(C) from Example 2.8, then we can identify Mn(C) with

C
n2

, and then (4.67) is just the norm given by the standard Hermitian inner product.
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It can be shown23 that the series in the exponent converges for such X and Y , and
that the series consists entirely of iterated commutators, so that the exponent really
is an element of g (if the exponent had a term like XY in it, this would not be
the case since matrix Lie algebras are in general not closed under ordinary matrix
multiplication). Thus, the BCH formula plays a role analogous to that of the Lie
product formula, but in the other direction: while the Lie product formula expresses
Lie algebra addition in terms of group multiplication, the BCH formula expresses
group multiplication in terms of the commutator on the Lie algebra. The BCH
formula thus tells us that much of the group structure of G is encoded in the
structure of the commutator on g. You will calculate the first few terms of the
exponential in the BCH formula in Problem 4.11.

Now we are ready to look at the Lie algebras of some familiar matrix Lie groups.

Example 4.23 o(n) and u(n): The Lie algebras of O(n) and U(n)

Recall from the beginning of this section that o(3) is just the set of all real, anti-
symmetric 3 × 3 matrices. You should note that the calculations which proved this
did not depend in any way on n, so we can conclude in general that o(n) is just the
set of all real, antisymmetric n × n matrices. You can check that the matrices Aij

from Example 2.8 form a basis for o(n), so that dimo(n) = n(n−1)
2 . As we will see

in detail in the n = 3 case, the Aij can be interpreted as generating rotations in the
i–j plane.

As for u(n), if we start with defining condition of U(n), A†A−1 = I , and perform
the same manipulations that led from (4.57) to (4.59), we find that for any X ∈ u(n),

X† = −X. (4.69)

In other words, X must be anti-Hermitian. Furthermore, the same argument that
showed that any antisymmetric matrix is in o(n) also shows that any anti-Hermitian
matrix is in u(n), so u(n) is the set of all n × n anti-Hermitian matrices. In Exer-
cise 2.5 you constructed a basis for Hn(C), and as we mentioned in Example 2.4,
multiplying a Hermitian matrix by i yields an anti-Hermitian matrix. Thus, if we
multiply the basis from Exercise 2.5 by i we get a basis for u(n), and it then follows
that dimu(n) = n2. Note that a real antisymmetric matrix can also be considered an
anti-Hermitian matrix, so that o(n) ⊂ u(n). �

Aside Before meeting some other Lie algebras, we have a loose end to tie up. We claimed earlier
that most physical observables are best thought of as elements of Lie algebras (we will justify this
statement in Sect. 4.7). However, we know that those observables must be represented by Hermi-
tian operators (so that their eigenvalues are real), and yet here we see that the elements of o(n) and
u(n) are anti-Hermitian! This is where our mysterious factor of i, which we mentioned in the last
section, comes into play. Strictly speaking, o(n) and u(n) are real vector spaces whose elements are
anti-Hermitian matrices. However, if we permit ourselves to ignore the real vector space structure
and treat these matrices just as elements of Mn(C), we can multiply them by i to get Hermitian
matrices which we can then take to represent physical observables. In the physics literature, one

23See Hall [8] for a nice discussion and Varadarajan [17] for a complete proof.
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usually turns this around and defines generators of transformations to be these Hermitian observ-
ables, and then multiplies by i to get an anti-Hermitian operator which can then be exponentiated
into an isometry. So one could say that the physicist’s definition of the Lie algebra of a matrix Lie
group G is gphysics = {X ∈ GL(n,C) | eitX ∈ G ∀t ∈ R}. In the rest of this book we will stick with
our original definition of the Lie algebra of a matrix Lie group, but you should be aware that the
physicist’s definition is often implicit in the physics literature.

Example 4.24 o(n − 1,1): The Lie algebra of O(n − 1,1)

Let X ∈ o(n − 1,1), the Lie algebra of the Lorentz group O(n − 1,1). What
do we know about X? By the definition of a Lie algebra, and letting [η] =
Diag(1,1, . . . ,1,−1), we have

etXT [η]etX = [η] ∀t.

Differentiating with respect to t and evaluating at t = 0 as before yields

XT [η] + [η]X = 0. (4.70)

Writing X out in block form with an (n − 1) × (n − 1) matrix X′ for the spatial
components (i.e. the Xij where i, j < n) and vectors a and b for the components
Xin and Xni , i < n, the above equation reads

(

X′T −b
a −Xnn

)

+
(

X′ a
−b −Xnn

)

= 0.

This implies that X has the form

X =
(

X′ a
a 0

)

, X′ ∈ o(n − 1), a ∈ R
n−1.

One can think of X′ as generating rotations in the n − 1 spatial dimensions, and
a generating a boost along the direction it points in R

n−1. We will discuss this in
detail in the case n = 4 in the next section. �

We have now described the Lie algebras of the isometry groups O(n), U(n),
and O(n − 1,1). What about their cousins SO(n) and SU(n)? Since these groups
are defined by the additional condition that they have unit determinant, examining
their Lie algebras will require that we know how to evaluate the determinant of
an exponential. This can be accomplished via the following beautiful and useful
formula:

Proposition 4.2 For any finite-dimensional matrix X,

det eX = eTrX. (4.71)

A general proof of this is postponed to Problem 4.14, but we can gain some
insight into the formula by proving it in the case where X is diagonalizable. Recall
that diagonalizable means that there exists A ∈ GL(n,C) such that

AXA−1 = Diag(λ1, λ2, . . . , λn)
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where Diag(λ1, λ2, . . . , λn) is a diagonal matrix with λi in the ith row and column,
and zeros everywhere else. In this case, we have

det eX = det
(

AeXA−1)

= det eAXA−1
(4.72)

= det eDiag(λ1,λ2,...,λn)

= det Diag
(

eλ1 , eλ2 , . . . , eλn
)

(see exercise below) (4.73)

= eλ1eλ2 · · · eλn

= eλ1+λ2+···+λn

= eTrX

and so the formula holds. �
Exercise 4.22 Prove (4.73). That is, use the definition of the matrix exponential as a power
series to show that

eDiag(λ1,λ2,...,λn) = Diag
(

eλ1 , eλ2 , . . . , eλn
)

. (4.74)

In addition to being a useful formula, Proposition 4.2 also provides a nice geo-
metric interpretation of the Tr functional. Consider an arbitrary one-parameter sub-
group {etX} ⊂ GL(n,C). We have

det etX = eTr tX = et TrX, (4.75)

so taking the derivative with respect to t and evaluating at t = 0 gives

d

dt
det etX

∣

∣

∣

∣

t=0
= TrX. (4.76)

Since the determinant measures how an operator or matrix changes volumes (cf.
Example 3.27), this tells us that the trace of the generator X gives the rate at which
volumes change under the action of the corresponding one-parameter subgroup etX .

Example 4.25 so(n) and su(n), the Lie algebras of SO(n) and SU(n)

Recall that SO(n) and SU(n) are the subgroups of O(n) and U(n) consisting of
matrices with unit determinant. What additional condition must we impose on the
generators X to ensure that det etX = 1 ∀t? From (4.71), it is clear that det etX = 1
∀t if and only if

TrX = 0. (4.77)

In the case of o(n), this is actually already satisfied, since the antisymmetry con-
dition implies that all the diagonal entries are zero. Thus, so(n) = o(n), and both
Lie algebras will henceforth be denoted as so(n). We could have guessed that they
would be equal; as discussed above, generators X are in one-to-one correspondence
with ‘infinitesimal’ transformations I + εX, so the Lie algebra just tells us about
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transformations that are close to the identity. However, the discussion from Exam-
ple 4.12 generalizes easily to show that O(n) is a group with two components, and
that the component which contains the identity is just SO(n). Thus the set of ‘in-
finitesimal’ transformations of both groups should be equal, and so should their Lie
algebras. The same argument applies to SO(3,1)o and O(3,1); their Lie algebras
are thus identical, and will both be denoted as so(3,1).

For su(n) the story is a little different. Here, the anti-Hermiticity condition only
guarantees that the trace of an anti-Hermitian matrix is pure imaginary, so demand-
ing that it actually be zero is a bona fide constraint. Thus, su(n) can without re-
dundancy be described as the set of traceless, anti-Hermitian n × n matrices. The
tracelessness condition provides one additional constraint beyond anti-Hermiticity,
so that

dim su(n) = dimu(n) − 1 = n2 − 1. (4.78)

Can you find a nice basis for su(n)?

Exercise 4.23 Show directly that so(n) and su(n) are vector spaces. Then prove the cyclic
property of the Trace functional,

Tr(A1A2 · · ·An) = Tr(A2 · · ·AnA1), Ai ∈ Mn(C) (4.79)

and use this to show directly that so(n) and su(n) are closed under commutators.

4.6 The Lie Algebras of Classical and Quantum Physics

We are now ready for a detailed look at the Lie algebras of the matrix Lie groups
we discussed in Sect. 4.2.

Example 4.26 so(2)

As discussed in Example 4.23, so(2) consists of all antisymmetric 2 × 2 matrices.
All such matrices are of the form

(

0 −a

a 0

)

(4.80)

and so so(2) is one-dimensional and we may take as a basis

X =
(

0 −1
1 0

)

. (4.81)

You will explicitly compute that

eθX =
(

cos θ − sin θ

sin θ cos θ

)

, θ ∈ R (4.82)

so that X really does generate counterclockwise rotations in the x–y plane.

Exercise 4.24 Verify (4.82) by explicitly summing the power series for eθX . Also, consider
the vector field X� induced by X on R

2, defined as follows: for every r ∈ R
2,



122 4 Groups, Lie Groups, and Lie Algebras

X�(r) ≡ Xr (4.83)

where X acts on r by matrix multiplication. Sketch this vector field and show that the flow
lines are circles. This gives direct geometric meaning to the matrix X, and is another sense
in which ‘X generates rotations’.

Example 4.27 so(3)

As remarked in Example 4.23, the matrices Aij form a basis for o(n). Specializing
to n = 3 and renaming the Aij as

Lx ≡
⎛

⎝

0 0 0
0 0 −1
0 1 0

⎞

⎠ , Ly ≡
⎛

⎝

0 0 1
0 0 0

−1 0 0

⎞

⎠ , Lz =
⎛

⎝

0 −1 0
1 0 0
0 0 0

⎞

⎠ ,

(4.84)

we can write an arbitrary element X ∈ so(3) as

X =
⎛

⎝

0 −z y

z 0 −x

−y x 0

⎞

⎠ = xLx + yLy + zLz (4.85)

where you should recognize Lz from the previous section. Note that dim so(3) = 3,
which is also the number of parameters in SO(3). You can check that the commuta-
tors of the basis elements work out to be

[Lx,Ly] = Lz

[Ly,Lz] = Lx

[Lz,Lx] = Ly

or, if we label the generators with numbers instead of letters,

[Li,Lj ] =
3

∑

k=1

εijkLk.

(We will frequently change notation in this way when it proves convenient; hope-
fully this causes no confusion.) These are, of course, the well-known angular mo-
mentum commutation relations of quantum mechanics. The relation between the
Lie algebra of so(3) and the usual angular momentum operators (2.11) will be ex-
plained in the next chapter. Note that if we defined Hermitian so(3) generators by
L′

i ≡ iLi , the commutation relations would become

[

L′
i ,L

′
j

] =
3

∑

k=1

iεijkL
′
k,

which is the form found in most quantum mechanics texts.
We can think of the generator X in (4.85) as generating a rotation about the axis

[X]{Li} = (x, y, z), as follows: for any v = (vx, vy, vz) ∈ R
3, you can check that
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Xv =
⎛

⎝

0 −z y

z 0 −x

−y x 0

⎞

⎠

⎛

⎝

vx

vy

vz

⎞

⎠ = (x, y, z) × (vx, vy, vz) = [X] × v

so that if v lies along the axis [X], then Xv = 0. This then implies that

etX[X] = [X]
(why?), so etX must be a rotation about [X] (since it leaves [X] fixed). In fact, if we
take [X] to be a unit vector and rename it n̂, and also rename t as θ , you will show
below that

eθX =
⎛

⎝

n2
x(1 − cos θ) + cos θ nxny(1 − cos θ) − nz sin θ nxnz(1 − cos θ) + ny sin θ

nynx(1 − cos θ) + nz sin θ n2
y(1 − cos θ) + cos θ nynz(1 − cos θ) − nx sin θ

nznx(1 − cos θ) − ny sin θ nzny(1 − cos θ) + nx sin θ n2
z(1 − cos θ) + cos θ

⎞

⎠ ,

(4.86)

proving our claim from Example 4.11 that this matrix represents a rotation about n̂
by an angle θ .

The astute reader may have noticed that we already made a connection between
antisymmetric 3 × 3 matrices and rotations back in Example 3.30. There we saw
that if A(t) was a time-dependent orthogonal matrix representing the rotation of a
rigid body, then the associated angular velocity bivector (in the space frame) was
[ω̃] = dA

dt
A−1. If we let A(t) be a one-parameter subgroup A(t) = etX generated by

some X ∈ so(3), then the associated angular velocity bivector is

[ω̃] = dA(t)

dt
A−1

= Xetxe−tx

= X. (4.87)

Thus the angular velocity bivector is just the generator of the rotation! Further-
more, applying the J map from Example 3.29 to both sides of (4.87) gives

[ω] = [X]
and so the pseudovector ω is just the rotation generator expressed in coordinates [X].
Note that this agrees with our discussion above, where we found that [X] gave the
axis of rotation.

Exercise 4.25 Let X ∈ so(3) be given by

X =
⎛

⎝

0 −nz ny

nz 0 −nx

−ny nx 0

⎞

⎠ (4.88)

where n̂ = (nx, ny, nz) is a unit vector. Verify (4.86) by explicitly summing the power series
for eθX .

Exercise 4.26 Using the basis B = {Lx,Ly,Lz} for so(3), show that

[[X,Y ]]B = [X]B × [Y ]B, (4.89)
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which shows that in components, the commutator is given by the usual cross product on R
3.

(Note that on the left hand side of the above equation the two sets of brackets have entirely
different meanings; one signifies the Lie bracket, while the other denotes the component
representation of an element of the Lie algebra.)

Example 4.28 su(2)

We already met su(2), the set of 2 × 2 traceless anti-Hermitian matrices, in Exam-
ple 4.19. We took as a basis

Sx ≡ 1

2

(

0 −i

−i 0

)

, Sy ≡ 1

2

(

0 −1
1 0

)

, Sz ≡ 1

2

(−i 0
0 i

)

. (4.90)

Notice again that the number of parameters in the matrix Lie group SU(2) is equal to
the dimension of its Lie algebra su(2). You can check that the commutation relation
for these basis vectors is

[Si, Sj ] =
3

∑

k=1

εijkSk (4.91)

which is the same as the so(3) commutation relations! Does that mean that su(2)

and so(3) are, in some sense, the same? And is this in some way related to the ho-
momorphism from SU(2) to SO(3) that we discussed in Example 4.19? The answer
to both these questions is yes, as we will discuss in the next few sections. We will
also see that, just as X = xLx + yLy + zLz ∈ so(3) can be interpreted as generating
a rotation about (x, y, z) ∈ R

3, so can Y = xS1 + yS2 + zS3 ∈ su(2).

Exercise 4.27 Let n̂ = (n1, n2, n3) be a unit vector. Show by direct calculation that

eθniSi =
(

cos(θ/2) − inz sin(θ/2) (−inx − ny) sin(θ/2)

(−inx + ny) sin(θ/2) cos(θ/2) + inz sin(θ/2)

)

= cos(θ/2)I + 2 sin(θ/2)niSi . (4.92)

You will use this formula in the problems to show that eθniSi represents a rotation about the
axis n by an angle θ .

Example 4.29 so(3,1)

From Example 4.24, we know that an arbitrary X ∈ so(3,1) can be written as

X =
(

X′ a
a 0

)

with X′ ∈ so(3) and a ∈ R
3. Embedding the Li of so(3) into so(3,1) as

L̃i ≡
(

Li 0
0 0

)

and defining new generators
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K1 ≡

⎛

⎜

⎜

⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞

⎟

⎟

⎠

, K2 ≡

⎛

⎜

⎜

⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞

⎟

⎟

⎠

, K3 ≡

⎛

⎜

⎜

⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟

⎟

⎠

we have the following commutation relations (Exercise 4.28):

[L̃i, L̃j ] =
3

∑

k=1

εijkL̃k

[L̃i ,Kj ] =
3

∑

k=1

εijkKk (4.93)

[Ki,Kj ] = −
3

∑

k=1

εijkL̃k.

As we mentioned in Example 4.24, the Ki can be interpreted as generating boosts
along their corresponding axes. In fact, you will show in Exercise 4.28 that

euiKi =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

u2
x(coshu−1)

u2 + 1 uxuy(coshu−1)

u2
uxuz(coshu−1

u2
ux

u
sinhu

uyux(coshu−1)

u2

u2
y(coshu−1)

u2 + 1 uyuz(coshu−1)

u2
uy

u
sinhu

uzux(coshu−1)

u2
uzuy(coshu−1)

u2
u2

z (coshu−1)

u2 + 1 uz

u
sinhu

ux

u
sinhu

uy

u
sinhu

uz

u
sinhu coshu

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(4.94)

which as we know from Example 4.14 represents a boost in the direction of u. Also,
note that the last commutation relation in (4.93) says that if we perform two suc-
cessive boosts in different directions, the order matters. Furthermore, the difference
between performing them in one order and the other is actually a rotation!

Exercise 4.28 Verify the commutation relations (4.93), and verify (4.94) by explicitly
summing the exponential power series.

Example 4.30 sl(2,C)R

sl(2,C)R is defined to be the Lie algebra of SL(2,C), viewed as a real vector space.
Since SL(2,C) is just the set of all 2 × 2 complex matrices with unit determinant,
sl(2,C)R is just the set of all traceless 2 × 2 complex matrices, and thus could be
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viewed as a complex vector space, though we will not take that point of view here.24

A (real) basis for sl(2,C)R is

S1 = 1

2

(

0 −i

−i 0

)

S2 = 1

2

(

0 −1
1 0

)

S3 = 1

2

(−i 0
0 i

)

K̃1 ≡ 1

2

(

0 1
1 0

)

K̃2 ≡ 1

2

(

0 −i

i 0

)

K̃3 ≡ 1

2

(

1 0
0 −1

)

.

Note that K̃i = iSi . This fact simplifies certain computations, such as the ones you
will perform in checking that these generators satisfy the following commutation
relations:

[Si, Sj ] =
3

∑

k=1

εijkSk

[Si, K̃j ] =
3

∑

k=1

εijkK̃k

[K̃i , K̃j ] = −
3

∑

k=1

εijkSk.

These are identical to the so(3,1) commutation relations! As in the case of su(2) and
so(3), this is intimately related to the homomorphism from SL(2,C) to SO(3,1)o
that we described in Example 4.20. This will be discussed in Sect. 4.8.

Exercise 4.29 Check that the K̃i generate boosts, as you would expect, by explicitly calcu-

lating eui K̃i to get (4.35).

24The space of all traceless 2 × 2 complex matrices viewed as a complex vector space is denoted
sl(2,C) without the R subscript. In this case, the Si suffice to form a basis. In this text, however,
we will usually take Lie algebras to be real vector spaces, even if they naturally form complex
vector spaces as well. You should be aware, though, that sl(2,C) is fundamental in the theory of
complex Lie algebras, and so in the math literature the Lie algebra of SL(2,C) is almost always
considered to be the complex vector space sl(2,C) rather than the real Lie algebra sl(2,C)R . We
will have more to say about sl(2,C) in the Appendix.
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4.7 Abstract Lie Algebras

So far we have considered Lie algebras associated to matrix Lie groups, and we
sketched proofs that these sets are real vector spaces which are closed under com-
mutators. As in the case of abstract vector spaces and groups, however, we can now
turn around and use these properties to define abstract Lie algebras. This will clarify
the nature of the Lie algebras we have already met, as well as permit discussion of
other examples relevant for physics.

That said, a (real, abstract) Lie algebra is defined to be a real vector space g

equipped with a bilinear map [·, ·] : g×g → g called the Lie bracket which satisfies

1. [X,Y ] = −[Y,X] ∀X,Y ∈ g (Antisymmetry)
2. [[X,Y ],Z] + [[Y,Z],X] + [[Z,X], Y ] = 0 ∀X,Y,Z ∈ g (Jacobi identity)

By construction, all Lie algebras of matrix Lie groups satisfy this definition
(when we take the bracket to be the commutator), and we will see that it is pre-
cisely the above properties of the commutator that make those Lie algebras useful
in applications. Furthermore, there are some (abstract) Lie algebras that arise in
physics for which the bracket is not a commutator, and which are not usually asso-
ciated with a matrix Lie group; this definition allows us to include those algebras
in our discussion. We will meet a few of these algebras below, but first we consider
two basic examples.

Example 4.31 gl(V ): The Lie algebra of linear operators on a vector space

Let V be a (possibly infinite-dimensional) vector space. We can turn L(V ), the set
of all linear operators on V , into a Lie algebra by taking the Lie bracket to be the
commutator, i.e.

[T ,U ] ≡ T U − UT, T ,U ∈ L(V ). (4.95)

Note that this is a commutator of operators, not matrices, though of course there
is a nice correspondence between the two when V is finite-dimensional and we
introduce a basis. This Lie bracket is obviously antisymmetric and can be seen to
obey the Jacobi identity, so it turns L(V ) into a Lie algebra which we will denote
by gl(V ).25 We will have more to say about gl(V ) as we progress.

Example 4.32 isom(V ): The Lie algebra of anti-Hermitian operators

Consider the setup of the previous example, except now let V be an inner product
space. For any T ∈ L(V ), the inner product on V allows us (via (4.9)) to define
its adjoint T †, and we can then define isom(V ) ⊂ gl(V ) to be the set of all anti-
Hermitian operators, i.e. those which satisfy

25There is a subtlety here: the vector space underlying gl(V ) is of course just L(V ), so the differ-
ence between the two is just that one comes equipped with a Lie bracket, and the other is considered
as a vector space with no additional structure.
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T † = −T . (4.96)

You can easily verify that isom(V ) is a Lie subalgebra of gl(V ). (A Lie subalgebra
of a Lie algebra g is a vector subspace h ⊂ g that is also closed under the Lie bracket,
and hence forms a Lie algebra itself.) If V is n-dimensional and we introduce an
orthonormal basis, we see that the matrix form of isom(V ) is o(n) if V is real and
u(n) if V is complex.

Example 4.33 The Poisson bracket on phase space

Consider a physical system with a 2n-dimensional phase space P parametrized by n

generalized coordinates qi and the n conjugate momenta pi . The set of all complex-
valued, infinitely differentiable26 functions on P is a real vector space which we
will denote by C(P ). We can turn C(P ) into a Lie algebra using the Poisson bracket
as our Lie bracket, where the Poisson bracket is defined by

{f,g} ≡
∑

i

∂f

∂qi

∂g

∂pi

− ∂g

∂qi

∂f

∂pi

. (4.97)

The antisymmetry of the Poisson bracket is clear, and the Jacobi identity can be
verified directly by a brute-force calculation.

The functions in C(P ) are known as observables, and the Poisson bracket thus
turns the set of observables into one huge27 Lie algebra. The standard quantization
prescription, as developed by Dirac, Heisenberg, and the other founders of quantum
mechanics, is to then interpret this Lie algebra of observables as a Lie subalgebra
of gl(H) for some Hilbert space H (this identification is known as a Lie algebra
representation, which is the subject of the next chapter). The commutator of the
observables in gl(H) is then just given by the Poisson bracket of the corresponding
functions in C(P ). Thus the set of all observables in quantum mechanics forms a
Lie algebra, which is one of our main reasons for studying Lie algebras here.

Though C(P ) is in general infinite-dimensional, it often has interesting finite-
dimensional Lie subalgebras. For instance, if P = R

6 and the qi are just the usual
cartesian coordinates for R

3, we can consider the three components of the angular
momentum,

J1 = q2p3 − q3p2

J2 = q3p1 − q1p3 (4.98)

J3 = q1p2 − q2p1,

26A function is “infinitely differentiable” if it can be differentiated an arbitrary number of times.
Besides the step function and its derivative, the Dirac delta ‘function’, most functions that one
meets in classical physics and quantum mechanics are infinitely differentiable. This includes the
exponential and trigonometric functions, as well as any other function that permits a power series
expansion.
27By this we mean infinite-dimensional, and usually requiring a basis that cannot be indexed by
the integers but rather must be labeled by elements of R or some other continuous set. You should
recall from Sect. 3.7 that L2(R) was another such ‘huge’ vector space.
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all of which are in C(R6). You will check below that the Poisson bracket of these
functions turns out to be

{Ji, Jj } =
3

∑

k=1

εijkJk, (4.99)

which are of course the familiar angular momentum (so(3)) commutation relations
(as mentioned above, this is in fact where the angular momentum commutation re-
lations come from!). This then implies that so(3) is a Lie subalgebra of C(R6).
You may be wondering, however, why the angular momentum commutation rela-
tions are the same as the so(3) commutation relations. What do the functions Ji

have to do with generators of rotations? The answer has to do with a general re-
lationship between symmetries and conserved quantities, which goes (roughly) as
follows: Consider a classical system (i.e. a phase space P together with a Hamil-
tonian H ∈ C(P )) which has a matrix Lie group G of canonical transformations28

acting on it. If H is invariant29 under the action of G, then G is said to be a group
of symmetries of the system. In this case, one can then show30 that for every X ∈ g

there is a function fX ∈ C(P ) which is constant along particle trajectories in P

(where trajectories, of course, are given by solutions to Hamilton’s equations). This
fact is known as Noether’s theorem, and it tells us that every element X of the Lie
algebra gives a conserved quantity fX . Furthermore, the Poisson bracket between
two such functions fX and fY is given just by the function associated to the Lie
bracket of the corresponding elements of g, i.e.

{fX,fY } = f[X,Y ]. (4.100)

If G = SO(3) acting on P by rotations, then it turns out31 that

fX(qi,pi) = (

J(qi,pi), [X] ), X ∈ so(3) (4.101)

where J = (J1, J2, J3) is the usual angular momentum vector with components
given by (4.98) and (· | ·) is the usual inner product on R

3. In particular, for
X = Li ∈ so(3) we have

fLi
= (

J, [Li]
) = (J, ei) = Ji. (4.102)

Thus, the conserved quantity associated to rotations about the ith axis is just the
ith component of angular momentum! This is the connection between angular mo-
mentum and rotations, and from (4.100) we see that the Ji must have the same
commutation relations as the Li , which is of course what we found in (4.99). �

28I.e. one-to-one and onto transformations which preserve the form of Hamilton’s equations. See
Goldstein [6].
29Let φg : P → P be the transformation of P corresponding to the group element g ∈ G. Then H

is invariant under G if H(φg(p)) = H(p) ∀p ∈ P , g ∈ G.
30Under some mild assumptions. See Cannas [3] or Arnold [1], for example.
31See Arnold [1] for a discussion of Noether’s theorem and a derivation of an equivalent formula.
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Exercise 4.30 Verify (4.99). Also show that for a function F ∈ C(R6) that depends only
on the coordinates qi ,

{

pj ,F (qi)
} = − ∂F

∂qj

(4.103)

and

{

J3,F (qi)
} = −q1

∂F

∂q2
+ q2

∂F

∂q1
= − ∂F

∂φ
(4.104)

where φ is the azimuthal angle. We will interpret these results in the next chapter.

If we have a one-dimensional system with position coordinate q and conjugate
momentum p, then P = R

2 and C(P ) contains another well-known Lie algebra: the
Heisenberg algebra.

Example 4.34 The Heisenberg algebra

Define the Heisenberg algebra H to be the span of {q,p,1} ⊂ C(R2), where 1 ∈ H

is just the constant function with value 1. The only nontrivial Poisson bracket is
between p and q , which you can check is just

{q,p} = 1, (4.105)

which apart from the factors of � (which we have dropped throughout the text) and i

(which is just an artifact of the physicist’s definition of a Lie algebra) is the familiar
commutation relation from quantum mechanics. H is clearly closed under the Lie
(Poisson) bracket, and is thus a Lie subalgebra of C(R2).

Can p and q be thought of as generators of specific transformations? Well, one of
the most basic representations of p and q as operators is on the vector space L2(R),
where

q̂f (x) = xf (x) (4.106)

p̂f (x) = −df

dx
(4.107)

(again we drop the factor of i, in disagreement with the physicist’s convention). Note
that [q̂, p̂] = {q,p} = 1. If we exponentiate p̂, we find (see Exercise 4.31 below)

etp̂f (x) = f (x − t) (4.108)

so that p̂ = − d
dx

generates translations along the x-axis! It follows that {etp̂ | t ∈ R}
is the one-parameter subgroup of all translations along the x-axis. What about q̂?
Well, if we work in the momentum representation of Example 3.17 so that we are
dealing with the Fourier transform φ(p) of f (x), you know from Exercise 3.20 that
q̂ is represented by i d

dp
, so if we multiply by i we get iq̂ = − d

dp
and thus

eitq̂φ(p) = φ(p − t), (4.109)

which you can think of as a ‘translation in momentum space’. We will explain the
extra factor of i in the next chapter.
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If we treat H as a complex vector space then we can consider another common
basis for it, which is {Q,P,1} ⊂ C(R2) where

Q ≡ p + iq√
2

P ≡ p − iq√
2i

.

You can check that

{Q,P } = 1 (4.110)

which you may recognize from classical mechanics as the condition that Q and P

be canonical variables (see Goldstein [6]). Q and P are well suited to the solution
of the one-dimensional harmonic oscillator problem, and you may recognize their
formal similarity to the raising and lowering operators a and a† employed in the
quantum-mechanical version of the same problem.

Q and P are not easily interpreted as generators of specific transformations, and
our discussion of them helps explain why we defined abstract Lie algebras—so that
we could work with spaces that behave like the Lie algebras of matrix Lie groups (in
that they are vector spaces with a Lie bracket), but are not necessarily Lie algebras
of matrix Lie groups themselves.

Exercise 4.31 Show by exponentiating p̂ = − d
dx

that etp̂f (x) is just the power series
expansion for f (x − t).

Exercise 4.32 Verify (4.110).

4.8 Homomorphism and Isomorphism Revisited

In Sect. 4.3 we used the notion of a group homomorphism to make precise the rela-
tionship between SU(2) and SO(3), as well as SL(2,C) and SO(3,1)o. Now we will
define the corresponding notion for Lie algebras to make precise the relationship
between su(2) and so(3), as well as sl(2,C)R and so(3,1), and we will show how
these relationships between Lie algebras arise as a consequence of the relationships
between the corresponding groups.

That said, we define a Lie algebra homomorphism from a Lie algebra g to a Lie
algebra h to be a linear map φ : g → h that preserves the Lie bracket, in the sense
that

[

φ(X),φ(Y )
] = φ

([X,Y ]) ∀X,Y ∈ g. (4.111)

If φ is a vector space isomorphism (which implies that g and h have the same di-
mension), then φ is said to be a Lie algebra isomorphism. In this case, there is a
one-to-one correspondence between g and h that preserves the bracket, so just as
with group isomorphisms we consider g and h to be equivalent and write g  h.
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Sometimes the easiest way to prove that two Lie algebras g and h are isomorphic
is with an astute choice of bases. Let {Xi}i=1,...,n and {Yi}i=1,...,n be bases for g

and h, respectively. Then the commutation relations take the form

[Xi,Xj ] =
n

∑

k=1

cij
kXk

[Yi, Yj ] =
n

∑

k=1

dij
kYk

where the numbers cij
k and dij

k are known as the structure constants of g and h.
(This is a bit of a misnomer, though, since the structure constants depend on a choice
of basis, and are not as inherent a feature of the algebra as they make themselves out
to be.) If one can exhibit bases such that cij

k = dij
k ∀i, j, k, then it is easy to check

that the map

φ : g → h

viXi �→ viYi

is a Lie algebra isomorphism. We will use this below to show that so(3)  su(2)

and so(3,1)  sl(2,C)R.

Example 4.35 gl(V ) and gl(n,C)

Let V be an n-dimensional vector space over a set of scalars C. If we choose a basis
for V , we can define a map from the Lie algebra gl(V ) of linear operators on V to
the matrix Lie algebra gl(n,C) by T �→ [T ]. You can easily check that this is a Lie
algebra isomorphism, so gl(V )  gl(n,C). If V is an inner product space we can
restrict this isomorphism to isom(V ) ⊂ gl(V ) to get

isom(V )  o(n) if C = R

isom(V )  u(n) if C = C.

Example 4.36 The ad homomorphism

Let g be a Lie algebra. We can use the bracket to turn X ∈ g into a linear operator
adX on g, by defining

adX(Y ) ≡ [X,Y ], X,Y ∈ g. (4.112)

We thus have a map

ad : g −→ gl(g)

X �→ adX

between two Lie algebras. Is this map a Lie algebra homomorphism? It is if
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ad[X,Y ] = [adX, adY ] (4.113)

(notice that the bracket on the left is taken in g and on the right in gl(g)). You will
verify this in Exercise 4.33 below, where you will find that (4.113) is equivalent to
the Jacobi identity! This is one way of interpreting the Jacobi identity: it guarantees
that ad is a Lie algebra homomorphism for any Lie algebra g, and we will see that
the ad homomorphism occurs frequently in physics. In fact, we already met it in
Example 2.14! Besides its appearance in physics, the ad homomorphism is also
fundamental in the beautiful structure theory of Lie algebras; this is treated in detail
in Hall [8]. �

Exercise 4.33 Verify that (4.113) is equivalent to the Jacobi identity.

Before we get to more physical examples, we need to explain how a continuous
homomorphism from a matrix Lie group G to a matrix Lie group H leads to a
Lie algebra homomorphism from g to h. This is accomplished by the following
proposition:

Proposition 4.3 Let  : G → H be a continuous homomorphism from a matrix Lie
group G to a matrix Lie group H . Then this induces a Lie algebra homomorphism
φ : g → h given by

φ(X) = d

dt


(

etX
)

∣

∣

∣

∣

t=0
. (4.114)

Proof This proof is a little long, but is a nice application of all that we have been dis-
cussing. Let  : G → H be such a homomorphism, and let {etX} be a one-parameter
subgroup in G. It’s easy to see (check!) that {(etX)} is a one-parameter subgroup
of H , and so

d

dt


(

etX
)

∣

∣

∣

∣

t=0
≡ Z (4.115)

is an element of h (by the definition of the Lie algebra of a matrix Lie group). We
can thus define a map φ from g to h by φ(X) = Z, and it follows that


(

etX
) = etφ(X). (4.116)

We can roughly think of φ as the ‘infinitesimal’ version of , with φ taking ‘in-
finitesimal’ transformations in g to ‘infinitesimal’ transformations in h. Is φ a
Lie algebra homomorphism? There are several things to check. First, we must
check that φ is linear, which we can prove by checking that φ(sX) = sφ(X) and
φ(X + Y) = φ(X) + φ(Y ). To check that φ(sX) = sφ(X), we can just differentiate
using the chain rule:

φ(sX) = d

dt


(

etsX
)

∣

∣

∣

∣

t=0

= d(st)

dt

d

d(st)


(

etsX
)

∣

∣

∣

∣

t=st=0
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= sZ

= sφ(X).

Checking that φ(X + Y) = φ(X) + φ(Y ) is a little more involved and involves a bit
of calculation. The idea behind this calculation is to use the Lie product formula to
express the addition in g in terms of the group product in G, then use the fact that
 is a homomorphism to express this in terms of the product in H , and then use the
Lie product formula in reverse to express this in terms of addition in h. We have

φ(X + Y) = d

dt


(

et(X+Y)
)

∣

∣

∣

∣

t=0

= d

dt


(

lim
m→∞

(

e
tX
m e

tY
m

)m
)
∣

∣

∣

∣

t=0
by Lie Product formula

= d

dt
lim

m→∞
((

e
tX
m e

tY
m

)m)

∣

∣

∣

∣

t=0
since  is continuous

= d

dt
lim

m→∞
(


(

e
tX
m

)


(

e
tY
m

))m

∣

∣

∣

∣

t=0
since  is a homomorphism

= d

dt
lim

m→∞
(

e
tφ(X)

m e
tφ(Y )

m
)m

∣

∣

∣

∣

t=0
by (4.116)

= d

dt
et (φ(X)+φ(Y ))

∣

∣

∣

∣

t=0
by Lie product formula

= φ(X) + φ(Y ).

So we have established that φ is a linear map from g to h. Does it preserve the
bracket? Yes, but proving this also requires a bit of calculation. The idea behind this
calculation is just to express everything in terms of one-parameter subgroups and
then use the fact that  is a homomorphism. You can skip this calculation on a first
reading, if desired. We have

[

φ(X),φ(Y )
] = d

dt
etφ(X)φ(Y )e−tφ(X) by (4.65)

= d

dt


(

etX
)

φ(Y )
(

e−tX
)

by (4.116)

= d

dt


(

etX
)

(

d

ds
esφ(Y )

)


(

e−tX
)

= d

dt

d

ds


(

etX
)


(

esY
)


(

e−tX
)

by (4.116)

= d

dt

d

ds


(

etXesY e−tX
)

since  is a homomorphism

= d

dt

d

ds


(

e(setXYe−tX)
)

by (4.63)

= d

dt
φ
(

etXYe−tX
)

by definition of φ
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= φ

(

d

dt
etXYe−tX

)

by Exercise 4.34 below

= φ
([X,Y ]) by ( 4.65)

and so φ is a Lie algebra homomorphism, and the proof is complete. �

Exercise 4.34 Let φ be a linear map from a finite-dimensional vector space V to a finite-
dimensional vector space W , and let γ (t) : R → V be a differentiable V -valued function
of t (you can think of this as a path in V parametrized by t ). Show from the definition of a
derivative that

d

dt
φ
(

γ (t)
) = φ

(

d

dt
γ (t)

)

∀t. (4.117)

Now let us make all this concrete by considering some examples.

Example 4.37 SU(2) and SO(3) revisited

Recall from Example 4.19 that we have a homomorphism ρ : SU(2) → SO(3) de-
fined by the equation

[

AXA†]

B = ρ(A)[X]B (4.118)

where X ∈ su(2), A ∈ SU(2) and B = {Sx,Sy, Sz}. The induced Lie algebra homo-
morphism φ is given by

φ(Y ) = d

dt
ρ
(

etY
)

∣

∣

∣

∣

t=0
, (4.119)

and you will show below that this gives

φ(Si) = Li, i = 1–3. (4.120)

This means that φ is one-to-one and onto, and since the commutation relations (i.e.
structure constants) are the same for the Si and Li , we can then conclude from our
earlier discussion that φ is a Lie algebra isomorphism, and thus su(2)  so(3). You
may have already known or guessed this, but the important thing to keep in mind
is that this Lie algebra isomorphism actually stems from the group homomorphism
between SU(2) and SO(3).

Exercise 4.35 Calculate d
dt

ρ(etSi )|t=0 and verify (4.120).

Example 4.38 SL(2,C) and SO(3,1)o revisited

Just as in the last example, we will now examine the Lie algebra isomorphism be-
tween sl(2,C)R and so(3,1) that arises from the homomorphism ρ : SL(2,C) →
SO(3,1)o. Recall that ρ was defined by

[

AXA†]

B = ρ(A)[X]B (4.121)

where A ∈ SL(2,C), X ∈ H2(C) and B = {σx,σy, σz, I }. The induced Lie algebra
homomorphism is given again by
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φ(Y ) = d

dt
ρ
(

etY
)

∣

∣

∣

∣

t=0
, (4.122)

which, as you will again show, yields

φ(Si) = L̃i (4.123)

φ(K̃i) = Ki. (4.124)

Thus φ is one-to-one, onto, and preserves the bracket (since the L̃i and Ki have the
same structure constants as the Si and K̃i ), so sl(2,C)R  so(3,1). �

Exercise 4.36 Verify (4.123) and (4.124).

What is the moral of the story from the previous two examples? How should one
think about these groups and their relationships? Well, the homomorphisms ρ allows
us to interpret any A ∈ SU(2) as a rotation and any A ∈ SL(2,C) as a restricted
Lorentz transformation. As we mentioned before, though, ρ is two-to-one, and in
fact A and −A in SU(2) correspond to the same rotation in SO(3), and likewise
for SL(2,C). However, A and −A are not ‘close’ to each other; for instance, if we
consider an infinitesimal transformation A = I + εX, we have −A = −I − εX,
which is not close to the identity (though it is close to −I ). Thus, the fact that ρ is
not one-to-one cannot be discerned by examining the neighborhood around a given
matrix; one has to look at the global structure of the group for that. So one might
say that locally, SU(2) and SO(3) are identical, but globally they differ. In particular,
they are identical when one looks at elements near the identity, which is why their
Lie algebras are isomorphic. The same comments hold for SL(2,C) and SO(3,1)o.

One important fact to take away from this is that the correspondence between
matrix Lie groups and Lie algebras is not one-to-one; two different matrix Lie
groups might have the same Lie algebra. Thus, if we start with a Lie algebra, there
is no way to associate to it a unique matrix Lie group. This fact will have important
implications in the next chapter.

Example 4.39 The Ad and ad homomorphisms

You may have found it curious that su(2) was involved in the group homomorphism
between SU(2) and SO(3). This is no accident, and Example 4.37 is actually an
instance of a much more general construction which we now describe. Consider a
matrix Lie group G and its Lie algebra g. We know that for any A ∈ G and X ∈ g,
AXA−1 is also in g, so we can actually define a linear operator AdA on g by

AdA(X) = AXA−1, X ∈ g. (4.125)

We can think of AdA as the linear operator which takes a matrix X and applies the
similarity transformation corresponding to A, as if A was implementing a change
of basis. This actually allows us to define a homomorphism

Ad : G → GL(g)

A �→ AdA,
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where you should quickly verify that AdAAdB = AdAB . Since Ad is a homomor-
phism between the two matrix Lie groups G and GL(g), we can consider the induced
Lie algebra homomorphism φ : g → gl(g). What does φ look like? Well, if X ∈ g

then φ(X) ∈ gl(g) is the linear operator given by

φ(X) = d

dt
AdetX

∣

∣

∣

∣

t=0
. (4.126)

To figure out what this is, exactly, we evaluate the right hand side on Y ∈ g:

φ(X)(Y ) = d

dt

(

AdetX (Y )
)

∣

∣

∣

∣

t=0

= d

dt

(

etXYe−tX
)

∣

∣

∣

∣

t=0

= [X,Y ]
so φ is nothing but the ad homomorphism of Example 4.36! Thus ad is the ‘in-
finitesimal’ version of Ad, and the Lie bracket is the infinitesimal version of the
similarity transformation.

Note also that since Ad is a homomorphism, AdetX is a one-parameter subgroup
in GL(g), and its derivative at t = 0 is adX . From the discussion at the end of
Sect. 4.4 we can then conclude that

AdetX = et adX (4.127)

as an equality between operators on g. In other words, applying (4.127) to Y ∈ g,

etXYe−tX = Y + t[X,Y ] + t2

2

[

X, [X,Y ]] + t3

3!
[

X,
[

X, [X,Y ]]] + · · · . (4.128)

It is a nice exercise to expand the left hand side of this equation as a power series
and verify the equality; this is Problem 4.13. �

Exercise 4.37 Let X,H ∈ Mn(C). Use (4.127) to show that

[X,H ] = 0 ⇐⇒ etXHe−tX = H ∀t ∈ R. (4.129)

If we think of H as a quantum-mechanical Hamiltonian, this shows how the invariance
properties of the Hamiltonian (like invariance under rotations R) can be formulated in terms
of commutators with the corresponding generators.

To make the connection between all this and Example 4.37, we note that usually
AdA will preserve a metric on g (known as the Killing Form K ; see Problem 4.12),
and thus

Ad : G → Isom(g). (4.130)

In the case of G = SU(2) above, g = su(2) is three-dimensional and K is positive-
definite, so32

32Of course, this identification depends on a choice of basis, which was made when we chose to
work with B = {S1, S2, S3}.
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Isom
(

su(2)
)  O(3), (4.131)

and thus Ad : SU(2) → O(3). You can check that this map is identical to the ho-
momorphism ρ described in Example 4.19, and so we actually have Ad : SU(2) →
SO(3)! Thus the homomorphism between SU(2) and SO(3) is nothing but the Ad-
joint map of SU(2), where Ad(g), g ∈ SU(2) is orthogonal with respect to the
Killing form on su(2). We also have the corresponding Lie algebra homomorphism
ad : su(2) → so(3), and we know that this must be equal to φ from Example 4.37,
so [adSi

]B = φ(Si) = Li .

Exercise 4.38 Using [Si , Sj ] = ∑3
k=1 εijkSk , compute the matrix representation of adSi

in
the basis B and verify explicitly that [adSi

]B = Li .

4.9 Problems

4.1 In this problem we show that SO(n) can be characterized as the set of all linear
operators which take orthonormal (ON) bases into orthonormal bases and can be
obtained continuously from the identity.

(a) The easy part. Show that if a linear operator R takes ON bases into ON bases
and is continuously obtainable from the identity, then R ∈ SO(n). It’s immediate
that R ∈ O(n); the trick here is showing that detR = 1.

(b) The converse. If R ∈ SO(n), then it is immediate that R takes ON bases into ON
bases. The slightly nontrivial part is showing that R is continuously obtainable
from the identity. Prove this using induction, as follows: First, show that the
claim is trivially true for SO(1). Then suppose that the claim is true for n − 1.
Take R ∈ SO(n) and show that it can be continuously connected (via orthogonal
similarity transformations) to a matrix of the form

(

1
R′

)

, R′ ∈ SO(n − 1). (4.132)

The claim then follows since by hypotheses R′ can be continuously connected
to the identity. (Hint: You will need the 2-D rotation which takes e1 into Re1.)

4.2 In this problem we prove Euler’s theorem that any R ∈ SO(3) has an eigenvec-
tor with eigenvalue 1. This means that all vectors v proportional to this eigenvector
are invariant under R, i.e. Rv = v, and so R fixes a line in space, known as the axis
of rotation.

(a) Show that λ being an eigenvalue of R is equivalent to det(R − λI) = 0. Refer
to Problem 3.5 if necessary.

(b) Prove Euler’s theorem by showing that

det(R − I ) = 0. (4.133)

Do this using the orthogonality condition and properties of the determinant. You
should not have to work in components.
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4.3 Show that the matrix (4.24) is just the component form (in the standard basis)
of the linear operator

R(n̂, θ) = L(n̂) ⊗ n̂ + cos θ
(

I − L(n̂) ⊗ n̂
) + sin θ n̂× (4.134)

where (as you should recall) L(v)(w) = (v,w) and the last term eats a vector v and
spits out sin θ n̂ × v. Show that the first term is just the projection onto the axis of
rotation n̂, and that the second and third term just give a counterclockwise rotation
by θ in the plane perpendicular to n̂. Convince yourself that this is exactly what a
rotation about n̂ should do.

4.4 Show that SO(3,1)o is a subgroup of O(3,1). Remember that SO(3,1)o is de-
fined by 3 conditions: |A| = 1, A44 > 1, and (4.14). Proceed as follows:

(a) Show that I ∈ SO(3,1)o.
(b) Show that if A ∈ SO(3.1)o, then A−1 ∈ SO(3,1)o. Do this as follows:

(i) Verify that |A−1| = 1.
(ii) Show that A−1 satisfies (4.14). Use this to deduce that AT does also.

(iii) Write out the 44 component of (4.14) for both A and A−1. You should get
equations of the form

a2
0 = 1 + a2 (4.135)

b2
0 = 1 + b2, (4.136)

where b0 = (A−1)44. Clearly this implies b0 < −1 or b0 > 1. Now, write
out the 44 component of the equation AA−1 = I . You should find

a0b0 = 1 − a · b. (4.137)

If we let a ≡ |a|, b ≡ |b| then the last equation implies

1 − ab < a0b0 < 1 + ab. (4.138)

Assume b0 < −1 and use (4.136) to derive a contradiction to (4.138),
hence showing that b0 = (A−1)44 > 1, and that A−1 ∈ SO(3,1)o.

(c) Show that if A,B ∈ SO(3,1)o, then AB ∈ SO(3,1)o. You may have to do some
inequality manipulating to show that (AB)44 > 0.

4.5 In this problem we prove that any A ∈ SO(3,1)o can be written as a product of
a rotation and a boost.

(a) If A is not a pure rotation then there is some relative velocity β between the
standard reference frame and the new one described by A. Use the method of
Exercise 4.11 to find β in terms of the components of A.

(b) Let L be the pure boost of the form (4.29) corresponding to the β you found
above. Show that L−1A is a rotation, by calculating that

(

L−1A
)

44 = 1
(

L−1A
)

i4 = (

L−1A
)

4i
= 0, i = 1,2,3.

Conclude that A = L(L−1A) is the desired decomposition.
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4.6 In this problem we show that any A ∈ SL(2,C) can be decomposed as A =
L̃U where U ∈ SU(2) and L̃ is of the form (4.35). Unfortunately, it is a little too
much work to prove this from scratch, so we will start with the polar decomposition
theorem, which states that any A ∈ SL(2,C) can be decomposed as A = HU where
U ∈ SU(2) and H is Hermitian and positive, which means that (v,Hv) > 0 for all
nonzero v ∈ C

2 (here (· | ·) is the standard Hermitian inner product on C
2). The

polar decomposition theorem can be thought of as a higher-dimensional analog of
the polar form of a complex number, z = reiθ . You will show below that the set of
positive, Hermitian H ∈ SL(2,C) is exactly the set of matrices of the form (4.35).
This, combined with the polar decomposition theorem, yields the desired result. For
more on the polar decomposition theorem itself, including a proof, see Hall [8].

(a) Show that an arbitrary Hermitian 1 × H ∈ SL(2,C) can be written as

H =
(

a + b z

z̄ a − b

)

(4.139)

where

a, b ∈ R, z ∈ C, a2 − b2 − |z|2 = 1. (4.140)

(b) Show that any numbers a, b, z satisfying (4.140) can be written in the form

a = ± coshu

b = vz sinhu

z = (vx − ivy) sinhu

for some u ∈ R and unit vector v ∈ R
3. Then show that positivity requires that

a = + coshu. This puts H in the form (4.35).
(c) It remains to be shown that an H of the form (4.35) is actually positive. To do

this, we employ a theorem (see Hoffman and Kunze [10]) which states that a
matrix B is positive if and only if it is Hermitian and all its principal minors
are positive, where its principal minors �k(B), k ≤ n are the k × k partial de-
terminants defined by

�k(B) ≡
∣

∣

∣

∣

∣

∣

B11 · · · B1k

· · · · · · · · ·
Bk1 · · · Bkk

∣

∣

∣

∣

∣

∣

. (4.141)

Show that both the principal minors �1(H) and �2(H) are positive, so that H

is positive.

4.7 In this problem we find an explicit formula for the map ρ : SU(2) → O(3) of
Example 4.19 and use it to prove that ρ maps SU(2) onto SO(3) and has kernel ±I .

(a) Take an arbitrary SU(2) matrix A of the form (4.25) and calculate AXA† for an
arbitrary X ∈ su(2) of the form (4.39).

(b) Decomposing α and β into their real and imaginary parts, use (a) to compute
the column vector [AXA†].
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(c) Use (b) to compute the 3 × 3 matrix ρ(A). Recall that ρ(A) is defined by the
equation ρ(A)[X] = [AXA†].

(d) Parametrize α and β as

α = ei(ψ+φ)/2 cos
θ

2

β = iei(ψ−φ)/2 sin
θ

2
as in (4.26). Substitute this into your expression for ρ(A) and show that this is
the transpose (or inverse, by the orthogonality relation) of (4.23).

(e) Parametrize α and β as in (4.92) by

α = cos(θ/2) − inz sin(θ/2)

β = (−inx − ny) sin(θ/2)

and substitute this into your expression for ρ(A) to get (4.24).
(f) Conclude that detρ(A) = 1 and that ρ maps SU(2) onto SO(3). Also use your

expression from (c) to show that the kernel of ρ is ±I . (It’s obvious that
±I ∈ K . What takes a little calculation is showing that ±I is all of K .)

4.8 In this problem we find an explicit formula for the map ρ : SL(2,C) → O(3,1)

of Example 4.20 and use it to prove that ρ maps SL(2,C) onto SO(3,1)o and has
kernel ±I . Note that since any A ∈ SL(2,C) can be decomposed into A = L̃R̃ with
R̃ ∈ SU(2) and L̃ of the form (4.35), and any B ∈ SO(3,1)o can be decomposed as
B = LR′ where L is of the form (4.31) and R′ ∈ SO(3) ⊂ SO(3,1)o, our task will
be complete if we can show that ρ(L̃) = L. This we will do as follows:

(a) To simplify computation, write the matrix (4.35) as

L̃ =
(

a + b z

z̄ a − b

)

, a, b ∈ R, z ∈ C (4.142)

and calculate L̃XL̃† for X ∈ H2(C) of the form (4.42).
(b) Decomposing z into its real and imaginary parts, compute the column vector

[L̃XL̃†].
(c) Use (b) to compute the 4 × 4 matrix ρ(L̃).
(d) Substitute back in the original expressions for a, b and z

a = coshu/2

b = uz

u
sinhu/2

z = 1

u
(ux − iuy) sinhu/2

into ρ(L̃) to obtain (4.31).

4.9 In this problem we will prove the claim from Example 4.22 that, for a given
permutation σ ∈ Sn, the number of transpositions in any decomposition of σ is
either always odd or always even.
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(a) Consider the polynomial

p(x1, . . . , xn) =
∏

i<j

(xi − xj ).

For example, for n = 3 and n = 4 this gives

p(x1, x2, x3) = (x1 − x2)(x1 − x3)(x2 − x3)

p(x1, x2, x3, x4) = (x1 − x2)(x1 − x3)(x1 − x4)

× (x2 − x3)(x2 − x4)(x3 − x4).

Define an action of σ ∈ Sn on p by

(σp)(x1, . . . , xn) ≡ p(xσ(1), . . . , xσ(n)) =
∏

i<j

(xσ(i) − xσ(j)).

Convince yourself that σp = ±p.
(b) Let τ ∈ Sn be a transposition. Prove (or at least convince yourself) that

τp = −p.
(c) Now assume that σ has a decomposition into an even number of transpositions.

Use p to prove that σ can then never have a decomposition into an odd number
of transpositions. Use the same logic to show that if σ has a decomposition into
an odd number of transpositions, then all of its decompositions must have an
odd number of transpositions.

4.10 Consider the subset H ⊂ GL(n,C) consisting of those matrices whose entries
are real and rational. Show that H is in fact a subgroup, and construct a sequence of
matrices in H that converge to an invertible matrix with irrational entries (there are
many ways to do this!). This shows that H is a subgroup of GL(n,C) which is not
a matrix Lie group.

4.11 Let G be a Lie group and let X,Y ∈ g. Suppose that X and Y are small, so that
eXeY is close to the identity and hence has a logarithm computable by the power
series for ln,

ln(X) = −
∞
∑

k=1

(I − X)k

k
. (4.143)

By explicitly expanding out the relevant power series, show that up to third order in
X and Y ,

ln
(

eXeY
) = X + Y + 1

2
[X,Y ] + 1

12

[

X, [X,Y ]] − 1

12

[

Y, [X,Y ]] + · · · . (4.144)

Note that one would actually have to compute higher-order terms to verify that they
can be written as commutators, and this gets very tedious. A more sophisticated
proof is needed to show that every term in the series is an iterated commutator and
hence an element of g. See Varadarajan [17] for such a proof.
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4.12 Let G be a matrix Lie group. Its Lie algebra g comes equipped with a sym-
metric (2,0) tensor known as its Killing Form, denoted K and defined by

K(X,Y ) ≡ −Tr(adXadY ). (4.145)

(a) Show that K is Ad-invariant, in the sense that

K
(

AdA(X),AdA(Y )
) = K(X,Y ) ∀X,Y ∈ g, A ∈ G.

(b) You know from Exercise 4.38 that [adSi
] = Li . Use this to compute the compo-

nents of K in the {Si} basis and prove that

[K] = 2I (4.146)

so that K is positive-definite. This means that K is an inner product on su(2),
and so from part (a) we conclude that AdA ∈ Isom(su(2))  O(3).

4.13 Prove directly that

AdetX = et adX (4.147)

by induction, as follows: first verify that the terms first order in t on either side
are equal. Then, assume that the nth order terms are equal (where n is an arbitrary
integer), and use this to prove that the n + 1th order terms are equal. Induction then
shows that the terms of every order are equal, and so (4.147) is proven.

4.14 Prove the formula eTrX = det eX as follows: Consider the determinant func-
tion as a homomorphism

det : GL(n,C) → C
∗

A �→ detA.

This induces a Lie algebra homomorphism

φ : gl(n,C) → C. (4.148)

We will show that φ(A) = TrA, which will imply eTrX = det eX by (4.116). By
definition, we have

φ(X) = d

dt
det

(

etX
)

∣

∣

∣

∣

t=0
. (4.149)

To evaluate this, expand the exponential to first order in t , plug into the determinant
using the formula (3.84), and expand this to first order in t using properties of the
determinant. This should yield the desired result.





Chapter 5
Basic Representation Theory

Now that we are familiar with groups and, in particular, the various transformation
groups (i.e. matrix Lie groups) that arise in physics, we are ready to look at objects
that ‘transform’ in specific ways under the action of these groups. The notion of an
object ‘transforming’ in a specific way is made precise by the mathematical notion
of a representation, which is essentially just a way of representing the elements of
a group or Lie algebra as operators on a vector space (the objects which ‘transform’
are then just elements of the vector space). Representations are important in both
classical and quantum physics: In classical physics, they clarify what we mean by
a particular object’s ‘transformation properties’. In quantum mechanics, they both
provide the basic mathematical framework (the Lie algebra of observables g acts on
the Hilbert space at hand, so that the Hilbert space furnishes a representation of g)
as well as clarify the notion of ‘vector’ and ‘tensor’ operators, which are usually
introduced in a somewhat ad hoc way (much as we did in Sect. 3.7!). Furthermore,
representation theory allows us to easily and generally prove many of the quantum
mechanical ‘selection rules’ that are so handy in computation.

As with our discussion of tensors, we will treat mainly finite-dimensional vector
spaces here but will occasionally be interested in infinite-dimensional applications.
Rigorous treatment of these applications can be subtle and technical, though, so as
before we will extend our results to certain infinite-dimensional cases without ad-
dressing the issues related to infinite-dimensionality. Again, you should be assured
that all such applications are legitimate and can, in theory, be justified.

5.1 Representations: Definitions and Basic Examples

A representation of a group G is a vector space V together with a group homomor-
phism � : G → GL(V ). Sometimes they are written as a pair (�,V ), though occa-
sionally when the homomorphism � is understood we will just talk about V , which
is known as the representation space. If V is a real vector space then we say that
(�,V ) is a real representation, and similarly if V is a complex vector space. We can
think of the operators �(g) (which we will sometimes write as �g) as ‘represent-
ing’ the elements of G as invertible linear operators on V . If G is a matrix Lie group,

N. Jeevanjee, An Introduction to Tensors and Group Theory for Physicists,
DOI 10.1007/978-0-8176-4715-5_5, © Springer Science+Business Media, LLC 2011
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146 5 Basic Representation Theory

and V is finite-dimensional, and the group homomorphism � : G → GL(V ) is con-
tinuous, then � induces a Lie algebra homomorphism π : g → gl(V ) by (4.114).
Any homomorphism from g to gl(V ) for some V is known as a Lie algebra rep-
resentation, so every finite-dimensional representation of a Lie group G induces
a representation of the corresponding Lie algebra g. The converse is not true, how-
ever; not every representation of g comes from a corresponding representation of G.
This is intimately connected with the fact that for a given Lie algebra g, there is no
unique matrix Lie group G that one can associate to it. We will discuss this in detail
in the case of su(2) and so(3,1) later.

In many of our physical applications the vector space V will come equipped
with an inner product (· | ·) which is preserved by the operators �g (in other words,
�(g) ∈ Isom(V ) ∀g ∈ G). In this case, we say that � is a unitary representation,
since each �(g) will be a unitary operator (cf. Example 4.5). If π is the induced Lie
algebra representation, then ∀X ∈ g, we have

(v|w) = (

�
(

etX
)

v|�(

etX
)

w
) ∀v,w ∈ V, t ∈ R. (5.1)

Employing our standard trick of differentiating with respect to t and evaluating at
t = 0 gives

0 = (

π(X)v|w) + (

v|π(X)w
)

= (

π(X)v|w) + (

π(X)†v|w)

= ([

π(X) + π(X)†]v|w)

⇒ π(X) + π(X)† = 0

so π(X) is anti-Hermitian for all X! Thus, if

� : G → Isom(V ),

then

π : g → isom(V ) (5.2)

as the notation suggests. Any Lie algebra homomorphism π : g → isom(V ) is called
a unitary representation of g, regardless of whether or not it comes from a unitary
representation of G.

One of the reasons unitary representations are so common in physics is that in
quantum mechanics, states are represented by unit vectors and so any linear oper-
ator T that takes a state into another state must preserve norms. This implies (as
can be shown via an argument almost identical to the one used in Exercise 4.19)
that T must be unitary, and so virtually all representations of interest in quantum
mechanics are unitary.

Example 5.1 The trivial representation

As the name suggests, this example will be somewhat trivial, though we will end up
referring to it later. For any group G (matrix or discrete) and vector space V , define
the trivial representation of G on V by
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�(g) = I ∀g ∈ G. (5.3)

You will verify below that this is a representation. Suppose in addition that G is
a matrix Lie group. What is the Lie algebra representation induced by �? For all
X ∈ g we have

π(X) = d

dt
�

(

etX
)

= d

dt
I

= 0

so the trivial representation of a Lie algebra is given by π(X) = 0 ∀X ∈ g.

Exercise 5.1 Let our representation space be V = C. Show that GL(C) � GL(1,C) � C
∗

where C
∗ is the group of nonzero complex numbers. Then verify that � : G → C

∗ as
defined above is a group homomorphism, hence a representation. Also verify that π : g →
gl(C) � C given by π(X) = 0 ∀X is a Lie algebra representation.

Example 5.2 The fundamental representation

Let G be a matrix Lie group. By definition, G is a subset of GL(n,C) = GL(Cn)

for some n, so we can consider the obvious representation just given by interpreting
the elements of G as operators (acting by matrix multiplication) on V = Cn. This is
known as the fundamental (or standard) representation of G. If G = O(3) or SO(3)

then V = R
3 and the fundamental representation is known as the vector represen-

tation. If G = SU(2) then V = C
2 and the fundamental representation is known

as the spinor representation. If G = SO(3,1)o or O(3,1) then V = R
4, and the

fundamental representation is also known as the vector (or sometimes four-vector)
representation. If G = SL(2,C) then V = C

2, and the fundamental representation is
also known as the spinor representation. Vectors in this last representation are some-
times referred to more specifically as left-handed spinors, and are used to describe
massless relativistic spin 1/2 particles like the neutrino.1

Each of these group representations induces a representation of the correspond-
ing Lie algebra which then goes by the same name, and which is also given just by
interpreting the elements of g ⊂ gl(n,C) as linear operators. Since Lie algebras are
vector spaces and a representation π is a linear map, we can describe any Lie alge-
bra representation completely just by giving the image of the basis vectors under π

(this is one of the nice features of Lie algebra representations; they are much easier
to concretely visualize). Thus, the vector representation of so(3) is given by

1There is, of course, such a thing as a right-handed spinor as well, which we will meet in the next
section and which is also used to describe massless spin 1/2 particles. The right and left-handed
spinors are known collectively as Weyl spinors, in contrast to the Dirac spinors, which are used to
describe massive spin 1/2 particles. We shall discuss Dirac spinors towards the end of this chapter.
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π(Lx) =
⎛

⎝

0 0 0
0 0 −1
0 1 0

⎞

⎠

π(Ly) =
⎛

⎝

0 0 1
0 0 0

−1 0 0

⎞

⎠

π(Lz) =
⎛

⎝

0 −1 0
1 0 0
0 0 0

⎞

⎠

where, of course, π is just the identity. Likewise, the spinor representation of su(2)

is given by

π(Sx) = 1

2

(

0 −i

−i 0

)

π(Sy) = 1

2

(

0 −1
1 0

)

π(Sz) = 1

2

(−i 0
0 i

)

and similarly for the vector representation of so(3,1) and the spinor representation
of sl(2,C)R.

Exercise 5.2 Show that the fundamental representations of SO(3), O(3), and SU(2) are
unitary. (The fundamental representations of SO(3,1)o , O(3,1), and SL(2,C) are not uni-
tary, which can be guessed from the fact that the matrices in these groups are not unitary
matrices. This stems from the fact that these groups preserve the Minkowski metric, which
is not an inner product.)

Example 5.3 The adjoint representation

A less trivial class of examples is given by the Ad homomorphism of Example 4.39.
Recall that Ad is a map from G to GL(g), where the operator AdA (for A ∈ G) is
defined by

AdA(X) = AXA−1, X ∈ g.

In the context of representation theory, the Ad homomorphism is known as the ad-
joint representation (Ad,g). Note that the vector space of the adjoint representation
is just the Lie algebra of G! The adjoint representation is thus quite a natural con-
struction, and is ubiquitous in representation theory (and elsewhere!) for that reason.
To get a handle on what the adjoint representation looks like for some of the groups
we have been working with, we consider the corresponding Lie algebra representa-
tion (ad,g), which you will recall acts as

adX(Y ) = [X,Y ], X,Y ∈ g.

For so(3) with basis B = {Li}i=1–3, you have already calculated in Exercise 4.38
(using the isomorphic su(2) with basis {Si}i=1–3) that
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[adLi
]B = Li

so for so(3) the adjoint representation and fundamental representation are identical!
(Note that we did not have to choose a basis when describing the fundamental rep-
resentation because the use of the standard basis there is implicit.) Does this mean
that the adjoint representations of the corresponding groups SO(3) and O(3) are
also identical to the vector representation? Not quite. The adjoint representation of
SO(3) is identical to the vector representation (as we will show), but that does not
carry over to O(3); for O(3), the inversion transformation −I acts as minus the
identity in the vector representation, but in the adjoint representation acts as

Ad−I (X) = (−I )X(−I ) = X (5.4)

so Ad−I is the identity! Thus the vector and adjoint representations of O(3), though
similar, are not identical, and so the adjoint representation is known as the pseu-
dovector representation.2 This will be discussed further in the next section.

What about the adjoint representations of SU(2) and su(2)? Well, we already
met these representations in Examples 4.19 and 4.37, and since su(2) � so(3) and
the adjoint representation of so(3) is the vector representation, the adjoint represen-
tations of both SU(2) and su(2) are also known as their vector representations.

As for the adjoint representations of SO(3,1)o and O(3,1), it is again useful to
consider first the adjoint representation of their common Lie algebra, so(3,1). The
vector space here is so(3,1) itself, which is six-dimensional and spanned by the
basis B = {L̃i ,Kj }i,j=1–3. You will compute in Exercise 5.3 below that the matrix
forms of ad

L̃i
and adKi

are (in 3 × 3 block matrix form)

[adL̃i
] =

(

Li 0
0 Li

)

(5.5)

[adKi
] =

(

0 −Li

−Li 0

)

. (5.6)

From this we see that the L̃i and Ki both transform like vectors under rotations
(adL̃i

), but are mixed under boosts (adKi
). This is reminiscent of the behavior of the

electric and magnetic field vectors, and it turns out (as we will see in Sect. 5.4) that
the action of so(3,1) acting on itself via the adjoint representation is identical to the
action of Lorentz transformation generators on the antisymmetric field tensor Fμν

from Example 3.16. The adjoint representation for so(3,1) is thus also known as the
antisymmetric second rank tensor representation, as are the adjoint representations
of the corresponding groups SO(3,1)o and O(3,1). We omit a discussion of the
adjoint representation of SL(2,C) for technical reasons.3 �

2You shouldn’t be surprised at the nomenclature here, since we saw in Example 3.29 that pseu-
dovectors are essentially 3 × 3 antisymmetric matrices, which are exactly so(3)!
3Namely, that the vector space in question, sl(2,C)R, is usually regarded as a three-dimensional
complex vector space in the literature, not as a six-dimensional real vector space (which is the
viewpoint of interest for us), so to avoid confusion we omit this topic. This will not affect any
discussions of physical applications.
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Exercise 5.3 Verify (5.5) and (5.6).

At this point your head may be swimming with nomenclature; the following table
should help:

Group Fundamental rep Adjoint rep

SO(3) vector vector

O(3) vector pseudovector

SU(2) spinor vector

SO(3,1)o vector antisymmetric rank 2 tensor

O(3,1) vector antisymmetric rank 2 tensor

SL(2,C) Weyl spinor –

5.2 Further Examples

The fundamental and adjoint representations of a matrix Lie group are the most ba-
sic examples of representations and are the ones out of which most others can be
built, as we will see in the next section. There are, however, a few other represen-
tations of matrix Lie groups that you are probably already familiar with, as well
as a few representations of abstract Lie algebras and discrete groups that are worth
discussing. We will discuss these in this section, and return in the next section to
developing the general theory.

Example 5.4 Representations of Z2

The notion of representations is useful not just for matrix Lie groups, but for more
general groups as well. Consider the finite group Z2 = {1,−1}. For any vector
space V , we can define the alternating representation (�alt,V ) of Z2 by

�alt(1) = I

�alt(−1) = −I.

This, along with the trivial representation, allows us to succinctly distinguish
between the vector and pseudovector representations of O(3)4; when restricted
to Z2 � {I,−I } ⊂ O(3), the fundamental (vector) representation of O(3) be-
comes �alt, whereas the adjoint (pseudovector) representation becomes �trivial.

Another place where these representations of Z2 crop up is the theory of identical
particles. Recall from Example 4.22 that there is a homomorphism sgn : Sn → Z2
which tells us whether a given permutation is even or odd. If we then compose this
map with either of the two representations introduced above, we get two representa-
tions of Sn: �alt ◦ sgn, which is known as the sgn (read: ‘sign’) representation of Sn,

4And, as we will see, between the vector and pseudovector representations of O(3,1).
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and �trivial ◦ sgn, which is just the trivial representation of Sn. If we consider an n-
particle system with Hilbert space T 0

n (H), then from Example 4.22 we know that
Sn(H) ⊂ T 0

p (H) furnishes the trivial representation of Sn, whereas �nH ⊂ T 0
p (H)

furnishes the sgn representation of Sn. This allows us to restate the symmetrization
postulate once again, in its arguably most succinct form: For a system composed of
n identical particles, any state of the system lives either in the trivial representation
of Sn (in which case the particles are known as bosons) or in the sgn representation
of Sn (in which case the particles are known as fermions).

Example 5.5 The four-vector representation of SL(2,C)

Recall from Example 4.20 that SL(2,C) acts on H2(C) by sending X → AXA†,
where X ∈ H2(C) and A ∈ SL(2,C). It is easy to see that this actually defines a
representation (�,H2(C)) given by

�(A)(X) ≡ AXA†. (5.7)

We already saw that if we take B = {σx,σy, σz, I } as a basis for H2(C), then
[�(A)] ∈ SO(3,1), so in this basis the action of �(A) looks like the action of re-
stricted Lorentz transformations on four-vectors. Hence (�,H2(C)) is also known
as the four-vector representation of SL(2,C).

Example 5.6 The right-handed spinor representation of SL(2,C)

As one might expect, the right-handed spinor representation (�̄,C
2) of SL(2,C) is

closely related to the fundamental (left-handed spinor) representation. It is defined
simply by taking the adjoint inverse of the fundamental representation, that is,

�̄(A)v ≡ A†−1v, A ∈ SL(2,C), v ∈ C
2. (5.8)

You can easily check that this defines a bona fide representation of SL(2,C). The
usual four component Dirac spinor can be thought of as a kind of ‘sum’ of a left-
handed spinor and a right-handed one, as we will discuss later on. �

The next few examples are instances of a general class of representations that are
worth describing briefly. Say we are given a finite-dimensional vector space V , a
representation � of G on V , and a possibly infinite-dimensional vector space C(V )

of functions on V (this could be, for instance, the set Pl(V ) of all polynomial func-
tions of a fixed degree l, or the set of all infinitely differentiable complex-valued
functions C(V ), or the set of all square-integrable functions L2(V )). Then the rep-
resentation � on V induces a representation �̃ on C(V ) as follows: if f ∈ C(V ),
then the function �̃gf ∈ C(V ) is given by

(�̃gf )(v) ≡ f
(

�−1
g v

)

, g ∈ G, f ∈ C(V ), v ∈ V. (5.9)

There are a couple things to check. First, it must be verified that �̃gf is actually
an element of C(V ); this, of course, depends on the exact nature of C(V ) and of �

and must be checked independently for each example. Assuming this is true, we also
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need to verify that �̃(g) is a linear operator and that it satisfies �̃(gh) = �̃(g)�̃(h).
This computation is the same for all such examples, and you will perform it in
Exercise 5.4 below.

Exercise 5.4 Confirm that if (�,V ) is a representation of G, then �̃g is a linear operator
on C(V ), and that �̃(g1)�̃(g2) = �̃(g1g2). What happens if you try to define �̃ using g

instead of g−1?

Example 5.7 The spin s representation of su(2) and polynomials on C
2

We already know that the Hilbert space corresponding to a spin s particle fixed in
space is C

2s+1. Since the spin angular momentum S is an observable for this sys-
tem and the Si have the su(2) structure constants, C

2s+1 must be a representation
of su(2). How is this representation defined? Usually one answers this question by
considering the eigenvalues of Sz and showing that for any finite-dimensional rep-
resentation V , the eigenvalues of Sz lie between −s and s for some half-integral s.
V is then defined to be the span of the eigenvectors of Sz (from which we conclude
that dimV = 2s + 1), and the action of Sx and Sy is determined by the su(2) com-
mutation relations. This construction is important and will be presented in Sect. 5.8,
but it is also rather abstract; for the time being we present an alternate construction
which is more concrete.

Consider the set of all degree l polynomials on C
2, i.e. the set of all degree l

polynomials in the two complex variables z1 and z2. This is a complex vector space,
denoted Pl(C

2), and has basis

Bl = {

zl−k
1 zk

2

∣

∣ 0 ≤ k ≤ l
} = {

zl
1, z

l−1
1 z2, . . . , z1z

l−1
2 , zl

2

}

and hence dimension l +1. The fundamental representation of SU(2) on C
2 then in-

duces an SU(2) representation (�l,Pl(C
2)) as described above: given a polynomial

function p ∈ Pl(C
2) and A ∈ SU(2), �l(A)(p) is the degree l polynomial given by

(

�l(A)(p)
)

(v) ≡ p
(

A−1v
)

, v ∈ C
2.

To make this representation concrete, consider the degree one polynomial
p(z1, z2) = z1. This polynomial function just picks off the first coordinate of any
v ∈ C

2. Let

A =
(

α β

−β̄ ᾱ

)

so that

A−1 =
(

ᾱ −β

β̄ α

)

.

Then
(

�1(A)p
)

(v) = p
(

A−1v
)

but
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A−1v =
(

ᾱ −β

β̄ α

)(

z1
z2

)

=
(

ᾱz1 − βz2

β̄z1 + αz2

)

(5.10)

so then

�1(A)z1 = ᾱz1 − βz2.

Likewise, (5.10) tells us that

�1(A)z2 = β̄z1 + αz2.

From this, the action of �l(A) on higher order polynomials can be determined since
�l(A)(zl−k

1 zk
2) = (�1(A)z1)

l−k(�1(A)z2)
k .

We can then consider the induced Lie algebra representation (πl,Pl(C
2)), in

which (as you will show) zl−k
1 zk

2 is an eigenvector of Sz with eigenvalue i( l
2 − k),

so that

[Sz]Bl
= i

⎛

⎜

⎜

⎝

l/2
l/2 − 1

· · ·
−l/2

⎞

⎟

⎟

⎠

. (5.11)

If we let s ≡ l/2 then we recognize this as the usual form (up to that pesky factor
of i) of Sz acting on the Hilbert space of a spin s particle. �

Exercise 5.5 Use the definition of induced Lie algebra representations and the explicit form
of etSi in the fundamental representation (which can be deduced from (4.92)) to compute
the action of the operators π1(Si ) on the functions z1 and z2 in P1(C

2). Show that we can
write these operators in differential form as

π1(S1) = i

2

(

z2
∂

∂z1
+ z1

∂

∂z2

)

π1(S2) = 1

2

(

z2
∂

∂z1
− z1

∂

∂z2

)

(5.12)

π1(S3) = i

2

(

z1
∂

∂z1
− z2

∂

∂z2

)

.

Prove that these expressions also hold for the operators πl(Si ) on Pl(C
2). Verify the su(2)

commutation relations directly from these expressions. Finally, use (5.12) to show that

(

πl(Sz)
)(

zl−k
1 zk

2

) = i(l/2 − k)zl−k
1 zk

2.

Example 5.8 L2(R3) as a representation of SO(3)

Recall from Example 3.18 that L2(R3) is the set of all complex-valued square-
integrable functions on R

3, and is physically interpreted as the Hilbert space of a
spinless particle moving in three dimensions. As in the previous example, the funda-
mental representation of SO(3) on R

3 induces an SO(3) representation (�,L2(R3))

by
(

�R(f )
)

(x) ≡ f
(

R−1x
)

, f ∈ L2(
R

3), R ∈ SO(3), x ∈ R
3. (5.13)
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One can think of �(R)f as just a “rotated” version of the function f . This repre-
sentation is unitary, as we will now digress for a moment to show.

Let (· | ·) denote the Hilbert space inner product on L2(R3). To show that � is
unitary, we need to show that

(

�(R)f |�(R)g
) = (f |g) ∀f,g ∈ L2(

R
3). (5.14)

First off, we have
(

�(R)f |�(R)g
) =

∫

d3x (�Rf̄ )(x)(�Rg)(x)

=
∫

d3x f̄
(

R−1x
)

g
(

R−1x
)

.

If we now change variables to x′ = R−1x and remember to include the Jacobian, we
get

(

�(R)f |�(R)g
) =

∫

d3x ′
∣

∣

∣

∣

∂(x, y, z)

∂(x′, y ′, z′)

∣

∣

∣

∣
f̄ (x′)g(x′)

=
∫

d3x ′ f̄ (x′)g(x′)

= (f |g)

where you will verify below that the Jacobian determinant | ∂(x,y,z)
∂(x ′,y′,z′) | is equal to one.

This should be no surprise; the Jacobian tells us how volumes change under a change
of variables, but since in this case the change of variables is given just by a rotation
(which we know preserves volumes), we should expect the Jacobian to be one.

Though the definition of � might look strange, it is actually the action of ro-
tations on position kets that we are familiar with; if we act on the basis ‘vector’
|x0〉 = δ(x − x0), we find that (for arbitrary ψ ∈ L2(R3))

〈ψ |�R|x0〉 =
∫

d3x ψ̄(x)δ
(

R−1x − x0
)

=
∫

d3x ′ ψ̄(Rx′)δ(x′ − x0) where we let x′ ≡ R−1x

= ψ̄(Rx0)

hence we must have

�R|x0〉 = |Rx0〉
which is the familiar action of rotations on position kets.

What does the corresponding representation of so(3) look like?5 As mentioned
above, we can get a handle on that just by computing π(Li), since π is a linear map

5We should mention here that the infinite-dimensionality of L2(R3) makes a proper treatment of
the induced Lie algebra representation quite subtle; for instance, we calculate in this example that
the elements of so(3) are to be represented by differential operators, yet not all functions in L2(R3)

are differentiable! (Just think of a step function which is equal to 1 inside the unit sphere and 0
outside the unit sphere; this function is not differentiable at r = 1.) In this example and elsewhere,
we ignore such subtleties.
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and any X ∈ so(3) can just be expressed as a linear combination of the Li . Hence
we compute

(πLi
f )(x) = d

dt
(�etLi f )(x)

∣

∣

∣

∣

t=0
by the def. of π

= d

dt
f

(

e−tLi x
)

∣

∣

∣

∣

t=0
by the def. of �

=
3

∑

j=1

∂f

∂xj
(x)

d

dt

(

e−tLi x
)j

∣

∣

∣

∣

t=0
by the multivariable chain rule

=
3

∑

j=1

∂f

∂xj
(x)(−Lix)j

= −
3

∑

j,k=1

∂f

∂xj
(x)(Li)jkx

k

=
3

∑

j,k=1

εijkx
k ∂f

∂xj
(x) since (Li)jk = −εijk

so that, relabeling dummy indices,

π(Li) = −
3

∑

j,k=1

εijkx
j ∂

∂xk
.

More concretely, we have

π(Lx) = z
∂

∂y
− y

∂

∂z

π(Ly) = x
∂

∂z
− z

∂

∂x

π(Lz) = y
∂

∂x
− x

∂

∂y

(5.15)

which, up to our usual factor of i, is just (2.11)! �

Exercise 5.6 Verify that if x′ = R−1x for some rotation R ∈ SO(3), then
∣

∣

∣

∣

∂(x, y, z)

∂(x′, y′, z′)

∣

∣

∣

∣
= 1. (5.16)

Example 5.9 Hl (R
3), H̃l and L2(S2) as representations of SO(3)

Recall from Chap. 2 that Hl(R
3) is the vector space of all harmonic complex-valued

degree l polynomials on R
3. Since Hl (R

3) is a space of functions on R
3, we get an

SO(3) representation of the same form as in the last example, namely
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(

�l(R)(f )
)

(x) ≡ f
(

R−1x
)

, f ∈ Hl

(

R
3), R ∈ SO(3), x ∈ R

3.

You will check below that if f is a harmonic polynomial of degree l, then �l(R)f

is too, so that �l really is a representation on Hl (R
3). The induced so(3) represen-

tation also has the same form as in the previous example.
If we now restrict all the functions in Hl (R

3) to the unit sphere, we get a repre-
sentation of SO(3) on H̃l , the space of spherical harmonics of degree l. Concretely,
we can describe this representation by writing Y(θ,φ) as Y(n̂), where n̂ is a unit
vector giving the point on the sphere which corresponds to (θ,φ). Then the SO(3)

representation (�̃, H̃l ) is given simply by
(

�̃l(R)Y
)

(n̂) ≡ Y
(

R−1n̂
)

. (5.17)

The interesting thing about this representation is that it also turns out to be unitary!
The inner product in this case is just given by integration over the sphere with the
usual area form, i.e.

(

Y1(θ,φ)|Y2(θ,φ)
) ≡

∫ π

0

∫ 2π

0
Ȳ1(θ,φ)Y2(θ,φ) sin θ dφ dθ. (5.18)

Proving that (5.17) is unitary with respect to this inner product is straightforward
but tedious, so we omit the calculation.6

One nice thing about this inner product, though, is that we can use it to define a
notion of square-integrability just as we did for R and R

3: we say that a C-valued
function Y(θ,φ) on the sphere is square-integrable if

(

Y(θ,φ)|Y(θ,φ)
) =

∫ π

0

∫ 2π

0

∣

∣Y(θ,φ)
∣

∣
2

sin θ dφ dθ < ∞. (5.19)

Just as with square-integrable functions on R, the set of all such functions forms a
Hilbert space, usually denoted as L2(S2), where S2 denotes the (two-dimensional)
unit sphere in R

3. It is easy to see7 that each H̃l ⊂ L2(S2), and in fact it turns
out that all the H̃l taken together are actually equal to L2(S2)! We will dis-
cuss this further in Sect. 5.6, but for now we note that this implies that the set
{Y l

m | 0 ≤ l < ∞, −l ≤ m ≤ l} of all the spherical harmonics form an (orthonormal)
basis for L2(S2). This can be thought of as a consequence of the spectral theorems
of functional analysis, crucial to quantum mechanics, which tell us that, under suit-
able hypotheses, the eigenfunctions of a self-adjoint linear operator (in this case the
spherical Laplacian �S2 ) form an orthonormal basis for the Hilbert space on which
it acts. �

6Just as in the previous example, however, one can define transformed coordinates θ ′ and φ′ and

then unitarity hinges on the Jacobian determinant | ∂(θ,φ)
∂(θ ′,φ′) | being equal to one, which it is because

rotations preserve area on the sphere.
7Each Y ∈ H̃l is the restriction of a polynomial to S2 and is hence continuous, hence |Y |2 must
have a finite maximum M ∈ R. This implies

(Y |Y ) ≤ 4πM < ∞. (5.20)
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Exercise 5.7 Let f ∈ Hl (R
3). Convince yourself that �Rf is also a degree l polynomial,

and then use the chain rule to show that it is harmonic, hence an element of Hl (R
3). The

orthogonality of R should be crucial in your calculation!

Exercise 5.8 If you have never done so, find the induced so(3) representation π̃l on H̃l by
expressing (5.15) in spherical coordinates. You should get

π̃l (Lx) = sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ

π̃l(Ly) = − cosφ
∂

∂θ
+ cot θ sinφ

∂

∂φ

π̃l(Lz) = − ∂

∂φ
.

Check directly that these satisfy the so(3) commutation relations, as they should.

The representations we have discussed so far have primarily been representations
of matrix Lie groups and their associated Lie algebras. As we mentioned earlier,
though, there are abstract Lie algebras which have physically relevant representa-
tions too. We will meet a couple of those now.

Example 5.10 The Heisenberg algebra acting on L2(R)

We have mentioned this representation a few times already in this text, but we dis-
cuss it here to formalize it and place it in its proper context. The Heisenberg algebra
H = Span{q,p,1} ⊂ C(R2) has a unitary Lie algebra representation π on L2(R)

given by
(

πq(f )
)

(x) = ixf (x)

(

πp(f )
)

(x) = −df

dx
(x) (5.21)

(

π1(f )
)

(x) = if (x).

To verify that π is indeed a Lie algebra representation, one needs only to verify
that the one non-trivial bracket is preserved, i.e. that [π(q),π(p)] = π([q,p]). This
should be a familiar fact by now, and is readily verified if it is not. Showing that
π is unitary requires a little bit of calculation, which you will perform below. The
factors of i appearing above, especially the one in (5.21), may look funny; you
should keep in mind, though, that the absence of these factors of i in the physics
literature is again an artifact of the physicist’s convention in defining Lie algebras,
and that these factors of i are crucial for ensuring that the above operators are anti-
Hermitian, as will be seen below. Note that the usual physics notation for these
operators is q̂ ≡ πq = π(q) and p̂ ≡ πp = π(p).

Exercise 5.9 Verify that π(q), π(p), and π(1) are all anti-Hermitian operators with respect
to the usual inner product on L2(R). Exponentiate these operators to find, for t, a, θ ∈ R,

(

etπ(q)f
)

(x) = eitxf (x)
(

eaπ(p)f
)

(x) = f (x − a)
(

eθπ(1)f
)

(x) = eiθ f (x)
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and conclude, as we saw (in part) in Example 4.34, that π(q) generates translations in
momentum space, π(p) generates translations in x, and π(1) generates multiplication by a
phase factor.

Example 5.11 The adjoint representation of C(P )

Recall from Example 4.36 that for any Lie algebra g, regardless of whether or not it
is the Lie algebra of a matrix Lie group, there is a Lie algebra homomorphism

ad : g → gl(g)

X �→ adX

and hence a representation of g on itself. Suppose that g = C(R6), the Lie algebra of
observables on the phase space R

6 which corresponds to a single particle living in
three-dimensional space. What does the adjoint representation of C(R6) look like?
Since C(R6) is infinite-dimensional, computing the matrix representations of basis
elements is not really feasible. Instead, we pick a few important elements of C(R6)

and determine how they act on C(R6) as linear differential operators. First, consider
adqi

∈ gl(C(R6)). We have, for arbitrary f ∈ C(R6),

adqi
f = {qi, f } = ∂f

∂pi

(5.22)

and so just as − ∂
∂x

generates translation in the x-direction, adqi
= ∂

∂pi
generates

translation in the pi direction in phase space. Similarly, you can calculate that

adpi
= − ∂

∂qi

(5.23)

so that adpi
generates translation in the qi direction. If f ∈ C(R6) depends only on

the qi and not the pi , then one can show that

adL3f = − ∂f

∂φ
(5.24)

where φ ≡ tan−1(q2/q1) is the azimuthal angle, so that L3 generates rotations
around the z-axis. Finally, for arbitrary f ∈ C(R6), one can show using Hamilton’s
equations8 that

adH = − d

dt
(5.25)

so that the Hamiltonian generates time translations. These facts are all part of the
Poisson Bracket formulation of classical mechanics, and it is from this formal-
ism that quantum mechanics gets the notion that the various ‘symmetry generators’
(which are of course just elements of the Lie algebra of the symmetry group G in
question) that act on a Hilbert space should correspond to physical observables.

Exercise 5.10 Verify (5.23)–(5.25). If you did Exercise 4.30, you only need to verify (5.25),
for which you will need Hamilton’s equations, ∂H

∂qi
= dpi

dt
, ∂H

∂pi
= dqi

dt
.

8See Goldstein [6].
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5.3 Tensor Product Representations

The next step in our study of representations is to learn how to take tensor products
of representations. This is important for several reasons: First, as we will soon see,
almost all representations of interest can be viewed as tensor products of other, more
basic representations. Second, tensor products are ubiquitous in quantum mechanics
(since they represent the addition of degrees of freedom), so we better know how
they interact with representations. Finally, tensors can be understood as elements of
tensor product spaces (cf. Sect. 3.5) and so understanding the tensor product of rep-
resentations will allow us to understand more fully what is meant by the statement
that a particular object ‘transforms like a tensor’.

Suppose, then, that we have two representations (�1,V1) and (�2,V2) of a
group G. Then we can define their tensor product representation (�1 ⊗ �2,V1 ⊗
V2) by

(�1 ⊗ �2)(g) ≡ �1(g) ⊗ �2(g) ∈ L(V1 ⊗ V2), (5.26)

where you should recall from (3.69) how �1(g) ⊗ �2(g) acts on V1 ⊗ V2. It is
straightforward to check that this really does define a representation of G. If G is a
matrix Lie group, we can then calculate the corresponding Lie algebra representa-
tion:

(π1 ⊗ π2)(X)

≡ d

dt
�1

(

etX
) ⊗ �2

(

etX
)

∣

∣

∣

∣

t=0

= lim
h→0

[

�1(e
hX) ⊗ �2(e

hX) − I ⊗ I

h

]

= lim
h→0

[

�1(e
hX) ⊗ �2(e

hX) − I ⊗ �2(e
hX) + I ⊗ �2(e

hX) − I ⊗ I

h

]

= lim
h→0

[

(�1(e
hX) − I )

h
⊗ �2

(

ehX
)

]

+ lim
h→0

[

I ⊗ (�2(e
hX) − I )

h

]

= π1(X) ⊗ I + I ⊗ π2(X) (5.27)

where in the second-to-last line we used the bilinearity of the tensor product. If we
think of πi as a sort of ‘derivative’ of �i , then one can think of (5.27) as a kind of
product rule. In fact, the above calculation is totally analogous to the proof of the
product rule from single-variable calculus! It is a nice exercise to directly verify that
π1 ⊗ π2 is a Lie algebra representation; this is Exercise 5.11 below.

Exercise 5.11 Verify that (5.27) defines a Lie algebra representation. Mainly, this consists
of verifying that

[

(π1 ⊗ π2)(X), (π1 ⊗ π2)(Y )
] = (π1 ⊗ π2)

([X,Y ]).
You may find the form of (5.27) familiar from the discussion below (3.69), as

well as from other quantum mechanics texts; we are now in a position to explain
this connection, as well as clarify what is meant by the terms “additive” and “multi-
plicative” quantum numbers.
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Example 5.12 Quantum mechanics, tensor product representations, and additive
and multiplicative quantum numbers

We have already discussed how in quantum mechanics one adds degrees of free-
dom by taking tensor products of Hilbert spaces. We have also discussed (in Exam-
ple 4.33) how a matrix Lie group of symmetries of a physical system (i.e. a matrix
Lie group G that acts on the phase space P and preserves the Hamiltonian H ) gives
rise to a Lie algebra of observables isomorphic to its own Lie algebra g, and how
the quantum mechanical Hilbert space associated to that system should be a rep-
resentation of g. Thus, if we have a composite physical system represented by a
Hilbert space H = H1 ⊗ H2, and if the Hi carry representations πi of some matrix
Lie group of symmetries G, then it is natural to take as an additional axiom that G

is represented on H by the tensor product representation (5.26), which induces the
representation (5.27) of g on H.

For example, let G be the group of rotations SO(3), and let H1 = L2(R3) cor-
respond to the spatial degrees of freedom of a particle of spin s and H2 = C

2s+1,
2s ∈ Z correspond to the spin degree of freedom. Then so(3) is represented on the
total space H = L2(R3) ⊗ C

2s+1 by

(π ⊗ πs)(Li) = π(Li) ⊗ I + I ⊗ πs(Li) (5.28)

where π is the representation of Example 5.8 and πs is the spin s representation
from Example 5.7. If we identify (π ⊗ πs)(Li) with Ji , the ith component of the
total angular momentum operator, and π(Li) with Li , the ith component of the
orbital angular momentum operator, and πs(Li) with Si , the ith component of the
spin angular momentum operator, then (5.28) is just the component form of

J = L ⊗ I + I ⊗ S, (5.29)

the familiar equation expressing the total angular momentum as the sum of the spin
and orbital angular momentum. We thus see that the form of this equation, which
we were not in a position to understand (mathematically) when we first discussed it
in Example 3.20, is dictated by representation theory, and in particular by the form
(5.27) of the induced representation of a Lie algebra on a tensor product space.
The same is true for other symmetry generators, like the translation generator p in
the Heisenberg algebra. If we have two particles in one dimension with correspond-
ing Hilbert spaces Hi , i = 1,2, along with representations πi of the Heisenberg
algebra, then the representation of p on the total space H = H1 ⊗ H2 is just

(π1 ⊗ π2)(p) = π1(p) ⊗ 1 + I ⊗ π2(p) ≡ p̂1 ⊗ I + I ⊗ p̂2 (5.30)

where p̂i ≡ πi(p). This expresses the fact that the total momentum is just the sum
of the momenta of the individual particles!

More generally, (5.27) can be seen as the mathematical expression of the fact that
physical observables corresponding to generators in the Lie algebra are addi-
tive. More precisely, we have the following: let vi ∈ Hi , i = 1,2 be eigenvectors of
operators πi(A) with eigenvalues ai , where A is an element of the Lie algebra of a
symmetry group G. Then v1 ⊗v2 is an eigenvector of (π1 ⊗π2)(A) with eigenvalue
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a1 +a2. In other words, the eigenvalue a of A is an additive quantum number. Most
familiar quantum numbers, such as energy, momentum and angular momentum, are
additive quantum numbers, but there are exceptions. One such exception is the parity
operator P . If we have two three-dimensional physical systems with corresponding
Hilbert spaces Hi , then the Hi should furnish representations �i of O(3). Now,
P = −I ∈ O(3) and if vi ∈ Hi are eigenvectors of �i(P ) with eigenvalues λi , then
v1 ⊗ v2 ∈ H1 ⊗ H2 has eigenvalue

(

(�1 ⊗ �2)(P )
)

(v1 ⊗ v2) = �1(P )v1 ⊗ �2(P )v2

= (λ1λ2)v1 ⊗ v2,

where we used the property (3.49) of the tensor product in the last line. Thus parity
is known as a multiplicative quantum number. This is due to the fact that the parity
operator P is an element of the symmetry group, whereas most other observables
are elements of the symmetry algebra (usually the Lie algebra corresponding to the
symmetry group). �

Our next order of business is to clarify what it means for an object to “transform
like a tensor”. We already addressed this to a certain degree in Sect. 3.2 when we
discussed change of bases. There, however, we looked at how a change of basis af-
fects the component representation of tensors, which was the passive point of view.
Here we will take the active point of view, where instead of changing bases we will
be considering a group G acting on a vector space V via some representation �.
Taking the active point of view should nonetheless give the same transformation
laws, and we will indeed see below that by considering representations of G on ten-
sor products of V and V ∗ and examining their component form, we will reproduce
the formulas from Sect. 3.2, just in the active form.

Recall from Sect. 3.5 that the set of tensors of rank (r, s) on a vector space V is
just

T r
s (V ) = V ∗ ⊗ · · · ⊗ V ∗

︸ ︷︷ ︸

r times

⊗V ⊗ · · · ⊗ V
︸ ︷︷ ︸

s times

. (5.31)

Given a representation � of G on V , we would like to extend this representation to
the vector space T r

s (V ). To do this, we need to specify a representation of G on V ∗.
This is easily done: V ∗ is a vector space of functions on V (just the linear functions,
in fact), so we can use (5.9) to obtain the dual representation (�∗,V ∗), defined as

(

�∗
gf

)

(v) ≡ f (�g−1v), g ∈ G, f ∈ V ∗, v ∈ V . (5.32)

This representation has the nice property that if {ei} and {ei} are dual bases for V

and V ∗, then the bases {�(g)ei} and {�∗(g)ei} are also dual to each other for any
g ∈ G. You will check this in Exercise 5.12 below.

With the dual representation in hand, we can then consider the tensor product
representation �r

s ≡ �∗ ⊗ · · · ⊗ �∗
︸ ︷︷ ︸

r times

⊗� ⊗ · · · ⊗ �
︸ ︷︷ ︸

s times

, which is given by
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(

�r
s(g)

)

(f1 ⊗ · · · ⊗ fr ⊗ v1 ⊗ · · · ⊗ vs)

= �∗(g)f1 ⊗ · · · ⊗ �∗(g)fr ⊗ �(g)v1 ⊗ · · · ⊗ �(g)vs . (5.33)

If G is a matrix Lie group, it is easy to check that the corresponding Lie algebra
representation πr

s is given by
(

πr
s (g)

)

(f1 ⊗ · · · ⊗ fr ⊗ v1 ⊗ · · · ⊗ vs)

= π∗(g)f1 ⊗ · · · ⊗ fr ⊗ v1 ⊗ · · · ⊗ vs

+ f1 ⊗ π∗(g)f2 ⊗ · · · ⊗ fr ⊗ v1 ⊗ · · · ⊗ vs + · · ·
+ f1 ⊗ · · · ⊗ π∗(g)fr ⊗ v1 ⊗ · · · ⊗ vs

+ f1 ⊗ · · · ⊗ fr ⊗ π(g)v1 ⊗ · · · ⊗ vs

+ f1 ⊗ · · · ⊗ fr ⊗ v1 ⊗ π(g)v2 ⊗ · · · ⊗ vs + · · ·
+ f1 ⊗ · · · ⊗ fr ⊗ v1 ⊗ · · · ⊗ π(g)vs. (5.34)

We will get a handle on these formulas by considering several examples.

Exercise 5.12 Let (�,V ) be a representation of some group G and (�∗,V ∗) its dual rep-
resentation. Show that if the bases {ei} and {ei} are dual to each other, then so are {�(g)ei}
and {�∗(g)ei} for any g ∈ G.

Exercise 5.13 Alternatively, we could have defined �r
s by thinking of tensors as functions

on V and using the idea behind (5.9) to get

(

�r
s(g)T

)

(v1, . . . , vr , f1, . . . , fs)

≡ T
(

�
(

g−1)v1, . . . ,�
(

g−1)vr ,�
∗(g−1)f1, . . . ,�

∗(g−1)fs

)

.

Expand T in components and show that this is equivalent to the definition (5.33).

Example 5.13 The dual representation

Let us consider (5.33) with r = 1, s = 0, in which case the vector space at hand is
just V ∗ and our representation is just the dual representation (5.32). What does this
representation look like in terms of matrices? For arbitrary f ∈ V ∗, v ∈ V we have

(

�∗
gf

)

(v) = [

�∗
gf

]T [v]
= ([

�∗
g

][f ])T [v]
= [f ]T [

�∗
g

]T [v]
as well as

(

�∗
gf

)

(v) = f (�g−1v)

= [f ][�g−1 ][v]
which implies

[

�∗
g

]T = [�g−1 ] = [

�−1
g

] = [�g]−1.
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(Why are those last two equalities true?) We thus obtain

[

�∗
g

] = [�g]−1T
. (5.35)

In other words, the matrices representing G on the dual space are just the inverse
transposes of the matrices representing G on the original vector space! This is just
the active transformation version of (3.30). Accordingly, if (�,V ) is the fundamen-
tal representation of O(n) or SO(n), then the matrices of the dual representation are
identical to those of the fundamental, which is just another expression of the fact
that dual vectors transform just like regular vectors under orthogonal transforma-
tions (passive or active).

If G is a matrix Lie group then (�,V ) induces a representation (π,V ) of g, and
hence (�∗,V ∗) should induce a representation (π∗,V ∗) of g as well. What does
this representation look like? Well, by the definition of π∗, we have (for any X ∈ g,
f ∈ V ∗, v ∈ V )

(

π∗(X)f
)

(v) = d

dt

(

�∗(etX
)

f
)

(v)

∣

∣

∣

∣

t=0

= d

dt
f

(

�
(

e−tX
)

v
)

∣

∣

∣

∣

t=0

= f
(−π(X)v

)

.

You will show below that in terms of matrices this means
[

π∗(X)
] = −[

π(X)
]T

. (5.36)

Note again that if π is the fundamental representation of O(n) or SO(n) then
[π(X)] = X is antisymmetric and so the dual representation is identical to the orig-
inal representation.

Exercise 5.14 Prove (5.36). This can be done a couple different ways, either by calculating
the infinitesimal form of (5.35) (by letting g = etX and differentiating at t = 0) or by a
computation analogous to the derivation of (5.35).

Example 5.14 (�1
1, L(V )): The linear operator representation

Now consider (5.33) with (r, s) = (1,1). Our vector space is then just T 1
1 = L(V ),

the space of linear operators on V ! Thus, any representation of a group G on a
vector space V leads naturally to a representation of G on the space of operators
on V . What does this representation look like? We know from (5.33) that G acts
on T 1

1 by

�1
1(g)(f ⊗ v) = (

�∗
gf

) ⊗ (�gv), v ∈ V, f ∈ V ∗, g ∈ G. (5.37)

This is not very enlightening, though. To interpret this, consider f ⊗ v as a linear
operator T on V , so that

T (w) ≡ f (w)v, w ∈ V.
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Then (careful working your way through these equalities!)
(

�1
1(g)T

)

(w) = ((

�∗
gf

)

(w)
)

�gv

= f (�g−1w)�gv

= �g

(

f (�g−1w)v
)

= �g

(

T
(

�−1
g (w)

))

= (

�gT �−1
g

)

(w)

so we have

�1
1(g)T = �gT �−1

g . (5.38)

It is easy to check that this computation also holds for an arbitrary T ∈ L(V ), since
any such T can be written as a linear combination of terms of the form f ⊗ v. Thus,
(5.39) tell us that the tensor product representation of G on V ∗ ⊗ V = L(V ) is just
the original representation acting on operators by similarity transformations! This
should not be too surprising, and you perhaps could have guessed that this is how
the action of G on V would extend to L(V ). Representing (5.38) by matrices yields

[

�1
1(g)T

] = [�g][T ][�g]−1 (5.39)

which is just the active version of (3.33).
If G is a matrix Lie group we can also consider the induced Lie algebra rep

(π1
1 , L(V )), which according to (5.27) acts by

(

π1
1 (X)

)

(f ⊗ v) = (

π∗(X)f
) ⊗ v + f ⊗ π(X)v. (5.40)

Since we saw in Chap. 4 that the adjoint representation of G induces the adjoint
representation of g, we expect that π1

1 should act by the commutator. This is in fact
the case, and you will show below that

π1
1 (X)T = [

π(X),T
]

. (5.41)

This, of course, reduces to a commutator of matrices when a basis is chosen. �

Exercise 5.15 Prove (5.41). As in Exercise 5.14, this can be done by either computing the
infinitesimal form of (5.38), or performing a calculation similar to the one above (5.38),
starting with the Lie algebra representation associated to (5.37).

It should come as no surprise that the examples above reproduced the formulas
from Sect. 3.2, and in fact it is easy to show that the general tensor product repre-
sentation (5.33) is just the active version of our tensor transformation law (3.22).
Using the fact that

(

�∗
g

)

i
j = (�g−1)i

j , (5.42)

which you will prove below, we have for an arbitrary (r, s) tensor T ,
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�r
s(g)T = �r

s(g)
(

Ti1...ir
j1...js ei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs

)

= Ti1...ir
j1...js �∗

ge
i1 ⊗ · · · ⊗ �∗

ge
ir ⊗ �gej1 ⊗ · · · ⊗ �gejs

= (

�−1
g

)

k1

i1 · · · (�−1
g

)

kr

ir (�g)j1
l1 · · · (�g)js

ls Ti1...ir
j1...js ek1 ⊗ · · · ⊗ ekr

⊗ el1 ⊗ · · · ⊗ els (5.43)

so that, relabeling dummy indices, we have
(

�r
s(g)T

)

i1...ir

j1...js

= (

�−1
g

)

i1

k1 · · · (�−1
g

)

ir

kr (�g)l1
j1 · · · (�g)ls

js Tk1...kr

l1...ls (5.44)

which is just the active version of (3.22), with �(g) replacing A and �(g)−1 re-
placing A−1.

Exercise 5.16 Verify (5.42).

5.4 Symmetric and Antisymmetric Tensor Product
Representations

With the tensor product representation now in place, we can now consider symmet-
ric and antisymmetric tensor product representations. Note that for tensors of type
(r,0) or (0, r) the tensor product representation (5.33) is symmetric, in the sense
that all the factors in the tensor product are treated equally. A moment’s thought
then shows that if we have a completely symmetric tensor T ∈ Sr(V ), then �0

r (g)T

is also in Sr(V ). The same is true for the completely antisymmetric tensors �rV ,
and for the spaces Sr(V ∗) and �rV ∗. Thus these subspaces of T 0

r (V ) and T r
0 (V )

furnish representations of G in their own right, and we will see below that many of
these representations are familiar.

Example 5.15 Sl(C2)

Consider Sl(C2), the completely symmetric (0, l) tensors on C
2. By way of exam-

ple, when l = 3 a basis for this space is given by

v0 ≡ e1 ⊗ e1 ⊗ e1

v1 ≡ e2 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e2

v2 ≡ e2 ⊗ e2 ⊗ e1 + e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e2

v3 ≡ e2 ⊗ e2 ⊗ e2

and in general we have

v0 ≡ e1 ⊗ e1 ⊗ · · · ⊗ e1

v1 ≡ e2 ⊗ e1 ⊗ · · · ⊗ e1 + permutations
v2 ≡ e2 ⊗ e2 ⊗ e1 ⊗ · · · ⊗ e1 + permutations

...
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vl−1 ≡ e2 ⊗ e2 ⊗ · · · ⊗ e1 + permutations

vl ≡ e2 ⊗ e2 ⊗ · · · ⊗ e2.

The tensor product representation (�0
l , T 0

l (C2)) restricts to Sl(C2) ⊂ T 0
l (C2),

yielding a representation of SU(2) which we will denote as (Sl�,Sl(C2)). One
can easily compute the corresponding su(2) representation, denoted (Slπ,Sl(C2)),
and it is easy to show that in the basis given above,

[(

Slπ
)

(Sz)
] = i

⎛

⎜

⎜

⎝

l/2
l/2 − 1

· · ·
−l/2

⎞

⎟

⎟

⎠

(5.45)

which is the same as (5.11). This suggests that Sl(C2) is the same representation
as Pl(C

2), and is thus also the same as the spin l/2 representation of su(2). We
will soon see that this is indeed the case. Note that we have a correspondence here
between symmetric (0, l) tensors on a vector space and degree l polynomials on a
vector space, just as we did in Example 3.24.

Exercise 5.17 Verify (5.45).

Example 5.16 Antisymmetric second rank tensors and the adjoint representation of
O(n)

Consider the fundamental representation (�,R
n) of O(n). We can restrict the tensor

product representation (�0
2,R

n ⊗ R
n) to the subspace �2

R
n to get the antisymmet-

ric tensor product representation of O(n) on �2
R

n, which we will denote as �2�.
Let X = Xijei ⊗ ej ∈ �2

R
n with the standard basis. Then by (5.33), we have (for

R ∈ O(n))

�2�(R)(X) = XijRei ⊗ Rej =
∑

k,l

XijRkiRlj ek ⊗ el (5.46)

which in terms of matrices reads
[

�2�(R)X
] = R[X]RT = R[X]R−1. (5.47)

So far we have just produced the active transformation law for a (0,2) tensor, and we
have not yet made use of the fact that X is antisymmmetric. Taking the antisymmetry
of X into account, however, means that [X] is an antisymmetric matrix, and (5.47)
tells us that it transforms under O(n) by similarity transformations. This, however,
is an exact description of the adjoint representation of O(n)! So we conclude that
the adjoint representation of O(n) (and hence of SO(n) and so(n)) are the same as
the tensor product representation (�2�,�2

R
n). �

Example 5.17 Antisymmetric tensor representations of O(3)

Consider the antisymmetric tensor representations (�k�,�k
R

3), k = 1, . . . ,3 of
O(3), obtained by restricting (�0

k, T 0
k (R3)) to �k

R
3 ⊂ T 0

k (R3). For convenience
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we will define �0
R

3 to be the trivial representation on R (also known as the scalar
representation). Now, we already know that �1

R
3 = R

3 is the fundamental repre-
sentation, and from the previous example we know that �2

R
3 is the adjoint repre-

sentation, also known as the pseudovector representation. What about �3
R

3? We
know that this vector space is one-dimensional (why?), so is it just the trivial repre-
sentation? Not quite. Taking the Levi-Civita tensor e1 ∧ e2 ∧ e3 as our basis vector,
we have

(

�3�(R)
)

(e1 ∧ e2 ∧ e3) = (Re1) ∧ (Re2) ∧ (Re3)

= |R|e1 ∧ e2 ∧ e3 by (3.105)

= ±e1 ∧ e2 ∧ e3.

Thus e1 ∧ e2 ∧ e3 is invariant under rotations but is still not a scalar, since it changes
sign under inversion. An object that transforms this way is known as a pseudoscalar,
and �3

R
3 is thus known as the pseudoscalar representation of O(3). Note that if we

restrict to SO(3), then |R| = 1 and �3
R

3 is then just the scalar (trivial) representa-
tion, just as �2

R
3 is just the vector representation of SO(3). Also, as we mentioned

before, if we restrict our representations to Z2 � {I,−I } ⊂ O(3) then they reduce
to either the trivial or the alternating representation. We summarize all this in the
table below.

V O(3) SO(3) {I,−I } � Z2

�0
R

3 scalar scalar trivial
�1

R
3 vector vector alt

�2
R

3 pseudovector vector trivial
�3

R
3 pseudoscalar scalar alt

Example 5.18 Antisymmetric tensor representations of O(3,1)

Here we repeat the analysis from the previous example but in the case of O(3,1).
As above, �0

R
4 ≡ R is the trivial (scalar) representation, �1

R
4 = R

4 is the vector
representation, and �2

R
4 is just known as the second rank antisymmetric tensor

representation (or sometimes just tensor representation). How about �3
R

4? To get
a handle on that, we will compute matrix representations for the corresponding Lie
algebra representation, using the following basis B for �3

R
4:

f1 ≡ e2 ∧ e3 ∧ e4

f2 ≡ −e1 ∧ e3 ∧ e4

f3 ≡ e1 ∧ e2 ∧ e4

f4 ≡ e1 ∧ e2 ∧ e3.

You will check below that in this basis, the operators (�3π)(L̃i) and (�3π)(Ki)

are given by
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[(

�3π
)

(L̃i)
]

B = L̃i (5.48)
[(

�3π
)

(Ki)
]

B = Ki (5.49)

so (�3π,�3
R

4) is the same as the fundamental (vector) representation of so(3,1)!
When we consider the group representation �3�, though, there is a slight difference
between �3

R
4 and the vector representation; in the vector representation, the parity

operator takes the usual form

�(P ) = P =

⎛

⎜

⎜

⎝

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞

⎟

⎟

⎠

(5.50)

whereas on �3
R

4, we have (as you will check below)

[

�3�(P )
]

B =

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟

⎟

⎠

(5.51)

which is equal to −P . Thus the elements of �3
R

4 transform like 4-vectors under
infinitesimal Lorentz transformations (and, as we will show, under proper Lorentz
transformations), but they transform with the wrong sign under parity, and so in
analogy to the three-dimensional Euclidean case, �3

R
4 is known as the pseudovec-

tor representation of O(3,1). As in the Euclidean case, if one restricts to SO(3,1)o
then parity is excluded and then �3

R
4 and R

4 are identical, but only as representa-
tions of the proper Lorentz group SO(3,1)o.

The next representation, �4
R

4, is one-dimensional but, as in the previous ex-
ample, is not quite the trivial representation. As above, we compute the action of
�4�(A), A ∈ O(3,1) on the Levi-Civita tensor e1 ∧ e2 ∧ e3 ∧ e4:

(

�4�(A)
)

(e1 ∧ e2 ∧ e3 ∧ e4) = (Ae1) ∧ (Ae2) ∧ (Ae3) ∧ (Ae4)

= |A|e1 ∧ e2 ∧ e3 ∧ e4

= ±e1 ∧ e2 ∧ e3 ∧ e4

and so e1 ∧e2 ∧e3 ∧e4 is invariant under proper Lorentz transformations but changes
sign under improper Lorentz transformations. As in the Euclidean case, such an ob-
ject is known as a pseudoscalar, and so (�4�,�4

R
4) is known as the pseudoscalar

representation of O(3,1).
As in the previous example, we can use {I,P } � Z2 to distinguish between �3

R
4

and R
4, as well as between �4

R
4 and the trivial representation. The operators �(P )

and �3�(P ) can be distinguished in a basis-independent way by noting that �(P )

is diagonalizable with eigenvalues {−1,−1,−1,1}, whereas �3�(P ) has eigenval-
ues {1,1,1,−1}. We again summarize in a table, where in the last column we write
the eigenvalues of �k�(P ) in those cases where �k�(P ) �= ±I :
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V O(3,1) SO(3,1)o {I,P } � Z2

�0
R

4 scalar scalar trivial

�1
R

4 vector vector {−1,−1,−1,1}
�2

R
4 tensor tensor {1,1,1,−1,−1,−1}

�3
R

4 pseudovector vector {1,1,1,−1}
�4

R
4 pseudoscalar scalar alt

Exercise 5.18 By explicit computation, verify (5.48), (5.49), and (5.51). Also, show that
�2�(P ) has eigenvalues {−1,−1,−1,1,1,1}. You may need to choose a basis for �2

R
4

to do this.

5.5 Equivalence of Representations

In the previous section we noted that the vector and dual vector representations of
O(n) (and hence SO(n) and so(n)) were ‘the same’, as were the adjoint represen-
tation of O(n) and the antisymmetric tensor product representation (�2�,�2

R
n).

We had also noted a few equivalences in Sect. 5.1, where we pointed out that the ad-
joint representation of SO(3) was, in a certain matrix representation, identical to the
vector representation of SO(3), and where we claimed that the adjoint representa-
tion of so(3,1) is equivalent to the antisymmetric second rank tensor representation.
However, we never made precise what we meant when we said that two representa-
tions were ‘the same’ or ‘equivalent’, and in the cases where we attempted to prove
such a claim, we usually just showed that the matrices of two representations were
identical when particular bases were chosen. Defining equivalence in such a way is
adequate but somewhat undesirable, as it requires a choice of basis; we would like
an alternative definition that is more intrinsic and conceptual and that does not re-
quire a choice of coordinates. The desired definition is as follows: Suppose we have
two representations (�1,V1) and (�2,V2) of a group G. A linear map φ : V1 → V2
which satisfies

�2(g)
(

φ(v)
) = φ

(

�1(g)v
) ∀v ∈ V1, g ∈ G (5.52)

is said to be an intertwining map or intertwiner. This just means that the action
of G via the representations commutes with the action of φ. If in addition φ is a
vector space isomorphism, then (�1,V1) and (�2,V2) are said to be equivalent.
Occasionally we will denote equivalence by (�1,V1) � (�2,V2). Equivalence of
Lie algebra representations and their corresponding intertwining maps are defined
similarly, by the equation

π2(X)
(

φ(v)
) = φ

(

π1(X)v
) ∀v ∈ V1, X ∈ g. (5.53)

Another way to write (5.52) is as an equality between maps that go from V1 to V2:

�2(g) ◦ φ = φ ◦ �1(g) ∀g ∈ G (5.54)
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and likewise for Lie algebra representations. When φ is an isomorphism, this can
be interpreted as saying that �1(g) and �2(g) are the ‘same’ map, once we use the
intertwiner φ to identify V1 and V2. Another way to interpret this is to choose bases
for V1 and V2 and then write (5.54) as

[

�2(g)
][φ] = [φ][�1(g)

] ∀g ∈ G

or
[

�2(g)
] = [φ][�1(g)

][φ]−1 ∀g ∈ G

which says that the matrices [�2(g)] and [�1(g)] are related by a similarity trans-
formation. You will use this below to show that our definition of equivalence of
representations is equivalent to the statement that there exists bases for V1 and V2

such that [�1(g)] = [�2(g)] ∀g ∈ G (or the analogous statement for Lie algebras).

Exercise 5.19 Show that two representations (�1,V1) and (�2,V2) are equivalent if and
only if there exist bases B1 ⊂ V1 and B2 ⊂ V2 such that

[

�1(g)
]

B1
= [

�2(g)
]

B2
∀g ∈ G. (5.55)

Exercise 5.20 Let (�i,Vi), i = 1,2 be two equivalent representations of a group G, and let
H ⊂ G be a subgroup. Prove that restricting �i : G → GL(Vi) to maps �i : H → GL(Vi)

yield representations of H , and that these representations of H are also equivalent. Thus,
for example, equivalent representations of O(n) yield equivalent representations of SO(n),
as one would expect.

Before we get to some examples, there are some immediate questions that arise.
For instance, do equivalent representations of a matrix Lie group G give rise to
equivalent representations of g, and conversely, do equivalent representations of g

come from equivalent representations of G? As to the first question, on philosoph-
ical grounds alone we would expect that since g consists of ‘infinitesimal’ group
elements, equivalent group representations should yield equivalent Lie algebra rep-
resentations. This is in fact the case:

Proposition 5.1 Let G be a matrix Lie group, and let (�i,Vi), i = 1,2 be two
equivalent representations of G with intertwining map φ. Then φ is also an inter-
twiner for the induced Lie algebra representations (πi,Vi), and so the induced Lie
algebra representations are equivalent as well.

Proof We proceed by direct calculation. Since φ is an intertwiner between (�1,V1)

and (�2,V2) we have

�2
(

etX
)(

φ(v)
) = φ

(

�1
(

etX
)

v
) ∀v ∈ V1, X ∈ g, t ∈ R.

Taking the t derivative of the above equation, evaluating at t = 0, and using the
definition of the induced Lie algebra representations πi , as well as the fact that φ

commutes with derivatives (cf. Exercise 4.34), we obtain

π2(X)
(

φ(v)
) = φ

(

π1(X)v
) ∀v ∈ V1, X ∈ g
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and so π1 and π2 are equivalent (you should explicitly confirm this as an exercise if
more detail is needed). �

The second question, of whether or not equivalent representations of g come
from equivalent representations of G, is a bit trickier. After all, we noted in the in-
troduction to this chapter (and will see very concretely in the case of so(3)) that not
every representation of g necessarily comes from a representation of G. However,
if we know that two equivalent Lie algebra representations (πi,Vi), i = 1,2 actu-
ally do come from two group representations (�i,Vi), and we know the group is
connected, then it is true that �1 and �2 are equivalent.

Proposition 5.2 Let G be a connected Lie group and let (�i,Vi), i = 1,2 be two
representations of G, with associated Lie algebra representations (πi,Vi). If the
Lie algebra representations (πi,Vi) are equivalent, then so are the group represen-
tations (�i,Vi) from which they came.

Proof The argument relies on the following fact, which we will not prove (see Hall
[8] for details): if G is a connected matrix Lie group, then any g ∈ G can be written
as a product of exponentials. That is, for any g ∈ G there exist Xi ∈ g, ti ∈ R,
i = 1, . . . , n such that

g = et1X1et2X2 · · · etnXn. (5.56)

(In fact, for all the connected matrix Lie groups we have met besides SL(2,C),
every group element can be written as a single exponential. For SL(2,C), the polar
decomposition theorem [see Problem 4.6] guarantees that any group element can
be written as a product of two exponentials.) With this fact in hand we can show
that �1 and �2 are equivalent. Let φ be an intertwining map between (π1,V1) and
(π2,V2). Then for any g ∈ G and v ∈ V1 we have

�2(g)
(

φ(v)
)

= �2
(

et1X1et2X2 · · · etnXn
)(

φ(v)
)

= �2
(

et1X1
)

�2
(

et2X2
) · · ·�2

(

etnXn
)(

φ(v)
)

since �2 is a homomorphism

= (

et1π2(X1)et2π2(X2) · · · etnπ2(Xn)
)(

φ(v)
)

by definition of π2

= φ
(

et1π1(X1)et2π1(X2) · · · etnπ1(Xn)v
)

by Exercise 5.21 below

= φ
(

�1
(

et1X1
)

�1
(

et2X2
) · · ·�1

(

etnXn
)

v
)

by definition of π1

= φ
(

�1
(

et1X1et2X2 · · · etnXn
)

v
)

since �1 is a homomorphism

= φ
(

�1(g)v
)

and so �1 and �2 are equivalent. �

Proposition 5.2 is useful in that it allows us to prove equivalence of group rep-
resentations by examining the associated Lie algebra representations, which are (by
virtue of linearity) often easier to work with.
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Exercise 5.21 Let π1 and π2 be two equivalent representations of a Lie algebra g with
intertwining map φ. Prove by expanding the exponential in a power series that

etπ2(X) ◦ φ = φ ◦ etπ1(X) ∀X ∈ g.

Exercise 5.22 We claimed above that when a matrix Lie group G is connected, then any
group element can be written as a product of exponentials as in (5.56). To see why the
hypothesis of connectedness is important, consider the disconnected matrix Lie group O(3)

and find an element of O(3) that cannot be written as a product of exponentials.

Now it is time for some examples.

Example 5.19 Equivalence of so(3) and R
3 as SO(3) representations

We know that the adjoint representation and the fundamental representation of so(3)

are equivalent, by Exercise 5.19 and the fact that in the {Li}i=1−3 basis we have
[adLi

] = Li . What, then, is the intertwining map between R
3 and so(3)? Simply the

map

φ : so(3) → R
3

⎛

⎝

0 −z y

z 0 −x

−y x 0

⎞

⎠ �→ (x, y, z)

which is just the map X �→ [X]B , where B = {Li}i=1−3. To verify that this is an in-
tertwiner we will actually work on the Lie algebra level, and then use Proposition 5.2
to conclude that the representations are equivalent on the group level. To verify that
φ satisfies (5.53), one need only prove that the equation holds for an arbitrary basis
element of so(3); since the πi are linear maps, we can expand any X ∈ so(3) in
terms of our basis and the calculation will reduce to verifying the equality just for
the basis elements. (This is the advantage of working with Lie algebras; facts about
representations [such as equivalence] are usually much easier to establish directly
for Lie algebras than for the corresponding groups, since we can use linearity.) We
thus calculate, for any Y ∈ so(3),

(φ ◦ adLi
)(Y ) = φ(adLi

Y )

= [adLi
Y ]

= [adLi
][Y ]

= Li[Y ]
while

(Li ◦ φ)(Y ) = Li[Y ].
Thus φ is an intertwining map and the fundamental and adjoint representations of
so(3) are equivalent.

By Proposition 5.2, we can then conclude that the adjoint and fundamental repre-
sentations of SO(3) are equivalent, since SO(3) is connected. What about the adjoint
and fundamental representations of O(3)? You will recall that O(3) is not connected
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(and in fact has two separate connected components), so we cannot conclude that its
adjoint and fundamental representations are equivalent. In fact, as we mentioned be-
fore, we know that these representations are not equivalent, since if φ : so(3) → R

3

were an intertwining map, we would have for any Y ∈ so(3),

φ(Ad−I Y ) = φ(Y ) since Ad−I is the identity

as well as

φ(Ad−I Y ) = (−I )φ(Y ) since φ is an intertwiner

= −φ(Y ),

a contradiction. Thus φ cannot exist, and the fundamental and adjoint representa-
tions of O(3) are inequivalent.

Exercise 5.23 Use Example 5.17 and Exercise 5.19 to deduce that R and �3
R

3 are equiva-
lent as SO(3) representations (in fact, they are both the trivial representation). Can you find
an intertwiner? Do the same for the SO(3,1)o representations R and �4

R
4, using the results

of Example 5.18. Using Proposition 5.2, also conclude that R
4 and �3

R
4 are equivalent as

SO(3,1)o representations.

Exercise 5.24 Reread Example 3.29 in light of the last few sections. What would we now
call the map J that we introduced in that example?

Example 5.20 Vector spaces with metrics and their duals

Let V be a vector space equipped with a metric g (recall that a metric is any symmet-
ric, non-degenerate bilinear form), and let (�,V ) be a representation of G whereby
G acts by isometries, i.e. �(g) ∈ Isom(V ) ∀g ∈ G. Examples of this include the
fundamental representation of O(n) on R

n equipped with the Euclidean metric, or
the fundamental representation of O(n − 1,1) on R

n with the Minkowski metric,
but not U(n) or SU(n) acting on C

n with the standard Hermitian inner product (why
not?). If the assumptions above are satisfied, then (�,V ) is equivalent to the dual
representation (�∗,V ∗) and the intertwiner is nothing but our old friend

L : V → V ∗

v �→ g(v, ·).
You will verify in Exercise 5.25 that L is indeed an intertwiner, proving the asserted
equivalence. Thus, in particular we again reproduce (this time in a basis-independent
way) the familiar fact that dual vectors on n-dimensional Euclidean space transform
just like ordinary vectors under orthogonal transformations. Additionally, we see
that dual vectors on n-dimensional Minkowski space transform just like ordinary
vectors under Lorentz transformations! See Exercise 5.26 for the matrix manifesta-
tion of this.

The reason we have excluded complex vector spaces with Hermitian inner prod-
ucts from this example is that in such circumstances, the map L is not linear (why
not?) and thus cannot be an intertwiner. In fact, the fundamental representation of
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SU(n) on C
n for n ≥ 3 is not equivalent to its dual,9 and the dual representation in

such circumstances can sometimes be interpreted as an antiparticle if the original
representation represents a particle. For instance, a quark can be thought of as a
vector in the fundamental representation C

3 of SU(3) (this is sometimes denoted as
3 in the physics literature), and then the dual representation C

3∗ corresponds to an
antiquark (this representation is often denoted as 3̄). For SU(2), however, the funda-
mental (spinor) representation is equivalent to its dual, though that does not follow
from the discussion above. This equivalence is the subject of the next example.

Exercise 5.25 Let V be a vector space equipped with a metric g and let (�,V ) be a
representation of a group G by isometries. Consider L : V → V ∗ as defined above. Prove
that L ◦ �g = �∗

g ◦ L for all g ∈ G. Since (L ◦ �g)(v) ∈ V ∗ for any v ∈ V , you must show
that

(L ◦ �g)(v) = (

�∗
g ◦ L

)

(v)

as dual vectors on V , which means showing that they have the same action on an arbitrary
second vector w.

Exercise 5.26 Let (�,R
4) be the fundamental representation of O(3,1) on R

4, and let
B = {ei}i=1−4 be the standard basis for R

4 and B∗ = {ei}i=1−4 the corresponding dual
basis. Find another basis B∗′

for R
4∗ such that

[

�∗(g)
]

B∗′ = [

�(g)
]

B.

The map L might help you here. Does this generalize to the fundamental representation of
O(n − 1,1) on n-dimensional Minkowski space?

Example 5.21 The fundamental (spinor) representation of SU(2) and its dual

Consider the fundamental representation (�,C
2) of SU(2) and its dual represen-

tation (�∗,C
2∗). We will show that these representations are equivalent, by first

showing that the induced Lie algebra representations are equivalent and then invok-
ing Proposition 5.2. We will show equivalence of the Lie algebra representations by
exhibiting a basis for C

2∗ that yields the same matrix representations for (π∗,C
2∗)

as for (π,C
2). For an intrinsic (coordinate-independent) proof, see Problem 5.2.

As should be familiar by now, the fundamental representation of su(2) is just the
identity map:

π(Sx) = Sx = 1

2

(

0 −i

−i 0

)

π(Sy) = Sy = 1

2

(

0 −1
1 0

)

π(Sz) = Sz = 1

2

(−i 0
0 i

)

.

This combined with (5.36) tells us that, in the standard dual basis B∗,

9We will not prove this here; see Hall [8] for details.
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[

π∗(Sx)
] = 1

2

(

0 i

i 0

)

[

π∗(Sy)
] = 1

2

(

0 −1
1 0

)

[

π∗(Sz)
] = 1

2

(

i 0
0 −i

)

.

Now define a new basis B∗′ = {e1′
, e2′ } for C

2∗ by

e1′ ≡ e2

e2′ ≡ −e1.

You can check that the corresponding change of basis matrix A is

A =
(

0 1
−1 0

)

(5.57)

and that in this basis the operators π∗(Si) are given by
[

π∗(Sx)
]

B∗′ = A
[

π∗(Sx)
]

B∗A
−1 = Sx

[

π∗(Sy)
]

B∗′ = A
[

π∗(Sy)
]

B∗A
−1 = Sy (5.58)

[

π∗(Sz)
]

B∗′ = A
[

π∗(Sz)
]

B∗A
−1 = Sz

and thus (π∗,C
2∗) is equivalent to (π,C

2). The connectedness of SU(2) and Propo-
sition 5.2 then imply that (�∗,C

2∗) is equivalent to (�,C
2), as claimed.

Exercise 5.27 Verify (5.57) and (5.58).

Exercise 5.28 Extend the above argument to show that the fundamental representation of
SL(2,C) is equivalent to its dual.

Example 5.22 Antisymmetric second rank tensors and the adjoint representation of
orthogonal and Lorentz groups

We claimed in Sect. 5.1 that for the Lorentz group, the adjoint representation is
‘the same’ as the antisymmetric second rank tensor representation (the latter being
the representation to which the electromagnetic field tensor Fμν belongs). We also
argued at the end of Sect. 5.3 that the same is true for the orthogonal group O(n).
Now it is time to precisely and rigorously prove these claims. Consider R

n equipped
with a metric g, where g is either the Euclidean metric or the Minkowski metric. The
isometry group G = Isom(V ) is then either O(n) or O(n−1,1), and g is then either
so(n) or so(n − 1,1). To prove equivalence, we need an intertwiner φ : �2

R
n → g.

Here we will define φ abstractly and use coordinate-free language to prove that it is
an intertwiner. The proof is a little long, requires some patience, and may be skipped
on a first reading, but it is a good exercise for getting acquainted with the machinery
of this chapter; for an illuminating coordinate proof, see Problem 5.1.

To define φ abstractly we interpret g not as a space of matrices but rather as linear
operators on R

n. Since �2
R

n is just the set of antisymmetric (0,2) tensors on R
n,
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we can then define φ by just using the map L to ‘lower an index’ on an element
T ∈ �2

R
n, converting the (0,2) tensor into a (1,1) tensor, i.e. a linear operator.

More precisely, we define the linear operator φ(T ) as

φ(T )(v, f ) ≡ T
(

L(v), f
)

, v ∈ R
n, f ∈ R

n∗.

We must check, though, that φ(T ) ∈ g. Earlier, we had characterized g by a matrix
condition like antisymmetry or the condition (4.70). Now that we are thinking of g as
a space of linear operators, however, we need another characterization. Fortunately,
we have already discussed this; as in (5.1), we can write

g
(

etXv, etXw
) = g(v,w) ∀v,w ∈ V, X ∈ g, t ∈ R

and then differentiate at t = 0 to obtain

g(Xv,w) + g(v,Xw) = 0, (5.59)

an alternative definition of g which you can easily show is equivalent to the matrix
conditions we used originally (in fact, just writing out (5.59) in matrices leads to the
antisymmetry condition in the Euclidean case, and (4.70) in the Lorentzian case).
Thus, to show that the range of φ really is g, we just need to show that φ(T ) as
defined above satisfies (5.59):

g
(

φ(T )v,w
) + g

(

v,φ(T )w
)

= φ(T )
(

v,L(w)
) + φ(T )

(

w,L(v)
)

by definition of L

= T
(

L(v),L(w)
) + T

(

L(w),L(v)
)

by definition of φ(T )

= 0 by antisymmetry of T .

Thus φ(T ) really is in g. To show that φ is an intertwiner, we need to show that
φ ◦ �2�(R) = Ad(R) ◦ φ for all R ∈ G. To do this, we will employ the alternate
definition of the tensor product representation given in Exercise 5.13, which in this
case says

(

�2�(R)T
)

(f,h) = T
(

�∗(R−1)f,�∗(R−1)h
)

, R ∈ G, f,h ∈ R
n∗. (5.60)

We then have, for all v ∈ R
n, f ∈ R

n∗ (careful with all the parentheses!),
((

φ ◦ �2�(R)
)

(T )
)

(v, f ) = (

�2�(R)(T )
)(

L(v), f
)

= T
(

�∗(R−1)L(v),�∗(R−1)f
)

= T
(

L
(

R−1v
)

,�∗(R−1)f
)

where in the last equality we used the fact that L is an intertwiner between R
n

and R
n∗. We also have

((

Ad(R) ◦ φ
)

(T )
)

(v, f ) = φ(T )
(

R−1v,�∗(R−1)f
)

= T
(

L
(

R−1v
)

,�∗(R−1)f
)

and we can thus conclude that φ ◦ (�2�(R)) = Ad(R) ◦ φ, as desired.
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So what does all this tell us? The conclusion that the tensor product representa-
tion of G on antisymmetric second rank tensors coincides with the adjoint represen-
tation of G on g is not at all surprising in the Euclidean case, because there g is just
so(n), the set of all antisymmetric matrices! In the Lorentzian case, however, we
might be a little surprised, since the matrices in so(n − 1,1) are not all antisymmet-
ric. These matrices, however, represent linear operators, and if we use L to convert
them into (0,2) tensors (via φ−1) then they are antisymmetric! In other words, we
can always think of the Lie algebra of a group of metric-preserving operators
as being antisymmetric tensors, though we may have to raise or lower an index
(via L) to make this manifest.

This is actually quite easy to show in coordinates; using the standard basis for R
n

and the corresponding components of X = Xi
jei ⊗ ej ∈ g (still viewed as a linear

operator on R
n), we can plug two basis vectors into (5.59) and obtain

0 = g(Xei, ej ) + g(ei,Xej )

= Xi
kg(ek, ej ) + Xj

kg(ei, ek)

= Xi
kgkj + Xj

kgik

= Xij + Xji

and so the (2,0) tensor corresponding to X ∈ g is antisymmetric! �

Our last example takes the form of an exercise, in which you will show that
some of the representations of SU(2) on Pl(C

2), as described in Example 5.7, are
equivalent to more basic SU(2) representations.

Exercise 5.29 Prove (by exhibiting an intertwining map) that (π1,P1(C
2)) from Exam-

ple 5.7 is equivalent to the fundamental representation of su(2). Conclude (since SU(2) is
connected) that (�1,P1(C

2)) is equivalent to the fundamental representation of SU(2). Do
the same for (π2,P2(C)) and the adjoint representation of su(2) (you will need to consider
a new basis that consists of complex linear combinations of the elements of B2).

5.6 Direct Sums and Irreducibility

One of our goals in this chapter is to organize the various representations we have
met into a coherent scheme, and to see how they are all related. Defining a notion of
equivalence was the first step, so that we would know when two representations are
‘the same’. With that in place, we would now like to determine all the (inequivalent)
representations of a given group or Lie algebra. In general this is a difficult problem,
but for most of the matrix Lie groups we have met so far and their associated Lie
algebras, there is a very nice way to do this: for each group or algebra, there exists a
denumerable set of inequivalent representations (known as the “irreducible” repre-
sentations) out of which all other representations can be built. Once these irreducible
representations are known, any other representation can be broken down into a kind
of “sum” of its irreducible components. In this section we will present the notions
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of irreducibility and sum of vector spaces, and in subsequent sections we will enu-
merate all the irreducible representations of SU(2), SO(3), SO(3,1), SL(2,C) and
their associated Lie algebras.

To motivate the discussion, consider the vector space Mn(R) of all n×n real ma-
trices. There is a representation � of O(n) on this vector space given by similarity
transformations:

�(R)A ≡ RAR−1, R ∈ O(n), A ∈ Mn(R).

If we consider Mn(R) to be the matrices corresponding to elements of L(Rn), then
this is just the matrix version of the linear operator representation �1

1 described
above, with V = R

n. Alternatively, it can be viewed as the matrix version of the
representation �0

2 on R
n ⊗ R

n, with identical matrix transformation law
[

�0
2(R)(T )

] = R[T ]RT = R[T ]R−1, T ∈ R
n ⊗ R

n.

Now, it turns out that there are some special properties that A ∈ Mn(R) could have
that would be preserved by �(R). For instance, if A is symmetric or antisymmetric,
then RAR−1 is also; you can check this directly, or see it as a corollary of the discus-
sion above Example 5.16. Furthermore, if A has zero trace, then so does RAR−1.
In fact, we can decompose A into a symmetric piece and an antisymmetric piece,
and then further decompose the symmetric piece into a traceless piece and a piece
proportional to the identity, as follows:

A = 1

2

(

A + AT
) + 1

2

(

A − AT
)

(5.61)

= 1

n
(TrA)I + 1

2

(

A + AT − 2

n
(TrA)I

)

+ 1

2

(

A − AT
)

. (5.62)

(You should check explicitly that the first term in (5.62) is proportional to the iden-
tity, the second is symmetric and traceless, and the third is antisymmetric.) Fur-
thermore, this decomposition is unique, as you will show below. If we recall the
definitions

Sn(R) = {

M ∈ Mn(R)
∣

∣ M = MT
}

An(R) = {

M ∈ Mn(R)
∣

∣ M = −MT
}

,

and add the new definitions

S′
n(R) ≡ {

M ∈ Mn(R)
∣

∣ M = MT , TrM = 0
}

RI ≡ {

M ∈ Mn(R)
∣

∣ M = cI, c ∈ R
}

,

then this means that any A ∈ Mn(R) can be written uniquely as a sum of elements
of S′

n, An and RI , all of which are subspaces of Mn(R). This type of situation
turns up frequently, so we formalize it with the following definition: If V is a vector
space with subspaces W1,W2, . . . ,Wk such that any v ∈ V can be written uniquely
as v = w1 + w2 + · · · + wk , where wi ∈ Wi , then we say that V is the direct sum of
the Wi and we write
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V = W1 ⊕ W2 ⊕ · · · ⊕ Wk

which is sometimes abbreviated as V = ⊕k
i=1 Wi . The decomposition of a vector

v is sometimes written as v = (w1, . . . ,wk). In the situation above we have, as you
can check,

Mn(R) = Sn(R) ⊕ An(R) = RI ⊕ S ′
n(R) ⊕ An(R). (5.63)

Exercise 5.30 Show that if V = ⊕k
i=1 Wi , then Wi ∩ Wj = {0} ∀i �= j , i.e. the intersection

of two different Wi is just the zero vector. Verify this explicitly in the case of the two
decompositions in (5.63).

Exercise 5.31 Show that V = ⊕k
i=1 Wi is equivalent to the statement that the set

B = B1 ∪ · · · ∪ Bk,

where each Bi is an arbitrary basis for Wi , is a basis for V .

Exercise 5.32 Show that Mn(C) = Hn(C) ⊕ u(n).

Our discussion above shows that all the subspaces that appear in (5.63) are in-
variant, in the sense that the action of �(R) on any element of one of the subspaces
produces another element of the same subspace (i.e. if A is symmetric then �(R)A

is also, etc.). In fact, we can define an invariant subspace of a group representa-
tion (�,V ) as a subspace W ⊂ V such that �(g)w ∈ W for all g ∈ G, w ∈ W .
Invariant subspaces of Lie algebra representations are defined analogously. Notice
that the entire vector space V , as well as the zero vector {0}, are always (trivially)
invariant subspaces. An invariant subspace W ⊂ V that is neither equal to V nor to
{0} is said to be a non-trivial invariant subspace. Notice also that the invariance of
W under the �(g) means we can restrict each �(g) to W (that is, interpret each
�(g) as an operator �(g)|W ∈ GL(W)) and so obtain a representation (�|W ,W)

of G on W . Given a representation V , the symmetric and antisymmetric subspaces
Sr(V ) and �r(V ) of the tensor product representation T 0

r (V ) are nice examples
of non-trivial invariant subspaces (recall, of course, that �r(V ) is only non-trivial
when r ≤ dimV ).

Non-trivial invariant subspaces are very important in representation theory, as
they allow us to block diagonalize the matrices corresponding to our operators. If
we have a representation (�,V ) of a group G where V decomposes into a direct
sum of invariant subspaces Wi ,

V = W1 ⊕ W2 ⊕ · · · ⊕ Wk,

and if Bi are bases for Wi and we take the union of the Bi as a basis for V , then the
matrix representation of the operator �(g) in this basis will look like

[

�(g)
]

B =

⎛

⎜

⎜

⎝

[�(g)]B1 [�2(g)]B2 · · ·
[�k(g)]Bk

⎞

⎟

⎟

⎠

(5.64)

where each [�(g)]Bi
is the matrix of �(g) restricted to the subspace Wi .
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Thus, given a finite-dimensional representation (�,V ) of a group or Lie algebra,
we can try to get a handle on it by decomposing V into a direct sum of (two or
more) invariant subspaces. Each of these invariant subspaces forms a representation
in its own right, and we could then try to further decompose these representations,
iterating until we get a decomposition V = W1 ⊕ · · · ⊕ Wk in which each of the Wi

have no non-trivial invariant subspaces (if they did, we might be able to decompose
further). These elementary representations play an important role in the theory, as
we will see, and so we give them a name: we say that a representation W that has no
non-trivial invariant subspaces is an irreducible representation (or irrep, for short).
Furthermore, if a representation (�,V ) admits a decomposition V = W1 ⊕ · · · ⊕
Wk where each of the Wi are irreducible, then we say that (�,V ) is completely
reducible.10 If the decomposition consists of two or more summands, then we say
that V is decomposable.11 Thus we have the following funny-sounding sentence: if
(�,V ) is completely reducible, then it is either decomposable or irreducible!

You may be wondering at this point how a finite-dimensional representation
could not be completely reducible; after all, it is either irreducible or it contains
a non-trivial invariant subspace W ; cannot we then decompose V into W and some
subspace W ′ complementary to W ? We can, but the potential problem is that W ′
may not be invariant; that is, the group or Lie algebra action might take vectors in
W ′ to vectors that do not lie in W ′. For an example of this, see Problem 5.7. How-
ever, there do exist many groups and Lie algebras for whom every finite-dimensional
representation is completely reducible. Such groups and Lie algebras are said to be
semi-simple.12 (Most of the matrix Lie groups we have met and their associated
Lie algebras are semi-simple, but some of the abstract Lie algebras we have seen
[like the Heisenberg algebra], as well as the matrix Lie groups U(n), are not.) Thus,
an arbitrary finite-dimensional representation of a semi-simple group or Lie algebra
can by definition always be written as a direct sum of irreducible representations.
(This is what we did when we wrote Mn(R) as Mn(R) = RI ⊕ S′

n(R) ⊕ An(R),
though we cannot yet prove that the summands are irreducible.) If we know all the
irreducible representations of a given semi-simple group or Lie algebra, we then
have a complete classification of all the finite-dimensional representations of that
group or algebra, since any representation decomposes into a finite sum of irreps.
This makes the determination of irreps an important task, which we will complete
in this chapter for our favorite Lie algebras.

Example 5.23 Decomposition of tensor product representations

Say we have a semi-simple group or Lie algebra and two irreps V1 and V2. The
tensor product representation V1 ⊗V2 is usually not irreducible, but since our group

10Note that an irreducible representation is, trivially, completely reducible, since V = V is a de-
composition into irreducibles. Thus ‘irreducible’ and ‘completely reducible’ are not mutually ex-
clusive categories, even if they may sound like it!
11This terminology is not standard but will prove useful.
12Semi-simplicity can be defined in a number of equivalent ways, all of which are important. For
more, see Hall [8] or Varadarajan [17].
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or Lie algebra is semi-simple we can decompose V1 ⊗ V2 as

V1 ⊗ V2 = W1 ⊕ · · · ⊕ Wk

where the Wi are irreducible. In fact, the last decomposition in (5.63) is just the
matrix version of the O(n)-invariant decomposition

T 0
2

(

R
n
) = R

n ⊗ R
n = Rg ⊕ S2′(

R
n
) ⊕ �2(

R
n
)

(5.65)

where

g =
∑

i

ei ⊗ ei (5.66)

S2′(
R

n
) = {

T ∈ S2(
R

n
) ∣

∣ δij T
ij = 0

}

where δij is Kronecker delta. (5.67)

Another familiar instance of the decomposition of a tensor product representation
into irreducibles is when we are dealing with SU(2) representations. As discussed
in Example 3.21, it is well known that if we have the spin j representation C

2j+1 ≡
Vj and spin j ′ representation C

2j ′+1 ≡ Vj ′ (we will discuss these representations
thoroughly in the next section), then their tensor product decomposes as

Vj ⊗ Vj ′ = V|j−j ′| ⊗ V|j−j ′|+1 ⊗ · · · ⊗ Vj+j ′ . (5.68)

The process of explicitly constructing this decomposition is known in the physics
literature as the “addition of angular momentum”.

Example 5.24 Decomposition of �2
R

4 as an O(3) representation

Consider the second rank antisymmetric tensor representation of O(3,1) on �2
R

4,
but restrict the representation to O(3) where we view O(3) ⊂ O(3,1) in the obvious
way. This representation of O(3) is reducible, since clearly �2

R
3 ⊂ �2

R
4 is an

O(3)-invariant subspace spanned by

f1 ≡ e2 ∧ e3

f2 ≡ e3 ∧ e1 (5.69)

f3 ≡ e1 ∧ e2.

There is also a complementary invariant subspace, spanned by

f4 ≡ e1 ∧ e4

f5 ≡ e2 ∧ e4 (5.70)

f6 ≡ e3 ∧ e4.

This second subspace is clearly equivalent to the vector representation of O(3) since
O(3) leaves e4 unaffected (the unconvinced reader can quickly check that the map
φ : ei ∧ e4 �→ ei is an intertwiner). Thus, as an O(3) representation, �2

R
4 decom-

poses into the vector and pseudovector representations, i.e.

�2
R

4 � R
3 ⊕ �2

R
3. (5.71)



182 5 Basic Representation Theory

We can interpret this physically in the case of the electromagnetic field tensor, which
lives in �2

R
4; in that case, (5.71) says that under (proper and improper) rota-

tions, some components of the field tensor transform amongst themselves as a
vector, and others as a pseudovector. The components that transform as a vector
comprise the electric field, and those that transform like a pseudovector comprise
the magnetic field. To see this explicitly, one can think about which basis vectors
from (5.70) and (5.69) go with which components of the matrix in (3.62).

One could, of course, further restrict this representation to SO(3) ⊂ O(3,1); one
would get the same decomposition (5.71), except that for SO(3) the representations
R

3 and �2
R

3 are equivalent, and so under (proper) rotations the field tensor trans-
forms as a pair of vectors, the electric field “vector” and the magnetic field “vector”.
Of course, how these objects really transform depends on what transformation group
you are talking about! The electric field and magnetic field both transform as vec-
tors under rotations, but under improper rotations the electric field transforms as a
vector and the magnetic field as a pseudovector. Furthermore, under Lorentz trans-
formations the electric and magnetic fields cannot be meaningfully distinguished,
as they transform together as the components of an antisymmetric second rank ten-
sor! Physically, this corresponds to the fact that boosts can turn electric fields in one
reference frame into magnetic fields in another, and vice versa.

Example 5.25 Decomposition of L2(S2) into irreducibles

A nice example of a direct sum decomposition of a representation into its irreducible
components is furnished by L2(S2). As we noted in Example 5.9, the spectral theo-
rems of functional analysis tell us that the eigenfunctions Y l

m of the spherical Lapla-
cian �S2 form an orthogonal basis for the Hilbert space L2(S2). We already know,
though, that the Y l

m of fixed l form a basis for H̃l , the spherical harmonics of de-
gree l. We will show in the next section that each of the H̃l is an irreducible SO(3)

representation, so we can decompose L2(S2) into irreducible representations as

L2(S2) =
⊕

l

H̃l = H̃1 ⊕ H̃2 ⊕ H̃3 ⊕ · · ·. �

Before concluding this section we should point out that the notion of direct sum
is useful not only in decomposing a given vector space into mutually exclusive sub-
spaces, but also in ‘adding’ vector spaces together. That is, given two vector spaces
V and W we can define their direct sum V ⊕ W to be the set V × W with vector
addition and scalar multiplication defined by

(v1,w1) + (v1,w2) = (v1 + v2,w1 + w2)

c(v,w) = (cv, cw).

It is straightforward to check that with vector addition and scalar multiplication so
defined, V ⊕ W is a bona fide vector space. Also, V can be considered a subset of
V ⊕W , as just the set of all vectors of the form (v,0), and likewise for W . With this
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identification it is clear that any element (v,w) ∈ V ⊕W can be written uniquely as
v + w with v ∈ V and w ∈ W , so this notion of a direct sum is consistent with our
earlier definition: if we take the direct sum of V and W , the resulting vector space
really can be decomposed into the subspaces V and W .

This notion13 of direct sum may also be extended to representations; that is, given
two representations (�i,Vi), i = 1,2, we may construct the direct sum representa-
tion (�1 ⊕ �2,V1 ⊕ V2) defined by

(

(�1 ⊕ �2)(g)
)

(v1, v2) ≡ (

�1(g)v1,�2(g)v2
) ∀(v1, v2) ∈ V1 ⊕ V2, g ∈ G.

These constructions may seem trivial, but they have immediate physical application,
as we will now see.

Example 5.26 The Dirac spinor

Consider the left- and right-handed spinor representations of SL(2,C), (�,C
2) and

(�̄,C
2). We define the Dirac spinor representation of SL(2,C) to be the direct sum

representation (� ⊕ �̄,C
2 ⊕ C

2), which is then given by
(

(� ⊕ �̄)(A)
)

(v,w) ≡ (

Av,A†−1w
) ∀(v,w) ∈ C

2 ⊕ C
2, A ∈ SL(2,C).

Making the obvious identification of C
2 ⊕ C

2 with C
4, we can write (� ⊕ �̄)(A)

in block matrix form as

(� ⊕ �̄)(A) =
(

A 0
0 A†−1

)

as in (5.64).
This representation is, by construction, decomposable. Why deal with a decom-

posable representation rather than its irreducible components? There are a few dif-
ferent ways to answer this in the case of the Dirac spinor, but one rough answer has
to do with parity. We will show in Sect. 5.11 that it is impossible to define a consis-
tent action of the parity operator on either the left-handed or right-handed spinors
individually, and that what the parity operator naturally wants to do is interchange
the two representations. Thus, to have a representation of SL(2,C) spinors on which
parity naturally acts, we must combine both the left- and right-handed spinors into
a Dirac spinor, and in the most natural cases parity is represented by

(� ⊕ �̄)(Parity) = ±
(

0 I

I 0

)

(5.72)

which obviously just interchanges the left- and right-handed spinors. From this we
see that the Dirac spinor is reducible under SL(2,C), but not under larger groups
which include parity.

13In some texts our first notion of direct sum, in which we decompose a vector space into mutually
exclusive subspaces, is called an internal direct sum, and our second notion of direct sum, in which
we take distinct vector spaces and add them together, is known as an external direct sum.
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5.7 More on Irreducibility

In the last section we introduced the notion of an irreducible representation, but we
did not prove that any of the representations we have met are irreducible. In this
section we will remedy that and also learn a bit more about irreducibility along the
way. In proving the irreducibility of a given representation, the following proposi-
tion about the irreps of matrix Lie groups and their Lie algebras is often useful. The
proposition just says that for a connected matrix Lie group, the irreps of the group
are the same as the irreps of the Lie algebra. This may seem unsurprising and per-
haps even trivial, but the conclusion does not hold when the group is disconnected.
We will have more to say about this later. The proof of this proposition is also a nice
exercise in using some of the machinery we have developed so far.

Proposition 5.3 A representation (�,V ) of a connected matrix Lie group G is
irreducible if and only if the induced Lie algebra representation (π,V ) of g is irre-
ducible as well.

Proof First, assume that (�,V ) is an irrep of G. Then consider the induced Lie
algebra representation (π,V ), and suppose that this representation has an invariant
subspace W . We will show that W must be an invariant subspace of (�,V ) as well,
which by the irreducibility of (�,V ) will imply that W is either V or {0}, which
will then show that (π,V ) is irreducible. For all X ∈ g, w ∈ W , we have

π(X)w ∈ W

⇒ eπ(X)w ∈ W

⇒ �
(

eX
)

w ∈ W. (5.73)

Now, using the fact that any element of G can be written as a product of exponentials
(cf. Proposition 5.2), we then have

�(g)w = �
(

et1X1et2X2 · · · etnXn
)

w

= �
(

et1X1
)

�
(

et2X2
) · · ·�(

etnXn
)

w

which must be in W by repeated application of (5.73). Thus W is also an invariant
subspace of (�,V ), but we assumed (�,V ) was irreducible, and so W must be
equal to V or 0. This then proves that (π,V ) is irreducible as well.

Conversely, assume that (π,V ) is irreducible, and let W be an invariant subspace
of (�,V ). Then for all t ∈ R, X ∈ g, w ∈ W we know that �(etX)w ∈ W , and hence

π(X)w = d

dt
�

(

etX
)

w

∣

∣

∣

∣

t=0

= lim
t→0

�(etX)w − w

t

must be in W as well, so W is invariant under π and hence must be equal to V

or {0}. Thus (�,V ) is irreducible. �
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Note that the assumption of connectedness was crucial in the above proof, as
otherwise we could not have used Proposition 5.2. Furthermore, we will soon meet
irreducible representations of disconnected groups (like O(3,1)) that yield Lie al-
gebra representations which do have non-trivial invariant subspaces, and are thus
not irreducible. The above proposition is still very useful, however, as we will see
in this next example.

Example 5.27 The SU(2) representation on Pl(C
2), revisited

In this example we will prove that the su(2) representations (πl,Pl(C
2)) of Exam-

ple 5.7 are all irreducible. Proposition 5.3 will then tell us that the SU(2) repre-
sentations (�l,Pl(C

2)) are all irreducible as well. Later on, we will see that these
representations are in fact all the finite-dimensional irreducible representations of
SU(2)!

Recall that the πl(Si) are given by

πl(S1) = i

2

(

z2
∂

∂z1
+ z1

∂

∂z2

)

πl(S2) = 1

2

(

z2
∂

∂z1
− z1

∂

∂z2

)

πl(S3) = i

2

(

z1
∂

∂z1
− z2

∂

∂z2

)

.

Define now the “raising” and “lowering” operators

Yl ≡ πl(S2) + iπl(S1) = −z1
∂

∂z2

Xl ≡ −πl(S2) + iπl(S1) = −z2
∂

∂z1
.

It is easy to see that Yl trades a factor of z2 for a factor of z1, thereby raising the
πl(S3) eigenvalue of a single term by i. Likewise, Xl trades a z1 for a z2 and lowers
the eigenvalue by i.14 Consider a nonzero invariant subspace W ⊂ Pl(C

2). If we can
show that W = Pl(C

2), then we know that Pl(C
2) is irreducible. Being nonzero, W

contains at least one element of the form

w = alz
l
1 + al−1z

l−1
1 z2 + al−2z

l−2
1 z2

2 + · · · + a0z
l
2

where at least one of the ak is not zero. Let k0 be the biggest nonzero value of k, so
that ak0z

k0
1 z

l−k0
2 is the term in w with the highest power of z1. Then applying (Xl)

k0

14You may object to the use of i in our definition of these operators; after all, su(2) is a real Lie
algebra, and so the expression S2 + iS1 has no meaning as an element of su(2), and so one cannot
say that, for instance, Yl = π(S2 + iS1). Thus Xl and Yl are not in the image of su(2) under πl .
This is a valid objection, and to deal with it one must introduce the notion of the complexification
of a Lie algebra. A discussion of this here would lead us too far astray from our main goals of
applications in physics, however, so we relegate this material to the appendices which you can
consult at leisure.
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to w lowers the z1 degree by k0, killing all the terms except ak0z
k0
1 z

l−k0
2 . In fact, one

can compute easily that

X
k0
l

(

ak0z
k0
1 z

l−k0
2

) = (−1)k0k0!ak0z
l
2.

This is proportional to zl
2, and since W is invariant W must then contain zl

2. But
then we can successively apply the raising operator Yl to get monomials of the form
zk
i z

l−k
2 for 0 ≤ k ≤ l, and so these must be in W as well. These, however, form a

basis for Pl(C
2), hence W must equal Pl(C

2), and so Pl(C
2) is irreducible. �

Before moving on to our next examples, we need to state and prove Schur’s
lemma, one of the most basic and crucial facts about irreducible representations.
Roughly speaking, the upshot of it is that any linear operator on the representation
space of an irrep which commutes with the group action (i.e. is an intertwiner) must
be proportional to the identity. The precise statement is as follows:

Proposition 5.4 (Schur’s lemma) Let (�i,Vi), i = 1,2 be two irreducible repre-
sentations of a group or Lie algebra, and let φ : V1 → V2 be an intertwiner. Then ei-
ther φ = 0 or φ is a vector space isomorphism. Furthermore, if (�1,V1) = (�2,V2)

and V1 is a finite-dimensional complex vector space, then φ is a multiple of the iden-
tity, i.e. φ = cI for some c ∈ C.

Proof We will prove this for group representations �i ; the Lie algebra case follows
immediately with the obvious notational changes. Let K be the kernel or null space
of φ. Then K ⊂ V1 is an invariant subspace of �1, since for any v ∈ K , g ∈ G,

φ
(

�1(g)v
) = �2(g)

(

φ(v)
)

= �2(0)

= 0

⇒ �1(g)v ∈ K.

However, since (�1,V1) is irreducible, the only invariant subspaces are 0 and V1, so
K must be one of those. If K = V1 then φ = 0, so henceforth we assume that K = 0,
which means that φ is one-to-one, and so φ(V1) ⊂ V2 is isomorphic to V1. Further-
more, φ(V1) is an invariant subspace of (�2,V2), since for any φ(v) ∈ φ(V1), g ∈ G

we have
(

�2(g)
)(

φ(v)
) = φ

(

�1(g)v
) ∈ φ(V1).

But (�2,V2) is also irreducible, so φ(V1) must equal 0 or V2. We already assumed
that φ(V1) �= 0, though, so we conclude that φ(V1) = V2 and hence φ is an isomor-
phism.

Now assume that (�1,V1) = (�2,V2) ≡ (�,V ) and that V is a finite-dimen-
sional complex vector space of dimension n (notice that we did not assume finite-
dimensionality at the outset of the proof). Then φ is a linear operator and the eigen-
value equation
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det(φ − λI)

is a nth degree complex polynomial in λ. By the fundamental theorem of algebra,15

this polynomial has at least one root c ∈ C, hence φ − cI has determinant 0 and
is thus non-invertible. This means that φ − cI has a non-trivial kernel K . K is
invariant, though; for all v ∈ K ,

(φ − cI)
(

�(g)v
) = φ

(

�(g)v
) − c�(g)v

= �(g)
(

φ(v) − cv
)

= 0

⇒ �(g)v ∈ K

and since we know K �= 0, we then conclude by irreducibility of V that K = V .
This means that (φ − cI)(v) = 0 ∀v ∈ V , which means φ = cI , as desired. �

Exercise 5.33 Prove the following corollary of Schur’s lemma: If (�i,Vi), i = 1,2 are
two complex irreducible representations of a group or Lie algebra, and φ,ψ : V1 → V2 are
two intertwiners with φ �= 0, then ψ = cφ for some c ∈ C.

As a first application of Schur’s lemma, we have

Proposition 5.5 An irreducible finite-dimensional complex representation of an
abelian group or Lie algebra is one-dimensional.

Proof Again we prove only the group case. Since G is abelian, each �(g) com-
mutes with �(h) for all h ∈ G, hence each �(g) : V → V is an intertwiner! By
Schur’s lemma, this implies that every �(g) is proportional to the identity (with
possibly varying proportionality constants), and so every subspace of V is an invari-
ant one. Thus the only way V could have no non-trivial invariant subspaces is to
have no non-trivial subspaces at all, which means it must be one-dimensional. �

Exercise 5.34 Show that the fundamental representation of SO(2) on R
2 is irreducible.

Prove this by contradiction, showing that if the fundamental representation were reducible
then the SO(2) generator

X =
(

0 −1
1 0

)

would be diagonalizable over the real numbers, which you should show it is not. This shows
that one really needs the hypothesis of a complex vector space in the above proposition.

Example 5.28 The irreducible representations of Z2

Proposition 5.5 allows us to easily enumerate all the irreducible representations
of Z2. Since Z2 is abelian any irreducible representation (�irr,V ) must be one-
dimensional (i.e. V = R or C), and �irr must also satisfy

15See Herstein [9], for instance.
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(

�irr(−1)
)2 = �irr

(

(−1)2) = �irr(1) = 1,

which means that �irr(−1) = ±1, i.e. �irr is either the alternating representation or
the trivial representation! Furthermore, Z2 is semi-simple (as you will show in Prob-
lem 5.8), and so any representation (�,V ) of Z2 is completely reducible and thus
decomposes into one-dimensional irreducible subspaces, on which �(−1) equals
either 1 or −1. Thus �(−1) is diagonalizable, with eigenvalues ±1 (cf. Exam-
ple 5.18 for examples of this). Let us say the Z2 in question is Z2 � {I,P } ⊂ O(3),
and that we are working in a quantum mechanical context with a Hilbert space H.
Then there exists a basis for H consisting of eigenvectors of �(P ); for a given
eigenvector ψ , its eigenvalue of ±1 is known as its parity. If the eigenvalue is +1
then ψ is said to have even parity, and if the eigenvalue is −1 then ψ is said to have
odd parity. �

5.8 The Irreducible Representations of su(2), SU(2) and SO(3)

In this section we will construct (up to equivalence) all the finite-dimensional ir-
reducible complex representations of su(2). Besides being of intrinsic interest, our
results will also allow us to classify all the irreducible representations of SO(3),
SU(2), and even the apparently unrelated representations of so(3,1), SO(3,1) and
SL(2,C). The construction we will give is more or less the same as that found in the
physics literature under the heading “theory of angular momentum”, except that we
are using different language and notation. Our strategy will be to use the commuta-
tion relations to deduce the possible structures of su(2) irreps, and then show that
we have already constructed representations which exhaust these possibilities, thus
yielding a complete classification.

Let (π,V ) be a finite-dimensional complex irreducible representation of su(2).
It will be convenient to use the following shorthand, familiar from the physics liter-
ature:

Jz ≡ iπ(Sz)

J+ ≡ iπ(Sx) − π(Sy) (5.74)

J− ≡ iπ(Sx) + π(Sy).

These “raising” and “lowering” operators obey the following commutation relations,
as you can check:

[Jz, J±] = ±J±
[J+, J−] = 2Jz.

Now, as discussed in our proof of Schur’s lemma, the fact that V is complex means
that every operator on V has at least one eigenvector. In particular, this means that
Jz has an eigenvector v with eigenvalue b. The above commutation relations then
imply that
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Jz(J±v) = [Jz, J±]v + J±(Jzv) = (b ± 1)J±v

so that if J±v is not zero (which it might be!), then it is another eigenvector of Jz

with eigenvalue b±1. Now, we can repeatedly apply J+ to v to yield more and more
eigenvectors of Jz, but since V is finite-dimensional and eigenvectors with different
eigenvalues are linearly independent (see Exercise 5.35 below), this process must
end somewhere, say at N applications of J+. Let v0 be this vector with the highest
eigenvalue (also known as the highest weight vector of the representation), so that
we have

v0 = (J+)Nv

J+v0 = 0.

Then v0 has a Jz eigenvalue of b + N ≡ j (note that so far we haven’t proved any-
thing about b or j , but we will soon see that they must be integral or half-integral).
Starting with v0, then, we can repeatedly ‘lower’ with J− to get eigenvectors with
lower eigenvalues. In fact, we can define

vk ≡ (J−)kv0

which has Jz eigenvalue j −k. This chain must also end, though, so there must exist
an integer l such that

vl = (J−)lv0 �= 0 but vl+1 = (J−)l+1v0 = 0.

How can we find l? For this we will need the following formula, which you will
prove in Exercise 5.36 below:

J+(vk) = [

2jk − k(k − 1)
]

vk−1. (5.75)

Applying this to vl+1 = 0 gives

0 = J+(vl+1) = [

2j (l + 1) − (l + 1)l
]

vl

and since vl �= 0 we conclude that
[

2j (l + 1) − (l + 1)l
] = 0 ⇐⇒ j = l/2.

Thus j is a nonnegative integer or half integer! (In fact, j is just the ‘spin’
of the representation.) We further conclude that V contains 2j + 1 vectors
{vk | 0 ≤ k ≤ 2j} all of which are eigenvectors of Jz with eigenvalue j − k. Further-
more, since

π(Sx) = − i

2
(J+ + J−)

π(Sy) = 1

2
(J− − J+),

the action of Sx and Sy take a given vk into a linear combination of other vk , so the
span of vk is a nonzero invariant subspace of V . We assumed V was irreducible,
however, so we must have V = Span{vk}, and since the vk are linearly independent,
they form a basis for V !
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To summarize, any finite-dimensional irreducible complex representation of
su(2) has dimension 2j + 1, 2j ∈ Z and a basis {vk}k=0−2j which satisfies

J+(v0) = 0.

J−(vk) = vk+1, k < 2j

Jz(vk) = (j − k)vk (5.76)

J−(v2j ) = 0

J+(vk) = [

2jk − k(k − 1)
]

vk−1, k �= 0.

What is more, we can actually use the above equations to define representations
(πj ,Vj ), where Vj is a (2j + 1)-dimensional vector space with basis {vk}k=0−2j

and the action of the operators πj(Si) is defined by (5.76). It is straightforward to
check that this defines a representation of su(2) (see exercise below), and one can
prove irreducibility in the same way that we did in Example 5.27. Furthermore, any
irrep (π,V ) of su(2) must be equivalent to (πj ,Vj ) for some j , since we can find a
basis wk for V satisfying (5.76) for some j and then define an intertwiner by

φ : V → Vj

wk �→ vk

and extending linearly. We have thus proved the following:

Proposition 5.6 The su(2) representations (πj ,Vj ), 2j ∈ Z defined above are all
irreducible, and any other finite-dimensional complex irreducible representation of
su(2) is equivalent to (πj ,Vj ) for some j, 2j ∈ Z.

In other words, the (πj ,Vj ) are, up to equivalence, all the finite-dimensional
complex irreducible representations of su(2). They are also all the finite-dimen-
sional complex irreducible representations of so(3), since su(2) � so(3).

If you look back over our arguments you will see that we deduced (5.76) from
just the su(2) commutation relations, the finite-dimensionality of V , and the exis-
tence of a highest weight vector v0 satisfying J+(v0) = 0 and Jz(v0) = jv0. Thus, if
we have an arbitrary (i.e. not necessarily irreducible) finite-dimensional su(2) rep-
resentation (π,V ) and can find a highest weight vector v0 for some j , we can lower
with J− to generate a basis {vk}k=0−2j satisfying (5.76) and conclude that V has an
invariant subspace equivalent to (πj ,Vj ). We can then repeat this until V is com-
pletely decomposed into irreps. If we know that (π,V ) is irreducible from the start
then we do not even have to find the vector v0, we just use the fact that (π,V ) must
be equivalent to (πj ,Vj ) for some j and note that j is given by j = 1

2 (dimV − 1).
These observations make it easy to identify which (πj ,Vj ) occur in any given su(2)

representation.
Note that if we have a finite-dimensional complex irreducible su(2) representa-

tion that is also unitary, then we could work in an orthonormal basis. In that case,
it turns out that the vk defined above are not orthonormal, and are thus not ideal
basis vectors to work with. They are orthogonal, but are not normalized to have
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unit length. In quantum mechanical contexts the su(2) representations usually are
unitary, and so in that setting one works with the orthonormal basis vectors |m〉,
−j ≤ m ≤ j . The vector |m〉 is proportional to our vj−m, and is normalized whereas
vj−m is not. See Sakurai [14] for details on the normalization procedure.

Exercise 5.35 Let S = {vi}i=1−k be a set of eigenvectors of some linear operator T on a
vector space V . Show that if each of the vi have distinct eigenvalues, then S is a linearly
independent set. (Hint: One way to do this is by induction on k. Another is to argue by
assuming that S is linearly dependent and reaching a contradiction. In this case you may
assume without loss of generality that the vi , 1 ≤ i ≤ k − 1 are linearly independent, so that
vk is the vector that spoils the assumed linear independence.)

Exercise 5.36 Prove (5.75). Proceed by induction, i.e. first prove the formula for k = 1,
then assume it is true for k and show that it must be true for k + 1.

Exercise 5.37 Show that (5.76) defines a representation of su(2). This consists of showing
that the operators J+, J−, Jz satisfy the appropriate commutation relations. Then show that
this representation is irreducible, using an argument similar to the one from Example 5.27.

Example 5.29 Pl(C
2), revisited again

In Example 5.7 we met the representations (πl,Pl(C
2)) of su(2) on the space of

degree l polynomials in two complex variables. In Example 5.27 we saw that these
representations are all irreducible, and so by setting dimPl(C

2) = l + 1 equal to
2j + 1 we deduce that

(

πl,Pl

(

C
2)) � (πl/2,Vl/2) (5.77)

and so the (πl,Pl(C
2)), l ∈ Z also yield all the complex finite-dimensional ir-

reps of su(2). What is more, this allows us to enumerate all the finite-dimensional
complex irreps of the associated group SU(2). Any irrep (�,V ) of SU(2) yields
an irrep (π,V ) of su(2), by Proposition 5.3. This irrep must be equivalent to
(πl,Pl(C

2)) for some l ∈ Z, however, and so by Proposition 5.2 (�,V ) is equiv-
alent to (�l,Pl(C

2)). Thus, the representations (�l,Pl(C
2)), l ∈ Z are (up to

equivalence) all the finite-dimensional complex irreducible representations of
SU(2)!

It is instructive to construct the equivalence (5.77) explicitly. Recall that the rais-
ing and lowering operators (which we called Yl and Xl in Example 5.27) are given
by

J− = −z1
∂

∂z2

J+ = −z2
∂

∂z1

and that

Jz = iπl(Sz) = 1

2

(

z2
∂

∂z2
− z1

∂

∂z1

)

.

It is easy to check that v0 ≡ zl
2 is a highest weight vector with j = l/2, and so the

basis that satisfies (5.76) is given by
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vk ≡ (J−)k
(

zl
2

) = (−1)k
l!

(l − k)!z
k
1z

l−k
2 , 0 ≤ k ≤ l. (5.78)

Exercise 5.38 Show by direct calculation that (π2j ,P2j (C
2)) satisfies (5.76) with basis

vectors given by (5.78).

Example 5.30 S2j (C2) as irreps of su(2)

We suggested in Example 5.15 that the tensor product representation of
su(2) on S2j (C2), the totally symmetric (0,2j) tensors on C

2, is equivalent to
(π2j ,P2j (C

2)) � (πj ,Vj ), 2j ∈ Z. With the classification of su(2) irreps in place,
we can now prove this fact. It is easy to verify that

v0 ≡ e1 ⊗ · · · ⊗ e1
︸ ︷︷ ︸

2j times

∈ S2j
(

C
2) (5.79)

is a highest weight vector with eigenvalue j , so there is an irreducible invariant
subspace of S2j (C2) equivalent to Vj . Since dimVj = dimS2j (C2) = 2j + 1 (as
you can check), we conclude that Vj is all of S2j (C2), and hence that

(

S2jπ,S2j
(

C
2)) � (πj ,Vj ) � (

π2j ,P2j

(

C
2)) (5.80)

which also implies (S2j�,S2j (C2)) � (�2j ,P2j (C
2)). Thus, we see that every

irreducible representation of su(2) and SU(2) can be obtained by taking a sym-
metric tensor product of the fundamental representation. Thus, using nothing
more than the fundamental representation (which corresponds to j = 1/2, as ex-
pected) and the tensor product, we can generate all the representations of su(2)

and SU(2). We will see in the next section that the same is true for so(3,1) and
SO(3,1)o. �

Our results about the finite-dimensional irreps of su(2) and SU(2) are not
only interesting in their own right; they also allow us to determine all the ir-
reps of SO(3)! To see this, first consider the degree l harmonic polynomial rep-
resentation (�l, Hl (R

3)) of SO(3). This induces a representation (πl, Hl(R
3)) of

so(3) � su(2). It is easy to check (see exercise below) that if we define, in analogy
to the su(2) case,

Jz ≡ iπl(Lz) = i

(

y
∂

∂x
− x

∂

∂y

)

J+ ≡ iπ(Lx) − π(Ly) = i

(

z
∂

∂y
− y

∂

∂z

)

−
(

x
∂

∂z
− z

∂

∂x

)

J− ≡ iπ(Lx) + π(Ly) = i

(

z
∂

∂y
− y

∂

∂z

)

+
(

x
∂

∂z
− z

∂

∂x

)

then the vector f0 ≡ (x + iy)l is a highest weight vector with eigenvalue l, and
so Hl (R

3) has an invariant subspace equivalent to (πl,Vl). We will argue in Prob-
lem 5.9 that dim Hl (R

3) = 2l + 1, so we conclude that (πl, Hl (R
3)) � (πl,Vl), and
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is hence an irrep of so(3). Proposition 5.3 then implies that (�l, Hl(R
3)) is an irrep

of SO(3)!
Are these all the irreps of SO(3)? To find out, let (�,V ) be an arbitrary finite-

dimensional complex irrep of SO(3). Then the induced so(3) � su(2) representation
(π,V ) must be equivalent to (πj ,Vj ) for some integral or half-integral j . We just
saw that any integral j value is possible, by taking (�,V ) = (�j , Hj (R

3)). What
about half-integral values of j? In this case, we have (careful not to confuse the
number π with the representation π !)

e2π ·π(Lz)v0 = e−i2πJzv0

= e−i2πj v0 since v0 has eigenvalue j

= −v0 since j half-integral.

However, we also have

e2π ·π(Lz)v0 = (

�
(

e2π ·Lz
))

v0

= (

�(I)
)

v0 by (4.86)

= v0,

a contradiction. Thus, j cannot be half-integral, so (π,V ) must be equivalent to
(πj ,Vj ) for j integral. But this implies that (π,V ) � (πj , Hj (R

3)), and so by
Proposition 5.2, (�,V ) is equivalent to (�j , Hj (R

3))! Thus, the representations
(�j , Hj (R

3)), j ∈ Z are (up to equivalence) all the finite-dimensional complex
irreducible representations of SO(3).

An important lesson to take away form this is that for a matrix Lie group G with
Lie algebra g, not all representations of g necessarily come from representations
of G. If G = SU(2) then there is a one-to-one correspondence between Lie algebra
representations and group representations, but in the case of SO(3) there are Lie
algebra representations (corresponding to half-integral values of j ) that do not come
from SO(3) representations. We will not say much more about this here, except to
note that this is connected to the fact that there are non-isomorphic matrix Lie groups
that have isomorphic Lie algebras, as is the case with SU(2) and SO(3). For a more
complete discussion, see Hall [8].

Exercise 5.39 Verify that

J+f0 = 0

Jzf0 = lf0.

5.9 Real Representations and Complexifications

So far we have classified all the complex finite-dimensional irreps of su(2), SU(2)

and SO(3), but we haven’t said anything about real representations, despite the fact
that many of the most basic representations of these groups and Lie algebras (like
the fundamental of SO(3) and all its various tensor products) are real. Fortunately,
there is a way to turn every real representation into a complex representation, so
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that we can then apply our classification of complex irreps. Given any real vector
space V , we can define the complexification of V as VC ≡ C ⊗ V , where C and
V are thought of as real vector spaces (C being a 2-dimensional real vector space
with basis {1, i}), so that if {ei} is a basis for V then {1 ⊗ ei, i ⊗ ei} is a (real)
basis for VC. Note that VC also carries the structure of a complex vector space, with
multiplication by i defined by

i(z ⊗ v) = (iz) ⊗ v, z ∈ C, v ∈ V.

A complex basis for VC is then given by {1 ⊗ ei}, and the complex dimension of VC

is equal to the real dimension of V .
We can then define the complexification of a real representation (�,V ) to be the

(complex) representation (�C,VC) defined by
(

�C(g)
)

(z ⊗ v) ≡ z ⊗ �(g)v. (5.81)

We can then get a handle on the real representation (�,V ) by applying our clas-
sification scheme to its complexification (�C,VC). You should be aware, however,
that the irreducibility of (�,V ) does not guarantee the irreducibility of (�C,VC)

(see Exercise 5.40 and Example 5.39), though in many cases (�C,VC) will end up
being irreducible.

Example 5.31 The complexifications of R
n and Mn(R)

As a warm-up to considering complexifications of representations, we consider the
complexification of a simple vector space. Consider the complexification R

n
C

of R
n.

We can define the (obvious) complex-linear map

φ : R
n
C

→ C
n

1 ⊗ (

aj ej

) + i ⊗ (

bjej

) �→ (

aj + ibj
)

ej , aj , bj ∈ R

which is easily seen to be a vector space isomorphism, so we can identify R
n
C

with C
n. One can also extend this argument in the obvious way to show that

(

Mn(R)
)

C
= Mn(C).

Example 5.32 The fundamental representation of so(3)

Now consider the complexification (πC,R
3
C
) of the fundamental representation of

so(3). As explained above, R
3
C

can be identified with C
3, and a moment’s consider-

ation of (5.81) will show that the complexification of the fundamental representation
of so(3) is just given by the usual so(3) matrices acting on C

3 rather than R
3. You

should check that Jz and J+ are given by

Jz =
⎛

⎝

0 −i 0
i 0 0
0 0 0

⎞

⎠
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J+ =
⎛

⎝

0 0 −1
0 0 −i

1 i 0

⎞

⎠

and that the vector

v0 ≡ e1 + ie2 =
⎛

⎝

1
i

0

⎞

⎠

is a highest weight vector with j = 1. This, along with the fact that dim C
3 = 3, al-

lows us to conclude that (πC,R
3
C
) � (π1,V1). This is why regular three-dimensional

vectors are said to be “spin-one”. Notice that our highest weight vector v0 = e1 + ie2
is just the analog of the function f0 = x + iy ∈ H1(R

3), which is an equivalent rep-
resentation, and that in terms of SO(3) reps we have

(

�C,R
3
C

) � (

�1, H1
(

R
3)).

Recall also that the adjoint representation of su(2) � so(3) is equivalent to the
fundamental representation of so(3). This combined with the above results implies

(

adC, so(3)C

) � (

adC, su(2)C

) � (π1,V1)

so the adjoint representation of su(2) is “spin-one” as well.

Example 5.33 Symmetric traceless tensors

Consider the space S′2(R3) of symmetric traceless second rank tensors defined in
(5.67). This is an SO(3) invariant subspace of R

3 ⊗ R
3, and so furnishes a repre-

sentation (�0
2, S

2′
(R3)) of SO(3). What representation is this? To find out, consider

the complexification of the associated so(3) representation, (π2′
0C

, S2′
(C3)), where

S2′
(C3) is also defined by (5.67), just with C

3 replacing R
3. Then it is straightfor-

ward to verify that

v0 ≡ (e1 + ie2) ⊗ (e1 + ie2)

is a highest weight vector with j = 2, and this along with fact that dimS2′
(C3) = 5

(check!) implies that
(

π2′
0C

, S2′(
C

3)) � (π2,V2).

This is why symmetric traceless second rank tensors on R
3 are sometimes said to

be “spin-two”.
Recall that S2′

(R3) arose in Example 5.23 as part of the decomposition

R
3 ⊗ R

3 = Rg ⊕ �2(
R

3) ⊕ S2′(
R

3)

which has matrix counterpart

M3(R) = RI ⊕ A3(R) ⊕ S′
3(R).
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Complexifying and using the fact (cf. Example 5.22) that �2(R3) is equivalent to
the adjoint representation and is hence “spin-one”, we obtain the following decom-
position:

V1 ⊗ V1 � C
3 ⊗ C

3 � M3(C) � V0 ⊕ V1 ⊕ V2.

This is an instance of (5.68) and should be familiar from angular momentum addi-
tion in quantum mechanics.

Exercise 5.40 Consider the fundamental representation of SO(2) on R
2, which we know

is irreducible by Exercise 5.34. The complexification of this representation is just given
by the same SO(2) matrices acting on C

2 rather than R
2. Show that this representation is

reducible, by diagonalizing the SO(2) generator

X =
(

0 −1
1 0

)

.

Note that this diagonalization can now be done because both complex eigenvalues and com-
plex basis transformations are allowed, in contrast to the real case.

5.10 The Irreducible Representations of sl(2,CCC)RRR, SL(2,CCC) and
SO(3,1)o

In this section we will use the techniques and results of the previous section to
classify all the finite-dimensional complex irreps of sl(2,C)R � so(3,1), and then
use this to find the irreps of the associated groups SL(2,C) and SO(3,1)o.

Let (π,V ) be a finite-dimensional complex irreducible representation of
sl(2,C)R. Define the operators

Mi ≡ 1

2

(

π(Si) − iπ(K̃i )
)

, i = 1,2,3

Ni ≡ 1

2

(

π(Si) + iπ(K̃i )
)

, i = 1,2,3
(5.82)

where {Si, K̃i}i=1,2,3 is our usual basis for sl(2,C)R. One can check that the Ms and
Ns commute between each other, as well as satisfy the su(2) commutation relations
internally, i.e.

[Mi,Nj ] = 0

[Mi,Mj ] =
3

∑

k=1

εijkMk (5.83)

[Ni,Nj ] =
3

∑

k=1

εijkNk.

We have thus taken the complex span of the set {π(K̃i),π(Si)} (notice the factors
of i in (5.82)) and found a new basis for this Lie algebra of operators that makes it
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look like two commuting copies of su(2). We can thus define the usual raising and
lowering operators

N± ≡ iN1 ∓ N2

M± ≡ iM1 ∓ M2

which then have the usual commutation relations between themselves and iMz, iNz:

[iMz,M±] = ±M±
[iNz,N±] = ±N±
[M+,M−] = 2iMz

[N+,N−] = 2iNz.

With this machinery set up we can now use the strategy from the last section. First,
pick a vector v ∈ V that is an eigenvector of both iMz and iNz (that such a vector
exists is guaranteed by Problem 5.10). Then by applying M+ and N+ we can raise
the iMz and iNz eigenvalues until the raising operators give us the zero vector; let
v0,0 denote the vector with the highest eigenvalues (which we will again refer to as
a ‘highest weight vector’), and let (j1, j2) denote those eigenvalues under iMz and
iNz, respectively, so that

M+(v0,0) = 0

N+(v0,0) = 0

iMz(v0,0) = j1v0,0

iNz(v0,0) = j2v0,0.

(5.84)

We can then lower the eigenvalues with N− and M− to get vectors

vk1,k2 ≡ (M−)k1(N−)k2v0,0 (5.85)

which are eigenvectors of iMz and iNz with eigenvalues j1 − k1 and j2 − k2, re-
spectively. By finite-dimensionality of V this chain of vectors must eventually end,
though, so there exist nonnegative integers l1, l2 such that vl1,l2 �= 0 but

M−(vl1,l2) = N−(vl1,l2) = 0. (5.86)

Calculations identical to those from the su(2) case show that li = 2ji , and that the
action of the operators Mi , Ni is given by

M+(v0,0) = 0

N+(v0,0) = 0

M−(vk1,k2) = vk1+1,k2 , k1 < 2j1

N−(vk1,k2) = vk1,k2+1, k2 < 2j2

iMz(vk1,k2) = (j1 − k1)vk1,k2 (5.87)
iNz(vk1,k2) = (j2 − k2)vk1,k2

M−(v2j1,k2) = 0, ∀k2
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N−(vk1,2j2) = 0, ∀k1

M+(vk1,k2) = [

2j1k1 − k1(k1 − 1)
]

vk1−1,k2 , k1 �= 0

N+(vk1,k2) = [

2j2k2 − k2(k2 − 1)
]

vk1,k2−1, k2 �= 0

(this is just two copies of (5.76), one each for the Mi and the Ni ). As in the su(2)

case, we note that the {vk1,k2} are linearly independent and span an invariant sub-
space of V , hence must span all of V since we assumed V was irreducible. Thus,
we conclude that any complex finite-dimensional irrep of sl(2,C)R is of the form
(π(j1,j2), V(j1,j2)) where V(j1,j2) has a basis

B = {vk1,k2 | 0 ≤ k1 ≤ 2j1, 0 ≤ k2 ≤ 2j2}
and the operators π(j1,j2)(Si), π(j1,j2)(K̃i) satisfy (5.87), with 2j1,2j2 ∈ Z. This
tells us that

dimV(j1,j2) = (2j1 + 1)(2j2 + 1).

Let us abbreviate the representations (π(j1,j2), V(j1,j2)) as simply (j1, j2) as is
done in the physics literature. As in the su(2) case, we can show that (5.87) actually
defines a representation of sl(2,C)R, and using the same arguments that we did in
the su(2) case we conclude that

Proposition 5.7 The representations (j1, j2), 2j1,2j2 ∈ Z are, up to equivalence,
all the complex finite-dimensional irreducible representations of sl(2,C)R.

As in the su(2) case, we deduced (5.87) from just the sl(2,C)R commutation re-
lations, the finite-dimensionality of V , and the existence of a highest weight vector
v0,0 satisfying (5.84). Thus if we are given a finite-dimensional sl(2,C)R represen-
tation and can find a highest weight vector v0,0 for some (j1, j2), we can conclude
that the representation space contains an invariant subspace equivalent to (j1, j2).

Example 5.34 (π,C
2): The fundamental (left-handed spinor) representation

Consider the left-handed spinor representation (π,C
2) of sl(2,C)R, which is also

just the fundamental of sl(2,C)R, i.e.

π(S1) = S1 = 1

2

(

0 −i

−i 0

)

π(S2) = S2 = 1

2

(

0 −1
1 0

)

π(S3) = S3 = 1

2

(−i 0
0 i

)

π(K̃1) = K̃1 = 1

2

(

0 1
1 0

)

π(K̃2) = K̃2 = 1

2

(

0 −i

i 0

)
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π(K̃3) = K̃3 = 1

2

(

1 0
0 −1

)

.

In this case we have (check!)

Mi = Si

Ni = 0

and hence

M+ =
(

0 1
0 0

)

M− =
(

0 0
1 0

)

(5.88)

N+ = N− = 0.

With this in hand you can easily check that (1,0) ∈ C
2 is a highest weight vector

with j1 = 1/2, j2 = 0. Thus the fundamental representation of sl(2,C)R is just
( 1

2 ,0).

Example 5.35 (S2jπ,S2j (C2)): Symmetric tensor products of left-handed spinors

As with su(2), we can build other irreps by taking symmetric tensor products. Con-
sider the 2j th symmetric tensor product representation (S2jπ,S2j (C2)), 2j ∈ Z and
the vector

v0,0 ≡ e1 ⊗ · · · ⊗ e1
︸ ︷︷ ︸

2j times

∈ S2j
(

C
2). (5.89)

Using (5.34) it is straightforward to check, as you did in Example 5.30, that this is
a highest weight vector with eigenvalues (j,0), and so we conclude that S2j (C2)

contains an invariant subspace equivalent to (j,0). Noting that

dimS2j
(

C
2) = dim(j,0) = 2j + 1

we conclude that (S2jπ,S2j (C2)) � (j,0).

Example 5.36 (π̄ ,C
2): The right-handed spinor representation

Consider the right-handed spinor representation (�̄,C
2) from Example 5.6. A quick

calculation (do it!) reveals that the induced Lie algebra representation (π̄ ,C
2) is

given by

π̄ (X) = −X†, X ∈ sl(2,C)R.

In particular we then have

π̄(Si) = Si

since the Si are anti-Hermitian, as well as
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π̄(K̃i) = π̄ (iSi) = −iπ̄(Si) = −iSi .

We then have

Mi = 0

Ni = Si

and hence

N+ =
(

0 1
0 0

)

N− =
(

0 0
1 0

)

(5.90)

M+ = M− = 0.

You can again check that (1,0) ∈ C
2 is a highest weight vector, but this time with

j1 = 0, j2 = 1/2, and so the right-handed spinor representation of sl(2,C)R is just
(0, 1

2 ).

Example 5.37 (π̄2j , S
2j (C2)): Symmetric tensor products of right-handed spinors

As before, we can build other irreps by taking symmetric tensor products. Again,
consider the 2j th symmetric tensor product representation (S2j π̄ , S2j (C2)), 2j ∈ Z

and the vector

v0,0 ≡ e1 ⊗ · · · ⊗ e1
︸ ︷︷ ︸

2j times

∈ S2j
(

C
2). (5.91)

Again, it is straightforward to check that this is a highest weight vector with eigen-
values (0, j), and we can conclude as before that (S2j π̄ , S2j (C2)) is equivalent to
(0, j). �

So far we have used symmetric tensor products of the left-handed and right-
handed spinor representations to build the (j,0) and (0, j) irreps. From here, getting
the general irrep (j1, j2) is easy; we just take the tensor product of (j1,0) and (0, j2)!
To see this, let v0,0 ∈ (j,0) and v̄0,0 ∈ (0,k) be highest weight vectors. Then it is
straightforward to check that

v0,0 ⊗ v̄0,0 ∈ (j,0) ⊗ (0,k) (5.92)

is a highest weight vector with j1 = j , j2 = k, and so we conclude that (j,0)⊗(0,k)

contains an invariant subspace equivalent to (j,k). However, since

dim
[

(j,0) ⊗ (0,k)
] = dim(j,k) = (2j + 1)(2k + 1)

we conclude that these representations are equivalent, and so in general (switching
notation a little),

(j1, j2) � (j1,0) ⊗ (0, j2). (5.93)
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Thus, all the irreps of sl(2,C)R can be built out of the left-handed spinor
(fundamental) representation, the right-handed spinor representation, and
various tensor products of the two.

As before, this classification of the complex finite-dimensional irreps of sl(2,C)R

also yields, with minimal effort, the classification of the complex finite-dimensional
irreps of SL(2,C). Any complex finite-dimensional irrep of SL(2,C) yields a com-
plex finite-dimensional irrep of sl(2,C)R, which must be equivalent to (j1, j2) for
some j1, j2 and since

(j1, j2) � (

S2j1π ⊗ S2j2 π̄ , S2j1
(

C
2) ⊗ S2j2

(

C
2))

we conclude that our original SL(2,C) irrep is equivalent to (S2j1� ⊗ S2j2�̄,

S2j1(C2) ⊗ S2j2(C2)) for some j1, j2. Thus, the representations
(

S2j1� ⊗ S2j2�̄, S2j1
(

C
2) ⊗ S2j2

(

C
2)), 2j1,2j2 ∈ Z

are (up to equivalence) all the complex finite-dimensional irreducible represen-
tations of SL(2,C).

How about representations of SO(3,1)o? We saw that in the case of SO(3), not all
representations of the associated Lie algebra actually arise from representations of
the group, and the same is true here. Say we have a complex finite-dimensional irrep
(�,V ) of SO(3,1)o, and consider its induced Lie algebra representation (π,V ),
which must be equivalent to (j1, j2) for some j1, j2. Noting that

iMz + iNz = iπ(Sz)

we have (again, be sure to distinguish π the number from π the representation!)

ei2π ·(iMz+iNz)v0,0 = ei2π(j1+j2)v0,0

as well as

ei2π ·(iMz+iNz)v0,0 = e−2π ·π(Sz)v0,0

= �
(

e−2πSz
)

v0,0

= �(I)v0,0

= v0,0

so we conclude that

ei2π(j1+j2) = 1 ⇐⇒ j1 + j2 ∈ Z, (5.94)

and thus only representations (j1, j2) satisfying this condition can arise from
SO(3,1)o representations. (It is also true that for any j1, j2 satisfying this condi-
tion, there exists an SO(3,1)o representation with induced Lie algebra representa-
tion (j1, j2), though we will not prove that here.)

Example 5.38 R
4: The four-vector representation of SO(3,1)o

The fundamental representation (�,R
4) is the most familiar SO(3,1)o repre-

sentation, corresponding to four-dimensional vectors in Minkowski space. What



202 5 Basic Representation Theory

(j1, j2) does it correspond to? To find out, we first complexify the representation to
(�C,C

4) and then consider the induced sl(2,C)R representation (πC,C
4). Straight-

forward calculations show that

iMz = 1

2

⎛

⎜

⎜

⎝

0 −i 0 0
i 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟

⎟

⎠

iNz = 1

2

⎛

⎜

⎜

⎝

0 −i 0 0
i 0 0 0
0 0 0 −1
0 0 −1 0

⎞

⎟

⎟

⎠

and this, along with expressions for M+ and N+ that you should derive, can be used
to show that

v0,0 = (e1 + ie2) =

⎛

⎜

⎜

⎝

1
i

0
0

⎞

⎟

⎟

⎠

is a highest weight vector with (j1, j2) = (1/2,1/2). Noting that

dim C
4 = dim

(

1
2
,

1
2

)

= 4

we conclude that

(

πC,C
4) �

(

1
2
,

1
2

)

.

Note that j1 + j2 = 1/2 + 1/2 = 1 ∈ Z, in accordance with (5.94). �

Before moving on to our next example, we need to discuss tensor products of
sl(2,C)R irreps. The nice thing here is that we can use what we know about the
tensor product of su(2) irreps to compute the decomposition of the tensor product
of sl(2,C)R irreps. In fact, the following is true.

Proposition 5.8 The decomposition into irreps of the tensor product of two
sl(2,C)R irreps (j1, j2) and (k1,k2) is given by

(j1, j2) ⊗ (k1,k2) =
⊕

(l1, l2)

where |j1 − k1| ≤ l1 ≤ j1 + k1, |j2 − k2| ≤ l2 ≤ j2 + k2 (5.95)

and each (l1, l2) consistent with the above inequalities occurs exactly once in the
direct sum decomposition.

Notice the restrictions on l1 and l2, which correspond to the decomposition of
tensor products of su(2) representations. We relegate a proof of this formula to the



5.10 The Irreducible Representations of sl(2,C)R, SL(2,C) and SO(3,1)o 203

Appendix, but it should seem plausible. We have seen that one can roughly think
of an sl(2,C)R representations as a ‘product’ of two su(2) representations, and so
the tensor product of two sl(2,C)R representations (which can both be ‘factored’
into su(2) representations) should just be given by the various ‘products’ of su(2)

representations that occur when taking the tensor product of the factors. We will
apply this formula and make this concrete in the next example.

Example 5.39 �2
R

4: The antisymmetric tensor representation of SO(3,1)o

This is an important example since the electromagnetic field tensor Fμν lives in this
representation. To classify this representation, we first note that �2

R
4 occurs in the

O(3,1)-invariant decomposition

R
4 ⊗ R

4 = Rη−1 ⊕ �2(
R

4) ⊕ S2′(
R

4) (5.96)

where

η−1 = ημνeμ ⊗ eν

is the inverse of the Minkowski metric and

S2′(
R

4) = {

T ∈ S2(
R

4)
∣

∣ ημνT
μν = 0

}

(5.97)

is the set of symmetric ‘traceless’ second rank tensors, where the trace is effected
by the Minkowski metric η. Note that this is just the O(3,1) analog of the O(n)

decomposition in Example 5.23. You should check that each of the subspaces in
(5.96) really is O(3,1) invariant. Complexifying this yields

C
4 ⊗ C

4 = Cη−1 ⊕ �2(
C

4) ⊕ S2′(
C

4).

Now, we can also decompose C
4 ⊗ C

4 using Proposition 5.8, which yields
(

1
2
,

1
2

)

⊗
(

1
2
,

1
2

)

= (0,0) ⊕ (1,0) ⊕ (0,1) ⊕ (1,1). (5.98)

Now, clearly Cη−1 corresponds to (0,0) since the former is a one-dimensional rep-
resentation and (0,0) is the only one-dimensional irrep in the decomposition (5.98).
What about S2′

(C4)? Well, it is straightforward to check using the results of the
previous example that

v0,0 = (e1 + ie2) ⊗ (e1 + ie2) ∈ S2′(
C

4)

is a highest weight vector with (j1, j2) = (1,1) (it is also instructive to verify that
v0,0 actually satisfies the condition in (5.97)). Checking dimensions then tells us
that S2′

(C4) � (1,1), so we conclude that

�2(
C

4) � (1,0) ⊕ (0,1).

This representation is decomposable, but remember that this does not imply that
�2(R4) is decomposable! In fact, �2(R4) is irreducible. This is an unavoidable
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subtlety of the relationship between complex representations and real representa-
tions.16 For an interpretation of the representations (1,0) and (0,1) individually,
see Problem 5.12.

5.11 Irreducibility and the Representations of O(3,1) and Its
Double Covers

In this section we will examine the constraints that parity and time-reversal place on
representations of O(3,1) and its double covers. In particular, we will clarify our
discussion of the Dirac spinor from Example 5.26 and explain why such so(3,1)

decomposable representations seem to occur so naturally.
To start, consider the adjoint representation (Ad, so(3,1)) of O(3,1). It is easily

checked that the parity operator acts as

AdP (L̃i) = L̃i

AdP (Ki) = −Ki.

Now say that we have a double cover of O(3,1), call it H (these certainly exist
and are actually non-unique; see Sternberg [16] and the comments at the end of this
section). H will have multiple components, just as O(3,1) does, and the component
containing the identity will be isomorphic to SL(2,C).17 Since H is a double cover,
there exists a two-to-one group homomorphism � : H → O(3,1), which induces
the usual Lie algebra isomorphism φ : sl(2,C)R → so(3,1). Now let P̃ ∈ H cover
P ∈ O(3,1), so that �(P̃ ) = P . Then from the identity

φ
(

Adh(X)
) = Ad�(h)

(

φ(X)
) ∀h ∈ H, X ∈ sl(2,C)R (5.99)

which you will prove below, we have

φ
(

Ad
P̃
(Si)

) = AdP (L̃i)

= L̃i

as well as

φ
(

AdP̃
(K̃i )

) = −Ki.

Since φ is an isomorphism we conclude that

Ad
P̃
(Si) = P̃ SiP̃

−1 = Si

Ad
P̃
(K̃i) = P̃ K̃i P̃

−1 = −K̃i .

If (�,V ) is a representation of H and (π,V ) the induced sl(2,C)R representation,
then this implies that

16For the whole story on this relationship, see Onischik [11].
17This should seem plausible, but proving it rigorously would require homotopy theory and would
take us too far afield. See Frankel [4] for a nice discussion of this topic.
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�
P̃
Mi�

−1
P̃

= Ni (5.100)

�
P̃
Ni�

−1
P̃

= Mi. (5.101)

Let us examine some consequences of this. Let W ⊂ V be an irreducible subspace
of (π,V ) equivalent to (j1, j2), spanned by our usual basis of the form

B = {vk1,k2 | 0 ≤ k1 ≤ 2j1, 0 ≤ k2 ≤ 2j2}.
We then have

iMz�P̃
v0,0 = i�

P̃
Nzv0,0 = j2�P̃

v0,0

iNz�P̃
v0,0 = i�

P̃
Mzv0,0 = j1�P̃

v0,0

M+�
P̃
v0,0 = �

P̃
N+v0,0 = 0

N+�
P̃
v0,0 = �

P̃
M+v0,0 = 0

and thus �
P̃
v0,0 is a highest weight vector for (j2, j1)! We have thus proven the

following proposition:

Proposition 5.9 Let H be a double cover of O(3,1) and (�,V ) a complex rep-
resentation of H with induced sl(2,C)R representation (π,V ). If W ⊂ V is an
irreducible subspace of (π,V ) equivalent to (j1, j2) and j1 �= j2, then there exists
another irreducible subspace W ′ of (π,V ) equivalent to (j2, j1).

It should be clear from the above that the operator �(P̃ ) corresponding to parity
takes us back and forth between W and W ′. This means that even though W is an
invariant subspace of the Lie algebra representation (π,V ), W is not invariant under
the Lie group representation (�,V ), since �(P̃ ) takes vectors in W to vectors in
W ′! If W and W ′ make up all of V , i.e. if V = W ⊕ W ′, this means that V is irre-
ducible under the H representation � but not under the so(3,1) representation π ,
and so we have an irreducible Lie group representation whose induced Lie algebra
representation is not irreducible! We will meet two examples of this type of repre-
sentation below. Note that this does not contradict Proposition 5.3, as the group H

does not satisfy the required hypotheses of connectedness.

Exercise 5.41 Let � : H → G be a Lie group homomorphism with induced Lie algebra
homomorphism φ : h → g. Use the definition of the adjoint mapping and of φ to show that

φ
(

Adh(X)
) = Ad�(h)

(

φ(X)
) ∀h ∈ H, X ∈ h.

Exercise 5.42 Verify (5.100) and (5.101). You will need the result of the previous exercise!

Example 5.40 The Dirac spinor revisited

As a particular application of Proposition 5.9, suppose our representation (�,V )

of H contains a subspace equivalent to the left-handed spinor (1
2 ,0); then it must

also contain a subspace equivalent to the right-handed spinor (0, 1
2 ). This is why the

Dirac spinor is ( 1
2 ,0) ⊕ (0, 1

2). It is not irreducible as an SL(2,C) representation,
but it is irreducible as a representation of a group H which extends SL(2,C) and
covers O(3,1). �
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The Dirac spinor representation is a representation of H , not O(3,1), but many
of the other sl(2,C)R � so(3,1) representations of interest do come from O(3,1)

representations (for instance, the fundamental representation of so(3,1) and its vari-
ous tensor products). Since any O(3,1) representation � : O(3,1) → GL(V ) yields
an H representation � ◦ � : H → GL(V ), Proposition 5.9 as well as the comments
following it hold for O(3,1) representations as well as representations of H . In the
O(3,1) case, though, we can do even better:

Proposition 5.10 Let (�,V ) be a finite-dimensional complex irreducible represen-
tation of O(3,1). Then the induced so(3,1) representation (π,V ) is equivalent to
one of the following:

(j, j), 2j ∈ Z or (j1, j2) ⊕ (j2, j1), 2j1,2j2 ∈ Z, j1 + j2 ∈ Z, j1 �= j2.

(5.102)

Proof Since so(3,1) is semi-simple, (π,V ) is completely reducible, i.e. equivalent
to a direct sum of irreducible representations. Let W ⊂ V be one such representa-
tion, equivalent to (j1, j2), with highest weight vector v0,0. Then �(P )v0,0 ≡ vP is
a highest weight vector with eigenvalues (j2, j1), and the same arguments show that
�(T )v0,0 ≡ vT is also a highest weight vector with eigenvalues (j2, j1) (it is not
necessarily equal to vP , though). The same arguments also show that �(PT )v0,0 ≡
vPT is a highest weight vector with eigenvalues (j1, j2) (recall that T is the time-
reversal operator defined in (4.34)). Now consider the vectors

w0,0 ≡ v0,0 + vPT

u0,0 ≡ vP + vT .

w0,0 is clearly a highest weight vector with eigenvalues (j1, j2), and u0,0 is clearly
a highest weight vector with eigenvalues (j2, j1). Using the fact that P and T com-
mute, you can easily check that

�(P )w0,0 = �(T )w0,0 = u0,0

�(P )u0,0 = �(T )u0,0 = w0,0.

We can then define basis vectors

wk1,k2 ≡ (M−)k1(N−)k2w0,0, 0 ≤ k1 ≤ 2j1, 0 ≤ k2 ≤ 2j2

uk1,k2 ≡ (M−)k1(N−)k2u0,0, 0 ≤ k1 ≤ 2j2, 0 ≤ k2 ≤ 2j1

which span so(3,1) irreducible subspaces W � (j1, j2) and U � (j2, j1). By Propo-
sition 5.3 and the connectedness of SO(3,1)o, W and U are also irreducible under
SO(3,1)o, and from (5.94) we know that j1 + j2 ∈ Z. Furthermore, by the definition
of the wk1,k2 and uk1,k2 , as well as (5.100)–(5.101), we have

�(P )wk1,k2 = �(T )wk1,k2 = uk2,k1

�(P )uk1,k2 = �(T )uk1,k2 = wk2,k1
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and so Span{wk1,k2 , ul1,l2} is invariant under O(3,1). We assumed V was irre-
ducible, though, so we conclude that V = Span{wk1,k2 , ul1,l2}. Does that mean
we can conclude that V � (j1, j2) ⊕ (j2, j1)? Not quite, because we never estab-
lished that w0,0 and u0,0 were linearly independent! In fact, they might be linearly
dependent, in which case they would be proportional, which would imply that each
wk1,k2 is proportional to uk1,k2 (why?), and also that j1 = j2 ≡ j . In this case, we
obtain

V = Span{wk1,k2 , ul1,l2} = Span{wk1,k2} � (j, j)

which is one of the alternatives mentioned in the statement of the proposition. If
w0,0 and u0,0 are linearly independent, however, then so is the set {wk1,k2 , ul1,l2}
and so

V = Span{wk1,k2 , ul1,l2} = W ⊕ U � (j1, j2) ⊕ (j2, j1)

which is the other alternative. All that remains is to show that j1 �= j2, which you
will do in Exercise 5.43 below. This concludes the proof. �

Exercise 5.43 Assume that w0,0 and u0,0 are linearly independent and that j1 = j2. Use
this to construct a non-trivial O(3,1)-invariant subspace of V , contradicting the irreducibil-
ity of V . Thus if V is irreducible and w0,0 and u0,0 are linearly independent, then j1 �= j2
as desired.

Example 5.41 O(3,1): Representations revisited

In this example we just point out that all the O(3,1) representations we have met
have the form (5.102). Below is a table of some of these representations, along with
their complexifications and the corresponding so(3,1) representations.

Name V VC so(3,1) rep

Scalar (trivial) R C (0,0)

Vector (fundamental) R
4

C
4 ( 1

2 , 1
2 )

Antisymmetric Tensor (adjoint) �2
R

4 �2
C

4 (1,0) ⊕ (0,1)

Pseudovector �3
R

4 �3
C

4 ( 1
2 , 1

2 )

Pseudoscalar �4
R

4 �4
C

4 (0,0)

Symmetric Traceless Tensor S2′
(R4) S2′

(C4) (1,1)

Note that the pseudovector and pseudoscalar representations yield the same
so(3,1) representations as the vector and scalar, respectively, as discussed in Ex-
ample 5.18. Thus we have a pair of examples in which two equivalent Lie algebra
representations come from two non-equivalent matrix Lie group representations!
Again, this does not contradict Proposition 5.2 since O(3,1) is not connected. Note
also that the only representation in the above table that decomposes into more than
one so(3,1) irrep is the antisymmetric tensor representation; see Problem 5.12 for
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the action of the parity operator on this representation, and how it takes one back
and forth between the so(3,1)-irreducible subspaces (1,0) and (0,1). �

Before concluding this chapter we should talk a little bit about this mysterious
group H which is supposed to be a double cover of O(3,1). It can be shown18

that there are exactly eight non-isomorphic double covers of O(3,1) (in contrast to
the case of SO(3) and SO(3,1)o which have the unique connected double covers
SU(2) and SL(2,C)). Most of these double covers are somewhat obscure and do
not really crop up in the physics literature, but two of them are quite natural and
well-studied: these are the Pin groups Pin(3,1) and Pin(1,3) which appear in the
study of Clifford Algebras. Clifford algebras are rich and beautiful objects, and
lead naturally to double covers of all the orthogonal and Lorentz groups. In the
four-dimensional Lorentzian case in particular, one encounters the Dirac gamma
matrices and the Dirac spinor, as well as the Pin groups which act naturally on the
Dirac spinor. For details on the construction of the Pin groups and their properties,
see Göckeler and Schücker [7].

5.12 Problems

5.1 In this problem we will develop a coordinate-based proof of our claim from
Example 5.22.

(a) Let X = Xij ei ⊗ ej ∈ �2
R

n, and define

X̃ ≡ XijL(ei) ⊗ ej = Xijgike
k ⊗ ej ∈ L

(

R
n
)

φ(X) ≡ [X̃] ∈ Mn(R).

Find an expression for φ(X) in terms of [X] and use it to show that φ(X) ∈ g.
(b) Prove that Ad(R) ◦ φ = φ ◦ �2�(R) by evaluating both sides on an arbitrary

X ∈ �2
R

n and showing that the components of the matrices are equal. You will
need the expansion of X given above, as well as the coordinate form (5.43)
of �2�. For simplicity of matrix computation, you may wish to abandon the
Einstein Summation Convention here and write the components of R ∈ G as
Rij , even though you are interpreting R as a linear operator.

5.2 In this problem we will develop a coordinate-free proof that the fundamental
representation of SL(2,C) is equivalent to its dual. This will also imply that the
fundamental representation of SU(2) is equivalent to its dual as well.

(a) Consider the epsilon tensor in T 2
0 (C2),

ε ≡ e1 ∧ e2.

Using the definition (3.84) of the determinant, show that ε is SL(2,C) invariant,
i.e. that

18See Sternberg [16].
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ε(Av,Aw) = ε(v,w) ∀v,w ∈ C
2, A ∈ SL(2,C).

(b) Define a map

Lε : C
2 → C

2∗

v �→ ε(v, ·).
Using your result from (a), show that Lε is an intertwiner, and also show that Lε

is one-to-one. Conclude that C
2 � C

2∗
as SL(2,C) irreps, and hence as SU(2)

irreps as well.
(c) Assuming the very plausible but slightly annoying to prove fact that

(S2l (C2))∗ � S2l (C2∗
), prove that every SU(2) representation is equivalent to

its dual. One might think that this is self-evident since taking the dual of an
irrep does not change its dimension and for a given dimension there is only one
SU(2) irrep (up to equivalence), but this assumes that the dual of an irrep is
itself an irrep. This is true, but needs to be proven, and is the subject of the next
problem.

5.3 Show that if (�,V ) is a finite-dimensional irreducible group or Lie algebra
representation, then so is (�∗,V ∗). Note that this together with Problem 2.4 also
implies the converse, namely that if (�∗,V ∗) is an irrep then so is (�,V ). Use this
to again prove that every su(2) irrep is equivalent to its dual.

5.4 In this problem we will prove in coordinates that the fundamental of su(2) is
equivalent to its dual. Let φ : C

2 → C
2 be an intertwiner between these two repre-

sentations, so that

φ ◦ X = −XT ◦ φ ∀X ∈ su(2).

If we represent φ by a matrix M and note that by linearity it suffices to check this
equation for the basis {Si}i=1–3 of su(2), this becomes

MSiM
−1 = −ST

i , i = 1,2,3.

Find a matrix M that satisfies this equation. (Hint: Use the intertwiner from Prob-
lem 5.2.)

5.5 If G is a matrix Lie group and (�,V ) its fundamental representation, one can
sometimes generate new representations by considering the conjugate representa-
tion

�̄ : G → GL(V )

A �→ Ā

where Ā denotes the matrix whose entries are just the complex conjugates of the
entries of A.

(a) Verify that �̄ is a homomorphism, hence a bona fide representation. Show that
for G = SU(n), the conjugate representation is equivalent to the dual represen-
tation. What does this mean in the case of SU(2)?
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(b) Let G = SL(2,C). Show that the conjugate to ( 1
2 ,0) is (0, 1

2 ). There a few ways
to do this. This justifies the notation �̄ for the representation homomorphism of
(0, 1

2 ).

5.6 Let (π,V ) be a representation of a Lie algebra g and assume that π : g →
gl(V ) is one-to-one (such Lie algebra representations are said to be faithful). Show
that there is an invariant subspace of (π1

1 ,V ⊗ V ∗) that is equivalent to the adjoint
representation (ad,g).

5.7 In this problem we will meet a representation that is not completely reducible.

(a) Consider the representation (�,R
2) of R given by

� : R → GL(2,R)

a �→ �(a) =
(

1 a

0 1

)

.

Verify that (�,R
2) is a representation.

(b) If � was completely reducible then we would be able to decompose R
2 as R

2 =
V ⊕ W where V and W are one-dimensional. Show that such a decomposition
is impossible.

5.8 In this problem we will show that Z2 is semi-simple, i.e. that every finite-
dimensional representation of Z2 is completely reducible. Our strategy will be to
construct a Z2-invariant inner product on our vector space, and then show that for
any invariant subspace W , its orthogonal complement W⊥ is also invariant. We can
then iterate this procedure to obtain a complete decomposition.

(a) Let (�,V ) be a representation of Z2. We first construct a Z2-invariant inner
product. To do this, we start with an arbitrary inner product (·,·)0 on V (which
could be defined, for instance, as one for which some arbitrary set of basis
vectors is orthonormal). We then define a ‘group averaged’ inner product as

(v|w) ≡
∑

h∈Z2

(�hv|�hw)0.

Show that (· | ·) is Z2-invariant, i.e. that

(�gv|�gw) = (v|w) ∀v,w ∈ V, g ∈ Z2.

(b) Assume now that there exists a non-trivial invariant subspace W ⊂ V (if no
such W existed, then V would be irreducible, hence completely reducible and
we would be done). Define its orthogonal complement

W⊥ ≡ {

v ∈ V
∣

∣ (v|w) = 0 ∀w ∈ W
}

.

Argue that there exists an orthonormal basis

B = {w1, . . . ,wk, vk+1, . . . , vn} where wi ∈ W, i = 1 − k,

and conclude that V = W ⊕ W⊥.
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(c) Show that W⊥ is an invariant subspace, so that V = W ⊕ W⊥ is a decomposi-
tion into invariant subspaces. We still do not know that W is irreducible, though.
Argue that we can nonetheless iterate our above argument until we obtain a de-
composition into irreducibles, thus proving that (�,V ) is completely reducible.

5.9 In this problem we will sketch a proof that the space of harmonic polynomials
Hl (R

3) has dimension 2l + 1.

(a) Recall our notation Pk(R
3) for the space of kth degree polynomials on R

3.
Assume that the map

� : Pk

(

R
3) −→ Pk−2

(

R
3) (5.103)

is onto. Use the rank-nullity theorem to show that dim Hl(R
3) = 2l + 1. If you

need help you might consult Example 3.24, as well as (3.104).
(b) To complete the proof we need to show that (5.103) is onto. I have not seen a

clean or particularly enlightening proof of this fact, so I do not heartily recom-
mend this part of the problem, but if you really want to show it you might try
showing (inductively on k) that the two-dimensional Laplacian

� : Pk

(

R
2) −→ Pk−2

(

R
2)

is onto, and then use this to show (inductively on k) that (5.103) is onto as well.

5.10 Let T and U be commuting linear operators on a complex vector space V , so
that [T ,U ] = 0. We will show that T and U have a simultaneous eigenvector.

Using the standard argument we employed in the proof of Proposition 5.4, show
that T has at least one eigenvector. Denote that vector by va and its eigenvalue by a.
Let Va denote the span of all eigenvectors of T with eigenvalue a; Va may just be
the one-dimensional subspace spanned by va , or it may be bigger if there are other
eigenvectors that also have eigenvalue a. Use the fact that U commutes with T to
show that Va is invariant under U (i.e. U(v) ∈ Va whenever v ∈ Va). We can then
restrict U to Va to get a linear operator

U |Va ≡ Ua ∈ L(Va). (5.104)

Then use the standard argument again to show that Ua has an eigenvector v0 ∈ Va .
Show that this is a simultaneous eigenvector of T and U .

5.11 In this problem we would like to show that the tensor product ‘distributes’
over direct sums, in the sense that for any vector spaces V,W and Z, there exists a
vector space isomorphism

φ : (V ⊕ W) ⊗ Z → (V ⊗ Z) ⊕ (W ⊗ Z).

Define such a map on decomposable elements by

φ : (v,w) ⊗ z �→ (v ⊗ z,w ⊗ z)

and extend linearly. Show that φ is linear (you will have to be careful about how
addition works in the direct sum spaces and the tensor product spaces) as well as
one-to-one and onto, so that it is a vector space isomorphism.
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5.12 In this problem we will study the O(3,1) representation (�2�,�2
C

4) and
its decomposition into (1,0) ⊕ (0,1) under SO(3,1)o and so(3,1).

(a) Define the star operator ∗ on �2
C

4 by

∗ : �2
C

4 → �2
C

4

ei ∧ ej �→ εijklη
kmηlnem ∧ en (5.105)

and extending linearly. Here ηln are the components of the inverse of the
Minkowski metric and εijkl are the components of the usual epsilon tensor
on R

4. Show that ∗ is an intertwiner between �2
C

4 and itself when viewed
as an SO(3,1)o representation, but not as an O(3,1) representation. You will
need (4.15) as well as your results from part (a) of Problem 3.4.

(b) Compute the action of ∗ on the basis vectors fi , i = 1–6 defined in Exam-
ple 5.24. Use the fi to construct eigenvectors of ∗, and show that ∗ is diago-
nalizable with eigenvalues ±i, so that �2

C
4 decomposes into V+i ⊕V−i where

V+i is the eigenspace of ∗ in which every vector is an eigenvector with eigen-
value +i and likewise for V−i . Then use Schur’s lemma to conclude that any
SO(3,1)o-irreducible subspace must lie entirely in V+i or V−i . In particular, this
means that �2

C
4 is not irreducible as an SO(3,1)o or so(3,1) representation.

(c) A convenient basis for V+i which you may have discovered above is

v+1 ≡ f1 + if4

v+2 ≡ f2 + if5

v+3 ≡ f3 + if6.

Likewise, for V−i we have the basis

v−1 ≡ f1 − if4

v−2 ≡ f2 − if5

v−3 ≡ f3 − if6.

Now consider the vectors

v0,0 ≡ v+1 + iv+2

w0,0 ≡ v−1 + iv−2.

Show that these are highest weight vectors for (0,1) and (1,0), respectively.
Then count dimensions to show that as so(3,1) representations, V+i � (0,1)

and V−i � (1,0).
(d) Show directly that �2�(P )(v+j ) = v−j , j = 1,2,3 and likewise for T , so that

P and T interchange V+i and V−i , as expected.



Chapter 6
The Wigner–Eckart Theorem and Other
Applications

In this chapter we will apply what we have learned about representations to quantum
mechanics, discussing selection rules and in particular the notoriously confusing
subjects of spherical tensors and the Wigner–Eckart theorem. We will then finish
our discussion with a brief foray into the beautiful subject of Clifford algebras, in
an attempt to better understand the Dirac spinor.

6.1 Tensor Operators, Spherical Tensors and Representation
Operators

In this section we introduce the notion of a representation operator, which general-
izes the notions of vector and tensor operators as well as spherical tensors. We will
then use representation operators to derive the fundamental quantum mechanical se-
lection rule which lays the foundation for the various selection rules one encounters
in standard quantum mechanics courses.

You will recall from Sect. 3.7 that we defined a vector operator B = {Bi}i=1,2,3
to be a set of three linear operators that transform as vectors under the adjoint action
of the total angular momentum operators Ji . With the machinery we have devel-
oped, we can now recast this definition a bit. More precisely, we can now say that
if we have an SO(3) representation (�, H) on some Hilbert space H, then a vector
operator on H is a set B = {Bi}i=1,2,3 of three operators that satisfy

�(R)Bi�(R)−1 =
3

∑

k=1

RkiBk ∀i = 1,2,3, R ∈ SO(3). (6.1)

Notice that �(R)Bi�(R) = �1
1(R)Bi , so (6.1) just says that under the induced

representation �1
1 of SO(3) on L(H), the Bi transform like the basis vectors ei of

the fundamental (vector) representation of SO(3). This is still roughly how vector
operators are defined in most physics texts. We can go further, however, and inter-
pret (6.1) as saying that Span{Bi}, considered as a vector subspace of L(H), is an

N. Jeevanjee, An Introduction to Tensors and Group Theory for Physicists,
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SO(3)-invariant subspace (under the representation �1
1) that is actually equivalent

to the vector representation of SO(3)! This is an important shift in perspective, as we
are now thinking of the space of operators as a representation space, and of the
Bi as spanning an invariant subspace of this space. This point of view has some
advantages, and is the one that will be formalized shortly in the notion of a repre-
sentation operator. Now, to verify that the definition (6.1) is equivalent to our earlier
definition of a vector operator from Chap. 3, you should check that if we perform
our usual trick and set R = etLj and differentiate at t = 0, as well as identify iπ(Li)

with what we have called the total angular momentum operator Ji , we obtain

[Ji,Bj ] = i

3
∑

k=1

εijkBk (6.2)

which is just (3.70).
Now, in physics texts one usually defines tensor operators similarly, i.e. as a set

of operators T(r)
(s) = {T i1...ir

j1...js } that under the representation �1
1 of SO(3) trans-

form like the basis vectors ei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs of the space T r
s (R3).

Again, this can be alternately formulated as saying that Span{T i1...ir
j1...js } ⊂ L(H)

is an invariant subspace equivalent to the T r
s (R3) representation of SO(3). We have

seen, though, that tensor product spaces such as T r
s (R3) are usually decomposable,

so it is sometimes advantageous to consider spherical tensors of degree l, which
are sets of 2l + 1 operators T(l) = {T (l)

k }0≤k≤2l that under �1
1 transform as the basis

vectors vk of the irreducible representation space Vl , l ∈ Z.1 Again, we will find it
useful to think about Span{T (l)

k } as an invariant subspace of L(H) equivalent to Vl ,

rather than focusing on how the individual elements T
(l)
k transform. Note that the

‘l’ in the superscript of T
(l)
k is in parentheses; this is because the l is not really an

active index, but just serves to remind us which SO(3) representation we are dealing
with. (As an additional side note, the term ‘spherical tensor’ derives from the fact
that the representation Vl, l ∈ Z is equivalent to the space H̃l of spherical harmonics
of degree l.)

The following example will help make the foregoing concrete.

Example 6.1 Product of vector operators

Consider two vector operators A = {Ai}i=1,2,3 and B = {Bj }j=1,2,3 on some Hilbert
space H with SO(3) representation �. We can form a tensor operator (of type (0,2))
by considering the set of their products AB = {AiBj }, i, j = 1,2,3. Each AiBj is
a linear operator on H, and it is easy to verify that AB is a bona fide (0,2) tensor
operator:

1Warning: In other texts, different normalization and indexing conventions are used for the specific
basis vectors whose transformation properties the spherical tensors are supposed to mimic. In most
quantum mechanics texts, for instance, the components of a spherical tensor are supposed to mimic
the transformation properties of the kets |l,m〉 which have different labeling and normalization
conventions than our vk , even though they are essentially the same thing.
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�(R)AiBj�(R)−1 = [

�(R)Ai�(R)−1][�(R)Bj�(R)−1]

=
3

∑

k,l=1

RkiRljAkBl (6.3)

which is the same as the usual transformation law for the basis vectors {ei ⊗ ej } of
T 0

2 (R3). Thus, the nine-dimensional space Span{AiBj } is equivalent to T 0
2 (R3) as

an SO(3) representation! We know, however, that T 0
2 (R3) is reducible, and so then

(�1
1,Span{AiBj }) must be reducible as well. We can decompose Span{AiBj } into

irreducible subspaces just as we decomposed T 0
2 (R3) = Rg ⊕ S2′

(R3) ⊕ �2(R3),
and we should correspondingly obtain spherical tensors of degrees 0, 1 and 2. Ex-
plicitly, the degree 0 subspace corresponding to g = ∑3

i=1 ei ⊗ ei yields a spherical
tensor T(0) with single element

T
(0)

0 =
3

∑

i=1

AiBi

which transforms as a scalar. The degree 1 spherical tensor T(1) corresponding to
�2

R
3 has elements2

T
(1)

0 = (A × B)x + i(A × B)y

T
(1)

1 = −2(A × B)z

T
(1)

2 = −2
[

(A × B)x − i(A × B)y
]

where notation like (A × B)x is just shorthand for AyBz − AzBy . The appearance
of the cross product here shouldn’t be surprising, since the cross product is essen-
tially just a way of identifying a bivector (or antisymmetric tensor) in �2

R
3 with a

vector in R
3, cf. Example 3.29. The degree 2 spherical tensor T(2) corresponding to

S2′
(R3) has elements

T
(2)

0 = (Ax + iAy)(Bx + iBy)

T
(2)

1 = −2Az(Bx + iBy) − 2(Ax + iAy)Bz

T
(2)

2 = −4(AxBx + AyBy − 2AzBz)

T
(2)

3 = 12Az(Bx + iBy) + 12(Ax + iAy)Bz

T
(2)

4 = 24(Ax − iAy)(Bx − iBy).

To convince yourself that these operators really do transform as claimed, it is use-
ful to compare the above expressions with the expressions for the vk for H1(R

3)

and H2(R
3) (you should have computed these earlier as the fk from Problem 2.2).

You should also convince yourself that the span of {AiBj } is equal to the span

2The funny looking normalization factors and index convention come from our normalization and
indexing convention for the vks, which, as noted above, differ from the conventions in the physics
literature.
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of T(0), T(1), and T(2) taken together, so that we have the decomposition of
(�1

1,Span{AiBj }) into irreducibles as

Span{AiBj } = Span T(0) ⊕ Span T(1) ⊕ Span T(2).

One might also call this a “decomposition of {AiBj } into spherical tensors”. �

By now you may have noticed that the above definitions are somewhat unwieldy;
they rely on transformation properties of specific operators, and seem to rely too
heavily on those operators, since the span of those operators seems more significant
than the operators themselves. To remedy this, we present the following definition,
which subsumes all of the foregoing definitions and also presents things in a more
basis-independent fashion: given a representation (�0,V0) of a group G on some
auxiliary vector space V0, as well as a unitary representation (�, H) of G on some
Hilbert space H, we define a representation operator to simply be an intertwiner
between V0 and L(H), or in other words a linear map ρ : V0 → L(H) satisfying

ρ
(

�0(g)v
) = �(g)ρ(v)�(g)−1 ∀g ∈ G, v ∈ V0. (6.4)

Note that in terms of maps between V0 and L(H), this just says

ρ ◦ �0(g) = �1
1(g) ◦ ρ ∀g ∈ G. (6.5)

What this definition is saying, roughly, is that we have a subspace ρ(V0) ⊂ L(H)

which, even though it is composed of operators acting on H, actually transforms like
the space V0 under similarity transformations by the operators �g . Note that, strictly
speaking, the representation operator ρ is not itself an operator, but an intertwiner
between representations.

How does this definition subsume the previous ones? Let V0 have a basis {ei};
then since ρ is linear, it is completely determined by its action on this basis, and
plugging a basis vector ei into (6.4) then yields

�(g)ρ(ei)�(g)−1 = (

�0(g)
)

i
j ρ(ej ). (6.6)

If we set ρ(ei) ≡ Bi , this becomes

�(g)Bi�(g)−1 = (

�0(g)
)

i
jBj . (6.7)

This, of course, just says that under the representation �1
1, the Bi transform like

basis vectors of the representation (�0,V0), which was how we defined vector op-
erators, tensor operators, and spherical tensors in the first place! In fact, if we take
G = SO(3) and V0 = R

3, then (6.7) becomes (writing the matrices of the fundamen-
tal representation with both indices down)

�(R)Bi�(R)−1 =
3

∑

j=1

RjiBj

which is of course just (6.1). To get tensor operators or spherical operators, we of
course just have to take V0 = T r

s (R3) or V0 = Hl(R
3), respectively.
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Fig. 6.1 Action of the orthogonal projection operator P : H → W2 on a vector v ∈ H

Before leaving this section, it is worth re-emphasizing the shift in viewpoint that
we have made: we have taken a representation (�, H) of G on a Hilbert space

H and then used the induced representation (�1
1, L(H)) to let G act on the space

of operators L(V ); this space (of operators!) may then break up into irreducible
components, and knowing what irrep an operator lives in may actually tells us quite
a bit about its action on vectors in H. In particular we get selection rules and the
Wigner–Eckart theorem, which are the subjects of the next section.

6.2 Selection Rules and the Wigner–Eckart Theorem

Now that we have defined representation operators, we can go on to formulate the
fundamental selection rule from which the usual quantum mechanical selection rules
can be derived. Then we can state and prove the Wigner–Eckart theorem, which is
a kind of complement to the angular momentum selection rules. First, though, we
need the following fact, the proof of which we only sketch. The details are deferred
to the problems referenced below.

Proposition 6.1 Let W1 and W2 be finite-dimensional inequivalent irreducible sub-
spaces of a unitary representation (�, H) equipped with an inner product (· | ·).
Then W1 is orthogonal to W2.

Proof sketch Define the orthogonal projection operator P : H → W2 to be the map
which sends v ∈ H to the unique vector P(v) ∈ W2 satisfying

(

P(v)|w) = (v|w) ∀w ∈ W2. (6.8)

This is depicted schematically in Fig. 6.1. You will check in Problem 6.1 that such
a vector P(v) exists and is in fact unique. If we now restrict P to W1 we get
P |W1 : W1 → W2, and using the unitarity of � and the invariance of the Wi one
can show that P |W1 is an intertwiner. One can then use Schur’s lemma to conclude
that P |W1 = 0, which then implies that W1 is orthogonal to W2. To fill out the details,
see Problem 6.2. �
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With this in hand, we can now state and prove

Proposition 6.2 (Selection rule) Let G be a semi-simple group, and let W1 and W2

be finite-dimensional inequivalent irreducible subspaces of a unitary representation
(�, H) of G. Also let ρ : V0 → L(H) be a representation operator, where (�0,V0)

is some auxiliary representation. Then

(

w1|ρ(v)w2
) = 0 ∀v ∈ V0, wi ∈ Wi (6.9)

unless the decomposition of V0 ⊗ W2 into irreducibles contains a representation
equivalent to W1.

Before proving this, let us comment on what this somewhat opaque proposition
really means. Roughly speaking, the selection rule just says that a vector of the form
ρ(v)w2 is a kind of ‘product’ of elements of V0 and W2, and thus transforms like
something in V0 ⊗ W2 = U1 ⊕ · · · ⊕ Uk . Thus, for there to be any overlap with an
irreducible subspace W1, W1 must then be equivalent to one of the Ui .

Proof of proposition Define a map by

T : V0 ⊗ W2 → H
v ⊗ w2 → ρ(v)w2

(6.10)

and extending linearly to arbitrary elements of V0 ⊗ W2. You can check that this is
a linear map between vector spaces, and so the image T (V0 ⊗ W2) ≡ D ⊂ H is a
vector subspace of H. Now, since G is semi-simple we can decompose V0 ⊗ W2

into irreducibles as

V0 ⊗ W2 = U1 ⊕ · · · ⊕ Uk

for some irreps Uk . As you will show below, the fact that ρ is a representation
operator implies that T is in fact an intertwiner, and this further implies that the
kernel of T (cf. Exercise 4.17) is an invariant subspace of V0 ⊗W2. This means that
(with a possible relabeling of the Ui ) we can write the kernel of T as U1 ⊕· · ·⊕Um

for some m ≤ k, which then implies that D is equivalent to Um+1 ⊕ · · · ⊕ Uk . If
none of the Ui are equivalent to W1, then by Proposition 6.1, every vector in D is
orthogonal to every vector in W1, i.e.

(

w1|ρ(v)w2
) = 0 ∀v ∈ V0, wi ∈ Wi,

which is what we wanted to prove. �

Exercise 6.1 Quickly show that ρ being a representation operator implies that T is an
intertwiner. Show further that the kernel of T is an invariant subspace of V0 ⊗ W2.

We will now use this generalized selection rule to reproduce some of the familiar
selection rules from quantum mechanics.
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Example 6.2 Parity selection rules

Let (�, H) be a complex unitary representation of the two-element group Z2 =
{I,P } where P is the parity operator. Let vα, vβ ∈ H be parity eigenstates with
eigenvalues cα , cβ . If cα = 1 then vα spans the one-dimensional trivial representa-
tion of Z2, and if cα = −1 then vα spans the alternating representation. Likewise for
cβ . Now let V0 be another one-dimensional irrep of Z2 with parity eigenvalue c0,
and let B ∈ ρ(V0), where ρ is a representation operator. Then a little thought shows
that the selection rule implies

(vβ |Bvα) = 0 unless cβ = c0cα.

Thus if is B is parity-odd (c0 = −1) then it can only connect states of opposite parity,
and if it is parity-even (c0 = +1) then it can only connect states of the same parity.
If we were looking at dipolar radiative transitions (which emit a photon) between
electronic states of an atom or molecule, the relevant operators are the components
of the dipole operator p which is parity-odd (since it is a vector operator). The above
then tells us that dipolar radiative transitions can only occur between electronic
states of opposite parity.

Example 6.3 Angular momentum selection rules

Let (�, H) be a complex unitary representation of SU(2), with two subspaces Wl

and Wj equivalent to Vl and Vj , respectively, 2l,2j ∈ Z. Also suppose we have
an SU(2) representation operator A : Vq → L(H), q ∈ Z. Then for any v ∈ Wl ,
v′ ∈ Wj , A ∈ A(Vq), the selection rule tells us that

(

v′|Av
) = 0 unless |l − q| ≤ j ≤ l + q.

If we again consider a dipolar radiative transition between electronic states of an
atom or molecule, the relevant operator is still the dipole p whose components pi

live in ρ(V1), and so we find that a dipolar radiative transition between states with
angular momentum j and l can only occur if l − 1 ≤ j ≤ l + 1. �

The famous Wigner–Eckart theorem can be seen as a kind of complement to the
angular momentum selection rule above. In the notation of the previous example,
the Wigner–Eckart theorem says (roughly) that when (v′,Av) is not equal to zero, it
is still tightly constrained and is in fact determined up to a constant by the fact that
A is a representation operator. The precise statement is as follows:

Proposition 6.3 (Wigner–Eckart) Let (�, H) be a complex unitary representation
of SU(2), with two subspaces Wl and Wj equivalent to Vl and Vj , respectively,
2l,2j ∈ Z. Also suppose we have two SU(2) representation operators A,B : Vq →

L(H), q ∈ Z, which yield two spherical tensors with components Ak ≡ A(vk), Bk ≡
B(vk), 0 ≤ k ≤ 2q + 1. Finally, assume that

(

v′|Akv
) �= 0 for some k and v ∈ Wl, v′ ∈ Wj . (6.11)
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Then for all k and w ∈ Wl,w
′ ∈ Wj , we have
(

w′|Bkw
) = c

(

w′|Akw
)

(6.12)

for some constant c ∈ C which is independent of k, w and w′.

Proof Let L(Wl,Wj ) denote the vector space of all linear maps from Wl to Wj . By
restricting to Wl and using the orthogonal projection operator Pj : H → Wj , we can
turn A : Vq → L(H) into a map

Ã : Vq → L(Wl,Wj )

v → Pj ◦ A(v)|Wl
.

All we have done here is take the linear operator A(v) ∈ L(H) and restrict it to
Wl and then project onto Wj . Now, since Wl,Wj are SU(2)-invariant subspaces,
the vector space L(Wl,Wj ) actually furnishes a representation (�̃1

1, L(Wl,Wj )) of
SU(2) by

�̃1
1(g)T ≡ �(g)T �(g)−1, T ∈ L(Wl,Wj ), g ∈ SU(2). (6.13)

You will check below that this is a bona fide representation, and is in fact equivalent
to the tensor product representation W∗

l ⊗ Wj � Wl ⊗ Wj ! Furthermore, since the
action of SU(2) on H commutes with restriction and projection (cf. Problem 6.2), it
is not hard to see that Ã is an intertwiner. From (6.11) we know that Ã is not zero,
and so from Schur’s lemma we conclude that L(Wl,Wj ) � Wl ⊗Wj has a subspace
Uq equivalent to Vq , and that Ã is a vector space isomorphism from Vq to Uq .

Now, we could also use our second representation operator B to construct a sec-
ond intertwiner B̃ : Vq → Uq ⊂ L(Wl,Wj ). Then we may invoke the corollary of
Schur’s lemma that you proved in Exercise 5.33 to conclude that B̃ = cÃ. But this
then means that

Ã(vk) = cB̃(vk) ∀k

⇒ (

w′|Ã(vk)w
) = c

(

w′|B̃(vk)w
) ∀k and w ∈ Wl, w′ ∈ Wj

⇒ (

w′|Akw
) = c

(

w′|Bkw
) ∀k and w ∈ Wl, w′ ∈ Wj

and so we are done. In deducing the last line we used the definition of Ã, the def-
inition of the orthogonal projection operator Pj , and the definitions Ak = A(vk),
Bk = B(vk). �

Exercise 6.2 Show that if T ∈ L(Wl,Wj ) then so is �(g)T �(g)−1, so that
(�̃1

1, L(Wl,Wj )) really is a representation; in fact, it is an invariant subspace of (�1
1, L(H)).

In analogy to the equivalence between V ∗ ⊗ V and L(V ), show that (�̃1
1, L(Wl,Wj )) is

equivalent to W ∗
l ⊗ Wj , which by Problem 5.3 is equivalent to Wl ⊗ Wj .

You may have noticed that this is not the way the Wigner–Eckart theorem is usu-
ally stated in advanced quantum mechanics texts like Sakurai [14]. There, the theo-
rem usually states that the matrix elements of a spherical tensor are proportional to
the Clebsch–Gordan coefficients. To make this connection, consider the intertwiner
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T : Vq ⊗ Wl → Wj

v ⊗ w → Pj

(

A(v)w
)

.

If we work with standard bases {vm}m=0−2q , {wn}n=0−2l , {w′
p}p=0−2j for Vq,Wl ,

and Wj , then this map has components

Tmn
p = T

(

vm,wn,w
′p)

= w′p(

Pj

(

A(vm)wn

))

= 1

‖w′
p‖

(

w′
p|Pj (Amwn)

)

= 1

‖w′
p‖

(

w′
p|Amwn

)

. (6.14)

Now let us switch to the orthonormal bases familiar from quantum mechanics,
which look like

|q,mq〉 ∈ Vq −q ≤ mq ≤ q

|l,ml〉 ∈ Wl −l ≤ ml ≤ l

|j,mj 〉′ ∈ Wj −j ≤ mj ≤ j

(notice the prime on the last set of vectors, which will distinguish it from vectors
in Vq ⊗ Wl with the same quantum numbers). With this basis and notation, the
components (6.14) of T become the matrix elements ′〈j,mj |Amq |l,ml〉.

What do these matrix elements have to do with Clebsch–Gordan coefficients?
Recall that Vq ⊗ Wl has two convenient sets of orthonormal basis vectors:

|q,mq〉 ⊗ |l,ml〉 ≡ |ql;mq,ml〉 ∈ Vq ⊗ Wl, −q ≤ mq ≤ q, −l ≤ ml ≤ l

|l′,ml′ 〉 ∈ Vq ⊗ Wl, |l − q| ≤ l′ ≤ l + q, −l′ ≤ ml′ ≤ l′.
The Clebsch–Gordan coefficients are just the inner products 〈l′,ml′ |ql; k,ml〉 of
these basis vectors. Since T : Vq ⊗ Wl → Wj is nonzero, Vq ⊗ Wl must contain a
subspace Uj equivalent to Wj , and so we can consider the orthogonal projection
operator P : Vq ⊗ Wl → Uj . By Problem 6.1 this is given by

P : Vq ⊗ Wl → Uj

|ql;mq,ml〉 →
∑

−j≤mj ≤j

〈j,mj |ql;mq,ml〉|j,mj 〉

and is an intertwiner by Problem 6.2. By then making the obvious identification of
Uj with Wj and hence |j,mj 〉 → |j,mj 〉′, we get the intertwiner

P ′ : Vq ⊗ Wl → Wj

|ql;mq,ml〉 →
∑

−j≤mj ≤j

〈j,mj |ql;mq,ml〉|j,mj 〉′

whose components are nothing but the Clebsch–Gordan coefficients! By Wigner–
Eckart, though, this intertwiner must be proportional to T , and so its components
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must be proportional to those of T . We thus have the following component version
of the Wigner–Eckart theorem:

Proposition 6.4 (Wigner–Eckart II) Let (�, H) be a complex unitary representa-
tion of SU(2), with two subspaces Wl and Wj equivalent to Vl and Vj , respectively,
2l,2j ∈ Z. Also suppose we have a degree q spherical tensor A = {Amq }. Then

〈j,mj |Amq |l,ml〉 = c〈j,mj |ql;mq,ml〉 (6.15)

where c is a constant independent of ml , mq , and mj .

6.3 Gamma Matrices and Dirac Bilinears

We conclude this short chapter with what is essentially an extended example, which
involves both the representation operators we have met in this chapter as well as
the O(3,1) representation theory we developed in the last. This section relies on a
familiarity with the theory of the Dirac electron; if you have not seen this material,
and in particular are unfamiliar with gamma matrices and Dirac bilinears, then this
section can be skipped.

Let (D ≡ � ⊕ �̄,C
4) be the Dirac spinor representation of SL(2,C), so that

D : SL(2,C) → GL(4,C)

A → D(A) ≡
(

A 0
0 A†−1

)

.

We claim that the gamma matrices γμ can be seen as the components of a represen-
tation operator γ : R

4 → L(C4) = M4(C), where R
4 is the Minkowski four-vector

representation of SL(2,C). To define γ , we need the following two identifications
of R

4 with H2(C), where X = (x, t) ∈ R
4 and σ ≡ (σx, σy, σz):

R
4 ↔ H2(C)

X ↔ X∗ ≡ x · σ + tI (6.16)

X ↔ X∗ ≡ x · σ − tI . (6.17)

Note that (6.16) is just the identification we used in Examples 4.20 and 5.5 in defin-
ing the four-vector representation of SL(2,C), and (6.17) is just a slight variation of
that. Now, using the well-known property of the sigma matrices that

σiσj + σjσi = 2δij , (6.18)

you will verify below that

X∗ = η(X,X)X−1∗ . (6.19)

Also, if ρ : SL(2,C) → SO(3,1)o is the homomorphism from Example 4.20 which
defines the four-vector representation, then by the definition of ρ we have
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(

ρ(A)X
)

∗ = AX∗A†, (6.20)

which when combined with (6.19) yields
(

ρ(A)X
)∗ = A†−1X∗A−1 (6.21)

as you will also show below. If we then define a map γ by

γ : R
4 → M4(C)

X →
(

0 X∗
X∗ 0

)

,

you can then use (6.20) and (6.21) to check that γ is a representation operator, i.e.
that

γ
(

ρ(A)X
) = D(A)γ (X)D(A)−1. (6.22)

If we define the gamma matrices as γμ ≡ γ (eμ), then we find that

γi =
(

0 σi

σi 0

)

, i = 1,2,3

γ4 =
(

0 I

−I 0

)

γ5 ≡ γ1γ2γ3γ4 =
(−I 0

0 I

)

.

Up to a few minus signs that have to do with our choice of signature for the
Minkowski metric, as well as the fact that most texts write γ0 instead of γ4, this
is the familiar chiral representation of the gamma matrices (the chiral representa-
tion is the one in which γ5 is diagonal). If we let �μ

ν be the components of ρ(A),
we can take X = eμ in (6.22) to get

�μ
νγν = D(A)γμD(A)−1 (6.23)

which is how (6.22) usually appears in physics texts. Another important property is
that the gamma matrices satisfy the fundamental anticommutation relation

γμγν + γνγμ = 2ημν (6.24)

which you can easily verify.

Exercise 6.3 Verify (6.19), (6.21), (6.22), and (6.24).

Now we would like to construct the Dirac bilinears. Denote an element of C
4 by

ψ =
(

ψL

ψR

)

where ψL and ψR are two-component spinors living in ( 1
2 ,0) and (0, 1

2 ), respec-
tively. Also define the row vector ψ̄ by

ψ̄ ≡ (

ψ∗
R,ψ∗

L

)
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where the ‘∗’ denotes complex conjugation (note that the positions of the right and
left-handed spinors are switched here). You can easily check that if ψ transforms
like a Dirac spinor, i.e. ψ → D(A)ψ , then ψ̄ transforms like

ψ̄ −→ ψ̄

(

A−1 0
0 A†

)

= ψ̄D(A)−1. (6.25)

If we consider the associated column vector ψ̄T , it transforms like

ψ̄T −→
(

A−1T 0
0 A∗

)

ψ̄T

which you should recognize as the representation dual to the Dirac spinor, since
the matrices of dual representations are just the inverse transpose of the original
matrices. However, we know from Problem 5.2 that (1

2 ,0) and (0, 1
2) are equivalent

to their duals, so we conclude that ψ̄ transforms like a Dirac spinor as well.
With ψ̄ in hand, we can now define the Dirac bilinears

• ψ̄ψ scalar
• ψ̄γμψ vector
• ψ̄γμγνψ , μ �= ν antisymmetric 2-tensor
• ψ̄γμγνγρψ , μ �= ν �= ρ pseudovector
• ψ̄γ5ψ pseudoscalar

Each of these contains a product of two Dirac spinors, and can be seen as compo-
nents of tensors living in C

4 ⊗ C
4. Note the similarities between the names of the

Dirac bilinears and the first five entries of the table from Example 5.41. This makes
it seem like the Dirac bilinears should transform like the components of antisym-
metric tensors (of ranks 0 through 4). Is this true? Well, using (6.25), we find that
the scalar transforms like

ψ̄ −→ ψ̄D(A)−1D(A)ψ = ψ̄ψ

and so really does transform like a scalar. Similarly, using (6.23), we find that the
vector transforms like

ψ̄γμψ −→ ψ̄D(A)−1γμD(A)ψ

= �−1
μ

νψ̄γνψ

and so really does transform like a vector. Using the anticommutation relation
(6.24), you can similarly verify that the antisymmetric 2-tensor, pseudovector and
pseudoscalar transform like antisymmetric tensors of ranks 2, 3, and 4, respectively.
If we let �∗(R4) denote the set of all antisymmetric tensor products of R

4, i.e.

�∗
R

4 ≡
4

⊕

k=0

�k
R

4,

and let �∗
R

4
C

denote its complexification, then C
4 ⊗ C

4 contains a subspace equiv-
alent to �∗

R
4
C

. However, one can check that both spaces have (complex) dimension
16, so as sl(2,C)R representations
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C
4 ⊗ C

4 � �∗
R

4
C
, (6.26)

i.e. the tensor product of the Dirac spinor representation with itself is equiva-
lent to the space of all antisymmetric tensors!

Another way to obtain this same result is to use our tensor product decomposition
(5.95). The tensor product C

4 ⊗ C
4 of two Dirac spinors is given by

[(

1
2
,0

)

⊕
(

0,
1
2

)]

⊗
[(

1
2
,0

)

⊕
(

0,
1
2

)]

=
[(

1
2
,0

)

⊗
(

1
2
,0

)]

⊕
[(

1
2
,0

)

⊗
(

0,
1
2

)]

⊕
[(

0,
1
2

)

⊗
(

1
2
,0

)]

⊕
[(

0,
1
2

)

⊗
(

0,
1
2

)]

= (1,0) ⊕ (0,0) ⊕
(

1
2
,

1
2

)

⊕
(

1
2
,

1
2

)

⊕ (0,1) ⊕ (0,0)

= (0,0) ⊕
(

1
2
,

1
2

)

⊕ (1,0) ⊕ (0,1) ⊕
(

1
2
,

1
2

)

⊕ (0,0) (6.27)

where in the first equality we used the fact that the tensor product distributes over
direct sums (see Problem 5.11), in the second equality we used (5.95), and in the
third equality we just rearranged the summands. However, from Example 5.41 we
know that as an so(3,1) representation, �∗

R
4
C

decomposes as

�∗
R

4 � (0,0) ⊕
(

1
2
,

1
2

)

⊕ (1,0) ⊕ (0,1) ⊕
(

1
2
,

1
2

)

⊕ (0,0)

which is just (6.27)!

Exercise 6.4 Verify (6.25). Also verify that the antisymmetric 2-tensor, pseudovector and
pseudoscalar bilinears transform like the components of antisymmetric tensors of rank 2, 3
and 4.

6.4 Problems

6.1 In this problem we will establish a couple of the basic properties of the orthog-
onal projection operator. To this end, let H be a Hilbert space with inner product
(· | ·) and let W be a finite-dimensional subspace of H.

(a) Show that for any v ∈ H, there exists a unique vector P(v) ∈ W such that
(

P(v)|w′) = (

v|w′) ∀w′ ∈ W.

This defines the orthogonal projection map P : H → W which projects H
onto W . (Hint: there are a few ways to show that P(v) exists and is unique.
One route is to consider the map L : H → H∗ given by L(v) = (v|·) and then
play around with restrictions to W .)

(b) Quickly show that P(w) = w for all w ∈ W , and hence that P 2 = P .
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(c) Let {ei} be a (possibly infinite) orthonormal basis for H where the first k vectors
ei , i = 1, . . . , k are a basis for W . Show that if we expand an arbitrary v ∈ H
as v = viei where the implied sum is over all i (and where the sum may be
infinite), then P takes the simple form

P(v) = P
(

viei

) =
k

∑

i=1

viei .

Thus P can be thought of as ‘projecting out all the components orthogonal
to W ’.

(d) Let {ej ′ } be an arbitrary ON basis for H. Show that in this case the action of P

is given by

P(ej ′) =
k

∑

i=1

(ei |ej ′)ei .

6.2 Let (�, H) be a unitary representation of a group G on a Hilbert space H. In
this problem we will show that inequivalent irreducible subspaces of H are orthog-
onal.

(a) Let W ⊂ H be a finite-dimensional irreducible subspace and P : H → W the
orthogonal projection operator onto W . Use the defining property of P , the
unitarity of �, and the invariance of W to show that P is an intertwiner.

(b) Let V ⊂ H be another irreducible subspace inequivalent to W . Restrict P to V

to get P |V : V → W , which is still an intertwiner. Use Schur’s lemma to deduce
that P |V = 0, and conclude that V and W are orthogonal.



Appendix
Complexifications of Real Lie Algebras
and the Tensor Product Decomposition
of sl(2,CCC)RRR Representations

The goal of this appendix is to prove Proposition 5.8 about the tensor product
decomposition of two sl(2,C)R representations. The proof is long but will intro-
duce some useful notions, like the direct sum and complexification of a Lie al-
gebra. We will use these notions to show that the representations of sl(2,C)R

are in 1–1 correspondence with certain representations of the complex Lie alge-
bra sl(2,C) ⊕ sl(2,C), and the fact that this complex Lie algebra is a direct sum
will imply certain properties about its representations, which in turn will allow us to
prove Proposition 5.8.

A.1 Direct Sums and Complexifications of Lie Algebras

In this text we have dealt only with real Lie algebras, as that is the case of greatest
interest for physicists. From a more mathematical point of view, however, it actually
simplifies matters to focus on the complex case, and we will need that approach
to prove Proposition 5.8. With that in mind, we make the following definition (in
total analogy to the real case): A complex Lie algebra is a complex vector space
g equipped with a complex-linear Lie bracket [·,·] : g × g → g which satisfies the
usual axioms of antisymmetry

[X,Y ] = −[Y,X] ∀X,Y ∈ g,

and the Jacobi identity
[[X,Y ],Z] + [[Y,Z],X] + [[Z,X], Y ] = 0 ∀X,Y,Z ∈ g.

Examples of complex Lie algebras are Mn(C) = gl(n,C), the set of all complex
n×n matrices, and sl(n,C), the set of all complex, traceless n×n matrices. In both
cases the bracket is just given by the commutator of matrices.

For our application we will be interested in turning real Lie algebras into complex
Lie algebras. We already know how to complexify vector spaces, so to turn a real Lie
algebra into a complex one we just have to extend the Lie bracket to the complexified
vector space. This is done in the obvious way: given a real Lie algebra g with bracket
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[·,·], we define its complexification to be the complexified vector space gC = C ⊗ g

with Lie bracket [·,·]C defined by

[1 ⊗ X1 + i ⊗ X2,1 ⊗ Y1 + i ⊗ Y2]C
≡ 1 ⊗ [X1, Y1] − 1 ⊗ [X2, Y2] + i ⊗ [X1, Y2] + i ⊗ [X2, Y1]

where Xi,Yi ∈ g, i = 1,2. If we abbreviate i ⊗ X as iX and 1 ⊗ X as X, this tidies
up and becomes

[X1 + iX2, Y1 + iY2]C ≡ [X1, Y1] − [X2, Y2] + i
([X1, Y2] + [X2, Y1]

)

.

This formula defines [·,·]C in terms of [·,·], and is also exactly what you would get
by naively using complex-linearity to expand the left hand side.

What does this process yield in familiar cases? For su(2) we define a map

φ : su(2)C → sl(2,C)

1 ⊗ X1 + i ⊗ X2 �→ X1 +
(

i 0
0 i

)

X2, X1,X2 ∈ su(2).
(A.1)

You will show below that this is a Lie algebra isomorphism, and hence su(2)

complexifies to become sl(2,C). You will also use similar maps to show that
u(n)C 	 gl(n,R)C 	 gl(n,C). If we complexify the real Lie algebra sl(2,C)R, we
also get something nice. The complexified Lie algebra (sl(2,C)R)C has complex
basis

Mi ≡ 1

2
(1 ⊗ Si − i ⊗ K̃i), i = 1,2,3

Ni ≡ 1

2
(1 ⊗ Si + i ⊗ K̃i), i = 1,2,3

(A.2)

which we can again abbreviate1 as

Mi ≡ 1

2
(Si − iK̃i), i = 1,2,3

Ni ≡ 1

2
(Si + iK̃i), i = 1,2,3.

These expressions are very similar to ones found in our discussion of sl(2,C)R rep-
resentations, and using the bracket on (sl(2,C)R)C one can verify that the analogs
of (5.83) hold, i.e. that

[Mi , Nj ]C = 0

[Mi , Mj ]C =
3

∑

k=1

εijk Mk

[Ni , Nj ]C =
3

∑

k=1

εijk Nk.

(A.3)

1Careful here! When we write iK̃i , this is not to be interpreted as i times the matrix K̃i , as this

would make the Ni identically zero (check!); it is merely shorthand for i ⊗ K̃i .
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Notice that both Span{Mi} and Span{Ni} (over the complex numbers) are Lie sub-
algebras of (sl(2,C)R)C and that both are isomorphic to sl(2,C), since

Span{Mi} 	 Span{Ni} 	 su(2)C 	 sl(2,C).

Furthermore, the bracket between an element of Span{Mi} and an element of
Span{Ni} is 0, by (A.3). Also, as a (complex) vector space (sl(2,C)R)C is the direct
sum Span{Mi} ⊕ Span{Ni}. When a Lie algebra g can be written as a direct sum
of subspaces W1 and W2, where the Wi are each subalgebras and [w1,w2] = 0 for
all w1 ∈ W1, w2 ∈ W2, we say that the original Lie algebra g is a Lie algebra direct
sum of W1 and W2, and we write g = W1 ⊕ W2.2 Thus, we have the Lie algebra
direct sum decomposition

(

sl(2,C)R

)

C
	 sl(2,C) ⊕ sl(2,C). (A.4)

This decomposition will be crucial in our proof of Proposition 5.8.

Exercise A.1 Prove that (A.1) is a Lie algebra isomorphism. Remember, this consists of
showing that φ is a vector space isomorphism, and then showing that φ preserves brackets.
Then find similar Lie algebra isomorphisms to prove that

u(n)C 	 gl(n,C)

gl(n,R)C 	 gl(n,C).

A.2 Representations of Complexified Lie Algebras and
the Tensor Product Decomposition of sl(2,CCC)RRR
Representations

In order for (A.4) to be of any use, we must know how the representations of a
real Lie algebra relate to the representations of its complexification. First off, we
should clarify that when we speak of a representation of a complex Lie algebra
g we are ignoring the complex vector space structure of g; in particular, the Lie
algebra homomorphism π : g → gl(V ) is only required to be real-linear, in the
sense that π(cX) = cπ(X) for all real numbers c. If g is a complex Lie algebra, the
representation space V is complex and π(cX) = cπ(X) for all complex numbers c,
then we say that π is complex-linear. Not all complex representations of complex
Lie algebras are complex-linear. For instance, all of the sl(2,C)R representations
described in Sect. 5.10 can be thought of as representations of the complex Lie
algebra sl(2,C), but only those of the form (j,0) are complex-linear, as you will
show below.

2Notice that this notations is ambiguous, since it could mean either that g is the direct sum of W1
and W2 as vector spaces (which would then tell you nothing about how the direct sum decomposi-
tion interacts with the Lie bracket), or it could mean Lie algebra direct sum. We will be explicit if
there is any possibility of confusion.
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Exercise A.2 Consider all the representations of sl(2,C)R as representations of sl(2,C) as
well. Show directly that the fundamental representation ( 1

2 ,0) of sl(2,C) is complex-linear,
and use this to prove that all sl(2,C) representations of the form (j,0) are complex-linear.
Furthermore, by considering the operators Ni defined in (5.82), show that these are the only
complex-linear representations of sl(2,C).

Now let g be a real Lie algebra and let (π,V ) be a complex representation of g.
Then we can extend (π,V ) to a complex-linear representation of the complexifica-
tion gC in the obvious way, by setting

π(X1 + iX2) ≡ π(X1) + iπ(X2), X1,X2 ∈ g. (A.5)

(Notice that this representation is complex-linear by definition, and that the operator
iπ(X2) is only well-defined because V is a complex vector space.) Furthermore,
this extension operation is reversible: that is, given a complex-linear representation
(π,V ) of gC, we can get a representation of g by simply restricting π to the subspace
{1 ⊗ X + i ⊗ 0 | X ∈ g} 	 g, and this restriction reverses the extension just defined.
Furthermore, you will show below that (π,V ) is an irrep of gC if and only if it
corresponds to an irrep of g. We thus have

Proposition A.1 The irreducible complex representations of a real Lie algebra g

are in one-to-one correspondence with the irreducible complex-linear representa-
tions of its complexification gC.

This means that we can identify the irreducible complex representations of g with
the irreducible complex-linear representations of gC, and we will freely make this
identification from now on. Note the contrast between what we are doing here and
what we did in Sect. 5.9; there, we complexified real representations to get complex
representations which we could then classify; here, the representation space is fixed
(and is always complex!) and we are complexifying the Lie algebra itself, to get a
representation of a complex Lie algebra on the same representation space we started
with.

Exercise A.3 Let (π,V ) be a complex representation of a real Lie algebra g, and extend it
to a complex-linear representation of gC. Show that (π,V ) is irreducible as a representation
of g if and only if it is irreducible as a representation of gC.

Example A.1 The complex-linear irreducible representations of sl(2,C)

As a first application of Proposition A.1, consider the complex Lie algebra sl(2,C).
Since sl(2,C) 	 su(2)C, we conclude that its complex-linear irreps are just the ir-
reps (πj ,Vj ) of su(2)! In fact, you can easily show directly that the complex-linear
sl(2,C) representation corresponding to (πj ,Vj ) is just (j,0). �

As a second application, note that by (A.4) the complex-linear irreps of
sl(2,C) ⊕ sl(2,C) are just the representations (j1, j2) coming from sl(2,C)R. Since
sl(2,C) ⊕ sl(2,C) is a direct sum, however, there is another way to construct
complex-linear irreps. Take two complex-linear irreps of sl(2,C), say (πj1 ,Vj1)
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and (πj2 ,Vj2). We can take a modified tensor product of these representations such
that the resulting representation is not of sl(2,C) but rather of sl(2,C) ⊕ sl(2,C).
We denote this representation by (πj1 ⊗̄ πj2 ,Vj1 ⊗ Vj2) and define it by

(πj1 ⊗̄ πj2)(X1,X2) ≡ πj1(X1) ⊗ I + I ⊗ πj2(X2) ∈ L(V1 ⊗ V2),

X1,X2 ∈ sl(2,C). (A.6)

Note that we have written the tensor product in πj1 ⊗̄ πj2 as ‘⊗̄’ rather than ‘⊗’;
this is to distinguish this tensor product of representations from the tensor product
of representations defined in Sect. 5.3. In the earlier definition, we took a tensor
product of two g representations and produced a third g representation given by
(π1 ⊗ π2)(X) = π1(X) ⊗ I + 1 ⊗ π2(X), where the same element X ∈ g gets fed
into both π1 and π2; here, we take a tensor product of two g representations and
produce a representation of g ⊕ g, where two different elements X1,X2 ∈ g get fed
into π1 and π2.

Now, one might wonder if the representation (πj1 ⊗̄πj2 ,Vj1 ⊗Vj2) of sl(2,C)⊕
sl(2,C) defined above is equivalent to (j1, j2); this is in fact the case! To prove this,
recall the following notation: the representation space Vj1 ⊗ Vj2 is spanned by vec-
tors of the form vk1 ⊗ vk2 , ki = 0, . . . ,2ji , i = 1,2 where the vki

are characterized
by (5.76). Similarly, the representation space V(j1,j2) of (j1, j2) is spanned by vectors
of the form vk1,k2 , ki = 0, . . . ,2ji , i = 1,2, where these vectors are characterized
by (5.87). We can thus define the obvious intertwiner

φ : Vj1 ⊗ Vj2 → V(j1,j2)

vk1 ⊗ vk2 �→ vk1,k2 .

Of course, we must check that this map actually is an intertwiner, i.e. that

φ ◦ [

(πj1 ⊗̄ πj2)(X1,X2)
] = π(j1,j2)(X1,X2) ◦ φ ∀X1,X2 ∈ sl(2,C). (A.7)

Since sl(2,C) ⊕ sl(2,C) is of (complex) dimension six, it suffices to check this for
the six basis vectors

(iMz,0)

(0, iNz)

(M+,0) ≡ (iMx − My,0)

(M−,0) ≡ (iMx + My,0)

(0, N+) ≡ (0, iNx − Ny)

(0, N−) ≡ (0, iNx + Ny),

where the Mi and Ni were defined in (A.2). We now check (A.7) for (iMz,0)

on an arbitrary basis vector vk1 ⊗ vk2 , and leave the verification for the other five
sl(2,C) ⊕ sl(2,C) basis vectors to you. The left hand of (A.7) gives (careful with
all the parentheses!)
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φ
(

(πj1 ⊗ πj2)(iMz,0)(vk1 ⊗ vk2)
) = φ

(

(Jz ⊗ I )(vk1 ⊗ vk2)
)

= φ
(

(j1 − k1)vk1 ⊗ vk2

)

= (j1 − k1)vk1,k2

while the right hand side is

π(j1,j2)(iMz,0)
(

φ(vk1 ⊗ vk2)
) = (

π(j1,j2)(iMz,0)
)

(vk1,k2)

= iMz vk1,k2

= (j1 − k1)vk1,k2

and so they agree. The verification for the other five sl(2,C)⊕sl(2,C) basis vectors
proceeds similarly. This proves the following proposition:

Proposition A.2 Let (j1, j2) denote both the usual sl(2,C)R irrep as well as
its extension to a complex-linear irrep of (sl(2,C)R)C 	 sl(2,C) ⊕ sl(2,C). Let
(πj1 ⊗̄ πj2 ,Vj1 ⊗ Vj2) be the representation of sl(2,C) ⊕ sl(2,C) defined in (A.6).
Then

(j1, j2) 	 (πj1 ⊗̄ πj2 ,Vj1 ⊗ Vj2). (A.8)

Exercise A.4 Verify (A.7) for the other five sl(2,C) ⊕ sl(2,C) basis vectors, and thus
complete the proof of Proposition A.2.

We will now use Proposition A.2 to compute tensor products of the (sl(2,C)R)C

irreps (j1, j2), which by Proposition A.1 will give us the tensor products of the
(j1, j2) as sl(2,C)R irreps, which was what we wanted! In the following computa-
tion we will use the fact that

(πj1 ⊗̄ πj2) ⊗ (πk1 ⊗̄ πk2) 	 (πj1 ⊗ πk1) ⊗̄ (πj2 ⊗ πk2), (A.9)

which you will prove below (note which tensor product symbols are ‘barred’ and
which are not). With this in hand, and using the su(2)C 	 sl(2,C) tensor product
decomposition (5.68), we have (omitting the representation spaces in the computa-
tion)

(j1, j2) ⊗ (k1,k2) 	 (πj1 ⊗̄ πj2) ⊗ (πk1 ⊗̄ πk2)

	 (πj1 ⊗ πk1) ⊗̄ (πj2 ⊗̄ πk2)

	
(

j1+k1
⊕

l1=|j1−k1|
πl1

)

⊗̄
(

j2+k2
⊕

l2=|j2−k2|
πl2

)

	
⊕

(l1,l2)

πl1 ⊗̄ πl2 where |ji − ki | ≤ li ≤ ji + ki, i = 1,2

	
⊕

(l1,l2)

(l1, l2) where |ji − ki | ≤ li ≤ ji + ki, i = 1,2.

This gives the tensor product decomposition of complex-linear (sl(2,C)R)C irreps.
However, these irreps are just the extensions of the irreps (j1, j2) of sl(2,C)R, and
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you can check that the process of extending an irrep to the complexification of a Lie
algebra commutes with taking tensor products, so that the extension of a product is
the product of an extension. From this we conclude the following:

Proposition A.3 The decomposition into irreps of the tensor product of two
sl(2,C)R irreps (j1, j2) and (k1,k2) is given by

(j1, j2) ⊗ (k1,k2) =
⊕

(l1, l2)

where |j1 − k1| ≤ l1 ≤ j1 + k1, |j2 − k2| ≤ l2 ≤ j2 + k2

which is just Proposition 5.8.

Exercise A.5 Prove (A.9) by referring to the definitions of both kinds of tensor prod-
uct representations and by evaluating both sides of the equation on an arbitrary vector
(X1,X2) ∈ sl(2,C) ⊕ sl(2,C).
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Index

A
Abelian (group), 88
Active transformation, 50
ad homomorphism, 132, 136
Ad homomorphism, 136
Addition of angular momentum, 64, 65
Additive quantum number, 160, 161
Adjoint, 92
Adjoint representation, 21, see representation,

adjoint
of Lorentz group, 149, 175
of orthogonal group, 149, 175

Alternating tensor, 70
Angular momentum, 6, 128

commutation relations, 122
Angular momentum operators, see operators,

angular momentum
Angular velocity vector, 6, 78, 123
Anti-Hermitian matrices, 118
Anti-Hermitian operators

Lie algebra of, 127
Antisymmetric

2nd rank tensor representation, 149
matrices, 16, 116, 118
tensor, 70
tensors and Lie algebras of isometry

groups, 177
Axial vector, 75
Axis of rotation, 74, 138

B
Baker–Campbell–Hausdorff formula, 117
Basis (for a vector space), 15
Bilinear, 27
Bivector, 75
Body axes, 19
Body frame, 78

Boost, 100, 125, 139
generators, 119

Bosons, 71, 111
Bra, 32

C
C(P ), 128, 158
C

n, 11
as complexification of R

n, 194
Canonical

transformation, 129
variables, 131

Cartesian product, xv
Chiral representation (of gamma matrices),

223
Clebsch–Gordan coefficients, 66, 221
Clifford algebra, 208
Closed (group), 112
Cofactor expansion of determinant, 73
Commutator, 116
Completely reducible, 180
Completeness (of vector space), 29
Complex Lie algebra, 227
Complex vector space, 11
Complex-linear, 229
Complexification

of Lie algebra, 227
of representation, 194
of vector space, 194

Components
contravariant, 32, 46
covariant, 32, 46
of dual vector, 25
of matrix, 22
of Minkowski metric, 29
of tensor, 4, 40, 55
of vector, 17
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Conjugate representation, see representation,
conjugate

Conjugate-linear, 27
Connected group, 98
Contraction, 56
Contravariant, see components, contravariant
Covariant, see components, covariant
Cross product, 76
Cyclic permutation, 72

D
Decomposable, 180
Determinant, 73, 82, 83

and oriented volume, 74, 83
and sgn homomorphism, 110
of a matrix exponential, 119

Dimension (of a vector space), 15
Dirac bilinear, 224
Dirac delta functional, 33, 61
Dirac notation, 32, 40, 57, 61, 66
Dirac spinor, 147, 151, 183, 205, 222, 224

and antisymmetric tensors, 225
Direct sum, 178, 183

external, 183
internal, 183
of Lie algebras, 229
representation, 183

Direct sum decomposition
of �2

R
4, 181

of L2(S2), 182
of Mn(C), 179
of Mn(R), 179
of tensor product representations, 180

Disconnected group, 98
Dot product, 28
Double cover

of SO(3) by SU(2), 107
of SO(3,1)o by SL(2,C), 108

Double dual, 35
Dual

basis, 26
metric, 36
representation, 161, 162
space, 25
vector, see linear functional

E
ε, see Levi-Civita tensor
Einstein summation convention, 39, 46
Electromagnetic field tensor, 60

transformation properties of, 149, 181, 203
Entanglement, 67
Equivalence of representations, 169
Euler angles, 97

Euler’s theorem, 138
Exponential of matrix, 114

F
Faithful representation, 210
Fermions, 71, 111
Four-vector, 147
Four-vector representation, see representation,

four-vector
Fourier coefficients, 20
Fourier series, 20
Fourier transform, 62
Fundamental representation, see

representation, fundamental

G
GL(n,R), see general linear group
GL(V ), see general linear group
gl(n,C), 115
gl(V ), 127
Gamma matrices, 222, 223

chiral representation of, 223
General linear group, 14, 90, 115
Generators, 111
Gram–Schmidt, 27
Group, 81

axioms, 88
definition of, 88

H
Hn(C), see Hermitian matrices

Hl (R
3), see harmonic polynomials

H̃l , see spherical harmonics
Hamilton’s equations, 158
Harmonic polynomials, 12, 16, 23, 34, 48, 69,

155, 192
Heisenberg algebra, 130, 157, 160
Heisenberg equation of motion, 21
Heisenberg picture, 52
Hermite polynomials, 37
Hermitian adjoint, 35
Hermitian matrices, 11, 16
Hermitian scalar product, 28
Hermiticity, 27
Highest weight vector, 189, 197
Hilbert space, 17, 29
Hilbert–Schmidt norm (on Mn(C)), 117
Homomorphism

group, 103
Lie algebra, 131

I
Identical particles, 71, 150
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Indices
raising and lowering, 32

Inner product, 27
on C

n, 28
on L2([−a, a]), 29
on Mn(C), 28
on R

n, 28
Inner product space, 27
Intertwiner, 169
Intertwining map, see intertwiner
Invariant subspace, 179

non-trivial, 179
Inversion, 75, 98
Invertibility, 22, 83
Irreducible representation, 180, 184, 185

of a real Lie algebra and its
complexification, 230

of abelian group, 187
of double-cover of O(3,1), 205
of O(3,1), 206–208
of SL(2,C), 201
of SO(3), 192
of SO(3,1)o , 201
of sl(2,C), 230
of sl(2,C)R, 196–201
of sl(2,C) ⊕ sl(2,C), 230–232
of su(2), 188–190
of Z2, 187

Irrep, see irreducible representation
Isometry, 90, 104
Isomorphism

group, 103
Lie algebra, 131

J
J+, 188, 191, 192
J−, 188, 191, 192, 194
Jz, 188, 191, , 192, 194
Jacobi identity, 116, 133

K
Kernel, 105
Ket, 32
Killing form, 137, 143
Kinetic energy of rigid body, 6

L
L2([−a, a]), 12, 16, 20, 28, 32, 60
L2(R), 12, 60
L2(R3), 64, 160
L2(S2), 155, 182
L(V ), see operators, linear
Laguerre polynomials, 37
Left-handed spinor, see representation, spinor

Legendre polynomials, 37
Levi-Civita symbol, see Levi-Civita tensor
Levi-Civita tensor, 41, 72, 110, 208, 212
Lie, Sophus, 111
Lie algebra, 111, 115–131

abstract, 127
complex, 227
definition, 115
direct sum, 229
physicist’s definition, 119

Lie algebra homomorphism, 131
induced, 133

Lie algebra representation, 145
Lie bracket

and similarity transformation, 137
Lie group, 111–113

dimension of, 112
Lie product formula, 116, 134
Lie subalgebra, 128
Linear combinations, 14
Linear dependence, independence, 15
Linear functional, 25
Linear map, 104
Linear operator

as (1,1) tensor, 39, 57
definition of, 21
Lie algebra of, 127

Linearity, 21
Lorentz force law, 60
Lorentz group, 93, 99–102
Lorentz transformations, 49, 99

decomposition into boost and rotation, 139

M
Mn(C), 227

as complexification of Mn(R), 194
Mn(R),Mn(C), 11, 16
Matrix

exponential, 114
logarithm, 142
of linear operator, 23
of Minkowski metric, 29

Matrix Lie group, 112
Maxwell stress tensor, 59
Metric, 27

as intertwiner between V and V ∗, 173
Minkowski metric, 28, 93
Moment of inertia tensor, 6, 42, 58
Momentum representation, 62
Multilinearity, 3, 39
Multiplicative quantum number, 160, 161
Multipole moments, 42, 69
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N
Neutrino, 147
Noether’s theorem, 129
Non-abelian (group), 88
Non-commutative (group), 88
Non-degeneracy, 27
Non-degenerate Hermitian form, 27
Null space, 106
Nullity, 106

O
O(3), 98, 115
O(3,1), 101, 138
o(3), 115
o(n − 1,1), 119
o(n), 118
O(n − 1,1), see Lorentz group
O(n), see orthogonal matrices, orthogonal

group
Observables, 128
One-parameter subgroup, 114
One-to-one, 22
Onto, 22
Operators

adjoint of, 35
angular momentum, 21, 23
exponential of, 34
Hermitian, 36
invertible, 22
linear, see linear operator
matrix representation of, 23
self-adjoint, 36
symmetric, 36

Orientation, 74, 83
Orthogonal

complement, 210
matrices, 47, 81
projection operator, 217, 225
set, 28

Orthogonal group, 91, 96–98
proof that it is a matrix Lie group, 112

Orthonormal basis, 27
for Hilbert space, 30

P
Pl(C

2), 152, 185, 191
Pl(R

3), see polynomials, of degree l

p̂, 21, 60, 62, 130
Parity, 101, 160, 188

and Dirac spinors, 183
and Z2, 109

Passive transformation, 50, 81
Pauli matrices, 12

Permutation
even, odd, 70, 110

Permutation group, 95, 150
relation to Z2, 109

Permutations, see permutation group
Phase space, 128
Pin groups, 208
Poisson bracket, 128

formulation of mechanics, 158
Polar decomposition theorem, 140
Polynomials, 12

harmonic, see harmonic polynomials
Hermite, 37
Laguerre, 37
Legendre, 37
real, 36

Positive matrix, 140
Positive-definite, 27
Principal minors, 140
Product

of matrices, 23
Product state, 67
Pseudoscalar, 167, 168
Pseudovector, 75, 149, 168, 182

Q
q̂ , 130
Quark, antiquark, 173

R
Rank (of map), 106
Rank (of tensor), 3, 40
Rank-nullity theorem, 106
Rapidity, 100
Real numbers (as additive group), 89
Real vector space, 11
Real-linear, 229
Representation, 128, 145

2nd rank antisymmetric tensor, 149, 175,
203

2nd rank antisymmetric tensor and adjoint
of O(n), 166

adjoint, 148
adjoint of C(P ), 158
alternating, 150
complex, 145
conjugate, 209
dual, 161, 162, 173
equivalence of, 169
faithful, 210
four-vector, 147, 151, 201
fundamental, 147
irreducible, 180
of Heisenberg algebra on L2(R), 157
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Representation (cont.)
of Sn, 150
of Z2, 150
on function spaces, 151
on linear operators, 163
on symmetric and antisymmetric tensors,

165–169
on T r

s (V ), 161
pseudoscalar, 168
pseudovector, 168
real, 145
scalar, 166
sgn, 150
SO(2) on R

2, 187, 196
SO(3) on Hl (R

3), H̃l and L2(S2), 155
SO(3) on L2(R3), 153
space, 145
spin s, 152, 160
spin-one, 195
spin-two, 195
spinor, 147, 151, 174, 198, 199, 205, 222
SU(2) on Pl(C

2), 152
symmetric traceless tensors, 195
tensor product, 159
trivial, 146
unitary, 146
vector, 147

and “spin-one”, 194
Representation operator, 216
Right-handed spinor, see representation, spinor
Rigid body motion, 19, 52, 78
Rotation, 74, 96–98, 129, 138

generators, 118, 119, 121, 122
improper, 98
proper, 98

S
Sl(C2), 165, 192, 199, 200
Sn, see permutation group
Sr (V ), see symmetric, tensors
SL(2,C), 102, 151

relationship to SO(3,1)o , 108, 135
SO(2), 96
SO(3), 97, 106, 129

infinitesimal elements of, 113
SO(3,1)o , 99, 138
SO(n), see special orthogonal group
SU(2), 98

relationship to SO(3), 106, 135, 138
SU(3), 173
SU(n), see special unitary group
sl(2,C)R, 125

relationship to so(3,1), 136
sl(n,C), 227

so(2), 121
so(3), 122, 129
so(3,1), 124
so(n), 120
su(2), 106, 124

isomorphic to so(3), 135
su(n), 120
Scalar representation, see representation, scalar
Scalars, 9
Schrödinger picture, 52
Schur’s lemma, 186
Selection rule, 218

parity, 219
Self-adjoint, 36
Semi-simple (group or algebra), 180
Separable state, 67
Sgn homomorphism, 110
Sgn representation, 150
Similarity transformation, 48, 164
Space axes, 19
Space frame, 78
Span (of a set of vectors), 14
Special linear group, 102
Special orthogonal group, 94, 138
Special unitary group, 94, 98
Spectral theorem, 156
Spherical harmonics, 12, 16, 23, 34, 155, 182
Spherical Laplacian, 13, 156
Spherical tensor, 214, 216
Spin, 11, 64
Spin angular momentum, 65
Spin-one representation, see representation,

spin-one
Spin-two representation, see representation,

spin-two
Spinor, see representation, spinor
Spinor representation, see representation,

spinor
Square-integrable, 12, 156
Star operator, 212
Structure constants, 132
Subgroup, 90
Subspace, 11
Symmetric

form, 27
matrices, 16
tensors, 68

Symmetric group, see permutation group
Symmetrization postulate, 111, 150
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T
[T ]B , 23
T r

s , see tensors, of type (r, s)

Tensor operator, 214
Tensor product

as addition of degrees of freedom, 63–67,
160

of operators, 63
of sl(2,C)R irreps, 202, 233
of su(2) irreps, 181
of vector spaces, 54
of vectors, 54
representation, 159

Tensors
alternating, 70
and linear operators, 5, 57
and matrices, 5
antisymmetric, 70
as linear operators, 39
as tensor product space, 55
basis for vector space of, 55
components of, 4, 40, 55
contraction of, 56
definition of, 39
rank of, 40
symmetric, 68
transformation law, 5, 43–53
type (r, s), 39, 55

Time-reversal, 102
and Z2, 109

Trace, 26, 48
cyclic property of, 121
interpretation of, 120

Transformation law
of linear operators, 48, 163
of metric tensors, 48
of vectors and dual vectors, 46, 162

Translations, 130
Transpose, 35
Transposition, 68, 109
Trivial representation, see representation,

trivial

U
U(1), 105
U(n), see unitary group
u(n), 118
Unitary

group, 92
matrices, 47
operator, 92
representation, 146

V
V ∗ , see dual space
Vector operators, 63, 213, 214
Vector representation, see representation,

vector
Vector space

as additive group, 90
axioms, 9
complex, 11
definition of, 9
isomorphism, 105
real, 11

W
Wedge product, 70, 110
Weyl spinor, 147
Wigner–Eckart theorem, 219–222

X
x̂, 21, 60

Y
Y l

m , see spherical harmonics

Z
Z2, 95, 150

and parity, time-reversal, 109
and sgn homomorphism, 109
irreducible representations of, 187
is semi-simple, 187, 210
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