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PREFACE 

Symmetries are of primary importance in physics, particularly in quantum 
theory. Among the first symmetries which were remarked upon historically and 
conceptually were those of space and time. While Galilei invariance was later 
to be generalized into Lorentz invariance, the invariance under spatial rotations 
(though also a subgroup of the Lorentz group) has survived as such and has 
become an important subject of quantum theory. It is well known, and will also 
be discussed extensively in this book, that invariance generates conservation 
laws; in the case of rotational invariance the conserved quantity is the angular 
momentum. Therefore there is a dense interlacing between 

• the description of rotations, geometrically and group theoretically 
• their representations by unitary transformations in the Hilbert space of 

quantum mechanical states, and 
• the quantum theory of angular momentum. 

Somehow these are only three different facets of one and the same thing. 
According to circumstances one or the other aspect will naturally be pushed to 
the foreground. 

The main raison d'être, however, of this book is that we have tried to exhibit 
the wholeness of this 'one and the same thing', namely symmetry as the basic 
concept underlying all the (sometimes tedious) formalisms. This implies, for 
instance, that the Wigner theorem'—stating that to every symmetry group there 
corresponds a representation (unitary or anti-unitary) in the quantum mechanical 
Hilbert space—is, in our opinion, of such fundamental importance that it should 
not simply be dealt with by saying 'Wigner has proved that ... '. Therefore we 
give an explicit proof of it. There, as on many other occasions, our aim has 
been to stress the underlying ideas and motivations: the 'why is' and the 'how 
is' ; in short, to make things plausible rather than overburden the reader with a 
formal and condensed proof. Lovers of rigour and compactness may be irritated 
by our often pedestrian length, as well as by some repetitions in which earlier 
arguments come up again and are discussed anew in another context. 

Thus, in spite of its mathematical appearance, this is a didactic text written 
by physicists for physicists. We took our time in writing it and we hope our 
readers will take their time in reading it. 

This, then, has been our philosophy in writing the book. 	It is 
necessarily biased and incomplete (for instance we did not include the graphical 
representation of formulae). Fortunately there are a sufficient number of other 
books on this subject with different aims: 
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• some putting the formal mathematical aspects in the foreground 
• some trying to be as short and concentrated as possible 
• some emphasizing practical applications and examples, and 
• some serving as inexhaustible collections of formulae. 

We will mention in appropriate chapters examples of such books where 
some different aspects of the subject are emphasized. Knowing of the existence 
of these other books and making the reader aware of them makes us feel that 
our text might be a useful complement to the existing literature. Thus we hope 
to help our readers more towards a feeling and an understanding of what it is all 
about rather than just a superficial knowledge. As three-dimensional rotations 
are conceptually simple and accessible to intuition and since it also happens 
that the three-dimensional rotation group is the simplest non-Abelian continuous 
symmetry in physics, this naturally occupies the largest part of the book. 

In writing this book we have benefited from discussing various questions 
with many of our colleagues. It is a pleasure to express our gratitude to 
all of them, especially Khosrow Chadan, Wen-Feng Chen, Andrei Demichev, 
Petr Kulish, Kazuhiko Nishijima, Claus Montonen and Peter Pregnajder, and 
to acknowledge the stimulating discussions and their useful advice. In 
particular, our appreciation is extended to Matti Pitkdnen for all his contributions, 
improvements and suggestions during the preparation of the manuscript. 

We would also like to thank the commissioning editor, Jim Revill, for his 
patience, and the (unknown to us) referees for valuable complements, corrections 
and suggestions including even a brushing up of our English. Our special thanks 
go to Jeanne Rostand from CERN for having improved considerably the language 
of the book, although we asked her to leave some non-native English flavour in 
the text. 

Masud Chaichian, Rolf Hagedorn 
Helsinki, Geneva 

July 1997 
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INTRODUCTION 

1.1 Notation 

We shall employ here the following notation and basic formulae of quantum 
mechanics; our units are such that h = c = 1. 

In quantum mechanics observables are represented by Hermitian operators 
in a Hilbert space. The physical fact that not all measurements (preparations) 
are compatible with each other corresponds to the fact that not all operators 
commute. The 'state' of a physical system is fully determined in one way 
or another if a complete set of compatible measurements has been carried 
through such that no further measurement exists which is compatible with, 
and which is not simply a calculable function of, those measurements already 
made. Since not all independent measurements are compatible, there exist 
several non-compatible 'complete sets of measurements' for a given physical 
system, which lead to different aspects of that system. Each complete set of 
commuting observables leads to a complete basis in the Hilbert space, the basis 
vectors being the simultaneous eigenvectors of all operators of the set. We label 
these basis vectors—which are assumed to be normalized to unit length—by the 
eigenvalues: if A,  B, C,  D, ..., X is a complete set of commuting observables, 
then the physical states are represented by state vectors: la, b,  c, d,  ..., x) and 
we have 

Ala,b,c, d, ..., x) = ala,b,c,d, ... ,x ) etc 

(a' , b' , c' , d' , . . . , x' l a, b, c, d, . . . , x ) = Sad SW ... 8 xx' 
(1.1.1) 

where S aa,  is the Kronecker symbol if a is discrete and the Dirac 8 function 
if continuous. We may conveniently compress all quantum numbers and all 
commuting operators into one symbol each: 

y = { a, b, c, d, ... , x } 	rlY) = yly) 
r . {A, B, C, D, ... , x } 	(VIY) = 8ry'. 

(1.1.2) 

If there is another complete set of commuting observables, A, then the 
system may be described by states IA), exhibiting another aspect of it. Since 
both sets, r and A, furnish a complete orthonormal basis in the Hilbert space, 
these two bases are connected by a unitary transformation U. 

1 
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Any arbitrary state V/ may be expanded with respect to any basis, e.g. 

1 1/f) = E iy)(yic Or 
y 

hp) = E ix)(A•ho 
, 

From that follows the important 'spectral resolution of the unit operator', 
namely 

I 	iy)(yi = E pow = • • • 	(1.1.4) 
y 	 A 

where y and A must be summed over the whole range'. If the sum is carried 
only over a part of the whole range, then this is the unit operator in that part 
of the Hilbert space which is spanned by the vectors whose labels lie within 
the range of the summation; it is the null operator for all the rest, i.e. in the 
orthogonal subspace. Hence, if E' indicates summation over a subset {y}' of 
the total range, then 

E' iy)(yi =  Ply), 
r 

E' ix)(xt = PlX1' 
X 

(1.1.5) 

are projection operators with the—necessary and sufficient—properties 

P2  = P and Pt = P 	 (1.1.6) 

(t means Hermitian conjugate). If the subset fyl' reduces to one single element 
y, then 

	

IY)(YI --= PY 
	 (1.1.7) 

is the projection onto the single state I y). Since the operator r will multiply this 
single state by the eigenvalue, we obtain the total effect of r by decomposing 
the Hilbert space into subspaces I y) = Py 'H, multiplying each by its eigenvalue 
y and summing up over y; hence 

r = E Y Py =Ely)) ,  cy 1 	 ( 1.1.8) 

	

y 	 y 

which we call the 'spectral resolution of r, from which it follows at once that 
any (reasonable) function of r, f (r), may be defined by its spectral resolution 

f (T) = E f (Y)Py = E ly)f (y)(y1 	 (1.1.9) 

	

y 	 y 

which is a useful formula. 

1  This perhaps too schematic notation means, of course, integration wherever the spectrum is 
continuous. We consistently use this simplified notation. 

(1.1.3) 
etc. 
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Note that formulae (1.1.5), (1.1.7), (1.1.8) and (1.1.9) are invariant under 
the operation I y) —* e iF(Y ) 1y) implying (yI e —iF( Y ) (y I, where F(y) is any 
real function of y. This invariance lead us to the expectation that phase factors 
of states may have little significance. This is indeed the case, as we shall see 
now. 

If the quantum mechanical system is described by a certain state 11/f(0), 
then the 'probability amplitude' A for finding in the next measurement the state 
I) is given by 

A(*(t) 	4)) = ( OW). 	 (1.1.10) 

The observable thing is, however, not A but its absolute square; IAI 2  is a 
probability (or, if 10) belongs to a continuum, a probability density which has 
to be multiplied by the corresponding interval dck) 

Prob 	(t)) 	10» = 
	 (1.1.11) 

This leads to the important observation that the state vectors lip), etc, contain 
more information than can possibly be inferred from experiment. Indeed if we 
replace the above state vectors 10) and IC by eia IC and e' 0 11//), with a and /3 
real, then the left-hand side (1.h.s.) of (1.1.11) would not change. As the maximal 
knowledge about a physical system is equivalent to specifying simultaneously all 
quantum numbers of one complete set, a state vector I y) in the sense of (1.1.2) 
is a complete description of the actual physical state, but then &al y) describes 
the same situation: (1.1.1) gives 

Prob ( y) 	e'aly)) = 1 	 (1.1.12) 

which means that e'a I y) and  I)  do not differ in any observable respect. We are 
thus forced to introduce the concept of 'rays' and 'physical states'. The system 
is said to be in a definite 'physical state' if a complete set of quantum numbers 
y is specified. This does not yet define a state vector in Hilbert space, because 
all state vectors e i'l y) with arbitrary real a represent the same physical state. 
The set of these state vectors 

-{eialy); a real) 	 (1.1.13) 

is called a 'unit ray' p. (Correspondingly, 'rays' are defined; they differ from 
unit rays only by not being normalized.) We then state the postulate 

There is a one-to-one correspondence between physical states 
and rays. 

As any element e i"I y) of the unit ray p represents the same physical state, 
we may always loosely say: 'the system is in the state I yr. In other words: 
while a state vector uniquely specifies a physical state, the physical state does not 
specify a state vector but only the unit ray p. One point should be clear: although 

(1.1.14) 
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in the correspondence between physical states and state vectors the phase of the 
latter is entirely arbitrary, this arbitrariness is absent from the relative phases 
entering a linear superposition such as al*) b10). If this superposition is to 
represent a physical state, then its overall phase is arbitrary but not the angle 
between a and b in the complex plane. 

Therefore the freedom in the phase factors must not be misinterpreted as 
implying their physical insignificance. We shall encounter enough examples 
where the phase factors are important. 

The remark that the relative phase of a and  b in a IC b kb) is significant 
immediately rules out one possibility one might have thought of in view of the 
postulate (1.1.14); namely the possibility to formulate quantum mechanics with 
rays rather than state vectors. As one sees from the above example, rays cannot 
be added. The superposition principle (which holds for state vectors but not for 
rays) is, however, a basic requirement of quantum mechanics. 

We are thus forced to formulate quantum mechanics using Hilbert vectors. 
This has some consequences regarding symmetries of the physical system, which 
will be investigated in more detail in chapter 2. The point is: assume the physical 
system is invariant under a certain group G—called a symmetry of the system. 
If a physical state S is mapped by g E G onto the physical state S' = gS, 
then the corresponding unit ray is mapped onto its image p' = kp. (We 
have adopted the rule that Greek letters p, etc stand for unit rays, Latin letters 
k, etc for ray operators which will be defined more pedantically later on.) As 
between S and there is a one-to-one correspondence, it follows that between 
g and k(g) there is also a one-to-one correspondence. What we really need to 
know, however, is not so much how unit rays transform but how Hilbert vectors 
do. Obviously, there is an infinity of mappings of Hilbert vectors corresponding 
to one given ray transformation. The problem is to pick out the most suitable 
mappings. It will turn out that these are either unitary or anti-unitary. 

We denote the unit matrix and unit operator simply by 1. 

1.2 Some basic concepts in quantum mechanics 

Observables are represented in quantum mechanics (QM) by Hermitian 
operators in Hilbert space. These operators are analogues of finite-dimensional 
Hermitian operators, but the infinite dimensionality requires some mathematical 
explanation. Appendices A and B at the end of the book provide additional 
details for the following discussion. For general mathematical aspects of QM 
we recommend the reader to consult the fundamental books of Dirac (1981) and 
von Neumann (1955). 

If A is an n x n Hermitian matrix such that 

(Aulv) = (ulAv) 	 (1.2.1) 



Pi,,(A, I) = E icii2 + f Ic(A.)1 2 dÀ 
liEl 

(1.2.6) 
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for all lu), lu) in  V,  then A has a complete orthonormal set of eigenvectors: 

	

Alu i ) = 	A, real, (u i lui ) = Si. 

That means that any Iv) E V can be decomposed as 

Iv) = Ecilui). 	 (1.2.2) 

In the infinite-dimensional Hilbert space 7-1 (1.2.1) and (1.2.2) remain valid 
provided the operator A is bounded (i.e. there exists a positive constant C, such 
that for any l(p) E H it holds that 11411 _< C II So II). 

An unbounded operator A in H (for example the Hamiltonian) can be 
defined in some subset DA of H. The analogue of condition (1.2.1) 

(41 1/1 ) = (iPlktif) for l(P) ,  I*) E DA 

defines a symmetric operator. More restrictive is the notion of a self-adjoint 
operator possessing a complete set of eigenvectors: 

(i) corresponding to a discrete spectrum of eigenvalues 

Aly9i) = 	l(Pi), Ai real, ((Pik& = 
	

(1.2.3) 

(ii) and/or (generalized) eigenvectors 

	

A Iço),) = 	real, (0,1(px, ) = 8(A. — 	(1.2.4) 

for the continuous spectrum. The completeness means that any Iy0) E 
can be expanded as 

	

Iv) 	Ec,m) + f clA.c001q)(À)). 	(1.2.5) 

Obviously, the self-adjointness implies the symmetry of the operator (but 
the opposite is not true). 

The existence of a complete set of eigenvectors corresponding to real 
eigenvalues (self-adjointness) is necessary for any operator assigned to a 
quantum observable. We shall call such operators Hermitian, as is usual 
in physics, but in what follows, the term 'Hermitian operator' will always 
mean 'self-adjoint operator' in the mathematical sense (and not the 'symmetric 
operator'). Namely the probability that in the state lw) E H the measurement of 
the variable A will give a result lying in the interval I is given by the formula 

where ci  and c(A) are coefficients in the expansion (1.2.5). The existence of 
such an expansion, i.e. the self-adjointness of A, is inevitably connected with 
the interpretation of quantum mechanics. 
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Examples 

The momentum operator A = (1/08„ acting on sufficiently smooth 
functions over a real line R is self-adjoint. This operator has a continuous 
spectrum for each k E R; there is a generalized eigenfunction • 

1 	. Ibk (x)  _elkx 
N/Yr 

satisfying 
Aikk(x) = bfrk(x). 	 (1.2.8) 

This is a generalized function (distribution) since it is non-normalizable 
1  

 O 	
f  +00 

h 1 lfrk) = —2n 	dx 	= 00 . 

However, for any q7(x) from the Hilbert space H = £ 2 (R N , dx) the 
generalized (inner) product 

(*kl (P 	 _co) = 	 ax e ikx  ço(x) — 49(k) 

exists and is related directly to the Fourier transform of ço(x). Instead of 
(1.2.9) one should write 

(*klIfre) = — 
1 j.+00 

	

dx eqk —k)x = 3(k/ _ k). 	(1.2.11) 
27r , 

This formula is frequently used in quantum mechanics. 
(ii) The operator A = (1/08w  acting on smooth functions on the circle S i 

 (where we introduce the angle variable cp instead of x): 

1 
= 

where Vi(27r) = V/(0) (which is the same as to lie on a circle). This 
operator is self-adjoint and has only a discrete spectrum. The corresponding 
eigenfunctions are 

1 
 (iP) = 	

einw 

They are orthonormal in the Hilbert space H = £2 (S', d(p): 

1 
 = 	 L 

r ei(n —n» A_ u2 
( 11Inhfrn') 	 W/ = nn' 	(1.2.14) 

27r 

Note. This is a very important example for this book. Such operators 
appear, using proper variables, in the description of rotations. It is known 
from elementary courses on QM that the operator (1/ i)av, is just the 
operator L, of rotations around the z-axis (expressed in terms of spherical 
coordinates). 

(1.2.7) 

(1.2.9) 

(1.2.10) 

(1.2.12) 

n integer. 	(1.2.13) 
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(iii) The operator A = 	oa, defined on sufficiently smooth functions on an 
interval x E (0, 2n) satisfying boundary conditions cp(0) = (2n) = 0 is 
symmetric, but not self-adjoint, since it has no eigenfunctions. However, as 
we have seen in example (ii), this operator with (weaker) periodic boundary 
conditions is self-adjoint. 

(iv) The momentum operator A = ( I/ Oa, on the half-line [0, Do] is even worse, 
since it cannot be made self-adjoint by imposing any boundary condition. 

Note. One can say that for a particle confined to an interval (with vanishing 
wave function in the end points) the momentum (1/ Oa, does not represent a 
proper physical observable. However, the Hamiltonian H = (1/2m)0 still 
represents a physical observable since it is self-adjoint on the set of wave 
functions in question. 

1.3 Some basic objects of group theory 

In this subsection we recall some basic definitions from the theory of Lie 
groups and algebras which will be essentially used in the main text. Of course, 
rigorous definitions can be given only in the appropriate context of a complete 
exposition of the theory and we refer the reader to the books of Barut and Raczka 
(1977), Elliot and Dawber (1985), Humphrey (1972), Jacobson (1961), Jones 
(1990), Tung (1985), Vilenkin (1968), van der Waerden (1974), Weyl (1931), 
Wigner (1959), Wybourn (1974) and Zhelobenko (1973) for further details and 
clarifications. 

1.3.1 Groups: finite, infinite, continuous, Abelian, non-Abelian; subgroup 
of a group, cosets 

A set G of elements g i  , g2 , g3 , ... is said to form a group if a law of 
multiplication of the elements is defined which satisfies certain conditions. The 
result of multiplying two elements ga  and gb is called the product and is written 
gab . The conditions to be satisfied are the following. 

(i) The product gagb  of any two elements is itself an element of the group, i.e. 

gab = ge 
	for some gd E G. 

(ii) In multiplying three elements ga , gb  and ga  together, it does not matter 
which product is made first: 

ga (gbgc ) = (gagb)gc 

where the product inside the brackets is carried out first. This implies that 
the use of such brackets is unnecessary and we may simply write ga gbgc  
for the triple product. This property is called associativity of the group 
multiplication. 
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(iii) One element of the group, usually denoted by e and called identity or unity, 
must have the property 

ega  = gae --= ga . 

(iv) To each element ga  of the group there corresponds another element of the 
group, denoted by ,g -a-1  and called the inverse of ga , which has the properties 

-1 
gaga  = g

-I
a  ga = e. 

In general, gagb is not the same element as gbga . A group for which 
ga gb  = gbga  for all elements ga  and gb is called an Abelian group. Its elements 
are said to commute. If at least one pair of elements do not commute, i.e. one has 
gagb gbga, then the group is called non-Abelian. The simplest non-Abelian 
group is the rotation group in the three-dimensional space. The rotations in a 
two-dimensional space (on a plane), however, form an Abelian group. 

The number of elements in a group may be finite, in which case this 
number is called the order of the group, or it may be infinite. The groups 
are correspondingly called finite or infinite groups. Among the latter the most 
important for physics are continuous ones, for which the group elements, instead 
of being distinguished by a discrete label, are labelled by a set of continuous 
parameters. 

Given a set of elements forming a group G it is often possible to select 
a smaller number of these elements which satisfy the group definitions among 
themselves. They are said to form a subgroup of G. A normal subgroup is 
a subgroup H of G with the property that gHg -1  = H for any g E G. For 
example, translations and rotations of three-dimensional space generate a group 
which has translations as a normal subgroup. 

For a given subgroup H c G and g E G, one can define right (left) 
coset Hg (gH) as the set consisting of elements hg (gh), h E H. For finite 
groups the number of elements in each coset is clearly given by the order of 
H. One can define the set GIH as the set of right (left) cosets. For a normal 
subgoup H, left and right cosets are identical and GIH is a group. Cosets 
define decomposition of G into disjoint subsets and for finite groups this implies 
Lagrange's theorem stating that the order g of G is divisible by the order h 
of H (glh gives the number of elements in GIH). For a Lie group G of 
dimension d(G) 2  and H c G of dimension d(H), an analogous result holds: 
d(G/ H) = d(G) — d(H). For example, if G is the three-dimensional rotation 
group and H is the one-dimensional group of rotations around a given axis, 
G IH is the two-dimensional sphere. 

1.3.2 Isomorphism, automorphism, homomorphism 

Let X and X' be two sets with some relations among elements within each set. 

2  For the definition of the dimension of a Lie group see section 1.3.3. 
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For example, X and X' can be groups, and the corresponding relations can 
be the group multiplications : gag,, =g, for ga , A, gc  E X and gLeb = 
for ga' ,  g , , g E X'. Another example is ordered sets with defined inequalities 
a > b, a, b E X and a' > b',  a',  b' E X'. 

Let there exist a  one-to-one  coirespondence (map) p : X 44. X' preserving 
the relations among elements of X and X', i.e. if some relation is fulfilled for 
a, b E X then the corresponding relation is fulfilled for p(a), p(b) E X' and 
vice versa. In this case the sets X and X' are called isomorphic ones: X X', 
and the correspondence p is called isomorphism. 

In particular, if the sets coincide X = X', a one-to-one correspondence p, 
preserving structure relations, is called automorphism. 

If each element a E X is mapped into a unique image, a single element 
a' E X', but the reverse is not in general true (e.g. a' may be the image of several 
elements of X or not be the image of any element of X) and the map preserves 
structure relations in X and X', then this map is called homomorphism. 

1.3.3 Lie groups and Lie algebras 

	

The group elements g(al , az, 	, ar ) of a continuous group depend on real 
parameters ai  which are all essential in the sense that the group elements cannot 
be distinguished by any smaller number. The number r is called the dimension 
of the group. Each parameter has a well defined range of values. For the 
elements to satisfy the group postulate, a multiplication law must be defined and 
the product of two elements 

g(ai , a2, . . • , ar)g(bt, b2, 	, br) = g(ci, c2, • • • , cr) 

must be another group element. Thus the new parameters ci  must be expressible 
as functions of the parameters ai  and bi : 

c- 	az, 	, 	b2,..., br ) 	i = 1, . . . , r. 

It is customary to define the parameters in such a way that the identity element 
has all the parameters equal to zero. The r functions (ki  must satisfy several 
conditions in order for the group postulates to be satisfied. The groups with 
differentiable functions Oi  are called Lie groups. 

An abstract Lie algebra is a vector space L together with a bilinear operation -   _ 
E. ,  •] from L x L into L satisfying 

Exi + x2, Yi = [xi, Y] + [x2, Y] 
	

xi, x2, y E L 

	

[ax, Yl =a[x, y ] 
	

ct E C or R, x, y E L 

	

y] = --Ey, xl 
	

X,  y E L 

[x, [y, z]] + [y, [z, x]] + [z, [ x, y]] = 0 	x, y, Z E L (Jacobi identity). 
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In all cases of interest to us the bilinear operation [ • , • ] can be understood as 
the commutator in the corresponding associative algebra 

[x, yl = xy — yx. 

There exists a tight interrelation between Lie groups and Lie algebras, which we 
shall consider after the introduction of group and algebra representations. 

1.3.4 Representations: faithful, irreducible, reducible, completely re- 
ducible (decomposable), indecomposable, adjoint, fundamental 

A representation of an algebra L (group G) is a homomorphism of L (or G) 
into an algebra (group) of linear transformations of some vector space V. If the 

- - — 
dimension of the space V is d then the representation is said to be d dimensional. 

A representation is said to be faithful if the homomorphism is an 
isomorphism. 

A subspace Vi c V of a representation space V is called invariant subspace 
with respect to an algebra L (group G) if Tv E V1  for all y E 1/1  and all T E L 
(or T E G). 

A representation is called irreducible if the representation space V has no 
invariant subspaces (except the whole space V and zero space {0}). Otherwise, 
the representation is called reducible. 

A representation is called completely reducible or decomposable if all linear 
transformations of the representation can be presented in the form of block-
diagonal matrices, each block acting in the corresponding invariant subspace. 
Otherwise, the representation is called indecomposable. 

Example. The simplest example of an indecomposable representation is provided 
by the two-dimensional representation of the Abelian group G = R (the group 
multiplication corresponds to the addition in R, where R is the set of all real 
numbers) 

11 x\ 
x 	= 101 1 ) 

which acts in the linear space V (2) , i.e. 

T
(ui) = (ut xu2) 

x  
U2 	 U2 

(2) The subspace V(1) of vectors u = ul  is invariant with respect to Tr , Vx E R, 
0 

while the orthogonal subspace 1/((22))  consisting of vectors u = 
( 0 ) 

is not 
u2 

invariant. It is not possible to achieve the decomposition into invariant subspaces 
by any (linear) transformations of bases in V(2). 

X E R 
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The representation of a Lie group G (Lie algebra L) in the vector space of 
the Lie algebra L itself is called the adjoint representation and the corresponding 
transformations are denoted by Adg , g E G (adx, X E L). In the case of Lie 
algebra, the adjoint representation is defined by the commutator in L 

adxY =[X,Y] 	X, Y E L. 

Thus the dimension of the adjoint representation coincides with the dimension 
of the group. 

The Lie group or Lie algebra (nontrivial) representation of the lowest 
dimension is said to be the fundamental representation. 

1.3.5 Relation between Lie algebras and Lie groups, Casimir operators, 
rank of a group 

Consider a representation T (ai, 	, 64) of the group G in a space V. By 
convention the parameters are chosen such that the identity element has all 
a, = 0, so that 

T(0, 	, 0) = 1. 

If all parameters a;  are small then, to first order in these parameters 

T(a1 ) 1+ Ea,X; 

_ 
where the X, are some linear operators, independent of the parameters a,. These 
operators are called the infinitesimal operators or generators of the group in a 
given representation and are expressed explicitly as partial derivatives 

= 
T(a , .. • ,  ar) 

Xi  

act;  ai=•••=a,=0 

 

For any representation T of group G, the set of infinitesimal operators X i  
satisfy the commutation relations 

where the numbers c, 	structure constants, are the' same for all 
representations T of G. Thus the infinitesimal operators (generators) of a Lie 
group form the Lie algebra with the commutator playing the role of the bilinear 
operation in the abstract Lie algebra. 

One can prove that there is the exponential map L --+ G, which assigns 
to any element X of the Lie algebra L the element exp(X) of the group G. 
Choosing some basis I, (i =1,...,r) in the vector space L, so that any element 
of L reads as X = aj„ one can write the exponential map in the form 
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exp(X) = exp( i  ai /i ), where the group parameters ai  (i = 1, . . . , r) appear 
explicitly. 

A certain combination of elements of a Lie algebra which commutes with 
all the generators is called an invariant or Casimir operator of the group 3 . The 
maximal number of such independent operators is equal to the rank of the group, 
the latter being defined as the maximal number of mutually commuting elements 
of the Lie algebra. 

1.3.6 Schur's lemmas 

Schur's first lemma. Let T(g) be an irreducible representation of a group G in 
a space V and let A be a given operator in V. Schur's first lemma states that 
if T(g)A = AT (g) for all g E G then A =  Al, where 1 is the identity (or 
unity) operator. In other words, any given operator which commutes with all 
the operators T (g) of an irreducible representation of the group G is a constant 
multiple of the unit operator. 

Schur's second lemma. Let  T1 (g)  and T2(g) be two irreducible representations 
of a group G in two spaces Vi  and V2 respectively, of dimensions S i  and 52, and 
let A be an operator which transforms vectors from Vi into V2. Schur's second 
lemma states that if  T1  (g)  and T2(g) are inequivalent and T1(g)A = AT2(g) for 
all g E G, then A = 0, i.e. it is the null (or zero) operator. 

1.3.7 Semidirect sum of Lie algebras and semidirect product of Lie groups 
(inhomogeneous Lie algebras and groups) 

Let M and T be Lie algebras and D : X ---+ D(X), X E M be a homomorphism 
of M into the set of linear operators in the vector space T, such that every D is 
a differentiation of T, i.e. D satisfies the Leibniz rule: 

D(X)Y Z = (D(X)Y)Z Y (D(X)Z). 

We define the Lie algebra structure in the whole set of elements of both vector 
spaces M and T in the following way: 

(i) for the pairs of elements from M, the commutators are defined as in the 
Lie algebra M; 

(ii) for the pairs of elements from T, the commutators are defined as in the Lie 
algebra T; 

(iii) for the mixed pairs, the commutators are defined by the operators D: 

[X, Y] = 	X E M, Y E T. 

3  The Casimir operator is not an element of the Lie algebra, unless (as happens for some groups) 
it is linear in the Lie algbra elements. 
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One can check that for the above construction all the Lie algebra axioms are 
satisfied. The obtained Lie algebra L is called the semidirect sum of M and T 

L = T SI M. 

Such an algebra generates the semidirect product of the Lie groups Gm and 
G. The semidirect product G = GTE) GM is the group of all ordered pairs 
(g, A), where g E GT and A E Gm, with the group multiplication 

(g, A)(g', A') = (gA(g'), AA'). 

Here A (g) defines an automorphism of the group GT. It is easy to see that the 
unit element of the semidirect product has the form (e, id), e being the unity 
in GT, id being the unity in G m , and the inverse elements read as 

(g, A) -1  = (A -1 (g -1 ), A -1 ). 

Physically, the most important example of such a construction is the 
Poincaré group of relativistic space-time symmetry, which is the semidirect 
product of the Lorentz Lie group and the (Abelian) group of translations. The 
corresponding Lie algebra (semidirect sum) is called the Poincaré Lie algebra. 

1.3.8 The Haar measure 

The so-called Haar measure (see, e.g. Barut and Raczka (1977)) defines the 
invariant integration measure for Lie groups. This means that one can identify 
a volume element dit(g) defining the integral of a function f over G as 
fG  f (g)dp(g) with the property that the integral is both left and right invariant 

1G f (g -1  x)dp(x) = f f (xg -1  )dp(x) = f f (x)dp(x). 
G 	 G 

The invariance follows from the invariance of the volume element dtt(g): 

dit(x) = dp,(gx) =-- dp(xg) 

which implies that the expression for digg) in the neighbourhood of point g 
can be found by fixing the value of dtt(g) at g = e (unit element) and by 
performing a left or right translation by g: dp(g) = dp(e). Let the action of 
a map x 	g(x) (left translation) be given by x i  —> y i (xJ), with x' being the 
coordinates in the neighbourhood of the unit element e and denote by idx 	dxn 

the volume element spanned by the coordinate differentials dx l , dx 2 , 	, dxn at 
point e. Then the volume element spanned by the same coordinate differentials 
at point g is given by 

dp.(g) = 	dx l  dx2 



14 	 INTRODUCTION 

where J is the Jacobian for the map x 	g(x) evaluated at the unit element e: 

= 
0(y' t 	yn) 

J  
 xn) 
, • 

a(x, . • •  

In a right or a left translation dx I  dx 2  ...dx" and I J!  are multiplied by the 
same Jacobian determinant so that  d(g) is indeed right and left invariant. A 
straightforward manner to derive the Haar measure is to consider a faithful 
matrix representation of the group and take some subset of matrix elements as 
coordinates x'. The Lie groups also allow an invariant metric and dp.(g) is just 
the volume element ,./jdx I  dx" associated with this metric. 

Example. The volume element of the group SU(2). The elements of SU(2) can 
be represented as 2 x 2 unitary matrices of the form 

x = ExAerA Exgxg = 

where the 5-matrices are defined by ao  = 1 and  S  = —iai , with a; the Pauli 
spin-matrices, and thus we have 5.i efi  = —8;j 5o  + eiik&k. The coordinates of 
SU (2) can  be taken  as the coordinates x i , i = 1, 2, 3, so that one has x0  = 

— r 2 , r •/Ei  xixi. Clearly, the SU (2) group manifold can be regarded 
as a three-dimensional sphere of unit radius (E4A=1  x'-`x 4  = 1) in Euclidian 
space E4 . The unit element e corresponds to the origin: x i  = 0,  x0  = 1. The 
left action of the element x on y can be written as z = xy = EA  Z A CT A , where 
the coordinates zP are given by 

z i 	(x oy i 	x i yo)±  Eiikx j y k 

Z °  = 	— Ei  z , zi. 

From this the Jacobian matrix at yi = 0 can be deduced: azi/ayi = x o 8ii  +eijkx k 

and its determinant is J = ±•11 — r 2  depending on the sign of x 0 . The invariant 
integration measure reads as 

dp, — 	
1

dx 1  dx 2  dx 3 . 

Note that the metric of SU  (2)  can be deduced as the metric induced from the 
Euclidian space E4  into which SU(2) is embedded as a sphere. 

1.4 Remark about the introduction of angular momentum 

There are essentially two ways to introduce angular momentum into quantum 
mechanics. The one used in most elementary books starts with the classical 
definition (we use bold-italic letters for 3-vectors) 

L=r xp 	 (1.4.1) 
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and considers this as an operator equation defining the operator L. From this 
the commutation relations follow and from them the whole algebra is built up. 

The other way starts with the consideration of the rotation group in the 
physical three-dimensional space: it is found that the operators of infinitesimal 
rotations follow the same commutation relation as, and physically correspond to, 
the angular momentum. One then builds up the algebra from the commutation 
relations as in the other procedure. 

We shall follow the second alternative, because it leads to a deeper insight; 
in fact, even in classical mechanics, the true essence of angular momentum 
is that it is the quantity which is conserved in systems with invariance under 
rotations. Thus, starting from the classical definition L = r xp means beginning 
the story with its second chapter. But since we prefer to begin with its first, i.e. 
with the discussion of the rotations, we naturally apply it directly to quantum 
mechanics. This has the advantage that we also circumvent the uneasy feelings 
which arise when it turns out that the quantum mechanical algebra yields angular 
momentum states with half-integer total angular momentum and corresponding 
operators which cannot be represented by L = r xp, the very equation we would 
have started from. If, on the other hand, we start from the true basis, namely 
the rotational invariance, then we do not (or should not) have any prejudice as 
to what form of the conserved operators we are to expect. We will be satisfied, 
of course, if we find that there are some which can be written L = r x p—but 
we do not expect that this is necessarily so. 

The plan of the book is then roughly as follows: 

• we first consider quite generally the quantum mechanical symmetry 
and establish the existence of unitary or anti-unitary transformations 
corresponding to the elements of the symmetry group; 

• we work out the physical significance of the generators of the symmetry 
group; 

• we specialize these considerations to the rotation group in three dimensions 
and to the proper orthochronous Lorentz group; 

• we discuss some related subjects which are of interest in physics: two-
dimensional rotations and supersymmetry. 



2 

SYMMETRY IN QUANTUM MECHANICS 

2.1 Definition of symmetry 

2.1.1 General considerations 

Consider any given structure—whether a physical system or a geometrical figure, 
a set of rules, an equation or a set of points in abstract space—whatever it may be, 
we only require the possibility of its mathematical description. Such a structure 
can always be cast in the following abstract form: it contains elements with 
names such as 'electron', 'angle', 'sequence', 'five' or 'vector' and it contains 
relations between these elements. Obviously the relations are the important 
things, for if two structures happen to contain different elements but the same 
relations, then knowing these relations we know everything about both structures. 
It might well happen that the relations of one structure are considered as elements 
of another structure when things are described on a higher level. In any case, 
the elements of a given structure can be represented by points in an abstract 
space. We then consider transformations in that space. Among all possible 
transformations in that space there might be a group of transformations which 
leave the relations between the points unaffected. We say the relations are 
invariant under this particular group of transformations and we call this group 
the symmetry group of our structure. Very different structures may have the 
same symmetry group; therefore, a symmetry group is itself a new independent 
structure with elements (the transformations considered above) and relations 
(namely the group properties and the particular law of multiplication of that 
group). This leads to the consideration of the various symmetry groups as 
abstract mathematical objects (e.g. the permutation group, Lorentz group, gauge 
group etc); individual realizations of these groups (e.g. the hydrogen molecule, 
the free particle of spin the Lagrangian of charged particles—to mention only 
examples corresponding to the groups just mentioned)—such realizations are not 
considered in the study of abstract groups. 

Here we are, in contrast, not so much concerned with the symmetry groups 
themselves as with symmetry groups being properties of physical systems. That 
is, we take the symmetry group for granted and assume it to be known and 
studied. The question is then: given such and such a physical system S with 
such and such a symmetry group G what are the consequences for the description 
of that system? 

Our structures are physical systems and/or their mathematical descriptions 
consisting of elements such as particles, fields, observables, operators etc and 

16 
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of relations between these elements: the equations of motion and the rules of 
quantum mechanics. 'The physical system S has a symmetry group G' means, 
then, that there is a group of transformations leaving the equations of motion 
and the rules of quantum mechanics invariant. In particular no transformation 
of G is allowed to produce an observable effect. 

Let then g E G be one of the symmetry operations. By applying g to 
the system S, the latter is transformed into S'. If S can be described in the 
framework of quantum mechanics by 

S: observables A; states I*), 10), ..., then S' will be described by 
S': observables A'; states I C), 	. 

If the transformation .9*±S' is to be a symmetry of the system, then no observable 
effect can result from the transformation. Thus if in S and S' corresponding states 
and corresponding operators are taken, then for arbitrary *, and A 

1(CAI40 )1 2  = 'Will/1012 	 (2.1.1) 

must hold. Notice however that, conversely, the condition (2.1.1) alone does not 
necessarily imply that the transformation S S' is a symmetry of the system 
(since (2.1.1) holds for any unitary transformation as will be found later). 

There are two ways of interpreting symmetries: active and passive. The 
active interpretation means changing the material system S into another material 
system S'. The passive interpretation means leaving the system S untouched 
but changing the environment such that S, described with respect to the new 
environment, behaves as S' would have behaved in the old one. 

Example. The two interpretations of one and the same rotation read 

(i) active: the material system (sometimes we say 'the space') is bodily rotated 
by an angle a, say; 

(ii) passive: the coordinate system is rotated by the angle —a, whereas the 
material system (or the space) S is left as it was. 

We shall take the active point of view, since it is the more natural one: we 
may be able, for instance, to prepare a system S' in which all motions are inverse 
to those in S, but we certainly are not able to force time to run backwards. 

With this convention, our above definition of symmetry amounts to saying 

G is a symmetry group of S, if for any g E G there exists 
another material system S' = gS (symbolically) and also a 
uniquely defined operator function Fg  for observables A such 
that 

• A' = Fg (A) is again an observable of S and 
	 (2.1.2) 

• measuring A' in S' leads to the same eigenvalues with the 
same probability distributions as measuring A in S—as 
expressed in equation (2.1.1). 

This definition of symmetry needs comments. 
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(i) Saying that S is carried materially into gS = S' means that there is 
something by which one can distinguish S and S'—for instance the 
orientations or the velocities of S and S' relative to an observer. Now, 
if any difference between S and S' can be observed, we do not have the 
symmetry we speak of. The observers—or more generally the surroundings 
of the system—indeed violate the symmetry by their very presence, but it is 
assumed that the effect of the surroundings on the system can be neglected 
(except for measurements). If there were no surroundings (characterized, 
e.g., by a coordinate system fixed to the laboratory), then S and S' would 
be just the same. That is, if the system S is considered as isolated, then 
there is nothing inherent in the system which would allow us to distinguish 
S' and S. 
Therefore one should perhaps rather say that S' and S do not stand for 
different systems (whose differences are only defined by a symmetry-
breaking relation to the observer) but rather for two different states of one 
system (different states with respect to the symmetry-breaking presence 
of the observer). That we nevertheless use the term 'another system S", 
is because S' might, for instance, consist of antimatter where S is made 
of matter: everybody would call them different systems—although there 
would be nothing in the system itself which would enable one to distinguish 
two systems S and 3, where S and 3 are mirror images of each other and 
3 is made of antimatter. It is the observer, who, being made of matter, can 
distinguish both by touching them: if he does not survive the touch, it was 
S. 

(ii) Since—except with respect to a symmetry-breaking environment—the 
systems S and S' are the same and indistinguishable (if gS = S' is a 
symmetry), the operation g must map the set of all states of S onto itself 
and it also must map the set of all observables of S onto itself. Therefore 
all states I lif)' of S' are also possible states of S: if  Iv')'  is a state of S', then 
there is always a state I ço) of S such that I i/f)' 	lcp). A similar interpretation 
holds for the 'new' observables A'. 

This has then an important consequence. Let us consider the evolution of 
S and S' in time, using firstly the Schrtodinger picture and then the Heisenberg 
picture. 

In S all states develop as 

It) = CiH1 10) 

and in S', they evolve as 

10 = e-11" 

Let  l )' be a certain state in S'; then frp) = 11,/fY is a possible state in S (to quote 
an example: if S and S' are rotated against each other by 90°, then I plane 
wave in the x' direction, l(p) = plane wave in the y (=- x') direction). 
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We now take a state hfr) and its image  If>'  and integrate from zero to t. 

We find in S 

IA /1 4» = C if I  Ilk (0)) 
and in S' 

= C'H ' f lik(0)r. 

I*(0))' is, however, a possible state of the system S too. We thus can write in 

= 	1*(0)Y 

If now the states I ii(t))" and IOW' differed by more than a single phase 
factor, then the probability to find any given state icp) would be different in the 
two cases: 

I (99ict » 1 2  

That would mean that S and S' could be distinguished from each other by 
observing their internal history. That contradicts the assumption that S' = gS 
was a symmetry operation. The conclusion is, then, that if g is a symmetry, 
H' = H ± A •1 must hold and  A may be any real number, which we can put 
equal to zero. 

In the Heisenberg picture, the argument goes like this: consider the set 
of all observables A of S and call it (A}s. If S' = gS is a symmetry, then 
{Als ,  {A}s, i.e. each observable A' of S' is also a possible observable of S. 
We now take the equations of motion 

in S: 
	A = i[H, A] 

in S': 
	A' = i[H', A'] 

in S: 
	A' = i[H, A'] (because A' is also an observable in S). 

Hence H — H' commutes with all the observables and is therefore a multiple of 
the unit operator. We thus arrive at the same result as above: 

among all observables, the Hamiltonian is distinguishable by 
being invariant under the symmetry transformations of the 

	
(2.1.3) 

physical system. 

Remark. We have used here the Hamiltonian as expressing the time development 
of the system. We did this for convenience only. What our result implies is 
that a symmetry operation must leave the equations of motion invariant whether 
or not they are written in Hamiltonian form. Therefore Lorentz transformations 
under which H transforms like the time component of a four-vector are by no 
means excluded from our consideration. In fact one can almost literally carry 
over all our arguments into a language where the `Hamiltonian' is replaced by 
'scattering operator' (or `S-matrix'). 
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2.1.2 Formal definition of symmetry; ray correspondence 

So far we have argued in a rather intuitive, physical way. In what follows, we 
shall be a little more formal. This will not much deepen our understanding of 
symmetry; it will, however, clear up its mathematical content and open the gate 
to an aspect of quantum mechanics which is possibly the aspect: namely, that 
quantum mechanics is the theory of representations of the symmetry groups of 
the physical systems considered; or at least that the Hilbert space of a given 
system is nothing other than a representation space of the symmetries. 

We go back to our statement (see (1.1.14)) that the state vectors 10,10 
etc do not correspond in a one-to-one way to physical states, but that unit rays 
if, 0, etc do. Therefore to any group G of transformations of a given physical 
system S—no matter whether G is a symmetry group of S or not—there exists 
a 'ray representation' 6 isomorphic to G, which transforms the rays in the same 
way as G transforms the physical states. 

(It has to be noted that in the one-to-one correspondence between physical 
states and rays only a certain class of rays is admitted and only transformations 
between these rays are contained in G: if Iv) E Cp, then 0 is admitted as 
representing a physical state if and only if Iv) lies entirely within one super-
selection subspace of H. In what follows we restrict ourselves always to one 
particular super-selection subspace which we do not give a new symbol but 
simply call 'H. The reader who is not yet familiar with the concept of super-
selection rules will appreciate these remarks only a little later, when at the end of 
the chapter the full meaning of symmetry has become clear and the opportunity 
of discussing super-selection rules arises quite naturally. For the time being this 
reader may simply ignore all remarks referring to the particular type of symmetry 
called super-selection symmetry.) We now fix up some notation and then define 
symmetry. 

In the present chapter Hilbert vectors are written with Greek letters: 
IC, IV), etc. The norm of a vector is defined by 

	

WO -- 11149)11 =(S-shi». 	 (2.1.4) 

Any vector in Hilbert space can then be written as a multiple of a corresponding 
unit vector: l(p) = al(Po) with a > 0 

1 
a = WO 	i(Po) = i lq)). 

	 (2.1.5) 

Rays are defined by (1.1.13); we repeat 

0 = {(0 1(P) 	1 ( 4 = 1 ). 	 (2.1.6) 

Any IÇO) E Cp can serve as 'representative'. We define the scalar product of rays: 

=1(1 1k)1. 	 (2.1.7) 
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lq)) E Cp and kfr) E Çfr may be any representatives; the definition of (2.1.7) does 
not depend on the choice. The sum of rays is not defined. 

From (2.1.4) and (2.1.7) it follows that 

1/0 	= 	 (2.1.8) 

is independent of the choice of the representative and may serve to define the 
norm of a ray: 

	

11011= ,Nrig)5= IIpII. 	 (2.1.9) 

Then any ray can be written as = 11V II 00 ,  where rpo is a unit ray. As physical 
states correspond to the set of unit rays, the ray representations G are defined 
only on the set of unit rays; we extend this definition to all rays by defining 

g(P = 1110110o = 11011i0o. 
In what follows we shall omit the subscript 0 for unit rays, although in 

most cases the rays we have in mind will in fact be unit rays. 
We now give the formal definition of symmetry: 

G is a symmetry group of the quantum mechanics system S if 
the ray representation 6 of G leaves the ray products (for S) 
invariant: 
G: g E G transforms 	S —> 	= gS 	 (2.1.10) 
6: k E 6 transforms 	 1f̂r /  = 

such that O•lif 
The transformations g are then called 'ray correspondence'. 

(From the remarks above it should be clear that 'à maps admissible rays 
belonging to one super-selection subspace into rays belonging to the same super-
selection subspace. This definition guarantees the invariance of all probabilities 
and eigenvalues; in other words: of all observable data.) 

2.2 Wigner's theorem: 	the existence of unitary or anti-unitary 
representations 

The formal definition which we have just given is all that can be inferred from 
the operational sense of the word symmetry. Dealing with quantum mechanics, 
we are forced to transform not only rays but also Hilbert vectors. It seems that 
there is an infinity of choices of vector transformations emerging from a given 
ray transformation; we visualize this in figure 2.1, where we have drawn the 
rays and if and their images Cp' and if'. 

The transformation of the vectors l(p) E -0 is completely arbitrary, subject to 
the condition that Icp') E CP'. We have symbolically indicated the transformation 
of three vectors I • ),  I  o),  I  ®). Any other choice will be as good as the one we 
took. Having chosen the image of 10 nothing is said about the image of eic` 
whatever a is! This means that the infinite set (T) of vector transformations, 
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Figure 2.1. Ray transformation and vector transformation. 

which is compatible with C/3 	Cp' , contains all kinds of discontinuous and non- 
linear transformation. Having fixed a vector transformation which maps onto 
(o', again nothing is defined for the mapping 	onto if% the whole story is 
repeated. 

We shall now show that things are not really so bad. The infinite set {T} of 
vector transformations T described above (compatible with a ray transformation 
induced by a symmetry) always contains a subset of either unitary or anti-
unitary vector transformations—but not both simultaneously—from which we 
can choose the ones representing our symmetry. This important theorem was 
first demonstrated by. Wigner and many other proofs have been given since', all 
of them based on the same idea: to fix the phase of the vectors l(p) and T ko) 
such that T becomes unitary (or anti-unitary). 

Consider then the set {T} of vector transformations T corresponding to 
a symmetry. We shall narrow down this infinite set by making explicit the 
constraints imposed by the symmetry and by using all available freedom in 
choosing T until we remain with either a unitary or an anti-unitary vector 
transformation. In other words, we show by construction that Wigner's theorem 
holds. 

We first observe that every T E T1 transforms a complete orthonormal 
basis 11(p,2 )} of 7-I into another complete orthonorrnal basis No,' )}. This follows 
from (t) • ir = ço' • rif'. The norm is preserved too. The new basis must be 
complete, because if the transformed basis NO} were incomplete, then a vector 
11//), orthogonal to all Iwn' ), would exist; consequently also a IC would exist 
orthogonal to all {40} contrary to the supposition of W)} being complete. 

I  The original proof by Wigner (1931) was not complete (because—not being interested in time 
reversal—he ruled out the anti-unitary transformations); a complete proof was given, for instance, 
by Bargmann (1964). Another mathematically rigorous proof can be found in Weinberg's book 
Quantum Theory of Fields (Weinberg (1995)). 
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Let us now choose a basis 11(p„)). To this basis corresponds a set of 
unit rays { } and by the ray transformation k its image {'0}. We choose 

arbitrarily a representative I;) from each çon. This choice of a basis MOM is 
only temporary; we shall construct a more suitable one. 

We shall now reach the main conclusion in several steps. 

(i) Consider an arbitrary ray -cif and its image if'. Choose a representative 

from each and expand 11,0 in NO} and  Iv") in {In')}: 	= E An 4on ; 

1 1V) = EAn'ion, ). Then, because of the symmetry and by (2.1.7) 

(on • 	= iAni = '43;, • 	= 

This result is independent of the choice of the basis, of 	and of the 
representatives i://  and (09' . From now on we write 

then 

An  = a„ e'a^ an  real 

(2.2.1) 

(ii) Consider a vector Ii,b) with real non-negative coefficients, but otherwise 
arbitrary: 

= Eankon) 	a, > 0. 

Ilk) is the representative of some ray lit. Now choose an arbitrary 
representative IV) E if' and expand it in the basis {I(°Pn')}: 

ilfr') = Ean ela" ki%/ ) 	 (2.2.2) 

where (2.2.1) has been used. We now use our freedom to define T such 
that kV) shall be the image of Ii//): 

TIC = 	 (2.2.3) 

and then we use our freedom again to correct our choice of the basis 
we put eidnIçOn') = 4n) and adopt Ikon' )1 as a new basis. All this 

is compatible with the given ray correspondence. We have thus achieved 
that a particular vector 10 with real non-negative coefficients (in the old 
basis) is transformed into another one, IC), with the same coeffi cients (in 
the new basis). 

(iii) We now show that we can achieve the same for any arbitrary 1(09) with real 
non-negative coefficients—contrary to the suspicion one might have that it 
could perhaps hold only for Ilk), because the phases an  entered into the 
definition of the basis Ikon)). Let 

149) = Ebni49n) 	bn>0 
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and choose a representative Ice E ("p' such that 

1(P') = Ebn 	1(4) 	with /3 = O. 

This is always possible. Again (2.2.1) was used. 
From (. •tii = Cp' • if ' it now follows that (we indicate by E' the sum without 
its first term) 

ai b i  E'ab  n = 1'21  b1 	
'ab  e1 

 

On the left-hand side each term is zero or greater; this implies that all  
belonging to non-vanishing bn  must be zero. (Visualize 

a bi E'anb, e ifi" 

as a sum of vectors in the complex plane: on the left-hand side they are 
all stretched out along the real axis; if the right-hand side is to yield the 
same length, they also must all be stretched out—hence p„' =  O.) We define 
the above choice to be the image of 1v), whereby we have constructed T,  
such that all vectors with real non-negative coefficients are transformed into 
vectors with the same real non-negative coefficients: 

iv) = Ebn (pn) 	T(p) = IV) = EbnI(Pn'). 	(2.2.4) 

This holds in particular for all those vectors having only one non-vanishing 
component an  = 1; in other words for the basis vectors Ivn ) themselves. 
Hence the transformation T is such that now the image of the basis {1 (pn) }  
is {1(4)) 

T1(Pn) = 1(4)• 	 (2.2.5) 

(iv) Next we choose two arbitrary vectors 

Ebn  elP" 1(Pn ) • 

	

= Ean el" kon) 	1 (p ) 

Their (not yet fully defined) images must be of the form 

11V) = Ean elœ"149 ) 	1(P/ ) = Ebn e1/3"1V,,)• 

From • ;if 	fp' •  it',  it follows that 

lEan bn  e i(11^ a" ) 1 = lEanbn e aH  
This must hold for whatever an , bn , an  and /3„ we choose. We now 
specialize l(p)  such that all 13n  = 0 and all bn  = 0 except 61  and  bk. 
Then all fi'n  = 0 and  b  = 0 except 1,1  = k and bk  = b/k . Hence 

l ai bi 	ak bk  e -1  "k 	Cia; 	akbk 
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or 
akbk e-1(ak-a1)1 	akbk 

Thus for arbitrary I and k 

ak —  a1  = ±(a'k — 
	 (2.2.6) 

One easily sees that either the plus sign holds for all 1 and k or the minus 
sign holds for all 1 and k; suppose it were not so: 

ak — a/ =  Œk
, 
 

ak —  a  = 	+ 

and add: the result is 2a,, —  a , —  a1  =  a  —  a, contrary to (2.2.6). Now 
we put 

= ±Olk - A.k 

and find 

aik —  a  = ±(ak — al) + (A Ic — Ai). 

Then (2.2.6) implies that A.k - A, = 0 for all k and 1; hence A1 =  A2  = 
= À is a simple constant. Then 

1* , = 	e'OE" I(pn ) 	It') = eix  Ean  e±la^ I (p„). 

We still have the freedom to choose the phase el' of Ii//) arbitrarily. The 
simplest choice is À = 0; this is also consistent with the fact that if Ilk) has 
only real non-negative coefficients, the same must hold for IV). 

(v) We have seen that for each particular vector IC either all ak 	ak  or 
ak —> — ak • 
Suppose now that there exist in II both kinds of vector simultaneously and 
let 

104) = Ean e (Pn) —> ICF ) = 	e' (p1
) 

149- ) =Ebn eifi" l(Pn 	q)i ) = Ebn 	1WD 

Then the vector 

= ilk+) + i(P-) 

would be neither of the plus type nor of the minus type—contrary to the 
above-established fact that each vector definitely belongs to one of these 
classes. We thus see that the + or the — sign is a property neither of 
the individual phases nor of the vector as a whole; it is a property of the 
transformation considered. Obviously, if the ray correspondence considered 
is continuously connected with the identity, then only the + sign is possible. 
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(vi) If the transformation is such that a„ -- an , then with (2.2.5) 

Ilk) = EAnlqin) -± TIC = EAnkpin)=EAnnon). 

Hence in this case T is linear; (2.1.10) implies then that it is unitary: 
T = U, because now 

(UW1U*) = ( 9 1*). 
If, on the other hand, a„ --- -a„, then similarly 

1*) = EAn e lan IWO .- 10') = EA:k0)• 

In this case T is antilinear and therefore an anti-unitary transformation 0, 
so that 

(UWI0 1//) = ( 1k1W) = (WI*) * . 
Whether T is unitary or anti-unitary depends only on the symmetry group 
G and not on our choice. 
We thus have the result that, to a given ray correspondence :g•', one can 
always construct a vector transformation T, either unitary or anti-unitary 
and compatible with k". 
From now on we will forget about all the other vector transformations and 
consider only unitary (or anti-unitary) transformations T. 

(vii) The next question is: what is the class of all unitary (anti-unitary) 
transformations compatible with a given k? Suppose T and R both are 
compatible  with , then 

TIR)  = w(q))R149 ) 	1(0 (49)1= 1  
Thk) = (0 ( 1k)R10 	ito(*)1= 1  

and if Ii//) and lw) are linearly independent 

T(I q)) + I*)) =  T)  + T1111) = co(99)R1(p) + co (ilf )R1111) 

T( I) + 11,k) ) =w(99,  Ilf) • R(1P)+1 1P)) 

=0)(q), 1,0RI(P)+WW, lk)R1*) 

which shows that a)(ço) = co(cp, *) = co(*) = u) independent of the 
transformed vector. If, however, 11G) and l(p) are not linearly independent, 
then a third vector Iço') exists which is linearly independent of both lip) and 
10. Then co(cp') = co(*) and 0)(0 = a)(V, ift) and all these are equal to 
the one a) we had before. 
The result is that 

the unitary (anti-unitary) transformations which are compatible 
with a given ray correspondence (symmetry transformation) 
differ from each other at most by complex factors a) of modulus 
one. 

(2.2.7) 
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(viii) We may therefore introduce the notion of an 'operator ray', namely the set 
of all unitary (anti-unitary) vector transformations compatible with a given 
ray correspondence "/ 

O (É) = iw(R)U(R); lad = 1) 	 (2.2.8) 

by which we have then established a one-to-one relationship between the 
ray correspondences g and unitary (anti-unitary) operator-rays 0 2 . Since 
the ray correspondences g form a group, the same is automatically true 
for  U and the two groups are isomorphic. Not so, however, for the U 
themselves. They do not form even a group representation. This is our 
next point. 

(ix) Assume we consider the set of all elements / of a certain symmetry group 
G  and together with it the corresponding unitary (anti-unitary) operator-rays 
U.  We are free to choose a representative U E  U from each, and there is 
no indication as to which one we should choose. Here the difficulty arises: 
let "/ and  h be two ray correspondences and g •  h  = j their product. We 
choose 

Ug  E Ug 

 Uh  E Uh  
Uj E  Ûj  = 

Then Ug  • Uh E , but in general Ug  • Uh OUi . They can differ, however, 
only by a factor of modulus one, hence in general 

Ug  • Uh = co(g; h)Ug .h. 	 (2.2.9) 

The result is that 

the unitary (anti-unitary) operators compatible with the ray 
correspondences form in general only a 'representation up to a (2•2•10) 
factor of modulus one'. 

It depends on the symmetry group considered whether and to what extent 
the factors w(g; h) can be simplified by a suitable choice of the U E  U. 
We shall not go into this detail here. As we shall see when we study the 
rotation group, there w = ±1 is the best we can achieve. 

2  Note that up to here we have only established the existence of a unitary (anti-unitary) U 
corresponding to one arbitrarily given ray correspondence The same construction done for another 

ray correspondence R' might lead to a very different U' even if k and i' are near to each other in 

parameter space. The following considerations deal with this circumstance. 
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(x) Let us now collect all results in the theorem (Wigner's theorem): 

For every symmetry group G of a given physical system there 
exists 

(a) a group Ô of ray correspondences k ;  
(b) a group UG  of unitary (anti-unitary) operator-rays LI; 
(c) a set of unitary (anti-unitary) operators U E 

such that the groups G,  Ô and  ÛG  are isomorphic. If 
one chooses (arbitrarily) one representative U from each (1, 
then the unitary (anti-unitary) transformations U(g) form a 
representation of G up to a factor of modulus one°. 

(2.2.11) 

° Although we mentioned explicitly the possibility that anti-unitary 
representations might come up, they do so only when time reversal is 
considered. As we do not discuss this case within the general framework, 
we will encounter in this book only unitary representations. 

2.3 Continuous matrix groups and their generators 

2.3.1 General considerations 

In this section we shall consider a type of group which makes up most of the 
physical symmetry groups: namely those depending continuously on certain 
parameters, for instance, the rotation group. In their most general form they 
are considered as continuous and even differentiable transformation groups in 
some n-dimensional vector space. We shall be modest and restrict ourselves to 
linear transformation groups in n dimensions, i.e. to n x n matrix groups. The 
reasons will be given below. This restriction makes possible derivations which, 
for more general Tie groups', would not hold in this form and would become 
more complicated. 

We shall not elaborate the abstract group theoretical machinery in any 
detail. Our aim is, however, to say enough about the common group theoretical 
framework of symmetry problems in physics that the reader may see that angular 
momentum is but another example of a general and beautiful theory, and that 
he may forget the somewhat uneasy feelings he might have had when he first 
encountered angular momentum in quantum mechanics at a too elementary level. 

If we deal with groups in physics, then they are not as abstractly defined 
as in purely mathematical considerations. It would be of no interest for us to 
make things artificially more complicated than they are: the groups we have to 
consider in this book are the Poincaré group (= inhomogeneous Lorentz group), 
i.e. a group of transformations in space-time which can be written as a 5 x 5 
matrix group, and the three-dimensional rotations in space (a subgroup of the 
Poincaré group). That means that we have to do with a group which—as far as 
its physical definition goes—is a matrix group of 5 x 5 matrices (which are not 
unitary) and with a particular subgroup of it, which is—taken by itself—a matrix 
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group of 3 x 3 matrices. In other words our groups are defined as groups of 
linear transformations in a (at most) five-dimensional space. That by introducing 
a quantum mechanical description we are forced to consider representations of 
these groups in any, even infinite, dimensions—is quite another story. Basically, 
practically all non-finite symmetry groups in physics are very simple: namely 
groups of linear transformations (matrices) in vector spaces of a finite (and 
small!) number of dimensions and depending on only a few parameters. That 
makes their theory clear and elementary; the infinite-dimensional unitary (anti-
unitary) representations in Hilbert space are a difficulty not inherent in the groups 
but added from the outside. This basic simplicity holds in particular also for the 
symmetry groups called unitary symmetry of elementary particles. The analysis 
in all these cases is similar and the theory of angular momentum is a good model 
for the others, not to mention its own importance. 

2.3.2 Continuous matrix groups; decomposition into pieces 

According to what we just mentioned, we shall consider continuous groups 
of finite-dimensional matrices; continuous means the group elements depend 
continuously on parameters. The number of parameters depends on the group 
considered; the number of real parameters a1,  a2, , ai  is called the dimension 
of the group; we denote it by r. Indeed the word dimension is the most natural, 
because the group elements, if written as g(ai, a2, , ai), can be taken as 
points of an r-dimensional manifold. If the group is a matrix group of n x n 
complex matrices—the full linear group in n dimensions—then r = 2n 2 ; when 
further conditions are added, for instance unitarity, reality or unimodularity, then 
r < 2n 2 ; in fact r is equal to 2n 2  minus the number of real equations expressing 
the supplementary conditions. 

The r parameters may be chosen such that the unit transformation is 
represented by 

g(0, 0, 0, ...) =- L 	 (2.3.1) 

The group may or may not decompose into several pieces — namely the set of 
parameters may or may not be connected. If space reflections are included, 
then the rotation group decomposes into two pieces (namely the rotations with 
determinant +I and the products of one reflection with all rotations: determinant 
—1) and if space reflection and time reflection are included, then the Lorentz 
group decomposes into four pieces (determinant +1 or —1; forward or backward 
cone interchanged or not interchanged; these two choices are independent and 
give rise to four possibilities). If a group decomposes, then only one of the 
pieces is continuously connected to the unit element; this piece is in fact a normal 
subgroup. The other pieces taken separately are, of course, not subgroups. We 
prove that the piece continuously connected to the identity is a normal subgroup; 
we say that a group element g(ai  , a2, , ar ) is continuously connected with 
the identity, if we can introduce a suitable set of continuous functions ai  (X) such 
that ai  (0) = 0 and ai  (1) = ai ; then g(X) for 0 < X < 1 is a path leading from 



30 	 SYMMETRY IN QUANTUM MECHANICS 

unity to g(a1,a2, ...,ar). The set of all group elements which can be connected 
to unity by any path is the piece of the group we are considering. Let g(A) be 
one path and h(A) another one (h(1) 0 g(1)), then g (A.)11 -1  (X) is again such a 
path; this proves that the set of all elements lying on these paths is a subgroup. 
Next let f be a group element not belonging to the piece containing the identity; 
then fg(À)f -1  is an element of the group which lies on a path starting from 
the unit element; hence it belongs also to the piece containing the identity; this 
proves that this piece is a normal subgroup. (In the Lorentz group and the 
rotation group these normal subgroups are the proper orthochronous Lorentz 
group (determinant +1; forward cone --. forward cone) and the proper rotation 
group (determinant +1) respectively.) The remaining pieces are its cosets. 

2.3.3 The Lie algebra (Lie ring, infinitesimal ring) 

In what follows we shall restrict ourselves to the piece containing the unit 
element and in that piece to a suitable neighbourhood N of the unit. Let the 
group be really r dimensional in that whole neighbourhood; furthermore assume 
in the following that all functions considered are at least twice differentiable in 
that neighbourhood, and that all products of all group elements which we might 
consider, again lie in that neighbourhood. 

We then define the 'Lie algebra' (also Lie ring, infinitesimal ring) as follows. 

Take any group element g(a1,a2, ...,a,.) E N and connect it by a path g(À) to 
the identity (i.e. choose arbitrary functions al  (X), ..., ar (A.) such that g(0) = 1 
and g(1) = g(a1,a2, ...,ar )). The derivative of g(À) at A = 0 is called gc  . : 

. 	d 
g = —dÀ g(X)R=o. (2.3.2) 

. 	 . 
Then g is an element of the infinitesimal ring G of the group G and the whole 

ring consists of all elements g°  which can be obtained in this way. 
Comments are as follows. 

(i) We might have taken another path from g(a 1, a2, . . . , ar) to unity and 

obtained another g° . Indeed g°  is the tangent to the path at unity. Strictly 
speaking we should have written g(A; A) where A denotes the path. Then 
. 	 . 
g A  = (8/8A.)g(A; A) is an element of g. We shall, however, not employ 

. 0 
this pedantic notation but simply write g, h, ... for the elements of G. 

(ii) As derivatives of n x n matrices, the g°  are again n x n matrices; they are, 
however, not group elements. 

We now show that the set G is indeed a ring, i.e. an r-dimensional vector 
space equipped with a multiplication law. 

(i) G is an r-dimensional (real) vector space. 
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Figure 2.2. The elements of the Lie algebra. 

(a) Take a path g(A.); it yields a certain g. 

À by a • A. (a real; 0 _< a • A. 	1); it 
0 

therefore also belongs to G. 

(b) Take  g(À)h(À) E N; then  g(À) yields 
0 

yields g + h; hence with g and h also 

(c) G is an r-dimensional real space, 
(0gi8ai)(0, 0, ..., 0) are linearly inde 
the group is really r dimensional) and 

the whole of G. Namely every g E G 

o 	d dai  
g =. g(À)I0 = E-

ag
(0, 0, ..., - 1,=0 Eaiki aai 	 ciÀ 

with real ai : conversely, whatever ai  we choose, this sum belongs to 

G. 

(ii) The real r -dimensional vector space e is equipped with a multiplication 
law. 

(a) Let g(À) and h (fixed) E N; then hg(X)h -1  is a path and it yields 
0 	 0 

hGh -1  E G. Thus if h E N and g E G, then hi h -I  E G. 

(b) Now let g°  be fixed but take  h(À) to be a path. Then for each fixed value 

of A., we have h(A.)g°  h -1  (A.) E G. Then also (1/A.)[h(À)A -1 (À) —] E 

G and with it also its limit for À 	O. This limit is the derivative 

of h(A.)g°  h -1 (A.) and equals ilk — A -= 	Thus with any two 

	

0 0 	 0 
elements, h and g, also their commutator [h, g] belongs to G. We 

define [ ch, g] as 'the product' of  h and g. 

Take the same path but replace 
yields the element a • g, which 

0 
g, h(X) yields h and g(À)-h(À) 

0 

because the r elements g% = 
pendent (we have assumed that 
they span, with real coefficients, 

can be written 
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(i) 

We have thus shown that 

the r-dimensional real vector space G°  (associated with an 
r-dimensional continuous group G) is equipped with the 

multiplication law [h, g° 1 r 1zg° 	h°  and this 'product', called a 
0 

'commutator', belongs to G. Hence G is a ring (called a lie 
algebra', lie ring' or 'infinitesimal ring'). 

Comments are as follows. 

(2.3.3) 

0 	0 	0 
If g E G, then ag E G for real a; but in general not for complex a because 
if  g(A)  E G then g (a A) with complex a need not belong to the group G 
(think of the rotation group: replace the rotation angle  A by iÀ; this is no 

0 
longer a rotation). Therefore G is a real vector space (although the matrices 

g°  may have complex elements i, k ). 

(ii) Note the difference between the group and its Lie algebra: for the group 
addition is not defined (of course one can add two matrices g E G 
and h E G but in general the matrix g + h does not belong to the 
group G); multiplication in G is just matrix multiplication. For the Lie 

0 
algebra G addition is defined; multiplication, however, is not simple matrix 

0 	 0 
multiplication (of course one can multiply two matrices g E G and h E G, 

0 	 0 
but in general the matrix hg does not belong to the Lie algebra G, whereas 

does). We shall illustrate these statements by an explicit calculation 
in subsection 3.3.2. 

(iii) The term lie algebra' is used because the n x n matrix groups considered 
here are a particular example of the much more general Lie groups, which 
also possess a Lie algebra. 

2.3.4 Canonical coordinates 

We have an infinity of choices when it comes to adopting a definite set 
a 1 ,  a2, ..., a,. of parameters; indeed any set of functions LI (a1,  a2 . .... ai ), 
b2(ai ,a2 ,...,a,.), br (ai , a2 , a,.) will do as well as long as the 
correspondence a 4-* b is continuous and one-to-one (at least in the neighbour-
hood of zero) and a —>  O b O. There is, however, a particular choice 
which is very advantageous. We shall explain it now. 

	

Let us start from any path, defined by a set of functions ai , az, 	ar  and 
write down 

0 	ag 	aa, 
(2.3.4) 

aa• 	 ax i=1 	 i=1 
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where a, = (aa,/aA)(0). As we have discussed already, every element of G can 

	

be written that way. Thus the 	(aglaai )(0, 0, ..., 0) serve as basis elements 

and the a, are then nothing other than the 'coordinates' of the point g°  in the 

vector space G. In other words: the a, can be considered as the components 

of the vector g° . These a, are called 'canonical coordinates' or 'canonical 
parameters'. Before we investigate their relevance to the group, we note what 
the result would have been had we started from another parametrization MA) 
instead of cz•(A); describing the same path once in terms of  a(A) and once in 
terms of bi(A), we obtain (without changing the symbol g) 

	

tag(ai, . . ar) 	aai (0) 	xf-, a g(b i  , 	br ) 	abi  (0) 

	

g 
 = 8a1    = 	I 	 

	

aa, 	ax  i=1 	 i=i 

but with bi  = (al, ..., ar ) we have 

	

ag(al, 	ar) 	deb', • • •, br) 
lo 

ak(al,  • • •,ar) 

	

10 = 2 	 0 

	

aa, 	 ab • 	 aai 	
1. 	(2.3.5) 

 
i=1 

Having supposed a one-to-one correspondence a 4÷ b, we see that the 
determinant labj /dai I 0 O. Thus the change of the parameters corresponds 

to a non-singular linear transformation of the basis g° . This, as we shall see, 
leaves invariant all those properties of the canonical coordinates which really 
matter. 

Let us now see what are the advantages of canonical coordinates. 
If the set {id is a basis defined by an arbitrary choice of parameters, then, 

as we saw, any g can be written by means of the canonical coordinates ai : 

	

i=1 

	 (2.3.6) 

Consider the elements (A real) 

= E(A. • ai) • 

This lies on the same straight line in the r-dimensional space e as does 
Obviously two such elements Ag and  it  (A,  i  real) commute: 

o 

g. 

= 	 =  O. 

Let us write the canonical parameters as follows: 

(al, • • •, ar) = a = a • na  

= a/a = unit vector in direction a. 

(2.3.7) 

(2.3.8) 
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So far the canonical parameters have been used only as coordinates in 
the Lie algebra. Any arbitrary choice of a path al, ..., ar (A.) leads to a set of 
canonical coordinates. Consider now the group elements g(ai, where 
simply ak(A.) has been replaced by ak  = (3akl8X)1 A=0. We may, with na  kept 
fixed, assume that the ak are variable, because this can be achieved by varying 
the scale of A. 

We now study the correspondence between group elements g(a) and 
elements g(a) of the infinitesimal ring, keeping the direction na  fixed. For 
the time being, we suppress the subscript a on na . 

Consider the element g°  associated with g(an); it is defined by (2.3.2): 

d 
(n) = K g(an)la=0. 

Replacing a by /La (it real) we find g(pta)  = ;L (n). We obtain thus the 
following correspondences: 

g(n)44. g(a) 

pg(n) g(ta) 

(ts+ A.)i(n) 4-> g[(p, X)a] 

but, on the other hand, by the definition (2.3.2) 

),.)i(n) 4-> g(ita) • g(A.a). 

From the last two correspondences it follows that g[(2-1-X)a] and g(tia)•g(Xa) 
lead to the same element of the Lie algebra; in other words for a --> 0 the 
elements g(( ti. X)a) and  g(a) • g(Aa) become equal. 

The following question arises. Can we introduce, instead of g(a), a new 
functional dependence - (a) of the group element upon the parameters a, such 
that 

(i) if a varies in the whole neighbourhood of zero, the group element g(a) 
varies in the whole neighbourhood of unity and 

(ii) in that whole neighbourhood (i.e. even for finite a) it holds true that 

g(lict) • k(A-a) = if(p, + X)al? 

We shall soon show by construction that this is possible. In order not to 
complicate the notation, we shall omit the bar over k and designate the new 
function by g(a) again. But we shall now postulate that g(a) depends in such 
a way on a that 

g(ta) • g(Xa)= g[(ki X)a] 	a fixed 	JL, k real. 	(2.3.9) 

We then say that the group elements are labelled by canonical parameters: for 
a fixed direction n in the space of canonical parameters, group multiplication is 
simply addition of canonical parameters. Next, we observe that 

g(tta)g(a)g-1 (tia) = g(a) 	 (2.3.10) 
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on account of the just proved additivity; in other words: group elements with 
the same direction n in the space of canonical parameters commute. This 
corresponds to (2.3.7). So far we have postulated properties without proving 
that objects with these properties really exist: in order to show that they exist, 
we have to prove that by varying a in the neighbourhood of zero, the whole 
neighbourhood of unity can be obtained from group elements g(a) with the 
postulated properties. We now construct these functions g(ot). 

The properties (2.3.9) and (2.3.10) enable us to write down an exponential 
form for the group elements belonging to a fixed direction n: 

g(a)  = g (in  • 	= (2-)r• m 

For large m we find 

a 	 a 
 g (Ft) = g (—

a 
• n) = g(0) 	

d 

m d(a/m) g ( —
a  

m n) Ice/m=0 

a0 
=  1+ 

 m
—g(n)-1- 	. 

If we raise this to the power m and let m 	oo, then the result is 

g(a) = exp[ak(n)] 	exp[k(a)]. 	 (2.3.11) 

The exponential of a matrix is defined by the power series, which always 
converges. Thus (2.3.11) exists for all values of a (we consider here only 
real ones). Keeping the direction n still fixed, it follows again that 

	

g(p.a).g(A.a) = g(Xa).g(tta) = 	p,)ot] 

and the product g[(A. -1- p,)a] = exp[(A. ti) • g°  (a)] always exists. For a = 0 
we obtain the unit element; hence the group elements g(a) = exp[k(a)] with 
fixed direction na  constitute a one-parameter Abelian subgroup G(na ) of G. 

Conversely, given any element g(f3) in the neighbourhood of unity, there 
exists an Abelian subgroup G(no) to which g(0) belongs: namely the one with 
nA = NB. 

It remains to mention (without proof) that the mapping A = exp[B] of the 
neighbourhood of zero (matrices B) onto the neighbourhood of unity (matrices 
A) is one-to-one. We leave the proof as an exercise for the reader. 

This fact shows that 

g(a) = exp[ak(n)] = exp[E a]= exp[i(a)] 

indeed fulfils all requirements contained in the defin'tion of canonical parameters 
and in particular constitutes a one-to-one mapping of the neighbourhood of the 
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zero of the infinitesimal ring onto the neighbourhood of the unity of the group. 
This enables one to study the local group properties not on the group directly, 
but rather by looking at the Lie algebra and its structure. For obvious reasons the 
basis elements g° , of the Lie algebra are often called 'generators of the group'. 

All this is true if one uses canonical coordinates. Clearly, linear 
transformations in the space of canonical coordinates again yield canonical 
coordinates. From now on we assume tacitly that canonical coordinates are 
used. 

Remark. In the literature two types of canonical coordinate are encountered (see 
subsection 3.3.4): 

• canonical coordinates of the first kind 

g(ai az, • • ar) = exP[al + a2k2 + • • + 

• canonical coordinates of the second kind 

g(yi, y2, 	yr) = exP(Yi 	exP(Y2i2) • • exP(Yrir). 

In the neighbourhood of zero these two kinds of canonical coordinate are analytic 
functions of each other. So far, we have dealt with the canonical coordinates 
of the first kind. We shall employ in practice both kinds of coordinate. In the 
parametrization of the rotation group the angle a of rotation and the direction n 
of the axis of rotation are a set of three canonical coordinates of the first kind; 
the Euler angles a, /3, y are of the second kind. 

2.3.5 The structure of the group and its infinitesimal ring 

We have seen that there is—at least in the neighbourhood N of the unit element 
of the group—a one-to-one correspondence between the group elements and the 
elements of the Lie algebra; in canonical coordinates this takes the form 

g(a) = exp[g(a)]. 

This suggests that the whole structure of the group in the neighbourhood of 
the unit element is determined by the structure of its Lie algebra. Group 
multiplication associates with two vectors a and 13 in the space of canonical 
coordinates a third one, -y. If a and /3 lie sufficiently near to zero, -y is uniquely 
determined. Then 

g(a) g()3) = exp[g(cx)] exp[g(f3)] = exp[g(-y)] 

where the two exponentials do not, in general, commute. In the space G we 
have then an element g(-y), which is a unique function of the two elements 
g(a) and g(/3). This function should, of course, be computable by means of 
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0 
operations (addition, kg + ith with A., L real; multiplication, [g, h]) defined in 

the ring G; i.e. g°  (7) should be calculable by adding elements, commutators and 
commutators of commutators etc with real coefficients. This is indeed the case, 
as the Baker—Campbell—Hausdorff theorem asserts: 

ea ee = ec 

C = A -I- B 	[A,  B ] 	{[A, [A,  B[[  [B, [B, 	+....   

In this expansion all terms consist of iterated commutators; the coefficients are 
real. The proof of this theorem will not be given here; the reader should calculate 
as an exercise the first terms written in (2.3.12). 

With the help of the Baker—Campbell—Hausdorff theorem we can 
immediately show that indeed the structure of the Lie algebra determines the 
structure of the group in the neighbourhood N of the unity. 

The structure of the Lie algebra is completely determined if for any two of 

its elements, g and h say, the result of their product [g, hi is specified. We may 
expand 

and have 

h = EO, g, 

fi, 	= 

which indicates that it suffices to know all possible products of the basis elements 
i . Since the commutator of any two elements is again an element of the Lie 

algebra, it follows that it can be expanded with respect to the given basis: 

0 , 0 
[gi, gk] = 	 (2.3.13) 

i=1 

The 'structure constants' ciik  therefore determine completely the structure of the 
Lie algebra. Not only that, in fact they also determine completely the structure 
of the group in the neighbourhood of the unity. Namely, in that neighbourhood 

g(a)g(/3) = g(7) 

reads 
exp[i(a)] exp[i(0)] = exp[i(7)] 

and the Baker—Campbell—Hausdorff theorem yields 

:07) k (a) + k (/3) + uni(a), i(0)] + 

(2.3.12) 

where the first and all following commutators are completely determined by the 
structure constants clk  (and, of course, by g (a) and AO)). 
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As the commutator is already a quadratic function of a and 0, one can 

write g(-y) = g°  (a -I- 0) + terms of second and higher orders in a and 0. 
In other words: in an infinitesimal neighbourhood of unity, group 

multiplication is (almost) commutative and is in a first approximation equivalent 
to vector addition in the space of canonical parameters. This is the meaning of 
the somewhat misleading saying that 'infinitesimal transformations commute'. 

Although the Lie algebra generates by exponentiation a group which is 
isomorphic in the neighbourhood of the unity to the group from which the ring 
was derived, it need not be that these two groups are isomorphic outside the 
neighbourhood of the unity. The group generated by 

g(a) = exp[i(a)) 

is called the 'local Lie group' of the group G, because it is locally isomorphic 
to G but not necessarily globally. 

A simple example for a local Lie group, which is not globally isomorphic to 
the group from which it was derived, is obtained if the original group decomposes 
into two pieces, as for instance does the rotation group (in three dimensions): 

R = {R + , SR +) 

where R+  is the proper rotation group (determinant + 1), S a reflection and 
SR + the coset (determinant — 1) of  R.  Then near to the unity the group R 
and its normal subgroup R+  are locally isomorphic, because no element of the 
coset  SR + lies near to unity. If one then constructs the Lie algebra of either R 
or R +, it is the same for the two cases but the group generated by its elements 
is R+, not R. 

2.3.6 Summary: continuous matrix groups and their Lie algebra 

Let us summarize the results in the following statement (we do not say theorem, 
because we do not formulate it rigorously and also have made things only partly 
plausible instead of proving them): to every continuous r-parameter group G 
of n x n matrices one can choose particular (real!) parameters (called canonical 
parameters) al , ..., a r  such that the group elements g(oti, ..., a r ) have the 
following properties. 

(i)
 g(0, 0, ..., 0) = 1. 	 (2.3.14) 

(ii) The derivatives 

g
0
(nŒ) = —

d
g (a)IŒ =0 	a =  lai 	na  = a/lal 	(2.3.15) 

da 
(again n x n matrices) constitute a real linear vector space of dimension r, 
which becomes a ring by defining the product of any two elements 

[g, h] = gh — hg. 	 (2.3.16) 
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This is the Lie algebra G (also Lie ring, infinitesimal ring) of the group G. 

Its basis is given by the elements k i  =- (a/8cri )g(0, 0, ..., 0); i =1,...,r. 
(iii) The neighbourhood of the unity of the group and of the zero of its Lie 

algebra are mapped one-to-one onto each other by 

g(a) = exp[Ecei g i ]= exp[i(a)]. 	(2.3.17) 

The 	are often called generators of the group. 
(iv) The local structure of the group in the neighbourhood of the identity (and 

with some precaution one can say in the neighbourhood of any of its 
elements) is completely determined by the structure of its Lie algebra, i.e. 
by the structure constants clk  in 

Li,k]= cfJJ 	 (2.3.18) 
i=I 

(v) If one starts from a group G and constructs its Lie algebra e, then by 
means of (2.3.17) a new group GL  is generated which is locally but not 
necessarily globally isomorphic to G. One calls GL  the local Lie group of 
G. 

(vi) The group elements lying on the same straight line a in the space of 
canonical parameters constitute an Abelian, one-parameter subgroup of GL 
and each element of G L  belongs to such a subgroup. 

2.3.7 Group representations 

In section 2.2 we proved the Wigner theorem, which states that for every 
symmetry group G in physics there exists a unitary (anti-unitary) representation 
in Hilbert space. This representation is no longer an n x n matrix group—it is 
in fact a group of matrices in an infinite-dimensional space N. For the moment 
we shall ignore that it is, in general, only a representation up to a factor. 

The set of unitary (anti-unitary) oo x oo matrices constituting this 
representation may or may not decompose into a direct sum3  of finite-
dimensional matrices. 

In the case of the rotation group (as for all compact groups) it in fact does 
so. We have then the following situation. 

We start from an n x n continuous matrix group which is the group with a 
direct physical meaning; we find that there exist unitary (forget about the anti-
unitary, which do not come up in this book) representations  U(g) in a space of 
k dimensions (where k may be any number, including zero and infinity); this k-
dimensional space is a subspace (called an 'invariant subspace') of N. The direct 

3  See section 4.3 for the definition of the direct sum. 
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sum of all these representations Uk makes up the unitary representation U. We 
must mention here that the invariant subspace may be labelled by continuous 
quantum numbers (for instance momentum) when the direct sum becomes a 
direct integral; we ignore this complication. 

We also do not go into any detail here about such questions as when 
invariant subspaces exist and how they are found; we only need for the following 
consideration the fact that there may be representations of the n xn matrix group 
G by k x k (or infinite) unitary matrices U where k in general differs from n. 

If such a set of unitary matrices U is a representation of the group G, 
then we may describe them in exactly the same way as the group elements 
g(ai , • ar) as a function of the canonical parameters: U(a l  , ar ). These 
matrices, taken by themselves, constitute now a k xk (possibly infinite) 
continuous matrix group. The dimension of this group may be smaller than r, 
because we have not specified k. Indeed the number of independent parameters 
of the unitary group in k dimensions is 2k2  minus the number of real equations 
expressing unitarity. These equations are Ik(k-1) complex equations expressing 
orthogonality of different rows (or of columns—this gives nothing new), hence 
k 2  —k real equations and k equations expressing the normalization of the rows—
these equations are real. Hence there are k2  real equations between the 2k 2  real 
parameters. The dimension of the full unitary group in k-dimensional space is 
therefore k2 . As k may be any integer, it follows that the representation Uk(a), 
taken by itself, need not be of dimension r although it may be described by r 
parameters. Its dimension is equal to the smaller of the two numbers, k2  or r. If 
k2  < r, the group elements U(a) and U(a') need not be different for a 0 a' 
(both near to zero). 

Let us now consider the unitary matrix group Uk (ai , 	ar ) with fixed 
k (suppressed) and forget for a moment that it is a unitary representation of 
G. Nothing can prevent us from going in this case once more through all 
the preceding arguments on continuous matrix groups, their Lie algebra and 
the generation of the piece of the group connected to the identity by simply 
exponentiating the elements of the Lie algebra. In particular, we define the 

elements of the Lie algebra U of U by 

/(na) = —
d

U(ana )1„=0 	 (2.3.19) 
da 

in complete analogy to i(na ) defined by (2.3.2). The only difference to be kept 
in mind is that the r 'basis elements' 

a 	
0) 
	

(2.3.20) 

need not be linearly independent and thus need not span an r-dimensional Lie 
algebra. They will do that, however, if k2  > r. Let us assume this to be the 
case from now on. 
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The local Lie group of U will then simply consist of the elements 

	

U(a) = exp[i (a)] = exp [E a, /,] . 	(2.3.21) 

Now we remember that U is a representat'on of the group G, and that the 
structure of the local Lie group and that of the Lie algebra determine each other 
uniquely (2.3.18). It follows that (under the restriction k 2  > r) the elements of 

g and those of U are mapped one-to-one onto each other, thereby preserving 

the commutation relations; we call the ring U a representation of the ring G. 

Thus if U is a representation of G then the Lie algebra U is a representation 

of the Lie algebra G. What is so important here is the observation that one can 

go the other way round. If U is a representation of the Lie algebra G of G, 
then (in an obvious shorthand notation) 

U = exp[U] 

is a representation of G (in the neighbourhood of the unity; i.e. U is locally 
isomorphic to G). 

This enables one to construct group representations by working with the 
Lie algebra and finding its representations 4 ; exponentiation then yields a (local) 
group representation. Exactly this is done in the standard theory of angular 
momentum: as we shall see in any desirable detail later on, the angular 
momentum operators J1, J2 and J3 are a basis of a Lie algebra with elements 

J (a) =Ecri Ji  

yielding a representation 

U(a)= exp[—if (a)] 

where a = an designates the axis and angle of rotation and where the factor i 
has been introduced to have Hermitian operators J (this is not in contradiction 
with our previous remark that the group parameters must be kept real: here 
the whole set of group parameters and all elements of the infinitesimal ring are 
multiplied simultaneously by i—which does not matter. In fact it simply means 
a redefinition of the elements of the Lie algebra). 

Contrary to the general theory of Lie groups we have started from a definite 
group of linear transformations in an n-dimensional space (Lorentz group, 
rotation group). Among all (k x k)-dimensional representations of the group 

4  In fact one obtains this way all representations which depend analytically on the group parameters; 
in general one does not, however, obtain all continuous representations (see Boemer (1963), chapter 
5, section 8). 

1=1 
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and of its Lie algebra, one particular representation is exhibited: namely that 
representation which consists of the n x n matrices by which the group is defined. 
This representation logically precedes all the other ones. We shall call it the 
fundamental representation (also original representation, self-representation). 

2.4 The physical significance of symmetries 

2.4.1 Continuous groups connected to the identity; Noether's theorem 

Let G be a continuous symmetry group of our physical system. Then either 
the whole of G or at least a piece of it (this piece being a normal subgroup) is 
continuously connected to the identity. We consider this piece. 

What do we know then? We know from the preceding analysis five facts 
which now will combine into one beautiful theorem5 : 

for every continuous symmetry (continuously connected to the identity) there 
exists a corresponding conservation law; i.e. there exists a conserved observable. 

We shall explain this more precisely now. The five facts mentioned above 
are the following. 

(i) The Wigner theorem (2.2.11) asserts that for the given group G with 
elements g(ai ,...,ar ) there exists a unitary representation U(ai, . • •,ar) 
(it cannot be anti-unitary for a group which is continuously connected to 
the identity). 

(ii) The considerations on continuous matrix groups have shown that with 
g(ot i , 	ar ) as well as with U(ai , 	ar ) there exists a set of matrices 

a 	 0 	 a 
— —g(0 0„• • 0) 	U, = 	U(0,0, ..., 0) 

aa  — oat  

respectively; each set can serve as a basis of a representation of the Lie 

algebra G of the group G; the g i  span the original representation of the 
Lie algebra. 

(iii) In the neighbourhood of the identity the group elements can be written 

g (ai , .. ., ar) = exp { t (ma k } 
k=1 

(2.4.1) 

and their unitary representations become 

0 

U(ot i , 	.,a,) 	exp EakU kl 
k=1 

exp iotkBk} • 	(2.4.2) 
k=1 

5 `Noether's theorem' (Noether (1918)). For an extensive discussion of Noether's theorem see Hill 
(1957). 
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The last member of this equation defines the Hermitian operators Bk = 

—iUk. 

(iv) By this procedure the a have become canonical parameters; putting 
(a i  , 	ar ) 	a -=_= a • na  we obtain a one-parameter Abelian subgroup 
for na  fixed and a variable. This holds in particular when we choose 
nc, = (0, 0, ..., 0, 1, 0, ..., 0) 	n, with a one at the ith place and zeros 
elsewhere. 

(v) The Hamiltonian and the scattering operator (S-matrix) are invariant under 
the transformations of the symmetry group (see (2.1.3)). 

Let then (according to (i)) a unitary representation U(ai , 	ar ) be given, 

and the U be calculated (according to (ii)). Then the local representation reads 

U (a , 	ar ) = exp iEak ilk I 
0 	 0 

Bk= —iUk. 

We choose in the canonical parameter space the direction nk 
(0, ..., 0, 1, 0, ..., 0) and obtain the Abelian subgroup (according to (iv)) 

U (a) = exp liaBk . 

Under this unitary transformation the Hamiltonian and the S-matrix are invariant 
(according to (v))6 : 

H' = U (a)HU—I  (a) = H. 

For a 	0 we obtain 

(1 + 	k)H (1 —iafi k ) = H — ia[H , k] = H 

hence 

[H, B k ] = 0 

[S,  Bk]  = 0. 
(2.4.3) 

This implies that the Hermitian operator Bk is a constant of the motion. 
Having assumed that we stay during all these considerations within one definite 
superselection subspace (we come back to this very soon and then explain it in 

detail), it follows that the operator Bk can be considered to be an observable. 

The same holds for all other B„ i = 1, 	r. 

6  Do not confuse this S with the letter S used to designate a physical system; the context always 
makes clear which of  the two is. meant. 
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Every element of the Lie algebra7  can be written as 

x--, cekBk 
B(a) =-EakBk = a 2 	= a B(rt,„) 	 (2.4.4) 

a 

and the above consideration can be repeated for any given direction na . Thus 

the operators  B(n) as well as their multiples a • B(n0 )—in other words, all 
elements of the Lie algebra—are observables which are constant in time. 

However, as the basis elements Bk (k = 1, . . r) span the whole Lie 
algebra, it is sufficient to consider this basis. 

The Bk do not all commute with each other; in fact the whole structure of 
the local group and of its Lie algebra is contained in their commutation relations 
(see subsection 2.3.5 above) 

o 	o  o  

[B i ,B k 1= E B, 
l=1 

(2.4.5) 

where the structure constants Cfk  are the heart of the matter. (They are of course 
0 , 

not invariant under a change of the basis Bk —+ B k , but that is not essential; 
it permits the choice of a basis such that a certain normal form of the Cfk  is 
achieved. We do not go into this detail here.) 

We now may take any set (B 1 , 	Bt} of commuting operators out of the 
Lie algebra. Since they commute among each other and with the Hamiltonian, 
we shall label the quantum states by their quantum numbers b1,  b2 . .... b.  Such 
a set might, however, not be suitable for the description of quantum states. It 

might be that certain 'functions' F(BI, ..., B r ) from the set (B1, ..., Br } are 
convenient constants of the motion (e.g. the Casimir operator). For details see 
section 2.4.4 below. 

Resume (Noether's theorem) 

The generators Bi, ..., B r  of a symmetry group (continuously connected to the 
identity) are conserved observables whose commutation relations are uniquely 
determined by the structure of the group. 

Remark. This obviously holds only if the equations of motion (the dynamics 

of the system) can be formulated in Hamiltonian form and if then [H, B] = O. 
The invariance of the equations of motion is not sufficient. As is well known, 
conservation of the linear momentum follows from translational invariance. In 
the case of the motion of the body in a homogeneous viscous fluid the linear 

7  As discussed above, the Lie algebra of the B and that of the U differ only trivially by an overall 
factor i. 
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momentum is not conserved in spite of the translation invariance. Why? Because 
the equations contain a dissipative term (for friction) and therefore are not of 
the Hamilton type. 

2.4.2 Pieces not connected to the identity; discrete groups 

The above arguments involved one essential step, namely the expansion of the 
relation 

U (a)HU-1  (a) = H for a —> 0 where U (a) r•••:',  1 ± iab . 

. 	 . 
From this it followed that [H, B] = 0 and that therefore B is an operator constant 
in time. Such a conservation law cannot be derived from U (a)HU-1  (a) = H 
if U (a) is not continuously connected to the identity, i.e. if (for a —> 0) 

U (a) 	1 + iaB. In this case the representation may also be anti-unitary. 
Examples of such symmetries are reflections, permutations of particles, time 
reversal (represented by antilinear and anti-unitary tranformation!) and so on. 

The discrete symmetries (which are responsible for the groups not 
continuously connected to the identity) have, however, in most cases the 
remarkable property that their square gives unity. In that case, if they are of the 
unitary type, it follows from 

uut = utu = 1 = u 2  

that 
UUUt = U =  Ut . 

Hence U is not only unitary, it is even Hermitian and therefore it represents 
itself an observable which, by [U, H] = 0, is a constant of the motion. Note, 
however, that this argument is not valid if U 2  0 1 and/or U is anti-unitary. 

Example. A parity quantum number exists, but not a time-reversal quantum 
number. 

We shall not go further into these symmetries, as they only occasionally 
come up in this text; in these few cases we deal with them directly and intuitively 
without needing a general theory. 

2.4.3 Super-selection rules 

We finish this consideration of symmetry by discussing the selection rules. 
Evidently the quantum numbers associated with the generators of continuous 
symmetries have to be the same before and after a (symmetry-preserving) 
reaction and they thus characterize the selection rules of the (symmetry-
preserving) interaction. Also the discrete symmetries lead to conservation laws 
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frequently expressible in terms of quantum numbers, but sometimes requiring a 
more elaborate description. 

There is one particular kind of selection rule, which are called 'super-
selection rules'. They are characterized by the fact that their generators commute 
with all observables of the system under consideration. In other words, the 
observables corresponding to the super-selection quantum numbers can be 
measured without disturbing any other measurement; their values are always 
sharp. Examples are the electric charge, the baryonic charge and—as far as only 
strong interactions are concerned—the strangeness. The term 'super-selection 
rule' does not imply that these quantities are super-strictly conserved: they 
may in fact be conserved only with respect to certain interactions (like the 
strangeness), whereas the four-momentum is absolutely conserved, although it 
does not lead to a super-selection rule. 

Why then, are they called 'super-selection rules' ? They are so called 
because they split the Hilbert space, in which our system is described, into 
subspaces between which no observable can have matrix elements and between 
which no linear combinations are allowed in constructing state vectors of 
physical significance. 

This is seen as follows. 
Assume that an operator X' commutes with all observables of our system 

S. Then also the Hermitian conjugate X' t  commutes with all observables and 
therefore the Hermitian operator X = 1/2(X' + X' f ) commutes also with all 
of them. Therefore, whatever complete set of commuting observables we may 
select to define a basis in 7-i, our X will be among the observables of this set 
and consequently have a common basis with them in 7i. 

We write down the spectral representation of X 

X = 	)/)(, Y I  = 
	 (2.4.6) 

t.y 

where the projection operators Pt  = Ey  14, y) (4,  'I  project into that subspace 
lit of the Hilbert space 71 where X has the eigenvalue y in 14, y) indicates 
further quantum numbers—in fact 7-le  is made up of all states 14, y) in which 
4' is kept fixed and the other quantum numbers y assume all possible values. 
Whatever basis one chooses, that is, whatever the quantum numbers represented 
by y mean, the 4 will always occur, because X commutes with all observables 
and therefore any complete system of commuting observables contains X and 
has to share its basis with it. This induces the mentioned decomposition of the 
Hilbert space 7i into subspaces li t . This decomposition is by its very nature 
unaffected when we change the basis in 71 by going over to the eigenvectors 
of another complete set of commuting observables—just because X is also a 
member of the new set of observables. Hence all those unitary transformations 
which transform from one basis (defined by a complete set of commuting 
observables) to another one leave this decomposition of 7-i invariant. This holds 
also for the unitary (or anti-unitary) representations of the symmetry groups; 
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otherwise one would have an observable effect, namely a change from to 
another eigenvalue 

No observable A can have matrix elements between states of different 

YiAir Y) = YIPOPOC Y) 

= 	YIA/APVIC ,  y) =I) 

 because [Po A] = 0, P4. =  P and  PP = 

      

A= 

     

     

     

   

o 

  

(2.4.7) 

Thus all observables in S are split in the same way (whether they commute 
or not) and in each of these boxes (of in general infinite dimensionality) 4' 
has another value, constant throughout the box. The box structure is possibly 
different for two different physical systems. For instance, in strong interactions 
the strangeness S and the charge Q lead to independent box structures; if weak 
interactions are added, only the charge boxes remain. 

By no physical process can a transition between different boxes be 
induced—as long as we do not enlarge the system under consideration by 
interaction terms not commuting with X. Therefore all probabilities involve 
only matrix elements inside one super-selection subspace: superpositions of state 
vectors belonging to different super-selection subspaces do not make sense. 

Let us illustrate this by a simple example. 
All physical systems—be they rotationally invariant or not—are 

transformed into themselves under a rotation by 27r about an arbitrary axis. 
Rotations have unitary representations, hence U(27r) is unitary. One might 
think that U(27r) must be equal to the unity operator; this is, however, not true: 
as we shall see later, a state with total angular momentum j is multiplied by 
exp(27rip under a rotation by 27r and this is ±1 according to whether j is 
integer or half-integer. In any case we have U 2 (27r) = U(47r) = L 

We proved above that a unitary operator U whose square is unity is a 
Hermitian operator. Hence its eigenvalues will be +1 and —1. For obvious 
physical reasons the operator U(27r) commutes with all observables and hence 
induces a decomposition of the total Hilbert space into super-selection subspaces: 
'H = 'H+  +'H_. All states 'H A_ are invariant under a rotation by 27r and all states 
of 71_ are multiplied by —1 under such a rotation. Fermions have half-integer 
j and bosons as well as orbital angular momenta have integer j, hence h+ 
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contains all states with the number of fermions plus antifermions being even, 
whereas 11_ contains the states where this number is odd. This decomposition 
holds whether or not we have rotational invariance. 

Assume now one tried to assign a physical significance to the superposition 
of one state belonging to lik  and one to li_: 

I*) = alV4) -FbIço-) 	1a1 2  + Ib1 2  = 1 - 

Having prepared such a state, the probability to find it in a measurement 
(immediately following the preparation) must be unity. Indeed 

14101 2  --= (aa* -I- bb*) 2  = 1. 

But then, as the physical state (not the state vector) rotated by 27r must be the 
same as the unrotated one, the probability to find the rotated state must also 
be one. The rotated state vector is, however, IV) =  a +) — blip_) and the 
probability becomes 

INIMI 2  = (aa* — bb*)2  < 1 

which would mean that a rotation by 27r would lead to an observable effect—
except if either a = 0 or b = O. In other words a superposition of states 
belonging to different super-selection subspaces is not allowed. The super-
selection rule forbidding the superposition of states with different statistics 
remains true also in the presence of super-symmetry (generalized symmetry 
transformations relating bosons and fermions to each other; see chapter 11). 

What is allowed, however, is to combine such states of different super-
selection subspaces in a density matrix, because the relative phases become 
irrelevant and the density matrix only expresses our knowledge that the system 
under the observation is, with certain probabilities, in such and such states (such 
a combination of states is called a mixture). Indeed, if we know that the system 
is with probability a in a certain state Iv+ ) and with probability b in a state 

I42-), where a and b are real, a -1- b = 1, then the density matrix is 

P = ai99+)(V+1+ bl(P--)(49-1 

and this transforms into itself under a rotation by 27r: 

p' = alv+)(+1-1-  b . (-1 )1(P--)(92 -1•( -1 ) = P. 

The expectation value of any operator A is 

(A) = Tr(Av) 

and the probability to find the mixture described by p, in an experiment 
immediately following its preparation, is given by 

(1) = Tr(p) = 1. 
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All this is not affected by a rotation by 27r, because p is invariant. 
More generally, if (M)) is a complete orthogonal system spanning the 

whole of  N, and if we know the probabilities ai  for each ivi) (of course 

E.1  = 1; all ai  real) then 

P =EaiM)(Vii 

and this is obviously independent of the phases of the l cot), because if 

1 9k) 	ela  (Pk ) 

then 
= E ak eiak IR) (I ÇOki e -iak  = p. 

Our above considerations show that only Hermitian operators having a 
box structure (2.4.7), and therefore having vanishing matrix elements between 
different super-selection subspaces, can be admitted as observables; in fact they 
even must be—in other words any such operator corresponds to an observable 
quantity. We have seen that the unitary (or anti-unitary) representations of 
the symmetries leave the decomposition of 1-1 into super-selection subspaces 
invariant (otherwise one would have an observable effect); the generators of 
these groups cannot therefore have matrix elements between different subspaces; 
consequently they are indeed observables even in the presence of super-selection 
rules. One can also argue the other way round: in the definition (2.1.2) of 
symmetry we required A' = U AUt to be an observable of S if A was one. 
Since all observables in S have to have the same box structure, A' must have it 
too. This is true for all observables if and only if U itself has this box structure. 

Hence B in U = exp(iaB) = 1 + iaB ... must be of the same box form and 
consequently is an observable. 

The super-selection rules make quantum theory neither more complicated 
nor simpler: in discussing a given physical system with given super-selection 
rules we can restrict its description to one of the subspaces because no interaction 
(contained in the definition of the system) can lead out of it. That is, we can 
write on top of our calculation: 'We have eigenvalues ... for the super-
selection observables X, Y, ...' and then forget about it; having thus fixed all 
super-selection quantum numbers . we are back in an ordinary Hilbert 
space 7-i(4, q,...) in which no super-selection box structure remains. 

2.4.4 Complete symmetry group, complete sets of commuting observables, 
complete sets of states 

The following considerations will be only qualitative. 
Let a definite physical system S be given. When we examine it carefully, we 

find a set of symmetry operations. If we look more carefully, we may find some 
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more such symmetries. Assume that we have done our best and now believe 
we have found all of them; i.e. we believe we know the symmetry group G of 
the system S. Maybe later on we find further symmetries; then the arguments 
which will now follow must be repeated including the new symmetries. We 
should agree, however, on how we shall describe our system S with the best 
knowledge at hand; this present best knowledge contains a statement like this: G 
is the symmetry group of S, i.e. G is the complete set of symmetries of S. The 
group G will depend on parameters; continuously on some of them, al, ar, 

say, and discontinuously on some others, e l  , 	Et , say. 
To the continuous (canonical) parameters corresponds a Lie algebra and to 

the unitary group representation there corresponds a representation of the Lie 
algebra. The basis of this representation, which is defined by the choice of the 
canonical parameters (changing the choice of the parameters implies only a linear 
transformation of the basis into another one—see section 2.3.4), consists of a 

0 
set of observables B1, B2, ..., B r  with well defined commutation relations. To 
this set is added the set of those unitary representations of discrete symmetries 
whose square is unity and which therefore are themselves Hermitian operators; 

0 	 0 

let us call them C1, C2, ...,  C.  The set 

o 	o 	o 	o 	o 	o 
B i , B2, 	, B r ; CI, C2, • • • , Cs 

	
(2.4.8) 

now contains only constant operators, which, however, do not all commute 

with each other. The operators cBk  of this set can be considered from two 
aspects: on one hand, they are basis elements of a Lie algebra and therefore 

0 	 0 
only the 'product' [131, Bk] is defined, and not the ordinary product BiBk; on 

the other hand, they—as well as the Ck—are operators in Hilbert space and 
00 	00 	00 

then such products as Bi Bk, BiCk, CiCk and further products are well defined. 
Such products—more generally, functions (power series) of these operators—no 
longer all belong to the Lie algebra, but they are nevertheless constant operators. 
We add these operators to the set (2.4.8) and obtain a new set, containing all 

0 	0 	 0 	0 
functions of the B1, B2, 	, Br; C1, 	, Cs  (and among these functions of 

course the B and C themselves): 

(2.4.9) 

Example. In the theory of angular momentum L x , L y  and L, are conserved 
generators. As they do not commute among each other, we choose L, and 
L 2  = L x2  + 14+ Lz2  (L 2  is a 'Casimir operator') as a commuting set. 
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The set (2.4.9), if derived from a complete symmetry group, now contains 

by definition all constant observables, because if a constant observable D were 

not contained in it, it could not be a function of the B and C. Hence it is an 
entirely new operator. By supposition it commutes with the Hamiltonian and so 

does  Up(a) = exp(iceD). 

As a unitary operator this U leaves all probabilities invariant and thus 
meets the definition of a symmetry. It therefore would have to be included 
in the symmetry group of our given physical system (although its physical 
interpretation might be difficult), which thereby would be enlarged. Starting 
again from this enlarged symmetry group we would now end up with an 

enlarged set (2.4.9) which this time would indeed contain the operator D. 
Having assumed, however, that the group was complete, no such additional 
symmetries leading to an enlargement exist—at least not with respect to the 
present experimental knowledge and the corresponding theoretical models. 

Of course, in physics we are never sure that the group is really complete; 
but at any stage of our knowledge we build up a theory of the system, which 
tacitly assumes that we currently know the complete symmetry group—until one 
day new experimental material reveals something which has been overlooked so 
far. This is actually the way in which the known symmetry groups are enlarged; 
one finds experimentally new selection rules, formulates the rules in terms of 
observed operators and defines the corresponding symmetry. The history of 
the strong interactions, from the discovery of isospin invariance to the SU(3) 
symmetry—and finally to QCD—is just an illustration of the above statement. 

If we agree to label the basis vectors in 7-1  by 'good quantum numbers', 
i.e. by eigenvalues of conserved observables (we do not have to label them that 
way, but we can), then the usual complete set of commuting observables must be 
chosen from the set (2.4.9). As this set is determined by the complete symmetry 
group of the system, it follows that those complete sets of states which are 
labelled by good quantum numbers are determined by the complete symmetry 
group of the system; in other words, the complete symmetry group of the system 
determines the Hilbert space, which then appears to be nothing other than the 
representation space of the symmetries. Although this does not imply that the 
symmetries fix everything, yet they at least lay down the framework for the 
description. 

In this respect even approximate symmetries are useful. These are 
symmetries which hold only for the `strongest' part of the Hamiltonian but are 
violated for some 'weaker' part of it. The symmetries of elementary particles 
(isospin, strangeness, hypercharge, SU(3) etc) are good examples. A similar 
example will be discussed in section 4.4, where we shall show that the formalism 
of angular momentum can remain useful even in situations where rotational 
symmetry is not valid. 
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2.4.5 Summary of the chapter 

If one were to try to concentrate the result of this whole chapter into one single 
(necessarily not very precise) sentence, then it would read 

the Lie algebra of a physical symmetry group is so important 
because each of its elements is a conserved observable. 

A more detailed summary, which also shows the logical flow of the arguments, 
is given in table 2.1; with this table we conclude the chapter. 

Table 2.1. Summary of the chapter. 

Given a definite physical system S 

(2.4.10) 

there exists a ray represen anon of G, 
which is by definition isomorphic to G 

the system S possesses a symmetry group G: 
Its operations act on physical states of S 

the group G has elements gat , 	a,) depending 
on parameters: these operations leave all the 
probabilities and the Hamiltonian invariant 

the physical states of S are characterized 

one-to-one by rays t, i.  etc  

rays;, AZ', etc. have elements e ib>, 

irit> etc.. called state vectors  

by Wigner's theorem we can fix the phases 
0, y,... such that we obtain 

continuous nun  matnx groups ("original 	unitary (antiunitary) representations U (up to a factor 
representation") with r independent "canco=o--...of modu lus  1) of G. The matrices (in general not nun)  
nical" parameters a, ,...,a,. The group ma 
decompose irt "pieces". 

U(at 	a.) are labelled by the group parameters 

• omet 

pieces he piece continuously connected  the piece continuously connect 
to I is a normal subgroup 

pieces 
ale its to I is a normal subgroup are its 
rose's 

 

from here we obtain the Lie algebra 
(infinitesimal nng) with the basis 

g t 	g, , 	gk = ( Ii/lak)g(0 	0). 

The "structure constants" eik are defined by 

E eisit 

       

    

the Lie algebra of the representation Us  arepresentation 
o  Ike orsin9,1 Lie algebra: its basis is 01...[J, or, with 
i0 	Pli...E11, with commutation relations equivalent to 
those of the original Lie algebra 

    

    

              

 

the Lie algebra yields by exponentiation the 
"local group" Gs  isomorphic to G in a 
neighbourhood of I: 

gal 	a.* exp( E 11.) 

   

the Lie algebra of U yields by exponentiation 
a representation of the local group GI, 

U(ct, 	a, )=exp(i a. AO 

 

        

              

        

H, 1313 = 0: 	• 
i.e. the Ft )  are observables (even in the 
presence of superselection  mies)  

 

 

invariance of the Hamiltonian 
implies 

     

      

         

              

  

the Bk together with all Hermitian generators e,...e, of discrete symmetries 
constitute a set of conserved observables, out of which all conserved 
observables can be chosen or constructed. We choose or construct now 

   

              

   

a complete set of commuting observables which then in turn generate 
a complete set of state vector, labelled by "good quantum numbers" 
(conserved quantum numbers). These states span the representation 
space of the unitary representations U of the symmetry group G 
of the system S. This representation space is the Hilbert space of 
quantum mechanics. 
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ROTATIONS IN THREE-DIMENSIONAL SPACE 

3.1 General remarks on rotations 

There are unfortunately a large variety of possibilities for writing down a 
rotation; also there are two different interpretations of the word 'rotation'. These 
points will be cleared up in this chapter. 

3.1.1 Interpretation 

Let a rotation R be given e.g. by fixing a directed axis of rotation and the angle 
of rotation (right screw with the direction of the axis). Suppose we have a 
coordinate frame x, y, z in which we describe our physical system. Then, if we 
speak of the rotation R, it still remains open what shall be rotated: the coordinate 
frame or the physical system. We shall call the rotation 

active, Ra , if the physical system under consideration is bodily 
rotated, whereas the coordinate frame remains fixed. As a 
shorthand notation, we will speak of 'rotating the space' 
against a fixed coordinate frame. 

passive, R p , if the space remains fixed and the coordinate frame 
is rotated. 

Obviously, if we rotate first the coordinate frame and then, by the same 
rotation, the space, all points will obtain again the same coordinate as before 
these rotations; the same is true in the reverse order. Hence in a somewhat 
symbolic notation (since strictly speaking this is true for the corresponding 
transformation matrices and representations) 

R a  Rp  =  RR a  = 1 	Ra  =  R'. 	 (3.1.2) 

One may feel, perhaps, that this point is trivial and hardly worth mentioning. 
However, for reasons of intuition one may prefer sometimes the active 
and sometimes the passive interpretation—just as physical intuition suggests. 
Without carefully keeping track of what is rotated against what, one gets almost 
immediately lost in confusion about + and — signs in matrices and exponential 
operators, and even about the order in which non-commuting operators must 
be applied one after another. The subscripts a and p for active and passive 
rotations respectively are the cheapest and most efficient safeguard against any 
such confusion. 

(3.1.1) 

53 
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3.1.2 Parameters describing a rotation 

We use two descriptions of a rotation. The first one fixes the axis by giving a unit 
vector n and the angle a of rotation so that the vector a an defines uniquely 
a rotation with the convention that the positive rotation forms a right-hand screw 
with n. Conversely, a rotation does not uniquely define a vector a, since instead 
of rotating by a about n we may equally well rotate by 27r — a about —n. We 
may improve the situation by restricting 0 < a < 7 r. Then, if we look at the 
vectors a we see that they fill a sphere of radius 7r and that the correspondence 
of the possible rotations and the points in the sphere is one to one, except for 
the surface (rotations by 7r) where any pair of opposite points represents the 
same rotation. We shall write R(a) if we have this parametrization in mind. It 
should be clear what R a (a) and  R(a) mean. Keeping n fixed and varying a, 
we obtain the rotations about a fixed axis, i.e. an Abelian subgroup: 

R(a i  n) • R(a2n) = R((ai a2) • n) and R(0) = 1. 

Hence this parametrization is one by canonical parameters (of the first kind), 
which automatically ensures an exponential form of the local group (see 
subsection 2.3.4). 

The other description is by means of the so-called Euler angles a, /3, y and 
the prescription is 

Rp(a, 0, Y): 
(a) Rotate the coordinate frame K about the z-axis by the angle 0 < a < 

27r. Call the new frame K' with coordinate axes x', y', z'. 
(/3) Rotate the new coordinate frame K' about the new y'-axis by 0 < 

/3 < 7r into the position K" with axes x", y", z". 
(y) Rotate the new coordinate K"-frame about the new z"-axis by the 

angle 0 < y < 27r into the final position x", y'", z'"  making up the 
final coordinate frame K'". 

Ra (cr, 13, y): Attach to the material system (to 'the space') three coordinate 
axes 4,  i,  coinciding with x, y, z (e.g. by three perpendicular pointers 
fixed on the system). Carry through the same operations R p  as described 
above, with the difference, however, that this time they operate on this 
body-fixed system of axes which on its way through the various positions 

—> —> (4", ?I", (r, ''") always carries the 
material system (`the space') with it; this time the main coordinate frame 
x y z does not participate in the motions. 

Suppose we have a rigid body  ('the space') with material axes 4', rj, 

coinciding with the coordinate axes x, y, z. Carry out first Ra (a, 0, y) and 
afterwards R p (a, 0, y) or first Rp (a, 0, y) and then Ra (a,#, y): in both cases 
the final positions of r, r and of x" , y" , z"  coincide again, just as if 
no rotation had been made at all. Hence, also here, although R(a, 0,y) is a 
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product of three rotations 

Ra(a, 13 , Y) = RT, I  (a, /3 ,  y). 	 (3.1.3) 

That the Euler angles are canonical parameters of the second kind will become 
clear somewhat later. 

3.1.3 Representation of a rotation 

The rotations form a group and we have denoted the abstract group element 
by R with a subscript a, p referring to what is rotated and an argument a or 
a, 13, y indicating which parametrization we choose. We may sometimes leave 
these choices open, and simply write R. 

A given rotation Rp , say, carries the frame of reference K into a new one 
K', and a point P fixed in space will have coordinates x, y, z in K and x', y', 
z' in K'. The old coordinates x, y, z and the new ones x', y', z' are related to 
each other by an orthogonal 3 x 3 matrix M(R) 

( 

y'
x' 

) = M(R)( xj 
z' z ) 

M(R) = 114-1 (Ra)• (3.1.4) 

These matrices M(R) furnish one particular representation of the rotation group, 
since the correspondence M(R) .(-- R is one to one. This representation is called 
the 'original representation'. 

There are, however, other representations of the group and they are the ones 
which will turn up in the theory of angular momentum: these are the unitary 
representations discussed quite generally in chapter 2. Applied to rotations the 
argument runs as follows. 

Consider a physical system S. Its physical states are described in quantum 
mechanics by state vectors I y), where y m (a, b, ... ,x) is the symbol for a 
complete set of quantum numbers. Suppose that the system is invariant under 
rotation, i.e. the Hamiltonian is invariant—not the actual states of the system; 
they may be as asymmetric as they like. Carry out a bodily rotation Ra  of 
the physical system when it is in a definite state I y), without disturbing it 
otherwise: the state should remain I y) for an observer who rotates with the 
system. Rotational invariance means then that the result of this rotation, seen by 
an observer who did not participate in the rotation, is again a possible state, I y)' 
say, of the unrotated system. The Wigner theorem asserts then that the states 
I 

 
y)'  and ly) are connected by a unitary transformation U(R) 

1Yr = U(R)1Y) 	 (3.1.5) 

and these unitary transformations form a group which is isomorphic up to a 
factor to the original group of rotations R. The matrices corresponding to the 
transformations U(R) will then also furnish representations of the rotation group. 
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One says the rotations in the physical three-dimensional space induce unitary 
transformations in the Hilbert space, whose matrices give rise to (infinitely many 
independent) representations of the rotation group. We shall see this in detail. 
In particular it will turn out that the matrices of these unitary transformations 
can be chosen such that they split up into unconnected finite square boxes along 
the diagonal: 

- 

■•■•■■ 

0 

0 
	

0 
	

0 

0 
	

0 
	

0 

_J 

 

 

(3.1.6) 

    

This will be seen to happen if one chooses as quantum numbers labelling the 
states those of the angular momentum (among others), i.e. if the basis vectors 
in the Hilbert space are eigenstates of the total angular momentum. If the 
total angular momentum of the system is j (remember h = 1), then j will 
be unaffected by any rotation and the matrix representing U will transform a 
state I j, ) into another state I j, )' with the same j. As we know from 
elementary quantum mechanics and as we shall see explicitly later on, there are 
(other quantum numbers held fixed) just 2j + 1 linearly independent states for 
each value of j; consequently U will transform them among themselves. This 
part of  U,  acting in the subspace of total angular momentum j, is one of the 
(2j+ 1)-dimensional boxes of the structure indicated in (3.1.6). Keeping j fixed 
and letting R go through all the rotation group, this (2 f  + 1)-dimensional matrix 
will become a  (2f  1)-dimensional representation of the rotation group. We 
shall introduce a particular symbol for these representations: 

D(R) = (2j + 1)-dimensional representation of R 	(3.1.7) 

(the letter D comes from the German word Darstellung, representation). 
We collect in table 3.1 the results for ready reference. 

3.2 Sequences of rotations 

The use of the three Euler angles implies that we consider a sequence of three 
rotations. We shall now derive some simple statements concerning the product 
of three rotations. These statements will be true for the product of any number 
n of rotations; but as the generalization is obvious, we shall limit ourselves to 
the frequently encountered case n = 3. 
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Table 3.1. Symbols used for various rotations and their representations. 

general symbol for the abstract operation 'rotation' to be 
specified by subscript and arguments 

Ra 	active rotation: the 'space' is rotated, 
the coordinate system remains fixed 

R,, 	passive rotation: the coordinate system is rotated, 
the 'space' remains fixed 

R(a, 13, y) rotate (as specified by a subscript a or p) 
(a) first about the z-axis by a 
(9) then about the y'-axis by )9 
(y) finally about the z"-axis by y 

R(Q) 	rotate (as specified by a subscript a or p) by a 
M (R) 	rotation matrix relating the old and new coordinates 

in the three-dimensional space: x' =  Mx.  
U (R) 	unitary transformation induced by R in the Hilbert space 
D 1  (R) 	(2j + 1)-dimensional representation (Darstellung) of the 

rotation group, connecting eigenstates (eigenfunctions) 
of total angular momentum j 

Consider then a coordinate system K with axes x, y, z. In this system 
we arbitrarily fix three unit vectors n 1 ,  n2  and n3  which are rotated with the 
coordinate axes (i.e. these unit vectors do not in general coincide with the three 
coordinate axes). 

3.2.1 Considering the 'abstract' rotations R 

Any three successive rotations of the coordinate axes will have the effect 

K —> K' K" —> K " 
ni n2n3 	n'2 n13 	 nrn'2"n'3". 

To each of the unit vectors ni  we attach an angle a such that a„ = crini, and 
consider now the three particular successive rotations 

Rp (cci)= rotation K 	K' by al about n1 
R(c4) = rotation K' —> K" by a2 about the new n'2 	(3.2.1) 
R(a) = rotation K" --* K r" by a3 about the new n';. 

The product of these three rotations can be written' 

Rp (a l , a'2 , (4) = Rp (aDRp (aDRp (ai ). 	 (3.2.2) 

' It might seem more suggestive to write the arguments in Rp (a, . a'2 , ap in reverse order, namely 
in the same order as they appear in the r.h.s. product. However, the generally accepted convention 
in the current literature is as in our formulae above. The reason for this will become clear soon; see 
(3.2.4). 
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(The active interpretation is obtained if the three rotation axes are bodily fixed 
to the rotated physical system rather than to the coordinate frame.) 

It must be possible to obtain the saine  resultant rotation by rotating by 
certain angles th, 772, 773 about the three original axes n l , n2 , n3  which then are 
thought to be kept fixed all the time: we now ask whether it is possible to give 
a simple relation between the above and this latter description? This relation is 
indeed surprisingly simple and also surprisingly simple is its proof. 

Y 

Figure 3.1. Rotation about an axis n. 

Suppose a coordinate system is to be rotated by an angle a about an axis 
a = an but that we are requested to carry this out using the same angle a but 
another given axis m. As figure 3.1 shows, we can accomplish the task by first 
rotating such that n is turned into the position of m, then rotating by a and 
finally rotating n back into its old position. Let R(n —> m) denote the rotation 
which brings n into m; then if nothing else is done 

R(an) = R(m —> n)R(am)R(n —> m). 

With this in mind we return to (3.2.2) and observe 

R(a) = R p (a2 —> c4)Rp (a2)Rp (cx'2  —> 

However Rp (a2 --0. a'2) = Rp (a1 ) so that 

R(c4) = Rp (at)Rp (a2)R -1; 1  (al). 

Similarly 

R(c4) = Rp (cx'2)Rp (a'3 )127, 1  (c4) 

= Rp (oi1)R p (a2)Rp (a3)R;;1  (c2)R' (00)• 
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This yields altogether, if inserted into (3.2.2) 

= Rp(al)Rp(a2) R p(ct3) R7, 1  (a2)R7, 1  (cti) 

xRp (al)Rp (a2)Rp-1 (ai)Rp (al) = Rp(ai)Rp(a2)Rp(a3)• 

The general result is 

if a sequence a l , cx2, 	a„ of rotation axes is given then the 
resulting rotation is the same, whether we 

(i) let the system of rotation axes participate in the rotation 
and rotate in the order from 1 to n, using for each rotation 
its corresponding axis in the position where it was left 
after the preceding rotation, or 

(ii) keep the system of rotation axes fixed and rotate in the 
order from n to 1, using for each rotation its corresponding 
axis in its original position. 

R (a , a'2 , 	= R(cen , an-1, . 	a3, az, al). 

(3.2.3) 

In particular, regarding the Euler parametrization, e1 . 2 . 3 are the unit vectors 
along the x, y, z axes 

R(a, y) = R(ye"3)R(se'2)R(ae3) 

= R(ae3)R(Pe2)R(Ye3)• 	 (3.2.4) 

3.2.2 Considering the 3 x 3 rotation matrices M(R) 

Consider any rotation matrix  M(a), active or passive. If we rotate the coordinate 
system by Rp (0) say, then, if a is kept fixed, the matrix M (a) will assume a 
new form M'( a) in the new coordinate system. 

Let  M(a) transform x into (active or passive) 

(i) = M(a)x 

and let Mp (0) transform x and into x' and C' respectively: 

x' = M p (f3)x. 

Hence 
(ii) x = MT» ( f3)x' 

(iii) C /  = Mp(fN. 

We define now M' (a) by 
= (a)x' 
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If we insert into (i) into (iii) and then replace x by means of (ii) we obtain 

C = Mp (f3)M(a)M 1-, 1 (/)x' = M'(a)x'. 

Hence 
kr(a) = M(I3)M(a)M'(I). 	 (3.2.5) 

If, on the other hand, the axis a is also rotated by Rp (f3), i.e. if we consider 
it to be fixed to the rotated coordinate system, then the matrix expressing a 
rotation a in the old coordinates K must be the same as that expressing the 
rotation a' in the new coordinates K', because a' has the same position with 
respect to K' as a had with respect to K: 

M' (a') = M(a). 	 (3.2.6) 

Now let two orthogonal matrices Mi  and M2 be given, in a definite numerical 
form, and consider the transformations (rotations in fact) 

x' = Mi x , x" = M2 x' = M2M1 x. 	 (3.2.7) 

What does this mean? 

Passive interpretation. x' are the new coordinates of a given point P, fixed in 
space, after the coordinate system has been turned into a new position. If e.g. 

( — 
cos go 	sin go 0 

Mi = 	sin g9 cos y'  0 
0 	0 	1 

then the coordinate system has been rotated by -1-cp about the z-axis. If e.g. 

(1 
	0 	0 ) 

M2 = 1  cost, 	sin 7) 
1 — sin a cos t  

and we write 
x" = M2x' 

then we may forget about the first rotation and look at this equation as stating that 
a point P has coordinates x' before and x" after the rotation of the coordinate 
axes. What rotation? Obviously the rotation about the first axis of the system in 
which P has coordinates x', that is, about the x'-axis. Thus, the matrix M2 is 
the matrix representation, in the system with axes x', y', e, of a rotation about 
the x'-axis. Therefore, more pedantically, we should write 

x" = M'(Oe'i )x' = M'(ie'l )M(çoe 3)x 	 (3.2.8) 

and in the general case (with the help of (3.2.6)) 

x" = M(a2)M(cxi)x = Ar(a)M(a 1 )x. 	(3.2.9) 
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This means first rotate the system K by al , then rotate the system K' by a2 
around the new axis a'2 . 

Generally 

if a sequence a 1 ,  a2, ..., an  of rotation axes and angles is 
given, then the product of the matrices Mp (a1), Mp (a2), 

M(a) is the matrix which represents the following 
sequence of rotations of the coordinate system: the system of 
axes  a1,  a,, participates in the rotations, which are carried 
out in the sequence from 1 to n, using for each rotation its 
corresponding axis in the position where it was left after the 
last rotation: 

Alp (an) Alp (an-i ). • •Alp(a2)Mp(ai) 

Appn-1)(4-1)) . .mpt/(aDmp/ (a/2 )mp  

M[Rp (ai  a'2 (4.  
M[Rp(4-I) ). ..Rp  (apRp (a'2 )R p (ai  

(3.2.10) 

Therefore matrix multiplication of rotation matrices in the passive 
interpretation always means that the next rotation is about the corresponding axis 
in its new position—in spite of the fact that the matrices are formally written 
down always as if everything applied to the originally given (and then fixed) 
axes of rotation and in the original coordinates. This is due to WO = M(a). 
The most adequate notation for the passive interpretation is, however, that of 
the r.h.s. of equation (3.2.10), mp(n-i) (4-1) ). .mpu (ct ,3,)mp, (a,2) mp (a1).  

Active interpretation. Consider now the corresponding product of matrices in 
the active interpretation: 

x' = Ma  (a i)x 

X"  =M0 (a)x' 

X (n)  = Ma(CCOX (n-1)  = Ma (an)—Ala (a3)Ma(a2)Ma(al)x. 

This means now that the point P has been transferred by "a sequence 
of 'space' rotations from a position where its coordinates were x, to another 
position, where its coordinates are x ( n ) —always with respect to the same fixed 
frame of reference. The matrices therefore refer to the axes  a 1  ... an , fixed 
once and forever with respect to the fixed coordinate system and the matrices 
themselves are all meant as representatives of these rotations in terms of this 
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same coordinate system: 

if a sequence al , ..., an  of rotation axes and angles is 
given, then the product of the matrices Ma (a,), Ma (a2), 
..., Ma  (an ) is the matrix which represents the sequence of 
rotations (mappings) of the 'space' in the order from 1 to n; 
the coordinate frame and the axes a l  , ..., a n  remain fixed once 
and forever: they do not participate in any rotation. Here the 
adequate notation is 

Ma(an)Ma(an—i)- ..Ma(a2)Ma (al) 

--.a M [Ra (an )Ra (an_i). ..Ra(a2)Ra (al)] 

M[Ra  (aia2. • •ang 

(3.2.11) 

In view of these statements we may now consider the relation between 
a given abstract rotation R and its matrix M(R) in the two forms of 
parametrization. 

If R is given in the a-parametrization, everything is trivial, because it is 
one single rotation: 

M(R p (ot)) m M p (a) 

as found in subsection 3.1.3. It is immediately obvious that 

M(a) = Ma-1 (a) = Mit( — a). 

If, however, R is given in the Euler parametrization, then some care is 
required, since a product of rotations is involved. As we just have found, 
the active interpretation means carrying out the sequence of rotations using a 
fixed system of rotation axes; the passive interpretation means carrying out the 
rotations using a system of rotation axes which participates in the rotation. The 
identity (3.2.4) 

R(a, )5, y) = R(yeDR(e2)R(ae3) 

= R(oee3)R(,6e2)R(Ye3) 

allows us to arrange the same total rotation to be carried out with moving or 
with fixed rotation axes, according to what we need in writing the matrices. We 
use the moving rotation axes in the passive and the fixed ones in the active 
interpretation: 

M[R p (a, )5, y)] m M[R p (yeDR p Oe'2)Rp (ae3 )] 

= M;(YeDM;(/3e2 )Mp(cie3) 
	

(3.2.12) 

=Mp(Ye3)Mp(Oe2)Mp(ue3) --= m p(cv, P, y) 
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(see (3.2.10)) 

M[Ra (cr, 0, y)] = m[Ra(ciee3)Ra(pe2)Ra(Y e3)] 

= Ma (ae3)Ma (fiez)Mo(Ye3) 
	

(3.2.13) 

Ma (', P, y) 

(see (3.2.11)). Note the different order of operators in (3.2.12) and (3.2.13)! 
As one sees immediately 

Ma (a, /3 , Y)Mp(a, /3 , Y) = M p(a,  fi,  Y)Ma(ce,  fi, Y) = 1 	(3.2.14) 

since for each single rotation WTI) = M p-1  (q) and the order in the products 
is just reversed. This is exactly as it should be according to the consideration 
leading to (3.1.3). 

3.3 The Lie algebra and the local group 

As an illustration we connect in this section the 3 x 3 matrices of rotations to 
the general considerations of chapter 2. We do this in several steps. 

(i) We work out the matrices  M(î1),  and check them by specializing to 
A 1  p( 17e1), A 1  p(ne2), A 1  p (rle3), i.e. to the rotations about the three coordinate 
axes. 

(ii) We derive from these matrices the Lie algebra of the rotation group and 
specify the commutation relations (structure constants). 

(iii) We show that by exponentiation of the Lie algebra we obtain the local group 
which in this case is even globally isomorphic to the group we started from. 

(iv) We show that the Euler angles are canonical parameters of the second kind 
and work out the Euler parameters as functions of q = (77i, 

3.3.1 The rotation matrix  M(r) 

The rotation matrix for the passive rotation about a given axis 77 = qn is 
complicated. Nevertheless it is not difficult to find it by using a trick which 
we already employed earlier: we first perform a rotation such that the z-axis is 
turned into the direction n; call this rotation  N(0, cp) where 0 and 99 are the 
angles defining n (see figure 3.2). Then we rotate by the angle g about the 
new axis z' (- n) and finally by N -1  (0, v) we rotate the z'-axis into its final 
position z" (i.e. the position into which Mp (g) carries the z-axis). Hence 

Mp Op = N -1 (0. OM p/  (71)N (,, 49 ) 	 (3.3.1) 

where MI,' (rj) is the matrix of the rotation R(q) in the new coordinate system 
obtained by the rotation  N(Û,  w)—but this is now a simple rotation about the 
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cos q 	sin q 0 
M 1,1  (q) = (— sin q cos g 0) . 

0 	0 	1 
(3.3.2) 

Now we determine  N(6, (p) by decomposing it into, first, a rotation by 
cp about the z-axis and, second, a rotation by e about the new y' axis (see 
figure 3.2); these two operations bring the z-axis into the position n 

cos e 0 — sin e 	cos cp sin r 0 
N (6, 	= 	0 	1 	0 	— sin (i) cos (p 0 . 	(3.3.3) 

sin e 0 cost9 	0 	0 	1 

We leave it to the reader to verify that in the left-hand matrix the minus 
sign is not in the wrong place. N -1 0,, (p) is obtained by inverting the order 
of the two matrices in (3.3.3) and changing 19 -4 —6 , -r. Finally with 
figure 3.2 

n = qlg = (sin e cos (p,  sine sin g, cost) 	(n 1 , n 2 , n3). 

Figure 3.2. Rotation about an axis n. 

Inserting (3.3.3) and (3.3.2) into (3.3.1), we obtain the final result 

( 0 
	n 3  —n2 

Mp (ri) = sin q —n3 	0 	ni 
nz — n 1 	0 

	

( n2n 1 	n 

	

n2 	
nin2 1 

+ (1 — COS o) 	2  2 
n3n 1 n3n2 

± cos g • 1. 

nin3 
n2n 3 

n 2 
3 

(3.3.4) 
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From this, by putting n = e l , e2 or e3, we obtain respectively 

1 	0 	0 ) 
M(e l ) = (0 cos g sin g 

0 — sin g cos g 

cos n 0 — sin ti 
M(77e2) = 	0 	1 	0 

sin g 0 cos ri 

cos 77 	sin ?1 0 
Mp (g 	(e3) = — (sin ?j cos y  0).  

O 	0 	1 

(3.3.5) 

(Of course, (3.3.5) is nothing new, as we have already used these three matrices 
above; it only checks our calculation.) 

3.3.2 The generators of the rotation group 

According to (2.3.15) a basis of the Lie algebra is given by the three matrices 

o 	d 
M k = —M

° 
 (qek)I —o 

from which we obtain the generators (basis of the Lie algebra) 

	

0 	0 

	

M 1 = (O 	0 

	

o 	—1 

0 
1 
0 

0 0 

;12= (0 	o 
0 

—1 
0 
o 

ir 3  = 
0 

(-1 
o 

1 
0 
0 

(3.3.6) 

The general element of the Lie algebra 

M = aM 	bM2+ cM3 = 

becomes 

0 	c 	—b 
—c 	0 	a 

—a 	0 
a, b, c 	real. 

(3.3.7) 

(3.3.8) 

We observe that no element of the Lie algebra can be an element of the group, 
since all elements of the Lie algebra (3.3.8) have determinant zero, while all 
group elements (3.3.4) have unit determinant. Furthermore the matrix product 
of two elements of the Lie algebra is not an element of the Lie algebra (the 
actual proof by means of (3.3.8) is left to the reader), while the commutator is 
again an element of the Lie algebra, as we have shown in chapter 2 (the reader 
should check this too). We find by a short explicit calculation that 

3 [ o 	o 

Ali, Al] = EEiJoik (3.3.9) 
k=1 



mp(ri) = exp [E 7/kmki 	(Y11 ,712, n3)• 

3 

k=1 
(3.3.12) 
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where eijk  is the totally antisymmetric tensor 

{+1 if i, j,k is an even permutation of 1, 2, 3 

Etik --= —1 	if i, j,k is an odd permutation of 1, 2, 3 
0 	otherwise. 

Therefore, the structure constants of the rotation group are given by 

Cikj = — E• 

(3.3.10) 

(3.3.11) 

The minus sign is in fact irrelevant, because we could as well have taken the 
active transformations and then all basis elements would have obtained a factor 
—1 which would have propagated to the  C. As we have discussed in chapter 2, 
we are free to change the basis of the Lie algebra and with it also the structure 
constants—but this is a rather trivial change. 

We shall indeed right now change the definition of the generators by the 
following argument: as we know from chapter 2, we generate the local group 
by exponentiation of the Lie algebra: 

We shall soon show explicitly that this indeed leads back to the group we started 

from. For the time being we observe that multiplying II by i and M by —i in 

the exponent would change nothing. We give the product —1/1/ R  the new name 
MR (without the superscript 0); then we obtain 

A/p(n) = exP [i E rumki 

3 

Ma (n) = exP [—I E %Mk] 
k=1 

3 

k=1 

M1 = 

[Mi, 

	

0 	0 	0\ 

	

(0 	0 	—1 

	

0 	1 	0 

3 

= i EjjkMk  
k=1 

0 	0 

M2 = 	0 	0 

—i 	0 

C,,  = kip, • 

i 
0 

0 

M3 = 
0 
1 

0 

—i 
0 

0 

0 
0 

0 

(3.3.13) 
This change of definition may seem superfluous, but it brings us close to the 
currently used notation of angular momentum. We therefore shall adopt from 
now on the set M1, M2, M3 of (3.3.13) as 'the generators of the rotation group' 
although this definition differs slightly (by the factor i) from the one given earlier 
(chapter 2). 



N'= (n i rt2 	ni n2n3 
n i n 3  n2n 3 	ni 

n 2 	nin2 n in3 
N 2  = N' — 1 (3.3.16) 
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3.3.3 The local group 

If we `exponentiate the Lie algebra', then, according to the general considerations 
in chapter 2, we must find a group which is at least locally isomorphic to the 
group we started from, i.e., to the group of matrices  M(r)). Let us call the 
result of exponentiation 1121  ( rl ) : 

3 
A-1 07) = exph • 1141 	n  • m . E Thmk 	 (3.3.14) 

k=1 

and see what the relation between the local group (elements ii) and the rotation 
group (elements Mr) is. 

Let us denote, as usual, I, = n n with n = (ni, n2, n3). We obtain 

( 0 
	n3  —n2 

in • M = n . —rt3 	0 	n1 	-.- n. N 	(3.3.15) 
nz —n i 	0 

where N is defined by the last identity. Then 

00  n ic 

= eXP( 17 • N) = E 
k=0 k!  

One sees from an explicit calculation that 

and that 
N 3  = —N, since NN' = 0. 

Denoting N' — 1 by N",  we have the sequence 

N 2  = N" 
N 3  = —N 
N 4  = —N" 
N 5  =  N,  and so on. 

Hence all even terms (except the zeroth) contain N" while all odd terms contain 
N.  Thus the expansion of exp[Or] splits into a sine series and a cosine series 
and we obtain 

= exp[iq • M] = N • sin n 	. (1 — cos n) ± 1. cos n 	(3.3.17) 

which, by a glance at (3.3.4), is seen to be identical to Mp ( ri). We thus see that 
for the proper rotation group (reflections excluded) the local group coincides 
with the whole group: ti-4(q) =  M();  this proves the first line of (3.3.13) to 
be correct. 



nin3) 

n2n3 
n 2  3 

( n2 nin2 1 
+ (1 — cos ri) n2ni 	ni 

n3ni n3n2 

(3.3.20) 
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3.3.4 Canonical parameters of the first and the second kind 

Writing 

M(ri) = Mp (rin) = exp[in • M1 = exp[inM(n)] 	(3.3.18) 

shows at once that the parametrization by n  = nn is canonical. More exactly 
th e  173 are canonical parameters of the first kind; indeed for a fixed direction n 

we obtain an Abelian subgroup and therefore group multiplication is equivalent 
to addition of rotation angles. The three-dimensional space of the canonical 
parameters can be identified with the three-dimensional physical space in which 
the rotations are carried out, and then the straight lines through the origin in the 
parameter space are identical with the axes of rotation in the physical space. 

Apart from this parametrization we use the one with the Euler angles; the 
latter even has definite advantages, which will show up later. For the moment 
we copy formula (3.2.12): 

Mp(a, /3 , Y) = Mp(Ye3)Mp(13 e2)Mp(ae3) 

and write each of these matrices in exponential form. We find at once from 
(3.3.18) 

Mp(a, /3, Y) = ClYm3 e —ifim2  e—ia m3 	 (3.3.19) 

which shows that a, /3 and y are almost canonical parameters of the second kind. 
The word 'almost' is used here, because the definition of canonical parameters 
of the second kind is 

Mp (a,b, c) = e—ic*  CibM2  

Here all three generators of the group are involved; in the Euler parametrization 
only M3 and M2 are used; hence a, 0, y are only almost of the type of a, b, c. 
But the essential difference between canonical parameters of the first and the 
second kind is that the first appear in the combination E nkAik in the exponent of 
one single exponential function, whereas each canonical parameter of the second 
kind (see subsection 2.3.4) appears separately in an exponential function, these 
functions then being multiplied. 

Finally we work out the relation between (n1, nz, n3) and (a, /3, y). We 
write a rotation both ways and equate the matrices: from (3.3.4) 

( — 0 
	n3  —n2 

mp(n). sin ri 	n 3 	0 	n i  
n2 —nt 	0 
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sin y 0 cos p 0 — sin f3 cos a sin a 0 
cos y 0 0 1 0 — sin a cos a 0 

0 1 / 	\ sin , o cos p o 0 1 
(3.3.21) 

= 
 (

cos y 
— sin y 

0 

3.4 UNITARY REPRESENTATION U(R) 

whereas (3.3.19) can be written (see (3.3.5)) 

A 1p(a, 13, y) 

or 

      

mp(a, 13, Y) = 

(  cos a cos /3 cos y — sin a sin y 
— cos a cos /3 sin y — sin a cos y 

cos a sin p 

    

sin a cos p cos y + cos a sin y — sin p cos y 
sin 0 sin y 

cos f3 
(3.3.22) 

— sin a cos p sin y + cos a cos y 
sin a  sink  

    

Comparing (3.3.20) and (3.3.22) yields for M33 

COS 13 = cos q + n3(1 — cos n). 

This fixes /3, since 0 < fi < sr . Furthermore for M31 and M32 

sin a sin /3 = —ni sin n + (1 — cos n)n2n3 

cos a sin /3 = n 2  sin n + (1 — cos n)n3n 1 

—n i  sin n ± (1 — cos n)n2n3 
tan a = 	 . 

n2 sin si ± (1 — cos  1)n3n 1 

(3.3.23) 

(3.3.24) 

Since sin fi > 0, the signs of sin a and cos a are those of the numerator and 
denominator respectively. Thus a is uniquely determined. The corresponding 
rule holds for y in the result of comparing M23 and M13 respectively: 

ni sin n + (1 — cos rOn2n3 
tan y =  	 (3.3.25) 

—ni sin n + (1 — cos n)n3n t 

by which we have expressed a, 0 and y as analytic functions of n1, n2, n3 and 
q. 

3.4 The unitary representation U (R) induced by the three-dimensional 
rotation R 

(Compare the general considerations in subsection 2.3.7.) The Wigner theorem 
(2.2.11) asserts that there exists a unitary representation (up to a factor of 
modulus 1) U (R) of the space rotations, such that the rotated state vectors 
are obtained by the unitary transformation 

IO .— IV) = U(R)10. 	 (3.4.1) 
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If we use in U(R) the same parameters as for M(R), then we obtain WO and 
U(a, /3, y) respectively. Let us consider an active rotation. From (3.3.13) we 
have 

Ma(71) = exp[—in • Mt 

We introduce Hermitian operators J i  , J2 and J3 by writing the unitary 
representation of  Ma ()  in the same form as Ma (n) itself, namely 

3 

1/61(77) = exp[—in-J] exp[—i 	Jk] • 
R=I 

(3.4.2) 

If the physical system under observation has rotation symmetry, then these three 
operators commute with the Hamiltonian and then they are constant observables. 
We shall show in the next chapter that J 1 , J2 and J3 are the operators of angular 
momentum in the x, y and z directions respectively. As (3.4.2) is formally the 
same as (3.3.13), and as in particular it uses the same canonical parameters, it 
follows at once that the Lie algebra derived from Lit, et» is a representation of 
the Lie algebra of the rotation group; i.e. any matrix representation of the three 
operators J 1 , J2 and J3 is also a representation of the Lie algebra generated by 
Mi, M2 and M3 respectively. In particular, if the dimension of the matrices 
Ji  is k, then for k2  > 3, i.e. for k > 2, these three matrices are even linearly 
independent and span a faithful representation of the Lie algebra of the matrices 
MI, M2 and M3. We shall show that representations for any k > 1 indeed exist. 
As all representations with k > 2 of J have to follow the same commutation 
relations as the matrices M, we can immediately copy down the last line of 
(3.3.13), where we only replace M by J: 

3 

[Jj, 	= iEJk1JI. 
1= 1 

(3.4.3) 

This indeed is the familiar commutation rule of angular momentum. We shall 
derive the same equation once more later on in section 4.2. Then it will become 
clear that it holds for the operators J in abstracto whereas here we can only 
say that it holds for all finite-dimensional representations and of course also for 
the direct sum 2  of such representations. The physicist may be satisfied by this 
statement but strictly speaking we have not given a proof that (3.4.3) is true for 
the operators. The commutation relations (3.4.3) will later serve as the main 
tool to construct all finite-dimensional representations of the rotation group. 

We finish this section by writing down the unitary operator in the Euler 
parametrization. 

From (3.4.2) follows immediately 

Ua (nek )= iJk 	 (3.4.4) 

2  See section 4.3 for the definition of the direct sum. 
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and since (see (3.2.4)) 

R0 (Œ,  fi, Y) = Ra(a€3)R.(16e2)Ra(Ye3) 

we obtain 
Ua  (a, 0, y) -= ciod3 

71 

(3.4.5) 

Note that this is not equal to e i3 +0J2 +03) ! The fact that we obtain in the 7/- 
parametrization one exponential operator with a sum in the exponent arises from 
building up the rotation U(n) as a sequence of infinitesimal rotations, all about 
the same axis n = 7//r/ (remember the derivation of (2.3.11)). On the other 
hand, in building up U(a, #, y) from infinitesimal rotations, we have to keep 
the three rotations distinct since they do not go about one single axis. Therefore 
each must be built up individually. This is just the essential difference between 
canonical parameters of the first (7/) and the second (a, fi, y) kind respectively. 



4 

ANGULAR MOMENTUM OPERATORS AND 
EIGENSTATES 

4.1 The operators of angular momentum .11 , Ja  and J3  

4.1.1 The physical significance of J 

We know that the three operators Jk are Hermitian and (in a rotationally invariant 
system) commute with the Hamiltonian; therefore they are observable constants 
of the motion. We shall now find out what their physical significance is. As 
we know from classical mechanics, the constant of the motion arising from 
rotational invariance is the angular momentum. We naturally expect the same 
here. 

It is clearly sufficient to establish the physical significance of J3, since 
that of J2 and i i  follows then simply from the supposed symmetry (and, to be 
pedantic, a permutation of x, y and z). 

We consider a spinless particle in a state Ilk). Its Schn5dinger function is 

lfr(x, Y, Z) = (x IC and lfr i (x, Y, z) = (xl0 
	

(4.1.1) 

before and after an active rotation respectively. 
If we rotate the physical system by the infinitesimal angle 7i  about the 

z-axis, then the r.h.s. of (4.1.1) becomes 

(xlifr') = (xlua(Re3)1*) = (x1(1 — iqh)1*). 	(4.1.2) 

This is the wave function of the new state at the old position x. What happens 
to the 1.h.s. of (4.1.1)? We must calculate the value of the new wave function 
at the old position (see figure 4.1). The whole wave function is bodily rotated 
by the angle g. Therefore, if Ra  is the rotation, the value of llf at the point 
P = (x, y, z) is carried to the point R a P, while its value at the point /2,7 1 P 
is carried to the point P where it becomes IV (P). Therefore the new wave 
function at the point P is equal to the old one at the point  R' P.  In symbols 

V(P)= Ill (k» P) = ifr(RpP). 

The last part of this equation says that we have to calculate V/ at a point 
with those coordinates which would result from rotation by -Fri of the coordinate 
system. According to (3.3.5) we have then î'(x,  y, z) = Vf(x'y'z') where for 

72 
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X 

Figure 4.1. Rotation of a wave function. 

the considered infinitesimal rotation x' =  Mx  

	

1 	ti 0 
Mp  = ( —q 1 0) . 

0 0 1 

Hence with (4.1.2) 

a 	a 
Iv (x , y, z)= 1,1/(x + gy, y — ?ix, z) = [1 + g (y— — 1,1/(x, y, z) 

ax 	ay 
= (x1(1 — 111.13)1 1/1 ). 

It follows that 

(xvpif) = (x —a  — y - 1) i(x, y, z) 
i 	ay 	ax 

= (xl(xPy — YPx)1 1k) 

m (x1L z hif). 

We thus have found the physical significance of the vector operator J in the 
special case of a spinless particle: 

J=L=rxp= orbital angular momentum. 	(4.1.4) 

However, since we know that the whole of physics will certainly not be 
described by scalar wave functions 1,1/(x, y, z), we may expect that J may 
be more complicated in more general cases. We see this immediately if we 
consider a situation where a particle is described by three wave functions which 
transform as the components of a vector field: we would call such a particle a 

(4.1.3) 
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vector particle. If its state is again written 10), then its Schr6dinger function 
is a vector field: 

(*i(x) 
*2(x)  I  = 111 (x , Y , z) = (xi 	) 
11/3(x) 

and after rotating the physical system bodily by ri around e3 

(4.1.5) 

y, z) = (xl(1 - inh)1114• 

As figure 4.1 shows, the new vector ///(x, y, z) is found by rotating the 
vector i4'(R; 1 P) to the point P = (x, y, z). Hence 

y, z) = Ra V)(R a-l p) = R; 1 1,b(R p P). 

Since ii, is supposed to transform as a vector, i.e. exactly the same as P -= s, 
we have with (3.3.5) 

1 	n 0 
Mp (ne3 )= (-17 1 0) m M 	M -1  =  M( -t7e3) 

0 0 1 

y, z) = M -I tP(Mx). 

From the previous discussions we already know that 

(4.1.6) 

1 1  a oi 	 a 
Ipx) = [1 — in 7 X —  — y--)]/P(x) = [1 - inL z [tP(x) 

1 	ay 	ax 

where the coefficient of -in was the orbital angular momentum L.  But here 
we have still to apply the matrix M -1  to the vector *(Mx). We define Sz  by 
M3 = Sz  ; hence according to (3.3.13) 

(0 -i 0 
M-1  = 1 -irl i 0 0 m 1 - inSz . 

0 0 0 

We then have 

M'1/,(Mx) = 1,11(x, y, z) = [1 - 177S,][1 - it/L 2 ]0(x). 

Retaining linear terms in n only, we obtain 

= [1 - irl(Sz  + L)]/P(x) = (xl(i - iqh)ii,b). 

We thus have found that in the special case of a vector particle: 

J= L + S 

L =rxp 

St, = (S., Sy , Sz)v 

(4.1.7) 
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with (see (3.3.13)) 

/00 0\ 	 0 0 i 

	

sx ,„ = (0 0 —i 	sy,, = 0 0 0 

	

0 i 0 	 —i 0 0 

0 —i 0 
= i 0 0) . 

0 0 0 

(4.1.8) 

In this case J consists of two parts, one of which, L, can still be written as 
✓ x p, whereas the other, Sy , cannot. S is the operator of the intrinsic angular 
momentum or spin. 

We now proceed to find explicit matrix forms and eigenstates of these 
operators J, which we henceforth shall call simply 'angular momentum 
operators'. We learn from these examples that the operators Jk have a more 
general meaning than the quantum mechanical equivalent of the orbital angular 
momentum L = r x p. 

4.1.2 The angular momentum component in a direction n 

We have just seen that the operator J3 in the unitary transformation Ua (11e3) = 
e-me34  = e-ii1J3  has the physical significance of being the operator of the z-
component of the angular momentum. Now in fact the direction which we 
choose to call e3 is arbitrary. Therefore, if n = (n 1 , n2, n3) is an arbitrary unit 
vector, then 

U(in) = 	= e-iq i(n)  
3 

J(n) 	n • J =EniJi 	 (4.1.9) 

= angular momentum component in direction n. 

4.2 Commutation relations for angular momenta 

The 'abstract rotations' R a (q) form a group; the induced unitary transformations 
U (Ra  (71)) give rise to the Lie algebra of the 

• generators of the rotation group 
• operators of infinitesimal rotations 
• angular momentum operators. 

All these are but different names for the one vector operator J = (J1, J2, J3) in 
Uo (R) 

In the Lie algebra the commutator J,,  Ji  —  fi  .1k of the operators .4 and J1 
plays the role of multiplication, whereas multiplication of group elements is 
defined as the simple product of the corresponding operators Lia. 
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In order to derive once more the commutation relations for the three 
components of J we ask which group operation corresponds to the commutator 
[J1, J2]. As the commutator is again an element of the Lie algebra, such a group 
element must clearly exist. 

We obtain the answer by comparing two descriptions of the same active 
infinitesimal rotation by an angle a about the z-axis, applied to the operator 
n • J (4.1.9). 

(i) We rotate the direction of n by a: 

	

= (ni  — an2, n 2  ± ani , n 3 ) 	 (4.2.1) 

which gives the 'rotated operator' (n • J)': 

	

(n • J)' n • J — angi ani 
	 (4.2.2) 

(ii) On the other hand, the same can be achieved by the corresponding unitary 
transformation. Namely, let tic, be the unitary representation of an active 
rotation. Whether or not there is rotational symmetry, everything remains 
untouched if U transforms both states and operators. Requiring that 

(i'IA'1(P') = (&jAI(P) 	 (4.2.3) 

for any operator A and states Rif), Icp), ... implies 

l(P') = Ua 1 (P) 

= U010 
	

(4.2.4) 

A' = Ua AU. 

We may then call A' the 'rotated operator A'. In particular, with Ua  = 
1—ia.13 representing the above infinitesimal rotation by a about the z-axis, 
the rotated operator n J becomes 

(n • J)' = (1 — iaJ3)n • J(1+ ia./3). 	(4.2.5) 

(iii) Multiplying out up to linear terms in a and comparing with (4.2.2) yields 
immediately 

[12, J3] = 	[h, ill =L12. 	 (4.2.6) 

The third commutator [J1 , J2 ] = iJ3  follows by cyclic permutation (or by 
re-arranging the coordinate axes). 

We have already found these relations from a more formal consideration 
(see (3.4.3)), but there we tacitly assumed that the J were finite-dimensional 
matrices: namely we used the results of chapter 2, which were not proven there 
to hold for other than finite-dimensional spaces. Here, however, we only used 
the existence of unitary representations (Wigner's theorem) and the fact that 
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a unitary operator can be written in exponential form. In fact we need not 
even assume Ua  and the J to be given as matrices—they are just operators. In 
particular nothing has been supposed about the structure of J; it may or may 
not split into an orbital part and spin part; if a spin part is present, then the 
above-used Schr6dinger function has several components. 

From now on we shall consider the commutation relations (4.2.6) as the 
definition of angular momentum. We have indeed seen in chapter 2 that these 
relations are the essence of the Lie algebra and that they uniquely define the 
group in a neighbourhood of unity; and as far as the rotation group goes, 
this neighbourhood is the full group. Of course, if by chance another three-
dimensional space—different from the 'ordinary' physical space—should turn 
up in the description of physics, and if by chance rotations in that space had 
to be considered, then, although the whole mathematics can be literally taken 
over, the physical significance of the generators of that rotation group would 
be different and a new name, replacing the word 'angular momentum', would 
have to be introduced. As it happens, such a three-dimensional space, called 
isospace, turns up in strong-interaction physics, and rotational invariance in that 
space is one of the characteristics of strong interactions. Much of what is said 
in this book can be applied immediately there. The new name is then Isospin 
operator' and these isospin operators are the generators of the rotation group in 
isospace. The word isospin is an unlucky choice because it suggests a physical 
similarity where there is only a formal one. 

We should mention here a very important fact, which in general is 
considered trivial, but which is worth some thought. We have seen that the 
angular momentum may split up into two parts: orbital and intrinsic. The orbital 
part can always be described by the (x, y,  z)-dependence  of a wave function, 
whereas the intrinsic part is by definition contained in the transformation property 
of the wave function; more precisely in that transformation property which 
persists if one in thought reduces the wave function to simply a constant 
(independent of x, y, z), that is, if (r xp)I*) = O. Such a wave function may still 
have components and transform under rotations like a scalar, vector or tensor. In 
the case of a single component (scalar), no intrinsic angular momentum exists, as 
we have seen. In all other cases, the wave function has at least two components; 
thus under rotations it will transform with an at least two-dimensional matrix 
D(R), which reshuffles its components. In chapter 2 it was proved that for 
k2  > r (k = dimension of the representation space; r = dimension of the group 
= number of real parameters), the Lie algebra derived from these representations 
D(R) is a representation of the original Lie algebra of the group and that in 
particular the commutation relations are the same. The three basis elements 
of the Lie algebra derived from the matrices D(R) will be called the 'spin 
operators' SI, S2 and S3. The matrices D(R) need not be in an irreducible 
form  t; but we shall speak of a wave function representing a particle only if the 
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matrices D(R) transforming the wave function are irreducible. Irreducible or 
not, the commutation relations are those of the original Lie algebra: 

[Si , Sk] = iS1 	(j, k,1 = 1, 2, 3 cyclic). 	(4.2.7) 

On the other hand, from L = r x p, it follows by means of the commutation 
relations 

[x1 , p]  == i8jk 	 (4.2.8) 

that 
[Lj , Lk] = iLi 	(j, k, 1 = 1, 2, 3 cyclic) 	(4.2.9) 

but quite generally J = L S and [Jj , Jk ] = iJ.  Hence 

	

[Li , L k ] ± [Si , Ski  -I- [Li, Ski  + [Si , Lk] = iLi 	iSr 

where now (4.2.7) and (4.2.9) imply that 

[Li , Ski  ± [Si, Lk] = 0 

for j 	k. This suggests that the operators L and S commute. Indeed we 
may always use that basis in the Hilbert space which leads to the description of 
states by means of Schredinger functions ifr(x, y, z). Then L = —ir x V acts 
only on the arguments x, y and z of the wave function and S only reshuffles its 
components. Now clearly it is irrelevant which of the two operations is carried 
out first: they act in different spaces. Hence indeed S and L commute; they do 
so even if considered as abstract operators, because the description of states by 
Schriidinger functions is completely general. 

We collect the results of this consideration in the following formulae. 

If J = L S, then independently 

.12] = 

[L1, L2] = iL3 and cycl. perm. 

[S 1 ,  S2] = iS3 	 (4.2.10) 

[L,, Sk] = 0 	for all i and k. 

Note that the validity of (4.2.10) is independent of whether L and S interact 
or not; it also does not require that any one of the various operators is conserved. 
We will come back to this point. 

Another relation similar to (4.2.10) proves to be important. Suppose we 
divide up—if only conceptually—a physical system S into different subsystems 
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S.  Let us carry out an active rotation of S. We achieve this by rotating 
each subsystem individually, and in doing so the order in which this happens is 
irrelevant. Hence we can write for the state of the rotated system 

e-ian•J 	= e-ian.j(q )  e_ 	j(2) 	e -ian-jtik )  

where the Pi)  are the operators which rotate the system Si  (leaving the others 
untouched) and where 	ik is any permutation of the numbers 1, 	k. 
This means, however, that the unitary operators 	commute with each 
other because I 1,//) is arbitrary; therefore we can write 

e_ian.j 
= 

 

and as this is true for arbitrary n, it follows that 

= 	 (4.2.11) 

To each of the individual subsystems we may apply the argument which 
leads to the commutation rules of J; these rules hold therefore the individual 
operators j ( i ) . 

J = E j(i) then independently 
i=1 

[J, 	= ifz  
and cycl. perm. 

= 	(i = 1, . . k) 

g') ] = 0 for i 	i'; I, m = x, y, z. 

(4.2.12) 

Proof of the last equation. In the case J = L + S we have found, in addition 
to L and S being angular momenta, that L and S commute. We should expect 
that also  j(a)  and Pi')  for a 0 b commute. This is indeed so. 

Let us rotate subsystem a about a and subsystem b about 0. Whatever 
the effect of such an operation on the whole system S may be (in general it 
will become a completely different system S') it is clear that we can first rotate 
subsystem a by a and afterwards b by /3 or first b by and then a by a: the 
final result will be the same because a and b are different subsystems. Hence 
the new state is 

	

10' = 	e -itl 'i(b)  

	

= 	e -ia'f a)  I*) 
and since that is true for any I ik), we find that for any two subsystems  ab  the 
two operators commute. Let now a = On and = Om; that is, the axes 
are different but the angles the same. It follows from (4.2.13) that 

e 	•it.) e -771.i(b) eon.po eiam.i(b) = 1.  

2  The exact meaning of this subdivision will be elaborated in the next two sections. 

(4.2.13) 
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Using (2.3.12) up to terms in 62  leads to 

1 1,2 [n  .i(a) ,  n  pm] = 1 .  

Hence 
[n - (a ) , n • 	=0. 	 (4.2.14) 

In other words: all components of j (a )  commute with all components of j (b) . 
This proves the last line of (4.2.12) to be correct. Nevertheless, the reader 

should feel somewhat unsafe here and in need of more explanation--unless he 
knows already that what we have just done is mathematically nothing else than 
considering the system S as the 'direct product of its subsystems'. In the next 
paragraph we shall explain this a little further. 

4.3 Direct sum and direct product 

In the preceding paragraph we have 'divided a system S into subsystems 
What does this mean mathematically? 

There are—apart from the vector addition and the scalar product—two 
other ways of combining two vectors: the direct sum and the direct product. 
Both occur in the theory of angular momentum, in fact whenever symmetry is 
involved. 

We consider two Hilbert spaces, *2)  and li (b)  respectively: 

7-t (a)  contains states 11,/f (a ) ) = E a, 

(4.3.1) 
(b)  contains states (b) ) = E b,Iço (b) ). 

'H (a )  and '1-0)  may have different dimensions; scalar product of and addition of 
pairs of vectors belonging to different spaces are not defined. 

We may, however, combine these two spaces into one new space—and that 
by means of two essentially different operations, called the direct sum and the 
direct product. 

(i) The direct sum He, = 'H (a )  ED 'H (b)•  This space is spanned by the ensemble 
of the basis vectors {I wi(a) ), i(p b) )), hence its states are 

I) = 	(a)  ED (P(b) ) = E 	kifi(a) ) 	biliP,(b) )) 
	

(4.3.2) 

that is the row vector (141 would be written (finite-dimensional example) 
(Vie I = {al ar • •a n b1b2. • .b.} with n m components; and the dimension 
of 'H(a )  EH 7-t (b)  is the sum of the dimensions 'H (a )  and 7-t(b). 
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Linear operators A1° )  and N (b)  are combined into M9 = M(a)  
that 

MI') 	IM( 0)*(a) 	N(b) ço (b)) 
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N (b)  such 

(4.3.3) 
(

m(a) 

o 
The general matrix element becomes 

(14liviekke)= ga) e  vo) Im(a) * (a) e  Novo )  

= ( 	a)im(a)1*(a))  

From (4.3.3) we read off the law for matrix multiplication and addition 

(m (a) e  N (b ) ) . (p (a) e  Q (b))  = m (a) p (a) e  moo ) 

M° 	N (b) )±  (pa) ED  0) )  = ( Apo ± p (0 ) )  ED  (N(b)  + Q ( ) ).  

(4.3.5) 
(ii) The direct product Ho .= 71(a) 	H(b) •  This space is spanned by the 

ensemble of the basis vectors 11 (a) ,  (p1(7) )) where i and k go separately 
through their range in 71° )  and "7-6" ) . Consequently the dimension of 
'H(a)  7-t(b)  is the product of the dimensions of li(a)  and V b) •  Its states 
are (we suppress the 0 sign in the states and write a comma instead) 

kke) = (a)) 0 iv (b)) _=... 1*(a))1 (1) (b)) = EaabkI1fr ,  cor). 	(4.3.6) 

We have to define linear transformations. Let us represent states by their 
components, i.e. 

Then we have 

We define now 

1* (a) ) 	1 
149(b) )  s.  

Ifr (a) ) 149(b) ) < 	 {albk}. 

m(a)1.0.(a)) = ivi:(a)) 	{ a; = E „,,, 

N(b)1 (p (b) )  = 	<=> ib/k  =E4b) bi }. 

(4.3.7) 

(4.3.8) 

(m(a) 	N (b)) 1 0 (a) ,  (p (b)) = 	(p'(b)). 	 (4.3.9) 

Then the matrix elements of (111° )  0 N (b) ) turn out to be given by 

a;bik  = 	MiT ) N17 ) a1 b1 	(M (a ) 	N (b) ) 	a i . b ik.j1 
il  

(M(a) 	Arfl ik,j1 =  if k! 

(4.3.4) 

(4.3.10) 
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where the pair (ik) labels the rows and the pair (jI) the columns of the 
direct product matrix. 
We define the scalar product as usual: take two direct products of states: 

ÇO '(b) ) 	{al )5k)  
{ab}  

then 

(*'(a), (p f(b) i .,(a) ,  04\ 
(P I = Ea7aibk.(1,,,o),*(a))41(b)4(6)). 

i,k 

With this the general matrix element becomes 

(*I)t4'Ir®) =  ((a) , (p (b)1m(a) 	N(6)w(0) , (p ,(6) )  

W (a )  m(a)1*(a)) w(b)I N(6)106)) .  
(4.3.11) 

Consider the direct product of a vector I* (a ) ) with the sum of two others 
(b)b) 

( IV)2  . As one sees from the representation (4.3.7), the new vector 
has components such that one must define 

Ile) ) 

From this we 

M(a) 

11Wr 	ke>1.1100) 

derive immediately 

(N(b) 	Q(6)) 

	

1( (b
) ± IVI (a) ) 	 I (P (b) 

	

2 	(4.3.12) 
= 	, (a) 

(P (b) ) 	le) (4')  

the rule for addition in the direct product: 

= m(a) 0  N(b) 	m(a) 0  Q(6) . 	(4.3.13) 

For matrix multiplication (4.3.9) gives also immediately 

m(a) 	N(b )) 	p(a) 	Q(6)) = m(a)p (a) 0  (4.3.14) 

In particular 

(m(a) (3)  1(6)) 	( 1 (a) 0  NO)) = m (a) 	N (b) .  (4.3.15) 

Having now described two ways of combining states into new states of an 
enlarged Hilbert space, we must ask which procedure we have to adopt in 
the case of two physical systems, S (a)  and S (b ) , described by states in the 
Hilbert spaces Va)  and 'H(b)  respectively, when we wish to describe the system 
S = { S ( a) , S (b) } as one entity in a Hilbert space 'H. Are we to take the direct 
product space or the direct sum space? The answer is dictated by the probability 
interpretation of quatum mechanics, for if the two systems S (a )  and  S(b)  do not 
interact, the probability of finding S (a )  in a state I ifr (a) ) and  S(b)  in a state l(p (b) ) 
must multiply; under these circumstances only the direct product can be accepted. 
If the systems S ( a)  and S (b)  do interact, then the state must be built up from a 
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superposition of direct product states—but we certainly can never use the direct 
sum for describing a composite system. That the direct sum nevertheless fulfils 
useful functions will become obvious when we study the reduction of direct 
products to direct sums in chapters 5 and 6. 

Returning to the question of what we have done in the last paragraph when 
splitting up S into 5 (1) , S (n )  , the answer is we have considered the Hilbert 
space of S as being the direct product space of the Hilbert spaces of 5 (1) , ..., 
5(" ) . For instance, in the spin case the wave function 

*1 (X)) 

tP(X) = *2(X) 
*3(X) 

was nothing else than the Schrbdinger function of a direct product state. Namely, 
in Hilbert space 'a' the basis states are labelled by x and the set of components 
(a, } characterizing the state is the set of all values of the function * (x),  namely 
(*(x)). Hilbert space 'b' is three-dimensional and the basis states may be 
labelled by 11), 12) and 13). Then the most general direct state is a superposition 
of the basis states 11, x), 12, x) and  13, x)  of the form 

i
=

i (x) i, X) 

which contains three functions. 
In the consideration leading to (4.2.11) and (4.2.12), we have used the 

following argument: the system S, consisting of subsystems 5 (1) , ..., 5(k)  is 
rotated by rotating each subsystem individually. The state 1*) describing the 
whole system S is a linear combination of direct product states (we repeat the 
consideration for n = 2) 

= 	C 'k(I)() ) 
i .1c 

Rotating each subsystem individually amounts to writing 

e-ian J 
= e

-ian • J(' ) 
 e

-ian • J (b)  

where J(a )  should act only on the states Oa)  and ./ (b)  only on the states cp (b) ; with 
respect to 0°)  the operator J(a)  should behave as the unit operator, as should 
J(b)  with respect to the states cp (a ) . We thus see that in the above formula we 
should have written more correctly 

J(a) 	1 (b)  instead of J(a)  

and 
1 (a) 	J(b)  instead of  ,j(b). 
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Then the operator exp(-ian • J) becomes 

—ian•J  = e —ian • (.7(, ) e 1 (b) ) —ian.(1 (a )   e  

Now we can also formally prove that the two exponentials commute: we expand 
each of them and use the rules (4.3.13) and (4.3.14); we abbreviate (-ian • J) 
by J and obtain 

e
(Pa) 0 1 (b) 

e
w.) 	j(b)  = 	( pa)  ®  i (b) )" 	z (1(a) 	j(b))k 

n! 	 k! 

j(a)n 	 ( 	[(Mk )] E 	0 1  (6)][1(a) 	E  
n! k 	k ! 

= [e f(4) 	1 (b) ] Pa)  

= eim 	e i(b)  

We thus can simply write 

e
fa) 0 1(b) 

ei
(a) 	j(b) 

= e
po 	i(b) +ila) 	j(b) 

Indeed, expanding the right-hand side gives 

1 E [j(a) 	1(b) ± 1 (a) 0  Joln 

n 
n 

= E [E (nk ) (pa) 	(by ( 1 (a) j (b)r—k] 

n 	k=1 

1 vn 	) pok 1(b)) (1(a) 0  jor-k) 
= 	n [L-,  V

n
c) 

n k=1 

= E  _ j(a)k 	pon—kl .  

n n! k=1 

  

  

(n 	
n!  

Putting 	) — 
k!(n — k)! 

and (n — k) = j we obtain 
k  

1 	1 	k 	 j(a) 	job) 
f(a) 	J(a) 

= e 	e 	. 
k.j k!  

We combine these results in the formulae 

e-ian.J = e 	e-ian.J(b) = 	® i(b)+1(.) 	J(b)) 

j = j(a) 	i(b) +  1 (a) 	j(b) 
(4.3.16) 
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from which we see that (4.2.11) 

(4.3.17) 

should be written more correctly as follows: 

	

= E I") 0 • • • ® 1"-" 	i") 	i"±i) 0 • • • ® 1 (k)  . 	(4.3.18) 
i=1 

The unit operators may be combined into one unit operator which is the direct 
product of all unit operators belonging to the spaces 7-0 )  to li(k) , with 1 (i)  being 
omitted. Let us denote this product by 1 4 ' i) , i.e. 

r(k ' i) 	1 (I)  0 • • • 0 1 (i—i) 	1 (i+1)  0 • • • 0 1 (k) . 	(4.3.19) 

Then 

	

j = 	it(k,i). 	 (4.3.20) 
i=1 

This is the exact meaning of (4.2.11). The reader should keep this in mind, 
because it is in current use in the physical literature to employ the simpler, but 
not strictly correct, notation 	

= Ej(I) 	 (4.3.21) 

where j (i)  means in fact j (i)  x l' ((‘' ()  
Having warned the reader, we shall from now on follow the common use 

and write j (i)  instead of j (i) Ø  1 4d) , sometimes recalling the present discussion 
by a remark. 

4.4 Angular momenta of interacting systems 

Having laid down the physical significance and the commutation relations of the 
angular momentum operators, we can start to build up the whole theory, but, 
before we do so, it might be good to stop for a moment and contemplate what 
we have done and try to understand it correctly in terms of physics. 

We started by considering the consequences of invariance of a physical 
system under rotations and found that the rotations led to Hermitian 
operators, constant in time, which were the generators of the induced unitary 
transformations and which we called angular momenta. But what if the system 
is not invariant under rotations (think of a particle in an external field)? Does 
that mean that angular momentum cannot be defined? It can. The point is this: 
a general postulate, which cannot be proved or disproved except by experiment 
and which we have so far no reason to disbelieve, is that space is isotropic. If 
therefore our system is not yet invariant under rotations, then that means that it 
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is not yet isolated in empty space but instead is part of a large (isolated) system, 
which as a whole is invariant. Thus by a suitable extension of our system we can 
always achieve full invariance. Let then S (a)  be our system. If it is not invariant 
under rotations, we may take a sufficiently large part of its environment—call it 
Sand  add it to S (a )  such that a new system S results, which is (sufficiently) 
isolated in empty space and therefore invariant, while S (a)  and Sa' )  separately 
are not. 

On the other hand, we might have—equally well—removed the environment 
of S (a )  such that S (a)  would have been left in 'empty space' and then S ( a)  would 
have been invariant. We see that it is not truly S ( a)  itself which is lacking 
invariance: it is S (a )  plus something else relating it to S(b) ; this whole thing, 
namely S (a )  including its relation to S (b) , we have—wrongly—taken to be S.  
Giving from now on S(a )  and S (b)  a more restricted sense and calling S (ab)  the 
'interaction part' between S (a )  and its environment S(b) , we state that under 
rotations (and in fact, as we believe, under the Poincaré group) 

S (a)  and S(b) 
	

are invariant 

S = S(a)  ± so) ± s(a6) 	is invariant 
	

(4.4.1) 

S (a) 	S (ab)  or S(b) 	s(ab) are not invariant. 

This means that whenever we find that a physical system is not invariant under 
rotations, we have a system of the type S ( a)  S (ab)  and we are compelled to 
find out what S ( a)  is and what S (ab)  is. Then, having done this, there will be 
nothing inherent in S ( a)  which would make it non-invariant. Hence the operator 
of angular momentum, ../ ( a ) , can be defined as before for S(a ) , where S (a )  is 
considered as an isolated system and described in a Hilbert space  

Let us now consider S (a)  in interaction with its symmetry-breaking 
environment, that is S(a )  S (ab) . It is still described in the same Hilbert space, 
because the system S (b)  is not yet included; S (ab)  is considered so far as fixed 
external perturbation. It leads, however, to additional terms in the equations 
of motion (Hamiltonian) of  S.  In this old Hilbert space of S (a )  our operator 
j (a )  is still a decent Hermitian operator; however, under the influence of Pi') 

 this operator will no longer commute with the Hamiltonian H (a )  H(ab) . In 
the same way we define the operator j (b)  which describes the rotations of the 
system S (b)  in its Hilbert space 7-0) . If the presence of S (b)  becomes felt, j (b)  
no longer commutes with H(b) H(ab). 

We now proceed to the description of S = s (a) ± so) ± s(ab) as a whole. 
The states are states of the direct product space 71  = 7-t (a )  (8) H(b) ; the total 
Hamiltonian is H = H(a) ± Ho) + Hob); the total angular momentum is 
J = j(a) ± j (b)  (more correctly j(a) 0 1(b) + 1(a) 

We have then 

states of S 	 = riki(a )e ) 
(4.4.2) 

angular momentum of S J = j (a)  j(b)  
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Although by these definitions the range of the operators j (" )  (more correctly 
1 (a )  j (b) ) is the whole product space 11 = fl(a) 'H(b ) ; although therefore the 
operators j (" )  and j (b)  have become operators having a physical significance with 
respect to the whole system S—although this is so, it follows from the meaning 
of the direct product that this physical significance is essentially the same as 
before: j (a )  (better j (a)  1 (b) ) and j ( a)  (better 1 (a )  e i(b)) are the angular 
momentum operators of the subsystem S (a)  and S (b)  respectively, when these 
two are understood to be integrated into the one system S = S(a )  + S(b)  + 

Since, by writing S (ab)  explicitly, the components S ( a)  and S (b)  have become 
separately rotation invariant, it is clear that under a partial rotation of S, say of 
S ( a )  alone, only S (b)  is changed and that by carrying out the same rotation on 
S(b)  the old S(b)  will be restored since S, S(a )  and S (b)  are invariant. Carrying out 
different rotations on S (a )  and S (b )  will change S into something new, however. 

These considerations show that, although the angular momenta were defined 
as the generators of the unitary transformations related to rotational invariance, 
they retain their physical significance even if this invariance is not present, 
because j ( a)  (for instance) may be regarded as belonging to a system S (a)  
which would have invariance, were it not for the presence of something else 
(S (b) ) in relation to which the invariance is broken. We have seen that the 
angular momentum, once defined for the unperturbed (invariant) subsystem, can 
afterwards be carried over to the total Hilbert space (describing the system and 
the perturbation as a new entity) without losing its original physical meaning. 
The same is true if we renounce enlarging our system and simply remain in 
the original Hilbert space, considering the symmetry-breaking environment as 
'external perturbation'. The same holds for the full symmetry group of space-
time. We may say that, by starting from the invariance corresponding to the full 
symmetry group, we have been able to introduce the most natural coordinate 
system in Hilbert space; namely that one which is labelled by the quantum 
numbers of the conserved operators. As long as we describe systems which 
are indeed invariant under the whole symmetry group, these coordinates (i.e. 
the quantum numbers) are invariant in time. If we describe systems which are 
not invariant (S ( a)  + S (0b) ), then the coordinate system introduced is still useful 
and legitimate; the states of such non-invariant systems have, however, varying 
coordinates. 

4.5 Irreducible representations; Schur's lemma 

Before we build up the eigenstates of angular momentum, in the next section, 
we shall try to give a motivation for why we just do it this way and no other. In 
fact, we shall do it exactly as everybody else does it; but, in the light of what we 
have learned on the relation between a group and its Lie algebra and between 
their corresponding representations, this usual construction gains a new aspect 
in which it will lose some of its apparent arbitrariness (when one first learns 
about angular momentum in quantum mechanics and sees how the eigenstates 
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and matrices are constructed, a natural first reaction would be that if physics 
required one to be able to invent such things out of the air, then it might be 
better to give up physics at once). What in fact, is done? 

One constructs finite-dimensional, irreducible representations of the Lie 
algebra of the rotation group; from these, as we know, the representations of 
the local group follow by exponentiation. To each finite-dimensional irreducible 
representation there belongs a finite-dimensional irreducible invariant subspace; 
the basic states spanning this irreducible subspace are the angular momentum 
eigenstates: under rotations they are transformed among themselves (i.e. within 
that subspace) and the corresponding transformation matrices make up just the 
irreducible representation which leaves this subspace invariant. 

What are irreducible invariant subspaces and why do we construct 
irreducible representations? 

Because, in a certain sense, they are the simplest ones: they cannot be 
reduced to anything simpler. Let us briefly explain this. 

Consider a matrix M transforming the vector x of an n-dimensional space 
R.  If there exists a subspace R° )  of dimension n 1  < n such that the image 
Mx of any vector x E R° )  lies again in R (1)  then M is called reducible and 
that subspace is called an invariant subspace. (The invariant subspace is not 
invariant on its own account; to be invariant is not its inherent property; it 
is invariant with respect to M; therefore, the word 'invariant subspace', which 
suggests the invariance to be an attribute of that subspace, is misleading. As it 
is, however, commonly used, we shall use it too.) We may arrange the basis in 
our space such that the invariant subspace R° )  is spanned by the first n basis 
vectors. In this basis M must take the form 

M= ( 	  
mni 2 

(4.5.1) 

  

because then and only then will the image of any vector x of the invariant 
subspace lie again in it, although this image may contain contributions from the 
images of vectors outside the invariant subspaces. It may be that the whole 
space R decomposes into a direct sum RO )  ED R (2)  where not only R° )  but also 
R (2)  is invariant. In that case the matrix m in the upper right corner of (4.5.1) 
must be zero and M decomposes into a direct sum M = m 1  ED m2. We then 
call M fully reducible. 

(M  

M 
0 

rn2 
= rn1 (1) m2. 	 (4.5.2) 

   

Now m 1  and m 2  may be again reducible or fully reducible; but eventually this 
procedure ends, namely when the blocks m i  are irreducible (i.e. not reducible). 
When we start with one single matrix M, then most frequently (for instance 
if M is Hermitian or unitary or has all different eigenvalues) the process of 
reduction ends up with a full decomposition into a direct sum of one-dimensional 
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matrices—and these complicated words mean nothing more or less than that we 
have brought the matrix to diagonal form: 

(11, 1 
11, 2 

0 

M . (4.5.3) 

0  tin) 

For a single matrix M, therefore, reduction is in most cases the familiar 
diagonalization. The situation greatly changes when a system of matrices M(a) 
is considered. Let a label the set; a may be discrete or continuous and may 
also denote a set of parameters. A group representation would be one example 
of such a set M(a); a representation of a Lie algebra another one. As is well 
known, a set of matrices can be brought simultaneously to diagonal form only if 
all matrices of the set commute with each other. A generalization (see (4.5.9)) 
of this statement is that a set of matrices is reducible if a matrix A exists which 
commutes with all matrices of the set and which is not a multiple of the unit 
matrix (because A = 1 of course commutes with every matrix). 

Reducibility of a whole matrix system M(a) means that there exists a 
matrix B such that the similarity transformation BM(a)B -1  transforms all M(a) 
simultaneously into the same form 

	

M'(a) = BM(a)B' = (m1(a) m(a)  ) for all a. 	(4.5.4) 
O  m2(a) 

The matrix system M(a) is called reducible if (4.5.4) holds; it is called fully 
reducible if m(a) is zero: 

M'(a) = BM(a)B -I  = (ml(a)  ° = m i (a) ED m2(a) for all a. (4.5.5) 
0 m 2 (a) 

Also here  mi(a)  and/or m2(a) may be further reducible, but the process comes 
to an end and then the blocks m i  (a) are called irreducible. This stage is 
reached much earlier for matrix systems than for a single matrix—it leads to 
full diagonalization only when all M(a) commute with each other. 

One now sees immediately why reducible representations lead to 
simplification: suppose M(g) is a group representation by n x n matrices and 
let the representation be reducible: 

M(g) = 
(m i (g) m(g)  

0 m2(g)) 

Group multiplication becomes, with M(g • h) = M(g) • M(h) 

M(g • h) = 
(m i (g •  h) m(g • h)) 

m i (g) •  m i (h) 
 0 
m i (g) • m(h) m(g) • m 2 (h)) 

"1 2(g) • ni2(h) 

 

0 	m2(g • h) 



90 ANGULAR MOMENTUM OPERATORS AND EIGENSTA'TES 

so that 
mi(g • h) = mi(g) • mi(h) 
m2(g • h) = m2(g) • m2(h). 

Thus two new representations are furnished by the matrix systems m 1  (g) and 
m 2 (g)—both are of a smaller dimension as M was. As to the matrix m(g) in 
the upper right corner, it is obvious that it is not a representation; but what is 
important is that it in no way prevents m 1  (g) and m2(g) being representations. 
This means that, in order to give rise to at least two new lower-dimensional 
representations, the representation M(g) need not be fully reducible; simple 
reducibility suffices. If, however, M(g) is fully reducible, then we can write 
M(g) = mi(g) ED m2(g). 

Exactly the same statements hold for representations of a Lie algebra, 
because if in the above considerations we replace ordinary matrix products by 
commutators, we find, instead of (4.5.6) 

. - 	
. 	 . 

migg, hil= [mi(g),mi OA 

m2(ik 'ill) =[m2(i), m2(171)] 

(4.5.7) 

so that reducibility (not necessarily full reducibility) of a representation M(g° ) 

of a Lie algebra yields two new, lower-dimensional representations m 1  (g°  ) and 

m2(i). 
Clearly then, if we can find all irreducible representations of a group (or of 

its Lie algebra) then we have the building blocks from which all representations 
are made. This explains why the construction of all irreducible representations 
is a central problem. In many cases—and in fact in rotational symmetry—the 
representations which come up are fully reducible. That means that we shall 
encounter only situations in which 

(m.(a) 	 0 
m2(a) 

M(a) = 	 m3(a) 

0 	 .. 

7..1, Ho) e  7-1(2) 

) = m 1 (a) ED m i (a) ED ... 

(4.5.8) 

IC =1* (1) ) G) 1* (2) ) e .. • 
M(a)Ii) =mi(a)1* ( n) e m(a),)  e .... 

Finally we prove a theorem which is a very powerful tool in the search for 
irreducible representations; it is the famous lemma of Schur, of which we state 
and prove only its simplest form. 

(4.5.6) 

If a matrix A commutes with all matrices of an irreducible 
system M(a), then A =  A• 1. (4.5.9) 
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Proof Every matrix, whether we can diagonalize it or not, possesses eigenvalues 
X and eigenvectors x. Let then Ax =  Ax.  The supposition that A commutes 
with all matrices of the set M (a) means 

A[M(a)x] = M(a)Ax = 4M(a)x]. 

In other words, M (a)x is again an eigenvector of A with the same eigenvalue  X. 
This holds for all vectors belonging to the subspace spanned by the eigenvectors 
of A with this same eigenvalue À. Hence this subspace is not only an invariant 
subspace with respect to A, but also with respect to the whole set M(a): every 
belonging to that subspace is transformed by M (a) into another z' belonging to 
that same subspace. This contradicts the assumption that M (a) is irreducible—
except if this invariant subspace is the whole space; then A = À • 1, as the 
theorem asserts. 

This proof also shows as a by-product 

if a matrix A commutes with all matrices of a system M(a) 
and A can be diagonalized, then the system is fully reducible 
into a direct sum; to each different eigenvalue Xi  of A 	(4.5.10) 
belongs one irreducible invariant subspace and one irreducible 
representation. 

Note that it is tacitly assumed that no other matrix A' with a set of different 
eigenvalues inside the invariant subspaces of A exists and commutes with all 
M (a); if this is the case, then A splits M(a) into a direct sum of representations 
which are still further reducible by A'. 

We shall use this fact in the construction of eigenstates and representations 
of angular momentum; the operator J2  = 	jlz J —called the Casimir 
operator—will play the role of the matrix A. In what follows, we shall not 
always stress these general aspects of what we do; the reader is urged to take 
a glance over and over again back to chapter 2 (symmetry)—just as he would 
from time to time reassure himself by a look at the map when he hikes in an 
unknown region where his view is barred by many nearby hills, trees, buildings 
or even by fog and clouds. 

4.6 Eigenstates of angular momentum 

We consider a system S with total angular momentum J. What are the 
eigenstates of these operators? 

As follows from the commutation relations 

[J1, J2] = iJ3 and cycl. perm. 	 (4.6.1) 

each component J, commutes with the operator ('Casimir operator') 

j 2 	+.4  + 	 (4.6.2) 



92 ANGULAR MOMENTUM OPERATORS AND EIGENSTATES 

Consequently any component—but only one—and J2  can be taken to 
possess a common system of eigenstates. 

We define the 'ladder operators' 

'raising operator' J_F  = Ji  + 
'lowering operator' J_ =  J1  — iJ2 	 (4.6.3) 

J_. =  it  
and find by explicit calculation the rules 

[J2 , 1±] =  [J2 ,  J1.2,31 = 0 

VI, 41 = 

[12, 	= 

(-13, 	= ±J± 

1/3 

J2  = + 	+ J_.1+) 

= J3(J3 + 1) ± J_J+. 

= -13(.13 — 1) ± J+J_ 

(4.6.4) 

Let us use J2  and J3 as commuting observables. If all other observables 
commuting with these two and among each other are taken together in one 
symbol r then the basis in the Hilbert space is made up by the orthonormal 
states I y, A, ,u) where 

r I y),A) = y I y xti) 

J2 1)/41 ) = MY4t) 

hiYA.1t) = PIYA.11, ) 

(Y 9,-VIYX1u) = S(Y'Y; X'A.; WA) 

E iy4.4)(y411=1_ 
,A44. 

(4.6.5) 

The 8(y'y; X' X; it' p,) is ICronecker's or Dirac's according to circumstances. 
Whereas (by definition of r) it is clear from (4.6.5) that operating with 

r, J2 , J3 on I yA.p,) will not change any eigenvalues, it is not clear that 
application of ./1, J2, 4 or J_ on I y A.g) will leave y unchanged. It will leave 

unchanged, since all these J commute with J2 ; but they need not commute 
with y. This fact is generally neglected in textbooks. Therefore we shall keep 
it in mind. It will turn out that it causes no difficulty. We shall build up 
the eigenstates of angular momentum by considering matrix elements of the 
operators and commutators appearing in (4.6.4). Since all operators commute 
with J2 , we consider A to be fixed once and for all. 
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The situation—expressed in the general terms used in the preceding section 
4.5—is then this. 

The operator J 2  is Hermitian and can thus be diagonalized; it furthermore 
commutes with J1 , J2, h, that is, with the whole Lie algebra of the rotation 
group. Therefore theorem (4.5.10) tells us that the representations of the Lie 
algebra are fully reducible to a direct sum of (as we shall see, finite-dimensional) 
irreducible representations belonging to irreducible subspaces; in each of these 
subspaces J 2  is a multiple of the unit matrix. Considering A to be fixed once 
for ever means we have chosen the irreducible subspace R A., labelled by the 
eigenvalue A, and there we build up a basis; the basis vectors are written I yX/L). 

All we have to do now is to play around with equations (4.6.4) and (4.6.5). 
We shall obtain several intermediate results, labelled by (a), (b), ... which then 
will be combined in (4.6.12), (4.6.13) and (4.6.14). Let us now play the game 
(4.6.4), (4.6.5). 

The relation 

gives 

(YÀPV2  - 41)1 41 ) = - 

= (Y4.1 141YX/i) (Y41 141)1 40 

since each term is 20. Hence 

(a)
 (4.6.6) 

Similarly, the commutation relation 

[J3, J±] = ±J± 

gives 

(y'xte I [ , 4 ]ly 
= ± ( y 'xte I J± I y 41) 
= 	— bt) y'xte I J± I y A. A ) 

or equivalently 

Gil — itT 1 )(041 1./±1Y, A, A) = 0. 	(4.6.7) 

The matrix element is zero unless A' = p.±1. 
Now we shall first consider the situation [4, 	= 0. Then the action of 
./± does not change y, and the previous equation gives 

(b) 

A, IL) = C ± 0,01y, A, tz±1). 	 (4.6.8) 

The constant 
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(c) 

C(Ai) = (y,  A,  A±11,1±1y, A, A) 	(4.6.9) 

can be determined from the relation 

= J2  — J3(J3±1). 

Since J_ = 4 we have on the l.h.s. a positive operator and therefore 

4114 J± I y A.A) = (y xi.t1.12  - (J3± 1 )1Y41) =  X  - 	> 0. 

Obviously, by complex conjugation of (4.6.9) we obtain 

C (+)*  (X, ) = 	+ 1) 

and inserting (d) into (4.6.8) we obtain the important relation 

(() 
ic (±) (4a2  =  A  - 	 (4.6.10) 

It is useful to fix the phases of the basis in such a way that  C(A) are 
real. Then we shall have 

(g) 
J±IY,À, 	= 	— tt(ti±1)IY, 	it±1). 	(4.6.11) 

We call J+  the raising operator, and the J_ the lowering operator, according 
to their effect on ly, X, p.). 
We finally determine the possible values of X, p.. From (a), we see that 

	

.> 0 ; 	< < 

This condition may be violated by a repeated application of 4 and J_ 
(respectively) to a state I yXp.) (see (b)), unless the series of states thus 
created breaks off when some limit values max(t) =  71 and min(A) = 
(respectively) are reached. Hence we must have 

J + IÀ , 	=0  
J _IX, it) =0.  

Applying J_ to the upper and 4 to the lower equation gives (see (d)) 

J_J+  Ix. /7) =  [À-71(71+  1)11A-, 7a)  =0  

	

Ix, iu) = 	— A(11 — 1)11À, it) =0.  

Since IX, Ti) and IX, p.) are not zero, we conclude 

(d) 

(e) 
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(h) 

= 	± l) = 	— I). 

This equation has two solutions 

= -7. and  

where the second drops out since by definition < 

The subspace 1-6, is thus equally well characterized by the largest eigenvalue 
= of .13 in that space; this number is called the 'weight' of this 

irreducible subspace (or of the corresponding irreducible representation); in 
the mathematical literature on Lie groups the weight is designated by the 
letter 1; physicists prefer (for angular momentum) j. Thus we put 

	

and 	m; 

hence —j < m < j where the limits ±j are indeed assumed. Since by 
application of 4 one goes in integer steps from j to ±1, we have 2 j = 
number of steps = integer. Our earlier eigenvalue of J2  becomes now 

= P./ ± I). 

We have constructed for given j (integer or half-integer) a set of 2j + 1 
eigenstates J 2  and  J3.  This was done by our raising and lowering operators. 
But what if we had by mistake overlooked the fact that there were other states 
between these, which could not be reached by our J± since their spacing in 
the label m is not 1? (For instance, could it not be that there exist raising and 
lowering operators, A +  and A_, say, which we had not yet discovered and which 
would change the eigenvalue p. not by 1 but by 1/n or any other number < 1?) 
This is impossible. Assume we had such a state, then by repeated application 
of J+  or J_ we would run into the contradiction with < < N5 if the 
sequence did not break off. If, however, it breaks off, we are back to our 2) + 1 
states. Therefore this set of  2j  + 1 states is complete in the subspace lib, for 
fixed j and y. 

The same argument excludes the existence of any continuous eigenvalues 
of J and J2  and thereby ensures that we now possess all the irreducible unitary 
representations of the Lie algebra of the rotation group, namely when we allow 
all integer and half-integer values of j; all these representations are finite-
dimensional, as their corresponding irreducible subspaces have dimension 2j +1. 

We thus obtain (in the subspace of fixed y and j) a complete system of 
2 f  + 1 eigenstates I yjm) with m = — j, —j 1, j and  2f  = integer; 
the phases, relative to each other, of these 2j  + 1 states are uniquely defined 
by the factors N/j(j + 1) — m(m ± 1) in the raising and lowering operation 
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(see (4.6.11)). 

rlyim) = 

J2 Iyi ni) = 	+ 1) Iyinz) 

hlyim) = mlyim) 

41Y/m) --='•/.7(j + 1 ) —  m(m+ 1 )IY/m± 1 ) 

=,,/(iTm)(j±m + 1)Iyjm±1) 

j =0,1/2,1, 3/2,.. .; —j < m 	j. 

(The second form is currently used; the first is easier to memorize.) 

E iyino(yimi = P(Y) = projection onto the subspace with y fixed 
in? 

E iyirr)(yimi = P(Y, j) = projection onto the subspace 

with y, j fixed 

E lyjm)(yjml= P(j) = projection onto the subspace with 

total angular momentum j. 
(4.6.12) 

The matrix representations of J2 , .13, r in this basis are diagonal with the 
eigenvalues showing up in (4.6.12); J1  and .12, however, are not diagonal. We 
find from ./ 1 ±iJ2 = .1±  that 

IY/m) = 1 8 (Y'Y; 	[8e.m+4/(/ + 1 ) — m(m + 1) 

+ 	 + 1)— m(m — 1)] 

(4.6.13) 

= 18 ()/y; 	Ese.m +1././(i + 1) — m(m 1) 

- 8e.m--1-1/ (J  + 1) - m(ni - 

Note that these formulae with the factor 8(y / y) hold only as long as 
[r, J1.2] = OE Otherwise, the situation must be dealt with using some care 
along the lines of pages 97-98. 

In an explicit matrix representation of an operator A it is customary to label 
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as follows: 

mj 	j-1  ••-m 
m' 

Aii_i • • • Ai m, • • • Ai,_i 

(Au) _ : 
m' 

(4.6.14) 
• • • A , , • 

With (4.6.12) and (4.6.13), we have obtained all irreducible representations of 
the Lie algebra of the rotation group. The (canonical) representations of the 
group follow then by exponentiation. This problem will be taken up in section 
4.8 of this chapter (spin and in chapter 6 (general case). 

Let us finally discuss the case [./±, n o 0. According to (4.6.7) the action 
of  J.  on I y, A, ti) will change  t to p.±1, and, in general, y will change too. 
Instead of the property (b) we shall now have 

J±IYA4L) = VA. — ti(1 1±0E F  (41 )IV I • Itt±  1 ) 	(4.6.15) 
y' 

where for convenience we wrote the square root appearing in (4.6.11) explicitly. 
On the r.h.s. now there appears a matrix in y-indices: 

= (Fy( (kti)) 	 (4.6.16) 

where the matrix elements are given by 

	

A,  P•± 1 141ykii) 	= 	-  

Since J_ = 4, it follows from (4.6.17) that 

	

.F(+)t(k , 	= .r(-) (A9  + 1) .  

Moreover, repeating the argument leading to (4.6.10) we obtain 

	

.F(±)t 	to.F(±)(k, 	= 1  

(4.6.17) 

(4.6.18) 

(4.6.19) 

where 1 denotes the unit matrix in y-indices. (4.6.19) means that .F(±) (A., kt) 
are unitary matrices. For the matrix elements this can be expressed as 

E F}(,±„y),.(41)Fy(±, y) ( k tt) = 	 (4.6.20) Y Y • 
y' 

The raising and lowering operators we define (in accordance with (4.6.11)) by 

/±IyA.p.) =  JA  — /141±1 )1y,  A, ,u±1). 	(4.6.21) 
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Below we show that they are given as 

1± = F(±)t 
	

(4.6.22) 

where F (±) t are operators defined by 

F (±) tly, 	ti±1) = E Fy(±, y). (A.p.)i y , , 	,±0. 	(4.6.23) 
y' 

To prove (4.6.21) for the operators 1± given in (4.6.22), we shall act on an 
arbitrary state I y,  A, z), and we shall successively use (4.6.15), (4.6.23) and 
(4.6.20): 

41 3', A, 	= F(±)t ./±13'9A, tt) 

=  VA — ti(11± 1 ) E Fy(,)(AIL)F(±)ti y',  A, 11,±1 ) 
y' 

= VA — 11(p.±0E Fy(±,)(4,)Fy( y), (A.)l y ",  A, p.±1) 

= 
y" 

= 	— ii(t1± 1 )IY,  A, 1.1±1 ). 

In the first step we used (4.6.15), in the second (4.6.23), then (4.6.20) and the 
last line follows from the definition of the (5 y ” y . This completes the proof of 
(4.6.21). 

Remark 1. The operators F±  have the following properties: 

J2] = [F(±) , .13] = 0 

F(±) t F(±)  = F(±) F(±)t = 1 

where on the r.h.s. 1 stands for the unit operator in the full Hilbert space. 
The first property (4.6.24) is a direct consequence of the fact that the action 

of F(±)  on I y, A,  IL) changes neither A, nor ti (see (4.6.23)). The second property 
is just a straightforward consequence of (4.6.19): the subspaces Hlit  spanned 
by I ylqi.) with A, p. fixed, are mutually orthogonal, and F(±)  are in each 
represented by the unitary matrix F (±) (À, 

Remark 2. Defining 

1 	 1 
= —

2
(4 ± /_) 	12 (LE  — L.) 

it is shown by straightforward calculation that 

[11,121= iJ3  

[12,J31= 

[J3,  
[II , J2 1. [12 , J2 ]  = o 

(4.6.25) 

(4.6.24) 
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for which the commutativity of F(±)  with J2  and J3 is essential. 
These redefined angular momentum operators have thus the same 

commutation relations as the old ones, but in addition all three of them commute 
with P. 

We shall not follow this line any further, because these new operators cannot 
serve as generators of the rotation group, having been forced to commute with 
operators P which we supposed to be not invariant under rotations. Operators 
which generate the rotation group, must not, however, commute with operators 
which are non-invariant under rotations; thus I and  12  cannot be used when the 
rotation group is considered. We shall from now on forget this complication. 
The discussion aimed only to show that raising and lowering operators without 
any undesired side-effects can be constructed, whether J1 and/or J2 commute 
with r or not. Thus, in any case a complete set of eigenfunctions of P,  J2 ,  J3 

can be built up (along the lines of what follows) even if the system in question 
is not invariant under rotations. In this case, however, these eigenfunctions do 
not represent stationary states. But even if the system is rotationally invariant, 
it need not be that all operators of the set r commute with Ji±iJ2, i.e. that all 
observables y used for labelling the states I yA.1.4.,) are invariant under rotations. 
If they are not invariant, then the above unitary operators F(±)  are different from 
1. If they are invariant, we are left with F = e ic"A)  and may then put a = 0 
to obtain F 1 (this is the usual choice of the arbitrary phase a(A., p.)). 

As we shall see, the angular momentum eigenstates exhibit most clearly 
what will happen under a rotation of the system. It is therefore convenient to 
use for further characterization of the states only such operators r which are 
invariant under rotation. 

A basis I yjm) belonging to a set P of observables which commute 
with J1, J2 and J3 is called a 'standard basis' for the description of angular 
momentum. It is a basis of this kind which has to be taken when general 
rotations are considered. The unitary transformation relating a non-standard 
basis to a standard one can be found. 

We therefore shall assume in the whole book that we have adopted a 
standard basis: having discussed what happens if this is not so, we put F(±)  = 1 
in the following and omit y altogether. 

4.7 Orbital angular momentum 

An important particular realization of the abstract algebra of angular momenta 
as laid down in (4.6.12) is furnished by the x-representation in the case of a 
scalar particle. The Schrbdinger function of such a particle in the state 10 is 

lfr(x) = (xlik) 	 (4.7.1) 

and the angular momentum operators become (see (4.1.4)) 

J=L=xxP. —ix x  V  = orbital angular momenta. 	(4.7.2) 
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We shall see that the eigenfunctions are 

1frrim(x) = (xlylm) = R y (r)Yini( 1,, 
	 (4.7.3) 

where x = r (sin 0 cos (p, sin 0 sin (p, cos a), Yi„,(a, (p) are the usual spherical 
harmonics and y is the ensemble of all other quantum numbers. 

4.7.1 Angular momentum operators in polar coordinates 

We shall work in polar coordinates. We first calculate L in these coordinates. 
Figure 4.2 shows three unit vectors 

(i) 
el = 

= e99 
e' = e 3 	r • 

Figure 4.2. Polar coordinates. 

For any function F(r,  t,, w) we have 

aF 	8F 	aF 
dF = — d0 — dcp -1- — dr VF • dx. 

aw 	ar 

We choose as coordinate system the three axes el, e'2  and e'3  at x and find 

dx' =  (r d0, r sin 0  d,  
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Hence, with (ii), x, V and L become in this system 

v , 	a 	1 	a 	a \ 

	

rsin0 	Or  ) 
x' = (0, 0, r) 	 (4.7.4) 

a 	a 
L' = —ix' x V' = 	

i 
— ,, 	. 

sin 0 o w 	ao 

These components are valid in the coordinate system defined by  eÇ, e'2  and 
e'3  in figure 4.2. 

Next we transform to the x, y, z-coordinates. (4.7.4) gives the components 
in the el , e'2 , e'3 -system. We obtain the components in the x, y, z-system by 
carrying out a passive rotation: we rotate the el , e'2 , e'3 -frame first by —0 about 
e'2  and then by —q) about the new axis which is the z-axis. We can copy 
down the matrix for this rotation from (3.3.5): it is 

cos q) 
M= (sin  g° 

— sin (i) 
cos 

o 

0 
0 
1 

cos 0 
0 

—sin', 

0 
1 
0 

sin 0 
0 

cos 0 

( 	 q) 
cos 0 cos q) — sin q) sin 0 cos (p 

	

= cos 0 sin 	cos 	sin 0 	q) sin 	. 

	

— sin 0 	0 	cos 0 

The x, y, z-components of z, L and V expressed in r, 0 and yo now follow 
by multiplying (4.7.4) by M; for L we obtain 

	

( 	
a 	. 	a ) L x =i cot 19 cos q) 	-I- sin yo-a7, 

( 	
a 	a ) 

Ly = i Cot 0 sin (09 	— cos -aT, 

a 
L z =—i- 

a(p 

and from this 

a 	a 
L±= Lx  ±iLy  = eIlw ( i cot 0 — 

OU )  ay)  

and, with the help of (4.6.4), after a short calculation 

(4.7.5) 

(4.7.6) 

1 	0 2 	1 	a 	a L2  = — L, + L +L_ = ( 
	

sin —) . (4.7.7) 
sin2 0 42  sin o ao 	ao 



102 ANGULAR MOMENTUM OPERATORS AND EIGENSTATES 

4.7.2 Construction of the eigenfunctions 

Since the operators L do not contain r, we can disregard the part  R(r) of the 
Schr6dinger function: it simply drops out of all equations. We are then left with 
the eigenvalue equations (we call the eigenfunctions Yi n, but of course assume 
for the moment that we know nothing about them) 

L 2 K„, =1(1 + DY,„, 
L z Yim = mY„, 

and with the raising and lowering equations 

L±Yi„, = 	+ 1)— m(m  E  1)Yi, m±1 . 	(4.7.9) 

The Yin, will be normalized: 

rm  09, (p)Yi, „, , 	(p) sin i,dt dy) = 	 (4.7.10) 

That they are orthogonal for 1 0 l' or m m' follows from the general property 
that (rm'I/m) We have also seen that for 1 fixed m can take the 
values —1 < m < 1 and that the 21  + 1 functions are complete in the subspace 
of given 1. Therefore (see 4.6.12) 

co 

E E 	(1,V)Km(0, V) =  8((p'  — cp )(cos 0' — cos 0). 
1=o n1=-1 

(4.7.11) 

There are now two easy ways to obtain the  Yim  explicitly. One is to observe 
that the w-dependence can be given at once: 

a 
L z Yi n, = —1—Yi m  = mYi n, 

acp 
(4.7.12) 

Yim = eimvi fi„,(cos19. ). 	 (4.7.13) 

At this place most textbooks require that m (and therefore 1) should be integer in 
order to make Yi n, unique. This argument is insufficient, because I Y, 2  would 
still be unique even if Yin, were double valued, and it is unnecessary as we shall 
see below. Hence for the time being we allow I to be half-integer as well as an 
integer number. 

One now uses the fact that 

(4.7.8) 

L + Yii  = 0 
	

(4.7.14) 

which gives with Yu = eilwfi i (cosi9) and (4.7.6) 

L +Yii = e 1 ((I+1)(P —
d 

—1 cot i9)fii(cosi9)  =0. 	(4.7.15) 
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This differential equation has the simple solution 

(cos 0) = ci (sin 0) 1 . 	 (4.7.16) 

From here one obtains by repeated application of L_ all other Jim  for —1 < 
m<1. 

In order to carry out this programme, we must find L. Working out directly 
the kth power of L ±  from (4.7.6) leads to very ugly expressions. Fortunately, 
someone3  found the way to a concise formula for LI which has become standard 
in the theory of spherical harmonics (and Legendre polynomials) closely related 
to the eigenfunctions of orbital angular momenta. We shall follow this way here 
although at first it may seem artificial. 

As our eigenfunctions are of the form Y1 A  = elAvfi A (cos 0) (4.7.13) we 
must look to see what effect has L± on such a function. With 

a 	a — = _ sinl,
a cos?, at, 

and (4.7.6) we obtain, e.g. 

cot 0 = 
d sin 0 

dcos0 

L +  e l"fiA (cos = 
r  d sin 0 	d 
	 sin 

d cos 0 i
e .AAP fi t, (cos 0) V deosi, 

= sin i  +A 0 A-I  .0) 
d sin 0 

—A(sin- 	 +  sin  
d 

fip, (COS 1,) 
d cos 0 d cos 0  

Similarly for L_. 	The net result is written as an operator acting on 
the eigenfunction el" fi sz (cos 0); this operator has become, by the above 
manipulations, explicitly A-dependent (the original L ±  is not)4  

L ±(tt) = Te±4 	
d

sinTA Û. 	(4.7.17) 
d cos 0 

This explicit A-dependence implies that this operator is a raising (lowering) 
operator only if applied to an eigenfunction e ito f(cos0) with the same i.t. 
Consider L 2+  applied to e lAwfi A  (cos 0): if we use for L +  the above L +(/.1), then 
the first application leaves us with an eigenfunction with the new eigenvalue 
1.1 + 1 and the second application (if it is to be again a raising operation) 
must then be L +  (A. + 1). Generally L k+  eiAwfi A (cos 0 ) = L ÷(p. 	k — 
1). • L +(it. 	1)L +(2) eiAw f (cos 0). Exactly this circumstance has the lucky 
effect of producing a concise closed formula; one easily checks by working out 

3  Who is never quoted. 

4  We write one with, the other without, argument it. 

= 	
d 

sinl+A 	sin  -A Newfiti (cos 0`)]. 
d cos 0 



which requires that for all n > 1 

d2I+n  
(sin21  0) 	0. 

d21 +" cos 0 
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Li = L±(p. 1)L+0.0 and proceeding up to L that 

Lk+  [eit`v 	(cos 0)] 

Lk_ [eiAwfiA (cos 0)] 

= (_okeilcv sinki-it 	dk 
A 

dk cos 
sin-  0 

 

x [ei"fiA (cos 0)] 

dk  
= e-14  sink-A 0 

dk cos 0 
sinA t,  [ev fiA  (cos 0)] . 

(4.7.18) 

Note the (-1)k  which appears only in the first equation. Note further that 

(4.7.18) makes sense only with the argument eiAwfiA  (cos 0) (and not with any 

other argument-function g(0,0), because of the explicit A-dependence of the 
differential operator on the r.h.s. 

Having obtained the powerful tool (4.7.18) one can now start with Y1,  = 
c1 e''  sin' 0 and work down (using (4.7.9) to obtain the correct normalization) 

the whole ladder until one arrives at Finally one fixes ci such that the 

normalizing condition (4.7.10) is fulfilled and l'10(0, 0) is real and positive, which 

is the most commonly used phase convention (here we have anticipated that I 

is integer and that therefore p, = 0 appears in the spectrum). 

We leave it as an exercise to the reader to carry this through in detail, 

because we shall not follow this line but use below another, slightly different 

one, which emphasizes the close relation of the orbital momentum eigenfunction 
to the Legendre polynomials. 

4.7.3 Orbital angular momenta have only integer eigenvalues 

Before we proceed to calculate the Yi„„ we show that 1 must be an integer. 

From the general formalism of the angular momentum it follows that 

L il Yii = constant 

and then that 

0 for all n> I. 	 (4.7.19) 

We know, on the other hand, from (4.7.16), that 

Yu = constant el'w sin' 0. 	 (4.7.20) 

Inserting (4.7.20) into (4.7.18), where we put k = 21 n, we obtain on account 

of (4.7.19) 

d2I+n  
L2I+n  Yu = constant esin) 	

-En cos 
(sin')  0) 	0 

dv 	0 
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Putting cos 0 = x we find 

dzr+n 
— x 2 ) 1 ] =. 0 for all n > 1.  

This clearly requires 1 to be an integer. We thus have shown 

orbital angular momenta have only integer eigenvalues; 
therefore the  Ylm  are single valued. 

Note that in this proof no assumptions were made which were not already 
contained in the general formalism of angular momentum (namely (4.7.8) and 
(4.7.9)) and in the definition of orbital angular momentum (namely (4.1.4)). 
These two have, roughly speaking, the following consequences. 

(i) The general formalism requires L 2J+"Y11 	0, for all n > 1. 
(ii) The definition of orbital momentum requires L_ to be a differential 

operator; L 21+" contains an integer number of differentiations, even if 1 
is half-integer. 

(iii) If an integer number of differentiations is to make a function identically 
zero, then this function must contain only a finite number of integer powers 
of its variable: it is a polynomial. 

4.7.4 Spherical harmonics 

We shall determine the  Ylm  now in a way slightly different from that indicated 
in section 4.7.2; it is not simpler but exhibits from the beginning the relation to 
the Legendre polynomials /Moos 0), which we shall suppose the reader to be 
familiar with. We observe that for m = 0 (4.7.13) reads 

Y10  = fio (cos 0). 	 (4.7.22) 

Therefore, the operator L2  (4.7.7) gives 

	

1 d 	d 
L2 fio(cos 0) 	— sin — fio(cos 

	

sin 0 d0 	d0 

= 1(1 	1) fio(cos 0). 

By means of d/d0 = — sin 0 d/d cos 0 this can be written 

[

d  	sin2  0 	d 	1)] fro(cos 0) = 0. 	(4.7.23) 
dcosû 	d cos 0 

This is the differential equation for the Legendre polynomials Pi(cos 0); 
consequently we put 

fio(cos 0) = CI  PI (cos 0) 
	

dcos0)1 
(sin 0)

2/
. 

	

—  	 (4.7.24) 
2 1  1!  

(4.7.21) 



21/! 	+1 
f +1 1 (1 -01  = 

1.3 -5•••(2/ — 1) f i  
(rk  _ 

(21 ± 1) 1 • 3 5. •(2/ — 1) 

2 	21 /! 
• 
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Normalization requires (4.7.10) 

+1 
ro l'io  sin # d# dcp =IC/I 2  f P/2 (cos #) d cos° = 1. 

-1 

Putting cost = 	we obtain with (4.7.24) 

f +1 
Pr()Pr (4. ) 	= 2(-1+,1, )/ 1!1+,1; f +I  ddiv  (1 

_2)I —
7( 1  — 

Assume 1 > l' and integrate 1 times by parts: 

J 

+1 	 ol-Fr (_ of f +1 	
2) 

 I 
	, (1 	.2 ) 

	

d''
Pi(0 Pr (0 4 = 	, 	( 1 	 4 r  4. Li 	 21+1 i!r! 

This is zero for 1 > 1', since (1 — 2 )1' is a polynomial in  4  of order 21' which is 
differentiated 1 + > 21' times. This proves orthogonality for 1 0 1' (although 
this proof is not necessary, P1 being an eigenfunction of a Hermitian operator). 
For 1 = 1', we obtain for the 1.h.s. above the expression 

(_ l y f+1 	d2i 	 (2/)! 	+1 
(1

2 ) / 	( 1  01  4 = 	f, 
(1 _ or a.  

221 0 D 2  _ 1 	 22/ (n) 2 

( - 01  (2 ) ! 

Integrating 1 times by parts gives 

Hence finally 

+ 
 f

11 

pl2(0 	= 	
2 	21 /! 	(2/)! 	2 

(21 + 1) 1 • 3 5.. 42/ — 1) 2 2/(/!) 2  =  2/ + 1 

This gives 

IC/ 1 2  = 
2/4+ 1 

and since P1(1) = 1, we obtain Y10(0,0) = +1 by putting IC11= -./(2/ ± 	1)/4r, 
hence 

.1 21  + 1 	1/2/  + 1 (-1) 1  (  d  ) 1  
Yro = 	P/  (cos 0) = 	 sin21  0. 	(4.7.25) 

4n- 	 43r 	2/1! 	d cos # 

Next we obtain from this by application of L ±  all the other eigenfunctions 
Yhn . Since we have the factors 0(1 + 1) — m(m ± 1) in (4.7.9), the other 
eigenfunctions are automatically normalized. 
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If one writes 

   

1(1 + 1) - it(p,±1) = (IT p.)(1±tt + 1) 

one sees by going a few steps from p. = 0 to = ±m, that 

 

Yim 	
(1 
	Lm 

+ m)! 

1(1 - m)! 
= 	Lm 

(1 + m)! 

(4.7.26) 

We now can apply (4.7.18), noting that (see (4.7.22)) Y/0(0, (p) is of the 
type ei"' f (cos 19) with Az = 0. Hence, combining with (4.7.25), (4.7.26) and 
(4.7.18) we obtain5  

1(1 - m)! (2 1  + 1) im„, [(-1 ) 1 ÷m . 	cr+1 	
] (0, 	= 	 e 	 sin 0 	 sin2i  0 

(/ + m)! 4.7r 	2//! 	dm+I cos 0  

	

1(1 - m)! (2/ + 1) _,„,„ (-1) / 	/7, 	dm+i  
YL—m( 7, q) ) = 	 e 	sin 0 	 sin21  O. 

(/ + m)! 	47r 	2/l! 	dm -1- / cos 0  
(4.7.27) 

The function in square brackets is called the 'associated Legendre 
polynomial': 

dm 
Pr (cos 19) = (-1)m sin"' 0 	Pi  (cos 1.9) 

dm cos 0 
(_1)1+m 	dm+1 
	sinm  t, 	sin2/ 

21 1! 	dm+1  cos 

One sees immediately that 

Y/.-m (,, 49) = ( -1 ) m r,n (0  (P) 

(4.7.28) 

Pincos 0) = (-1)"' 
(/ - m)! 

Pin (cos 0) . 
(/ + m)! 

This result is a by-product of our procedure working from m = 0 in both 
directions to m = -/ and m = +1 with L ±  respectively. One can prove (4.7.29) 
directly by showing that 

0 	sin
v 
 = (-1 )" 

(- / m)! 
		sin"' 0 	

di+"' 
sin2i  O. 

di -m cos 0 	 (/ + m)! 	 cos 0 

5  We assume m to be a positive integer and write explicit expressions for — tn. Thereby we avoid 
the use of 1'ni,  which appears in the formulae of some authors. 

(4.7.29) 
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4.7.5 The phase convention 

As we have stated earlier in section 4.6, the definition of the factor 

,/j(j + 1) — m(m + 1) with the raising and lowering operators is not unique—

an arbitrary phase factor e la (i.m )  is left open. Choosing the positive square root 

without another e ia makes a definite choice as far as the relation among the 

eigenfunctions (p) for / fixed is concerned. 

The last choice is then the common phase of the entire family Yin, for / 

fixed. This choice is made by requiring Y,0(0, 0) to be real and positive, in fact 

according to (4.7.25) 

0) = 121± 
 1  . 

Ko(0 , 	 (4.7.30) 
4Jr 

This particular choice of the phase of the K„,(0, (p ) is the most common 

one. It is, however, not the only one in use. Sometimes it is advantageous to 

use other phase conventions. As should be clear from our discussion this is of 

no influence on the physical content of the theory and will never show up in 

any result of calculation when this result refers to observable quantities. 

We compare the choice of phase used here to that in a few frequently used 
texts, which the reader is likely to look up: our Ytm  have to be multiplied by 
e m) to obtain those of the listed references. 

It should be mentioned that in some of the references the notation Yl„,(0, (p) 
is not used. The difference in phase lies in that case in the definition of 

Pin (cos 0)—see (4.7.28). Also the normalization is not always the same, even 

if the same symbols are used. The best warranty against mistakes is to compare 

the definitions (4.7.29) and (4.7.28) to the corresponding ones in the other text 

one wants to use; these formulae are invariably given wherever extensive use of 

spherical harmonics is made. 

4.7.6 Parity 

Changing x to —x is changing cp into yo it  and 0 into IT -  Û. Hence from 

(4.7.27) 

Yi „,(7r — 0, (p  n) = 	(-1)m+l l'im  (0, (p) = (-1) 1  Km  (0, (p). 

Eigenstates 11m) of orbital angular momentum have definite parity: 

= (-1) 1 (xl1m). 
The Pr (cos 0) do not contain the factor e im9 , hence their 'parity' is 

P,tm( — cosÛ) = (-1) /+"'Pr(cos 0). 	 (4.7.31) 

4.7.7 Particular cases 

We list in table 4.2 the spherical harmonics for 1 = 0, 1, 2, 3, 4 and m = 0, ..., 1. 
For m  < 0  one uses (4.7.29). 
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Table 4.1. Phase factors e i".'" )  relating our definition of spherical harmonics YI,„ to that 
appearing in the listed references. In references denoted by • only PI„, are defined and 
we give the phase relating their definition to ours. In Handbuch der Physik (1957) the 
definition of Pi„, is the same as ours but the definition of Y I„, differs. 

Reference 

(- 1) m 	Bethe and Salpeter (1957) 
Jahnke-Emde (1948)* 
Handbuch der Physik (1957) 
Madelung (1950) 
Morse and Feshbach (1953) 
Landau and Lifschitz (1981) 

Bohm (1989) 
+1 	Blatt and Weisskopf (1959) 

Brink and Satchler (1968) 
Condon and Shortley (1953) 
Edmonds (1957) 
Galindo and Pascual (1990) 
Gasiorowicz (1996) 
Hamilton (1959) 
Kdllen (1964) 
Merzbacher (1961) 
Messiah (1970) 
Rose (1957) 
Schiff (1955) 
de-Shalit and Talmi (1963) 
Varshalovich et a/ (1988) 
Review of Particle Properties (1996) 
Abramowitz and Stegun (1970)* 
Gradshteyn and Ryzhik (1984)* 
Magnus and F. Oberhettinger (1949) 

The spherical harmonics of order one are particularly interesting. This is 
seen by rewriting them in terms of x, y, z. 

3 
Yii = — —(sin cosy) isin sin 0) = —

1 1
4 

3 	(x iy)] 
7r I_ .4 

	

8 	 r7r 

1 	3 
Yu) = — cos = 

	

1
3

47r 	r 47r 

= = 
[
-

1
(x — iy)] . 
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Table 4.2. Spherical harmonics for / = 0, 1, 2, 3, 4. 

1 = 0  Y00=  

I/ 3 
= — cos 0 

47r 
/3 . 

Yli  = — i  — 0' sin 0 i  
87r 

/ = 2  Y20=  [1(2  COS 2  /7 — i) 
47r 2  

Y21 = — —15  ei4' sin 0 cos 0 
87r 

1 r
e2  sin2  0 Y22 = — — i9  

4 27r 

—cost,)  
47r  2  

- 

4 47, 

 elv (5 cos2  — 1) sin 0 

—
11/
-
105 

e 2 '  sin
2 

0 cos 2  
4 27 

— — — 
1 /35 

e3I  sin3  0 
4 47r 

/ = 4  Y40=  —( COS4  — COS2  ± 
47r 8 	4 	8 

Y4I = — 
3 1/
-

5 
e'w (7 cos 3  — 3 cos 0) sin 0 

4 47 

3 If 5 
Y42 = 	— 	(7 cos2  — 1) sin2  

4 87r 

3 \/ 35 . 
Y43 = 	—47r e316°  cost  sin3  

3 135 . 
y44= 	—

47 
e4uP  sin4 # 

1 = 1 

/ = 3 Y30 = 

Y3I = 

Y32 = 

Y33 = 

That is, the components of the radius vector in the 'spherical basis' 

1 

r 	--°(x  + iY)  z 	) transform as ( Y
Yi
Y: lo 

1 	
) ( 

—(x — iy) 
-12 	

.—i 

under rotations and reflections. 

(4.7.32) 
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4.7.8 Further formulae 

In chapter 6 the representation matrices DO )  of the rotation group will be shown 
to be related to spherical harmonics. Formulae given there yield many more 
formulae for spherical harmonics which we do not list here. An excellent 
collection of formulae and theorems is found in Magnus and F. Oberhettinger 
(1949) and in Varshalovich et al (1988); numerical values are given in Jahnke-
Emde (1948) (see table 4.1). 

4.8 Spin- i eigenstates and operators 

If, in (4.6.13), we put j = 1, then m = ±-1 and the three matrices are 
immediately found to be 

, 	 1 t () i \  , 	 1 t 0 —i \ 7 	1 ( 1 	0 \ 
41  = 2 1 0) 42  = 	) 43  = / 0 -1) 	

(4.8.1) 
 

or 

J = (..r 	 (4.8.2) 

where 

(4.8.3) 
c  = (œl ' c2 ' c3)  = (0 0) ' (? —0i ) ' (01  —01)) 

is Pauli 's spin operator. We shall now write down the spin-1 operator for 
measuring the spin component in direction n and the corresponding eigenstates 
for spin 1 in direction ±n. We put 

n = (nl, n2, n3) = (sin 0 cos w, sin i5` sin w, cos /9). 	(4.8.4) 

According to (4.1.9) the component in direction n is 'measured' by the 
operator 

1 	n 3 	ni — in2) 
Ji, = n - J = In • a- = - 

2 ni ± in2 	—n3 

1 ( cos 0 	e-4' sin 1, 
= 2 e4  sin i, — cos a • 

(4.8.5) 

Similarly to what we did in section 3.3.3, we shall use the explicit form 
(4.8.5) to calculate Ua(11) = exp[—iq n • J] for the spin-1 case. 

We write in n • J = 1(i77 2n • J) and observe from (4.8.5) that 

(2 n • J)i12  = 1. 
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Thus all even powers of (2n • .7)112 are equal to unity and all odd powers are 
equal to (2n • J)112. The power series for the exponential then becomes 

cx-L,' (-in/2)" 
exp [- 2n • J1 = 

2 	1/2 k=0 	ki 
	 (2 n • J)j/2 

T.) 3 	ni - in2 =1 cos - - i 	 ) sin LI . 
2 	( n ni + in2 	-n3 	2 

In particular 

(4.8.6) 

(4.8.7) 

[U„(cpe3)]1/2= 	_ 
1/2 — 

(e-iwn 	o 
O 	e12) 

L3  

[Ua  (fie2)] 1/2 = [e (-i02) 1 1/2  =  
( cosCOS 

which gives by combination the matrix for rotations by the three Euler angles 
a, 13 and y 

[110 (a, fi, )/A112 = 

e-2 	-iy/2 -e -ia/2 • 13  iy/2 
COS —

2 
e 	 sin -

2 
e 	 (4.8.8) 

eia/2  sin LI  e 1 /2•  e1a/2  cos -
2 

ei Y/2  
2 

The eigenstates of the spin-operators (called `spinors') for the direction n 
are easily found from (4.8.1); we first choose an eigenstate of J3, namely the 
state 

1)= 
(i

). 	 (4.8.9) 

This already fixes everything, because the state 11, --1) is now completely 
determined: 

1 1 , - 1 )=J-11, 1) = ( 01 ) 	 (4.8.10) 

and the eigenstates of the spin operator in director n follow from the states 
1 1  ' 1 ) and 1 1  - 1 ) respectively by rotating them by means of [Ma, 0, y) 2 2 	2 ' 	2 
(4.8.8). In doing that we find, however, that the eigenstates with spin up 
or down in a given direction n depend on three angles—namely the three 
Euler angles—whereas the direction n contains only two, namely 0 and 
n = (sin 0 cosy), sin 0 sin cp, cos 0). Indeed the 'states with spin up and down 
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respectively in the yo, 6, y-orientation' are the following ones (see (4.8.8)): 

11 	1\ 	— -49J 	 y 
P92,0,y — Le 1  3 e 	2 e- i  J3 ] 1/2 (01 ) 

e-ir/2 C iw/2  cos(6/2) 
elw/ 2  sin(0/2) ) 

2' 	
2,y9,0,y =[e-199J3e—johe—lyl 3 .1112 

—e-lw/2  sin(6/2) = ely/2 
ei0/2  cos(6/2) ) • 

(4.8.11) 

Usually one puts y = 0, because the first rotation by y only rotates the 
z-axis in itself and does not affect the statement 'spin up or down in the z-
direction'. The second and third rotations (6 and (p ) bring the space into the 
position such that a pointer in the z-direction, moving with the space, would 
now point in the n-direction, but we are not forced to put y = 0 and we 
have to accept (4.8.11) as the general form. In fact, the two factors e-iY/2  
and ei Y/ 2  are nothing other than phase factors, which have to be tolerated, as 
only rays—not state vectors—correspond to physical states. The relative phase 
between the two states (4.8.11) cannot, however, be fixed arbitrarily, because the 
state 1 2 , 	0 ,  y must be transformed into 1-2 , — ) 92.0.y  by the rotated lowering 
operator ,1_( (p  , #, y) = 0 ((p, 	y)J_U0-1 (w, 0, y) and that fixes the relative 
phase of the two states: 

-1-(S 0, 1,, Y)il, 	= 	YV-U; 1 (V, Y) 

	

X[Ua (w, y) (?)] 
	

(4.8.12) 

	

= [Ua(V, Y) (0] = 	— D 99.1,, y • 

We add one more remark. 

	

One could think of defining only one state, say 	4.6.y , by a rotation 
and then obtaining the corresponding spin-down state by reversing the direction 
of the axis n. Reversing n —> —n is equivalent to the substitutions 

W ± 
—> 7r — 

y 	y', where y' remains currently undetermined. 
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The substitutions imply the following changes of functions: 

±e
1 (n12) e±i(w12) 

cos(0/2) --+ sin(0/2) and sin(0/2) 	cos(0/2) 
e±i(y72) .  

If we carry out these substitutions on (4.8.11) we obtain 

I II  ) 2 ,  2. ,p4.7r,n 	= e-i(( v+)/  -70/2) 	1, 

We see that we indeed obtain the correct spin-down state, if we choose 
y y' = 7r (mod 47r). This then determines y' = 7r - y; hence 

	

1 1 	 _ 1 1 

	

, 	 — 11 , 	11 ço.0,y • 

And now comes the surprise: one might think that by exactly the same operation 
carried out on the spin-down state, one would obtain the spin-up state. Wrong! 
We obtain 

11 , 	 = 	14+27.0.y = 	14.0.y • 	(4.8.13) 

There appears an extra minus sign (which is related to the double valuedness 
of the representation—see the next section). We therefore see that we cannot 
replace the use of the ladder operators 1±  by a prescription which only 
manipulates the angles, in other words, by rotations. Indeed, although the ladder 
operators act on some states as if they were rotations, they are basically different 
from rotations, as for instance .1_11,-i) = 0 shows: no rotation acting on any 
state can give zero. Explicitly one sees it clearly with the following example: 
the two matrices 

wa(ze2)11 = ( °1  —01 ) and [J_ ] 1  = 	130 ) 

have the same effect on the state ( I0 ): they transform it into the state (7). 

1 
But on (

o
) they act differently: Ua  (7re 2) transforms it into - ( 0) whereas 

1 
J_ annihilates it. 

4.9 Double -valued representations; the covering group SU(2) 

The rotation operators (3.3.17) and (4.8.6) or (4.8.8) are nothing other than 
representations of the rotation group, generally called D( ' )  and D ( I ) . There 
is one important difference between them, which is immediately seen by 
considering a rotation by 27r about an arbitrary direction: with rl = 27r (3.3.17) 
gives 

/17/(27r) = 1 
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whereas (4.8.6) yields 
exp [-27rin • J]1 = —1. 	 (4.9.1) 

This property is shared by all half-integer j representations. In fact these 
representations are not, in a global sense, representations of the three-
dimensional rotation group (as the operators Ai (71) of (3.3.17) indeed are), but 
they are representations of the group called SU (2), namely the two-dimensional 
unitary group with determinant +1, of which (4.8.6) and (4.8.8) are the original 
representation defining the group. The fact that by using the Lie algebra of 
the rotation group we have obtained two types of representation, one which 
is single valued and one which is not, need not disturb us: we know that by 
exponentiating the Lie algebra of the group we obtain a matrix group, which is 
locally, but not necessarily globally, isomorphic to the group one starts from. As 
we concluded from (4.8.6) and (4.9.1), there exist in SU(2) two elements, +1 
and —1, which correspond to the unit element of the three-dimensional rotation 
group 0+ (3) (0+(3) means orthogonal three-dimensional with determinant +1); 
therefore these two elements ±1 constitute a normal subgroup N of SU(2) 
and the factor group  SU (2)/N is isomorphic to 0+(3). That double-valued 
representations of the rotation group arise comes from the twofold connectedness 
of the parameter space: one sees easily when one characterizes a rotation by an, 
namely as points inside a sphere of radius 7r, that there exist two kinds of closed 
curve, those lying entirely in the interior and those touching the surface; the first 
type can be continuously contracted to a point, the second only under certain 
conditions: when the curve reaches the surface, it corresponds to a rotation nn; 
however,-7rn denotes the same rotation and therefore we can draw a continuous 
curve, which starts somewhere in the interior, reaches the surface, jumps to the 
antipodal point and returns to the starting point. It is 'continuous' and closed, 
but cannot be contracted into one point. It is easy to see that each closed curve 
can be deformed into either one or the other type; indeed all curves with an 
even number (including zero) of jumps to the antipodal points can be contracted 
into one point; those with an odd number cannot. Therefore the rotation group 
is twofold connected. Each group element g of the rotation group can thus be 
reached in two essentially different ways by continuous paths from 1 to g: by 
a path on which an odd number of jumps occurs or by a path with an even 
number of jumps. If one considers a new group with elements which consist of 
a group element g of 0+ (3) together with an indication of how g was reached, 
then to each element g of 0+(3) there correspond two elements of this new 
group because of the two classes of paths: 

Igo g : 
gi 

for paths with an even number of jumps 
for paths with an odd number of jumps. 

(4.9.2) 

The group with these elements is called the universal covering group of 
the rotation group. It is isomorphic to the group SU (2) and the half-integer 
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representations of 0+(3) are single-valued representations of its covering group 
SU (2). We may now alternatively consider the half-integer representations as 

• single-valued representations of the covering group SU(2) 
• double-valued representations of  0+(3).  

We shall choose the second alternative. It is clear then that we cannot throw 
away half of the representation matrices—we have to accept two, which simply 
differ in sign for each rotation. The possible occurrence of such representations 
up to a factor was already anticipated in our general discussion in chapter 2; 
see in particular the statement (2.2.7) and the following text, up to Wigner's 
theorem (2.2.11). 

4.10 Construction of the general j, m-state from spin-i states 

In section 4.8 we found explicit formulae for the spin-ii  states and their 
transformation properties under rotations. As j = 	is the smallest non- 
vanishing j-value, we expect that all Urn) states can be built up from spin-
states or, in a perhaps better formulation, that for any given j and m it should 
be possible to form such a direct product of spin-i states that the resultant 
state belongs to the subspace 'Him . Such a Um) state will then be a particular 
realization of the abstractly defined Um) state, just as the spherical harmonics 
K m (0,(p) are a particular realization of the abstract 1 1m) states. 

It is evident that such a realization, which (in contradistinction to the l'hn) 
covers integer and half-integer j, will prove to be very useful because we know 
so much about the spinl states. It is indeed possible to build up the whole 
theory of angular momentum from the two states g, 1) and 11, — which 
in turn are either abstractly defined (Schwinger (1952)) or realized by analytic 
functions (Bargmann (1962)) 6 . 

We shall consider now the construction of Ijm) as a direct product of spin- 
' - states, because it seems to be up to now the only known way to construct the 
general  1 jm) state in a form in which its transformation properties are explicit. 

We shall assume the orthonormal states g, 1) to be abstractly given; we 
know what happens when J÷, J_ or J3 act on them; that is sufficient. We 
introduce the following notation: 

• 11, 1) 

• 2' 	2 

6  Both reprinted in Biedenharn and van Dam (1956), where also the Jordan—Schwinger construction 
(presented in our chapter 7) can be found. 

(4.10.1) 
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and have with (4.8.2) and (4.8.3) 

.1+u+  =0 

=u+ 

 J_u+  = u_ 

J_u _  =0 
(4.10.2) 

J3u+  = 

J3u_ 

The behaviour under rotations is laid down in (4.8.8) but is currently not of 
interest. 

Let us consider 2p systems of j = 1, labelled by a superscript (i) = 
(1), (2), ... , (2p) and combining into a single supersystem. A definite state of 
the combined system is given if each of the 2p subsystems is in a specified 
state, either 4..)  or u (i) . Hence 

1(1, 2, ..., q)+(q 	1, ...,2p)_) 	u (4! )  0 • • • 0 4)  0 u (q +1)  0 • • • 0 u (2°)  
(4.10.3) 

is a definite normalized (because the u are normalized) state of the combined 
system, namely the one in which 

• the systems with label 1, 2, ..., q are in a state u+  
• the systems with label q -I- 1, ..., 2p are in a state u_. 

This state does not change if the labels of the u + -systems are permuted among 
each other and/or if the labels of the u_-systems are permuted among each other; 
it does change, however, if any label is exchanged between a u +-system and a 
u_-system: if, for example, the labels 1 and q + 1 are interchanged, then that 
means that in the new state system 1 has changed from spin up to spin down 
and system q 1 has changed from spin down to spin up; this new state is 
orthogonal to the old one, because (u (1) 1u!,12) = (ur 1) 1u (q+1) ) = 0 and both 
these appear as a factor in 

((q -I- 1, 2, 3, ..., q)+(1, q + 2, ..., 2p)_1(1,...,q)+ (q + 1, ..., 

Considering then all (2p)! permutations of the 2p labels in (4.10.3) and keeping 
in mind that permutations inside the sets of + labels and — labels do not give 
a new state, we see that there exist 

(2p)! 	_ (2p\ 
q!(2p — q)! 

different classes of normalized states, each containing q!(2p q)! states. States 
belonging to different classes are orthogonal to each other. A typical state is then 
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l(il, • • •, iy) +(i0-1 , • • ., i2p)—), where the set {I(i i , ..., ig )±(ig+i , • • ., i2p)-)) is a 
permutation of the numbers 1, 2, ..., 2p. 

We now show that each of these states is an eigenstate of J3 = 41)  +J 3(2)  ± 

• • • + J3(2P)  (where this sum has to be understood in the sense of our discussion 
in section 4.3, in particular (4.3.16) and (4.3.18): namely, .4")  acts only on 
subsystem n and is the unit operator for all other subsystems). Hence 

331 (i 1, • • •, iq)+(iq+1 , • • • , 12p) —) 

= {E4.)11(ii,•••, iii)+00-1, • • -, i2p)—) 

=  [q 	(2p — q)]I(i i , . . ., i 0 +  (iq+1 , . . ., i2p )_) 

= (q — P)I(ii , • • •, iq)-}-(ig+1, • • •, i2p) —) • 

Putting q — p = m, we see that I (6 , ..., ip+„,)+( ip+,,, ±1 , ..., i2p )_) is an 
eigenstate of J3 with eigenvalue m; the same holds for all the (2p)! states 
of this type. 

Next we consider the effect of 4")  on such a state. As f_r acts only 
on the subsystem n, it annihilates the state unless the label n occurs in the set 
I (ip+„,+1 , ..., i2p )_); if n occurs there, then this subsystem undergoes the change 

J_r (n)  = (n) U + 

In other words if n E (i p+m+1,  ..., i2p)_ then ./V transfers it to the set 
(it , • • •, ip+m)+: 

n, .. ., ip+m)+( ip+.+ 1, • • ., i2p)_) = 0 

J-(Fn) I(il, • • •, ip+m)+(ip+m+l, • . •• n, . • ., 

=  (i i ,  • • ., i p+,,,n)+(i p+m+1 , • • ., • • • , i2p)-). 

This shows that the resultant state is either zero or it is one of the states 
with eigenvalue m + 1 of J3. As this is so for each 4n)  , n = 1, ..., 2p, 

it follows that the operator 4 =  4  .L(f.2) ± ... ± .1_21,) acting on 
1(ii , • • •, ip+m)-1-( 1p+m+1, • • •, i2p)—) produces a sum of p — m different states 
with eigenvalue m + 1 of J3. This suggests considering not a single such state, 
but rather the sum over all (2p)! states generated from an arbitrary one by all 
possible permutations. Consequently we define the (not yet normalized) state 

1 
l(P, n1 ))s 	— EI(1, 2, • • •, p + m)+(P + m + 1 , • • ., 2P)-) 2p! p 

(UfF+M U PM  )0. 	 (4.10.5) 

Here S stands for 'symmetrized', P for 'all permutations of the numbers 
1, ..., 2p' and the second line represents 'completely symmetrized direct product 
of p + m states u +  and p — m states u_'. 

(4.10.4) 
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The normalization of that state is easily found by remembering that the 
terms of the sum group themselves into (2 p)!I[(p m)!(p — m)!] mutually 
orthogonal classes, each containing (p m)!(p — m)! equal states. Thus, taking 
a representative of each class, we can write 

MP(P In)!  l(p, 10)S = 	 E 'representative). 
(2p)! 

classes 

All states in the sum over classes are now mutually orthogonal. Hence 

m)!(P — m)1 2  	(2P)!  
((P, n1 )1(P, ni))s 

(2P)! 	J (P m)!(P — In)! 

so that the normalized states are (the subscript N stands for normalization) 

l(P, m))s 	
(2p)! 

.N = 	 l(P,m))s• 
(P m)!(P — m)! 

(4.10.6) 

We now show that these normalized states are indeed the usual states 1jm) with 
j = p. That is seen by considering the effect of J+  on the state (p, m)). 
If m = p, then in (4.10.5) no  u_  occurs and thus J+ I(p , p)) s  = 0. Assume 
m < p. Then 

	

JAP, ni))s = 	 2_, 	p + m)+(p + m + 1, •••, 2P)—) 
(2p)! p 

1 v, 
(2P)! 	

Pn) 1(1, 2, 	p + m)+(p + m + 1, ..., 2p)—) 

1 	2p 
E E 1(1, 2, ..., p m, n) +(p m + 1, 	2p)—) 

(213)!  P n=p+m+I 

1 	2p 

E E 1(1, 2, ..., p m, n) +(p m 
(2P)!  n=p+m+1 P 

Here E p  already contains all permutations, no matter what n is; hence 

1 
4 1 (P, m))s = (P m) ! , 1( 1 , 2, • • p +m)+(p +m + 1, • • 2P)4• 

Thus 

41(p, m)),s. = (13  — ni)1(13 , m + 1 )) s 
	 (4.10.7) 
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and with the help of (4.10.6) we find for the properly normalized states 

4I(P, m))s,N = 	
(2p)! 

m)!(P — m)! 

x(p —m)
1(p 	+ 1)!(p —m— 1)! 

(2p)! 	i(P,m + 1 ))s.N 

=,/(p +m +1)(p m)1(p,m + I))s,N 

= ../1)(13  ± 	m(m + 1 )I(P, m 1 ))s,N- 

Comparison with (4.6.12) shows that I (p, m)) s.N  is indeed a realization of the 
abstract state 1 1 m) with j = p. It is also properly normalized. We summarize: 

A properly normalized realization of the abstract 11m) state is given by the 
totally symmetrized direct product of spin-i states u +  and u_: 

1   (2f)! 
 (u+ i+m u_ 

(i +m)!(i — in)! 
 

(u )++m ui— m )o = E1(1, 2, ..., j n) + u m  ± 1 ,  ..., 2pm (4.10.8) 

1 
	2_,'14±(1) 	... u (4-i_ +m ) 	u2"m"... 0 
(2 f)!  p 

It should perhaps be remarked that the present mathematical construction 
is independent of whether or not such state vectors occur as state vectors in a 
theory describing physical objects existing in nature; in fact the Pauli principle 
requires that a system of spin-i particles is always in a completely antisymmetric 
state7—but this in no way prevents us from realizing the mathematical object 
1jm) by the above construction and using it to study explicitly its transformation 
properties under rotations. Note that in most cases the symmetrization is an 
unnecessary luxury and may be omitted (cancel 1/(2 j)!  and E p ). In chapter 
7 on the Jordan—Schwinger construction, further relevant information can be 
found. 

7  With respect to all its variables, not only spin. 
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ADDITION OF ANGULAR MOMENTA 

In this chapter we shall discuss the addition of angular momenta in the physicist's 
way; the relation of the present discussion to the group representations will 
become clear in the next chapters. 

5.1 The general problem 

We have seen in sections 4.2-4.4 that a system S may be thought of as being 
composed of several subsystems S.  Each of these subsystems has its own 
angular momentum J(i) ; the total angular momentum is J = E7=1  Jo. It is 
important now that the J(1)  of different subsystems commute and that for each 
J(i)  as well as for J the commutation relations for the three components are the 
familiar ones. In this respect also the orbital and spin angular momenta L and 
S may be considered to belong to two `subsystems'; namely we have shown 
in sections 4.1 and 4.2 that J = L S, that L and S commute and that the 
components of L and of S fulfil the usual commutation rules. Thus for the 
following the nature of the  J(s),  which are summed up to yield J, is irrelevant: 
there may be orbital and spin parts in any combination. 

In dividing up a system S into subsystems we arrive finally at an end when 
each subsystem is a single 'elementary object'. The meaning of 'elementary' is 
uniquely defined by convention; for instance in the Hamiltonian: to each pair 
of conjugate variables qi  , pi  one has to attach one 'elementary object'. As far 
as the mathematical structure is concerned, a macroscopic symmetric top may 
then be in this sense an 'elementary object'. 

Let us now consider the expression (remember (4.3.16), (4.3.18) and 
(4.3.20) in section 4.3) 

J = E Jo) 
i=1 

(5.1.1) 

for the total angular momentum (n is the number of 'elementary objects' plus 
the number of spins). It is at the moment irrelevant which—if any—of all the 
operators occurring on both sides of this equation commute with the Hamiltonian; 
this question enters only later. 

From the commutation relations of the components of each J(i)  and from 
the fact that different J(i)  commute, it follows that the set 

{ J(1) 2  , 41) ;  J(2)2  , 42) ; 	; J(n)2  40} 	 (5.1.2) 
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is—as far as the angular momentum is concerned—a complete set of commuting 
observables. This is so because it leads to the most detailed description we can 
hope for: the angular momentum of each 'elementary object' of our system is 
described as fully as possible. 

However, as (5.1.1) indicates, this is by no means the only possible 
description. J 2  and Jz  are two commuting operators which belong to another 
such set. We cannot add these two to our old set (5.1.2). Namely, although 
1, = E7= , 4i) commutes with all operators of (5.1.2), it is not worthwhile to 
add it, being simply a linear combination of operators already there. J 2 , on the 
other hand, does commute with each Pi)2 , but with no Jr, .... Namely 

	

j2 = E(,),(,),x(r) +  J(/),(r) 	Jzo jz(1') )  
Y Y 

gives after a short calculation 

[ J2 ,  jz(k) ]  2i (e) E .,y(J) _ 4k) E  .,2)) o 0 . 
Jok 	 fok 

Consider now the other mentioned set which begins with J 2  and  J. Which 
other operations can we add to these two? J, = E Jr commutes with every 
J (k)2 , since each JP )  does already. Likewise J 2  also commutes with every 
PO', since each single term of (5.1.3) commutes already. Hence 

[Jz,  j(k) 2 1 	[J2 J(0 2 	0 .  

This shows that we can add to the second set of commuting observables, which 
begins with J 2  and ./z  = E 40, the squares of each single operator J (1)2 . That 
gives a set of (so far) n + 2 operators 

j2 9  jz; j0) 2 9  j(2)2 9 	9  jow l 	
(5.1.5) 

whereas (5.1.2) contained 2n operators. Therefore we expect that we might be 
able to complete this set to 2n commuting (independent) observables. We shall 
do this now in the most general way, leading to the construction of all such sets 
containing J2  and Jz . We shall not, however, start with the set (5.1.5), but only 
with J2  and  J.  The X"' will be found automatically then. 

5.2 Complete sets of mutually commuting (angular momentum) observ-
ables 

The construction is easily performed by a graphical representation. Let us 
represent our system S = 	S (' )  by n little boxes in one row: 

a 

111111111111 	111111 

(5.1.3) 

(5.1.4) 
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Undivided parts, like a or b, will be called 'connected ensembles'. We may 
subdivide our system at any place into 

S  . so ,  + s (b) . 

Then 
.1  = Ja = *lb- 

We now know from (5.1.4) that 4 and 4 commute with J2 , ./, and among each 
other (since they belong to different parts of the system). This first division gives 
us (besides J 2  and J, which we have from the beginning) two new operators 
for our set: 4 and  J.  

Next we divide S (a)  in an arbitrary way: 

b 

11111 	111111111111 
J = Jai ± 42 + .11,- 

Again we know from (5.1.4) that Ja2„ 4 and 4 commute with each other, 
with 4 and with J2  and  J. Hence the two new operators 4, and J.23, may be 
added to our set. 

Proceeding in this way one sees that every new subdivision yields two new 
operators, which commute among themselves and with all those constructed so 
far. Each such subdivision will be marked in our graph by a new division line. 
We will invariably end up with the same final pattern, whatever sequence of 
subdivisions we choose, namely with this one: 

1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	I 
In this final pattern are then all the possible n — 1 division lines. A sequence 

of subdivisions ending up with this pattern cannot be continued and will be called 
a 'complete sequence of subdivisions'. It leads in fact to a complete set of 
commuting (angular momentum) observables. Namely, the n — 1 subdivisions 
have yielded altogether 2(n — 1) operators of the type 4 (a indicating any 
connected ensemble) which all commute among each other and with J2  and 
.7, . Including J2  and ./, , we have just 2n commuting observables; this, as 
we know from the set (5.1.2), is the maximum number we should expect. By 
whichever sequence of subdivisions we proceed, we will necessarily find j(»2, 

 J(2)2  J(" )2  (no one missing!) among our 2n commuting observables. 
We have seen that by any sequence of subdivisions we obtain a set of 2n 

commuting observables and we have said that this number 2n is the one we 
expected for a 'complete set', but do we have a guarantee that we cannot add 
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any more (angular momentum) observables which commute with the 2n already 
there and which at the same time are not simply functions of them? That is, can 
we show that there are at most 2n observables in each set? And furthermore, 
can we say when two sequences of subdivisions will lead to different sets of 2n 
observables? We shall deal with the last question first. 

We call two sequences of subdivisions different, if they lead to two sets of 
commuting observables which are not identical. 

It is clear that we may subdivide in different orders and yet obtain the same 
set of operators. Let a certain sequence of subdivisions be given. We show the 
consecutive divisions and give each new division line a number. This is on the 
left-hand column of the following graph; the right-hand column shows another 
sequence which leads to the same operators: 

and so on 

As one sees, it does not matter which connected ensemble of blocks is next split 
into two; it does, however, matter how each such ensemble is split, i.e. where in 
a connected ensemble the next dividing line is drawn. Namely, let the following 
graph correspond to any connected ensemble A occurring in a sequence and let 
us subdivide it twice differently by one further dividing line (left- and right-hand 
side): 

A 

a 	b 

JA  .1,+ J, 

  

A 

 

   

  

U1210121E11211 

 

  

a* 	b' 

A=  a' + b' 

     

These subdivisions contribute 
the commuting observables 

JA2 j a2 jb2 !A' , J.? , 

We see that they contribute different operators to our set of 2n commuting 
observables; thus these two sets are different. Furthermore, the two sets as a 
whole will no longer commute since, e.g., 4 and 4, do not commute. This we 
shall show now. We draw the two different subdivisions in one graph, where 
we distinguish the two division lines (one pointing up, the other down): 
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a 

3 4 5 6 7 

a 	 b' 

We see that a' and b have some boxes a in common, whereas a and b' have 
nothing in common. Therefore 4 and  J, commute, wherereas the boxes 
a will spoil the conunutativity of J1, and  J.  

We write 
Ja 	b = 

ja2,  = ja2 ja2 + 2  ja  ja  

= + + 24 • Ja . 

Evaluating the commutator [4, 4] we can, step by step, eliminate operators 
which commute with what is on the other side of the comma. Operators sharing 
no common boxes commute. Thus 

[J a2„ 	= 	+ ± 2Ja • Ja, 

= [J1, 2Ja  • Ja , + Jc! ± 24 • 4] 

= [J.!, + 	Ja , .1c! ± 24 • 4]1 
= 2[Ja  • .1,, Joi ± 24' • Jai 

= 4 E Jaj Va..); J 	Jb' ,k 

,k,I cycl.) 

(since JOE  commutes with Ja  and Jb). Hence if a and b' are different systems 

Ja) 2 	02 1 = 4ii Jofx (Jay Jtvz - JazJiiy) 

± Jay(JazJilx — fax ft/z) 

▪ Jaz(J ax y Jay J1 1 x)) 
0 O. 

We have seen that two complete sequences of subdivisions which lead to different 
sets of commuting observables lead in fact to two sets which do not commute 
with each other; i.e. it is always possible to find a pair of non-commuting 
observables such that one member of this pair is taken from the first and the 
other one from the second set. 

This then also settles the question of completeness, the question being 
whether it is possible to enlarge (in a non-trivial way) such a set of 2n commuting 
observables. The answer is no; these sets are complete. The argument goes as 
follows: the equation below (5.1.3) says [J2, Jr)]  0 O. The same will be true 
for JP and ./3 1̀ ) •  Hence no operator of this component type has a chance to enter 
into our system of 2n commuting operators (which contains J 2 ). The only type 

(since [4, Ja,i] = 0, i = x, y, z) 

(5.2.1) 
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of operator which may possibly enter is of the square type  J, where /3 denotes 
any subsystem. Now, either in a given set of 2n commuting operators this J/23. 

 is already contained, so by adding it once more to the set nothing is gained; or 
this J2  is not contained in the set; in that case the connected ensemble /3 of 
boxes does not occur in the complete sequence of subdivisions leading to the 
given set. Then there must be in this sequence at least one connected ensemble 
/3' which spoils the occurrence of 13 by splitting /3 up and sharing some boxes 
with it (without being contained in or containing p) ;  graphically 

13  

13' 

Then [4,, 4] 0 0 according to (5.2.1). 
We have thus found the following result: 

If a system S can be subdivided into n subsystems (n = number of 'elementary 
objects' + number of spins), then the total angular momentum operator is 

J = E jt  

i=1 
(recall section 4.3). 

There are different complete sets of commuting angular momentum operators 
available, of which one important one is the 'uncoupled set' 

j(1) 2  j(1) ;  j(2) 2  j(2) ;  ...; J(n) 2  f(n)} .  

The other ones which are of importance are those which contain the square J 2 
 and the z-component  J of the total angular momentum, and besides these two 

also all squares J(1)2 (i = 1, 	, n). They will contain a further n — 2 squares 
... of angular momenta of subsystems Sa , Sfi , ... of S; the complete set 

has the form 
( J2 ,  jz,  J(1)2 ,  J(2) 2 , 	J(n)2 ; 	.}. 

Each of these sets is generated by a certain complete sequence of subdivisions 
of S and each of these sets will contain the same first n + 2 operators 
J2 , Jz , J(1)2  ..... J (" )2 ; they differ from each other by the remaining ones 
J fi , 	Each of these sets contains 2n observables and is—as far as angular 
momentum is concerned—complete. 
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All possible complete sequences of of subdivisions' of S will generate 
all possible complete sets of commuting (angular momentum) observables 
containing J2  and  J.  

There will of course be other complete sets of commuting (angular 
momentum) operators besides those constructed above, but they cannot contain 
J2  and ./.,; therefore they are not of any importance. (One could for instance 
make any arbitrary (non-complete) subdivision S = Sa, Sa, Sap  and 
then treat each Sa , separately: each would be described by its own complete set 
of observables (either of the uncoupled type or containing Sa2  , J„, z ) and all these 
sets may be unified into one set of again exactly 2n commuting operators which 
form certainly a complete set, although in general it is of no use.) 

From our considerations it follows that there are several ways to construct 
complete systems of commuting angular momentum observables. Each of these 
will lead to a complete description of the states of the system by 2n quantum 
numbers; such a state will have the form (as far as angular momentum is 
concerned) 

= lqi, 42, •••, q2n) 

and the ensemble of these states I  iq i , 	, q2n )} will form a complete basis in 
the angular momentum part of the Hilbert space. 

Choosing another possible complete set (another 'coupling') of commuting 
angular momentum observables will lead to other states of the form 

l(P) = 	r2, ••• r2n) 

where the ri  will in general have a different physical significance from the 
qi  above. The ensemble of these states  Ir1 , r2, .. • , r2n)1 will form another 
complete basis in the angular momentum part of the Hilbert space. 

Between such bases, belonging to two complete sets (two different 
'couplings') of commuting angular momentum observables, there must exist a 
unitary transformation. We shall study these transformations in the next sections. 

As we have seen, the complete sets of commuting observables are generated 
by complete sequences of subdivisions. As each single subdivision splits just 
one subsystem into two new ones, it is clear that the combination of two angular 
momenta is the basic operation; combination of more than two involves then 
only repeated applications of this basic operation. 

For two angular momenta there are only the two complete sets 

I J(1)2 ,  jz(1).,  J(2)2  , jz2} 

j(1)2 ,  J(2) 2  J2 ,  jz  

1 

 

the 'uncoupled' 

the 'coupled'. 

All possible complete sequences of subdivisions of S' means, of course, that we not only consider 
all (n — 0! possible sequences of division lines, but also all n! ways of associating n systems with n 
boxes. The resulting n! (n  —I)! complete sequences generate certainly all possible sets of commuting 
operators (containing J2  and Jz ), but these sets will not all be different from each other. 
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Studying the unitary transformation C between the corresponding states leads 
to the Clebsch—Gordan coefficients as their matrix elements. For more than 
two angular momenta there will be more sets and more unitary transformations 
between the different couplings. The matrix elements of these transformations 
are called 'recoupling coefficients'. They can be expressed by sums over 
products of Clebsch—Gordan coefficients; this is to be expected from the fact 
that repeated coupling of two angular momenta generates any desired coupling 
scheme. It also is to be expected that the transformations between different 
coupling schemes become rapidly more complicated with growing numbers of 
subsystems. 

The recoupling coefficients for three angular momenta are the so-called 
Racah coefficients and/or 6— j  symbols. A certain type of recoupling coefficient 
for four angular momenta is called the 9 — j symbol, etc. The importance of all 
these transformations and different sets of observables arises from the fact that 
in general not all these sets commute with the total Hamiltonian. In a reaction 
(scattering, production) the initial and final states will consist of free particles 
(asymptotically). These are most frequently described and experimentally 
analysed by the set {J (1)2 , J (l) ; J (2)2 , ./z2 ; ; J(n)2 , 4" ) }. This set will almost 
certainly not commute with the total Hamiltonian. The Hamiltonian will, 
however, commute with J2  and Therefore a complete set of the type 
{J2 , Jz ; J (1)2 , ...) might be adequate (but even this need not be, since sometimes 
H does not commute with J(1)2 , J(n )2 ). Then the S-matrix elements will be 
labelled by the eigenvalues of J2  and others, the asymptotic states by those of 
J()2  and 4—hence we must know the unitary transformation between these and 
perhaps other types of coupling. The j — j and L— S couplings are examples 
of importance in nuclear physics. 

5.3 Combining two angular momenta; Clebsch—Gordan (Wigner) 
coefficients 

5.3.1 Notation 

There are many different notations in use and we are going to introduce a further 
one; it is, however, almost the same as the notation used by many authors. 

The point is this: whichever set of observables 

{J (1)2 , 4 1) ; J (2)2 , 41 or {J (1)2 , J (2)2 ; J2 , ./z) 	(5.3.1) 

we might use, there are always just four quantum numbers. As long as the 
general state is written down, everything is clear. We might for instance write 

Iii, mi,j2,m2) and 	In) 	 (5.3.2) 

for the states corresponding to the two sets, and everybody would know 
which states belong to which operators. Also the Clebsch—Gordan (or Wigner) 
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coefficients, which are the scalar products between these states 

"1 1,  f2  m21.ii,../2, 	M) 

would be quite obvious. The trouble is that one frequently uses these expressions 
with numbers or definite values replacing the symbols, and then what does 

11, 0, 1, 1) or 	/1/2.i2) 

mean? These states can occur in both representations, but designate quite 
different things there. 

We shall adopt the following rules: 

(i) of a pair jm belonging together, j is always written first; 
(ii) in the coupled representation  Ji J2 come before jm and the coupling of h 

and j2 will be symbolized by parentheses around h and j2; 
(iii) in the uncoupled representation no parentheses occur and the sequence is 

iimi i2m2; 
(iv) we do not separate the quantum numbers by commas, except if the comma 

helps to clarify the meaning; 
(v) the Clebsch—Gordan coefficients (hence forward called CGCs) have the 

property that (see (5.3.8)) 

	

(iimii2m2 1 (iW i rn) = Bid ; shi;smi+.2.. 	
(5.3.3) 

x(fim,j2mzI(j,f2)jmi + m2). 

Therefore several symbols are redundant. We shall omit (ji h) from the 
coupled state appearing in the CGC (but only there). It will be understood 
that (j i  j2 ) could always be added and, if so, then in exactly the same 
sequence as in the uncoupled state. 

We shall write, according to these rules: 

Vii  j2)fm) 	in the coupled representation 
m ../2m2) 	in the uncoupled representation 	(5.3.4) 

for the CGCs. 

As the reader might frequently encounter other notations, we collect some of 
them in table 5.1. 

Let us, with a few words, indicate the link between this formal question 
of notation and the considerations in section 4.3 (direct product spaces) and 
section 4.5 (irreducible representations; Schur's lemma). It will be seen, then, 
that our notation expresses the mathematical content of what we mean by 
'addition of two angular momenta'. 

The state 	j2m2) is nothing other than the direct product state 

lf, mi )®1i2m2) and differs from it in notation only by omission of )01; in 
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Table 5.1. The counterpart of our CGC Ulm i.i2m21.im) in the quoted references. 

Blatt and Weisskopf (1959) 

Condon and Shortley (1953) 

Edmonds (1957) 

Fano and Racah (1959) 

Galindo and Pascual (1990) 

Hamilton (1959) 

Kallen (1964) 

Messiah (1970) 

Rose (1957) 

de-Shalit and Talmi (1963) 

Varshalovich et al (1988) 

Wigner (1959) 

Ci12 (jrn:min72) 

_him) 
and 
(il i2nIM211 171 ) 

(Jim I i2M2Ulf2 in) 

mimim2) 
and 
(f 

= 	minl2m) 

(iihmim2lim) 

mi;  12  m2Ii, m) 

(ii hmim2lim) 

C(j1j2j; mim2m) 
C(iii2j; mi, m — mi) 
C (jii2i3; m1rn2m3) 

a m  m1 m2 

and 
Ulm I ign2lili2iM) 

Cqm  • 
.11"1.12"2 

11.12 
Pnlm2 

particular the quantum numbers appear in the same order. The states I m j2m2) 
thus span a certain invariant subspace, namely the product space j2  = 
it, 0 1-t 2  = 71i2i1 • This space gives rise to a representation of the Lie algebra 
with operators (4.3.16): 

j 	j (ii) ®j (h) 	to  ® j(i) 
	

(5.3.5) 

and as J2  commutes with each component of J, the representation is fully 
reducible (see (4.5.10)) and the invariant subspace "Hm h splits up into a direct 
sum of irreducible invariant subspaces: 

= 	Hi2 = E 	(5.3.6) 

All this will be carried out in detail. The states spanning the irreducible 
subspaces 7-ti cannot simply be written Lim), because one has to indicate that 
they are subspaces of the particular subspace  1tj 1 j2 (it  cannot be assumed that the 
same quantum numbers j and m could not appear also in another product space 
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fact they generally do appear); that is why we should write these states 
as i(j1j2)jm) which means a basis state of the invariant subspace Hi  E 1I f12 . 

Here we remark that the states 1 (Ii  /2)jm) and ( ( j2j1 )jm) are not the same; 
the order in which the two angular momenta are coupled shows up in a phase 
factor which is fixed by convention. (See (5.3.25) and subsection 5.3.5, equation 
(5.3.33)). 

Finally, the CGCs are written as the scalar products between these states; 
only the (1 1 12 ) on the right has been omitted as ji  and 12 appear already on the 
left. 

53.2 Definition and some properties of the Clebsch—Gordan coefficients 

The two sets of commuting angular momentum operators 

j (i) 2 ,  41) ,  j(2)2, ./(7) i—} and  {,J(1)2  j(2) 2 9 j2, 	} 

have the three operators ..7 (1)2 , ../ (2)2  and ./z  in common (although in the uncoupled 
set jz(1)  and 42)  are even separately diagonal). 

Consequently, the two sets of eigenstates 

m .i2m2)1 with j1 ,12  and m 1  + m2 = m fixed, 
mi or m2 free to vary 

and 

{1(.02)./m)} with ji , j2 , m fixed, j free to vary 

span the same subspace k i,„, of the Hilbert space H. The corresponding 
projection operators are 

Piihm = E 	 = E 
mi -I-m2=m 

Leaving m free to vary, these sets span the subspace 'Hjo, of 7-1. It is inside 
only that we have to consider the unitary transformations between the two 

bases: because j1 j2 m are common quantum numbers of both sets of operators, 
it is not allowed that in the transformation 

lc/I./Dim> = E liftriiim2)(i;miini21(./02)/m) 

any state I j;m i  j2'm2 ) with j; 	4 0 j2  and m 1  +m2  m appears on the 
right-hand side. We thus conclude the first property of the expansion coefficients 
(Jim  132m21UIJ2)Jm):  

(5.3.7) 

i; =  fi  
(i;m1.i2m21(iih)./m) =  O 	unless j21  = j2 	 (5.3.8) 

mi + m2 = m. 
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Therefore, in the non-vanishing coefficients, ji  and j2 would appear twice; two 
of them and furthermore either m1 or m2 or m are redundant. As laid down in 
(5.3.4) we shall omit (fi f2) and simply write Ulm 1 hm2lim)• 

It follows from (5.3.8) that the transformation 

1(.02)./m) = E iiimihni2)(iimihm2lim) 	(5.3.9) 
ml+m2=m 

and its inverse 

iiimii2m2) = E luoDinoumiiimihm2) 	(5.3.10) 

involve only summations over m i  and m2 such that m 1  + m2 = m and over 
j (with limits to be specified later) respectively. The coefficients of these 
expansions are called Clebsch—Gordan or Wigner coefficients: 

(iimi.i2m21./m)• 	 (5.3.11) 

We now prove that  (fi  and j2 being given) j can vary only between I fi —  321 
and j i  + j2. 

(i) In any family of states I fm),  m varies between, and indeed assumes, all 
values from —j to +j (integer steps). Hence, if we know the maximum 
possible m, then j cannot be larger; otherwise there would be also a larger 
m value. Consider now (5.3.9) and (5.3.10). The maximal values of m i 

 and m2 are fi  and j2 respectively; m = m1+ m2 implies max(m) = fi+ /2. 
This then is also the maximum value of j. 

(ii) As the possible m-values differ by integers, the same holds for the allowed 
j-values: 

:II + h ? (i = ii + h — k)a-ii + h — n; k = 0, 1, ... , n 

where n is to be determined. To each of these j belong 2 f  + 1 states with 
j > m> —j, so that the total number of states 1(jij2)jm) is 

n 
E[2(il + j2 — k) +11= (n + 1)(2 ji + 2j2 + 1 — n) = (2./1+  1)(2f2+ 1) 
k=0 

where the last equation holds because the total number of states is the same 
in both the coupled and the uncoupled set. One sees easily that n = 2 ji 
and n =  2f2  are solutions. Hence 

..12 — il 
itnin = fl + h — n= 	 whichever is > 0. 

.ii — /2 

Therefore  fi + j2  > j > Iji — h . The consequence of this is that in the 
transformations (5.3.9) and (5.3.10) no j-value outside I fi  — f21' ... , fi  +j2 
can occur. The CGCs must automatically take care of that. 
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Combining this result and the one of (5.3.8), we state that 

(.iimi.i2m21./m) = 0  
unless n/1 	m2  =  m,I fl 	f21 	f 	fl 	f2 
i.e. A(ii.h./) = 1 
and, of course, 1 ml <f,  imil < fi, 1m2I 	J.  

The A-symbol is shorthand for Ifi  — f21 < j < 	j2 . It says  fi'  f2  and 
j must be such that they could be the three sides of a triangle: 

A(a b c) = 	
if a, b,c can form a triangle 
otherwise. 

This A(j i  j2j) is always understood, although we shall not write it always. 

5.3.3 Orthogonality of the Clebsch—Gordan coefficients 

The CGCs are elements of a unitary matrix C; the condition CIC =  CC = 1 
leads to certain orthogonality relations (or sum rules) if written in terms of the 
matrix elements (ii mi.i2m2lim)• 

The explicit form of these relations is most easily written down by means 
of the projection operator onto 'Hjii,„, which exists in two forms 

Piihm= E 
m,+.2=n, 

(uncoupled representation) 

(5.3.13) 

Pi1,12n,  = Ei(hi2)im)«./02)imi 	(coupled representation). 

We have underlined the summation quantum numbers to exhibit them more 
clearly (we shall use this device on other occasions too). That these two are 
identical has been discussed in section 5.3.2 above. Inside the subspace '1-thi2n 

 these operators are just unit operators. 
Now the orthogonality relations for the CGCs are immediately written down 

by introducing the 'unit operators' (5.3.13) into the orthonormality relation of 
the state vectors (j i  j2m fixed) 

((fi./2).rm'l (fi i2)/m) = Si'j Beni 

= 

We introduce the first P into the first and the second P into the second 
orthonormality relation and obtain immediately (omitting the symbol (jii2) 
according to our convention (5.3.4)): 

E 	 8.0 6  
MI -,-M2=M 

(5.3.14) 

E u1illign'21ino(jmiiimihrn2)=6..,6„e2 m, 

(5.3.12) 
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(summation variables underlined). If instead of Pi  ,h„„ we introduce the 
projection phi, onto  Ji  f2 :  

= E iiimihm2)(iimihm21 = E 
mon2 	 In 

(5.3.15) 

"i112  = E 	= E Pi, hm 

into the orthogonality relation of the states, we obtain 

E 	 = 
El 11 2 

E ui m'ihne2ii lLo(J m ui nz lign2) = 	Sne2M2 • 

	 (5.3.16) 

M 

5.3.4 Sketch of the calculation of the Clebsch—Gordan coefficients; phase 
convention and reality 

We draw a figure in which for fixed j, = 2 and  12  = 4 all 45 states are 
represented by dots in the (m,m2)-plane and in the (jm)-plane for the uncoupled 
and the coupled set respectively. We observe with its help how the states of 'Hi, h  
are mapped from the uncoupled set Ijim i.i2m2) onto the coupled set i(j 1 12)jm) 
and vice versa. 

In figure 5.1 we have indicated which points belong to the same subspace 
'1-{j,h„,. Obviously, the unitary transformation C which maps  flj i j2 m  onto itself 
will represent any one given state (e.g. one of the circles 0 in figure 5.1(b)) as 
a linear combination of all states of the corresponding subset (e.g. all circles 0 
in figure 5.1(a)). 

We see immediately that there are two subspaces 7-li, j,„„ namely with 
m = j, +  12 (indicated by 0) and m = — ji  — h (indicated by * (star)) which 
consist of one single state each. Here the unitary transformation C consists at 
most of multiplication by a complex number of modulus 1. 

We see that the phase is arbitrary. The usual convention is then to fix it to 
be +1 for the 0-states. Hence the CGC is +1: 

l(ili2), 	i2, 	i2) = lilili2i2) 
( ll./1121'21h 	32, 	+12) =1. 

This convention, however, already fixes uniquely all those CGCs belonging to 
the states of the column below 0 in figure 5.1(b), for which j = j1  ± h. The 
calculation of these CGCs is achieved by the lowering operators 

j_  = j(i) 	j(2) 	 (5.3.18) 

formed according to the rule J = J(1)  + J(2)  (see (5.1.1)). 

(5.3.17) 
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in2 

a) 
	

b) 
liand2m2> 
	 I (idOim> 

Figure 5.1. States belonging to the same subspace 1-thh„, in the two sets are drawn with 
the same symbol for m = 6, 5, 4, 3, 2, —6. 

Applying J_ to 1(1112)11 +12,11 + 32) repeatedly, we descend from this 
state step by step down the column below 0 in figure 5.1(b) until we arrive at 
*, namely 1(1112)11 +12, — 11 — 12). 

Applying J_ = J (1)  + J (2)  to III 111212)  repeatedly, we generate those 
linear combinations of the states of figure 5.1(a) which make up the states 
1(1112)11 +12, ”O• 

Thus, applying J_ in figure 5.1(b) three times to 0 will give 0; applying 
J (1)  + J (2)  in figure 5.1(a) three times to 0 will give a linear combination of all 
the states 0 on the diagonal line; in fact exactly that linear combination which 
is equal to 1(1112)1, / 3). 

According to (4.6.12)2  

.1-1(1112)1 m ) = ../j (1 + 1) — m(m — 	m — 1) 

JD 111 m 112m2) = N/11(11 + 1) — m (in — 1 )111, mi — 1 ,12m2) 	(5.3.19) 

-e-2) 1/imi12m2) = N712(12+ 1)— m2(m2 — 1 )1iim112, m2 — 1). 

Thus applying J2)  + J_(2)  to any state Iiimihm2)  generates a superposition of 

2  The reader should recall that here JO )  really means J (1) 01 (2)  etc. See section 4.3, in particular 
(4.3.16) and the discussion following it. 
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two states: 

[J(I) + J (2) ]Ijimii2m2) = 	+ 1)— mi(mi — 1)Iiimi —1 l2m2) 

-E.112(32+ 1 ) — m2(m2 — 1 )iiimihm2 — I). 
(5.3.20) 

As all these superpositions involve real positive coefficients (the square roots 
in (5.3.20)) it is clear that by repeated application of J_ and of J (I)  + J (2)  
respectively only sums of products of these real, positive roots can occur. Thus, 
n-fold application of J_ to (5.3.17) leads to 

Jin) 1(il i2),  3 1 	± 12) = (J (I) 	J)Iji ii12)2) 
	

(5.3.21) 

with real positive coefficients on both sides. On the 1.h.s. n square roots multiply; 
writing N/j(j + 1) — m(m — 1) = ,./(j m)(j —m+ 1), we obtain 

•e) 1(ii:12)ii) = 	(2i)In! 	l(3132)/, — n). 
(2j — n)! 

Putting j — n = m yields 

(i + ?it)! 	. . 
1(.02),/m)=  

In the particular case (5.3.21) we must put j =  fi  h and obtain 

(5.3.22) 

    

I Ch 	+ h, m) = 	
+ h + m)!  ( P ) 	J (2)-ii +h —"I lit /2/2)• 

+ — m)!(2/1 + 2i2)! 
(5.3.23) 

We could now work out the r.h.s. by means of the binomial expansion of 
+ J (2) )-h+i2-'n and (5.3.19). Finally we could compare the coefficients 

with those of the general formulae 

1(1112)11 + /2, m) = E iiimihm2)(finnign2iii + h,m) 
n11 -1-M2=M 

and thereby read off the CGC (it mii2m2iii + /2, m). We shall not do that now 
in detail. We only note that from the discussion between (5.3.20) and (5.3.21) 
it follows that for arbitrary ml, m2 and m 

Ulm 1/2m21/1 + /2, m) is real and  >0. 	(5.3.24) 

Now we return to figure 5.1. We have just (in principle) calculated CGCs 
belonging to the states (f 1./2)31 + 32, m) which make up the column farthest to 
the right in figure 5.1(b). We now do the same for the column next (left) to it. 
The state on top of it is /2), /1 h — 1, ji h — 1), indicated by +. There 
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is another one, also indicated by -I-, which belongs to the j =  fi  j2  column 
which has already been settled. Both these + states in figure 5.1(b) are linear 
combinations of the two ± states in figure 5.1(a); and since there are (except for 
an arbitrary phase) only two orthogonal linear combinations possible (of which 
one is already used), there remains only one linear combination for the top state 
± of the second column. The phase, however, is arbitrary and we must again 
fix it by convention. Once this is done, all other states of the second column 
are found by repeated application of J_ to the highest state -I-. 

Obviously, when we arrive at the top state of the next column in 
figure 5.1(b), two linear combinations of the three possible ones are already 
used up and the only remaining one is fixed (up to an arbitrary phase). Its phase 
will be agreed on by convention and then by repeated application of J_ all states 
of that column can be calculated. 

This situation is found each time when we wish to determine the linear 
combination of a state on top of a column in figure 5.1(b), i.e. a state of the 

form  fi  ../2././)• All possible mutual orthogonal linear combinations, except one, 
have been used up, and for this last one we must only fix the phase; then the 
rest is uniquely determined. 

We fix the phases for all the top states (m = j) of figure 5.1(b) by the 
following phase convention: 

In the linear combination 

= E 
(5.3.25) 

the CGC with the highest m i  is real and > 0: 

real >0.  

That is, in the linear combinations making up the top states of figure 5.1(b), 
the states of the rightmost column (m 1  = j1 ) of figure 5.1(a) always enter with 
a positive coefficient. 

It is this phase convention which causes the two states 1(ji j2)jm) and 
)./n! to differ by a phase factor. This will be seen in detail in 

subsection 5.3.5. 
This convention—but not our notation!—is used by many authors (see 

table 5.1). 
This convention and the phase convention for the ladder operators (laid 

down in (5.3.19)) fixes the CGC uniquely. In (5.3.19) only real square roots 
occur and our convention (5.3.24) does not imply other than real coefficients for 
the linear combinations making up the states I fi  12jj). Therefore all CGCs are 
real in this phase convention: 

= 	 (5.3.26) 
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5.3.5 Calculation of 	— m1  iii) 

It is relatively easy to calculate explicitly the coefficient 	— mi I fi)  of 
(5.3.25), from which the others belonging to the same j are found by application 
of J_ to the relevant states. We proceed as follows. 

We apply If. = 41)  + .1_(2)  to the state lit hii); it gives zero. Thus 

4iiihii) = 4 [ E iiimii2m2)(iimihm2Iii) 
m1+.2.i 

= E vil(fi+ I) -mi(mi + 1)iiimi +ii2m2)(iimihm2iii) 
ml+m2=i 

+ E vi2(J2+ 1) — m2(m2 + 1)Iiimihm2 + 1ftiimii2m21//) 
mi+m2=i 

= 0. 

The m are summation variables, therefore we may substitute in the first sum 
m1 — 1 for m1 and m2 + 1 for m2; after this substitution we can compare the 
coefficients term by term and obtain 

/fi (fi + 1 ) —  mi(mi — 	— 1 32m2+ 1 1././) 

+-1/2(./2 + 1) — m2(m2 + 1 )(../imihm21./D = 0 

or 

(ji m - 1 j2m2+ 1 I ll ) 	
fiUi 

+ 1) — m2(m2 + 1) 
m i2m21./../ ) • (5.3.27) 

+ 1)— mi(mi — 1) 

It is clear that by repeated application of this formula we can come from 
(fi fi  i2f — fi UP to any other (jimi2/ m ill)• For this procedure it is more 
convenient to rewrite the square root in (5.3.27) by using j(j+1)—m(m±1) = 
j m + 1)(j mm), hence 

1(j2 + m2 + 1 )(j2 - m2) 
- I i2m2 + 	= 

—  m + 1)(ji m)
Ulmihm21//)• (5.3.28) 

Applying this formula k times, we arrive at 

m — k, j2, m2 + 	= (-1)k   

1 	  

	

— 	 +m1  — k)! 
x 	

, 	„ 
tjim J2m211.1) • 

	

(j2 + m2)!(j2 — m2 — k)!(li — 	+ k)!(ji + mi)! 
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We now put m 1  =  fi  m2 = j —  J1, k =  fi  — m and obtain 

 

jimj2,  j 	jj ) = 	
A 

j2. i)! 
1)it 

(2jj +12 — j1)! 

x l(f + f2 — m)!(./1+ m)!] 
(11.11J2J - 	— ii Iii).  

(j2 — 	m)!(li — m)! 

As—by convention—(j1j1j2f — jilif) > 0, it follows that 

(jimj2, j — miff)( -1 ) -i'm  > 0. 

(5.3.29) 

(5.3.30) 

Finally we find the value of (111112j —  jiiii) by using the orthogonality relation 
(5.3.14): 

2  
(il +. i2 	i)!  E 	- Iii) = 	 i(ih 	- lii) 2  

(2/1)!O + h - /I)! E (i1  + rou  +  — m)! 
=1.  

- „, (j2 	m)!( li - 	m)! 

It remains to calculate the sum over m. This sum is a special case of the sum 

(a + m)1(11— m)! 
(c + m)!(d — m)! •  

This sum is calculated by starting from the addition theorem of binomial coefficients: we expand 
(1 + x)P+q = (1 +x)(1 +x)q and find 

( P+k 	 ) ( qP) X2+'

lc

t  a, fi 
(( r ) 

2r 2r-'  

Hence 

(k q_,)= (T ) 

	

(5.3.31) 

Further it follows from the definition of the binomial coefficients 

( n\ _ n(n — 1)• • .(n — k + 1) 
1.2. • .k 

that for n > 0  
(—kn) _ = (ok  (n + kk — 1) .  

The sum which we wish to evaluate contains the summation variable m in the numerator and in the 
denominator, each time once positive, once negative. Thus, if in (5.3.31) we replace p 	— p and 
q —> —q, we obtain a sum of the required type: 

E  (p + r — 1) (q  +k — r — 1) = (p +q+k-1) (p,q >
0) 

 
k — r 

(5.3.32) 
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which, written in factorials, becomes 

E  (p —1  + r)!(q + k — 1 — r)! = 	i)!(q  I)!  (p + q + k — 1) . 
rqk — r)! 

As r is a summation variable which goes over all values for which the factorials make sense, we 
may replace r by c + m and sum over m: 

E  (c + p—l+m)!(q+k—c—l—m)! (p )! 
(c + m)!(k — c — m)! 	

_   

Now we putc+p-1=a;q+k—c-1=b;k—c=dand obtain the desired result 

(a + b +  1)!(a — c)!(b — d)! 

4', (c + m)!(d — m)! — (a + b +1 — c — d)!(c + d)! •  

With the help of the formula just derived, (5.3.33), we obtain 

ni)!(./ 	h —171 )! 	(il 	i2 	I)!(il 	i2 	i)!( — j1 	,j2 	j)! 

(i2 	±M)!(il 	In)! 	 (2l 	1)!(il 	i2 	i)! 

and finally (this CGC is by convention positive!) 

ji )!(2 j + 1)! 
(it 	- 	= 	+ h + + 1)!(i1 - h + j)! 

(5.3.34) 

from which by means of (5.3.29) all CGCs of the type (iimi 	— m ID) are 
found: 

i2  = 
(i2 	 — MO! 

(5.3.35) 

(2j +1)!(ji 	j2 —  j)! 
(it + h + + 1)!U + h — Wit — h + j)! 

From this we could—following the procedure described above—obtain all CGCs 
by application of J_ to the relevant states. We shall not do this here, because 
the principle is obvious and the calculation tedious. We shall instead derive 
a closed formula for the CGCs in subsection 5.3.8 by a completely different 
method, thereby gaining a new aspect. 

5.3.6 Obvious symmetry relations for CGCs 

We shall now derive three symmetry relations for the CGCs, which seem rather 
plausible. We derive them here explicitly because physical intuition leads the 
way to them. In subsection 5.3.9 below we shall derive the full symmetry 
group of the CGCs and find the symmetries present among them—but in that 
derivation their simple geometric meaning does not become apparent. Here we 
discuss only the following symmetries. 

(5.3.33) 

X VI  
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(i) The first symmetry relation is obtained by interchanging the order in which 
the angular momenta are coupled; that is, we consider the difference 
between 1( ji j2)jm) and 1( j2j1 )jm). One might have expected the two 
CGCs and (i2ni2jimi Lim) to be equal, but our phase 
convention (5.3.25) makes this impossible. This is seen immediately when 
we observe what happens to figure 5.1(a) if the order of the coupling is 
reversed. We display the effect in figure 5.2, where the horizontal axis 
counts the m-values of the system which is taken first, and the vertical axis 
those of the system which is taken as the second one. 

m of first system 

Figure 5.2. Each dot represents a direct product state I Littnii2m2). Each frame contains 
one complete set of such states. 

The states on the line m 1  + m2 = 3 combine into states I fm  = 3); in 
particular: the four states of the upright box are needed to build up a state 
1(j1./2)jj) with j = 3, and the four states of the flat box (they are the same 
states in another order) combine into a state 1(j2 11  )/j). Now our phase 
convention (5.3.25) prescribes that in the first case the state 

1*) = 12241) 

enters with a positive coefficient, whereas in the second case 

O)  = 1442, —1) 

is the state with a positive coefficient. These two states do not transform 
into each other by reversing the order of coupling (except if j1  = 12). 
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Therefore the two states 1(1112)/1) and 1(1211) 11 ) will be different, because 
in Rio, = 1j2J there is for fixed j and m (inside the allowed region) 
essentially only one state 11m), of which we have fixed the phase (in an 
arbitrary but definite way) such that it depends on the order of coupling. 
This must not disturb us, as obviously a complete orthonormal system 
remains such if one multiplies each basis state by an arbitrary phase factor. 
We shall derive below the explicit form of the phase factor. 

(ii) Next we consider the relation 

Rh hum) = E 111m112m2)(iimihm2um) 
.,+.2=m 

and replace m, mi, m2 by —m, — mi, —m2; then 

1(1112)1, -m) = E 	 -mi,  J2 -m2u, -m) 
--1111 -M2=M 

which is again true. Now, any state 11m) may be transformed into a state 
1j, —m) by rotating the space by 7r about the y (or x)-axis. There will, 
however, be a change of the phase, because a rotation by 7r about any axis 
lying in the xy-plane will make urn)  —> I j,  —m) and somehow the new 
state should bear a label indicating about which axis the space was rotated; 
the phase of the state 1j, —m) is the only place where such a label could 
be attached. Let then R y  be a rotation by 7 about the y-axis: 

RI/m) = (Py(1m)1/, —m). 

Thus our equation above with the negative m can be transformed into 

Wy(1, — m)1(1112)/m) = E(Py(li, — mi)(Py (h, — m2) 

X I M 1 ign 2 ) — M1 — MAL 

Comparing this with the above equation with positive m we see that 

q);(i, 	-m 1)49y(12, —m2)(11, —mi, /2, — m211, —m) 
(5.3.36) 

The whole factor must be real; its exact form will be derived below. 

Considering finally the vector (operator) equation J = J(1)  ± J(2) , we 
see that we may interchange J with either ../(» or J(2)  if the proper 
signs are taken. We thus might expect that e.g. (ji m 1/2m21/m) and 
(11m1 ,/, —m1/2, — m2) would be equal. Again this is not quite true. Of 
course, after the preceding discussion we are ready to expect a difference 
in sign. However, even the magnitudes will in general not be the same. 

= M I l2M 2 I iM ) • 
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This is seen immediately from the orthogonality relation (5.3.14) 

E {E (imuimii2m2)(iimii2m2utio1 = 2f  + 1 
m 	m2 

E E u2, 	 —m2)} = 212 + 1 

(5.3.37) 
because in both cases the curly bracket is equal to unity. Since we sum 
over the squares of the CGCs, the possible different signs are eliminated 
and then both sums go over the same variables. If the two types of CGC 
were the same, then the sums would be equal—but they are not. 
Dividing the upper sum by 2j + 1 and the lower by 212  ± 1, we find a 1 
on both right-hand sides. We might expect therefore that 

(11m 112m21im) 

N/21 + 1 
— m1 32, —m2)1 and 

+ 1 

would be equal. That this is true will be shown below, where also the 
correct sign will be derived. 

We turn now to the proof of these three symmetry relations; the reader who 
is content with the above plausibility arguments may skip these proofs and turn 
to the results, (5.3.52). 

(i) We first prove that by interchanging the order of coupling of systems 1 and 
2, we obtain 

m lim) = 

Above, in our plausibility consideration we convinced ourselves that 
because of the phase convention the two CGCs might differ by a phase 
factor. To calculate this phase factor, we use (5.3.30) (which is a direct 
consequence of the phase convention (5.3.25)); 

> 0. 

Had we interchanged the order of coupling, the same formula would read 

(i2m2.i1mi Up ( — Oh' > 0. 

The direct product states Ijim /2m2) and I12M211MI) in these expressions 
are the same; only the two states 1(1 1 12)11) and 1(121 1 )11) can differ by a 
phase factor. Thus, as both expressions have equal magnitude and are both 
non-negative, they are equal. Thus 

Ulm f2m21f.i) = 	 Ci2m2i1m1 
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where m 1  m2  = j has been used. With the same arguments (equality 
of the direct product states and at most a phase factor between the two 
coupled states) we can immediately draw the conclusion 

Rhii)://) = ( -1 )fi+h--1 1(i1i2)././)• 

Now, by application of J_, we can generate all Um) states; the phase factor 
remains obviously untouched. Hence 

	

= 	 (5.3.38) 

and from this it follows for the CGCs that 

(j2m 2f 1 m 1  urn)  = ( -1 ) i1+h-i (fimi.i2m21.im)• 	(5.3.39) 

(ii) Next we calculate the change in sign which is caused by changing all m 
values into their negatives. According to (5.3.36) the new sign is 

= (i, 	-mi)(P) (h, -m2) 	(5.3.40) 

where (py (j, -m) is defined for any state 11m) by 

R )  Um) = (p) (j, '01j m) 
R )  Ii —  m)=(p)(j, — m)lim) 

and R )  is a rotation by 7T about the y-axis. 
For a spin-1 state we can write down the effect of a rotation R, immediately 
by means of (4.8.7), where we put 13 = 7T and obtain 

[U,,(R),)] =( 
	

-1 
131 	0 

1 
 Writing u +  (0) and u_ ( 10  ), we find then 

	

R y u +  = u_ 	Ru_  = -u+. 	 (5.3.41) 

For arbitrary j and m we use the representation (4.10.8) 

(2j)! 	j-.) u Ifni) = 	
+m)!(/ - m)! 	 o 

and apply R, to it (to Um) on the left-hand side and to each u separately 
on the right-hand side); using (5.3.41) 

R )  fm) = 	
(2j)!  

[(R) u +)i+m(R y u_)-1  
(j 	m)!(./ - m)! 

(2j)!  
( 1)-1-1" (u -i+m uj+1 

+m)!(,/ - m)! 

I®  
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or 
Rylim) = 	— m). 	 (5.3.42) 

Thus, by definition, cpy (jm) = (-1)1—m, which is always real, because 
j — m is always an integer. We now obtain with (5.3.40) 

= (-1)i +m+il +m l +h -Fm2 . 

Using mi + m2 = m and adding j — j = 0 in the exponent yields 

w 	(_02)-1-2m+ji+h—i 

since 2j + 2m is always an even integer. The combined phase factors in 
— (5.3.36) thus have the value (_1)11-FhJ  and (5.3.36) becomes 

(/1 —MI, /29 —M21/ — in) = 	 (il MI i2M21/M) • 	(5.3.43) 

(iii) Finally we show what changes follow from interchanging any one of the 
coupled angular momenta with the resulting one. To this end we consider 
first the more symmetric problem of coupling three angular momenta 
jo) j(2) j(3) = 0. We then have to calculate the state 

(ii 3233)00). 

This is achieved by first coupling ji and j2 to j 

1(hh)/ 172 )= E 	 (5.3.44) 

and thereafter coupling j and j3 to J = 0 

((.02)./../3) 00) = E lo1j2)imi3m3)(imhm3100)• 	(5.3.45) 

Here the symbol 1(.02)./mhm3)  is an abbreviation for the direct 
product state l(iii2)./m)01./3m3).  Inserting here the expression (5.3.44) 
for 1(j1/2)./m)  gives a sum over threefold direct product states 
Li] mi)01/2m2)01/3m3) = Iiimihm2/3m3). Hence the combination of 
(5.3.44) and (5.3.45) yields 

((il.i2)././3) 00) = E iiimihm2i3m3)(iimii2m2uro(ftni3m3100) 

(5.3.46) 

where the sum goes over all m such that m1+ m2 = m and m 3  + m = 0. 
The last CGC vanishes unless j = j3  and m = —m3. Its value follows 
immediately from (5.3.35): 

(- 1) /3+m 3 
(5.3.47) (/39 —M3/ /3M31 00) = 

i/ 2/3 + 1 
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and this is the CGC to be inserted into (5.3.46), where of course jm is to 
be replaced by j3 and —m3. Hence we can write I ((ji h)./3) 00) instead of 

((102)1./3) 00 ) and find 

( - 1) ./3-4-m3 
(uihm)00) = E 1i1m1i2m2i3m3)(iimii2m2u3 - M3) ,i

2j3 + 1 
(5.3.48) 

Now we couple the three states in a different order and remember that 
Ijimi.i2m2j3m3) is invariant under the permutation of the order of 1, 2, 3. 
Hence 

(u2i3)f1)00) = E 	 - MI) 	
+ 1 

(5.3.49) 

We now claim that the two states I ( (1112)13)00) and I ((1213)11) 00) differ 
at most by a phase. Both states belong to the direct product space H11 1213  
spanned by the vectors I m j2m2i3m3). We must only show that there 
cannot exist more than one state 1.1 = 0, M = 0) in H02.h . We couple fi  
and 12 to j with the possible values I fi  —12 1 < j < h. Coupling any 
one of these intermediate j with h will lead to a total J with the possible 
values lj — j3I < J < j 13. The value J =0 is present in only one of 
these sequences, namely in the sequence obtained with j = j3. As j itself 
occurs only once in the sequence of possible j values, it follows that only 
one state IJ = 0, M = 0) exists in 'Hhhh . A different order of coupling 
can at most lead to another phase. (Note that the above conclusions hold 
only for J = 0, M = 0; for J 0 there will in general be several 
independent states IJM) for given J and M, see section 5.4). 

We thus obtain 

I ( (1213)11)00) =40  ( (1213)11) I ((f112)13) 00). 

Comparing coefficients in (5.3.48) and (5.3.49) yields 

( 	1 
.12m2.13m31.11, —mi) = yo( j 2  j3  JO (--oil+i3+mi+m, 2 .11 + 1 

2f3 ± 1 (5.3.50)  

X (jln1 1.12M21f3 , —M3). 

  

We determine 49 ((1213)11) by making the CGC on the right-hand side positive 
(see (5.3.25)). We put 

= fl 
M3 = — 13 
M2 = 13 —  fi  
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Then, collecting the positive numbers on the r.h.s. into one symbol P we have 

(f2, i3 	i3, f31f1,  — fl) = P q)((i2.1.3).ii)( - 1) 2-11 • 

On the 1.h.s. we change all m-values into their negatives and then exchange 2 
with 3. A glance at (5.3.39) and (5.3.43) shows that both operations give rise to 
the same sign (-1)12 ±13-i1 , whose square is one. But after these operations we 
have on the left-hand side (j3j3j2, - j3 1j 1 j 1 ) which is positive (see (5.3.25)). 
Hence 

v(i2/3.ii) = (-
02j, 

If we insert that into (5.3.30) and remember m i  + m3 = -m2, we obtain 

12j, +  1 
-m i ) 	 - m3)• (5.3.5 1 ) 233  + 1 

This formula gives us the result of the cyclic permutations; (5.3.39) adds to 
them the remaining three. Thus, with these two equations we can calculate any 
permutation of the arguments of the CGCs. 

We collect the results of this section (the equations are numbered as they 
originally appeared): 

(-1 ) j-m  
j, -m100) = [5.3.47] 

[5.3.39] 

[5.3.38] 

[5.3.51] 

[5.3.43] 

N/2j + 1 

(i2m2iim i fm)  = 

1(.01)./m) = ( -1 )-h+-12-) 1 ( h./2)./m) 

-m2 	
2 :h  +  1 

(i2m2.iml.ii - mi) = (-1)i-h I/ 2j + 1 (iimihm21./ - m) 

(f1, —ml, f2, —m 2li — m) = 	m i2m 2 lim). 

(5.3.52) 
From this, further relations can be derived by repeated application and 
specialization of the values. For instance, from the last relation we read off 

(1 1 012 01 10) = 0 	if I I  +  12  + I is odd (l, integers). 	(5.3.53) 

5.3.7 Wigner's 3j -symbol and Racah's V(fO2j3Imim2m3) -symbol 

Wigner introduced another symbol instead of the CGC, which shows more 
symmetry. It is defined by3  

i2 	f3 
(i1M1i2M2Ii3, —M3) = ,s/2 J3 + 1(-1)-11— h —m3 	 (5.3.54) 

ml M2 M3 

3  The reason for this definition is that (5.3.48) becomes simple in this new notation: it is now 
(5.3.62). 
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From the properties of CGCs it follows that 

(Ii 12 /3 ) = 0 

\ M 1 M2 M3 
unless mi + m2 + m3 =0; .6,(j1jf3) = O. 

Introducing this into (5.3.51), we find 

1 (-1)12-13—ml 	j2 	/3 	il  ) 
M2 M3 M 

j 1 — j2 — m 3  (fi 	32 	/3 
. 1 	( W3 —J1-2  j2i + 1 

2J3 -1-  1 	 n2 1 M2 M3 

=  2J 	- 1 ).i3 +m ( fl 	j2 13 

M I M2 	) • 

Hence (because h — j2 + m 1  = integer) 

jl 	32 33 =  12 j3 jl ) = 13  fi 	j2 
M3km2 M3 MI 	M3 M1 M2 • 

(5.3.55) 

It is a matter of a few minutes of simple algebra to derive from (5.3.39) and 
(5.3.43) the following further formulae: 

./2 	11 	J3\ = 	I ) it +j2+j3 	11 	/2 	/3 ) 

\ m2 m m3 	 mi M2 M3 

= 
	12 	/3 ) 

— MI — M2 —M3 

(5.3.56) 

where the first corresponds to (5.3.39) and the second to (5.3.43), whereas 
(5.3.17) and (5.3.24) become 

(il 12 	(11 + j2)
(_ 1)2ji 

11 j2 	(1/1 + 12) ) 	,./2(jt + h) + 1  

(— 
M2 —

fi  12 	f3' > 0 . 

The orthogonality relations (5.3.16) appear now as 

( 	12 /3 	32 	) = 	AU  8 . , 8 	L/2/3)  

47; \ mi m2 m3/ \mi m2 m'3 	j3j3 n13m3  2 j3 1 

E(2;3  ± 1) 
 (

fi 	/2 	/1 	/2  33  = sminei 8m2ne2  

MI M2 M3 	'WI M; M3 
)3'11 3 

Summing the first one over m3 after putting m3 = m'3  and h = A yields 

(5.3.57) 

(5.3.58) 

E ( f 	/2 33 ) :71 32 13 ) . 

ILi2E3 — 1  M2 M3 / \ M I M2 M 3 
(5.3.59) 
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Note that the sums in (5.3.58) are in fact only sums over one variable and in 
(5.3.59) only over two variables, because m 1  -I- m2 -I- m3 = O. Furthermore, 
by means of the symmetry properties (5.3.55) and (5.3.56), we may permute 
arbitrarily the columns of the  3j-symbols  in the sums of (5.3.58) without any 
consequence other than that the summation goes over another variable (after 
changing their names). Hence 

+ 1 ) E (fi  12  f 3  ) 11  12 i3 
M M M 2 —1 —2 n13 	M I M2 M3 

= 	
hh h  

1 M2 M3 j 	/212 M3  ) 

E (2h  ± i) 	12 
MI M2 

.1 3EL3 

=  

la2 _2 

1 3 '\ (J1 	12 /3  \ 
m3 ) 	m'2  m3 ) 

12 	i3 	'171 	12 	i3  
M 2 M3 	M I M 2 M 3 

(5.3.60) 

Racah has introduced still another symbol by 

V(ii /2/3 im m 2m 3) = 	 fi 12 i3 
m1 M2 M3 

(— W3-^13  

The properties of the V-coefficients are similar to those of Wigner's, but they 
are a little less symmetric. 

5.3.8 Racah's formula for the CGCs 

In this subsection we shall derive a closed formula for the CGCs; this formula 
is due to Racah, although he derived it differently. We shall use the Wigner 
notation (3j-symbol) for the CGCs and follow the usual custom of replacing the 
letters j1 1213 by abc and m im2m3  by  any. 

We start our consideration by remembering that any I jm) can be represented 
by a suitable direct product of 

1 
u+ 	Z) ( 0) 	

1 	0 
and u_ 

1 (it  m 	h — m 3 ). 

states. This was fully discussed in section 4.10. Thus, according to (4.10.8) we 
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may build up three states 

   

laa). = 	
(2a)! 	tua+aua-10  

(a + cr)!(a — a)! 

 

(2b)! 	6+13 b—I3 

	

1 1)134 = 	 v 
(b 0)!(b — I3)!( 	)® 

	

= 	
(2c)! 	(wc++), 

w —

cy) 
ICY) w  

(5.3.61) 

where u,  y, w serve to distinguish three physical systems. 
Next we remember (5.3.48), which allows us to couple three such states 

to a state with total angular momentum zero, i.e. to a state which is invariant 
under rotations; we rewrite (5.3.48) using the Wigner  3f-notation  and obtain 

(a b c 
I ((ab)c)00) = (—

oa—b+c E 
i(aa).(0)v(cY)w) 	 . (5.3.62) 

a 	Y a+fi+y=o 

If we insert (5.3.61) into (5.3.62), a sum over terms like 

„a+a 	(b+fi ,,b— 13) 	c+y c—y) (w+  w_ 1."+ "— / Ø Ø v  + 0 	 0 
(5.3.63) 

results, and this sum is invariant under rotations. 
The main idea is now to build up an invariant state from factors u+, y± and 

in a different way and not containing CGCs, then to rearrange it such that 
it takes the form of the sum (5.3.62), (5.3.63) and compare coefficients. As the 
coefficients will contain the CGCs, we obtain in this way a formula for them. 

How can we build up an invariant state? First we look back at (4.8.8) 
which describes the transformation properties of spinors. As one sees at once, 
this matrix has determinant unity (it is the original representation of SU(2)) and 
therefore leaves the 'determinant' (u + t,_ — v+ u_) and similar ones invariant4 . 
These expressions are therefore also invariant under the corresponding rotations 
of the three-dimensional space. Hence we can build up invariant states by taking 
direct products of any number of determinants: 

Su (v+w- — w+v-) 
31, 

 

	

(wu_  — u +w_) 	 (5.3.64) 
(u +v_ — v+u_). 

We only have to do it in such a way that the total number of factors u, y and w 
is equal to 2a, 2b and 2c respectively—then this state is equal to (up to phase 
and normalization) the state I ((ab)c) 00) uvw . 

4  it is recommended that the reader checks this statement by an explicit calculation. Hint: use the 

standard U = 	ab. ab. ), with aa*  + bb* =1 for simplicity. 
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Thus we put 

((ab)c)00)„,„. 	N(pqr)  (88) ® 	 (5.3.65) 

where the numbers p, q,r and the factor N(pqr) which contains both 
normalization and phase will be determined later. 

We use the binomial expansion for the powers of the determinants and 
collect all u±, all u± and all tt) together. The result is 

X[(Il r±q' 	 ),0(14
p+r'-p' 

V_
r+p'-r' 

)0
Ø( +P'_'  p-i-q'- p' 

(5.3.66) 
We now only have to compare exponents and to insert some normalization factors 
in order to arrive at a sum of type (5.3.62), (5.3.63). In fact, considering (5.3.61) 
we see that the sum of the two exponents must equal 2j  (= 2a, 2b, 2c) and their 
difference 2m (= 2a, 2/3, 2y). We thus replace, e.g., according to (5.3.61) 

(u r++g' -r '  u q-Err-q ' 

where now 1(r + q) = a and (r - q +2q' -2r') = a will do what we want. 
We thus have to put 

r + q = 2a 	r q +2q' - 2r' = 2a 
r + p = 2b 	p - r 2r' - 2p' = 20 	(5.3.67) 
p + q = 2c 	q - p + 2p' - 2q' 2y. 

The three equations for p, q, r are solved at once: 

p = -a + b + c 
q=a-b+c 
	

(5.3.68) 
r =a+b-c 

but we cannot solve the other three for p'q'r' because the three equations are 
not independent: their sum gives 0 = 0, as it should (a -I-  fi ± y must be zero!). 
Since we wish, however, to change from the summation variables p',  q',  r' to 
a, 13, y which appear in the sum (5.3.62), we have to keep one of the three—say 
r'—and solve for the other two. We call r' from now on p, and obtain from 
(5.3.67) 

N(pqr)(81:48) 0  = N (pqr) 	 (P)  ( q  )( r  
p' 	q' 	r' 

p'q'r' 

+ q)! 

2 2 
(r - q +2q' - 2r')) 

r + q 1 

r' =p 	 P-Ii=b+13-1) 
qi =a — b+c+p 	q—q' =a—a—p 
p'=—I3+c—a+p r—r' =a+b—c—p. 

(5.3.69) 



152 	 ADDITION OF ANGULAR MOMENTA 

From here on a, 13 and p are the summation variables. The factor (-1)//+g'+'' 
is calculated with the following congruence mod 2 (note that 2( j ±  m) 0 mod 
2): 

p' + q' + r' p + a - 13 +2c - b - a + (2a -2a) mod 2 
p - a - 13 + 2c - b + a - (2c + 2y) mod 2 
p - (a + 13 + y) +a - b - y mod 2. 

=0 

Hence 
(_ op' +g'+r' = (_1)a -b-y (_ 	 (5.3.70) 

With these substitutions the sum (5.3.66) becomes (we use pqr along with abc, 
but consider them only as an abbreviation, see (5.3.68)), writing out all binomial 
coefficients: 

I ((ab)c)00) 	= N E X (a, 13, y)1(aa),,(613),(cy),„) 
a+13+y=0 

p!q!r! 

X (a,  fi,  y) = (-1)0-17-Y ,/(a + a)!(a - a)!(b + 	fi)!(b - 13)!(c + y)!(c - y)! 

XE(-1) P  
1 

 

rp!(a+b-c-p)!(a-b+c+p)!(a-a-pl• 
 L(-P -i- c - a+p)!(b+13- 13 )! 

(5.3.71) 
Comparison with (5.3.62) shows that 

(_ 1  )a-b+c ( a b c) 
) =NX(a,13, y) 

where N and X(a, 0, y) are defined in (5.3.71). Explicitly 

P!q!r!I[((ab +  fice  (ac Ya))(bc -1- i)31):] 

[

p!(a + b - c - p)!(a - b + c + p)! 

(a - a - p)!(- fi +c -a + p)!(b + fi - p)! 
(5.3.72) 

It remains only to evaluate the sign and magnitude of N (pqr). As N does not 
depend on a, P, y, p, this can be done at once by evaluating the r.h.s. of (5.3.72) 
in the case a = a where in the sum over p both (p)! and (—p)! appear; thus 
necessarily p = 0 (all sums extend over such values of the variables, that the 
factorials make sense). 

N = N(pqr) 

(a 
a Y 

N(pqr) 	
(2a)!(2b)!(2c)! 

1 
XE(-1) P  
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Furthermore, we may put y = — c and write with (5.3.54) 

(a 	b 
a c — a 

c  ) =  ,,,/ 
	- 1 

(-1)a-b+c 

—c 	
(aab(e — a)lee). 

-  

The last CGC has been calculated earlier in (5.3.34) which gives in the Wigner 
notation 

(

a b c ) = (_0a—b+c  (2a)!(2c)! 
a c — a —c ' (a+b-l-c+1)!(a—b+e)! 

(5.3.73) 

For this same CGC we obtain now from (5.3.72) 

  

    

7 a 	b 	c) 	,/(—a  + b + c)!(a + b — e)! 
c — a —c 

= N(pqr) 	(5.3.74) 
...)) 1. 

so that 

N (pqr) = (_Da—b+c 	 (2a)!(2b)!(2c)! 
(a+b -Fe+1)!(— a+b-1- e)!(a — b+c)!(a+b— e)! 

(5.3.75) 
Inserting this into (5.3.72) yields Racah's formula 

(a b c 
 fi 	y
) ..... 

(-1)2-10—y 1p—a - I - b + c)!(a — b + c)!(a + b — c)! 
a 	 ' (a+b+c-F1)! 

x,/(a + a)!(a — a)!(b + I3)!(b — #)!(c + y)!(c — y)! 

E 	 ( - DP  
X 

 

[p!(a+b—c—p)!(a—b+e+p)! 
P 

(a — a — p)!(—a — fi + c + p)qb + P — Pd 
(5.3.76) 

with the conditions that a + ,8 + y = 0 and A(abc) =  I.  The sum over p 
extends only over such integer values where the factorials have non-negative 
argument. 

It could be argued that, in order to determine the sign and magnitude of 
N(pqr), we have used a formula for the special CGC (aab(c — a)lee) which 
was calculated earlier by means of the usual technique involving recursion 
formulae obtained by application of 4. So our present derivation would not 
be independent of these techniques. It is left to the reader as an exercise to 
prove that we can determine N(pqr) with little more effort also without the 
help of (aab(c — a)lcc). One uses the orthogonality of CGCs as expressed in 
(5.3.58) and (5.3.60) and writes it down in terms of (5.3.72), thereby obtaining 
an expression for N 2 (pqr). Here again, one uses the trick to put a = a which 
implies that the (this time two) sums over p and p' have only one single term. 
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The ensuing sum over factorials can be evaluated by means of formula (5.3.33) 
and N 2 (pqr) is found. Its sign is then determined from the requirement that 

e_iyi-b+c (a 
a 

c 
i > 0 

c - a -c 

(phase convention (5.3.25), (5.3.57)). 
The general Racah formula is rather complicated and not too useful for 

the calculation of CGCs, except if one uses computers. But in many important 
cases it reduces to much simpler expressions. In general, one needs the CGCs 
for rather small values of its arguments and then it is easier to write down some 
explicit formulae. We shall collect such formulae at the end of this chapter in 
subsection 5.3.10. 

5.3.9 Regge's symmetry of CGCs 

The first closed formula (similar to Racah's) for the CGCs was given by Wigner 
in 1931 (Wigner (1931, 1959)). The rather obvious symmetry relations 

(a b c\ =( b c a\ =( c a b\ =_( b a c\ 

a /3 
 

y)k 	y a)y  a / ) 

(which were derived above in subsection 5.3.6) were known all the time. It took 
twenty-seven years before some further, much less obvious symmetries of the 
CGCs were discovered by Regge (1958). We shall discuss them now. We write 
down once more (5.3.65) 

1 
(8:88))Ø  = —

N
I ((ab)c) 00)uvw 

and insert I ((ab)c) 00)uv. from (5.3.62) and (5.3.63) and N from (5.3.75) with 
the result 

(388w ) 0  = N/(a + b + c + 1)!(-a + b + c)!(a - b + c)!(a + b 	 c)! 

E a 
b c 

tio+a ua-10  (4+13 vb-13) (w c++y w c- y ) 
\ 	  

( 

a 13   a+fi+y=0 	 ) (a + a)!(a - a)!(b + P)!(b - 
(c + y)!(c - y)! 

p -a + b c qa-b+c 
p+g+r=a+b+cmk. 

(5.3.77) 
Consider now the determinant 

up 	yo 	IV() 

V+ ID+ 

V_ IV_ 

= uo(v+  w_ - w+  v_ )® vo(w+u- - 

±Wo (U+ V_ — V+14 4(2) 

= (u08u  + vo8, + wo) ®  
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and its kth power (k = a + b ± c) 

k 
1 ao Vo WO 	 P a r E  uo vo  wo 	 , 

®
. T.  u+  v„ w, = 	 (5.3.78) ,.,,,, 	k u v

, 
 to 

u_ V_ 1.0_ e  p+q+r=k Y '4  " ' 

(For the definition of S u , 3, and S u, see (5.3.64).) The new quantities uo vo wo may 
be considered to be parameters (just numbers). We encounter here our familiar 
invariant state (8' 88)®,  which we now insert from (5.3.77) into (5.3.78) with 
the result 

  

k 

0 

   

I 

T! 
u 0  VO WO 
U+ V÷ 1.0+ 

U_ V_ Ill_ 

= V (k ± I ) ! E ( 
q+fi+y=0 
p+q+r=k 

a bc   \ 

a P r ) 

 

  

(5.3.79) 

(140++OE  Ual (4 V+b+fl 
vb—fl) w ,ow+c+y w c—y 

0 

,/ p!(a + a)!(a — a)!q!(b + 13)!(b — fi)!r!(c ± y)!(c — y)! 

Now the well known symmetries of the determinant on the 1.h.s. imply that 
the r.h.s. has the same symmetries. Thus even (odd) permutations of columns 
leave the determinant invariant (multiply it by —1). On the r.h.s. this means 
corresponding permutations of u, y, w. In order to restore the sum one only has 
to rename the summation variables and to perform corresponding permutations 

of the columns of 
( a b c )

, because the square root in the denominator is 
a fi Y 

invariant. According to what happens to the determinant, we conclude that 
fa b  c'\  

a fi r multiplies by (-1)a+b+c under odd and stays invariant under 

even permutations of its columns. Interchanging the last two rows of the 
determinant multiplies it by —1. On the r.h.s. the corresponding operation leads 
to a —> —a, fi —> —13,y —> —y. Thus 

( a 	b 	c ) 

—a —fi —Y = 
	a+b+c (a b (-1)   c 

These two types of symmetry are our old well known ones of (5.3.55) and 
(5.3.56). But there are now many more: arbitrary permutations of rows 
and arbitrary permutations of columns and reflection on the diagonal. These 
symmetries sum up to 72 different operations: (3! = 6 column permutations) x 
(6 row permutations) x (2 reflections on the main diagonal), whereas the old 
symmetries comprise only 12 operations. 

In order to bring out more clearly the complete symmetry group of CGC, 
Regge introduced a new notation: 

X  

(a b c 
—a+b+c a—b+c a+b—c 

a 0 Y

) 
[ 

a — a 
a ± a b+  13 	c + y ] . 	(5.3.80) 

b — fi 	c — y 
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The Regge symbol is highly redundant with its nine entries for five 
independent variables—but between the Wigner  3j-symbol  and the Regge 
symbol there is a one-to-one correspondence. With this notation (5.3.79) 
becomes 

uo  vo WO 

U+ V+ 1V+ 

U_ ll_ 

.v(k+i)! E [ 	
r

a+a b+0 c-1-y 
74-!- .,);.1 a—a 	c—y 

(ugu a++Œ ua—a) ( vg v+b-1-# vb—fi) ( tv ,o. wc++y wc—y) 0 	(5.3.81) 

p!(a + a)!(a — a)!q!(b + fi)!(b — p)!d(c + y)!(c — y)! 

p = —a + b + c q=a—b+c r = a + b — c. 

In this form each of the symmetry operations on the determinant implies exactly 
the same operation on the Regge symbol: 

[ —a+b+c a—b+c a+b—c 	( b \ a + a 
a — a 	b — 

b+  13 	c + y 

	

p 	c — y 

. a 	c 

	

clt fi y ) 	
(5.3.82) 

is invariant under the following operations on the Regge symbol and the 
corresponding ones on the  3j-symbol:  

(i) reflection of the Regge symbol on the main diagonal; 
(ii) even permutation of rows and/or columns of the Regge symbol; 
(iii) simultaneous multiplication by (— Da+b+c  and odd permutations of rows 

and/or columns of the Regge symbol. 

5.3.10 Collection of formulae for the CGCs; a table of special values 

We collect here some formulae which either have been derived in the text or 
are found by specialization of formulae given in the text. We shall, however, 
not prove here these more special formulae. Table 5.2 contains the values of 

and (iimilm21./m)  in Wigner's  3f-notation.  The 
following notations are in current use: 

fi 	a 
m 1  < ). a 
:12 4+ b 
m2+0.  fi 
h 

y. 

The CGC is defined as the scalar product of two states 

1(ab)cY) —=1(..102)im) 	'coupled state' 

laab/3) 	I ji  )0 I j2m2) 	'uncoupled direct  product'.  
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The scalar product is written with (.h./2)  omitted: 

(aab13Icy) = (cylaab13) reality 	 ((5.3.26)) 

=0 	unless a + p y 	((5.3.12)) 

and A(abc) = 1 

where A (abc) = 1, if a, b, c could be the three sides of a triangle; otherwise 
A = 0. 

Other useful notations—Wigner and Regge 

Wigner 	 Regge 

	(acrt.& — y). 

Orthogonality 

E (a 
b 	(a b c' 

(2c + 1) 	
e 
yy' °cc-' 0  a 	Y ) 	13 y' 

a.13 

E(2c + 1) 
( a b c 1 a b 

a 	 Y ) 
8= aa'80' 

c.y 

((5.3.16), (5.3.58), (5.3.60)). 

Symmetry 

—a+b+c a—b+c 
(a b c 

a + a 	b+ fi  
a fi Y 	a — a 	b — 13 

a + b — ci 
c+  y 
c — y 

[ remains true 
under any 

permutation of 
(:), (bp ) ,  (cy ) ..  

[ —a+b+c a—b+c a+b—c 
13 a + a 	6+ 	c+y 	is invariant under 	((5.3.82)) 

a — a 	b — 13 	c — y 

(i) even permutations of rows and/or columns; 
(ii) reflection on the main diagonal; 
(iii) simultaneous multiplication by (— l)a+b±c and odd permutations of rows 

and/or columns. 

Phase convention 

( a b 
 (aak3lcc) = 	
c

) ,.
/fc.7--v ( _ i)a-b+c > 0.  

13 —c  
((5.3.25), (5.3.57)) 
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Computation of CGCs: Racah's general formula (5.3.76) 

(a b c) _ \ oa_b_ y  -d F b  + c)!(a - b + c)!(a + b - c)! 

a 0 Y 	 (a+b+c+1)! 

x.,,/ (a + a)!(a - a)!(b + 13)!(b - 0)!(c + y)!(c - y)! 

x 	 (-1) 

[p!(a+b-c-p)!(a-b+c+PP(a-a-01. 
 (-a - )3+c+P)!(b+,8- 13)! 

Special formulae (5.3.73), (5.3.34) and (5.3.35) 

(a 	b 	c 	(_i)a-b+c 
	(aab, c - alcc) 

a c - a -c 

	

_ oa-b+c 	  (2a)!(2c)! 

(a+b+c+1)!(a-b+c)! 

'a 	b 	c 	( _ i)a-b+c 
	(aab, c - alcc) 

c - a -c 	-,./2c7--E 

= (_oct-b+c\tc  

(b - c + a)!(a - a)! 

(2c)!(a + b - c)! 

(a+b+c+1)!(-a+b+c)!(a-b+c)! 

Putting c = 0 requires b = a and we obtain ((5.3.47)) 

( a a 0) _ 1 )a-a 	1 
= (aaa, -a100). 

-a 0 	 1 

1 
0, ifa+b+c=J= odd number 

(-1) 

(61 	
c) 

 
J12\/(J 

 - 2a)!(J - 2b)!(J - 2c)! 

(J + 1)! 
(fR)!  

(J12 - a)!(. 112 - b)!(J 12 - c)! 
ifJ=a+b+c= even number (a, b, c integers!) 

0 0 0 

Further special formulae follow from these by means of the symmetry of the 
CGCs (see table 5.2). 

Table 5.2 allows one to compute any CGC in which at least one j-value is 
0, 1/2 or 1; of course the symmetry properties have to be used. We shall not go 

x 

(can be derived from Racah's formula). 
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Table 5.2. Some special formulae for 31-symbols. 

—m 
1 oo = (- 1) j- in 	 

j+ 1/2 	j 	1/2\ 
_m 1/2 1/2)  = (_oi-m-1/21  (j —m +1/2)  

(2j +2)(2j +1) 

+1 	1 ) = 	(j — m)(j — m +1) 
—m — 1 1 	V  (2j + 3)(2j +2)(2j + I) 

(1 + 1 i\
) = 	 m I)(j — m + 1) 

—m 0 	 (2j + 3)(2j + I)(j + 1) 

(

j 	1 ) = 	(j — m)(j + m + 1) 
—m — 1 1 	 2(2j + ou ± j 

( 

	

—m lo ) = 	
„Az] + t) (j + i)j 

into any further detail. A table of special formulae of the above type, when one 
of the angular momenta is 3/2 or 2, is found in Edmonds (1957). For a survey 
on numerical tables see section 5.6 at the end of the present chapter. 

5.4 Combining three angular momenta; recoupling coefficients 

5.4.1 General remarks; statement of the problem 

The general problem was discussed in sections 5.1 and 5.2, where it was found 
that the coupling of any number of angular momenta was reducible to repeated 
coupling of two angular momenta. In what follows, we shall see that explicitly. 

Let us return to the summary on page 126 in section 5.2. Applying it to 
the case of three subsystems, we see that there are four different sets of states 
characterized by the quantum numbers of some of the operators 

.12 jz  J(1)2  J(2) 2  J(3)2  j(1) j(2) j(3) J(23)2  J(31)2  J(12) 2  

j  m fl 	j2 	j3 	m1  M2 M3 j23 	f31 	112 

(first line, possible operators; J")2  is the squared total angular momentum of 
systems i and k coupled together; second line, corresponding quantum numbers). 



160 	 ADDITION OF ANGULAR MOMENTA 

The invariant subspace 7-thhh  is spanned by 

Li] m hm2/3m3) 	or by 

1((iih)/12/3)/m) 	or by 

1((./2./3).i23./1)./m) 	or by 
(5.4.1) 

1((i3i1 )i31 h )./m); 

in each case by (2j1  +  1)(2j2  +  1)(2j3  + 1) orthonormal states. As the operators 
./ (12)2 , ./ (23)2  and ./ (31)2  do not commute with each other, it follows that the 
corresponding bases of ni1 i2 h cannot be identical, but as each of them spans the 
whole of they must be related to each other and to the uncoupled (direct 
product) basis by unitary transformations. The above notation in which jij2j3 
are cyclically permuted would seem the most natural. Common use prefers, 
however, to consider (instead of the third and fourth states of the above list) the 
states 1( ji (j2j3) ).im) and 1( j2( j3 j i )j3 i ) jm), respectively, which differ from 
those of (5.4.1) only by a phase (see (5.3.38)). Furthermore it is clear that 
we need not consider all the unitary transformations between the four bases; it 
suffices to know the transformation between 

and 
1((fii2)./i2h)int) 	Rii(./2/3)h3)./m) 

because the others are obtained from these two by a suitable rearrangement. We 
therefore study the following unitary transformations: 

IiIMI32ni233M3) "2)  1((iii2)i12i3)im) 

114 	1(ii(h13)./23)./m) 
	

(5.4.2) 

1((i1h)./12./3)./m) 	1(./i(i2./3)/23)/m)• 

V bears a suggestive name: recoupling transformation. For the two U-
transformations, it is obvious how they are found by twice applying the coupling 
rule for two angular momenta, but then we also automatically have the V-
transformation—so there is no problem; we shall carry out the trivial calculation 
later on and define the 6j-symbol, which is essentially the V-matrix element. 

We shall first stop a moment to ask ourselves why there is a recoupling 
transformation V at all and on what quantum numbers it depends and what is 
the dimension of the space in which it works. 

If we couple two angular momenta j i  and j2 , then the resulting j can have 
values between Iii  — j21 and ji + j2 and each of the possible values appears 
once and only once; thus a state 1(jij2)jm) is defined uniquely except for a 
phase, which is fixed by convention. When we couple three angular momenta, 
then ji j2 j3 may compose in different ways to form one resultant j: 
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J. 	1 2  I= Ji+.12+I3 

A 

  

2 

3 

   

In these two diagrams the point A can rotate about J, that corresponds to 
a phase factor for the otherwise uniquely fixed triangle. The figure in which 
three angular momenta are added has additional degrees of freedom: B and 
C can—apart from rotating the figure about J—change their relative position 
and thereby lead to different shapes of the figure; different shapes correspond 
to independent states. There is one exception, namely when one of the four 
numbers  fi,  12, j3, j is zero; in that case the second diagram reduces to the first 
one and we conclude that (except for an arbitrary phase) there is only one way 
to couple three angular momenta to a j = 0 state, a result which we derived 
earlier (between (5.3.49) and (5.3.50)). 

Thus our above qualitative diagrams show that now j and m do not define a 
state but a whole subspace, and that the vectors in that subspace must be labelled 
by a further quantum number: either 112 or 123 or 131. Each of these labellings 
defines another orthonormal basis and the unitary transformation V transforms 
these into each other. One might think  that j 12 , 123  and 131  have different ranges 
of possible values, e.g. 111 — 121 _< 112 < fi  + 121> 12 - 131 < 123 12 + h but 
the condition that each of these must combine with the remaining jk  to a given 
j reduces all of them to the same range. We leave it as an exercise to the reader 
to prove that the number of possible values is the same for j23, 13 1  and j12. One 
only has to inspect the various possibilities of the four inequalities 

	

111  — f21 	/12 	+ 12 	112 - 131 sf23 	f2 + f3 

	

- 131 112 1 + 13 	If - fil 	123 f+ fi  

(assume fi  < 12  < j3  and discuss the four possibilities j < ji, fi < j < h, 
12 < < 13 and j3 < j; show that if any one of the four values 11 12, 13 
equals zero, the subspace  11jj2j3 jm  is one dimensional). 

Next we observe that the unitary transformation V does not depend on m; 
that is: it is the same for all subspaces 'Hiihhim  once fi  , f2,13  and  f -are fixed. 
This follows immediately from its definition (5.4.2): 

1((iih)11213)1m)= E 1(11 (1213)123)1m) ((ii (i2h)./23)inil 
/23 

X 1((./112)11213)1 1n) 	 (5.4.4) 

= E i(i1chi3v23)inov, 2 • 

(5.4.3) 

i23 
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Whatever the values of all other quantum numbers are, the states appearing 
in (5.4.4) are of the form iy jm) (y labels all other quantum numbers whose 
operators in fact commute with Jx Jy Jz —see (5.1.4)) and thus obey the usual 
rules 

J±IY.im) = 	+ 1)— m(m ± plyjm ± 1). 

Therefore, applying .4 or L. a suitable number of times to (5.4.4), one obtains 
the transformation law for all m (—j < m < j) and clearly the numerical 
coefficients VW;  remain untouched. 

./23 J12 

The matrix elements of the unitary transformation V (i )  are not only 
interesting insofar as they transform between two different coupling schemes; the 
very fact that they do not depend on m is an interesting feature in itself: it means 
that these matrix elements are invariant under rotations (in contradistinction to 
the m-dependent CGCs) and therefore are likely to come up in any calculation 
where the result is expressed in a coordinate-independent way. That does not 
necessarily mean that by formulating one's problems by using invariant equations 
as much as possible, these transformation coefficients will automatically appear 
(quite apart from the fact that there are additional invariants if there are more 
than three subsystems); what may—and frequently will—happen, however, is 
that sums over products of CGCs are obtained which can be written in terms of 
these invariant coefficients and thereby considerably simplified. 

In the next subsection we shall define the 6j-symbol (which is almost the 
same as a Op-matrix element) and the Racah coefficient (which differs from it 
by a phase). In the last subsection we shall collect the most important formulae 
for the 6j-symbol without deriving them. We shall not derive them because 
after having defined and expressed the coupling coefficients in terms of CGCs all 
the listed formulae are obtained by straightforward 5  elementary algebra, which 
probably every reader of this book would skip anyway. 

5.4.2 The 6j-symbol and the Racah coefficients 

We start by working out the unitary transformations U(I2)  and U(23)  defined by 
(5.4.2). We define U (12)  by 

	

I((.it ./2)31233)/m) = E Ifimi hm2i3m3)um1,22, 3u , 2,,, 	(5.4.5) 
m, 

and U (23)  by 

	

I(ji (h.i3)/23)itn) = E iiimii2m2i3m3)u„,(2,3„,),„„,„ 3„. 	(5.4.6) 
M 

The summation over all three mi is formal, because m1 + m2 + m3 = m; we 
may define the U-matrix elements to be zero if that condition is violated (they 

5  Do not take this literally: 'straightforward' means only that no new ideas are needed; clever 
substitutions, extensive use of known symmetry and orthogonality relations, all these, in the right 
combination, will lead to the collected formulae. 
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are indeed automatically zero in that case). From the two expressions (5.4.5) 
and (5.4.6) and the definition of the V-coefficients by (5.4.4) we obtain directly 
the relation between V and the two U. 

17113)h, =  «fi (f2i3)./23).imi(uii2m2h)im) 

E (J23) 	u (12) 
/ ; 
23,m,

, 
 mnt i2m3 mim2n13)1inim• 

Mi 

(5.4.7) 

As the U are obtained by twice using CGC coupling, the V-matrix elements are 
a sum over products of four CGCs. 

We find actually 

I ((fi /2)/12/3)/m) = E 
m 3  

1(i02)fi2ni2) = E mihm2)(j,m,i2m21./.2m.2). 

Inserting the second into the first yields 

'((iI /2)/12/3)/m) = E iiimihm2i3m3)(iimihm21./.2m12) 
m, 	 (5.4.8) 
x(312n1233m31/ 171 )• 

Similarly 

I (it (/2/3)/23)/m) = E iiimihm2i3m3)(i2m2i3m31i23m23) 
,n , 	 (5.4.9) 

(i1M1i23M231iM)• 

These two equations may be used to read off immediately the matrix elements 
of U" and U (23)  respectively. Equation (5.4.7) then gives for the recoupling 
coefficient (we suppress m, because the coefficient is m independent as we know 
already): 

= ( (Ii(hi3)./23).ii(u.i2)./.2h)i) 

= E[(hm2i3m31./23m23)(iimii23M231iM) 
	

(5.4.10) 
all m, 

X (j lrn 1i2n21./12M12)(i12M12i3M3 

As this quantity does not depend on m, we may sum over m and at the same time 
divide by 2 j+ 1; furthermore we may, without any consequences, sum also over 
m12 and over m23, because the relevant CGCs are zero unless m 12 =  m1 ± M2 

and m23  = m2  ± m 3 . If we do all that and finally replace the CGC by the 
3j-symbol 

(aabi3lcy) = (-1)a-b+}  2c ± 1 ( a b  
ce 	--Y 



(11 	12 	112 ) 112 	13 X 
ml M2 —M12 	M12 ,11 3 -m ' 
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we obtain 

Vi2i3.i) 12 = -./( 2../23 + 1 )(2/12 + 1) 

E -2 h+i12 -i23+2m+mi2+m23 

m1 m2 m3 m 
MI2M23 

X 12 	13 	123 	/1 	123 

M2 M3 —,n23 	MI M23 

One now defines the 6j-symbol by 

{ /1 	12 	fl2 
(_ 

13 	/ 	123 	— -V(2 .723 

)./1 
v(i) 

1)(2j12 -I-- 1) 	/23112 • (5.4.11) 

By an obvious substitution of new  naines for the variables and by some simple 
manipulations in the exponent of —1, one arrives at the formula 

fl 	i2 	13 	= 
11 	h 	13 

(,)/14-i2+,3 	 [( 	 12 	.13 

/72 2 M3 
all in ;  
all p. ; 

X 
mi 

( 12 	13 	11 	12 	13 	1 1 	12 

P22 — 43) — 1-1 1 m2 P,

3) 

ill — A2 

.13
3 
 )] 

(5.4.12) 

( _ of' + .;2 	u  4-1, +12 w , j2 12 11;  f3 13 ). 

The symbol W(./112 12 1 1; ht3) is the Racah W-coefficient. Other notations 
are in current use; in the more recent literature the  6j-symbol is gaining steadily 
more territory owing to its simple symmetry properties. The other notations are 
given in the next subsection, where we list the most important formulae. For 
derivations refer to Edmonds (1957), Biedenharn and van Dam (1956) and Brink 
and Satchler (1968). 

5.4.3 Collection of formulae for recoupling coefficients 

Notation 

V (i)   23.112 = (fi(12f3)123)11((1112)11213)1) J 

 

(5.4.13) 
= N/(2123 +  1)(2 j1 2  -I-  1) ( — 1) ji +j2+j3 +j 	 112 1

3

I3  if 123  

(Wigner in Biedenharn and van Dam (1956)). 

 



I 12 	13 	. 11 

12 13 	11 

I 12 	13 	' 

12 	13 	• 

il 
t 11  12 13 

12 131  

(5.4.15) 
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Other notations are 

I ll 12 13
- 	

oil +j2-1-/i +/2 w (i i  i2/2/1; f3 /3 ) 
/I 	12  

(Racah (1942); reprinted in Biedenharn and van Dam (1956)) 

(- 	-1-i24- 1 1+12 

(2j3  + 1)(2/3 + 
	 U(1021211; 1313) 

1) 

(Jahn (1951)) 

 

 

(- 1) 11+12+1(J2i1+j3). Z(i112:1211 ; 13)3) (5.4.14) 

 

fJ  12 2 13 ) 	  
o o  o ) /2-"  + 1)(2J2 + 1)(2 j 3  + 1)(21 1  + 1)(212  + 1) 

(Biedenharn et al (1952), reprinted in Biedenharn and van Dam (1956)). 

Symmetries 

Each of these is, moreover, invariant under any permutation of its columns: 

1 11 12  f31-  1i 
12  13J 	jij  - 

1k 1. I 
1k 	1m  

(i,k,m is any permutation 
of 1, 2, 3); 

(5.4.16) 

111 12 13 I 
/ 1 	h 	/ 3  = 0  

(unless one can draw a tetrahedron with sides 
of lengths  fi.  12, j3, 11, h,  13  and such 
that the sum of the lengths of the sides of 
each triangular face sum to an integer): 

(5.4.17) 



l a b cl 
d  e f = F(abc) F(aef) F(dbf)F(dec) 

(-1)P(p 	1)! .E (5.4.20) 
+b+d+e—p)!(b+c+e+ f —p)!(a+c+d+ f —0! 

x (p—a—b—c)!(p—a—e— f)!(p—b—d— f)!(p—d—e—c)! 
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Jii  h hl _ 	1(h+ h - 12 + 13 ) 1(i2 + h + 12 - 13)1 
12 13 j 	/1 1( — f2 + h +  1  + 13) 1(./2 -  f  +  1  + 13) j 

— 11 ± 13) 	../2 	 - 13 ) 1 
1(- .11  +i  + + 13) 12 1(.11 - f3 + 1 1  + 13 ) j 

+ .12 - 11 + 12) 	(ii + h + 1 1  - 12) 13 1 

11 + 12 + 1 1 + 12) 1(11  — f2 +11 +12)  13 I 

{ 1(11 + 12 — 1 1 + 12) 	1(12 + 13 — 12 + 13) 	1(11 + 13 + — 13) 1 = , 
i( -11 + h + 11 + 12) 1(-h+ h + 12 + 13) 	- j3  + +13 ) j 

= 	
+ h + 11  -12)  1(i2 + + 12 - 13) 	+f3  1 1  + 13 ) 
- h +11  +12)  1(../2 	+ 12 + /3) 1( — f1 	i3 	+13 )  '  t  (fi

(5.4.18) 
The first symmetry in (5.4.18) is due to Regge (1959), reprinted in 

Biedenharn and van Dam (1956); the other symmetries are 'old'. Note that 
under Regge symmetry the sums of the numbers in each row and each column 
stay invariant. 

Closed formula 

We define an expression F (abc), which occurs already in the general formula 
for 3j-symbols (see (5.3.76)), by 

F(abc) = 
(—a +b + c)!(a — b + c)!(a b — c)! 

(a+b+c+1)! 

With this abbreviation we have Racah's formula 

(5.4.19) 

(Racah (1942); reprinted in Biedenharn and van Dam (1956)). 

Orthogonality; sum rules 

E(21 	i)(2 	{ ./..1 f2  / I { 	12  f'1  
-"if 31 	.12 	I 	11 	12 

i.e. Mji 	,/(2/ + 1)(2j + 	1) { i.1 j.2 	I 
ii .12 	

is a real orthogonal matrix. 
I 

(5.4.21) 



1 1 
12 
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1 t 

11 
k 

/1 - 112 

1 
j 

f 

L
1 1 
i; 

12 
it 

13 

13.  } (5.4.22)  
./ 

12 1 
k j 

(5.4.23) 
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(These relations follow from the unitarity of the recoupling transformation; see 
(5.4.13).) 

E(_ 1) i+I÷J3 (21 + 1) I .11  12 131 1 
ii f 	/11/2 

(Racah; see reference below (5.4.20)); 

± 1) { 11 12 13  1  { 12  r 	k J 1' 3 	2 - 	1 

= 11 12 13 1 I 13 11 12 1 
11 	12 	13 	l 	l 	i; 

S =Eii-FE1i-I-Ei; 

(Biedenharn (1953), Elliot (1953); both reprinted in Biedenharn and van Dam 
(1956)). 

Special formulae 

Special formulae for 6j-symbols are given in table 5.3. 

Table 5.3. J =  fi  +  f2  + 

( -1 ) j  
I O h 12 .1(2/2 	1)(2j3 + 1) 

Ifi 	h 	13 I  
= (-1)' 	

(J —2.i2)(J 	+ i) 
13 - 1 J2 +j 	(2)2 + 1)(2j2 +2)2j3(2j3 + 1) 

I 11 	12 	13 } = (-1).1 1 	GI + 1)(J — 2ji)  

h- 	 2h(2h + 1)2 j3 (2 j3  + 1) 

{

11 12 
1 13 - 1  

13 
l2 -1  

13 
12 

13 
f2+  1 

I = 

= 

= I  

,_ 

(_1),I 

(-1)J 

(_1).1-1-1 

J(J +1)(J — 	— 1)(J —2j,) 

(2h - 1)2 h(2i2 + 1)(2j3 — 1)2/3(2/3 + 1) 

2.(J  +. 1)(J —2j1)(J — 2/2)(J — 2j3 + 1) 

2.12(2.12 + 1)(2j2 +2)(2j3 — 1)2j3(2j3 + 1) 

(1  - 2j2  — 1)(J — 2j2)(J — 2j3 + 1)(J — 2j3 + 2) 

(212+  1)(2j2 +2)(2/3 +3)(2j3 — 1)2j3(2j3 + 1) 

2[12(12 + 1) -1- i3 03  + 1) _ il ui  + 1)1  

N/2 .1212 j2 -1-  1)(2j2 + 2)2j3(2/3 + 1)(2j3 +2) 
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Together with the symmetry relation ((5.4.15), (5.4.16)) these formulae are 
sufficient to calculate any 6j-symbol with one entry being 0, or 1. By means 
of the Regge symmetry some other 6j-symbols can be calculated (see (5.4.18)). 

5.5 Combining more than three angular momenta 

Here we give only a few remarks and references. Evidently the number of 
different ways of coupling j J (2)  • • • J(n )  to a resultant J, i.e. into a 
Lim) state, grows rapidly with n, the number of coupled systems. The principle 
is clear after our general discussion in sections 5.1 and 5.2 (see in particular 
the summary on page 126) and its application to the case of three angular 
momenta. Although the recoupling coefficients for four angular momenta (the 
'9j-symbol' appears in the problem of transforming from LS- to jj-coupling) 
and for five momenta (the '12j-symbol' is one particular recoupling coefficient) 
are of practical importance, we do not consider them here. Information may be 
found for instance in 

(i) Rotenberg et al (1959), 
(ii) Biedenharn and van Dam (1956), 
(iii) Edmonds (1957) and 
(iv) de-Shalit and Talmi (1963). 

5.6 Numerical tables and important references on addition of angular 
momenta 

We list here some numerical tables and books in which further information may 
be found. Short  special  tables and formulae are scattered in the literature on 
atomic and nuclear spectroscopy; it is plainly impossible to give here a complete 
list of them. 

General references 

(i) Biedenharn and van Dam (1956) 
(ii) Rose (1957) 
(iii) Edmonds (1957) 
(iv) de-Shalit and Talmi (1963) 
(v) Varshalovich et al (1988). 

Numerical tables 

(i) Rotenberg  eta! (1959) (contains bibliography of tables) 
(ii) Ishidzu et al (1960) 
(iii) Nikiforov et al (1965) 
(iv) see also Varshalovich  eta! (1988). 
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We finally note that a powerful and elegant graphical representation for 
CGCs exists which can be used in the calculations of coupling of angular 
momenta. We shall not discuss such a technique here. As references we list 

(i) Brink and Satchler (1968) 	1 
(ii) Varshalovich et al (1988). 	

( 
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REPRESENTATIONS OF THE ROTATION GROUP 

For what follows it is useful to have in mind the discussions in chapters 3 and 4. 
All states I yjm) are assumed to be standard ones. 

6.1 Active and passive interpretation; definition of D; the invariant 
subspaces 7-(1  

We shall define the representations D (i)  of the rotation group by means of the 
abstract state vectors I m) and not—as many authors do, and as we could do as 
well—by means of wave functions. That implies that the rotations, for which 
we define the representations, are active rotations. 

On the other hand, we could also discuss everything in terms of wave 
functions and then we would have the choice between active and passive 
rotations. In that case we would find unitary representations 

Ua (a, fi, Y) = (Ra(a, fi, Y)) 
(6.1.1) u p(a, 13, y) = U(Rp (a, fi, y)). 

In section 3.2.2, we found that for a sequence of rotations the three-
dimensional matrices M have the property (see (3.2.14)) 

Ma (a, /3 , Y)A p(a, fi, y) = mp(a, 13, y)ma(a, 13, y) = 1. 	(6.1.2) 

This, as will be shown now, is also true for the unitary representations of 
these rotations. We have not yet, however, defined what Up (n) or U r(cr, 0, y) 
means. As said above, this is not possible without using the concept of wave 
functions. We shall consider both the active and passive interpretations for a 
given axis and angle or rotation 

in (angle n and axis n of rotation). 	 (6.1.3) 

Let P be a point in space. If we introduce a frame in reference, P will have 
the coordinates z=- x,y,z. 

An active rotation means P, together with all its physical properties (field 
at P) is transferred to a new position P': 

P —> 	= Ra(1)P 	 (6.1.4) 

with coordinates 
xa' = Ma(n)x. 	 (6.1.5) 

170 
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A passive rotation means the coordinates of the point P are referring to a 
rotated frame of reference; its new coordinates become 

x'a  = Mp (g)x 
	 (6.1.6) 

ma(ri) mp(n) = 1. 	 (6.1.7) 

This and what follows is illustrated in figure 6.1, where we assume for simplicity 
a rotation by 77 about z. 

Figure 6.1. Active and passive rotations. 

We consider the change of the wave function in active and passive rotations 
respectively. 

In the active interpretation the physical system—characterized in space by 
the wave function—is bodily rotated. The state of the rotated system is Ua(n)1 1//) 
and its wave function at the point P is the same as that of IC at the point Ra-I P, 
because it has been bodily transferred from there to P. Hence 

1/1L(s) 	(sitia (1)10 = 1/1 (M; 1 (n)x). 	(6.1.8) 

In the passive interpretation the frame of reference is rotated, whereas P and 
the local physical state at P remain unchanged. We must require that there 
is a description Vp (x') which uses the new coordinates but describes the old 
situation; it is defined by 

Vp (x;,) = 1,kMp(n)x) 	l î(x) 	 (6.1.9) 

which can be rewritten as 

(6.1.10) 

We now define a unitary transformation Up (ri) by 

Vp (x) a:-  (x1Up(n)1 1//) = 1/1 (M1fl l  (R)x). 	(6.1.11) 
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From (6.1.6) and (6.1.10) we read off (for the same 71) 

x) = (xivauplik) = *(s) = (xilk) 

1,U (M» 1V1 1 x) = (x1UpUallk) = (X) = (X10 • 

Hence 
U(7) 	.u -a-,  (n) 	=ua() 

Up(a, fi, y)  U;' (a,  #, y) = 	— i3 , —a). 

Note that for a sequence of rotations the order is reversed in the two 
interpretations! In the active interpretation the sequence Ra  = RaiRa  j is 
represented by the unitary matrix Ua  = Ua .2Ua .i. In the passive interpretation 
the sequence Rp  = Rp,2Rp,1 is represented by the unitary matrix Up  = Up,IUp.2 

since only then does Up  = U;1 . This has to be kept in mind if one compares 
formulae in different books: some authors use the passive interpretation and 
find U(R2Ri) = U(Ri)U(R2), whereas others use the active point of view and 
obtain the same formulae as we do. 

From now on (if not stated otherwise) we mean always the active 
interpretation. Thus from (3.4.2) and (3.4.5) we have 

U0 (7)) = e-inj  

U0  (a, 0, y) = 	e-i134  

We define the (2j + 1)-dimensional unitary representation D(i ) (a, fi, y) of the 
active rotation  R0  (a,  0, y) by the transformation of the eigenstates of angular 
momentum I jm) 

Ua (a,  fi,  Y)1.1 in) = E iine)(fm' lua(a, /3, y)lim) 

y) 
	

(6.1.14) 

D m  (a,  p, y)m (jm/ le-ia iz e-104 	Um). 

Since we know that J,, Jy , J., all commute with J2 , it is clear that the 
operator Ua (a, /3, y) also commutes with J2  and therefore has no matrix 
elements between states of different j. Therefore the states I fm)  of the subspace 
7-li transform among each other: the subspace 7-0 is invariant under rotations 
in the three-dimensional space. In other words: if the states lyjm) (y = all 
remaining quantum numbers) are used as the basis of the Hilbert space, then 
the unitary representation U0  (a,  0, y) of the rotation group splits up into an 
infinite set of submatrices DU )  with dimensions 2j + 1, which transform only 
states inside the corresponding invariant subspaces N. Since Jy  and J, do 
not commute with J, (whose quantum number is m) and 7-0 is spanned by the 
2f  + 1 states 11m), it is clear that no further splitting into smaller invariant 
subspaces is possible. We call the subspaces 7-0 irreducible subspaces and the 

(6.1.12) 

(6.1.13) 



DO /2) 

D(3' 2) 
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(2j + 1)-dimensional matrices DU )  irreducible representations of the rotation 
group. 

=  

ua  (a, fi, Y) = E EDD(i)(a, fi, y)  

U(a, 0, y) = 

D(°) 

(6.1.15) 

6.2 The explicit form of Dm(i?m (a, 13, y) 

By definition, (6.1.14), the D;,1,), n  are the matrix elements of U„ between the 
states (jm'l and I jm). Since these states are eigenstates of  J, we obtain 

fi, y) = 	 Um) 

=e-i(ane+Ym) (im'le -ififYifm)• 

That leaves us with the problem of calculating 

d„,(fi) 	(jm'le 	Ijm). 

In all that follows we shall use this convention: if any matrix M„,, „, is written 
explicitly, m' and m will assume their maximum values m' = m = j in the 
upper left corner, thus 

( 

Mii m11-1 

ivf 	

• - • 

. Mi-ii Mi-li-1 • • • 	- 

- 	• 	m-i-i 

(6.2.3) 

6.2.1 The spin - i case 

For the  spin-i case the problem has already been solved when we considered 
the  spin-i  state with components ± in a given direction 0, cp. Indeed, what 
does (6.2.2) require? It requires the calculation of the state 

e -ifij" I I 	) 	1  m — 	m)o=p;c0=o 

(6.2.1) 

(6.2.2) 



sin2 2 	2 —0 1 -1 , --
I

) 
1 	1 

(— s'n fi  
2 

 fi  
=11, — 1)po.o = 

cos — 
2 

(6.2.4) 
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with m = 4 namely that state which results from rotating the state 11, m) 
by  fi  about the y-axis. Hence it is the eigenstate 11m) in the direction  t = fl; 

= O. This state has been calculated in (4.8.11): 

= 	00/2.o = 
sin —

13 
2 

= - sin —/3 1-1 , -I ) + cos —2 1-2 , --2 ). 2 2 2 

With this, we obtain immediately from (6.2.2) 

fi 	/3  ( . 	cos —2  — sin -2- 
d (1 / 2) (0) = 

fi  sin —
2 	

cos —
2 

(6.2.5) 

and with (6.2.1) we find again our old result (4.8.8): 

	

13 	• 
Cia/2  cos  — e-IY/2  —0-ja1'2  sin /2  c1Y/2  

D(I/2) (ot, /3 , Y) = 	
2 	 2 	 (6.2.6) 

ial2 • ■8  -iy/2 

	

e 	sin — e 	e a/2 cos  t2  e1y/2 
2 	 2 

We shall calculate the same again in another way. From (4.8.5) we have for 
n = (sin i9 cos yo, sin  t,  sin  q,,  cos z,) 

	

( cos /, 	e-iv sin /, 	 n3 	
ni— 

	

(n • J)1/2 = -2 ei V sin 	— cost 	 2 n1 +in2 	
n3in2  . (6.2.7) 

In order to represent Ra (n) we must calculate 

From (6.2.7) we find 

— 	 (n • 
k! 

k=0 

(6.2.8) 

(n • J)2, = x 1. 4 
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Thus even powers (2k) of (n J)1 are equal to (1)
2k 

and odd powers (2k -1- 1) 

are equal to (n. J)i (1) 2k+ I  . Therefore 

. 	 nl — in2) 
(e -1'17%4) = COS — — 1 ( n3  

2 	n i -F in2 	—n3 	
sin —

2. 

(e-04) , = 

= 
 (

e-jaa  0 \ 
0 eia/2  ) 

COS 1 — sin -i; ( 

In particular 

(e-Ica=) (6.2.9) 

(6.2.10) 

sin —
2 	

cos —
2 

Carrying out the matrix product e-ia•i= e -WY e'Y -i= yields (6.2.6). 

6.2.2 The general case 

We know how a spin-i state transforms under a rotation; we have just derived it. 
Can we take advantage of that knowledge to derive the transformation law for 

• a j > state? Indeed, we may do that by using the fact that we can compose 
several spin-i states to one total angular momentum j state. In (4.10.8) the most 
general normalized state I fm) was given as a totally symmetrized direct product 
of  2j  spin-i states. The symmetrization concerns only the labels (i) which we 
might attach to 2 f  systems, while the number of u +  states and that of u_ states 
remains j+m and j—m respectively. Therefore the  (2 f)!  permutations leave the 
transformation properties untouched, which implies that for our present purpose 
the symmetrization is an unnecessary luxury, which we omit. We thus evaluate 
(6.2.2) 

= (.imle-n34 1./m) 	 (6.2.11) 

between (simplified) states according to (4.10.8) 

i+m 
i 	+ u_ , C.„,= 	  

j 	-Fin) (2(); 
urn)  

	—m)!. 
(6.2.12) 

There are  2f  systems of spin 1 which for a moment we may again imagine to 
be labelled (u)' ) ; i = 1, ... , 2j; then, since the different Jr commute: 

2i 
-0 	-ipE Pi) n  -0.0)  e 1  Y = e 	"= 	e 	Y 	 (6.2.13) 

i=1 

where .1 (i)  acts only on the ith spin state and is the unit operator for all others. Y 

Thus there is exactly one operator per spin state u (i) . How it acts on u (i)  we 
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know from (6.2.4): 

— 	fi  (i)  + sin  - u +  — cos —2  u + 	2  

—1134" (i) 	sin 	(i)  + cos  e 	u_ — s n —
2

u + 	2 

Hence (forgetting from now on the labelling) with (6.2.12) 

(6.2.14) 

	

fi 	13 y m 	 fi ).i-m 
e /Y Ijm) = Cim  (cos u +  + sin iu_ 	—sin —

2
u +  + cos  

(6.2.15) 
We multiply out (remember that j±m is always an integer > 0) 

	

Lim) = CFnE 	M ) ( j  In) (-1)4 V 	tt 

X (COS - 

0)V-I-J-111-4 	p)J-I-M -V+11 

sin — 	u +  U_ 

We transform the sum indices: 

+ pj + m' 	= j + m' — 
Or 

vv 	 V =  V 

and obtain in the sum the product 

2 	 2 

i+ne U +  u_  

Therefore 

e-ifijv Um) = Eline) 	E (f +m \
( v ) +m,  - 

	

fi 2v—m—m' 	2j+m+m' —2v 

X (-1)- 1-1-m' —v  (cos i) 	(si n 	i) 

=E iinodm(i2m(o) 
m' 
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(see (6.2.2)). Inserting the normalization constants gin, from (6.2.12) gives the 
explicit form 

1   +In/Ai — no ,  
. ( 	#)--.' 	# 2j -Fm+m' 

COS - 
(i + M)!(i - to 	2 

x(._iyi-m'E 	
i+n 

(i 	j m e — v 
2v 

X (cos ) 2v 	

pt 
sin v  

2 	2 
DmTm  (a,  /3,  y)  = e-i(am'+ym)dm02m 09) .  

(6.2.16) 
The sum over y goes over all integer values > 0 for which the binomial 
coefficients do not vanish. 

Example. For j = 1 one finds 

1 
-
2 

(1 + cos /3) 

d» (fi) = 	

1 

711 	sin fi  

(-
2 

(1 - cos /3) 

- 	
2" 

—
1 	

sin /3 

cos  fi 

1 
— sin  fi 
.4, 

1 
-
2 

(1 - cos /3) 

— —
1
, sin /3 

'../2 
1 
—(1 + cos p) 
2 

. 	(6.2.17) 

If one compares (6.2.16) to other formulae in the literature, one has to keep in 
mind that some authors give D(-y, -0, -a), which refers to the passive 

interpretation R p (a, 13, y), and call it Dmti,)  (a, fi, y); it also happens that in the 
same book sometimes the active and sometimes the passive interpretation is 
used. Apart from that real difference, the above formula (6.2.16) can be written 
in various other equivalent forms. 

6.3 General properties of DO )  

In what follows we shall investigate the general properties of the DO ) -matrices. 
We expect close relations to the eigenfunctions of angular momentum and to 
the coupling coefficients (CGCs). The unitarity relation [Dt(a, p, y)ti , 
Dmu,',: (a, 0, y) = [D-I (a, p, o ]mu ni)  , = 	ni)  ,(— y, -fi, -a) will often be used. 

6.3.1 Relation to the Clebsch-Gordan coefficients 

We consider various matrix elements of the unitary transformation representing 
a rotation Ra (a, 0, y) or Uri); we shall omit the arguments a, #, y and ?I; 
in products of D-matrices all of them have the same arguments unless stated 
otherwise. 
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The relations of the D matrices to the CGCs are obtained if we use mixed 
matrix elements, i.e. between coupled and uncoupled states. Let Ra  be an active 
rotation, U„ the induced unitary transformation. Then 

//Aim') = E lipo(Jmivaline) = E 

umiu. = E umlualino (fro = ED,uno. 
	(6.3.1) 

m 	 m' 

Now consider the matrix element (ji m .i2m21Ua I (ki2)./ne) ,  let U act once to 
the left and once to the right and equate these two expressions: 

to the right 

(iimii2m2lUal(ji./2),/n0=E (jimihrn2w1)D, 
A 

to the left 

	

(iimihm2lUal(.02)./m1= E Dui) Du2) 	, 	/) 1 	,2 	1 2m 2 JM • m„n .2  

By equating these two expressions we obtain two equations; namely, we may 
use the orthogonality relations of the CGCs in order to eliminate these on either 
the left- or the right-hand side of 

E (iimihm2iitoDu), = E Duo , Du2) 	m ,  u • m') 	(6.3.2) 
Am 	 m 2 m; I 2  2  

mjm'2  

Using the first of equations (5.3.16), i.e. multiplying by (j1m1hm21./m)  and 
summing over m i  and m 2 , we obtain 

D E (jmuimii2m2)D D ui),u2) 	ne)iiM mi ., .2m, 	2 2 -  

mi •m2 

(6.3.3) 

(only terms with mi +m2 = m and 	m'2  = m contribute). Using the second 
of equations (5.3.16), i.e. multiplying by (jm'l j i tt i  j2/12) and summing over j 
and  m',  we obtain 

Dgi)ti,D;122)11,2  = E 

We change the subscripts 	m'1.2 ; 	m and find 

Dui), eh), = E (iimihm2unoDu) 	, m,m, m2m2  m1+,,m,+m2 • 
(6.3.4) 
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Finally we consider the matrix element (the CGC) (iimihm21(iii2).im) ,  where 
we introduce 1 = Ua Ua  

= 

U )  D' , DUD  , DyrTm*, (j m il  j21W2 1. In') • E m,m, m2m2 

Thus 

u1m1i2n2lino= E Dui),D(h),D(D. 	, (ilmr1 ign/lino• (6.3.5) ni 2m, m i -i-m,,m,+ni 2 	2 
m;m' 

Multiplying by (j, m j2m2lf ite) and summing over m i  and m2 yields, according 
to the first equation of (5.3.16) 

	

= E 	 , m,m, m2m2  mi+m2.„„+m, 
ml m2  

itt/PI;n1' 

	

X  (it 	igni2 	• 

(6.3.6) 

6.3.2 Significance of the relation to the CGCs 

What do these equations, in particular (6.3.3), mean? They mean what in group 
theory is called transforming a direct product of two representations into a form 
where it splits up into irreducible parts. We shall look into the details. 

Consider a matrix M with a particular structure; namely, let it be built up 
of submatrices along the diagonal, like this: 

M =  

(6.3.7) 

Transform M by a unitary matrix U. Then M' = UIMU will no longer have the 
box structure of M. Now, any matrix of the type M', which can be transformed 
into the form M (box structure), is called reducible; if not, it is called irreducible. 
If the boxes showing up in M are irreducible, then one says that M is split into 
its irreducible parts. 

Now, how is it with the D-matrices? Let us consider the coupling of two 
angular momenta, fi  and j2 , which we hold fixed in the following discussion. 
By fixing j, and j2 we have singled out a subspace 7-(  the total Hilbert 
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space H. The basis states in 'Hi, h  can be chosen to be 

{Ii1m1i2m2)) 	or 	 h)im)} 

with variables 

—ji  <m1  < fI 	 — j < m < j 
	 (6.3.8) 

or 
—12  <m 2  < /2 	 1/1 - i21  J  Ji  +12. 

The dimension of  1-  2—in either representation—is (2f,  +1)(212+1). Consider 
now how these states transform under a rotation: the coupled states transform 
with DO ) , namely 

	

1(1112)./In') = El(i02).im)D(niu)n, 
	 (6.3.9) 

that is, they transform with the irreducible representation D (i) . There are, 
however, several different j values. We may combine all the D(1)  matrices 
in a 'direct sum' D (c)  where the superscript c indicates that D (c )  transforms the 
'coupled' states) 

JI +i2 
Dc(cc 	E eDmum), 	 (6.3.10) 

j = ljl 

i.e. in one single matrix—just by lining them up along the diagonal—like this 
(we take the example j, = 1;  12 = 3; 2 < < 4): 

D (c)  = (Dm e D (3)  e D (4) )ce 	 (6.3.11) 

12 345  6 7  89  10 11 12 13 14 15 16 17 18 19 20 21 

m 

FD")  , 
m  

m 

D")  
m 

m 

m 
If)  

2 
3 
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5 
6 
7 
8 
9 
10 
11 
12 
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14 
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18 
19 
20 
21 



6.3 GENERAL PROPERTIES OF D (i) 	 181 

This matrix transforms the subspace 'Hi , j, if the set {1(ii.i2).1m)} is chosen 
as a basis. It is fully split up into its irreducible parts D (» (./ =1../1 — 121, • • • 
.12). 

Next, we consider the other basis in lijo„ that one which is provided by 
the uncoupled states: WI mi .i2m2)1. These states we have called `direct product' 
states Ii1m1hm2) 1./1 171 1)01/2n/2). Here each factor transforms with its own 
D-matrix. Hence together with what is called the direct product of D-matrices 

Iijm i2m'2) =. L_,\--‘ I m j2 m2)D(l' ) D(12) 
m 	m2m'2 ' 

1 n1 2 

The 'direct product' D (u )  transforms the 'uncoupled' states: 

D (u) = (Doi) ) (D02) = (D01) 0 D02)) 
— 	 m2m; 	 im1mm2m; 

(6.3.12) 

(6.3.13) 

which is a matrix with four subscripts. It could be written in a four-dimensional 
matrix scheme, but it need not be. Indeed, we can combine two-dimensional 
schemes in an interlacing way to write down (6.3.13) like this (we take the same 
example j1  = 1; j2  = 3): 

D ( u )  = D (1) 0 D(3)  = (DM  0D(3) )we 	 (6.3.14) 

MI' 
1 0 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 r 
M2 

DI? D(3)  

r ni.2. 

M2 

D'IdD°)  

r in2. 

M2 
DA Do)  

r in2.r 
M2 

D(Pj D(3)  

M2 

M2 
D(Pg Ir) 

r  M2.  

M2 
DA D. 

rrn2 

M2 

D(.1 ■ D°)  

F

rn2 

M2 

IXPo D(3)  

F 
M2 

DM Do) 

0 

-1 

1 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

This matrix transforms the subspace 7-{1 2  if the set (I ji m i  j2m 2 )) is chosen as 
basis. It is not split up into irreducible parts, but it can be 'reduced'. 



182 	REPRESENTATIONS OF THE ROTATION GROUP 

Now the situation is this: we have in the subspace Hhh  of dimension 
(2f 1  + 1)  (2j2  + 1) two orthonormal bases, each containing (2f,  + 1) (2.12 + 1) 
basis states. Let us denote the coupled states by Ic e ) 1(./1./2)ini),  where c, 
means 'coupled' and i goes from 1 to (2f,  + 1)  (2j2  + 1), and the uncoupled 
states by lu,) m Lign2), where ti e  means 'uncoupled' and i has the same 
range as before. Then the transformation under rotations is given by 

= E 'co (cklci) 

ekci.)ick) 	D (c) iCi) 

1 11 0 ' =Ellik)(UklUiY 

D 17 )  I u k ) 	D (u) lUi). 

(6.3.15) 

Between the coupled states Ic e ) and the uncoupled ones lu,) is the unitary 
transformation by the CGCs—we call it T—which should be the same before 
and after a rotation: 

ici) =E luk)(ukico = 	7. 1 14 i) 

I ci)'  = E iuknukrcir = E 	flux. 
	(6.3.16) 

Here Tki = 041(.0 = (i1M1i2M21:1M) is a CGC. From (6.3.15) and (6.3.16) we 
read off 

Hence 

Ici )' = 	T D (Olu i ) = T 1, (4) T -I  Ice) 

Ici)'  = D(c) Ici). 

D (c)  = TD (u ) T -1  

= T-1  D (`)  T 

(6.3.17) 

(6.3.18) 

The first of these equations is equivalent to (6.3.3) and the second to (6.3.4). 
They become identical with those equations if in (6.3.3) the 'direct sum' over j 
is understood. We have thus found the following very plausible result: 

The same unitary transformation which relates the coupled and 
uncoupled states to each other, and whose matrix elements 
are the CGCs—this same unitary transformation, if applied 
to the direct product  D(it)ØD(12)  D(" ) , transforms it into 
the direct sum E EI)D (c)  of the irreducible representations 

D (j )  with  Ifi —  321 < < 	f2. 

(6.3.19) 
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6.3.3 Relation to the eigenfunctions of angular momentum 

Remark. It should be mentioned that the D (1) , are the eigenfunctions of the mm 
quantum mechanical symmetric top. This fact has found applications in nuclear 
physics. We shall not discuss it here. See, however, Edmonds (1957) for further 
details. 

6.3.3.1 Transformation of eigenfunctions under rotations 

The eigenfunctions of angular momentum are defined as the wave functions 

ifri„,(x) = (xljm) 
	

(6.3.20) 

where x are the coordinates of a point P on the unit sphere, i.e. 

x-= (sint cos q, sint sin 99, cos 0). 	(6.3.21) 

As we have already found in various discussions, for the last time in (6.1.10), 
an active rotation Ra (a, 0, y) on the state carries the wave function from P to 
Ma P and from M; 1 P to the point P, thus 

lk:11„.a (x) 	(xWalim) = 	= V/im (Mp x). 	(6.3.22) 

Mx  = x; are the new coordinates of the point P after a passive rotation 
Rp (a, 0, y): 

	

(4) = (xlUa ljm). 	 (6.3.23) 

Now 
/Jaunt) = E LinoD(L i), (a, fi, y). 	 (6.3.24) 

Hence (remember x lies on the unit sphere) 

	

1/ii„,(4) = E v„,n, (x ) D„, (a, fi, y) = 	(x) 	(6.3.25) 

where 4 are the new coordinates of the old point P after the rotation 

Rp (a, #, y) of the coordinate system, and D„, (a, 0, y) is the representation of 
R a  (a, 13, 3'). For j = 1 = integer, ifri m  ym . 

This transformation may be written also by taking the other interpretation 
on the left-hand side; namely, remembering that 

X pf  = MpX = M; I  X 

and taking the inverse of the whole transformation, we obtain, using 
Dt(a,fi, y) = 	fi, y) 

il1jm (X j )  = Em,,k,„,,(x)[Dt (a, 0, y)] n( j,),,, 

= ED;/,„,)., (a, 0, y)vipn, (x) 
	 (6.3.26) 
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where xa  denote the coordinates of the new point P' = Ra (a, 0, y)P in the old 

coordinate system and D,,(a, 13, y) is as in (6.3.25). For j =1= integer, 
= Yini• 

6.3.3.2 The D m9)  are spherical harmonics 

We may represent the wave function at the point x' on the unit sphere by a 
suitable rotation of the wave function at the point (0, 0, 1). This is accomplished 
by (6.3.26). In that equation we put x = (0, 0, 1), i.e. .0 = 0, (p= 0. 

The point xa' is the point into which x = (0, 0, 1) is carried by the 
active rotation Ra(a, 0, Y). If x'a  is given, we only have to choose the correct 
Ra(a, 13, Y). 

Figure 6.2. The wave function at point ea  is obtained by rotating the wave function at 
point X. 

Figure 6.2 shows that we must first rotate by 0' about the y-axis and then 
by yi about the z-axis. We remember that 

R a (a, 0, Y) 	Ra(ae3)Ra(8e2)Ra(Ye3) 

(see (3.2.4)); hence y = 0, = 0' and a = v'. We then obtain from (6.3.26) 

1/0„, (0' , (p') = E D((p', 	, 0)111.1 „,,  (0, 0). 	(6.3.27) 

The 	(0, 0) are simply constants. The equation states that once these constants 
are determined, iirj ,„ (0' , (p') is the wavefunction for the I fm)  state—whether j 
is an integer or not. This relation makes it possible to define wave functions for 
half-integer angular momenta; these wave functions are essentially the D (i ) (0, (p) 
with half-integer j. This possibility does not, however, lead very far, since the 
half-integer angular momentum has its origin in the spin part. Spin, however, 
is locally attached to the 'elementary particles' and should not be described by 
a wave function in space, which gives the probability amplitude for the orbital 
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part of the angular momentum. Thus the full significance of (6.3.27) will show 
up by taking j = 1 = integer. Then 

1//p„ , (0 = = 0) = Y/„, ,  (0, 0) 

and (6.3.27) reads 

Y 1.(t7' ,  ça')  = E D(nzini)‘; (,, , 	0) y,„,, (0, 0). 	(6.3.28) 

First we put 0' = 0 and obtain with (6.2.16) and (6.2.2) 

Dm(i  m)*,(ql , 0, 0) = eimv'Sm„,, 	
(6.3.29) 

Yin, (0, ) = &mid l'im (0, 0). 

The Km  are one-valued functions (see (4.7.21)); hence Y/m (0, w') must be 
independent of w'; that is, according to (6.3.28), only possible if Yim (0, 0) 
vanishes for m 0. Hence 

Io 

	 for m 0 

— 
Ko(0, 0) = 

1/21 + 1 
(4.7.30) 	for m  = 0 

47r 

which also can be read off from (4.7.27). With this, (6.3.28) gives 

. 	tiN*  

VIM ( 1' , 	= 121 	
_ 

4-  Tr 	Y) 47 m  

(6.3.30) 

(6.3.31) 
0) 	 47 

Dmo (w, 0, y) = 1
2/ + 1 

 Y(Û, w) (independent of y). 

Since D is unitary, we obtain from Dt = D -1  

DO1m)* (0, —0, —w) = Dmi  0 (w, 0, 0) = I 	* 
1 

Yin, (0,  0. 

We change —0, 	into 0, 

(1)* 	I/ 47r 	* 	 /47r 

by means of (4.7.27) and (4.7.28) 

Km  (0, w) = constant elmv Pr (cos 0) 

which gives 

Yi„, (0, - 	= constant (-1)m  e-m'w P/m  (cos 0) = (-1) m  Yi*m  (0, w). 



kP2—  

0; cos0= cos .0,cos.02+sinAsin02cos( P2— P1)  

Y 
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Hence 

= 	47r  ( 
2/ + 	

1) m 11;,(0, (p), independent of a. 	(6.3.32) 
V 	1 

Finally with m = 0 (see (4.7.27) and (4.7.28)) 

Dgc;(a, y) = ylE1417r  ro (0) = Pi(cos 0). (6.3.33) 

6.3.3.3 The addition theorem and the composition rule of spherical harmonics; 
integral over three spherical harmonics 

From (6.3.25) and (6.3.26) it follows in either interpretation that 

E ÇOjm  (x. ),fr.,.m (x2) = E (p,„, 	)iiii*m  (4) 	(6.3.34) 

whenever x 1  4+ x and x2 4+ x'2  are connected by a rotation. The situation is 
shown in figure 6.3. 

Figure 6.3. The relationship between the spherical coordinates of points P1 and P2. 

We now take advantage of the rotational invariance of (6.3.34), by rotating 
such that P1 	P; = (0, 0, 1) and that P2 	1:1 .  comes to lie in the xz-plane, 
i.e. = (sin 0, 0, cos 0). The angle 0 is, according to the figure, the angle 
between PI  and P2 (and between P; and P). We specialize to j = 1 (integer); 
in that case *In, l'im ; in particular (see (6.3.30)) 

.12/ ±  1 
}rim (PO = 	(Pi) = Smo 

47r 

so that (6.3.34) becomes 

i21 	+ 1  
/70 (0, 0)  47r 	m 
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or, with (see (4.7.27) and (4.7.28)) 

   

Y1o (0, 0) = Y10(0, 0) = 2
1 + 1 
 4ff 	Pi (cos 0) 

PI (cos = 	E 	490 1717,0,2, W2) 
2/ + 1 „, 

(6.3.35) 

(compare figure 6.3). With 0 = q)2 = q) this angle drops out and 0 = 02 — 01. 
Then we obtain from (4.7.27) 

( 1  —  no !  , 
Pi (cos(02 — 01» = E 	 „- (cos 0, ) Pr (cos 02) . 

(1 - - m)! 
(6.3.36) 

These two equations are known as the addition theorems of spherical harmonics 
and Legendre polynomials. Two further useful formulae for spherical harmonics 
are found by specializing to m = m'2  = m' = 0 in the combination formula 
for D-matrices, (6.3.4). The D-matrices become then spherical harmonics (see 
(6.3.31)). We obtain immediately the composition rule for spherical harmonics 

lion, (0, w)Yhm,(0, ço) = 
(211 +  1)(212+ 1) E 

mi12m2i1m) 
47 hn (6.3.37) 

X 	+ 	W)(101/10/20). 
I  

 

The CGCs take care of m = mi +m2 and of the 'conservation of parity': namely, 
both sides should transform equally under reflections. Since I'i m (—x°) = 
(-1) 1 Km (x°) we must require that on the right-hand side only such / contribute, 
that (-1) 11 +12  = (-1)/; thus 1 1 +  12 + / must be even. The CGC (101 1 1 0120) 
does that automatically (see (5.3.53)). Note that the argument of all spherical 
harmonics is the same. This is different from the formula for combining two 
angular momentum eigenfunctions into a new one: 

ii1m132rn2) = E 
which, translated to wave functions with integer j reads 

Kim, (Oh wi)K2m,(02, (P2) = E 	 g9.,  02 , Ç92)  

where 1ifi„,(0 1 , , 02 , ço2) is no longer a spherical harmonic. 
From (6.3.37) we easily obtain the integral over three spherical harmonics. 

Multiplying (6.3.37) by and integrating over the whole sphere gives 
(because of (4.7.10)) 

limn:, sin 0 dû dip = SiOmm 3  
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and we obtain the desired result: 

f K i na i  (0, 0 1712 m 2 0,, 0 173. 3 (0,  (P) sin  û dû dy) 

(6.3.38) 
(2/1 + 1)(212 + 1) 

(lim1/2m21/3m3)(li 01201130). 
47(213  + 1) 

The * may be transferred by means of (4.7.29). 

6.3.4 Orthogonality relations and integrals over D -matrices 

The D-matrices, as representatives of the unitary transformations t a (a, 13 , Y), 
have the property 

DW I D(i )  = DU) D(in = 1 

that is 

E Du,)*Du,)„ E Do,) 	= 8„,,,. 	(6.3.39)nm  
ne 	 ne 

If one puts m = n = 0, one obtains 

2/  +  1 EY1.(0, (p)r.(0,(p)= 
47 

(6.3.40) 

which is a special case of the mor‘e general (6.3.35). 

There is another orthogonality relation, namely with respect to integrations 

over all three Euler angles. We derive that now. Let us integrate (6.3.4) over 

all angles a, )5, y: 

f Euimii2m2iinoutiliiim'ii2m/2) 	

(6.3.41) 

x f Du) dn 

where 
27r 	 27r f dS2 = 	da fr  sm ,t3 d)5 f dy. 

On the r.h.s. the integration over da and dy can be done at once, because (see 

(6.2.1) and (6.2.16)) 

D(i)= e—i[oni+niDa+(*;+m',)y] d(i) 	(0) .  

	

m 1 +m2,m1+m2 	
(6.3.42) 

tni+m2mri i-ne2  

The integral over this vanishes unless m 2  = —m 1 ; m/2  = —mil  and we thus obtain 

Dui), D02), 	= 4728„„.-m23m;.-m; m,m, m2m2  
(6.3.43) 

x E kigno2 — Indio) uolign',./2 	4)(0) sin /3 d/3] . 
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Now j must be an integer /, since m = 0. Hence with (6.3.33) and table 4.2: 

47r 	 47r 

	

4(0) = 2/ + 1 Y1 8,0) = 	
1

170 (0, 0)40 (0, 0). 	(6.3.44) 

Therefore 

f 	
47r 	 

(/3) sin /3 di3 	=   f Yro  (0, 0>y00 (13 , 0) sin d/3 do,  
27r 	27r,/21 + 1 

2,3to. 

We thus obtain from (6.3.43) 

D (h) ,D (h) , c1S2 = 87r23„„.-m26m ■ .-ne2 m2m, (6.3.45) 
x(J1m132 — '7100) (/1nel j2 mi loo). 

The CGCs vanish, unless  fi = j2 (triangle condition). We change now 
m 1 	—m 1  and 	 and obtain 

Doi) , Do'', an -,n,-,n, m,m, 

= 87r 2 6.02 3m,,m 2 8m'i me, 

From (5.3.47), namely 

(j, —mjm100) = 
(— oi+m  

it follows that the product of the two CGCs is equal to 

(-02./I+m,+,7, 1 

2ji  + 1 

With a slightly changed notation we obtain finally 

_,_ 	2j + 1 ( _ 1) 2J +m -rn 	 f D (/,)n.-nDniCi:n) ,  do  = if  
87r 2  

where 

m' 6nn' 	(6.3.46) 

f  do 	[ 27r doe f
2g dy f g  sin /3 dfi. 

Using a result from subsection 6.3.7, namely (6.3.68) 

,/2j + 1 

'mn 
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we obtain the orthogonality relation of D-matrices: 

2j +l  
87r 2 	

DU )*D(f)  (IQ = 8jp5mmq5nn'• mn 	m'n' (6.3.47) 

This result enables us to carry out the integral over three D-matrix elements. 
Equation (6.3.4) allows us to combine two D-factors into one: 

dS2 D (J' ) , D (J2) , DU' )* 
mimi m2m2 m3m; 

= f dOE (iimihnidini)Du) 	Duo. ;„„,, 	. 
mi+m2.m+m; m 3 ,76 \i'" IJI M J2M2.1 • 

Now the integral can be read off from (6.3.47) and inserted; the result is 

d2 D'  D(i2)  m,m, m2m; m 3 m 3  

871' 2  
= 

23
.
3 ± 1 

(fl M 1 i2M21.i3M3) (il 	i2n'2133M3)- 

If the last two results are specialized to integer j values and n = n' = 0 and 
= m'2  = 	= 0, respectively, then (6.3.47) gives the orthogonality and 

(6.3.48) the '3Y-formula' (6.3.38) of the spherical harmonics. 
The last equation, (6.3.48), can be used to calculate CGCs: by putting 

mi = rn, m2 = m'2  and m3 = m'3 , one has 

2 	% 2 2./3 + 1  
= 	IdS2Dm(h )  D(i2)  DU3) * 871.2 	 im, m2m2 m3m3 (6.3.49) 

which determines the CGCs up to the sign. It should be noted that in the 
non-vanishing integrals (6.3.47), (6.3.48) and (6.3.49) in fact only the sin /3 dO 
integration remains, while the da dy gives just a factor 42r 2 . 

6.3.5 A projection formula 

We shall derive here a formula by which one can project out the  fm-part  of an 
arbitrary state. The orthogonality relation (6.3.47) will be the direct origin of 
the projection formula. 

Consider a state ly' j'e) and apply to it an active rotation Ra (co) with 
= (a, p, y). Then 

Ram ivfm') = El)/ n ')DnCim'),(C0). 

n' 

(6.3.48) 
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We now use the orthogonality relation (6.3.47) in order to eliminate the sum on 
the r.h.s. 

21+ 1 f 
dw  8z 2 

= 3if 8me E 	V l'n') 

= SifSmelYnTn) 

where da, = da dy sin ft d/3; 0< (a, y) <27r; 0 < / < n. That is, IY'frn') is 
transformed into ly' j'n) if j' = j, m' = m; otherwise it is annihilated. Hence, 
if a general state 

2j + 1 I.  
87r2 	da, D * (a)Ra(w)1 111 ) = ElY' in)(Y 1  (6.3.52) 

By putting n = m one obtains the projection operator 

P = 
2j+ 1  f 	

to;ni,;:(w)Ra (a)) = E ly' jm)(y' jmi 
f in 	87r2 	

(6.3.53) 

and by multiplying (6.3.52) by (yjni one finds 

(yjn I 2j8:2  1  f du) D * ((0)RaMilfr) = (Y ml 
	

(6.3.54) 

The usefulness of this formula depends, of course, on what we know about the 
effect of a rotation of the state 10. 

6.3.6 Completeness relation for the D -matrices 

Starting from (6.3.53) we shall now prove three different completeness relations 
for the matrix of the irreducible representations DO ) (a, ,13, y). 

Obviously, if we sum the projection operator Pi„, over j and m, we must 
obtain the unit operator; hence, for whatever state Ilk), we find 

f da d cos p dy E 21  ± 1  D°)* (a, fi, y) Ra  (a , f , y)) =  i). (6.3.55) 871.2 	mm 
Jm 

Let us for a moment call the curly bracket f (a, 13, y), and the rotated state 
Ra  (a, p, y)11/1) 	1*(..p,,)>. Then the last equation says in that new notation 

f da d cos p dy f (a, fi, Y)111,(..13.0) = 	) • 

(6.3.50) 

= E 	 (6.3.5 1) 

is given, then applying (6.3.50) to it yields the projection formula (attention: 
da) da dy sin /3 d/3) 

y' 
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As kfr) is completely arbitrary, this is only possible if f(a, (3,y) = 
8(a)8(cos /3 - 1) 8 (y) (where cos /3 = 1 means to imply /3 = 0 in order to 
cover also the case of half-integer j representations). Thus the expression inside 
the curly brackets is equal to these 8-functions. This is already essentially our 
desired result. In a somewhat symbolic notation we can write it as 

	DU) * (R) = S(R - E) 
E 87r 2  " 

(6.3.56) 

(where R 	(a, f3, y); E 	(0, 0, 0), 8(R - E) 	8(a)8(cos /3 - 1)8(y) and 
dR dce d cos p dy). We shall, however, write this result in a somewhat more 
general form which we derive now. Returning to (6.3.55) we notice that when 
an integral over R goes through the whole group (i.e. all values 0 <  r  < 27r, 
0 < y  <27r and 0  <f3  < sr) then RR'  with fixed R0  does the same. Hence 

( .) 
f dR { 	

2f+  1 
Ei

m 8n2 	
. 
(R) 1 RIO 

2 j 
= f dR 	

1 1E 	2 	. (R Rni RRcT i  hfr) = 1 1,0 8jr 	mm 

which, by the same reasoning as above, implies 

2j + 1 (.) 	 2j + 1 (:) 
72 	DL,(RR c7 1 ) = 	871.2 	D

.
',',,,(R)130,,n (R 0 ') 8   

im 	 ime 
2J  + 1 (.) 

= 2_1  872  D,7-1, m*,(R)D,n(i,n)  ,(Ro) = 3(R - Ro) 

(6.3.57) 

(6.3.58) 

which, for R0 or R equal to E, reduces to (6.3.56). This completeness relation 
is the counterpart to the orthogonality relation (6.3.47). 

Next we derive two further relations in the following way: we multiply 
the last line of (6.3.58) by  el(Y)  and integrate over yo. Here n will be any 
integer or half integer such that j - n is integer and I ni  < j (i.e. n is one of the 
possible values of m, m'). On the r.h.s., with the use of 

8(R - Ro) 8(a - ao)3(cos p — cos 00)8(y — 

8(a - a0)8(cos /3 - cos /30) 
 J

dyo e Y-Y°)8 (Y - yo) 

= 3(a - a0)8 (cos /3 - cos Po) 

whereas on the I.h.s., by means of 

Dm(im)  ,(a, f3, y) -= e-i(ma+m'Y ) dmi  ,n, (p) 
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(see (6.2.16)) we obtain 

2.7r 

E 2j + 1 .. (a _ao) 
 e` 	dwn ,(13)dmi  (130) fo  e '(Y—Y°)  e' '°  ) dyo . 

871.2  
jnim' 

The integral is equal to 

27T 

e iy (m'-n) 	dyo 	= 

because the difference m' — n is an integer by the choice of n. Introducing this 
in place of the integral and summing over m' yields with arbitrary y 

2,/ + 1  eim(a-aodc.in)(0)40;),(/30)eiv" 
47r ins 

The 	factors may be recombined with the rest to DW-matrix elements. The 
net result is then—independent of n and of y 

E 2f  ±  DU ).  (a fi 	(J ) 	Po Y) = 3(ce — ot0)3(cos —cos /30). (6.3.59) 
47r 	" 

y)D - (ao 
jm  

Next we multiply by e-i0)  (where 1).4 < j; j — A = integer) and integrate 
over ao. By exactly the same reasoning as above we arrive at 

E f  2+ 1  d(f) (/3)d (i) (&) = (cos /3 — cos AO mn J 	mn 

independently of the values of m and n. 
The collected results are the three completeness relations: 

V 2f  + 1 
871.2 

Do)* ,(ce
' 
 p y)Du )  ,(ceo )30 yo) 

— 	 " 

= (3(a — ao)8(cos p — cos 130)8(y — yo) 

(i) 

(6.3.60) 

2j  + 1 	. (ii)E  47r  D;,iin) 	y)D(ao, fib, y) = 	— ao)(3 (cos — cos 00) 
m 

(independent of n and y; indeed y drops out) 

2j + 1 	. (iii)E 	2   D;dn) 	(a, p, y )D4(a, fie , y) = S(cos /3 — cos fio) 

(independent of m, n, a and y; indeed a and y drop out). 
(6.3.61) 
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6.3.7 Symmetry properties of the D -matrices 

The symmetries of the D-matrices arise from two of their properties: they are 
unitary and they have a simple exponential behaviour in two arguments (see 
(6.2.1)): 

D(a,,8, y) = 	-p, -a) unitarity 

D(a, 0, y) = e -i(m'"+" ) dm(i,),, 09) 	with dm(i, real. 

For the d(/3), unitarity and reality imply 

d;/,, ),n (p) = c14,, (-13). 	 (6.3.63) 

Interchanging a and y leads therefore to 

Dm(i,),,,(y, 0, a) = e-i(m'Y+")  d(i, )  03) 

= e-i(nct-Fm'y) c4(nim) ,(_ fl) 

 Dmtim) ,(a, -p, y) 

p, -a). 

Another relation is found as follows (see (6.2.2)): 

d(n!,) 3  = 
= (jrn t ie+in..r, e+i/3J, e —ig Ifni ) 

because rotating by 7r about x, then by p about y and again by 7 about x, is 
the same as rotating by -0 about y. Now obviously 

lirn) = 	-m) 

where ço,c (jm) is a phase. The phase factors cancel l  and we have 

dm(i, ),,,(0)=d(im) ,,(-13)=du,)„,(p). 	(6.3.65) 

A glance at the explicit form dm(i)m (0) (6.2.16) shows that 

dmu, ),n (-13) = (-1)2i -1- m' +m  clm(i, ),n (p)=(-1)^"clmU, ),n (p) 	(6.3.66) 

(the two sign factors are equal because they differ by (-1) 2i+2m = +1; j±m is 
always integer). Combining (6.3.65) and (6.3.66) we find 

d,(d?m(p)  = (_1)2i -FM '  dO m.) _m (p) . 	 (6.3.67) 

1  The phase factor Px  (J, m) may be calculated along the lines in which the corresponding phase 
factor for  R(n) was found (between (5.3.40) and (5.3.42)). One finds  (J, m) = (-1)-  
independent of m. 

(6.3.62) 

(6.3.64) 
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All these relations are combined in the following formula, where we use from 
top to bottom (6.3.64)-(6.3.66) and from left to right unitarity: 

ren,(a, /3, y) = 	-p, -a) = D, (y,  -p, a) 

= 	(-a, fi, -y) -= 	 /3, -a) 

= D Umr,_.(a, -0, y) 	 (6.3.68) 

-fi, -a) 

_ (_ )2i 	D  (imr,...m  (a,  fi,  y).  

Note that (-1) 2i÷m÷m' = (-1)m-"e. 
With m = 0, we obtain from D.U,)0 (a, p, y) = (-1)ne  D 0 (a, p, y) the rule 

Yi*.(Pa) = (-1)" YI-„, (pa) (already known from (4.7.29)). Further relations can 
be derived if one changes any argument by ±7r. 

Finally we consider rotations by 27r about an axis n. This can be achieved 
by the matrix 

D (1) (27r n) = D(1) (e3 	n) D (1) (27 e3) D (1)-i  (e3 	n). 

Now the matrix in the middle is (see (6.2.1)) 

D(27r,  0,0) = 	= (-1) 2'n' 1 = (_l) 2 I 1 

because 2j 2m' = even. Thus D (1) (27re 3 ) commutes with the other two 
matrices which together give 1. Hence for any direction n: 

D (1) (27 n) = (-1)21  x 1. 	 (6.3.69) 

This is the well known result that the half-integer representations are double 
valued and that consequently the states I fm)  multiply by (-1) 2-1  under rotation 
by 2g. 



7 

THE JORDAN—SCHWINGER CONSTRUCTION 
AND REPRESENTATIONS 

In this chapter we shall obtain all the representations of the rotation group and 
its Lie algebra' (su(2)) by another very useful method, namely by means of 
the Jordan—Schwinger construction (Jordan (1935), Schwinger (1952)). The key 
idea of this approach is the Jordan mapping of the Lie algebra generators into 
operators made of bosonic creation and annihilation operators acting on a Hilbert 
space. For the reader's convenience, we start from a short exposition of the main 
properties of the harmonic oscillator algebra and its representations. 

7.1 Bosonic operators 

A harmonic oscillator (see, e.g., Landau and Lifschitz (1981)) is an object that is 
subject to a quadratic potential energy, which produces a restoring force against 
any displacement from equilibrium that is proportional to the displacement. The 
Hamiltonian for such a system whose motion is confined to one dimension is 

ri 	P
2 	

n'itt)2  2 = — ---q 
2m 	2 

(7.1.1) 

where g is the displacement of the oscillator (particle) for some fixed origin 
(equilibrium), p is the momentum, m is the mass of the particle and o.) is the 
(classical) circular frequency of the oscillations. The harmonic oscillator is of 
basic importance in physics because it provides a model for many kinds of 
vibrating system, including, e.g., the electromagnetic field (it can be viewed as a 
collection of infinitely many harmonic oscillators) and because of the following 
fact. For many more general physical systems, the potential energy V(q) has a 
minimum at some point qo  in space. Expanding the potential energy in a series 
of powers of the distances from that point one can write 

( a 2 v  

V(q) = V(q0)-1- 	0q2—) go(q — go) 2  +• - •  

where the equilibrium point is determined by the condition 

(7.1.2) 

CaVg  

qe 

=  o. 

  

I  We denote the group by S U (2), its Lie algebra by s u (2). 

196 
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If a particle of mass m performs small oscillations around the equilibrium 
position, higher terms in the series (7.1.2) are small and hence up to the 
inessential constant  V(0) one has 

V (q) C(q — 0)2  

which is the harmonic oscillator potential. 
Quantization is defined by taking p and q to be self-adjoint operators that 

satisfy on a dense domain of a Hilbert space the Heisenberg commutation relation 

[q ,  p ]  =  j.  

Let us now introduce the bosonic operators, defined by 

/ mw 	1 
a = 

 —i 
— q 	(creation operator) 	(7.1.3) t 1/—q i 

Nr2-truo 

a = 	p 	(annihilation operator) 	(7.1.4) 
11/-2

q 
A51—na) 

(at is adjoint to a). As a consequence of the definition, the bosonic operators 
obey the commutation relation 

[a, at] = 1 	 (7 .1.5) 

and the Hamiltonian H written in terms of bosonic operators takes the form 

1 
H = —ft)  (at a ± aat) = co (a'

4. 
 a 	. 

2 	 2 
(7.1.6) 

Let 11,//0) be a normalized vector of a Hilbert space '7-t, where the oscillator 
operators act, such that it satisfies the relation 

a Ilfro) = O. 	 (7.1.7) 

The Schriidinger realization of the operators p and q, i.e. p = 	didq and q is 
the multiplication operator, converts (7.1.7) into a first-order linear differential 
equation whose solution is 

ifro(x) = 	exp (—L
2) 

2 

X  

This solution is normalized with respect to the L 2 (—oo, oc) Hilbert space scalar 
product 

(010 
 =J  

	 *(x)*(x)dx 
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so that 
00 

(4 	
-00

14) = 	195o(x)1 2  dx = 1. 

The complete set of normalized eigenvectors, IN)), can be constructed 
from ilfro)  by using the definition 

i*n) = (n!)-1 (a t )n kko). 	 (7.1.8) 

These vectors are normalized eigenstates of the dimensionless number operator 

N = (w)H - = at a 	 (7.1.9) 

with the eigenvalues n 
NIVIn) = 	 (7.1.10) 

The operator at acting on ifr„) raises the eigenvalues n by one unit (i.e. increases 
the energy by creation of an 'excitation'), hence, it is called a 'creation operator', 
and the operator a lowers the eigenvalue n  ('annihilation  operator'). 

The spectrum of the number operator N consists of all non-negative integers 
Z+ ; each eigenvalue is nondegenerate, and the eigenvectors Ii/f„) form a complete 
orthonormal basis for the separable Hilbert space H = L2 ( -oo,  co) over the 
real line. 

The obvious generalization of this algebra consists of the consideration of K 
kinematically independent bosons a!, a, (i = 1, . , K), with the commutation 
relations 

[a,, al] = 8,i 	j = 1, 2, ... , K 

[ai, 	=  [at, 	= 0 
(7.1.11) 

and 

(K 

	

c H = co Ea!a, + 1--- 
2 ) i=1 

(7.1.12) 

so that the eigenstates of H contain n 1  excitations of the type 1, n2 excitations 
of the type 2, etc; i.e. they are of the form 

(a ti )nl  (alr • • (a ti)" 	 (7.1.13) 

To explain the name `bosonic operators' for a! and ai  we reinterpret the 
states (7.1.13) as follows. Consider the quantum mechanics of K identical 
bosons. Let i be an index counting the set of quantum numbers characterizing the 
states of a single boson (these quantum numbers may be discrete or continuous 
with appropriate ranges); in other words the complete set of one-boson states. 
According to a general postulate of quantum theory for indistinguishable 
particles, the distinct states of the system of K identical bosons are only those 
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characterized by the number of boson n i  in an arbitrary state. Thus the state 
(7.1.13) can be interpreted as n bosons in the state *I, n2 bosons in the state 

*2, etc. Hence a tk  creates a boson in the state k, ak  annihilates one. 
Let 7-("c)  be the space of states of a system of bosons with the basis vectors 

n i,  n2, . ,  n)  labelled by the occupation numbers. In this space the actions 
of 4 and  a expressed as follows: 

a1  ml, n2, 	, nK) = 	 n, — 1, n, 11 , 	, n K ) 

4 Ini, n2, . . . ,  12K)  = 	 + 1, n1+1, • • n K) • 

Then by direct computations, one can indeed obtain from these equations the 
commutation relations (7.1.12). 

There is another interesting and important realization of the canonical 
commutation relations (7.1.5). 

Let 1-1 /3F  be a Hilbert space of analytical functions of complex variables 
z*, z with the scalar product 

(f ig)  = 	(z)rez) e -z.z  de dz. 

Then the map 
a 

	

a —> — 	at  z 
az 

gives the representation of the commutation relation (Bargmann—Fock 
representation). This was introduced in a complete form by Bargmann (1961). 
The complete set of eigenfunctions of the number operator N in this realization 
has the form 

z n  
fl(z) == ,-- 

vn! 
n E Z+. 	 (7.1.14) 

The Bargmann—Fock representation is closely related to the so-called coherent 
states 

R.) = E mom.) = eat Iltio) 	 (7.1.15) 

which have many remarkable properties (both mathematical and physical ones) 
(see Klauder and Skagerstam (1985)). Generalization of this representation to 
the case of a multi-oscillator (7.1.11) is straightforward. 

7.2 Realization of su(2) Lie algebra and the rotation matrix in terms of 
bosonic operators 

Now we turn to the construction of su (2) Lie algebra operators and their 
representations in terms of the bosonic operators. 
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First of all, we notice that the physical quantities such as enerd (7.1.6), 
(7.1.12), angular momentum Mii  = qipi — gip; etc, are bilinear expressions in 

4 and a.; of the form 

	

Ci jai  a) 	Cij E C. 

This suggests constructing all basis elements of a Lie algebra L in terms of 
such bilinear combinations. The cornerstone of this construction is Jordan's 
observation (Jordan (1935)) that the mapping L of K x K matrices X ii  into 
bosonic operators (7.1.11) given by 

L: X —* L x  = EXa aj 	 (7.2.1) 
i.j=1 

preserves the operation of commutation of matrices. 
The proof of this statement follows directly from the bosonic commutation 

relations (7.1.11). Let us denote by a the vector with the components 
(41 , ..., a K ) and by a the vector with the components (al, ...,aK), so that 
the map (7.2.1) can be written in the form 

L: X 	L x  = aTxa. 	 (7.2.2) 

Then for the commutator [Lx, Ly] one easily finds 

[Lx, Ly] = 	Xa, aT Ya]. aT[x, 	= L[X,Yl• 

Thus the Jordan map has the property 

	

[Lx, Ly] = r[X,Y]• 	 (7.2.3) 

It is linear over C 

	

A.Gx + ILLy = 	 A, IL E C 

and the unit matrix has the map 

L i  = aT a = E4ai. 

Now consider the map for the spin-i representation (K = 2): 

L: 	.11 = Li ai  = 1(iiT ai a). 	 (7.2.4) 

The property of the Jordan map guarantees that the operators .11  satisfy the 
commutation relations of the su(2) algebra 

	

J3 1 = iEijkflt• 	 (7.2.5) 
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In the explicit form the operators .1±  and J3 have the following Jordan—
Schwinger realization: 

4 = aa2  J_ = at  al 2 
(7.2.6) 

(a ti  al — t4512) 	(NI — N2). 

The invariant square of the angular momentum J2  is expressed in terms of the 
bosonic operators as follows: 

 

j2 = v a t.a.a t a.  _ N2 
2 	 4 

(7.2.7) 

where 
N E at, a, =  N1 + N2. 

 

From the above considered representations of the bosonic algebra it follows 
that 11,//„,.,, 2 ) are the eigenvectors for J2  with the eigenvalues 

J2 1 1fr 	= In(n + 1) 
	

(7.2.8) 

where 
n = n ± n2. 

This implies the equality for the angular momentum quantum number j: 

j =  in  = 0, 	1 ..... 

Thus, together with (7.2.6) we have 

j = 1(n i  ± n2) 	m = -2 (ni — n2)• 

The su (2) operators form a subalgebra of the bosonic operator algebra. So 
the whole representation Hilbert space of the latter is not irreducible with respect 
to the former. Indeed, consider the subspace 7/ (2j )  of the vectors of the form 

P (a t  1 , 4)10) 

	

where P (a t  I , al) is a homogeneous polynomial in  a 	al of the degree 2f  and 
10) is the shorthand notation for the vacuum vector 1/0.0), i.e. a110) = a210) = 0. 
The space 1I (2i )  is invariant with respect to the operators .11. Making use of the 
equalities 

J±10) = J310) = 0 

and 
A P (a t  1 , (4)10) =  [A,  P (at  1 ,  ai)]  O)  
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for any bosonic operator such that A10) = 0, one can find that the normalized 
eigenvectors for angular momentum are expressed in terms of the bosonic 
operators as follows (Schwinger (1952)): 

fm)  = Pim( t  ;)10) 

where 
(at  )-1 +m (a;)l— in 

Pj „,(at 	= 	I  
111 )!(i — m)! 

and that the operators (7.2.6) have the standard action on these vectors: 

hlim) =  mum)  

(7.2.9) 

(7.2.10) 
41in!) = V(./ m)(./ ± m 1)Ij, m ± 1). 

These results show that the Jordan—Schwinger construction gives all the 
representations of the su(2) Lie algebra in the simplest way. 

The finite transformations of the space 7-1 (2 J )  generated by J can be obtained 
by exponentiation of the matrix • a/2. To a given n  there corresponds the 
unitary unimodular matrix 

U(n)= exp(—in • a/2) 

which itself corresponds to a unitary bosonic operator due to the Jordan map 

exp(—iri • a/2) —> exp(G_1 n.,/2) = exp(—in • C 072 ) = exp(—in • J). 

(7.2.11) 

Matrix elements of this operator in 7-{ (2j)  give the representations of the rotation 
group 

(im / I exP( — in • L072)1/m) = 13(r)). 

Thus the exponentiated Jordan—Schwinger construction yields all irreducible 
representations of the rotation group. Moreover, the explicit construction (7.2.9) 
allows an alternative derivation of the rotation matrices. 

Denote, for brevity, Vu  = exp(G_1n.,12 ). Acting by this operator on I fm)  
one has 

Vuiim) = (Vu Pim(a ti , al)Vu-I)Vu10) 

= Pim 	a24 )10) 
	

(7.2.12) 

where 
airt = Vua it Vu-I 
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can be expressed via matrix elements of U 

u 

	

(

U11 U12) 

U21 U22 

as components of a vector 

= u11 a + u2 1 a2  

t 4  = unti l  u22a2 . 

Equation (7.2.12) can be rewritten in the form 

vuuno = ED n(u) pini, 1 0) 
m, 

(7.2.13) 

(7.2.14) 

by means of expansion of the expression (7.2.12) in the original monomial basis 
using (7.2.13): 

(utiat + u2p4)i +m (una ti 	u22‘4)-/ -m  
10) 

NA./ -Fin)!(j - m)! 

	

= NA./ ± m) , (j - n )' E (uil)J+m-s (U21)5  ( 412)i-m_1(U22)i 	(7.2.15) 

(j m -s)!sl(j - m - t)!t! st 
x (a t ) 2j -5-r (4)s+t 10).  

Comparing this with (7.2.14), one finds 

D(U)= ,./(./ m)!(/ - ni)!(/ ne)!(i  - m')!  

E 	  (7.2.16) 
5  (j +m - s)!s!(m'- m s)!(j - m' - s)! 

x(ait ) 2i-5---t (4+:10) .  

This gives an explicit expression for rotation matrices in an arbitrary 
representation. 

The Jordan-Schwinger construction can be applied to other Lie algebras. 
Indeed, consider a set a;r , ai  (i = 1, , n) of bosonic operators in a Hilbert 
space H. Define 

= ai  

Then using the commutation relations (7.1.11) one obtains 

[A 11 , Aki] = (5ik 	- SuAik • 	 (7.2.17) 

This means that the set A 11  (i,  J = 1, . . . , n) forms the set of generators of 
the Lie algebra gl(n , C). Because any Lie algebra is a subalgebra of gl(n, C) 
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(Ado's theorem), any other complex or real Lie algebra is generated by a subset 
of A u  (i, J = 1, 	, n). In particular, the operators 

Mkk = a:c ak 
	k = 1, . . . , n 

Mkt = a tk at + a: ak 
	k < 1 < n 	 (7.2.18) 

• 	t 
Mk( =1(akat — a k ) k < 1 < n 

generate the Lie algebra u (n) and the operators 

Xkl = i(a tkal 4ak) 	 (7.2.19) 

generate the Lie algebra so(n). 
Non-compact Lie algebras such as u(p, 	so(p, q) and sp(p, q), including 

the important cases of De Sitter and anti-De Sitter Lie algebras and the Lie 
algebra su(2, 2) of the conformal group can be also constructed via the Jordan—
Schwinger realization in terms of bosonic oscillators, while the Lie superalgebras 
can be built out of both bosonic and fermionic operators (cf, e.g., Chaichian and 
Demichev (1996)). For example, generators of u(p, q) Lie algebras, which are 
often used in particle physics, are made up of two sets of bosonic operators 
(z it , a;  (i = 1, . . . , p) and btat , ba  (a = p 1, . . . , p q), both obeying 
the commutation relations (7.1.11) (see, e.g., Barut and Raczka (1977)). To 
construct the generators, one defines the array of operators A = (AmN),  M, N = 
1, . , p q 

—a t  ai  -F rSii 	ati btfi  
A= 

	

—b ack/ 	ba t) fit  + r15,0 

(r is any real number) in terms of which the  generators Mk/,  No of u(P, q) 
read as 

Mkk Akk 	 k = 1 ..... p + q 

Mk( = Akl Alk 	k < 1 

	

=i(Ak1 — Al/C) 	k < I 

Mco = A ap A fi ,, 	a < 13 

'fiap =i(A co — A A: ) a< 

Nkfl  = Akfi Afik 

kkfi =i(Akfi 	Afik)• 

Using the known representations for bosonic algebras, one can then 
construct representations of all such Lie algebras. 

7.3 A short note about the new field of quantum groups 

To conclude this section, it is worth mentioning the very important fact that 
the Jordan—Schwinger construction can be generalized to the case of quantum 
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deformed groups and enveloping algebras. The theory of these objects has 
attracted great attention during the last few years and seems to find many 
important applications in different areas of physics (for an introduction and 
review of quantum group theory, see, e.g., Chaichian and Demichev (1996)). 

To give an idea of the deformed Jordan-Schwinger construction, we recall 
that the defining q-deformed commutation relations for the operators H,  X+,  X -
of the quantum Lie algebra suq (2) have the form 

[H, X +] = ±2X±  
(7.3.1) 

H 	-11 

[X +  , 	= 
	_ q 

 _H sinh(x H) 
-1   = [M g . 

q - 	sinh(x) 

Here q ex , and [x]q  denotes the so-called q-square bracket 

with the property 

qX q  -X 

[x]q  = 	 (7.3.2) 

[x]
q 	1 x 	 (7.3.3) 

q-■  

so that in the q -> 1 limit the commutation relations (7.3.1) coincide with the 
usual relations for su(2) Lie algebra. 

With the help of q-square brackets many formulas of q-group theory can 
be written in a form similar to the classical non-deformed case. For example, 
the Casimir operator of su(2) Lie algebra 

C2 = 44 

becomes after the deformation 

= X T X ±  

+ (-
2

(.10 

[-
1

(H 
2 

±  1)) 2  

2 

1)1 	. (7.3.4) 

If q is not a root of unity, representations of su g  (2) have the same dimensions 
and structure as those in the classical case 

111j, ni) 
(7.3.5) 

= V[j m]q [i ±m + i]q Ij,m±1) 

(j is an integer or half-integer number, m =  - j , -j  +1 ..... j). Using (7.3.3) 
it is easy to see that the q -deformed expressions have the correct classical limit 
q I. 
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To define the deformed Jordan—Schwinger construction, the mapping (7.2.6) 
is replaced by 

X —  = atal X+ = atia2 	 2 

H = -1(N — N 2 ) 
(7.3.6) 

where a? and a, (i = 1, 2) are q-oscillators in the Fock representations with the 
commutation relations 

g i g! — qai ai  = q -N ' 

	

aia: — 	= 

	

[Ni , 4] = 4 	[Ni  , ai l = —ai 
	 (7.3.7) 

[a , 	= [4 , 4] = [4 , 	= 0 	i j. 

Introduce the eigenstates which are analogous to undeformed angular 
momentum eigenstates 

lj, m) --- 	+ ml q 	— ml q !) -112  (a 1 )i +m(a2)-i - 'n lo) 

j = 0, IA 	m =—j,—j+ 	j 

with 	! 	[11q  [2]q  • • • [n]q  and [017 ! 	I. Then the map (7.3.6) gives the 
representations (7.3.5). 

The Jordan—Schwinger construction for su(2) q  confirms the important 
result: for all q E R+ , the unitary irreducible representations of su(2) q  are in 
one-to-one correspondence with those of su(2) and have the same dimensions. 

For further details on quantum group theory and especially on the q-
deformed Jordan—Schwinger construction, see, for instance, Chaichian and 
Demichev (1996). 



8 

IRREDUCIBLE TENSORS AND TENSOR 
OPERATORS 

8.1 Introduction 

What does 'irreducible' mean? (It means, first of all, in our context, irreducible 
with respect to rotations; we shall not mention this any more.) We have already 
encountered this word earlier in connection with irreducible subspaces Hy . An 
irreducible subspace was, as we saw, an invariant subspace 7-11 , whose basis 
vectors I jm) with m = —j,...,+1 transform among themselves and which 
does not contain in itself another invariant subspace h c 'Hi . We have seen 
that the linear transformations Dnii,"rn  are then irreducible also, i.e. they cannot 
be split up into boxes along the diagonal. 

An irreducible tensor is a tensor whose components transform linearly 
among themselves under rotations such that, if the whole rotation group is 
considered, all components of the tensor enter the linear combination (which 
does not exclude that for a certain rotation some coefficients in the linear 
combination vanish). Therefore, irreducible tensors will be defined with respect 
to a basis in a j-dimensional space which transforms just like 7-1i . Tensors with 
respect to a Cartesian basis are not well suited for this: for instance, a vector 
y = (vi , vy , vz ) is an irreducible tensor of rank 1. Cartesian tensors of any rank 
can be generated by taking the direct product of two or more such tensors of 
lower rank: 

Tijkl = aiSjkVI etc. 

These tensors are not, however, irreducible with respect to rotations, because 
they contain parts which transform with a lower rank. For instance, the tensor 
of rank 2 

= vi  ?Di 

transforms under rotation (if y' = My) as follows: 

(T') 1i  = v;tv'i 
 E mikmilvkw,=E MjkMJITk, 

kl 	 kl 

i.e. T transforms with the direct product of M by itself 

T' =[MOM]T 

and we know, since M is equivalent to D (1) , that MOM can be reduced to 
irreducible matrices of dimension 2j + 1 with j = 0, 1, 2, i.e. T can be reduced 
to 

207 
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• a tensor of rank 0, the trace 

To ) . Erii  
• and a tensor of rank 1, the vector product 

Ti(in  = (vi  wi — vi wi ) 

• and a tensor of rank 2, the symmetric part minus the trace 

T (2) — I lv w 	w 	S — 	. 	iiEllkWk. 

Because this behaviour of tensors in the Cartesian basis x, y, z is 
rather annoying, one considers tensors which transform with the irreducible 
representations DU )  and which by this definition are automatically irreducible 
tensors of rank j with 2f  +1 components T(jm); m = —j, , +j. A particular 
kind of such tensors are e.g. the wave functions m (x). For them we know 
how we can, by means of the CGCs, build up a state 11m) from states of lower 
j1  and  32 if only 111 - 121 < j < ii+ h. If then litml) and 112m2) are combined 
into 

um) = E 1j1m1hm2)(j.mihm2him) 
m,„ 

we know that I m) again transforms according to an irreducible representation, 
namely with DU) . Thus Ifri„, = (xljm) will be an irreducible tensor of rank j,  
formed by composition of two tensors Vo im , and lifj, m , of lower rank. Hence 
it is possible to construct tensors of any rank by composition—just as in the 
case of Cartesian tensors, although in a little more complicated way, but the 
great advantage is that the tensors so constructed are automatically irreducible 
if they are combined from two irreducible ones. Thus this kind of tensor is 
especially suited for all problems in which rotations come up. Of course, the 
direct product of two irreducible tensors will be reducible; thus there exist not 
only the irreducible ones. The whole class of tensors which transform according 
to DU)  or to direct products DU ) ODU')  are called 'spherical tensors'. 

Therefore, the irreducible tensors are quantities which combine 
and transform like (standard) angular momentum states; if such 
a tensor has 2 f  1 components and transforms like Urn)  then 
it is called an irreducible (spherical) tensor of rank f.  

We shall give only a brief resumé of the spherical tensors; details and 
applications may be found in books such as those of Fano and Racah (1959), 
de-Shalit and Talmi (1963), Rose (1957), Edmonds (1957) and Varshalovich et 
al (1988) and, of course, in many nuclear physics papers. 

Remark. We also suppose here that we work with standard states ly j m). In 
such a representation J is diagonal in y. 

(8.1.1) 
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8.2 Definition and properties 

We define the irreducible tensor T (kq , x) of rank k by its transformation property 
under the rotation group (active  rotation)'  

	

T' (kq , x) = E T (kq' , M;' x)D 	 (8.2.1) 

This holds if T is a function of x; we shall, however, from now on suppress x. 
The above definition is general and includes the possibility that T is an operator. 
If we wish to speak not of the components T (kq) but of the whole set, we shall 
write T (k;). The correspondence between T (k;) and T (kq) is the same as 
between a vector y and its components. Denoting rank and component by k and 
q (instead of j and m) is current usage; some authors remain, however, with j 
and m. 

From the definition it follows immediately that 

if T (k; ) is to represent a physical quantity, k must be an 

	

integer; otherwise it would be multiplied by —1 	under a 27r 	(8.2.2) 
rotation and thus be double valued (see (6.3.69))2 . 

Most interesting in quantum theory are irreducible tensors, whose individual 
components are quantum mechanical operators in Hilbert space. In this case each 
individual component transforms under an active rotation in two ways: 

• as an operator 

	

T' (kq) = (.1„T (k, q)L1,;-1 	 (8.2.3) 

• but also as a component of an irreducible tensor, according to (8.2.1). 

Together these lead to the transformation law of irreducible tensor operators: 

	

Ua T (k, q)U; 1  = E T (kq')D q) 	• 	 (8.2.4) 
q' 

Considering active, infinitesimal rotations about the main coordinate axes 
ea ; a = x, y, z, one finds with (3.4.2) 

Ua(oea)= 1 — DA, 

= (kq'll — b7 44g). 

For the appearance of M» in the argument of T on the r.h.s. of (8.2.1) see the discussion in 
section 4.1 for wave functions and vector wave functions, of which the above equation (8.2.1) is a 
straightforward generalization. 

2  The case of half-integer k is, however, also discussed in the literature (see, e.g., Varshalovich et 
al (1988)). 
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Inserting this in (8.2.4) immediately gives the result 

[Ja, MO] = E T(kq')(4'1.1a lkq) 

	

T (kg)] = .,/k(k + 1) — q(q ± 1)T (kq ± 1) 
	(8.2.5) 

T (kg)] = qT (kq). 

Equations (8.2.5) and (8.2.1) are fully equivalent. 
All components of an irreducible tensor have the same parity; a tensor 

T (k;) combined from two tensors of lower rank T1(k1; ) and T2(k2; ) has the 
parity P = PI P2. 

While the Hermitian conjugate of a single component of an irreducible 
tensor operator is defined as usual, one must be careful when defining the 
Hermitian conjugate of a tensor operator as a whole. The notation is important; 
we write (f, Hermitian conjugate; *, complex conjugate) [T (kq)]t for the 
Hermitian conjugate of the q-component of T (k; ); Tt (kq) for the q-component 
of the Hermitian conjugate tensor Tt(k;). 

Writing down the Hermitian conjugate of (8.2.4) we obtain 

_I 	(k, q)1 1 U,T 1  = E[ T (kg ,) ,tpq(%).. E[T(kq'At (-1)q' -q D 	(8.2.6) 
qt 	 q, 

where (6.3.68) has been used. Replacing q and q' by —q and —q' we find (q, 
q' are integers) 

Ua (-1)q[T(k, —q)1tLI„T 1  = E(-1)4qT(k, 	Dq(% 	(8.2.7) 
q' 

which shows that (-1)q[T(k, —q)]t are again components of an irreducible 
tensor operator. We thus define the q component of Tt as 

Tt (kw ) = 	(i 	 (8.2.8) 

With this definition Tt (k;) is again an irreducible tensor operator. A Hermitian 
irreducible tensor operator obeys3  

Tt (kq) = (_1)[T (k, —q)]t = T(kq) Hermitian irreducible 

[T (kq)lt = (_1)T (k, —q) 	 tensor operator. 

Note that spherical harmonics share this property (see (4.7.29)); as they are 
functions and not operators, * replaces f. They also have the same transformation 
rule under rotations, therefore spherical harmonics Y1 „, are a special realization 
of Hermitian irreducible tensors T (1m). 

3  If the tensor components are not operators but functions, t is replaced by *. 

(8.2.9) 
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8.3 Tensor product; irreducible combination of irreducible tensors; scalar 
product 

The direct product of two irreducible tensors T and S is defined by 

(T(k;)0S(k;)) 4k , q, = T(kq)S(k'q') 	 (8.3.1) 

in exact analogy to the direct product of angular momentum states (see 
section 5.3) 

Ikq)(Dik'q') = Ikqk'q'). 	 (8.3.2) 

Consequently the direct product T (k; )0S(k'; ) transforms as the direct product 
D(k) 0D (", that is, as a reducible representation. Just as with the direct product 
of states we obtain an irreducible tensor V of rank K by means of 

IT (k; )S(k'; )1 (K  = V (K Q) = E T(kq)S(k'q 1 )(kqk'q'IK 
qq' 

where the analogy to the composition of states is obvious: 

1(kk')K Q) = E i k qk'q ' )(k qeq ' I K Q) . 
qq' 

(8.3.3) 

The presence of CGCs in (8.3.3) implies that q+q' = Q and lk—k'l < K < k+k' 
and this analogy automatically guarantees that V (K Q) is an irreducible tensor 
of rank K, because the irreducible tensors are defined by their transformation 
law being the same as that of angular momentum states. Thus we do not need 
to prove explicitly that V (K Q) transforms with D.  

In this way we can construct irreducible tensors of any rank. In particular 
we can construct one of rank 0, i.e. an invariant: 

V(0O) = E T (kq)S(k' q')(kqe 000) 
qq' 

where the k in T and k' in S must be the same if the CGC is to be = 0; 
furthermore q' = —q. With (5.3.47) 

(kqk, —q100) =  	 (8.3.4) 
-s/2k 	1 

we obtain4  
(-1 )k 

V (O0)  = 	E(- 1 )q T(k q )S(k, —q). 
,V2k + 1 

(8.3.5) 

4 If we were pedantic, V(00) should be written V(00)k (as in the CGC (kqk — ql(kk)00), where 
we suppressed (kk) also). 
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This invariant V(00) is uniquely defined only if k is an integer. This is seen 
most easily in the case where T and S are not operators but classical fields or 
numbers. Then TS = ST is not required; but 

E(-1)q S(kg)T(k,—q)= E( -1 )qT (k q )S (k, —q) 

= E(-1)-24 (-1)qT(k q) S (k, —q). 

However, since q shares with k the property of being integer or half-integer, we 
have (-1) -4  = (- 1) 2k  and hence 

	

v (Oo)sr = (-1) 2k vm rs. 	 (8.3.6) 

Then V(00)sr = 17 (00)rs implies k = integer. 
Assuming now k to be an integer, we define the scalar product by the 

requirement that for ordinary vectors the result is the usual scalar product. 
To this end we remark two things: 

• the spherical harmonics Yi n, transform as T(1m) 

• the spherical harmonics with / = 1 can be written 

1 

(Y11 
--(x + iy)) 

.4 
Y10  ) = V3/(47rr 2) ( 	z 
Y1_1  —

1 
(x —iy) 

.4 

(see table 4.2 and (4.7.32)). 

That is, if we wish the vector x to be written as an irreducible tensor of 
rank 1, we have to give it the 'spherical components' 

--
I

(x  ( 	
+ iy) 

xi 	-12 
xo 	 z 	= x(1 x_i) = 

— iy) 
N/2 

, q). (8.3.7) 

Accordingly, any vector y can be written as an irreducible spherical tensor, 



8.4 INVARIANTS AND COVARIANT 

namely in spherical components 

( th 
v = V (1, q) = 	vo 	= 

v_ i  

and vice versa 

EQUATIONS 

(
--

1
(v, ± ivy)) 

v, 
1 

— (v x  — iv y ) 
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(8.3.8) 

(v
x ) N/2 

v=  V), = 
± y1) 

1 
v—,_( _ 1  — v i ) 

Vz 

VO 

One then finds 

y• w = E yiwi= E 	V(1q)W(1,—q). (8.3.9) 
i=x.y.z 	q=-1,0,1 

Consequently we define the scalar product for any two irreducible tensors by 
means of (8.3.5) 

T (k;)S(k;) = 	1(-1) k  V(00) = E(-1)qT (k q )S (k, —q). 	(8.3.10) 

Remembering (8.3.6) we can state that for classical irreducible tensor fields of 
rank k 

ST =  —TS  if k = half integer `anticommuting' 

ST =  TS 	if k = integer 	'commuting'. 

8.4 Invariants and covariant equations 

A few words on invariants may be added. We said that T (k;)S(k; ) is an 
invariant. Indeed, it transforms like a state 100), that is, it remains unaffected. 
Invariant means here form invariant. Namely, if 

TS = ET (kq)S(k, —q)(-1)q 

in one frame of reference, then it becomes 

E (kq)S' (k, —q)(-1)q 

in another one and in fact these two sums are equal, even if T and S are fields 

Ec_irT (k q ; x)S(k, —q; y) =E(-1)qr (kq; x')S'(k, —q; y') (8.4.1) 
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which, although obvious by the method of construction, can be checked by an 
explicit calculation using (8.2.1) in the form 

T'(kq; x') = E T (kq'; x)D qTq . 
q ' 

It will turn out that the D cancel altogether. However in fact no such proof 
is necessary because we know that TS  transforms with DM = 1. 

Often the following statements are useful. 

If a question is of such a nature that its answer will always be 
the same, no matter how the coordinate axes are oriented, then it 
must be possible to answer this question with the help of those 
invariants which one can build with the available irreducible 
tensors. One may then find the answer in that particular frame 
of reference where it becomes easiest. One looks at how 
the invariants appear in this system, expresses the answer by 
them and has thereby found the general invariant formulation. 
Furthermore: if an equation, given in a particular frame 
of reference, can be written in a manifestly covariant form 
(namely, both sides of the equation transform in the same way) 
which in the mentioned particular frame of reference reduces 
to the equation given there, then this covariant formulation is 
the unique generalization of the equation given. 

As an illustration, we derive once more an earlier result: the addition 
theorem of spherical harmonics. 

Is P1(cosi,) an invariant? 

• NO! if by is meant the polar angle of r. In this case 

47r 
Pi (cos = 	 

\'21± 1 
Ylo(0, 0) 

transforms with LP )  into a combination of Yi„,. 
• YES! if by t the angle between two vectors, y and w, is meant. In this 

case it must be possible to express  P1  (cos  0) in a manifestly invariant form. 

We consider the second case. Let n1 and n2 be two unit vectors with 
directions (01, (Pi)  and  (1,2, V2) respectively. Then  cosû = n1 • n2. We now 
take a coordinate system where 0 1  = 0,  i  =  i,  (p21  = O. In these coordinates 
we have 

47r 

	

Pi (cos 	= 	 (p'2 ). 
21 ± 1 

Can we write this in a manifestly invariant form? Yes, because the spherical 

	

harmonic of the other angles i 	0 and (p' can be written (see (6.3.30)) 

/ 2/ +  1 . 
(Oi = 0, 	= 8mo

I 
 47r 

(8.4.2) 
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Hence, still in this particular coordinate frame: 

47r 	 47r 
Pi (cos 0) = 1

2/ + 1 l'io0, , 49P = I/ 	 
2/ + 1 m  

47r 
=   	l'im (0i, v't)Yi.(1, , go). 2/ + 1 . 

Comparing this with the invariant scalar product (8.4.1) we see that this 
sum would be invariant if with one of the Y we were to change m into —m 
and furthermore attach a factor (-1)"' to each term of the sum. Since the sum 
contains only one term, namely the one with m = 0, we are free to make 
these changes without doing anything to the sum, except that this sum becomes 
now the invariant scalar product of the two irreducible tensors Yi„,(0;, 990 and 
Km (/,, (p). Thus we have the expression (valid in any coordinate system) 

47r 

	

Pi  (cos 0) = 	E(- 1)"(P1)Y1,-m( 1,2,(P2) 2/ + 1 
 vt471. ,n  

	

= 	 
2/ + l L ., K.(0 1 ,  (P1)170,2, (P2) 

(8.4.3) 

where (4.7.29) was used. 
A particular application is the expansion of a plane wave into angular 

momentum states. Since k.  r = kr cos 0 is invariant, Pi (cos 0) in the formula 

oo 
eik-r = E ii  (2/ + 1)ji (kr) Pi  (cos 0) 

1=0 

(8.4.4) 

is taken in the invariant sense. Hence Pi (cos 0) may be expressed in the invariant 
form (8.4.3) 

oo 
eik.r = 47r E iiji(kr) E Yim( 14, (Pic)Y7(Or,  (Pr). 	(8.4.5) 

t---o 	m 

8.5 Spinor and vector spherical harmonics 

What we are going to address here could have been discussed previously when 
the addition of angular momenta was considered. 

As we found in the discussion of the physical significance of J for a vector 
particle (see section 4.1), its wave function consists of three components which 
transform like a vector. Of course, if the components of 

1 ),(x)) 
ip (x) = ( il

//

ry (x ) 

ilf,(x) 

(8.5.1) 
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transform among each other in a prescribed form, then not just any three 
functions *x , *y , *, will do: there will be a definite relation between them; 
e.g. at any given point P, we can achieve that there (in these coordinates, z' 
say) C(x') 0 O;  lfr y/  = C =  O:  we simply put the x'-axis in direction *. 

The same is true if we consider a two-component wave function, whose 
components transform according to  

We shall now construct functions (not states) corresponding to spin and 1. 
Since the composition law is the same as for states—just a sum with CGCs—we 
could already have done it earlier. However, now we can do it somewhat more 
generally, since we consider the 'wave functions' no longer as representatives 
of states, but simply as a set of functions with such and such transformation 
properties, that is: as irreducible spherical tensors. We can then leave open the 
possibility of giving them operator properties. In this way the quantities we 
are going to construct may serve in three different ways (and have each time 
a completely different physical significance—only the transformation properties 
remain the same): 

• as wave functions of  spin-i or spin-1 states; 
• as irreducible tensors T(1 l ) (JM) or  
• as irreducible tensor operators. 

A quantity which depends on the coordinates 0, (p and transforms like a 
state 

1(1s).1111) = Elimstomstom) 	 (8.5.2) 

will necessarily have the form 

T„som; 0,0 = E y,m(t", (P)XsA(lms AIJ M) 
MIL 

where s is to be an intrinsic and l an orbital angular momentum. 
We have only to specify the )(xi, such that they obey 

,s2 x3 m. . s (s. + 1)x5t, 	 (8.5.3) 
Sz Xs tt = Abu. 

For the case s = 1 we know the spinors: 

1 
X;,1 = x+ = ()0 	4_4 = X- = (7) 

(see (4.8.9) and (4.8.10)). Hence we define the spinor spherical harmonics 

0(1 4 ),m(0, (p) = i/ E 1'1m(Û, (P)X1 14.(intillf M) 
	

(8.5.4) 
MA 
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where e is a conventional factor which has been introduced to give 4> a simple 
behaviour under time reversal. Since m ± A = M, we can write very explicitly 

(12)JM ( 
	= 

( (1, Ai — 1, 1, liJAI) Yi.m_ i  (1,, (p) 

(1 , M 1•1111 ) 	(P) 

For the vector spherical harmonics we still have to determine the eigenstates 
Xi A  of S. We know S from (4.1.8) 

Sx  = 
0 0  

	

(0 	0 

	

0 	i 

O\ 
—i 
0 

Sy = 
0 
0 

—i 

0 
0 
0 

i 
0 
0 

Sz  =(i 
0 

0 

—i 
0 
0 

0 
. 

0 
(8.5.6) 

The most obvious thing to do is to write 

( 0 —i 0) (a 	a 

	

i 0 0 	b) 	(b 	 (8.5.7) 

	

0 0 0 	c 
(A) 	 (A) 

and to solve these equations for a, b and c; but as we are now in the chapter on 
irreducible tensors, let us do so with a corresponding technique, as follows. 

A vector y (in the abstract sense), if fixed in space, is an invariant quantity 
under rotations of the coordinates. Rather, it is its representation by means of 
components (vi , vy , vz ) which is not invariant. That y is an invariant must be—
according to the statement (8.4.2)— expressible in a manifestly invariant form. 
Here it is: 

y= E v,e,_— E iile;. 	 (8.5.8) 
i=x.y.z 	i=x.y.z 

Nothing prevents us from writing this 'scalar product' in the spherical basis, 
namely as the invariant (see (8.3.10)) 

y= E (-1)"vA e_t, = E (-1)Av'e' Pt  . 	(8.5.9) 
A=1,0.-1 	 g=1.0.-1 

But now we know that the three spherical unit vectors el, e0 and e_1 must 
transform among themselves exactly as states II it) would do; and since each 
of them has three components they must be eigenvectors of S2  and Sz  with 
eigenvalues = 1, 0, —1 respectively. The eu  are easily found: 

y • w = E vi., = E (-1 ) AVA W_AL 

	

i=x.y.z 	A=1.0.-1 

is invariant if V A  and w u  are both constructed according to the rule (see (4.7.32) 
and (8.3.8)) 

wi 

wo = wz 
1 

	

w-1 = 	— iw)). 

(8.5.5) 
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If we require that y = E 	(-1)Avti e_m  be invariant, then the el, must be 
constructed just the same way, namely 

e l  

eo 

1 	 1 	1 

	

=--,V ex ±1eY)._ 4, , 	10 

_ ) 

( 
_ ) 

1 
(8.5.10) 

1 1 
e-1 = — (ex  - iey ) = 

One easily checks that these e„, indeed fulfil (see (8.5.6)) 

= 2e,„ 

Sz e i, =Iie, 2 	tt =1,0, -1. 
(8.5.11) 

They are thus the eigenstates x 1 „, needed to construct the vector spherical 
harmonics. Even if this derivation was, admittedly, longer than the simple 
determination of the eigenvectors of S,, it has, however, served as an illustration 
of the concepts of 'invariance' and 'irreducible spherical tensor'. That is, we 
have just learned that a vector y, taken in the abstract sense, may be considered as 
an invariant or spherical tensor of rank 0; quite differently, the three unit vectors 
ex  ey  ez  are not invariant, since they are by definition fixed to the coordinate 
axes and rotate with these. Consequently the three vectors e ,2  are components 
of an irreducible spherical tensor T(1/./). Quite generally 

the components T(kq) of an irreducible spherical tensor may 
still be scalars, vectors, tensors with respect to x, y, z. 

This ends our little digression and we go back to our problem: we define 
the vector spherical harmonics with x it, 	e„,, 

Yon.ho ,, o = E Yhja, (P)ett Urn I It IJA1)• 	(8.5.13) 

Their use, in particular for the description of the Maxwell field, is well 
known. They form a complete orthogonal system (on the unit sphere) for vector 
functions. This follows from the simple fact that the wave functions (x1(11)J M) 
are a complete set. 

The spinor spherical harmonics are used for spin-;,- fields or wave functions. 
Some care is necessary if relativistic particles are considered. We know 
from Dirac's relativistic hydrogen atom that L is not conserved and that the 
eigenfunctions of J2  and .1, contain Yi+ 1 . „, and Y.H . „, in one single spinor. 
This shows already complications we might encounter in a relativistic treatment. 

(8.5.12) 
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Thus, relativistic spin-i particles cannot be described by the spinor spherical 
harmonics '1)  (11"-unless they have zero mass, when again a two-component 
wave function is sufficient. We shall come back to these questions later. For 
the moment we only remark that all those CGCs which can occur in spinor and 
vector spherical harmonics can be obtained from table 5.2 and (5.3.54)-(5.3.56). 
For the convenience of the reader we give them here explicitly. 

Table of (jmi inzzlim) 

(8.5.14) 

M2 1 

+rn +m+ 1 )  
(2/1+1)(2./1+2) 

(Ji +m)(it -m+ 1 ) 
2ii(ji+1) 

-m+I)(j1 -m) 
2./1(2./1+1) 

.N/
( 1 -n1+ 1 )0 1 +mA-0  Il ui -no(i l -m+i) 

(2.)1+000 1+ (2t1+1 )(2j 1 +2) 

V UI -m)(ii+m+1 )  
2./1 (j1+1) 

	 V(Jl+m+1)(ji+m)  
/1(2i1+1) 	2.h(2j1+1) 

(8.5.15) 

8.6 Angular momenta as spherical tensor operators 

If we define (notice the difference compared with (4.6.3)!) the spherical 
components of J as 

1 	 1 

	

= 	+ ify ) = 
Jo 	

,12 
= Jz  

1 	 1 

	

.L I  = 	- iJy ) = 

(8.6.1) 

then these Ji,(pt = 1,0, - 1) transform under rotations with D (1)  and form an 
irreducible tensor operator of rank 1. Indeed one can check explicitly that they 
obey the commutation relations (8.2.5) with T(kq) = T(1q) = Jq. 
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If one rewrites the commutation relations (8.2.5) by expressing the .1±  by 
= 1, o, —1) then one obtains 

1 
[41, Mg)] =

2
(k q)(k ± q 1)T (k , q ± 1) 

(8.6.2) 
[Jo , T (kq)] = qT(kq). 

From the table (8.5.15) of  (J1 m 1 lm 2 1jm) we read off that the roots can be 
expressed by CGCs; we then write (using the symmetry relations (5.3.52)) 

[Ji.„ T (kq)] = —/k(k 	1)(1 itkqlkq 	14T (k, q 	11). 	(8.6.3) 

Similarly, for the matrix elements of .1, one obtains, rewriting 
..,/j(j + 1) — m(m ± 1) by means of (8.5.15), and using the symmetry relations 
(5.3.52) 

(fin' 14 Lim) = 	 1 )(fm' 1 1  tiim). 	(8.6.4) 

8.7 The Wigner—Eckart theorem 

This famous theorem asserts that in the matrix element of any arbitrary 
irreducible tensor operator between standard angular momentum states 

(y1m' IT (kq)lyjm) 

the dependence on m', q and m is entirely contained in a CGC which multiplies 
a 'reduced matrix element', which is independent of m', q and m. This has two 
consequences: 

• the factorization of the matrix element into a CGC and a reduced matrix 
element makes it sometimes unnecessary to calculate the latter; 

• if the matrix element must be fully calculated, then one can do it for the 
m',  q,  m-values which make it easiest. In this way one obtains the reduced 
matrix element and the full one is given by multiplying it by the appropriate 
CGC. 

The proof of this theorem is extremely simple and needs hardly any 
calculations; it follows simply from considering carefully the transformation 
properties. 

The matrix element in question is formed by taking the scalar product (in 
Hilbert space) of the standard bra state (y' j' m'l with the ket vector T (kq)I yjm). 
This ket vector transforms exactly like a state Ikqjm), namely with D (k) ODU) . 
Hence it can be written as a linear combination of standard states 11//; j"m") 
which transform with DU" )  where 1k — I < j" < k j; this linear combination 
is necessarily 

T (kq)lyjm) =E ; j"m")(kqjmlj"m") 
t " 

j"m") =ET (kq)lyjm)(kqjrnlj" m"). 
qm 

(8.7.1) 
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Therefore 

(y'fm'IT(kq)lyjm) = (y' 	j'm t)(kqjmij'm'). 	(8.7.2) 

All that remains is to show that (y' fm'1111; j'm') is independent of m'. 
Looking at the second line of (8.7.1) we again stress its significance: it says 
that lip; j"m") transforms with the irreducible representation DU") , that is, like 
a standard state. Consequently (whatever * means) is not changed by acting 
with any of the .11  on Ilk; jm). Thus also 

	

i'm/ ) = 	+ 1) - m'(m'± 1 )1 1k; _i'm' ± 1) 

and, since J_ = 4 
i'm')  

	

(Vi'm'IC fin ') = 
j'(j' 1) - m'(m' 1) = (y1, m' + 111,fr; 	m' + 1)  

which shows the independence of m'. Note, however, that the set * will in 
general depend on the nature of T as well as of the values of k, y and j, hence 

li/T(Yki). 
The matrix element (y' fnatlf; j'm') = (y71111f) is essentially the 

'reduced matrix element'. Unfortunately there is a variety of factors attached to 
it by various authors. We shall employ here the notation of Racah, which reads 

(-1)f+k-i 
(1 flikT(Yki); f) = 	<Y1117- (k;) ri). .„72- .7F 

We give here only a few of the different notations. 
Our reduced matrix element is the same as that of Edmonds (1957), of 

Racah (1942), of Messiah (1970) and of de-Shalit and Talmi (1963). It differs 
from that of Fano and Racah (1959) by (-1)2k (which in all practical cases is 
no difference) and from that of Rose (1957) by 

T(k;)11j)ours =12f + 1 (-1 ) 2k (j / IIT(k;)11i) 

	

Rose • 	 (8.7.4) 

Except for Racah, the authors' names listed here refer to the books quoted 
in table 5.1. Further notations are compiled in table 5.1 of Edmonds (1957). An 
extensive collection of formulae is given in Varshalovich et al (1988). Apart 
from a possibly different definition of T(k;)  II Kt) A is clear that by 
means of the symmetry relations of the CGCs and/or 3j-symbols (see (5.3.52) 
and (5.3.54)) (8.7.3) and the following Wigner-Eckart theorem can be written 
in various other equivalent forms. 

Combining (8.7.2) and (8.7.3), we obtain the Wigner-Eckart theorem 
(henceforth W-E theorem) 

(-1)-r+k-i 

	

(Vfm'IT(4)1Y.im) = 	(j /m i lkqjm)(y'flIT(k;)11Yl) 	( 8 .7 . 5 ) 
.s/2j 1  +1  

where (Y711 7.  (k; )11Y j) is invariant under rotations, i.e. independent of  m',  q 
and m. Thus 

(8.7.3) 
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• if (y' j' m'IT(kq)lyjm) is to be discussed with respect to its dependence 
on m'qm, then the reduced matrix element can be considered just as an 
unknown constant common factor—only the CGCs need be considered; 

• if (y' fm'IT(kq)lyjm) must be be calculated, one chooses to calculate the 
(m', q, m)-independent reduced matrix element 

j j , ± 	(Y'i'm'IT(4)1Yim)  
(VPIT(k; ) Yi) = ( -1 Y+k-  

(i'nelkqim) 
for those values m', q and m where it is easiest. The full matrix element 
for general m', q and m then follows from the Wigner-Eckart theorem. 

In particular it follows that for any two irreducible tensors of equal rank, 
say T(k;) and S(k;), 

(Y1IIT (1c;)11Yi)  
(Y'i'm / IT(kq)1Yim) = 	 (Y m IS(kg)iy jm). 

(YTIISR;)11Yi) 

8.8 Examples of applications of the Wigner-Eckart theorem 

8.8.1 The trace of T(kq) 

The trace of an irreducible tensor is defined by 

Tr(T(kq))= E(yj m I T (k q )l yj m). 
YJm 

The W-E theorem gives 

Tr(T(kq)) = (-1)k 	
1 

 ,s/2 	± 	1  (imIkqjm)(rillT(k;) II Yi) 

" With (5.3.47) we put  

1 

.1277-- 1 = 	 -m100) 

and with (5.3.51) 

(kOjmijm)= ( -1 ) k-i+m .1 22
3
k ++ :(jmj -mik0). 

Then with the orthogonality relation (5.3.14) 

(8.7.6) 

(8.8.1) 

q = O. 

(kOjmijm). (-1)k 12f  + 1 
2k + 1 

E (Num.; — no umi  _ m i 00) 
 ,./2j  +1 	 m  

= 
Hence 

Tr(T(kq))= 8k0E v2i + 	(k;) II ri) 
YJ 

that is, only tensors of rank 0 have a non-vanishing trace. 

(8.8.2) 
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8.8.2 Tensors of rank 0 (scalars, invariants) 

The W-E theorem gives 

(i'm'100  jm) 
(3/ i'm'IT (00)IY .1m) =   (Y 	(0) II Y i) 

.V2f -I- 1 
(YVIIT (0) II Yi)  

8.8.3 The angular momentum operators 

We defined the spherical components .1, by (8.6.1): 

1 	 1 
-11 	 iJ) = 

Jo  = Jz 

( - i-f) = 
N/ 2  

and found (see (8.6.4)) that 

= 

Since .f„ is an irreducible tensor of rank 1, the W-E theorem says 

(-1)f+ 1-i 
(Y / fm / IJAIY.im) = 	+ 1 (fm'lltilm)(V.i/11.111Y.i) 

=8.i.r8mm' 	N/2j + I 

(8.8.3) 

(8.8.4) 

where, of course, m' = m + it. Comparison of these two expressions gives 

(Y / i ' ll 	= Syy' 8jj' • Vj (j ± 1)(2 j + 1). 	(8.8.5) 

8.9 Projection theorem for irreducible tensor operators of rank 1 

In this section we shall write T(1; ) T and J(1;) 	J, i.e. we use the vector 
notation but we mean the vectors written in spherical coordinates. 

Since J is an irreducible tensor of rank 1, any other irreducible tensor of 
rank 1 obeys equation (8.7.6) in the form 

(3/ 	Yi) 
 (Y 

 , .„
m 	

. =  
(Y' 	Yi) 

This equation loses meaning, however, if y' 0 y and/or j' 	j because J is 
diagonal in y and j, and if not {y' = y and j' = j), then the equation reads 
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(V.rmi lTiYim) . g. Therefore we restrict ourselves to y' = y and j' = j. 
Then 

(Y.im'ITly.i m ) = c(Kim'IJIKim) 
(y.i lI T Il y.i )  c = 	. 
(y.i lkfllyi) 

(8.9.1) 

C is simply a number. The above equation says that the two vectors 
(yjm'ITlyjm) and (yjm'IJIyjm) are parallel. Therefore, if we decompose 
T into a component parallel to J, namely J(T • J), and one T1  perpendicular 
to it: 

(y.inel.1(T • J)Iyini)  
(Kim'ITly.im) = 	 + (Kirn'1211Y.im) • 

f(y.im'm)  
=c) 

Then the matrix elements of T1 will vanish. It remains to determine the constant 
f (yjmm') which, if ordinary vectors were considered, would be IJ1 2 ; thus we 
expect that f (yjm'm) = j(j + 1). We proceed as follows: since J is diagonal 
in j and J • J as a tensor of rank 0 is diagonal in j and m (see (8.8.3)), the 
first matrix element can be split into two (where, because of the just mentioned 
diagonalities of J and T • J, no sum over intermediate states occurs): 

(KinelJ(T • .1)1Yim)  
(Y.inelTlYim)= 

f(Yinem) 
(y.inelT • JIY.im)  

=(y.inekily.im) 	 • 
f(Y.im'in) 

Comparison with (8.9.1) gives 

(KimIT • JIY.im)= f (Kim* c 

(8.9.2) 

which shows already that f does not depend on m'; but, furthermore, we can 
again split this matrix element and then we use once more (8.9.1): 

f(Y.im)c = E(KimiTiyino(yiniviyirn) 
ne 

(since J is diagonal in j and y, sum only over m') 

=c E(yirniJiyirni)(yiniviyini) 

=c(y.pniPlyin) = Ci(j +1). 

Hence f (yjm) = j(j +1). Thus we obtain from (8.9.2), (8.8.3) and (8.9.1) the 
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projection theorem 

(vim'ITlyim) 
(v.im'IJ(T • J)IYim)  = j(j +1) 

. 	J 1 Ki m)  
= (Yine1J1Kim) 	. 

+ 1 ) 

(KilIT • Jllyi)  
= (y.inekilyirn)

./(i + 1),./2j + 

= (yinekilypn) 	 

from which follows 

(8.9.3) 

(yilIT • Jlly.i) = i(i + 1),/2j + (y.ilITIlyi)  • (8.9.4) 
(YilkfllYi)  

Putting T J gives 

(Kilk12 11Y,i) = i(j+1).12j + 1. 	 (8.9.5) 

Example: Lande 's formula 

The magnetic moment is given by 

= ito[gL L + gsS] aL +13S. 	 (8.9.6) 

What is the expectation value of p. in a state 1(1s)jm)? IL is an irreducible 
tensor of rank 1, hence (8.9.3) applies: 

Ws).im 	• Al Us).irn  . 	(8.9.7) (Us).imilliqs)inz)= Ws).inil.M/s)./m) 
+1)  

Now, for states l(ls)./m): 

J • p. = (L + S) • (aL + 13S) = al(1 + 1) + fis(s + 1) + (a + f3)L • S 
J2  = (L + S)2  =1(1 + 1) + s(s + 1) +2L • S = j(j + 1). 

Thus 
L • S = 	+ 1) — 1(1 +1) — s(s + 1)]. 

That gives 

• = 	:ICI +0+ 	  
2 	 2 

Putting this into (8.9.7) yields with 

Ws)./mAR/s)jm) = m Sqz 



226 	IRREDUCIBLE TENSORS AND TENSOR OPERATORS 

and a and fi replaced by Aar, and /togs  

, 	to 	 1(1+1)—s(s+1)]1 
((is)./mIliql(is)/m) = 6qzni —

2 
[gL + gs + (gz, — gs) 

	

../(l + 1) 	J 
(8.9.8) 

which is the Lan& formula. That (lix) = (Ay) = 0 is physically obvious. 
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PECULIARITIES OF TWO-DIMENSIONAL 
ROTATIONS: ANYONS, FRACTIONAL SPIN AND 

STATISTICS 

9.1 Introduction 

In previous chapters we have only considered the three-dimensional rotation 
group, its generators and their physical realization in the Hilbert space—the 
angular momentum. In this chapter we shall give a brief introduction to rotations 
in two-dimensional space and find that rotations in two-dimensional space have 
some special properties. In particular, spin and statistics have peculiarities not 
possible in three- or higher-dimensional space—spin is not quantized in integer 
or half-integer units of h and hence the particles are not necessarily bosons or 
fermions but may obey any statistics and were thus called anyons (stemming 
from 'any' and 'on') by Wilczek (1982, 1990). In fact, the concept of fractional 
statistics had been already put forward by Leinaas and Myrheim in the late 
1970s. They found that the origin of the fractional statistics lies in the peculiar 
topological properties of the configuration space of many identical particles. 
This space is doubly connected in three or more dimensions but is multiply 
connected in two dimensions (Leinaas and Myrheim (1977)). Later Goldin, 
Menikoff and Sharp reached a similar conclusion using a completely different 
method based on the rigorous study of the unitary representations of current 
algebra and diffeomorphism groups (Goldin et al (1980, 1981)). 

Since the real physical space is three dimensional and the observed 
particles can only be bosons or fermions, anyons may be thought of as purely 
mathematical objects. In fact, this need not be the case. In recent years 
the advances in the understanding of the fractional quantum Hall effect and 
high-temperature superconductivity have led to interest in this kind of quasi-
particle with fractional statistics. It has been found that anyons need not be only 
purely mathematical objects and may play an important role in physical systems 
which can effectively or approximately be regarded as two dimensional so that 
the localized excitations should be quasi-particles obeying the laws of two-
dimensional physics. Therefore, these quasi-particles should be just anyons and 
could be observed. One remarkable example is the famous fractional quantum 
Hall effect in condensed matter systems, where the collective excitations can be 
identified as localized quasi-particles with fractional charge, fractional spin and 
fractional statistics and can be naturally regarded as anyons. 

227 
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This chapter is arranged as follows. In section 9.2 we shall consider the 
transformation behaviour of wave functions under two-dimensional rotations to 
explain the reason why there is a possibility of arbitrary spin. In section 9.3 
we shall give an explicit example to show that a physical system in two-
dimensional space can indeed have fractional spin. There are still a lot of 
other interesting topics about anyon physics such as the Chern—Simons gauge 
theory description of anyon dynamics, the many-anyon problem, the statistical 
mechanics of anyons, and the relation between anyons and braid groups and 
between anyons and two-dimensional conformal field theory. These topics are 
outside the scope of this book; the interested reader can consult the advanced 
reviews written by Lerda (1992), Forte (1992) and Iengo and Lechner (1992), 
for instance, and the literature cited therein. 

9.2 Properties of rotations in two-dimensional space and fractional 
statistics 

The rotations in two-dimensional space form an Abelian group S 0 (2) which has 
only one generator. This is the essential reason for the spin to be arbitrary. As 
we know, spin is the quantum number labelling the irreducible representations of 
the (universal) covering group of the rotational group. For SO(2) the (universal) 
covering group is U(1) 1 , which is isomorphic to the real line, so that spin may be 
any real number. This is the essential difference between two-dimensional space 
and three- or higher-dimensional spaces. In three-dimensional space the rotation 
group is SO(3) and its (universal) covering group is SU(2) and the commutation 
relations of Lie algebra elements imply that the quantum number characterizing 
the representation is discrete, i.e. quantized. However, the two-dimensional 
rotation group is Abelian. Therefore there are no commutation relations and thus 
no restrictions on the eigenvalues of the rotation generator. Correspondingly, 
owing to the relation between spin and statistics, the arbitrariness of the spin 
leads to the idea that statistics may be arbitrary in two-dimensional space. In 
the following we shall give a detailed exposition of this statement. 

In classical physics, statistics refers to the distribution of identical particles 
with respect to the physical variables (such as position and velocity) describing 
them. At the quantum level, the state of the physical system is described by 
a wave function. Consequently, the notion of statistics is usually related to 
the sign acquired by the wave function describing a system consisting of several 

I  In section 4.9 it was found that the elements of the universal covering group can be regarded 
as elements of the group together with an indication of along which kind of path from I to g the 
element g is reached. Two paths continuously deformable into each other are regarded as equivalent. 
Since S 0 (2) is topologically a circle, the element g = exp(49) can be reached by any path from 

= 0 to s  = which winds around the circle n E Z times. Paths with different values of n cannot 
be deformed to each other continuously. Obviously, the path labelled by n can be regarded as a 
path from t = 0 to t = + n27 , since s and r n27 correspond to same point of S 0 (2). In the 
case of the universal covering group of S  0(2),  the paths (0 = 49 -I- n27 ) , n E Z correspond to 
different group elements, so that the universal covering group is the additive group of real numbers. 
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identical particles when any two particles are interchanged. This sign determines 
the distribution of the particles in a given quantum state. As we know, in three-
dimensional space only two kinds of statistics are possible. If the wave function 
obtains a plus sign (i.e. does not change) when we interchange two identical 
particles, we say that it describes a bosonic system and the corresponding 
particle is called a boson. Any number of such particles can exist in a given 
quantum state; this is referred to as the Bose-Einstein statistics. If the wave 
function obtains a minus sign, we say that it describes a ferrnionic system and 
the corresponding particle is called a fermion. The particle distribution obeys 
the Fermi-Dirac statistics; this leads to the famous Pauli exclusion principle 
stating that a quantum state can contain at most one fermion with given quantum 
numbers. In order to make this statement more precise, we now give a more 
concrete definition of the statistics. 

Let ‘11  (1, 2) denote the two-particle wave function describing two identical 
particles with definite quantum numbers such as energy, angular momentum, 
spin, etc. The arguments 1 and 2 label the two identical particles. When we 
move particle 2 around particle 1 by an azimuthal angle ço, the new wave function 
will differ by a unitary transformation from the old wave function (figure 9.1): 

4/(1, 2)—> V(1, 2) = U(w)T(1, 2)U -1 (o) = e i "Ni(1, 2). 	(9.2.1) 

. 	• 	____ 	
o ,•',/ )1° 

1 	2 	 1 
Ni(1,2) 

Figure 9.1. In the operation of particle 2 moving around particle 1 by an angle y), the 
wave function kli is transformed to V. 

One can see that the new wave function acquires a phase factor which 
depends on a parameter v. We can refer to this parameter y as the statistical 
parameter. The meaning of y can be made clear by the single-valuedness 
requirement of the wave function under different rotation operations. We 
consider two special exchanges of two particles: 

(I) moving particle 2 around particle 1 by an angle yo = 77.  and then performing 
a translation to reach the original spatial configuration (see figure 9.2); 

(II) moving particle 2 around particle 1 by an angle v = -7r  and then 
performing the same translation to restore the initial spatial configuration 
(see figure 9.3). 
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Path I 

2 
	

2 

Figure 9.2. The exchange of two particles realized by moving particle 2 counterclockwise 
around particle 1 by an angle io = n (operation I). 

    

1 	2 

 

Path II 

Figure 9.3. The exchange of two particles realized by moving particle 2 clockwise 
around particle 1 by an angle = — n (operation II). 

Owing to the translational invariance of the system, we consider only the 
effects induced by rotations. In the first case, the new wave function is 

111/ (1, 2) = e i" 11 (1, 2). 	 (9.2.2) 

In the second case, the new wave function is 

4/"(1, 2) = 	4/(1, 2). 	 (9.2.3) 

This simple example clearly illustrates the difference between three-
(or higher-) dimensional and two-dimensional space. In three- (or higher-) 
dimensional space, there is no intrinsic difference between the operations I and 
II, since we can always deform the operation I into operation II in a continuous 
way (this is due to the fact that the fundamental group2  of three- or higher-
dimensional Euclidian space with one point excluded is trivial). For example, 
one typical manipulation is to first lift the path I into the third dimension, then 
to fold it down onto the plane (and, if needed, to deform the path) to fall on 
the path II (figure 9.4). Therefore, the transformed wave functions should be 
identical: 

4," (1, 2) = ‘1/'(l, 2) 	 (9.2.4) 

2  The fundamental group (or the first homotopy group) of a space E consists of homotopy 
equivalence classes of closed oriented paths starting from a given point x of E, such that two 
paths are regarded as homotopy equivalent if they can be continuously deformed into each other. 
The product yi o y2 of two closed paths yi and n corresponds to a path such that one first traverses 
y2 and then yi . The inverse of a path y corresponds to the path with opposite direction of traversal. 
The unit path corresponds to a path continuously deformable to the point x. For the plane with a 
hole, the fundamental group consists of integers n E Z: n tells how many times the path winds 
around the hole. 
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(9.2.5) 

Path II 

Figure 9.4. In three- or higher-dimensional spaces, the continuous deformation of path 
1 into path II is possible. 

This means that in three- or higher-dimensional spaces only y = 0, 1 
(modulo 2) is possible. Therefore, the statistics cannot be arbitrary in three- or 
higher-dimensional spaces. This implies that under the exchange of two particles, 
the many-body wave function acquires either a plus sign which corresponds to 

= 0 (the Bose–Einstein statistics) or a minus sign which corresponds to y = 1 
(the Fermi–Dirac statistics). Other values for y are strictly excluded. 

In two-dimensional space the situation is, however, completely different. 
In two-dimensional space there is no way to continuously deform the path I 
into path II (the fundamental group of two-dimensional space is not trivial when 
there is a hole in it), so I and II are two topologically (and physically) distinct 
operations. Therefore, (9.2.4) and hence (9.2.5) should not necessarily hold any 
longer and the statistical parameter y can be arbitrary. 

The example above also reflects another important peculiarity of two-
dimensional space: the wave function with definite initial and final configuration 
is not enough to describe the physical system—it is necessary to specify how 
the identical particles are interchanged. Geometrically, this means that the 
trajectories of the particles around each other should be specified. Physically, this 
implies that the directions of the time evolution and space reflection should be 
indicated (in fact, this means the breaking of parity and time reversal invariances 
in two-dimensional systems; this is the reason why one can choose the Chern-
Simons gauge theory, which has the same broken symmetries, to describe 
the dynamics of anyons in field theory). A second consequence is that in 
two-dimensional space the exchange operations of particles do not form the 
permutation group as in three- or higher-dimensional spaces but rather a braid 
group. Roughly speaking, a braid group is a kind of configuration- and path-
dependent permutation group in two-dimensional space. This concept is outside 
the scope of the present book (it is discussed, e.g., by Lerda (1992) and Forte 
(1992)). 
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9.3 Particle—flux system: example of anyon 

As found in the previous section, the transformation behaviour of the wave 
function allows the existence of particles with arbitrary spin and fractional 
statistics in two-dimensional space. In this section, we shall present a physical 
model to see how the anyons can be realized in two-dimensional space. 

We consider a physical system which consists of an electron interacting 
with an infinitely long magnetic solenoid (flux tube). Later we can see that this 
particle—flux system is a typical example for an anyon. In fact, an anyon can be 
thought of as a 'particle' composed of this charged particle and the flux tube. If 
we ignore the motion along the solenoid, the dynamics is restricted to a plane 
and should be subject to the rules of two-dimensional physics. In this way we 
can show how the fractional statistics appears explicitly. 

To be specific, we choose the plane in which the electrons move to be 
the (x, y)-plane and the magnetic field B generated by an infinitely long thin 
solenoid passing through the origin along the z-direction, i.e. 

B = 4)6 (2) (r) . '1ie5(x)8(Y)e z 
	 (9.3.1) 

where ez  is the unit vector in the z-direction, r 	(x,  y) and (1) is the magnetic 
flux of the solenoid: 

= f dS • B. 

Let A denote the corresponding vector potential 

B =V x A. 

Owing to the gauge transformation freedom 

A A VA 

and (9.3.1) and (9.3.3), one can choose 

(9.3.2) 

(9.3.3) 

(9.3.4) 

A(x, y) — (1)  Y  2 ex + 	 (9.3.5) 
2 	2 eY) • 27r 	x2  + y 	x + y 

Thus, when restricted to the (x, y)-plane, this particle—flux system possesses 
explicit SO(2) rotational symmetry, since this is essentially a two-dimensional 
central force problem. Now, switching on the vector potential A (or equivalently 
the magnetic field B) adiabatically starting at some time, say to  = 0, we choose 

(1)(0) = 0 (9.3.6) 

i.e. at the initial time A vanishes everywhere. Then A is slowly turned on until 
the time t: 

= (1). 	 (9.3.7) 
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According to Faraday's law, an electric field is generated accordingly: 

aB 	a 
V  x E = — — =— — (V x A) . 

at 	at 
(9.3.8) 

Thus there is an electric force acting on the charged particle. As a consequence, 
the kinetic angular momentum, Jk r x mr, will grow slowly according to the 
equation 

dJk 
= r x —

e
E = — 	 — 

	

e d41) 	d
( Jk + 

e t') = 0. 	(9.3.9)  
- dt 	c 	27r c dt 	dt 	27r c ) 

Note that in this chapter for clarity we shall write the Planck constant h and the 
speed of light c explicitly. If we define the canonical orbital angular momentum 
J as 

= Jic 	 (9.3.10) 
27r c 

we see from (9.3.9) that J is conserved. Therefore, J must have the conventional 
spectrum, i.e. its eigenvalues are always integers in units of h; this follows from 
the requirement of single-valuedness of the wave function. This is so despite 
the fact that the algebra of the two-dimensional rotation group is Abelian and an 
arbitrary constant could be added to the angular momentum operator and thus 
an arbitrary eigenvalue could be obtained. 

Let us give a further interpretation for the difference between J and Jk• 
One can see that their difference is completely due to the adiabatic introduction 
of the magnetic flux (I) in the solenoid. As we know, with or without the presence 
of this flux, only the eigenstates of J can be used to describe the system since 
J is conserved and only J can be the usual quantum mechanical operator: 

= 	= . a 	
(9.3.11) 

where cp is the polar angle in the plane. Since the system possesses two-
dimensional rotational invariance, the angle-dependent part of the wave function 
must be proportional to einuP and from the requirement that the wave function is 
single valued, m must be integer. Therefore, the eigenvalues of J are the same 
as those of J, in three-dimensional space: 

J = hm 	m E Z 	 (9.3.12) 

where Z denotes the set of integers. Of course, when (I) = 0, the kinetic angular 
momentum is identical to the canonical angular momentum, so that it also has 
integer eigenvalues. However, when (I) 0 0, we see from (9.3.10) that the 
kinetic angular momentum operator is 

etio 

	

el 
	

a 	ect. 

	

Jk = J — 
27r c 
	

8cp 	27rc 
	 (9.3.13) 
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so that its eigenvalues are 

A = h (m 	) 
27rhc 

E Z 	 (9.3.14) 

i.e. the eigenvalues of Jk are integers shifted by the quantity 	• 127 r c) which 
in general is not an integer. 

An equivalent way of understanding this phenomenon is to assume that 
the vector potential takes the special form of (9.3.5) from the onset. Since the 
potential outside the solenoid is constant, we may set it to zero by a gauge 
transformation 

A' = A — VS2 

271" 
	 (9.3.15) 

Under this gauge transformation the wave function is transformed as 

e—i(er2/hc) *.  (9.3.16) 

Note that this gauge transformation is in general singular, i.e. the exponential 
phase factor is not single valued3 . The single-valuedness of the wave function 
means that the original wave function * satisfies the periodic boundary condition 

(r, ço + 27r) = *(r, (p) (9.3.17) 

(here r denotes the distance from the origin in the plane), whereas the gauge-
transformed wave function *' satisfies 

*'(r, + 27r) = e c) l1í'fr, (p) 	 (9.3.18) 

since e—ie(0)/27Thc) (r, (p) 	 (r, (p). Therefore, the spectrum is shifted into 
that of .Ik according to (9.3.14). 

Of course, one may think that nothing new has happened. In quantum 
physics it is the canonical angular momentum J that generates the rotations of the 
wave functions so the kinetic angular momentum .4 is not an observable (Jackiw 
and Redlich (1983)). It is a general fact that the kinetic angular momentum is 
not equal to the canonical angular momentum when external fields are present. 
However, as pointed out by Goldhaber and Mackenzie (1988), one can think 
of (9.3.14) from another viewpoint. The integer canonical angular momentum 
is divided into two pieces: a piece which is localized near the electron—flux 
system and is in general fractional, and a piece which is located at the spatial 
infinity and is also fractional. Furthermore, they argued that this diffused angular 

3  Only in the special case when the magnetic flux is quantized, i.e. (I) = 27rnhcle with integer n, 
is the gauge transformation in (9.3.15) continuous and thus not singular, and in this case both 1//' 
and if/ describe the same physical system. 



h 	27rhc 
fic (m = 0) 	eI  

s= (9.3.22) 
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momentum plays no role in describing the local physics phenomena and thus the 
piece localized on the electron system is actually identical to the kinetic angular 
momentum. Their argument goes as follows. 

From (9.3.2), (9.3.3) and (9.3.10), we can see that 

e 	 1 
=  Jk + —

c
r x A = Jk - - f cl - r'r' • E(r' , t)B(r' , t) 

	

± —
1 
f d3r' V' • (E(r' , 	x A(r' , t)) . (9.3.19) 

Here the notation Tu  44 EC for the tensor of type  T ,  =  EC been used 
with C = r' x A(r' , t) and i, j = 1, 2, 3. E(r, t) is the electric field created 
by the moving charge, which satisfies the Gauss law 

V E(r,  , t) = e3(3) (r — r(t)) 	 (9.3.20) 

where r(t) is the particle position at the time t. From (9.3.1), we can see 
that the second term on the r.h.s. of (9.3.19) vanishes identically; thus, for this 
electron—flux system, we have 

	

J = Jk + —
1 
f d3 r'V' • (E(r/  , t)r' x 	t)) 	(9.3.21) 

which explicitly shows that J and Jk differ by just a surface term. We cannot, 
however, neglect it—its value is ecl)/(2n- c)! Recalling that the magnetic flux 
through the solenoid is slowly switched on from a zero initial value to the final 
value (I), we can see the role played by such a surface term. At the initial time 
cl) = 0, J =- Jk, both of their eigenvalues are integers. When (1) is switched on 
slowly, J remains constant as a conserved quantity and thus its eigenvalues are 
integers. After the flux  43 reaches its final value 4), a piece of J (i.e. the surface 
term in (9.3.21)) is radiated away by the vector potential. Therefore for the 
physical phenomena on a finite length scale, after a finite time, this 'dissipated' 
piece of the angular momentum has nothing to do with the electron—flux system 
and only Jk is left on it. Thus, despite the fact that the total canonical angular 
momentum remains integer, the angular momentum of the electron—flux system 
retains just a part of it. From (9.3.14), it is in general fractional. This is the 
reason why we can say that this electron—flux system possesses fractional spin. 

Owing to the above analysis, we can regard the eigenvalue of the kinetic 
angular momentum as the spin of the electron—flux system (Wilczek (1982, 
1990)). More precisely, it is defined as 

In general s is neither integer nor half-integer. If the magnetic flux is quantized 
so that the gauge transformation transforming the vector potential A to zero in 
the region outside the solenoid is non-singular, then s is integer. 
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Above we have given one example of a physical system with fractional 
spin. Now let us consider its statistics. One can regard it as an anyon only if it 
has fractional statistics. In what follows, we can see that this is indeed the case. 

As stated in section 9.2, to establish the statistical properties of a quasi-
particle, one must consider the wave function of a system consisting of at least 
two identical quasi-particles and discuss its behaviour under the exchange of two 
quasi-particles. Without loss of generality, we can consider the system consisting 
of only two such quasi-particles (figure 9.5) and denote its wave function by 
41 (1, 2). Furthermore, we assume that the magnetic flux and the electron are 
tightly bound on each quasi-particle and charge—charge and flux—flux interactions 
can be ignored. Suppose that we slowly (adiabatically) move one electron—flux 
around the second one by a full loop, say, in our case, electron 1 around the 
flux 2 on a closed loop r (see figure 9.5). Then, owing to the Aharonov—Bohm 
effect (Aharonov and Bohm (1959)), the new wave function will acquire a phase 
factor 

exP ( —i 2:hc r f dr • A) • 
(9.3.23) 

 

Figure 9.5. Two particle—flux systems. 

 

With the aid of Stokes' theorem, we can write this phase factor in terms of 
the magnetic flux, namely 

e 
exp (—i 27rehc  fr  dr • A) = exp ( 

f dx dy B) 
i  2.7rhc j 

.e(1) 
= exp (-1--) . 

hc 

(9.3.24) 

Remember that in two-dimensional space, the exchange of two particles means 
in fact the moving of the particles around each other, in this case two electron—
flux systems. When these two electrons are rotated around each other, there 
are actually two contributions to the phase: one due to the motion of the first 
electron around the second flux and one due to the motion of the second electron 
around the first. The total phase factor acquired by the wave function kl,  (1, 2) 
under a full 2n rotation is then 

2e (1) 
exp (—i 	. 

hc 	
(9.3.25) 
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Thus we have 

2e.4) 
‘I1 (2, 1) = exp (—i—

hc
) tlf(1, 2). (9.3.26) 

Comparing (9.3.26) with (9.2.1), we obtain in the case of cp = 27r that the 
statistical parameter of the electron—flux system is 

e(I) 
y = — 

nhc
. 	 (9.3.27) 

Moreover, the spin s and the statistical parameter y are related in the 
conventional way: 

y = 2s. 	 (9.3.28) 

So the statistics is like the spin s—in general neither integer nor half-integer. 
Therefore, the particle—flux system is an anyon and the standard spin-statistics 
connection is satisfied. Of course, in some special cases a quasi-particle may 
behave effectively as a boson or fermion. For example, a particle—flux system 
composed of a bosonic particle (not electron) with a flux (I) = 11(2e) behaves 
effectively as a fermion. 

9.4 Possible role of anyons in physics 

In the above sections, we have analysed the peculiarities of rotations in two-
dimensional space and have shown the possibility for the existence of quasi-
particles with fractional spin and statistics. Then we have given a non-relativistic 
quantum mechanical model of an anyon. To conclude this chapter, we briefly 
discuss the possible role of anyons in physics. 

Up to now, the only known physical objects which can be described 
as anyons are quasi-particle and quasi-hole excitations of planar systems of 
electrons exhibiting the fractional quantum Hall effect (fractional QHE) (Prange 
and Girvin (1990)). The QHE is observed in two-dimensional systems of 
electrons at very low temperatures and in very strong magnetic fields orthogonal 
to the plane where the particles move. In the Hall conductor, the electrons 
are usually trapped in a thin layer at the interface between two different 
semiconductors or between a semiconductor and an insulator. The low 
temperature and the strong magnetic field freeze the motion along the direction 
perpendicular to the layer, so that this is a typical two-dimensional problem. 
As we know, the external magnetic field organizes the energy spectrum of the 
electrons into Landau levels (see for instance Landau and Lifschitz (1981)) and 
forces the particles to fill such levels from bottom to top. A quantity which 
plays a key role in the QHE is the filling factor, which is defined as the number 
of electrons divided by the number of the Landau levels available. The Hall 
conductance which characterizes the QHE is in fact this filling factor in units of 
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e2 /(27h). When the filling factor is an integer, there is an integer number of 
Landau levels completely filled and the Hall conductance is quantized in integer 
units of e2 /(27h). In this case the Hall effect is called the integer QHE: this 
phenomenon is essentially a direct manifestation of the Landau quantization for 
non-interacting electrons in a magnetic field and is now completely understood 
theoretically. 

In the case of the fractional QHE, only a fraction of the Landau levels 
is filled and the situation becomes much more complicated since the electrons 
condense into a new type of collective ground state driven by the Coulomb 
repulsion. This is a strongly correlated two-dimensional electron system. 
Usually one has no way to solve this kind of system. It is, however, found 
in some special cases (when the inverse of the filling factor is an odd integer) 
that the ground state is described very exactly by the Laughlin wave function 
(Laughlin (1983)). This wave function describes strongly correlated properties 
of ordinary electrons. It is not simply the product of single electron wave 
functions, but a complicated superposition of such products. It is just the quasi-
particle or quasi-hole excitations over this ground state that turn out to have 
fractional charge and fractional statistics and can thus be regarded as anyons. 
This can be seen from the way they are excited. The situation is similar to the 
particle—flux system described in section 9.3: for the ground state described by 
the Laughlin wave function, one introduces an infinitesimally thin flux tube near 
one electron, then turns on the flux adiabatically from zero to the final value 
±(1), in such a way that the system remains an (instantaneous) eigenstate of the 
changing Hamiltonian. Due to the Faraday law, the variation of the flux from 
zero to the value ±(1) will generate a (circular) electric field around the electron. 
The particles will then flow inwards or outwards (depending on the sign of the 
flux), and a net positive or negative charge will accumulate around this electron. 
However, since the change of the flux by I,  can be compensated by a gauge 
transformation (see (9.3.15)), the final state can be considered as an excited state 
of the original Hamiltonian. Like the phonon in solid state physics, this kind of 
excitation is a quasi-particle or a quasi-hole. From the discussion in section 9.3, 
we know that this excited state possesses fractional statistics. Indeed, this kind 
of excitation can give a good explanation of the fractional filling of electrons 
into Landau energy levels. The exploration of this aspect is still in progress. 
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A BRIEF GLANCE AT RELATIVISTIC PROBLEMS 

NA Introduction 

So far we have dealt with non-relativistic situations. This is not sufficient, 
because in high-energy and elementary particle physics the particles have in 
general relativistic velocities. In that case one cannot restrict one's consideration 
to the components .7,, Jy  and  J of angular momentum, since these components 
form—at least—part of a four-vector, if not of a tensor. In particular the spin 
of a particle with relativistic velocity is not well defined: the spin component 
of such a particle, with respect to a given direction, is no longer simply m 
(—s < m < s); in fact it depends on the velocity of the particle. For a single 
particle one can, of course, always transform to its rest system, where the spin 
component in a given direction is well defined, but that rarely helps, because in 
general we have to do with more than one particle; only one of these particles 
can be at rest. This then leads to difficulties in applying conservation laws, for 
instance for  J. An example: consider a decay a b c; let the spins be sa , 
Sb  and sc . Then assume that a was with spin in the z-direction (ma  = sa ) and 
that this particle was at rest. Now it decays and the state is characterized by 
a momentum Pb  = — pa  = p and a total angular momentum j = sa , m = ma . 
This m has to be shared between particles b and c, but is it correct to say 
m-= mb m c ? What are m b  and m c , when both particles are in relativistic 
motion with respect to the rest system of the decaying particle a, that is, the 
system where m has a clear significance? There is in this case no Lorentz system 
where all three operators ./ z , Jz.b and Jz ., are well defined; at least it will be 
wrong simply to couple the states of particles b and c by CGCs to the state of 
the particle a. 

There are several possible approaches to this problem and we are here going 
to discuss the simplest one, which is known under the name of the 'helicity 
formalism'. We shall give here an introduction which will help the reader to 
understand what is behind it and to prepare him to read without difficulty the 
paper by the inventors Jacob and Wick (1959). 

A much more general approach would be to treat the homogeneous Lorentz 
group in the same way as we did the three-dimensional rotation group. This 
means: one considers the Lorentz group, finds its generators and selects among 
them a complete set of commuting observables (analogues to J2  and ./z ) • 
Then one writes down the representation of the Lorentz group by means of 
the eigenstates of the complete set of commuting observables, discusses the 

239 
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direct product of two such representations and finds the CGC of the Lorentz 
group, namely the matrix elements of the transformation between coupled and 
uncoupled states, which at the same time transform the direct product of two 
representations into its reduced form (see chapter 6). In this completely covariant 
description the conservation laws can be properly taken into account. 

The present chapter is much less explicit than the other parts of the book. 
It should only serve as an appetizer; the reader will find enough literature in the 
form of reviews and books which, after this short glance, might hopefully look 
less technical to him than without having read this chapter. For some references 
on the subject one can look, for instance, at Schweber (1961), Gelfand et al 
(1963), Naimark (1964) and Vilenkin (1968). For relativistic kinematics see, for 
instance, Hagedorn (1963). 

Our treatment of relativistic problems will be similar to what we did in the 
case of rotations: we shall consider the infinitesimal Lorentz transformations and 
corresponding generators, find their commutation relations and select a complete 
set of commuting observables, one of which will be the helicity. We shall see 
that the helicity presents several advantages and almost eliminates the above-
mentioned difficulties inherent in the relativistic theory of angular momentum. 

Our notation is: 

four-vectors: 	a 	(a° a l  a2  a3 ) 	(a° , a) 
where a is an ordinary three-vector. 

invariant product: 	 = as,,e"a„ = a02  — a2 ; hence 

metric tensor: eV = 

	

1 	0 ) 
— 1  

—1 	= gAv 

	

(0 	—1 

summation convention: Greek indices 0...3 
Latin indices 1...3 
sum over double indices of which one 
is an upper and the other a lower one: 
ab  4  = aob° + al  6 1  + a2b2  + a3 b3  

= aobo — a 1  b 1  — a2b2  — a3 b3  
raising and lowering 
indices: 	 as, = go„av ce = ea„ 

gf,1  = g" go y = 

(10.1.1) 

10.2 The generators of the inhomogeneous Lorentz group (Poincaré group) 

In general one considers angular momentum for relativistic particles in view 
of applications to scattering. The experimental situation is then in almost all 
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cases that one or more particles are to be characterized by their momentum, 
their total spin and their polarization. In analysing angular distributions the total 
angular momentum has to be considered too, but, since the linear momentum 
is so important, we have to discuss it as one family of operators which may be 
used in a complete set of commuting observables. 

10.2.1 Translations; four-momentum 

Physics is supposed to be invariant under translations in space and time. 
Let a =  (a0 ,  a) be a constant four-vector, which describes the translation 
x 4  x = X IL ± al"; then, if the whole system under consideration (if 
necessary, with inclusion or after removal of part of its environment) undergoes 
such a translation, the states of the translated system are again possible states of 
the untranslated one; in fact, if Ta  designates an active translation then there is 
unitary transformation U„ (the subscript refers to 'active') 

—> U(Ta)10 

which for infinitesimal a becomes 

	

Ua  (a) = 1 + ip4a4 	 (10.2.1) 

The physical significance of the generators p" is found by considering the 
Schrbdinger function 

*(x, t) 	(xl*) 	 (10.2.2) 

of the transformed state,  U(a)j0. The physical system and consequently its 
Schriidinger function has been bodily transformed by the translation a from x° 
to x 4  ± a" and from x 4  — a" to xt`. Hence 

(x) 	(xlUa (a)10) 
and 	 (10.2.3) 

*'(x) =*(x — a) = (xlUa (a)111f). 

For infinitesimal a" one finds 

— a) = *(x) — a" 	= (x11 ± 1 1,12a4 1 11f) aX 4  
hence 

—a--- 	ie(x1p 12 1*). 
axti 

Thus 
a 	 a 

 p" 	i— or (p° , p) 44- 	—iV 	(10.2.4) ax 4 	 at 	
) 

which are the familiar formulae for energy and three-momentum. 
As all translations and therefore the p" commute, it is clear that we may 

choose all four p" together in our complete set of commuting observables. 
However, pp  p" = m 2  also commutes with all p" and can be used. Thus another 
useful set will be m, p; and, since m is invariant, this is a very convenient choice, 
because in many cases we need not mention m explicitly. 
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10.2.2 The homogeneous Lorentz group; angular momentum 

The space components of angular momentum were found from considering the 
infinitesimal rotations about x, y and z. In a four-dimensional space (t, 
it is no longer sufficient to consider the rotations about the four coordinate 
axes, because there are more than four independent rotations. They are most 
conveniently characterized by the plane they map onto itself. Indeed, in a three-
dimensional space there is only one plane orthogonal to a given vector (e.g. the 
xy-plane to the z-axis) and therefore a rotation can be characterized by an axis 
as well as by a plane. In four dimensions there is a whole three-dimensional 
space orthogonal to any given axis, thus 'I rotate the system by an angle n about 
the nth axis (e.g. about the time axis)' is not a complete statement because it 
can still be any rotation in three-space, whereas, e.g., 'I rotate the system by 
an angle 77 in the .ex l -plane' is a complete statement: it means a pure Lorentz 
transformation in the x-direction, without any rotation in three-space. 

Of course, we could have introduced the characterization of rotations by a 
plane already in three-space but we did not need to. Now, however, we must 
do it. 

10.2.2.1 Introducing a new notation adapted to space-time 

Consider first the rotations in three-space. Instead of saying that we rotate by 
n about the z-axis, we shall say that we rotate by n in the xy-plane etc. Hence 
we replace n by Tlik and J by Ji k such that 

1112 =  713 	.112 = -13 and cycl. perm. 	 (10.2.5) 

In fact this is the most adequate notation, because J is not truly a vector, but a 
pseudovector; namely its orbital part is L = r x p, i.e. L12 = L3 = X1 P2 X2P1- 

It follows then that Jik is skew symmetric: Jik = —Jki.  On the other hand, an 
infinitesimal rotation can be written in three-space as 

M(R) = 1 — ir. J 

and, if P is the space inversion  ('parity'), then 

M(P) = —1 

so that it follows that rotations and the parity operation commute: 

PRP M(P)M(R)M(P) = (-1)M(R)(-1) = M(R) R. 

(10.2.6) 

(10.2.7) 

(10.2.8) 

Therefore, ri J must commute with P and this implies (since J, as a 
pseudovector, commutes with P) that also n  does. Hence also 71 is a 
pseudovector and should be adequately written as a skew-symmetric tensor 
171k  tk = —111c1; indeed, giving an axis  1 i rin we always had to add the 
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prescription that a positive angle  r forms a right-handed screw with the direction 
of n. This screwedness of n will be contained in it automatically if we define 
n3 = el x e2 etc, where now the (polar) vectors e l  and e2 denote that plane 
which is mapped onto itself under the rotation characterized by e l  x e2  -= n3. 

In this notation we have 

	

. J .  E 	= 	- 	qik fik = 	L , Thk 41 • 
2 	 2 kl 	 lk 

According to our summation convention (10.1.1) we omit the summation sign 
and write 

	

71..1= 	lIkJ 
(10.2.9) 

tia(71)= 

where At = Jkl  has been used (this is an identity if only three-space is 
considered and it follows from the form of gi.„ also for space-time). 

It should be clear that each .1" is a Hermitian operator which may be 
written in a matrix representation as 

(im' jkl um !) = j(kil)mm,.  

Let us translate the commutation relation 

[J1 , J2] = i./3  and cycl. perm. 

into the new notation. It becomes 

[J23, f31 ]  = - i.121 • 

Calling the subscripts i klm, we see that obviously the numbers 1, 2 and 3 must 
all appear, and one of them twice. Thus, if we exhibit the two equal subscripts 
by underlining them, then 

iklm 

	

ikim 	— i3im _ 

	

iklm 	-1-i311 Jk„, 
iklm 

The sign is determined by the number of exchanges of two subscripts which are 
necessary to make the two inner ones equal; each exchange implies a factor of 
—1 because J1 1'  = - .41. Since the above four possibilities are exclusive, only 
one can happen and we may simply add up all the expressions on the right-hand 
side: 

	

[41' , Jim] = 	(Ski 	+ 	Sim Jill  - Siakm 	Skm• 111) 	 (10.2.10) 

which is the desired new form of the commutation relations. 
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In this notation an infinitesimal rotation of a three-vector y about 7/ = 
(p23, 7731, p12) will be written 

Ma (n) = 1 — • M = 1 — ign • M = 1 + IgnikM ki 
	

(10.2.11) 

12x where the components of the vector M 	(M23 , M31 ,  M ' 2 )  are 3 x 3 matrices, 
which can be read off from (3.3.13) 

0 	0 	0 	 0 	0 	i 
M23  = (0 0 —i M '  = I 0 0 0 

0 i 0 —i 0 0 
(10.2.12) 

0 —i 0 
M23  = i 0 0) . 

0 0 0 

They are identical to the spin-1 matrices S (4.1.8). We observe that in the ik-
position of M k  appears —i and in the ki-position +i, all other matrix elements 
being zero. 

10.2.2.2 Extension from space to space-time 

We now extend the definition to the full inhomogeneous Lorentz group, by 
writing for infinitesimal g 

1%0) =  I  + qiivAl vfl • 

These Ma  (TO are now 4 x 4 matrices. Writing 

	

(Ma ( 11)) P1 = 8"),+ InAv ( ■1) À 	si'A  + E PA  

it follows from the invariance of x ti yA that 

(x04`) /  = (M ( 17)) Av  (M(t1)) 0  xvY °  = xvY v 

 which implies for the matrices M(11): 

m v 	= Av 
•" a 	a • 

(10.2.13) 

(10.2.14) 

(10.2.15) 

Hence, with Mmv = Spv 	, neglecting higher orders, (8 pv +6.4")(8A0  +EA) = 
3 1,0.  + E va  ± e va  =  8 V or say = _E va . That is, as long as the (MAL )P° are still 
4 x 4 matrices, they must be skew symmetric in p and  a.  It has to be kept in 
mind, however, that the matrix which acts on the four-vector x in the sense of 
ordinary matrix multiplication is not (M (77))P°  but (M (q))Pa ; namely 

= (M(q))Pi, 

is 'ordinary matrix multiplication'—remember (10.1.1). Thus, with the notation 



0 
1 
2 
3 

AP° = 
(10.2.17) 

0 
1 AP = a 	2 
3 

Thus 
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(M)P. = 

we have to write the generators of space rotations (see (10.2.12)) 

0,123)po 

0 

( 0  0- 

0 

0 
0 
0 
0 

0 
0 
0 
i 

0 
0 

—i 

	

0 	0 	0 	0 
(m31 )po 	(0 0_ 	0 	0 	i 

0 	0 	0 

	

0 	—1 	0 	0 
(10.2.16) 

0 0 0 0 

= 0 0 —i 0 (41 12 ) po  ( 0  
i 0 0 

0 0 0 0 

in order to retain our formulae. If we compare any two matrices AP' and 
AP, = AP 41 g4,, then, because g oo  = —gi  = —g22  = —g33 = 1 (all others zero), 
the two matrices differ in the shaded region by the sign: 

0123 	 0123 

0 0 0 0 
(m23)p, = (0 0 0 0 

etc. 
00  0 i 
0 0 —i 0 

This can be written quite generally 

(MP')Pcr=i8"8"—iPP.:3"a 

and leads to 

(m01 )per = 

m 03 ) pa = 

( 0 i 0 0 
—i 0 0 0 
0 0 0 0 
0 0 0 0 

( 0 0 0 i 
0 0 0 0 
0  000  • 
—i 0 0 0 

( 
0 
0 0 i 0 

000  (moya = - 
—i 0 0 0 
0 0 0 0 
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p,  ), Going back now to (mok 	implies the mentioned changes in sign (10.2.17); 
we thus obtain the generators of pure Lorentz transformations 

0 —i 0 0 
—i 0 00 (may,  = 0  

0 0 0 
0 0 00 

(m02)pc,  = 

( 0 0 —i 0 
0  000 

 —i 0 0 0 
0 0 0 0 

(10.2.18) 
0 o o 
o o o o 

(Ain% = 0 0 o 0 ) • 
O 0 0 

We shall call the set (M")P, (rather than (M")P'), i.e. (10.2.16) and (10.2.18); 
the generators of the homogeneous Lorentz group (space rotations and pure 
Lorentz transformations). 

The most general homogeneous Lorentz transformation (including ordinary 
rotations) in the active interpretation will be written 

Ala( 17)= el i1A' Aeu  = e- 1 71, 41" 

= (Ma  (7))) a  
(10.2.19) 

where the correspondence to the old three-space formulae is 7712 = r13; M12=M3 
etc. It is noteworthy that by adopting the technique of writing covariant (xA ) 
and contravariant (xi') components and the summation convention x4x4  = 
x°x°  — x • x, we could extend our three-space formulae to space-time by simply 
including a zeroth component. 

10.2.2.3 Physical significance of the new generators 

We work out the physical significance of the finite Lorentz transformation 

= 	(71i0))% X a  

(M(rlio))% = (eini° m°I )POE  

as follows: we call nio = ?I, then 

co 

 = 	
(inmOlyi 

M(q) e i n mm  E 
n! n=0 

0 1 0  0'  
1 0 0 0 inmoi = 

' 0 0 0 0 
0 0 0 0 

(1 0 0 0 

W01)2 = „2 0 1 00 
' I 	0000) O 	 . 

0000 
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Hence all odd powers go with the upper, all even (except zero) powers with the 
lower matrix. Thus 

(1 0 0 0) 
oo  = ± 0 0 ( 	ri2n m  

2n! 
0 0 0 0 

(
i 000
0 1 0 0 v,  
0 0 0 0 1—s (2n +1)! 
0 0 0 0 

Or 
cosh n sinh q 0 0 
sinh n cosh q 0 0 M0 () = 	 OM, 0 	0 	1 0 = (M  

0 	0 	0 1 

 

 

x 4' = WV gives 

x'°  = x°  cosh n x 1  sinh 

(10.2.20) 

x' l  = x°  sinh  ii  + x i  cosh 

This is in the active interpretation. It is, however, conceptually simpler to 
discuss Lorentz transformations in the passive sense. We only have to replace 
n by —n; we find 

= x°  cosh n — .x 1  sinh 

x/' = —x°  sinh q x 1  cosh n. 

In this interpretation one and the same space-time point P has coordinates 
x°  = t; x i  = x; y = z = 0 in a frame of reference K and x'°  = t'; x' 1  = x'; 
y' = z' = 0 in another one, K'. Let K' move with velocity 0 in the positive 
x-direction (figure 10.1). 

Assume P is at rest in K'; e.g. let x' 1  = 0; then 

X 1 	x 
x
—o = —t =0= tanh n 

is the velocity of P seen from K. This gives with 

1 	 1 
cosh q =  , 	= 	— y 

1/1 — tanh2  q 	-V1 — )3 2  
(10.2.21) 

tanh zi 
sinh = 	 

tanh-  
(passive interpretation) 
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13 

Figure 10.1. Action of Lorentz transformation. 

the passive Lorentz transformation 

P (x°x 1 )K 	(x 13-el )x ,  

X'0  = yx°  — fiyx 1  

x" = —13yx °  yxl . 

10.3 The angular momentum operators 

(10.2.22) 

We now generalize the matrices  Ma ()  acting on four-vectors to the induced 
unitary transformations Ua  (7) acting on states; the correspondence is the same 
as for the rotation group: 

= elnf-Aru 

ua(n) = JVL = —P". 
(10.3.1) 

The Pt' are then the generalized angular momentum operators. 
In order to define states, we need a complete set of commuting observables. 
As relativistic problems are most frequently encountered in high-energy 

scattering and elementary particle physics, the plane wave states I ...) are 
particularly important. We shall therefore derive the commutation relations of 
the P',` among each other and with the pA. We will then be able to find how 
we can achieve the best compromise between non-commutativity and usefulness 
of the various operators. 

10.3.1 Commutation relations of the P" with each other 

The P", being the generators of the induced unitary transformation, must follow 
the same commutation relations as do the 4 x 4 matrices AP". We could work 
them out by straightforward calculation. It is easier, however, to generalize the 
commutation relation for the fik to those of the P" with the help of (10.2.10). 
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We only need to remember that g oo  = +1 and gik = —Sik . We then obtain 
immediately 

[f/1V ,  .100 ]  = i(ef/10" earl, g llpfV0 el flip) . 	(10.3.2) 

It is left to the reader to check that these are indeed the commutation relations 
for M 4 v too. 

10.3.2 Commutation relations  of the J" with po 

In a similar way we obtain the commutator between J" and pP: we first write 
it down for Li k  = Lik and pl . Namely, with Lik = x j pk x k -j p we have 

[L", PI= [xi  Pk  , 13 1 ] — [x k  Pi  , Pi ] 

= isjI pk 	i8k1 pj 

This gives, when generalized to jkl 	gyp and L 	J (remember S ik  = —g' k ) 

[ 	p  P] = i(g V p 	giLP pV ) • 	 (10.3.3) 

10.4 A complete set of commuting observables 

For the description of a free particle (one-particle state) we wish to have its 
momentum p and its spin component in a given direction, altogether four 
quantum numbers. We have not much doubt that the corresponding operators 
commute. The set is, however, not complete, because in relativistic quantum 
mechanics there are four components pP with pli pti = m 2  . Furthermore we 
expect the total spin s also to be a quantum number available together with the 

P4 • 

The programme is therefore that we wish to retain the pP for characterizing 
the one-particle states and we hope to add to them total spin and the spin 
component in a given direction (instead of pP we can take m, p). There will be, 
as usual, other quantum numbers labelling our one-particle states, besides those 
just mentioned; for instance, isospin, nucleon number, strangeness etc, which 
will be written in one symbol, y, as before. 

The problem is now to find some operators for the spin. In three-space, i.e. 
non-relativistic quantum mechanics, this was easy: we only had to write 

J=L+S. 

We could try here .P" = L" S" where V"' = x 4 pv — x" p". But we 
are faced with the difficulty of saying what the operator xP means—and that 
becomes quite troublesome. We cannot go into these questions here; suffice it 
to say that relativistic quantum theory is essentially field theory and that there 
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the xo obtain the new interpretation of being labels on field operators and no 
longer operators themselves. However, even if we do not take the step from the 
one-particle theory to field theory and rather try to remain in 'ordinary'—but 
relativistic—quantum mechanics (e.g. Dirac's theory), we have the difficulty that 
LV = xP pv — x tpo and Si"'  are not separately conserved. These difficulties 
and the construction of a conserved spin for a Dirac particle are discussed in the 
article by Hilgerved and Wouthuysen (1963). 

What is spin? Spin is that part of the angular momentum which survives 
the transformation to the rest system, just because there no orbital part is left 
(let us assume m 0; the case of massless particles will be taken up later). 
Whereas in general P" and pP do not commute, the situation is different in 
the subspace of particles at rest (pk = 0; p°  = m). Call these states 1m, 0, ...). 
Then from the commutation relation (10.3.3) 

[P", pP]im, 0, ...) = i(g" 	— g" p v )Im, 0, ...). 

The commutator vanishes (on this set of states) unless p = 0 or y = 0 (only 
one is possible since J" 0). Let p, = 0. Then 

[ Jov, p]lm, 0,  ...) = (ig yp po _ igop p p )im, 0,  ...) 

where the second term vanishes because y O. Again the commutator vanishes 
(on this set) unless y = p because of eP , and, since y 0 0, we find with 

P° In1 , 0, • • .) = mim, 0, • • .) 

[ j0k ,  p lc 	0 9 	= _im  I m 	.). 

That is, of the whole family of commutors [P", pP] 
only I p lc ]  = _ im is different from zero for particles at rest. 

(10.4.1) 

This means that the operators Jik commute with the p4  for particles at rest; 
they can be measured without disturbing the particle. Of course, they do not 
commute among each other. Loosely speaking, we can thus say that the Jik  go 
over to the spin operators S'k and commute with the momenta if we apply them 
to particles at rest, whereas the Pk do not commute with the pk  and therefore 
cannot be measured without giving a momentum to the particle. 

In what follows we shall formalize these arguments and construct operators 
representing spin, consider their commutation relations among each other and 
with p and finally try to find a suitable set of commuting observables to label 
our states. 

10.4.1 The spin four-vector 0' and the spin tensor S" 

A sensible question is then, 'what is the total spin and its z-component for this 
particle at rest?' 
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And now, since this question must have an answer which is independent 
of the Lorentz frame in which it is asked, there must be covariant formulation 
available; and this covariant formulation must be expressible by the operators 
pP and P" (see the statement (8.4.2)). 

We consider what pP and Ji" look like for a particle at rest: 

pP 	{p °  = m, 0, 0, 0 } 

»iv 	jok , s23 ,  s31 ,  5121 .  

Can we construct a quantity from pP and P" where the inconvenient Pk  drop 
out, whereas the (S23 , S 31 , S 12 ) S remain? As this quantity has to reduce to 
the three-vector S in the rest frame, we are led to seek a four-vector operator. 
The four-vector J4"pv  = Z4  does not work: it is Zi` = (0, Jk° ) in the rest 
system—just the operator we do not want. We must construct it the other way 
round: the Jik  must be multiplied by p°  and the Pk  by p` = 0. Combinations 
of this kind, Jik p°  and Pk  p i  , can be achieved by means of the completely 
antisymmetric tensor of rank 4: 

+1 for pc 	p a=even permutation of 0123 

eitypa =  for p. 	p  a=odd permutation of 0123 (10.4.2) 
0 otherwise (namely if any indices are equal). 

It follows that under cyclic permutation (being odd) emvpo. = —Swa p, and 
that raising or lowering one index implies a change of sign if it is 1, 2 or 3 and 
no change if it is O. We put 

1 = Ievper  J VPpCr  = 	.40 ± JO x  p) (w O ,  w) 	(10.4.3) 

where J 	(J23;  f 31 , 
 12) ;  JO 	(J°',  02 ,  03 , . ) The explicit form follows 

by working out the components of wA. Indeed, applying this operator tvii to a 
particle at rest gives, as is seen immediately from the explicit form 

w it 	ma  J23 J31 J 12) 	m (0,  S i 	s3 ) 	(10.4.4) 

since then p°  = m and p = 0. 
Applying a Lorentz transformation in direction 0 to (w A )Rest (see (10.4.22)) 

such that the particle is at rest in a frame K' and moves with 0 in K, yields 
with y = (1 — )3 20 

m 2 
Wit  = (my • 	SR, mSR p 	p  SR ) 

Y +  

( p • SR, MSR 	P  = 	p SR) 
E ?it 

where SR is the spin at rest and p =  (E, p)  = (my, m0y) is understood 
as an ordinary (not operator) four-vector. Assuming for a moment that we 

(10.4.5) 



in components 

[(.1" x p) x  p+  (J x p)p° 1 
1 '[(JO  • p)p — fl (p2 )+ (.1  X  p)p° 1 

1 
—[—(J • p)p J(p°) 2  (J°  X p)p°]. 

(10.4.7) 
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remain in the frame of relativistic one-particle quantum mechanics; then L 4" = 
xo pv — p 4  has a meaning and we can write it" = 1,4" +  S. Then 

w it = 1sA jvp 	I A ,wp u 
2 vpa 	— 	v0,3 p (10.4.6) 

since Etiva Lv p °  = E ttvpa (x v  110  — xP pv)p° 0 on account of the antisymmetry 
of E. The inverse of (10.4.6) exists; it is 

St" = — —
1

es" wP m2 	Pff 

S° (S° 1 , S°2 , 5133 ) = 

= 

S = (S23 , S31 , 5 12 ) = 

That this is the inverse of (10.4.6) is immediately seen in the rest system 
S° 	0; S = J; and from the covariance of the formula it follows that it 
is true in any Lorentz frame. That S° 	0 in the rest system is a typical 
property of spin. 

Inserting wa from (10.4.6)  into  (10.4.7) we find 

S t" = — TEt" ap  a E cti  J4  pa  pfl 
2  

(10.4.8) 

which no longer refers to 'orbital angular momentum' and can be considered as 
a covariant definition of spin: it 'projects out' the spin St- f P". It has this 
property, however, only for one-particle states. 

Thus St" and 0' are two operators which can be used to describe spin (for 
one-particle states only; otherwise 'spin' has no meaning). The antisymmetry 
of E ensures another typical property of spin: 

lump/2  = 0 	S'1 " PV = 0. 	 (10.4.9) 

10.4.2 Commutation relations for tot` and SI"' 

We shall prove all commutation relations first for states of particles at rest and 
then generalize the result covariantly. This procedure is unique (see statement 
(8.4.2)). 

We shall say loosely 'in the rest system the operators become...' when 
we really mean 'in the subspace 7-(..0 spanned by states of particles at rest, the 
operators behave like... '. 
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The tensor TA x  = [wA, pl ] vanishes in the rest system, where tvA ---0 
m(0, ./ 23 , J31 , J 12 ) and I,' (m, 0, 0, 0) commute (see (10.4.1)). A tensor 
TA Â  which vanishes with all components in one Lorentz system vanishes 
everywhere. Hence 

[wA , p A ] 	0. 	 (10.4.10) 

Consequently any component of wA or any invariant linear combination 
aA tvA can be measured together with 1,11 . In particular, since p°  is the 
generator of the time translation, [wA, p°] = 0 implies that wA is conserved. 
The commutativity of 0 with pP is a further indication that wA describes 
the spin part of the total angular momentum. Orbital angular momentum is 
not invariant under translations (and this is expressed by (10.3.3)) but spin 
is. Indeed, also .V" commutes with pP since this is obviously so in the 
rest frame: 

[SI" , pP] = 0. 	 (10.4.11) 

This observation offers a different derivation of the operator wA. We could 
have defined the spin as that part of the total angular momentum which 
is invariant under translations. This part of the angular momentum must 
then commute with pA. If then this part is used to write down the unitary 
transformation for a Lorentz transformation, this transformation must leave 
pA invariant. Let us do this for an infinitesimal 77i,„: U = 1+ (i/2)ni„J'1 ; 
U pP Ut = pP gives on the subspace of states le, ...) (see (10.3.3)) 

riAv [J1'1  pi) ] = inAv  (gliP p °  epA) 2irett 	= O .  

Thus only such ?IPA are admitted which give zero if contracted with pA . 

Such a condition can be fulfilled by means of the e-tensor, one arbitrary 
constant four-vector n and the four-vector p itself (here the eigenvalues are 
meant) 

77Av = e A vper p P  

where n may be taken orthogonal to p, since any parallel component will 
not contribute. With such an n our unitary transformation becomes, with 
(10.4.6) 

U = 	
" 

-
i 

v  i vA  = 1 - E 	rit  p P11 6  = 1 ± 
2 	 2 " P 

„ 
 

(10.4.12) 

These transformations U = exp(iwa na ) with arbitrary four-vector n are 
a subgroup of the Lorentz group. They leave the eigenstates le, ...) 
invariant if p4  is the one contained in ma. This subgroup is called Wigner's 
little group of  p'1 '. It is the analogue of the rotations which leave a given 
axis in three-space invariant. 
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(ii) Next consider fwA , 	In the rest system 

—> (0, mS I , mS 2 , mS 3 ) 

JTÀ 	j0k ,  51 ,  52 ,  53 

jk/j = i(gjk w / gji wk) .  

The covariant generalization is 

[w il ,  fa] 	 g i.a w r) .  (10.4.13) 

(iii) Furthermore, consider [0', wP]. In the rest system we obtain with 
W' 	MS i  

w k i  = 0k/o w/ pi) 

which is obviously true for j = 1,  k = 2 (e lm = 313 ‘ .  ) Lowering the 
indices 1 and 0 and generalizing covariantly give (see (10.4.7)) 

[ wti ,  tv p] = _istiPxo,w1 pa 	_im2sAp. 	(10.4.14) 

(iv) The most important commutation relation will be that of the operator 
W = w A wP with pP and JP° •  The commutator of any operator A with pP 

and JP is just constructed such that A is correctly Lorentz transformed by 
means of UAUt. Indeed, we could have found the commutation relations 
of w with J and J with J by requiring the correct Lorentz transformation, 
e.g. 

01)Pa  (I f  ( 71) = (A1 (r7))% Pa  

with U(1) ) and M(q) given by (10.3.1), and (10.2.16) and (10.2.18). 

It is no miracle, therefore, that the commutation relations of wt` with JP" 
and pA with JPOE are the same: both have to transform like four-vectors. 

It is clear then, that invariant combinations such as e.g.  w12  w 12  or w A pA or 
St„SPP will commute with JP'. As neither w 12  nor SA , contain 'orbital parts', it 
follows that these operators and, of course, the invariants made of them commute 
with pP, whereas the invariant ./t„J'A will not commute with pP (as seen in 
the rest system, this is the total angular momentum squared, and that depends 
on the location of the origin). It is therefore not useful for us. 

Since St" and wP become the same in the rest system, (W)Rest = 

The invariant w A pA is zero. We thus may take w 12  w 12 , which we know then 
commutes with JP" and pÂ . Its physical significance follows from 

1 
_R„ 	 est 

tnz
W

-
WA = — —

1
(W WA ) 	= (S2 )Rest = total spin squared. (10.4.15) 

mz 

Since 

m(0, S23 , S31 ,  SI2)Rest, the invariants w A wP and Si„St" are essentially the same. 

[woe, pP] = 	JP° 1 -= [w A wl" , e]= 0 	(10.4.16) 
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(the last equation holds because wP is constructed from J and p), it follows that 
the total spin squared is Lorentz invariant, conserved (for one-particle states; 
only for such states is spin defined!) and can be measured simultaneously 
with momentum or angular momentum. We shall therefore use it to label our 
states; since the space components S, = S23 ; Sy  = 531 ; S, = S 12  obey the usual 
angular momentum commutation relations, it follows that if we denote the states 
by Im, p, s, ...) 

w iL telm,P, s, ...) = —m 2s(s 	 ...). 	(10.4.17) 

10.4.3 Construction of a complete set of commuting observables; helicity 

Our set of commuting operators contains so far po and i4), wP: momentum 
and magnitude of spin. In three-space we did not have the momentum, but 
the magnitude (j) of the total angular momentum. To this one could add the 
component of the angular momentum in an arbitrary direction. Can we do 
something similar also here? That a 'component 7b„./y4  of the total angular 
momentum in a given direction' will commute with w o wP is obvious since 
each JP° commutes with it. But will such a component commute with p? In 
three-space the component n • J commutes with p if n is parallel to p: the 
angular momentum in the direction of motion can be measured simultaneously 
with the momentum. (Strictly speaking, the commutator [pi, n • J] vanishes 
on the subspace of states lp, ...) for n parallel to the (eigenvalue) vector p.) 
Geometrically, a rotation commutes only with translations along the rotation axis 
n. 

Let us consider the subspace of states le, s, ...) with po fixed. Which 
component qt„J"P of the total angular momentum does commute with the 
operators po on this subspace and can thus be measured simultaneously with 
the four-momentum? This component will leave po invariant. The condition is 

[Pli, pi) ] = 0 and we have already seen that it leads to rb,,,Jvo = 2w0 na , 
the 'little group of pl". Apart from a factor depending on the normalization of 
the four-vector n, we can then say that the operator 

1 
A(n, p)

m
wan' (10.4.18) 

with arbitrary n is 'the component of the total angular momentum in direction 
p and n'. That there are two four-vectors, p and n, to define a component 
of the angular momentum, is a consequence of the four dimensions: a four-
dimensional rotation is defined if a plane is given which is left invariant. The 
unitary transformation 

U(n, p) = eiwom  

corresponds to a Lorentz transformation which leaves p and n and therefore the 
plane spanned by p and n invariant. 
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This is very nice, but still unsatisfactory from the physicist's point of view. 
Namely the operator w iL tzt`, whose eigenvalues we can measure simultaneously 
with p, is still too arbitrary because of the four-vector n. We therefore should 
restrict the arbitrariness of n. Three possibilities offer themselves. 

(i) We define n with respect to a particular Lorentz frame, e.g., by saying that 
in the rest system we put n = (0, n) where n is a unit vector; in particular 
we might choose n in the z-direction and have thus related wou-  to the 
'spin component in the z-direction'. Such a choice is not very lucky, 
because this operator is then not invariant (in spite of its form) since one 
vector (n) is attached to the coordinate frame and the other one (w) to 
the physical system. From this point of view already in non-relativistic 
quantum mechanics the choice of one component Jz  rather than of an 
invariant combination can be considered unlucky. 

(ii) We define n as before, i.e. by n = (0, n) in one particular Lorentz system 
of our particle. We might give n any direction of e.g. perpendicular or 
parallel to the direction of p (before the transformation to rest) and then 
require that n be transformed as a four-vector. Then the transformation of 
the operator A(n, p) is somewhat unusual: 

A'(n, p) = — —
1 
 (M (0'0 1) U ( ) w À U t (n) = — —

1
n 1 111), 

m 	 m 

= A (n, p) =  invariant.  
(10.4.19) 

That is, not only is w), transformed by the unitary transformation U, but n 
is transformed by M and that means that A is not transformed like ordinary 
operators: 

A' (n, p) 0 U(n)A(n, p)Ut (n). 

The invariance of A thus achieved guarantees that in whichever Lorentz 
system A(n, p) is calculated, it always has the same meaning 

A(n, p) = A(n, p)Ko  = (S • n)Ko• 
	 (10.4.20) 

(iii) We define n by attaching it bodily to the physical system. Then wn 4  
is invariant, since n and w have to be transformed simultaneously. This 
'attaching n to the system' has its difficulties, however, because if we 
attach n to the system, we must do it in a unique way. That is, the system 
must have some marks on it which can serve to fix the four-vector n; in 
other words, there must already be a four-vector exhibited by .the system 
in question, or at least by its state. Two such vectors might do: w and p. 
Now w drops out for two reasons. Firstly, its components do not commute 
and thus no eigenvalue four-vector 0 with all components given exists. If 
nevertheless we try the operator four-vector 0' and just put n 4  -= tom , then 
w x,w 4  results and this operator is already contained in our set. Secondly, we 
may try pi ' , of which all components can be measured simultaneously and 
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which thus can be considered as an eigenvalue four-vector. Unfortunately 
this does not work either, because w ii pA = 0 in all Lorentz frames (10.4.9). 

Of these three possibilities the last one would have been the most attractive, 
but it does not work. Jacob and Wick (1959), however, forced it to work; they 
had to pay for it, of course: the price was a certain loss of invariance; a loss, 
however, which is just acceptable. The point is this: if n cannot be parallel to 
p—since then it does not contribute to w p,nA—why cannot it be orthogonal to 
p and still have a space part n which is parallel to the space part p? Let us then 
take a 'four-vector' n, which we call 1 from now on (longitudinal) and require 
that 

14e = 0 / parallel to p. 

We have then 

1Ap
12 
 = 1 opo __ 1 . p = 0 hence 1°  = I  . P  po 

( 1  ' P \
2 	

2 	2 (I P N 2  

	

litl A  = ---
Po

) —1  =1/1 	—Po ) — 1 ) = 1/1 2 ( 2  — 1 )  <0  

if 0 denotes the three-velocity of our particle. In that case 

	

P = (mY , mi9 Y) 	y 2  = (1  — i52 ) -1  . 

Putting 1 1 1 2  = y 2 , we find 

1 
 = (PY ' )2Y ) = (411 ' j±  13 m Ipl m 

11L = —1. 	(10.4.21) 

It should be stressed that this 1 is not a genuine four-vector, because, if it is 
given in one particular Lorentz system by the definition (10.4.21), then, if we 
apply the same Lorentz transformation to p and to 1, the Lorentz-transformed 1 
is in general not the same as that 1 which is constructed, according to (10.4.21), 
from the Lorentz-transformed p. That is, in general l(p') 01' (p). 

Thus 

• either 1 transforms as a genuine four-vector, then the definition (10.4.21) 
does not hold in all Lorentz frames (it is indeed not covariant!) 

• or the definition (10.4.21) is required in all Lorentz frames, then 1 is not 
a four-vector, but a quantity which in each new Lorentz frame has to be 
calculated anew from p, using the definition. 

There is a class of Lorentz transformations for which this difficulty does 
not arise: the spatial rotations, because they rotate p and 1 in the same way, and 
the pure Lorentz transformations in the direction of p (or /), because they leave 
these directions invariant. In particular, we can transform to rest. All these 
statements may easily be checked by an explicit application of the formula for 
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the general Lorentz transformation: if a is any four-vector and if the frame K' 
moves with 0 against the frame K,  then 

Y 	,o)
a=d+Sy H± f3a ±a 

ao = y  (do ± o ,Yat) .  
(10.4.22) 

That by a general Lorentz transformation on p and 1 the relation (10.4.21) will 
be destroyed is seen by carrying it out in two steps: first to the rest system and 
then to the required one. In the second step the parallelism of / and p will be 
lost unless this second Lorentz transformation is in the direction of /. 

In the rest system we obtain for the operator A(1p) 

A(1, p) — 1 tulp
,  

p 	spin component in 
(A)Rest = ( —m  w  • l) 	I 

S 
nl 

= the direction of 
Rest 	 Rest 	motion = helicity 

where (p/Ipl) Rest  is understood in the sense of 

(10.4.23) 

lim 19  = 19  
1p1-■ 0 11)1 	\ IPI Rest 

According to the above-mentioned peculiarities of I we can then 

• either define 1 by (10.4.21) in one particular Lorentz frame K0 and require 
it to transform like a genuine four-vector (then the operator A(/, p) -= 
—(11m)w 4 1 4  is invariant and, calculated in whichever Lorentz frame, 
answers the question, 'what is the component of the spin in direction p 
in the frame K0?', but not the question, 'what is the component of the spin 
in the direction of the actual momentum p?'; with this definition of 1 we 
would be back to the second possibility of choosing n—see (ii) above); 

• or we require that I should not be Lorentz transformed, but in any frame 
of reference be constructed from the four-vector p by means of (10.4.21). 
In that case A(/, p) is not invariant under all Lorentz transformations, but 
it always answers the question, 'what is the component of the spin in the 
direction of the actual momentum p?'. A(1, p) is, however, invariant under 
pure Lorentz transformation in the direction of p (unless such a Lorentz 
transformation 'transforms beyond the rest system' and thereby changes 
the sign of p; then also A(/, p) will change sign, as is seen immediately 
in (10.4.23)) and under space rotations. This class of transformations is 
sufficient to transform any four-momentum pi' into any other one belonging 
to the same mass: let p'A be the new four-momentum; first we transform 
from e to rest, then rotate such that /4  points in the direction of p' 
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and finally make a pure Lorentz transformation in direction p' until the 
prescribed magnitude of p' is attained. Under this whole procedure A(1, p) 
is invariant. 

With Jacob and Wick (1959) we shall choose the second alternative, where 
A(1, p) is not generally Lorentz invariant, but invariant enough to serve our 
purposes. In that case 1 is a unique function of p and can be omitted. The 
eigenvalues of A(p) are A = s, s — 1, . . . , —s, as follows from its significance 
in the rest system and its invariance under the mentioned class of Lorentz 
transformations. This class is not a subgroup of the Lorentz group, as one 
sees easily: let L(p) be a pure Lorentz transformation in direction p and R 
any space rotation; then RL(p) belongs to the class, but not L(p)R. However 
L(Rp)R belongs again to it. 

To sum up: 

we define the helicity operator (not by the misleading 'invariant' 
tv4 / 4 , but explicitly) by 

1 n 	pc' \ 	S•p 	J•P 
A(p) =--- — 1,17 (w- lpi — w  • P  'pi) —

_ 	= 

IPi 	I Pi  

with eigenvalues A = —s, —s + 1, .. . , +s on states 
	 (10.4.24) 

I P, s,A, . - .) 	A = spin component in the direction of p 
= total angular momentum component 

in the direction of p. 

That A(p) = (J • p)/ipi follows immediately if one inserts into the first 
part of (10.4.24) the explicit form of iD 1  as it appears in (10.4.3): tut' = 
(J •p, J p°±J° xp). A (p) is invariant under L(p) (pure Lorentz transformations 
in direction p) (unless the sign of p changes, when A --. —A) and under space 
rotations R, as well as under all Lorentz transformations which can be written 
as a product of the type 

L(R„• - -Rip)R n • - •L(R2R1p)R2L(RIP)R1 

i.e. by Lorentz transformations generated by continued application of space 
rotations and pure Lorentz transformations in the direction of the last momentum. 
These Lorentz transformations suffice to transform a given p into any p' with 
the same mass, but they do not constitute a subgroup of the Lorentz group. 

If A(p) is measured with eigenvalue A, then, in any Lorentz frame 
which cannot be reached by a transformation leaving A invariant, any one 
eigenvalue A' = —s, —s + 1, ...,+s may be found with the amplitude 
(p', s, A',  . .. I U (01 p ,  s,  A, ...) where U(q) connects these two Lorentz frames, 
e.g. if  U(i) = exp(iwo re') (i.e.  U(i7) belongs to the little group of p), pt` is left 
invariant but A not. 
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Our one-particle states 1m, p, s, A, y) are then characterized by 
the complete set of commuting observables (for m 0) 

four-momentum p (or m, p) 

1 	„ 
total spin squared --w-w = s(s + 1) = (S2 )Rest m 2 

S • p 
helicity A(p) = — = )4= —s, —s 1, . . +s) 

IPI 

further observables (charge etc) r =  y . 

(10.4.25) 

The second possibility ((ii) above) for the definition of n, namely such that 
A(np) = —(1/ m)n ii wo = (S • n)K o  is invariant, should not be forgotten. It 
might suit well for some purposes. 

10.4.4 Zero-mass particles 

A particular situation arises for particles of mass zero. We shall prove the 
following statement. 

For particles with spin but with rest mass zero the helicity is 
either +),.0 or where the A.0 is 'the spin' of the particle. 
That is, the spin of mass zero particles is always parallel or 
antiparallel to the direction of p. 

Why 'the spin' is in quotation marks and how this comes about is seen in 
the following. 

Recall (10.4.5) and look at it as if it were a classical equation 

y2 

(w° , ti-7) = M(S° , S) = m (YO SR, SR + 

a 	

•-i 

Q 

R) • y + 1 

If m —> 0, then /3 —> 1 and y —> oo. What happens, if y —> oo? The 
direction of S is turned more and more parallel (if )3 • SR > 0) or antiparallel 
(if )3 SR < 0) to the direction of (3, because for large y 

S = SR + f3Y4 OYA-0. 

(Here we have put [3 • SR =  A0  = longitudinal spin component in the rest 
system.) This shows that 'direction and magnitude of the spin of a moving 
particle' both depend on the velocity and have a clear meaning only in the rest 
system. Hence, for y —> oc one has 

(0, 217) XO(MY, Mfi Y) XO(P° , p). 

(10.4.26) 
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If we now go with m 0 and y oc  such that my = po  remains finite we 
obtain 

w" = A.op"; w o w" -= wo p" = po p" = 0. 

Now, since no rest system exists any longer, A. 0  can be called 'the spin component 
in direction p' only in the sense of an analogy. 

After this classical discussion we turn to an exact formulation. For m = 0 
_m 2102, we have from (10.4.15) 	= 	 furthermore for m 0 the k ."1  /Rest = 01  ;  

identity w oe = 0 holds and also po p" = 0. Therefore in this case w 4  may 
well have a component in direction p". Let no  and m t, be two unit four-vectors 
orthogonal to each other and to pl.': nom" = no p" = m o p" = 0. Then put 

= an 	b 	cp . 

woe = 0 yields a = b = 0, hence 

= cp" (for m = 0). 	 (10.4.27) 

Since this is a covariant equation, it follows that c must be Lorentz invariant. 
Its significance follows from (10.4.3), which we repeat here (using the fact that 
in tv4  = 164vpa .1vP p' we can replace PP by PP): 2  

( wO ,  w) = (S 	SpO ± 	x p) = c(po ,  p) 	(10.4.28) 

where the last equation is true for m = 0. Since now also p°  = IPI, we read off 
(compare (10.4.24): A(P) =- (S • P)/II)  

(i) cpo  = s • p or c = —
Sp 

A(p) 
I PI 

(ii) cp = S p°  S°  x p = S p° (since SO x p is orthogonal to p). 

=0 

From c = A(p) and the invariance of c it follows that for m = 0 the helicity 
operator A (p) must be a true invariant under all Lorentz transformations and not 
only under the restricted class discussed above. This is indeed the case, since 
for m —> 0 our lour-vector' 1" becomes a genuine four-vector: for m —> 0 
(10.4.21) transforms into 

JL = 	1/3 1, P — 	— (P P) = — • 
m 	 m 	m 

1  ( 	Po) 	1  0 	 Pi` 

Hence for m 	0 our 1" transforms like p". That its components tend to infinity 
does not matter: we have defined (equation (10.4.23)) A(1, p) = —(11 m)w o 1 4  

I  This is not quite correct; since a rest system no longer exists, we cannot know whether (S2 )Rest '  
might not be oo; then wp  ufro could be anything. In fact, wp  u,A 0 0 leads to 'continuous spin' 
which seems not to be realized in Nature and will not be discussed here. 

(10.4.29) 
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and this quantity is now a true invariant (and even finite). The invariance of 
A (p) for m = 0 (we shall write Ao(p) for this particular A) implies that its 
eigenvalue A.0, found in one Lorentz frame, will be the same in all Lorentz 
frames. Furthermore this is equivalent to 

[Ao(p), p4 ] = [Ao(P). Ply ] = 0 	 (10.4.30) 

and since p4  and Ji" (and combinations thereof) are the only observables (apart 
from those others, 1", which are supposed to commute anyway with e and ../ 4") 
it follows that no measurement can induce any transition from A°  to A.'°  
In other words: for m = 0 only one eigenvalue A.°  of the helicity exists (and not 
a spectrum A = —s, —s + 1, , +s as for m 0). The question arises: which 
of the possible values between —s and +s does the particle choose? In fact this 
question has no sense, because s is no longer defined. The point is this: as long 
as m 0 we define the total spin by 

1 
(S2 ) Res  i = --ww = SLVS = s(s 1). m 2 A 

This is clearly invariant, commutes with all p and J and thus could be written 
s(s +1). If m = 0 no such invariant exists any longer; the formula gives simply 
s(s + 1) = 0/0. No limiting process works, because m 0 and m = 0 are 
qualitatively different: however small m is, a rest system exists—but it does 
not exist when m = 0. Between these two possibilities there is no continuous 
connection. Thus we cannot define s(s + 1) either by the invariant or by a 
limiting process. Of course, we could say that we call the quantity S + Sz2 

 'the spin squared', but we must then accept that this is not an invariant quantity 
and does not therefore 'belong to the particle'. We thus see that the quantum 
number s = spin cannot be invariantly defined and the question of which value A.0 
the particle selects, between —s and +s, makes no sense. However, Ao(p) = 
is now itself an invariant, which never changes and therefore characterizes the 
particle rather than the state. We may then, since our old invariant s cannot be 
defined, simply call A.0  'the spin' of the mass zero particle. 

There is even a simple argument in favour of this definition: from (10.4.28) 
we found that 

S P°  = Ao(P)P. 	 (10.4.31) 

Now for m = 0 we can always find a coordinate system in which the eigenvalue 
four-momentum is (p, 0, 0, p). On such a state, call it I p x0), we have then 

Po P AO) = PzIP, ÀO) = PIP, Xo) 

Pxi I, A-0) = PyiP, A-0)  = 0. 

Hence, since p °  0 commutes with S and pz  0 0 with AaP) 

Sp, 	= Sy l p, 	= 

SzIP, A-o) = XolP, A-o) 
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so that the eigenvalue of the non-vanishing space component of S is just A.0. 
A.0  can be positive, negative or zero. If it is zero, only one state exists. If 

it is different from zero, then 

• either for the particle a parity operation is defined (the particle has a definite 
parity ±1), then by applying the parity operation p goes to —p but S goes 
to S (because it is a pseudovector), and therefore A.0 —> —A.0. Thus for 
particles with m = 0 both helicity states with A.0  = ±141 exist, if the 
particle has a definite parity (e.g. the light quantum); 

• or the particle has no parity, then only one value Ao exists and the particle 
has always a definite helicity (neutrino). In the neutrino case, however, CP 
is a good quantum number and since charge conjugation changes neither 
S nor p, it follows that the antineutrino has helicity opposite to that of 
the neutrino. Note that the possibility of having two states with ±A.0  is 
not in contradiction to the above statement that A.0 could not change: the 
above statement was based on the fact that  A0 (p) commutes with all p4  
and P", whereas the change from Ao to —A.0 was induced by the parity 
(or CP) operation, which does not belong to the proper Lorentz group and 
was therefore excluded from that statement. 

10.5 The use of helicity states in elementary particle physics 

In this last section we select some parts of the paper by Jacob and Wick (1959). 

10.5.1 Construction of one-particle helicity states of arbitrary p 

Since the helicity A(p) is invariant under rotations and Lorentz transformation 
in the direction p, we may construct helicity states starting from a system in 
which p points in the z-direction. Call such a state (we omit y) 

1p, s, y) = state with p4  = (p°  , 0, 0, p). 	(10.5.1) 

If then p = p(sin  U cos cp, sin a sin ço, cos 	we obtain the state I p, 0, , A) with 
the same A by an active rotation Ra (a, fi, y) with a = go, fi =  6 , y = —go where 
y = —go is not really necessary but has been chosen to make R = 1 if 0 = 0. 
Thus 

1P 	49, s, 	= Ua((P, 0 , —V)IP,s,À) =  e 	e-1 "' ei v iz 1 p, s, A.). (10.5.2) 

If the mass m 	0, we can even start all that in the rest system of the particle 
and generate lp, s, A) by a Lorentz transformation in the z-direction. For states 
at rest—call them 10, s, A.)—A. is the eigenvalue of  S.  The relative phases of 
the states with A  = —s, —s + 1, . . . , +s will then be defined as usual by (see 
(4.6.12)); 

(S,± iS5 ) 1 0, s , 	= -Is(s + 1) — A.(A.±1)10, s, A.±1). 	(10.5.3) 
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This does not work for m = 0, since no rest system exists and, since 
= Sy = 0, even S+  = iSy  and S_ =  S - iS y  commute on the states 

I p, A.0). But we can define the relative phase between I p, Â.0) and I p, -A.o) by 
means of the parity operation, which only exists when both values of Â.0  are 
allowed. Let us first see how we can define I p, s, -A) for a particle with m 0 
and then for m = 0. 

For m 0 there are three possibilities. 

(i) 2A. times applying S_ = S - iSy . 

IP, S, —A) = 
(s 
	S

21 
lp , s, X). (10.5.4) 

This does not apply for m = 0, since then S_ and s are not defined. 
(ii) A Lorentz transformation in the z-direction, which carries p 	-p  (passing 

over the rest system) and thereby 	-A and a rotation by n-  about x and 
y. For such a rotation about x we had the result Rxl.im) = 	m) 
(see footnote to (6.3.65)) and, since Ry  = e-012)/z R, e (3r/2)-ii, we obtain 
R y ljm) = - m). Since the correspondence is (remember m is 
Sz , A. is Sp ) 

113 , s, A.) = lp, s, m) 
(10.5.5) 

I - s, =I — p, s, -m) 

we have Ry lp, s, = (-1)"I - p, s, A.). We prefer R y  to R, since s - 
is always integer; the factor (-1) .' = (-1)À-s is real. Then the state 
I p, s, -A) can be defined by 

IP, s, A,) 4  -  p, s, —A) '">. I p, s, 

The whole procedure still works if we let p 	0 afterwards. If we combine 
the L-transformation (which reverses the sign of p and of A) and the rotation 
Ry  in one symbol hy , then for all p (including p = 0) 

I p, s, -A)  = (-1)"hy lp, s, A). 	 (10.5.6) 

This procedure does not work for m = 0, because no rest system exists and 
consequently p and  A cannot be reversed by a Lorentz transformation. 

(iii) The parity operation combined with Ry. Defining the intrinsic parity of the 
particle by the phase factor  ij  in 

PIP, s, A> = - p, s, -A) 

we obtain 
Y 	PR>  = Ry P 	

(10.5.7) 
IP, s, 	= (-1 ) ." 11Ylp, s, A). 
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This procedure works even for m = 0 if the particle is parity invariant and 
if we put s = Ao. Thus we adopt it for all particles. When m 0, all three 
definitions are equivalent. 

lp,s, —JO= (-1)"R y PqIp,s, X) = (-1)s -Àfi y lp,s, X) 

((ss 	Xx))1!szi.ip, s, X) 	 (10.5.8) 

IP, —Xo) = R P nip,  4) for m = 0. 

In (ii) above we found that our old result Rxlim) = (-1) -J1j, —m) implies 

I — p,sÀ, ) = (-1)"R y lp,s, X) 	for m 0 	
(10.5.9) 

	

— p, A.0) --= RyIP, X0) 	 for m = 0 

where both definitions become equal if we define the spin by s = An  for massless 
particles. This defines completely all one-particle helicity states for m 0 and 
m = 0. 

10.5.2 Two-particle helicity states 

We define these states conveniently in the centre-of-momentum frame by a direct 
product of one state IN, Sa, A,a) and another one Ipb, Sb, At) ) where pa  = — Pb • 
That is, the state where pa  = +p and Pb  = 

 — p  may be written 

IP5aXa5b4) = IPSaXa) 	— Psb4)- 

This state may be transformed into a state IpOçosa X asd.b) by rotating it by 
U(q), 0, 	= 	e-""Y eiv-i= where J = Ja  Jb. Noting that (see (10.5.5)) 

Jz.alpsaxa = xa I psaxa 

1z,b1 PsbXb) = Xb I — PsbXb) 

we find 

IPINsaXasbXb) = e 1w(1 ° -4) 	e-i°4  IPsi2X,744) 
	

(10.5.10) 

where the last rotation e-iv.iz can no longer be written as a simple numerical 
factor, since Ry (0)Ip5,,Xa5d.b) is not an eigenstate of Jz . 

10.5.3 Eigenstates of the total angular momentum 

If we apply our projection formula (6.3.52) 

2j + 1  f  
da) D(w)R(c0)1 1/1 ) = E ly'im)(Y'inel*) 82r2 	

Y' 

(10.5.11) 
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to a state 10 = IPsaXasb4), then we should obtain an eigenstate of total angular 
momentum iPirnsaXasb4),  where A.a  and A.b are conserved in the state, since 
they are invariant under rotations. Now, ipsaki sb4) is an eigenstate of .7, 
with m' = À = À,, — Àb, hence in (10.5.11) only m' = À will give a non-zero 
projection. We shall furthermore write a normalization factor N1 /27r instead of 
(2j + 1)/87 2  and obtain 

N 	 (i)" 
1/3./msaXasb4 	

i
) = —

27 
f da dy sin d/3 Dna  (a, 13, Y)R(ce, 0, Y)iPsakisb4). 

(10.5.12) 
Now from (10.5.10) 

	

R(a, p, olpsaxasbxo = e —iYÂ e 	IPUPSd-aSbX17) 

with (6.2.16) 
D.Ur (a, /3, y) = el(" +4') 4(/3) 

so that e ix Y drops out and the y-integration yields 27r. Hence 

IP.imsd,asbXb) = Ni  f da sin # d# D„,Ur (a, /3 , — a)113a/3sakysbXb). (10.5.13) 

The normalization factor NJ  is determined by requiring that 

fm's'a  X'as;,4) Pimsa Xasd-b) = 8 (P' — P)8f.1 8nem 
(10.5.14) 

x 34,a 3s;,s,, 8x'a x. 34A b 

whereas for plane wave states we require 

(/3/ /3/a'sX4À /b /Vasa Xasb)Lb)  = 8 (1,' — P)3(a' — a)8 (cos )5' — cos p) 

X 84sa 8s;,sb 81'„ A. 8À;d4 • 
(10.5.15) 

In the following calculation all 8 except 8f i , 8„,, ,, and 8(a' — a)3(cos /3' — 
cos #) drop out and the quantum numbers are suppressed in the states. Then we 
have, after integrating over a' and sin 0' dp': 

(fm'ijm) = N1 N  f da sin /3 dp D(a, 0, —a)D ni(jr (a, p, —a). 

Since the factors e ixa e -il" cancel, we may replace —a by anything, e.g. by y, 
and integrate with dy/27, without changing the expression. Then the integral 
becomes (6.3.47) 

f da sin /3 d# —
27 

Dmi
x 

(a, p, y)Dmi(  (a, 13, y) = 	 
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and we obtain 

47r 
(fnaini) = 1%1 = 2j + 1 

if we put Isisi = .1(2j + 	1)/47r . Finally, then the eigenstate of total angular 
momentum J2  and  J and helicities A,„„ Àb  is  

.1 
iPintsaXast)Lb) =

21 -I- 1 
f sin z) 	dq)DmUr 	— (P)1P 1, VscdtasbXb) 47r 

IPI(psaXasb4) IPsaXa)  0  — P5bXb) 	Pa = P(1,, 49 ). 

The normalizations (10.5.14) and (10.5.15) imply 

(p'iNsdL'asÇA,Ipjms aX asd,b) = 83;sa 84,sb 8A,),A,A. b 8 (P' — 

x i÷r  D(ir (q),  U, --99). 

The transformation between these two bases, 10, (p) and 11m), is unitary: one 
easily verifies (we omit the sa , sb, etc) 

f sin  U  dt, dqo Cr )LaÀbil,0‘alb)(1, (PA.albii m)t,a),b) = Si i'Smm' 

Ecowaxbumxaxournxaxoloçoxaxo = 8(cos — cos 0).5((p' — (p ). 

The corresponding projection operators are 

f sin a di, dip INPA ,aXb)( 17 0.d.bi  = 

E linix04)(ina0xbi = Pkalb• 

	 (10.5.18) 

10.5.4 The S-matrix; cross-sections 

Let a reaction be of the type a +6 	c + d; then the S-matrix element is given 
by 

(PcPdXcAdISIPaPd-aXb) (10.5.19) 

where we suppressed the spins sasbsc sd since they remain constant anyway. With 
the normalization (10.5.14), (10.5.15) this is equivalent to 

(10.5.16) 

(10.5.17) 

(PcPdXcXd I SIPaPbAq24) = ( 27066  (P4i  P") 
pp 

x(tYqad.d1S(P")1 1, 0.d.b) 

(10.5.20) 
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(note that because of the presence of vv' this normalization is not Lorentz 
covariant). In the centre-of-momentum frame p = pa  +  Pb  = pc  + pd = 0. 

The cross-section is then related to the transition-matrix element S = 1 —iT 
by the formula 

da \ 	27r \ 2  
= 	99XcAd IT (E)I°°Àa 4)1 2  

C.M. 

where E = Ec.„,. = [(Pa -I-  Pbr(Pa Pb)Ail = P2  + tq, ± 1192  + mly  We 
now go to the jm-representation, where the rotational invariance of S can be 
used explicitly. Namely, as a rotationally invariant quantity S(E) is necessarily 
an irreducible tensor of rank 0, therefore energy conservation and the Wigner—
Eckart theorem give (equation (8.8.3)) 

(E'fm ikkilSIEjmÀ a Àb) = 8(E' — E)8i ,i8nem(AOLdiS 1 
 
(E)P-d-b) (10.5.22) 

where the remaining matrix element is (up to a different notation) the reduced 
matrix element. 

With the help of the projection operators (10.5.18) 

E iinaawurnxaxbi = PÂakil 
	 (10.5.23) 

we obtain (omitting 8(E' — E) and writing already S(E)) 

(1, 40,-)LdiS(E)100Àd.b) = ( 0 (PA d-di 8,,k,S(E)PÀ6,4100Àd-b) 

= E E(1,00.difm/xcxd)(i'nacxdiS(E)ilmÀaÀb) 
im i'm' 

X ( 	 d-b I 1 0 (PO 	b) ; 19'0 = 	= 	 (10.5.24) 

with (10.5.22) 

= E(NPAcAdlimAcAd)(imAdAbIN(PoAd-b)(AcAdIS (E)PLaAb)• 
jm  

(10.5.16) now gives 

	

(t, 40AcAdlinacAd) =12j 	+ DV (40 , 	=Ac  — Ad 47r 

(jmAa Ab I ooAa A b ) = 1/21  + 	 D (2,(0, 0, 0) = 1/ 2f  +  8na• 47r 	 47r 

(10.5.21) 
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If we insert this into (10.5.24) we obtain 

(000.dis(E)100xax,) —E [(2; + 1)(kxdisi(E)p..4)D4r Op, 0, —0] 47r 

= Xa A-tt= 	Xe I • 

If we write the differential cross-section 

da 
dS2 = (xcxd, xaxb, 0, 01 2  

then the scattering amplitude f is given by 

(10.5.25) 

(10.5.26) 

f (),,xd , AaAb, 0, = — E (2j + 1 )(kAd T (E)IA.d.b) D (4).  ( p, 0, —(p) 
2p 

where again .51  (E) = 1 — iT (E). 
As an illustration we compare this with the usual formula. The comparison 

is made by specializing to the case Xa  = Ab, A c  = Ad, when X = = 0 and j 
must be an integer 1. In this case (6.3.33) gives D00(1) (99, 0, --q7) = Pi(cos 0) and 
we obtain for the scattering amplitude 

	

f (A.axa , xck, 0, (P) = 	E (2/ + 1 )(Ad.cl (E) — 1 1X)La) PI (cos 0) 
2ip 

(10.5.28) 
which is very similar to the well known formula for spinless particles. The usual 
formula for particles with spin is, however, much more complicated. The helicity 
formalism simultaneously achieves simpler formulae and greater generality. This 
is another example of the experience that a fully relativistic treatment is often 
simpler than the non-relativistic one. 

10.5.5 Evaluation of  cross-section formulae 

For the calculation of cross-sections (10.5.27) has to be squared. Either 
one first calculates explicitly the amplitude using the formula (6.2.16) for 
D, and then squares, or one squares directly. In this case (we abbreviate 
(XcÀdir (E)Rd-b) (./)) 

(10.5.27) 

I I f I 2  —2- = 	>2(2j  + 1)(2f + 1)(j)(f)*D (i)* D (f)  
4p 	 Âg 4 if 4 • (10.5.29) 
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The product of two D can be reduced to a sum over D by means of (6.3.68), 
(6.3.4) and (6.3.33): 

(6.3.68): 	D(J).  =  ka, 

(6.3.4): 	D (i)  D i') 	u ( — E — Xj'XIJO) (JOU k — rii)D0,3
(J) 

Xit 	 (10.5.30) 

(6.3.33): Dg) (v, 0, —q)) = 	(cos .0) (J = integer = 1). 

Thus, if all helicities are assumed to be given 

da 	 1 
cT.2 (Ad.ct, XaA-b, 6) = —4p2 E(2j 1 )(2f + 1 )( -1 )/-IL  

x<x,ÀdITJ(E)RaxopoLdIp'(E)Raxo. 
	 (10.5.31) 

x E (J  _ Apdio)you — AftoPi(cos 0 )  

whereA. = --a — Ab;  i  = Ac —  Ad. If not all polarizations are specified, then one 
carries out in this formula the corresponding averages over A. a  and/or Al, as well 
as the sums over A, and/or Ad. If particles with m = 0 occur, only two states 
are possible if parity is conserved; only one state if parity is violated. 

10.5.6 Discrete symmetry relations: parity, time reversal, identical 
particles 

Invariance of elementary processes under the inhomogeneous Lorentz group 
including rotations has been used to build up all this formalism. Thus these 
invariances cannot give us any further simplifications or relations. 

The discrete groups, however, lead to further relations. 

10.5.6.1 Parity 

For a one-particle state we found with Y =  PRy  = P e-urIY (see (10.5.7)) 

PIPsÀ) = (-1 )s-x l7eiNj'IPs, —A). 

For a two-particle state (4 = Jya Jyb) with (10.5.5) 
pipsaxasoço 	(_ ) „+sb-1

° +Ib i7a 7/b eiN4  IPsa, — Xasb, 
	(10.5.32) 

This implies for total angular momentum states (10.5.12) 

PlAimsaAasbAb) = (-1)s°1-sb-1°+lbrIarlb 21 4 ± 1  7r 

x f sin 13 d/3 dot dy Dm(ir (a, /3, y)R(Œ, Y)R( 0  — 7r0)Ipsa  , Aa ,  Sb,  — AO 
(10.5.33) 
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where P R(a, 13, y) = R(a, 0, y)P has been used. We can now change 
the integration variables by defining R(a, p, y)R(0, —7, 0) R(a' , y'); 
sin dfi da dy = sin 0' df3' da' dy' (that dco = do/ is not trivial but can be 
shown). Then we have to relate D to the new variables: 

D(a, /3, y)D(0, —n , 0) = D(a' , 13% y') 

or 
Dm(-1)!(a, f3, y) = E D;ni p)  (a' , 13' , y ')D (0, r,  0). 

Now Ry liM) = 	 m) (see (10.5.7)) so that 

(.1) D (0,  it, 0) = (-1)J -1 8_p , A. 

thus 
D,a(if (a, /3 , Y) = 	 (ce', 	y'). 

Then (10.5.33) changes into (remember A  =  A0  —  Ab  and j —  A integer) 

± 
PIP/msaXasb4) = (— 1 	ria  171, 12j 1 

471.  

	

x  jsin /3 d/3 da dy 	/3 , Y)R( 21 , 0, Y)IPsa — Aasb — Ab). 

Comparing this with the definition (10.5.16), one sees that 

PiRimsaXasb4) = ( -1 )i-sa -sb r7ar7biPims0, À a ,  Sb, 	(10.5.34) 

where j — sa  —  Sb  is always integer. If the S-operator is invariant under parity, 
then 

(final  S 'initial) = (final' P -1  SP i initial)  

= (finalIPSP -1  'initial) 

implies 

	

( — Ac AdiS j  I — 	 — Ab) = q(AcAdIS lAciAb) 

= _ ya  +sb  -sd  qc rid 	I 
	 (10.5.35) 

17arlb 
This relation approximately halves the number of independent S-matrix elements. 

If we insert this into the scattering amplitude (10.5.27), then we would like 
to have the subscripts —A — /2 with the D. This can be done; the second and 
fourth line of (6.3.68) yield 

(v,  Û,  —ço) = (-1)A-A D_Ur_o  (—cp, 

The factor (-1)1-A can be compensated by cp 	—yo so that DX *  (w, 0, —(p) = 

D tir_A (n — ço, 0, (I) — 7r). This gives in (10.5.27) 

f(—A, —Ad, —Aa, —Ab,  Û,  (P) = rlf (Aa, Ab, Ac, Ad, 0,it — 	(10.5.36) 

if parity is conserved. 
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10.5.6.2 Time reversal 

Time reversal is represented by an antilinear and anti-unitary operator T (do 
not confuse with the transition operator T). Time reversal obviously changes 
momentum and angular momentum into their negatives; hence, since A refers 
to the direction of p, no change of  A occurs and hence I p.a) -÷  I  - 
The same can be done by a rotation R y , only both operations will give rise to 
different phase factors. Combining these into one symbol, E, we have 

TIpsX) = 	Ip.a). 	 (10.5.37) 

Is E independent of p and A? Yes, it is. Let us apply T2  to I p.a). It restores 
IpsA.) up to a phase factor which obviously cannot depend on p and A. Then 

T2 I ps X) = 711 psÀ) = 82 e-27rily i psx) .  

Now IpsA.) can be expanded into a sum over Ipjm.0.) and each of these obtains 
a factor (-1) 21  upon 27r-rotation. Since these j are either all integers or all half 
odd integers, it follows that 

6,2 e-27riiy i psx ) = ±e2 ipsx) = rilpsX). 

Hence 6. 2  = ±77 independent of p and y. We may even eliminate E by 
multiplying all states IpsÀ) by a phase a* (s). Then (10.5.37) gives (since T is 
anti-unitary) 

	

Ta*(s)IpsX)=ct(s)TipsÀ) = a(s)E 	JY I psA.) 

= a2 (s)e e-briYa*(5)Ip.0.). 

Choosing a(s) = 1/Vi and calling a*Ip.a) again lpsA.), we have no e any 
longer. For such states 71 = ±1. Putting E =1, we have 

= e-i1 1Y IpsaXasbh). 	 (10.5.38) 

This gives, applied to the ipjmsaki sb4) states (see (10.5.12) and remember that 
= DWT, whereas T commutes with the abstract rotation R(a, fi, y): 

e.g. T R(a,0,0)Itm) = T e 	e ra lt,_m) = R(a,0,0)Tijm)) 

2 	 i  _ _ 
TiPimsd.asbXb) = .1

j 

if 

 sn 
• 0 dp d

a 
d 

47r 

x D(ot, 	y)R(a, 	Y)R(0,7r,0)1P5d ,a5isd,b). 

We define R(a', fi', y') = R(a, fi, y)R(0, 7, 0) and 

D 2(a, 0, y) = E D;4(a' 13' y')D p(i2 (0 - 71. 0). 

(10.5.39) 
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From page 271 we have DpT(0, 7r, 0) = (-1)i -'8_, ),; and since  D(27r) = 

(-1) 2J, it follows that DpU2(0, -7r, 0) = (-1)i+ À 8_,,, À . Therefore 

Tipjms0A.asd.b) =
/2j 

 + 1  ( 1)-i +1  f sin p dt3 da dy 
47r 

x Dm(i! Â (a, fi,y)R(ce, 13, Y)Ipsd,asb4)• 

Now use (6.3.68) D 	= (-1) -""D(ini)*1  and obtain 

T I pi lriSaX aSb4) = 	—rn  IPi 	SaXaS124)- 
	 (10.5.40) 

Now, for any anti-unitary operators A and B it holds that ( 1/11(AB)I(P) = 
{((lkIA)(B10)} * ; furthermore, for the S-matrix TS*T = S; thus with T = A, 
ST = B 

(*IS199) = ( 1k1(TS* T)I0 = {(01/1 7.)(S * T140))r 

We then obtain with (10.5.40) 

(inacxd 	 = (j — niX,XdIS*1.1 — irad.b)* 
= Ci — lrad,b1Sli — mk.A.d) 

and with (10.5.22) on both sides 

(X),d1Si 	= (A.axbISi  IÀ,Àd) 
	

(10.5.41) 

if T-invariance holds. 

10.5.6.3 Identical particles 

We use the following notation: we distinguish the numerical values of the 
quantum numbers by an additional prime, whereas the subscripts a and b indicate 
which particle actually has this numerical value. Consider then a state (we omit 
sa  = Sb = S) 

IPÀ0À;,) 	IPaXa) 0  I  - Pb4). 

By exchanging the particles we obtain 

PablPaXa) 0  I  - Pb4)= IPb4) 0 I - PaK7 )• 

Now from (10.5.9) 

iPbXb) = (-1 ) -s+À  ein4b)  I - PbA.b) 

I -  Pd.:0= (- 1)s-v  e-i7LinPaA!,,) 

= 	ein4a) 11,a )ça' 

(10.5.42) 
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where R(27r)ipsA.) = (-1) 2sIpsX) (see (6.3.69)) was used. We then obtain 
(2s — A + À' is integer!) 

Pab10-a4) = (--1)r enJY IpAAb. 	(10.5.43) 

If we compare this with (10.5.32) then we see that apart from the additional 
lia  rib and the different state on the r.h.s. the structure is the same. Carrying 
through the same calculation as after (10.5.32) would then lead to the equivalent 
of (10.5.34), namely 

Pabi Pi naa4) = (-1 ) j -2s  1P niX a' 	(identical particles). 	(10.5.44) 

Since integer spin gives Bose—Einstein and half odd integer Fermi—Dirac 
statistics, the correct states are given by applying the operator 	(1+ (—I )2s Pab) 

to the state IN/0,74).  Then the factor (-1) 2s is eliminated and the state with 
correct symmetry for two identical particles is 

1 	, 
IPina):) 	IlPinaaX)± (-1 ) .1 1Pinik'a4)} 	(10.5.45) 

whatever the spin s of these two particles may be. This implies that in a total 
angular momentum eigenstate IpjmD.') of two identical particles only A0 A' 
is allowed for odd j. 

Example 

If a particle of spin j decays into two identical decay products (7r ° 	yy), then 
for j odd A0 A'. Assume j,0 = 1, then 141 = 1 and then 	requires, 
e.g., A„, = I, 	= —1; then J, 	m = +2 in contradiction to jy  = 1. 
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SUPERSYMMETRY IN QUANTUM MECHANICS 
AND PARTICLE PHYSICS 

11.1 What is supersymmetry? 

The concept of supersymmetry (Golfand and Likhtman (1971), Volkov and 
Akulov (1973), Wess and Zumino (1974)), which relates bosonic and fermionic 
states in quantum mechanics, i.e. combines integer and half-integer spin states 
(particles) in one multiplet, has played a central role in the development of 
quantum field theory for two decades (see, e.g., Wess and Bagger (1983), 
Gates et al (1983), West (1987)). Supersymmetric models of unification 
of the fundamental interactions are the most promising candidates to extend 
the standard model of strong and electroweak interactions. Gravity was 
also generalized by incorporating supersymmetry (SUSY) into a theory called 
supergravity. In this theory, Einstein's general theory of relativity turns out 
to be a necessary consequence of a local gauged SUSY. Thus, local SUSY 
theories provide a natural framework for the unification of gravity with the 
other fundamental interactions of nature. 

Another theoretical motivation for studying supersymmetry is offered by 
string theory (Green et al (1987)). The presence of ferrnionic string states 
together with bosonic ones imposes a supersymmetric structure on the theory. 
In effective field theories which approximate string theory in the energy domain 
below the Planck mass equal to 10 19  GeV, this structure manifests itself as a 
supersymmetry among particles. In the string domain supersymmetry is essential 
in order to define a tachyon-free theory (tachyons are hypothetical particles with 
unphysical imaginary mass). 

Thus supersymmetry is a necessary ingredient in any unification of all basic 
interactions of nature, i.e. strong, electroweak and gravitational interactions. 
One more important fact which explains why supersymmetry is so important 
for the unification is the following: SUSY offers a possible way to avoid 
the no -go theorem of Coleman and Mandula (1967) which was based on the 
assumption of a Lie algebraic realization of symmetries (supersymmetric or, in 
more mathematical language, graded Lie algebras were unfamiliar to particle 
theorists at the time of the proof of the no-go theorem). More precisely, 
this theorem states that any Lie group containing the Poincaré group and an 
internal symmetry group is the trivial product of both. In other words, internal 
symmetry transformations always commute with the Poincaré transformations. 
The hypotheses of this theorem are quite general. They consist of the axioms of 

275 
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relativistic quantum field theory and of the assumption that all symmetries are 
realized in terms of Lie groups. A way to circumvent it was, however, found by 
Haag et al (1975). These authors simply relaxed one of the hypotheses of the 
no-go theorem, namely the one which concerns the groups of symmetry. They 
assumed that the infinitesimal generators of the symmetry obey a superalgebra 
(called also supersymmetric Lie algebra or graded Lie algebra). A superalgebra 
is a generalization of the notion of a Lie algebra, where some of the infinitesimal 
generators are fermionic, which means that some of the commutation rules are 
replaced by anticommutation rules. 

A further motivation for supersymmetry is found in the solution of the 
hierarchy problem of the grand unified theories (see, e.g., Ross (1984)). In these 
theories, which tend to unify all the particles and forces except gravitational ones, 
two energy scales must be introduced, typically of the order of 103-104  GeV, the 
electroweak scale, and 10 15-10 16  GeV, the grand unification scale. This means 
that masses of the particles in the model must be fine tuned with a precision of 
10-12 . Such a tuning is not possible in ordinary quantum field theory, since the 
presence of the so-called ultraviolet divergences of the quantum mass corrections 
induces a strong instability of the mass differences. In supersymmetric theories 
ultraviolet divergences are milder; in particular the quantum mass corrections 
depend only on the logarithm of the ultraviolet cut-off, instead of its square. 
The huge mass differences in grand unified theories are then much more stable. 

Thus the attractive property is that SUSY relates bosonic and fermionic 
degrees of freedom and has the virtue of taming ultra-violet divergences. 
Moreover, some ultraviolet finite supersymmetric models have been known for a 
long time. Most of these models have the so-called N-extended supersymmetty: 
N = 2 or N = 4, where N counts the fermionic generators. The basis of the 
extended N-supersymmetry algebra consists of 

• bosonic (even) Hermitian generators Ta , a = 1, 	, dim(G), of some Lie 
group G 

• the (even) generators Pp, and Mt„ of the four-dimensional Poincaré group 

• fermionic (odd) generators Q Œ' , a = 1,2; i = 1, . , N, belonging to a 
dimension N representation of G, and their conjugates 07 and 

• central charges Z ii, i.e. bosonic (even) operators commuting with all the 
Ta  and all the Qa  and 0- , as well as with the Poincaré generators. 

The Ta  and Z ii are scalars, whereas Coal  and -6'` belong to the two 
inequivalent fundamental (two-component spinor) representations of the Lorentz 
group which are conjugate to each other. The dotted and undotted indices of 
two-component spinors can be raised or lowered with the help of the invariant 
antisymmetric tensors eafl = eafl  = — seqj = +6'613  , El2 = +1. 

The general superalgebra of N-extended supersymmetry, also called the 
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N-super-Poincaré algebra, reads as (see (10.3.2) and (10.3.3)) 

[M Ay, M poi = — i(gApMva — glicrMvp gva M pp — gvpM per) 

[M  PA]  = i(Ptavl Pvg ILO 

(11.1.1) 

Tb] = fabc  Tc 

I Q , 	 = eafi Z ii 

IQ 01 	= 28:ii  (a Ai  ),;(4 PjJ 

[4, A v ]  = 1(cr  

M,] = —  

(11.1.2) 

(11.1.3) 

(11.1.4) 

(11.1.5) 

(11.1.6) 

[4, Ta] = (Ra ) j  Q1 
	

(11.1.7) 

[Q` Ta] = — 	(k) i  • 
	 (11.1.8) 

The curly brackets { , } denote an anticommutator: 

	

(Q1 Q2.1 	Qi Q2 + Q2(21 • 

Other (anti)commutators are equal to zero. The four-vector o-12  is defined as 

	

(a o ,  a a z , 0.3 )  = (( 01 01 ) 	—01) , (0 i  io ) (-01 0)) 

(11.1.9) 

The matrices a, = (i/4) [ai,, o-1,1 and their complex conjugates &AV provide two 
inequivalent two-dimensional representations for the Lie algebra of the Lorentz 
group. The matrices (R a )  are the representation matrices for the Lie-algebra 
generators T, in the representation provided by the fermionic generators. 

This result is the most general one for a theory with massive particles. In 
a massless theory, another set of fermionic charges may be present. 

In the N = 1 case, the superalgebra is reduced to the so-called Wess —Zumino 
algebra (Wess and Zumino (1974)) 

IQ., & = 2(a '),7 Pit 

{Qa ,  QfiI = 0 	 (11.1.10) 

106 , 	= 0 
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to the commutation relations of the fermionic generators with those of the 
Poincaré subalgebra 

and to 

	

= 	Q,5 	[Oa , A4,]=  

	

[Qa , Pa] = 0 	[Oa , 	= 0 
(11.1.11) 

[Qa, R ]  = — Qa 	[Oa , 	= Oa 	(11.1.12) 

Here, R is the infinitesimal generator of an Abelian group which is the trace of 
the internal symmetry group G. 

Being already familiar with the notion of tensor operators, the reader can 
easily realize that the operators Qa  and Q-  a change the spin of a quantum 
mechanical state by one-half due to their transformation properties (11.1.5) 
and (11.1.6) with respect to the Lorentz subgroup. Simultaneously, because of 
the anticommutation relations (11.1.3) and (11.1.4), they change the statistical 
properties of states, i.e. transform bosonic states to fermionic and vice versa. 
Despite the beauty of all these unified theories, there has so far been no 
experimental evidence of SUSY being realized in particle physics. One of the 
important predictions of unbroken SUSY theories is the existence of SUSY 
partners of all known elementary particles which have the same masses as their 
SUSY counterparts. The fact that no such particles have been seen implies that 
SUSY must be broken. One hopes that the scale of this breaking is in the range 
of 100 GeV to 1 TeV in order that it can explain the hierarchy problem of 
mass differences. This leads to a conceptual problem since the natural scale of 
symmetry breaking is the gravitational or Planck scale, which is of the order of 
10 19  GeV. Various schemes have been invented to try to resolve the hierarchy 
problem, including the idea of non-perturbative breaking of SUSY. It was in 
the context of this question that SUSY was first studied in the simplest case of 
SUSY quantum mechanics (SUSY QM) by Witten (1981) (see also Cooper et 
al (1995) and references therein). Thus, in the early days, SUSY was studied 
in quantum mechanics as a testing ground for the non-perturbative methods 
of investigating SUSY breaking in field theory , but it was soon realized that 
this field was interesting in its own right, not just as a model for testing field 
theoretical methods. 

In particular, there is now a much deeper understanding of why certain 
potentials are analytically solvable and an array of powerful new approximation 
methods for handling potentials which are not exactly solvable. 

We will use SUSY QM as a simple realization of a superalgebra involving 
the fermionic and the bosonic operators, to give the reader the main ideas and an 
introduction to the subject, but let us remark that non-relativistic SUSY quantum 
mechanics not only has pedagogical meaning and provides us with the method 
of solution of the Schr6dinger equation for certain classes of potentials, but 
also has practical applications and has stimulated new approaches to different 
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branches of physics, such as nuclear, atomic, condensed matter and statistical 
physics. 

11.2 SUSY quantum mechanics 

A quantum mechanical system characterized by a self-adjoint Hamiltonian H, 
acting on some Hilbert space '1-t, is called supersymmetric if there exists a 
supercharge operator Q obeying the following anticommutation relations: 

I Q, QI = 0 =  {Qt,  Qt } 	{Q, Q t } = H. 	(11.2.1) 

One can easily recognize in these relations the non-relativistic analogue of the 
Wess—Zumino algebra (11.1.10). 

An immediate consequence of these relations is the conservation of the 
supercharge and the non-negativity of the Hamiltonian: 

[H, Q] = 0 = [H, Qt] 	H > 0. 	 (11.2.2) 

In 1981 Witten introduced a simple model of supersymmetric quantum 
mechanics (Witten (1981)). It is defined in the Hilbert space 'H = L 2 (R) OC 2 , 
that is, it characterizes a spin-Pike particle (with mass m > 0) moving along 
the one-dimensional line. In constructing a supersymmetric Hamiltonian on 
let us first introduce bosonic operators A, At and fermionic operators f, ft: 

d 
A =

-V

1 	
W(x) 

Yn dx 

1  f  = Cf+  = 	0 ) 

—1 d 
A' = 	d7c  W(x) 

t  =a  = (0 0 f 	 ) 
1 0 

(11.2.3) 

where the superpotential W is assumed to be continuously differentiable. 
Obviously, these operators obey the commutation and anticommutation relations 

[A, Al] = —W'(x) 
N/Fn 

and allow us to define suitable supercharges 

lf,f = (11.2.4) 

Q=Aeft= ( Ao oo ) 	
Qt = At Ø f  = (0° 

 

At)0 
	(11.2.5) 

which obey the required relations { Q, Q} = 0 =  {Qt,  Qt}. Note that Q is 
a combination of a generalized bosonic annihilation operator and a fermionic 
creation operator. Finally, we may construct a supersymmetric quantum system 
by defining the Hamiltonian in such a way that the second relation in (11.2.1) 
also holds 

H = (Q, Qt 1 = 
AtA 0 ) (H1  0 ) 
0 AAt = 0 H2 ) 

(11.2.6) 
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with 

I d,  

	

H  _ _ 	w 2 (x) 	W'(x) 	(11.2.7) 

	

— 2m clx2 	 N/27rt 

	

1 d2 	 1 
H2 = (11.2.8) — —

2m 
—
cLr2 

W2(x) —
jYn

W'(x) 

being the standard Schriidinger operators acting on L 2 (R). 

Example: SUSY harmonic oscillator 

As we have discussed in chapter 7 on the Jordan—Schwinger construction, for the 
usual quantum mechanical harmonic oscillator, one can introduce a Fock space 
of bosonic occupation numbers and the creation and annihilation operators a 
and at, which after a suitable normalization obey the commutation relations (cf 
(7.1.5) and (7.1.9)) 

	

[a, all = 1 
	

[N , a] = —a 	[N , at] = at 

N = at a 
	H = N 	 (11.2.9) 

For the case of the SUSY harmonic oscillator, one can rewrite the operators 
Q (Qt) as a product of the bosonic operator a and the fermionic operator f.  
Namely, we write Q = aft and Qt = at f, where the matrix fermionic creation 
and annihilation operators are defined in (11.2.3) and obey the usual algebra of 
the fermionic creation and annihilation operators, namely 

{f t , f)=  I 	{f t , f f }= ( f, f)= 0 	(11.2.10) 

as well as obeying the commutation relation 

ft i  = cr3  = fi  o  

	

0 —1 ) • 
	 (11.2.11) 

The SUSY Hamiltonian can be rewritten in the form 

d2 	X 2  
H = Q Qt Qt Q = 	• 	-71. )1 — 	ft]• 	(11.2.12) 

The effect of the last term is to remove the zero-point energy. 
The state vector can be thought of as a matrix in the Schriiclinger picture or 

as the state inb, n f) in the Fock space picture. Since the fermionic creation and 
annihilation operators obey anti-commutation relations, the fermion number is 
either zero or one. We will choose the ground state of H1  to have zero fermion 
number. Then we can introduce the fermion number operator 

1— c13 	1 — [ f, f I] 

	

n F =     • 	 (11.2.13) 

	

2 	2 



11.3 FACTORIZATION AND THE HIERARCHY OF ... 	281 

The action of the operators a,  at,  f, ft in this Fock space is then 

ajnb ,n1 ) = Inb  — 1, n f ) 
	

f Inb,nf) = in b , nf  — 1) 	(11.2.14) 

atinb ,nf ) = Inb  +1,111 ) 
	

f t Inb,n1) =Inb,nf + 1). (11.2.15) 

Of course,  n1  can have only the values zero and unity. Now one can see that 
the operator Qt = —iaft has the property of changing a boson into a fermion 
without changing the energy of the state. This is the boson—fermion degeneracy, 
characteristic of all SUSY theories. 

As is seen from (11.2.3), for the general case of SUSY QM, the operators 
a and at are replaced by A and At in the definition of Q and Qt, i.e. one writes 
Q = Aft and Qt = At f . The effect of Q and Qt is now to relate the wave 
functions of HI and H2 which have fermion number zero and one respectively, 
but now there is no simple Fock space description in the bosonic sector because 
the interactions are non-linear. Thus in the general case, we can rewrite the 
SUSY Hamiltonian in the form 

H = (
d2 

-- + W2)1 —[f, ft]14 7' dx 2 

11.3 Factorization and the hierarchy of Harniltonians 

(11.2.16) 

Let us now reverse our point of view and consider how SUSY can help in finding 
exactly the spectrum of one-dimensional Hamiltonians. It is generally difficult 
to solve exactly the eigenvalue problem of a (time-independent) Hamiltonian in 
quantum mechanics. Among the various methods developed for this purpose, a 
remarkably simple but powerful one is the ladder operator technique, a typical 
example of which is the simple harmonic oscillator. If a Hamiltonian has a 
discrete eigenvalue spectrum bounded from below, the energy eigenstates should 
be labelled by integers and formal raising and lowering operators can be written 
in this basis. However, it does not provide a way to find the ladder operators 
explicitly for a given Hamiltonian. A practical method of obtaining ladder 
operators has been studied using ideas of supersymmetric quantum mechanics 
and a concept of shape-invariant potentials (see, e.g., Cooper et al (1995) and 
references therein). This approach has (re)produced many exactly solvable 
potentials. 

One of the key ideas of the approach is the connection between the bound 
state wave functions and the potential. Let us choose the ground state energy 
for the moment to be zero. Then one has from the Schr6dinger equation that 
the ground state wave function Ifro(x) obeys 

1 d2 ifro  
Hi  Ifro(x) =   + 	(x)1//0(x ) = 0 	(11.3.1) 

2m th  2  

so that 
1 111(x) 

(x) = 
2m ii(x) 

(11.3.2) 
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This allows a global reconstruction of the potential V1  (x) from a knowledge of 
its ground state wave function. Once we realize this, it is now very simple to 
factorize the Hamiltonian using the following ansatz: 

= AA 	 (11.3.3) 

where A and At are given by (11.2.3). This allows us to identify 

(x) = W2(x) 	
1 
	W'(x) 	 (11.3.4) 

as in (11.2.7). This equation is the well known Riccati equation. The solution 
for W(x) in terms of the ground state wave function is 

1  
W(x) 	

-14(x) 
= — 	• 

Vio(x) 
(11.3.5) 

This solution is obtained by using the fact that if A Ifro = 0, one automatically 
has 

H1 fr0  = A t  Aifro = 0. 

The supersymmetric partner of H1  is the operator H2 = AA t obtained by 
reversing the order of A and At (cf (11.2.8)): 

1  d2  
— — — V2(x) 

2172 cLr 2  

1 
V2 (x) = W 2 (x) 	W'(x). (11.3.6) 

The potentials V1  (x) and V2 (x) are known as supersymmetric partner potentials. 
For n > 0, the Schreidinger equation for 111 

Hi e )  = At A ltiV = E(1)*(1) 	 (11.3.7) 

implies 
H2 (Aig,I) ) = AAIA* 1)  = E(Aik„(1) ). 	(11.3.8) 

Similarly, the Schr6dinger equation for H2 

H2 *,(12)  = A A t 2) = E (2) * (2) 	 (11.3.9) 

implies 	
HI  (At Vin(2) ) = At AAtlif2.) = EAt 1/4,2)). 	(11.3.10) 

From (11.3.7)—(11.3.10) and the fact that E, I)  = 0, it is clear that the eigenvalues 
and eigenfunctions of the two Hamiltonians H1  and H2 are related by 

E n(2)  = E n( 2 1 	=0 	 (11.3.11) 

,h.(2) = rE(1) 1-1/2A i b.( 1 ) 
Y 	I n +1.1 	Y (11.3.12) 
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(11.3.13) 

(n = 0, 1, 2, ...). Notice that if ifr (I)  0,0n21 ) of HI  (H2) is normalized, then the n+ I  
wave function 1/41 2)  e4rn( 2i  ) in (11.3.12) and (11.3.13) is also normalized. Thus, 
the operator A (At) converts an eigenfunction of 111 (112) into an eigenfunction 
of H2 (H1 ) with the same energy. Since the ground state wave function of H1 is 
annihilated by the operator A, this state has no SUSY partner. Thus the picture 
we obtain is that knowing all the eigenfunctions of H1  we can determine the 
eigenfunctions of H2 using the operator A, and vice versa; using At we can 
reconstruct all the eigenfunctions of H1  from those of H2 except for the ground 
state. 

It is the commutativity of the supercharges Q and Qt with the Hamiltonian 

[H, Qs] = [H, Qt] = 0 

that is responsible for the degeneracy. 
Let us look at one more well known potential, namely the infinite square 

well, and determine its SUSY partner potential. Consider a particle of mass m 
in an infinite square well potential of width L: 

V (x) = 0 
	

0 < x  <L  
= 00 	- co < X <0 

	x > L. 	(11.3.14) 

The ground state wave function is known to be 

1,4 1)  = (2/L) 1 /2 sin(rrx/L) 	0  <x < L 	(11.3.15) 

and the ground state energy is E0 = ir 2 /(2mL 2 ). 
Subtracting the ground state energy so that we can factorize the 

Hamiltonian, we have for H1 = H - E0 that the energy eigenvalues are 

E- (I) 	11(n  ± 2) 2  
n  — 2mL 2 7r  

(11.3.16) 

and the eigenfunctions are 

*,; 1)  = (2/L) 1/2  sin (n +
L
1)gx 
	

0 < x < L. 	(11.3.17) 

The superpotential for this problem is readily obtained using (11.3.5): 

1 r  
W(x) = --..,. -ri L cot (gx/L) 	 (11.3.18) 

and hence the supersymmetric partner potential V2 is 

H: 

rr2 
V2 (x)  = 

2mL2
[2cos-2 (7rx/L) - 1]. (11.3.19) 
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The wave functions for H2 are obtained by applying the operator A to the wave 
functions of I/1 . In particular, one finds that 

1 (2)  oc sin 2 (n. x/L) 	1/42)  a sin(gx/L) sin(27rx/L). 	(11.3.20) 

Thus these two rather different potentials corresponding to H1 and H2 have 
exactly the same spectrum, except for the fact that H2 has one bound state less. 

Thus, once we know the ground state wave function corresponding to a 
Hamiltonian H I , we can find the superpotential (x) from (11.3.5). The 
resulting operators A 1  and AI obtained from (11.2.3) can be used to factorize 
the Hamiltonian 1/1. The ground state wave function of the partner Hamiltonian 
H2 is determined from the first excited state of H1  via the application of the 
operator A 1 .  This allows a refactorization of the second Hamiltonian in terms 
of W2. The partner of this refactorization is now another Hamiltonian H3. Each 
of the new Hamiltonians has one fewer bound states, so that this process can be 
continued until the number of bound states is exhausted and one can solve for the 
energy eigenvalues and wave functions for the entire hierarchy of Hamiltonians 
created by repeated refactorizations. Conversely, if we know the ground state 
wave functions for all the Hamiltonians in this hierarchy, we can reconstruct the 
solutions of the original problem. 

So far we have discussed SUSY QM on the full line  (—oc < x < oc). 
Many of these results have analogues for the n-dimensional potentials with 
spherical symmetry. For example, in three dimensions after a partial wave 
expansion 

1 
11/1„,(r, 0 , 	= — 	(r)Y1,,(0 , (1)) 

the reduced radial wave function R1 satisfies the one-dimensional Schrbdinger 
equation (0 < r <  oc) 

1 d2  (r) 	1(1 + 1)  
	 -1-[V (r) 	iRi(r) = E RIO 

2m dr 2 	 2mr 2  
(11.3.21) 

with the original potential plus an angular momentum barrier. 
A very interesting example of a supersymmetric system is given by the 

Pauli equation in three dimensions (Crombrugghe and Rittenberg (1983)). It is 
amusing that as a result of the existence of SUSY, the gyromagnetic ratio is 
equal to two. Consider the Hermitian SUSY generator of the form 

r 
Q = (11.3.22) 

where cp(r) and A(r) are external fields and p is the momentum operator of 
the particle. The relations (11.2.1) in this case reduce to just one: 

Q2 = H. 	 (11.3.23) 
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This equation is not in conflict with the basic anticommutation relations since 
the anticommutation relations (Q, Q) = 0 andIQ t = 0 are not assumed 
now. Combining (11.3.22) and (11.3.23), one obtains 

1 
H = —

2 
[(p A)2  02  -I- (4), p } c, 20Acr + (V x A)cr]. 

If A is identified with the magnetic potential, the gyromagnetic ratio is 
equal to two. This is a consequence of the supersymmetry. 

11.4 Broken supersymmetry 

In the quantum theory with an exact symmetry, the ground state (in field theory 
this is the vacuum state, i.e. the state without particles) must be invariant with 
respect to the group transformations (see, e.g., Chaichian and Nelipa (1984)). 
This means, in turn, that the ground state must be annihilated by the generators 
of the symmetry group. In the case of SUSY this gives 

= Qtç0 = O. 

As the Hamiltonian in supersymmetric theory is expressed in terms of the 
supercharges 

H = { Q, Qt } 

the supersymmetry (11.2.1) of a quantum system is said to be an unbroken 
symmetry (exact SUSY) if the ground state energy of H vanishes. Otherwise, 
SUSY is said to be broken. For unbroken SUSY the ground state of H belongs 
either to H1  or to H2 and is given by 

lifct(x) = i1r:(0) exp{± 	dz W(z) I • 
	(11.4.1) 

Obviously, depending on the asymptotic behaviour of the SUSY potential, one 
of the two functions i//: will be normalizable (exact SUSY) or neither will be 
normalizable (broken SUSY). To be more explicit, let us introduce the Witten 
index (Witten (1982)), which (according to the Atiyah—Singer index theorem) 
depends only on the asymptotic values of (to: 

A ind A = dim ker H1 — dim ker H2 = [sgn W(-I-oo) — sgn W(—oo)] 
(11.4.2) 

where dim ker 111  (i = 1, 2) are the numbers of eigenstates of the Hamiltonians 
H, with zero eigenvalue. Hence, for the exact SUSY we have A = 1 with the 
ground state belonging to H 1  and A = —1 with the ground state belonging to 
H2.  For broken SUSY we have A = O. The spectral properties of H1 , 2 are 
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summarized as 

A = +1 : 	E 2)  = En( 2 1  > 0 	4)  = 0 

A = —1 : 	E 1)  = E , >0 	E,(32)  = 0 	(11.4.3) 

E,(,1)  = E,;2)  > 0 

where EV, n = 0, 1, 2, ..., denotes the ordered set of eigenvalues of Hi  with 
En(i)  < En(i+) 1 . For simplicity, we have assumed purely discrete spectra. 

The class of potentials for which the SUSY-generalized operator method 
quickly yields all the bound state energy eigenvalues and eigenfunctions as well 
as the scattering matrix (in analogy with solution of the harmonic oscillator 
problem by the method of creation and annihilation operators) is called the class 
of shape-invariant potentials and includes all the popular, analytically solvable 
potentials. 

The meaning of shape invariance is the following. If the pair of SUSY 
partner potentials 171.2 (x) are similar in shape and differ only in the parameters 
that appear in them, then they are said to be shape invariant. More precisely, if 
the partner potentials Vi . 2(x; al ) satisfy the condition 

V2(x; al) = Vi(x; a2) 	R(ai) 
	

(11.4.4) 

where al is a set of parameters, a2 = f(ai) is a function of al and the remainder 
R(ai) is independent of x, then VI  (x; ai  ) and V2 (x; a l  ) are said to be shape 
invariant. Using this condition and the hierarchy of Hamiltonians, one can obtain 
the energy eigenvalues and eigenfunctions of any shape-invariant potential when 
SUSY is unbroken. 

As can be seen even from our brief discussion, the idea of supersymmetry 
has found many fruitful applications both in the area of high-energy particle 
physics and in non-relativistic quantum mechanics. 
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Remarks on symmetric and self-adjoint operators 

(i) We shall assume that A is a linear operator in the Hilbert space N defined on 
a set DA dense in N: D A  = N. The adjoint operator At to the densely defined 
operator A is defined by the relation 

(At711(P) = (q14) 	 (A.1) 

on a domain 

D At = 171 E N; 1(q14)1 < 	for all 49 e DA). 

This means that (q14) as a function of go is a linear bounded functional on DA, 
which is dense in N. Then by the Riesz theorem there exists an element in 71, 
denoted as Alt/ E N, such that (A.1) holds, i.e. should hold for any 77 E  D  

E  DA.  

(ii) Operator A is symmetric if 

	

(liflA4 9 ) = (A11/149) 	for *, E DA. 	 (A.2) 

Comparing (A.1) and (A.2) we see that A is symmetric iff 

A c At 	 (A.3) 

i.e. A = At on DA, and DA C Dip. An operator A is self-adjoint iff 

A = At 	 (A.4) 

i.e. A is symmetric and DA = DAt. 

Note  I.  The notions of symmetric and self-adjoint operator are equivalent if A 
is a bounded operator, since then one can take DA = N, and of course for a 
symmetric operator DAt = N. 

Note 2. In quantum mechanics many important operators corresponding to 
observables are unbounded. The relevant correspondence is by self-adjoint 
operators. The symmetry guarantees only that the mean values (çoIM are real 
for (p E DA. The self-adjointness guarantees much more, namely that for the 
self-adjoint operator there exists a complete set of generalized eigenstates 

	

Alk = ?oh 
	

real. 	 (A.5) 
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Here  i,li ,  E  N for a discrete point  A  = A.„ of the spectrum and for the continuous 
spectrum 	are distributions on DA. The completeness means that any cp 
can be expanded as 

= E c, '//A,, + f dA. c(X) 1/1).• 	 (A.6) 

This is necessary for the interpretation of quantum mechanics. Mathematically 
more suitable objects as generalized eigenstates are spectral projectors acting on 
(I) as 

A  Extp = f 	Olifx = f 	c(À)*A. 	 (A.7) 
—00 	 —00 

existing for any self-adjoint operator. 
We stress that if one finds a complete set of (generalized) eigenfunctions 

(A.5) of some symmetric operator this means that A is self-adjoint. 

Example 

AÇO = ( 1 10ax (P 

DA = 	E r2 (0, 1),  p absolutely continuous, (p(0) = w(1) = 0 

Note. tp is absolutely continuous if 

IV(fii) —  ÇO(fii)I  <E 	for any 0 < cti  < 13i  <1 
t=.1 

such that 

E(I3t — at) <8. 
1=1 

This guarantees that ax v exists almost everywhere on (0, 1). 

Property I. A is symmetric on (0, 1): 

1 
lço 	=  I  th *(X) a , (X) 

Jo 	1  

1 
= ko*(1)*(1) — tp*(0)*(0) ] + f 	

( 

dx -7ax tp(x )) *(x) 
0 	1 

= (Act) I 1//) 

Property 2. A is not self-adjoint: 

	

Al?? = ax11 DAi = 	E L 2  (0, 1), cp absolutely continuous} 
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(i MI) = f 	n*(x)axlii(x) = 71 [71*(1)1PM — 77*(0)*(0)1 
0 	1 	1 

+  f l  dx ( -7-1  axn(x)) 11/(x) = (A t nilk) 
Jo  1  

since n* (1)*(I) — 	= 0 is satisfied for any  i  E DAt provided that 
E DA, i.e. *(1) =*(0) = 0 . 

Note 3. If B is a symmetric (B c Bt) extension of a symmetry operator A 
(A c At), then 

AcBcBtcB. 

von Neumann (1955) formulated the conditions under which a self-adjoint 
symmetric extension exists, namely 

A c B = Bt c B 

and presented a method for their construction. 
Let n± be the number of linearly independent solutions in 7-1  of the equations 

A60 	±ip 	9t) E 7-1. 	 (A.8) 

The self-adjoint extension exists q n +  = n_. 

Example. Denote by A a  the operator 

1 
A aw = 

Da  = 1991  E £2 (0, 1), 99 absolutely continuous, 99(0) = aq)(1)} . 

Then 

i 
(i/ I Aalk) = f dx  71* (x)1 7 ax 1/1 (x) = 1 7.  [ 71 * ( 1 )*( 1 ) — 11 * (0)*(0)] 

J 	1 	1 

-El l  dx () lfr(x). 
o 	1  

D A t is determined by the condition 

0 = q*(1)w(1)— n*(0)q)(0) 
	

for all 99 E DA 

= (r1*  ( 1 ) — ei" 71*(0))60(0) 

(71* (1) — ea 71*(0)*(0)- 

This is guaranteed for all w(x) provided that 

n(0) = e ia  q(1) 
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as is the case for q); this means that DA ir,  = DA„ and since A C A, we see 

that Ata  = A ct , i.e. we find a 1-parametric family B = Aa , a = (0, 27) for the 
self-adjoint extension of A. 

Note 4. A systematic method for the construction of all self-adjoint extensions 
of symmetric operators with n+  = n_ = n < co was invented by von Neumann 
(1955). 

Denote by K± the n-dimensional subspace generated by the solutions e), 
i = 1, 	, n of (A.8). Then the extensions A u  of A are indexed by the unitary 
operator U : K+ 	K_ and 

DA, 4 ={* = + (p+  + 	E DA, (p+  E 

A u * = Aço ±iV+ — iu49+. 

Note. Our explicit example on construction of the left-adjoint extension fits into 
this general framework. 
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The distinction between finite and infinite numbers of degrees of freedom 
in quantum mechanics 

Let us assume the case of N degrees of freedom, i.e. the states are elements of 
the Hilbert space 

7-1 = G2 (R N , dN x) = 	, dxk) = 	kN  i nk 

i.e. the space of square integrable functions 0 = 0(x1, • • •, xN) in  RN.  This 
space is separable as it has a countable basis 

(Dn i 	PIN  = (Pn i (X1)• • •(Pn N (xn) 

where {cp n (x), n = 0, 1, ...) is a basis in .C2 (RN,dN x ) (e.g. formed by the 
eigenfunctions of the harmonic oscillator). 

Under certain domain assumptions von Neumann (1955) proved that the 
representation of canonical commutation relations (CCRs) 

[X i , X i ] = [Pi , Pj ] = 0 	[X1, 	= iSii 

in a separable Hilbert space, 7-1, is unique up to unitary equivalence. This means 
that if we have another set of operators satisfying 

[X:, ri ] = 	, »= 0 	[X;, 11] = iSii  

then there exists a unitary operator U, such that 

X; = UX ; 	= UP;i1-1 . 

Note 1. This is a very important theorem which tells us that any representation 
of CCRs for N degrees of freedom is unitarily equivalent to the standard one 

Xi (I) =  X (13 
1 

P,11,  = 

i.e. there is basically only one QM of N degrees of freedom. There is a nice 
example from the history of QM. At the very beginning of QM there were 
two independent formulations of QM, one by Heisenberg and the other by 
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Schr6dinger. Later it was shown by Jordan and Pauli that they are equivalent 
and this was a motivation for von Neumann to prove his theorem. 

Note 2. In the case of an infinite number of degrees of freedom, the Hilbert 
space in question is 

= Okc:Ink* 

However, this space is non-separable as its base 

k=1 

is non-countable, even in the case where Hk itself is finite dimensional. For 
example, for an infinite chain of spins any 7-12  is two dimensional, having the 
base formed by (pi (= spin up) and (po  (= spin down). To any base element 

we can assign the real number 

nk = E 
k=1 

from the interval (0, 1) (remember that nk = 0 or 1), but the set (0,1) is non-
countable. Thus, our Hilbert space is non-separable. The von Neumann theorem 
is not applicable, and usually there are many inequivalent representations of 
CCRs (von Neumann (1938), Thirring (1983)). This situation, still mathema-
tically not completely understood, is typical, e.g. for infinite spin systems in 
solid state physics, or in quantum field theory. Fortunately, we are dealing here 
with quantum mechanics of finite numbers of degrees of freedom and can use 
such nice results as, for example, given in the von Neumann theorem. 
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Irreducible representation 
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One-particle states, 259 
Operator 
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matrix representation of, 96 
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self-adjoint, 5, 287 
spin-i,  111 
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spin operator, 111 
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Product, 80 
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matrix, 96 
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infinitesimal, 30, 36 
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representation of, 55 
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generator of, 65, 75 
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structure constants of, 66 
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commutation, 70, 121 
coupling, 160 
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function, 72 
picture, 18 

Schur 
first lemma, 12 
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lemmas, 12 
second lemma, 12 

Self-adjoint, 287 
extension, 289 
operator, 5, 287 

Self-adjoint extension, 289 
construction of, 290 
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Single-valuedness, 229 
S-matrix, 267 
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extension from, 244 
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Spectrum, 281 
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composition rule, 186 
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operator, 77 
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State, 1 
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Statistical 
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Statistics, 48, 228 
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Structure constants, 66 
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normal, 115 
Subspace, 88 
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irreducible invariant, 88 

Subsystem, 78, 126 
Sum, 80 

direct, 80 
rule, 166 
semidirect, 13 

Summation convention, 240 
Superalgebra, 276 
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operator, 279 
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principle, 4 

Superpotential, 279, 283 
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among particles, 275 
broken, 285 
extended, 276 
in particle physics, 275 
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operator, 207 
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Two-particle helicity state, 265 
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Unitary, 21 

representation, 69 
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Wigner, 21 
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theorem, 21 
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