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ABSTRACT

Context. The Earth’s ocean mass is only 2.3 × 10−4 of the whole planet mass. Even including water in the interior, the water fraction
would be at most 10−3 − 10−2. Ancient Mars may have had a similar or slightly smaller water fraction. It has not been clear what
controlled the amount of water in these planets, although several models have been proposed. It is important to clarify the control
mechanism to discuss water delivery to rocky planets in habitable zones in exoplanetary systems, as well as that to the Earth and Mars
in our Solar system.
Aims. Here, we consider water delivery to planets by icy pebbles after the snowline inwardly passes the planetary orbits. We derive
the water mass fraction ( fwater) of the final planet as a function of disk parameters and discuss the parameters that reproduce a small
value of fwater comparable to that inferred for the Earth and ancient Mars.
Methods. We calculate the growth of icy dust grains to pebbles and the pebble radial drift with a 1D model, by simultaneously solving
the snowline migration and dissipation of a gas disk. With the obtained pebble mass flux, we calculate accretion of icy pebbles onto
planets after the snowline passage to evaluate fwater of the planets.
Results. We find that fwater is regulated by the total mass (Mres) of icy dust materials preserved in the outer disk regions at the timing
(t = tsnow) of the snowline passage of the planetary orbit. Because Mres decays rapidly after the pebble formation front reaches the
disk outer edge (at t = tpff), fwater is sensitive to the ratio tsnow/tpff , which is determined by the disk parameters. We find tsnow/tpff < 10
or > 10 is important. Analytically evaluating Mres, we derive an analytical formula of fwater that reproduces the numerical results.
Conclusions. Using the analytical formula, we find that fwater of a rocky planet near 1 au is similar to the Earth, ∼ 10−4 − 10−2, in the
disks with initial disk size of 30-50 au and the initial disk mass accretion rate of ∼ (10−8 − 10−7)M�/r for disk depletion timescale of
∼ a few M years. Because these disks may be median or slightly compact/massive disks, our results suggest that the water fraction
of rocky planets in habitable zones may be often similar to that of the Earth, if the icy pebble accretion is responsible for the water
delivery.

Key words. Planets and satellites: formation, Accretion, Accretion disks

1. Introduction

Earth-size planets are being discovered in habitable zones in exo-
planetary systems. Habitable zones (HZs) are defined as a range
of orbital radius, in which liquid water can exist on the plane-
tary surface, if H2O exist there. However, as long as equilibrium
temperature is concerned, H2O ice grains condense only well
beyond the habitable zones, because the gas pressure of proto-
planetary disks is many orders of magnitude lower than that of
planetary atmosphere and the condensation temperature is con-
siderably lower than that at 1 atm. Hereafter, we simply call H2O
in solid/liquid phase as “water." For the Earth, volatile supply
by the gas capture from the disk is ruled out, because observed
values of rare-Earth elements are too low in the Earth to be con-
sistent with the disk gas capture (e.g., Brown 1949). Therefore,
the water in the Earth would have been delivered from the outer
regions of the disk during planet formation.

One possible water delivery mechanism to the Earth is in-
ward scattering of water-bearing asteroids by Jupiter (e.g., Ray-
mond et al. 2004). If this is a dominant mechanism of water
delivery, the amount of delivered water is rather stochastic and
depends on configurations of giant planets in the planetary sys-

tems. If water is not delivered, a rocky planet in a HZ may not be
able to be an actual habitat. On the other hand, too much water
makes a planet without continents, where nutrients supply may
not be as effective as in the Earth. The ocean of the Earth com-
prises only 0.023 wt.% and such a right amount enables ocean
and continents to coexist. The mantle may preserve water in the
transition zone with a comparable amount of the ocean (e.g.,
Bercovici & Karato 2003; Hirschmann 2006; Fei et al. 2017),
while the core could have H equivalent to 2 wt.% of H2O of the
Earth (Nomura et al. 2014). However, the original water frac-
tion of the Earth would still be very small (∼ 10−4 − 10−2), even
with the possible water reservoir in the interior, because neither
stellar irradiation at ∼ 1 au (Machida & Abe 2010) nor giant
impacts (Genda & Abe 2005) can vaporize the majority of the
water from the Earth’s gravitational potential. Note that it is in-
ferred that Mars may have subsurface water of 10−4 − 10−3 of
Mars mass (e.g., di Achille & Hynek 2010; Clifford et al. 2010;
Kurokawa et al. 2014). From the high D/H ratio observed in the
Venus atmosphere, the early Venus may also have had ocean of
the fraction of 10−5 − 10−3 and lost the H2O vapor through run-
away greenhouse effect (e.g., Donahue et al. 1982; Greenwood
et al. 2018). The order of water fraction looks similar at least
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between the Earth and the ancient Mars. Although the estimated
total mass fraction of water in the Earth and Mars has relatively
large uncertainty ranging from 10−4 to 10−2, the range is still
much smaller than the dispersion predicted by the water-bearing
asteroid collision model, which ranges from 10−5 to 10−1, de-
pending on the formation timing, the history of orbital migra-
tion/eccentricity evolution of gas giant planets and the original
surface density of planetesimals (e.g., Morbidelli et al. 2000;
Lunine et al. 2003; Raymond et al. 2004; O’Brien et al. 2014;
Matsumura et al. 2016). It is not clear if the similar orders of
water fraction between the Earth and Mars is just a coincidence.

Sato et al. (2016) investigated water delivery by icy peb-
ble accretion. The pebble accretion has been proposed as a new
mode of planet accretion (e.g., Ormel & Klahr 2010; Lambrechts
& Johansen 2012). Radiative transfer calculations for viscous
accretion disk models show that the water snowline at ∼ 170 K
may migrate to inside of 1 au with the grain opacity of >

∼ mm
size, when the disk accretion rate is Ṁg <

∼ 10−8M�/y (e.g., Ga-
raud & Lin 2007; Min et al. 2011; Oka et al. 2011), which is
a typical value of Ṁg of classical T-Tauri stars (Hartmann et al.
1998). After the snowline inwardly passes a planetary orbit, icy
pebbles can be accreted by the planet. In situ ice condensation
near the planet orbit is unlikely, because the disk gas there was
once in outer region before it migrates to the inner region and icy
components have been already condensed to icy grains and sub-
tracted in the outer region (Morbidelli et al. 2016; Sato et al.
2016). Sato et al. (2016) calculated the time evolution of icy
pebble mass flux, the solid surface density in the disk, and the
growth of a hypothetical planet at 1 au by icy pebble accretion
with a 1D model. They found that the pebble accretion is so effi-
cient that the water fraction of the planet rapidly increases after
the snowline passage. They assumed a static disk and artificially
set the timings of snowline passage and removal of the disk that
truncates pebble accretion. They found that the water mass frac-
tion of the final planet is very sensitive to these timings and it
is zero or more than 0.1 in many cases. The modest water mass
fraction of 10−4 − 10−2 is possible only if the disk is compact
(< 100 au) and the snowline passage at 1 au later than 2–4 My
after icy dust growth starts, which could be a narrow window of
the parameters.

The sensitive dependence of the final water fraction requires
that the snowline migration and the decay of the icy dust sur-
face density must be consistently calculated in an evolving disk.
Here we use the disk evolution model based on the self-similar
solution for accretion disks with constant viscosity parameter
α (Lynden-Bell & Pringle 1974)1. The snowline migration, the
disk gas decay, and growth/drift of pebbles and the associated
evolution of the icy dust surface density are simultaneously cal-
culated by a 1D disk evolution model. The growth and drift of
pebbles are tracked using the single-size approximation formu-
lated by Ormel (2014) and Sato et al. (2016), which enables us to
perform fast calculations and survey broad ranges of parameters.
Using the numerical results, we will also derive an analytical for-
mula for the final water mass fraction of the planets determined
by the disk model parameters.

In section 2, we describe the calculation model that we used.
In section 3, the results of numerical simulation are shown. We
derive the semi-analytical formula that successfully reproduces
the numerical results in section 4. In section 5, using the ana-
lytical formula, we study the dependence of the planetary water
fraction on the disk and pebble accretion parameters, and discuss

1 The wind-driven disk accretion that is recently proposed (e.g., Suzuki
et al. 2016; Bai et al. 2016) is commented on in section 2.1

the disk parameters to realize the water fraction of 10−4 − 10−2,
which corresponds to the present Earth and ancient Mars. We
will show that the disk parameters are not in a narrow window
and are rather realized in modest disks. Sections 6 and 7 are dis-
cussion and summary.

2. Method

2.1. Gas disk model

In general, an accretion disk consists of an inner region where
the viscous heating is dominated and an outer region where irra-
diation from the host star is dominated. According to Ida et al.
(2016), we set the disk mid-plane temperature for the viscous-
heating dominated region (Tvis) and the irradiation dominated
region (Tirr) to be

Tvis ' 130
(
α

10−2

)−1/5
(

M∗
M�

)3/10 (
Ṁg

10−8M�/y

)2/5 ( r
1au

)−9/10
K,

(1)

Tirr ' 130
(

L∗
L�

)2/7 (
M∗
M�

)−1/7 ( r
1au

)−3/7
K, (2)

where r is the distance from the host star, Ṁg is the disk gas
accretion rate, which is almost independent of r except in outer-
most region, L∗ and M∗ are respectively the luminosity and mass
of the host star, and L� and M� are their values of the Sun. We
adopt the alpha prescription for the disk gas turbulent viscosity
(Shakura & Sunyaev 1973), ν ' αh2

gΩ, where hg is the disk gas
scale height, defined by hg = cs/Ω, cs and Ω are respectively the
sound velocity and Kepler frequency, and α (< 1) is a parameter
to represent the strength of the turbulence. We here use slightly
lower Tirr than that in Ida et al. (2016), assuming lower opacity
with mm-sized dust grains (Oka et al. 2011), because we con-
sider relatively inner disk regions near the snowline and pebbles
there are those which have grown in outer regions and drifted in-
ward. If micron-sized grains are assumed, the same temperature
is realized with about ten times smaller Ṁg.

One fundamental assumption behind Equation (1) is that the
rate of viscous heating per unit volume scales linearly with the
gas density, and is therefore highest at the midplane. This as-
sumption is questioned by magnetohydrodynamic (MHD) mod-
els of protoplanetary disks, which show that accretion heating
dominantly takes place on the disk surface (Hirose & Turner
2011). Recently, Mori et al. (2019, submitted) investigated this
issue using a series of MHD simulations including all non-
ideal MHD effects, finding that the midplane temperature de-
rived from the simulations is generally lower than that from
Equation (1) because the heat generated near the disk surface
can easily be lost through radiation. Mori et al. (2019) also find
that MHD disk winds, which are not included in our disk model,
take away ≈ 30% of the magnetic energy that would be avail-
able for disk heating if the winds were absent. Although there
are disk evolution models accounting for the mass and angular
momentum loss due to MHD disk winds (e.g., Armitage et al.
2013; Suzuki et al. 2016; Bai et al. 2016; Hasegawa et al. 2017),
none of them take into account the two effects mentioned above.
For this reason, we opt to adopt the more classical viscous disk
model in this study. We note that the viscous accretion model
will serve as a good approximation of real protoplanetary disks if
some hydrodynamical instabilities drive turbulence near the mid-
plane (see Lyra & Umurhan 2018; Klahr et al. 2018, for recent
reviews on hydrodynamic instabilities of protoplanetary disks).
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The gas disk aspect ratios corresponding to Eqs. (1) and (2)
are

hg,vis

r
' 0.022

(
α

10−2

)−1/10
(

M∗
M�

)−7/20 (
Ṁg

10−8M�/y

)1/5 ( r
1au

)1/20
,

(3)

hg,irr

r
' 0.022

(
L∗
L�

)1/7 (
M∗
M�

)−4/7 ( r
1au

)2/7
, (4)

where hg,vis and hg,irr are the gas scale hight in the viscous-
heating dominated and irradiation dominated regions, respec-
tively. Hereafter, we perform simulations with L∗ = L� and
M∗ = M�, while we retain their dependences in the formulas.
The disk region is viscous-heating dominated if Tvis > Tirr. Oth-
erwise, the irradiation dominates. The transition radius between
the viscous-heating and irradiation dominated regions is given
by

rvis/irr ' 1
(
α

10−2

)−14/33
(

L∗
L�

)−20/33 (
M∗
M�

)31/33 (
Ṁg

10−8M�/y

)28/33

au.

(5)

Defining the snowline by the location at ∼ 170 K, rsnow '

max(rsnow,vis, rsnow,irr), where

rsnow,vis ' 0.74
(

M∗
M�

)1/3 (
α

10−2

)−2/9
(

Ṁg

10−8M�/y

)4/9

au, (6)

rsnow,irr ' 0.53
(

L∗
L�

)2/3 (
M∗
M�

)−1/3

au. (7)

As Ṁg decreases with time, the snowline migrates inward in the
viscous-heating dominated region until rsnow,vis becomes equal
to rsnow,irr (Ṁg >

∼ 5 × 10−9M�/y for α = 10−2). For calculating
the evolution of the pebble flux, it may be enough to set up a
static disk distribution as Sato et al. (2016) did. However, in or-
der to describe the snowline migration and disk gas depletion
(which determines timings of start and termination of the icy
pebble supply), we need an evolving gas disk model.

Specific orbital angular momentum is proportional to a
square root of orbital radius r and most of disk mass exists in the
outer irradiation dominated region. Angular momentum trans-
fer in the entire disk that determines the snowline migration and
the entire disk gas depletion is regulated by the evolution of the
outer disk region. The region near the snowline is not a hot re-
gion where the viscous heating is significantly higher than the
irradiation heating (Eqs. 5 and 6). So, for our purpose, the en-
tire disk evolution model can be approximated by a irradiation
dominated disk. In the irradiation dominated disk, the viscosity
ν ∝ αTr3/2 ∝ αr15/14 (Eq. 2). Because it is similar to the disk
with the viscosity ν ∝ r with a constant α, we adopt the self-
similar solution with ν ∝ r by Lynden-Bell & Pringle (1974) for
the dynamical evolution of the entire disk, while we take into ac-
count the snowline evolution regulated by time evolution of the
viscous heating (Eq. 6).

In the self-similar solution, well inside the initial character-
istic disk size (rd,0), beyond which the surface density decays
exponentially, the disk accretion rate is given as a function of
time by

Ṁg ' 3πΣgν ' Ṁg,0 t̃ −3/2, (8)

where Σg is the disk gas surface density, ν is the effective vis-
cosity at r, t̃ = 1 + t/tdiff , tdiff = r2

d,0/3ν0 = rd,0r/3ν (where ν0

is the viscosity at rd,0), and Ṁg,0 is the initial disk accretion rate,
respectively. Inversely, the time evolution of the surface gas den-
sity Σg is given by

Σg '
Ṁg,0

3πν
t̃ −3/2 exp

(
−

r
t̃ rd,0

)
, (9)

where we included the time-dependent exponential taper in the
full form of the self-similar solution, because we will need to
evaluate the total disk mass. Because ν ∝ r, Σg ∝ 1/r for r �
rd,0.

We add the effect of the photoevaporation with the rate Ṁpe,
although the standard self-similar solution does not have such
a term (also see section 3.1). We are concerned with the region
near the snowline. We assume that r � rd,0 and the photoevapo-
ration occurs mainly in the outer region with the constant rate of
Ṁpe. Accordingly, we set

Ṁg = Ṁg,0 t̃ −3/2 exp
(
−

r
t̃ rd,0

)
− Ṁpe, (10)

Σg '
Ṁg,0 t̃ −3/2 exp

(
− r

t̃ rd,0

)
− Ṁpe

3πν
. (11)

While we use Eqs. (10) and (11) for the numerical simula-
tion, we use approximate forms, which are easier to be ana-
lytically treated, for derivation of analytical formulas, as fol-
lows:

Ṁg = Ṁg,0 t̃ −3/2 − Ṁpe, (12)

Σg '
Ṁg,0 t̃ −3/2 − Ṁpe

3πν
exp

(
−

r
t̃ rd,0

)
. (13)

Because Ṁg and Σg are overestimated with Eqs. (12) and (13)
only in the exponential tail regions, the approximation does
not introduce significant errors in the analytical formulas. 2

Integrating Eq. (13), the disk mass at t is given by

Mg(t̃) =

∫
2πrΣg(t̃) dr = 2 t̃ tdiff(Ṁg,0 t̃ −3/2 − Ṁpe), (14)

where we used r/3ν = tdiff/rd,0. The above equations show that
the disk accretion rate Ṁg and the disk gas surface density Σg

quickly decay when Ṁg decreases to the level of Ṁpe. This pho-
toevaporation effect avoids long-tail existence of disk gas signif-
icantly longer than a few My.

Here, we describe the disks with the parameters, tdiff , Ṁg,0,
Ṁpe and rd,0. The disk depletion timescale (tdep) and the disk
gas accretion rate onto the host star (Ṁg) are better constrained
by observations than the other parameters: tdep ∼ 106 − 107 y
and Ṁg ∼ (10−9 − 10−7)M�/y for solar-type stars (e.g., Haisch
et al. 2001; Hartmann et al. 1998; Williams & Cieza 2011; Hart-
mann et al. 2016). We focus ourselves on the systems around
solar-type stars. We assume that angular momentum transfer by
turbulent viscous diffusion is a major mechanism for the disk
depletion, rather than photoevaporation. We identify tdep as tdiff .
We use Ṁg,0 may be slightly higher than the observed aver-
aged values of Ṁg, because we want to set the snowline be-
yond the orbits of planetary embryos. We perform simulations

2 In the published version in A&A, we started from Eqs. (12) and
(13) without explaining the approximation from Eqs. (10) and (11).
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with tdiff = 106 y and 3 × 106 y, and Ṁg,0 = 3 × 10−8M�/y and
10−7M�/y. Although rd,0 is not observationally well constrained,
Sato et al. (2016) showed that this parameter is the most impor-
tant for the time evolution of the pebble mass flux. For rd,0, we
use rd,0 = 30 au, 100 au, and 300 au, which correspond to the
range of the observationally inferred disk size (Williams & Cieza
2011). We adopt the photoevaporation rate Ṁpe = 10−9M�/y and
10−8M�/y.

The disk diffusion timescale is

tdiff '
r2

d.0

3ν0
=

r1rd.0

3ν1
=

r2
1

3αh2
g,1ΩK,1

rd.0

r1

=
1

6πα

(
r1

hg,1

)2 rd.0

r1
y ' 102α−1

( rd.0

1 au

)
y, (15)

where subscript "1" expresses values at 1au, νd.0 = ν(rd.0) is
viscous coefficient at the outer edge of the disk, and we used
ν = ν1 · (r/r1). From this equation, α is calculated as

α ' 10−2
(

tdiff

106 y

)−1 ( rd.0

100 au

)
. (16)

Note that the value of α that we use in our simulations depends
on the choice of the parameters tdiff and rd,0, but it is within a
reasonable range, α = 10−3 − 3 × 10−2. In our formulation for
disks, we prefer the setting of the observable valuables, tdiff and
rd,0, within the observationally inferred ranges to a simple as-
sumption of a constant α.

In Figure 1, we show time evolution of the transition radius
rvis/irr, the snowline rsnow, the disk characteristic radius t̃rd,0, and
the pebble formation front rpff , which will be derived in section
3.1 as Eq. (38) , for six typical parameters of disk evolution. In
general, rpff in magenta lines evolves faster than t̃rd,0 in green
lines and the pebble flux quickly decays after rpff exceeds t̃rd,0,
as we will discuss in section 3.1. The snowline rsnow in blue lines
shrinks with time as long as it is in the viscous-heating region
(inside of rvis/irr in red lines).

2.2. Dust/pebble evolution model

For calculating the pebble mass flux, we adopt the method with
the single size approximation formulated by Ormel (2014) and
Sato et al. (2016). The size distribution of icy particles obtained
by a full-size simulation is generally peaky at some size and the
peak size depends on r. In the single size approximation, icy dust
particles have a single size that depends on r, corresponding to
the peak size.

Here we briefly summarize the dust evolution model (for
more details, see Sato et al. 2016). We set the initial particle sur-
face density as Σp = Z0Σg. We adopt Z0 = 0.01. The evolution of
the dust/pebble surface density (Σp) and the peaked mass of the
particles (mp) are calculated by the equation,

∂Σp

∂t
+

1
r
∂

∂r
(rvr,dΣp) = 0, (17)

∂mp

∂t
+ vr,d

∂mp

∂r
=

2
√
πR2

p∆vpp

hp
Σp, (18)

where Rp = (3mp/4πρint)1/3 is the particle radius, ρint is the in-
ternal density of icy particles, vr,d and ∆vpp are the radial and
relative velocities of the particles at the midplane, respectively,

and hp is the scale height of the particles given by (e.g. Youdin
& Lithwick 2007)

hp = hg

(
1 +

St
α

1 + 2St
1 + St

)−1/2

. (19)

The Stokes number define by St = tsΩ is an important dimen-
sionless number in pebble growth and radial drift, where ts is
the stopping time which represents the timescale of particles’s
momentum relaxation due to gas drag, given by

ts =


ρintRp

ρgvth
(Rp <

9
4λmfp; Epstein regime)

4ρintR2
p

9ρgvthλmfp
(Rp >

9
4λmfp; Stokes regime)

(20)

where vth =
√

8kBT/πmg is the thermal velocity, λmfp is the
mean free path of gas particles, and mg is gas molecule mass.
The mean free path is expressed by λmfp = mg/(σmolρg) where
σmol = 2.0 × 10−15cm2 is the molecular collision cross section.

Relative velocity of dust particles ∆vpp is given by

∆vpp =

√
(∆vB)2 + (∆vr)2 + (∆vφ)2 + (∆vz)2 + (∆vt)2, (21)

where ∆vB,∆vr,∆vφ,∆vz, and ∆vt are the relative velocities in-
duced by Brownian motion, radial drift, azimuthal drift, verti-
cal settling, and turbulence, respectively (for detailed expres-
sions, see Sato et al. (2016)). We assume perfect sticking for
∆vpp < 30m/s (otherwise, we set the right hand side of Eq. (18)
to be zero).

The radial drift velocity of dust particles is

vr,d = −
2St

1 + St2
ηvK, (22)

where vK = rΩK is the Kepler velocity and η is a deviation of
gas rotation velocity from Kepler velocity, which we set

η = 1.1 × 10−3
( r
1 au

)1/2
. (23)

Because the numerical simulation shows St >
∼ 0.1 for migrating

pebbles (section 3.1), we neglected the effect of the disk gas ac-
cretion in Eq. (22). The radial drift timescale is

tdrift ≡
r
|vr,d|

'
1

2ηSt Ω
' 7 × 104

(
St
0.1

)−1 ( r
100 au

) ( M∗
M�

)−1/2

y.

(24)

The pebble mass flux through the disk is given by

Ṁpeb = 2πrΣp |vr,d| ' 4πSt ηr2ΣpΩ, (25)

where Σp is the pebble surface density in the pebble migrating
region and we assumed St2 � 1.

2.3. Pebble accretion onto planets

We use the same formulas as Sato et al. (2016) for the pebble
accretion rate onto planets, assuming that the planets are already
large enough for pebble accretion in the "settling regime" (e.g.,
Ormel & Klahr 2010; Guillot et al. 2014). Ormel & Klahr (2010)
derived the cross section of pebble accretion as

πb2
set ' 4πSt

GMpl

Ω∆v
, (26)
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Fig. 1. The time evolution of the transition radius rvis/irr (Eq. 5) with the red lines, the snowline rsnow = max(rsnow,vis, rsnow,irr) (Eqs. 6 and 7) with
the blue lines, the disk characteristic radius t̃rd,0 with the green lines, and the pebble formation front rpff (Eq. 38) with the magenta lines, for various
disk evolution parameters. The parameters, rd,0 in unit of au and Ṁg,0 in unit of M�/y, are labeled on the individual panels. The other parameters
are the same for the four panels: Ṁpe = 10−9 M�/y and tdiff = 106y.

where Mpl is the planetary embryo mass and ∆v is the relative
velocity between the embryo and pebbles. The 3D pebble accre-
tion rate Ṁpl onto the planetary embryo is given by

Ṁpl ' πb2
setρp∆v ' πb2

set
Σp
√

2πhp
∆v

'
r

√
2πhp

η−1 Mpl

M∗
Ṁpeb ≡ ffltṀpeb, (27)

where ρp is the spatial mass density of the pebbles and we used
Eqs. (25) and (26). The parameter fflt expresses the mass fraction
of the accretion flow onto the planet in the pebble flux through
the disk before the accretion, which is called a "filtering factor."
Note that fflt does not directly depend on ∆v, bset, and St.

When bset > hp, the accretion is 2D and πb2
setρp in Eq. (27) is

replaced by 2bsetΣp. Accordingly, a complete filtering factor is

fflt = min

 2r
πbset

,
r

√
2πhp

 η−1 Mpl

M∗
. (28)

While fflt depends on bset in 2D mode, it still does not depend di-
rectly on St and ∆v. In our simulations, we set the planetary em-
bryos with the masses and semimajor axises identical to Venus,
Earth and Mars (eccentricities are set to be zero). In these cases,
the relative velocity is given by ∆v = (3/2)bsetΩ ("Hill regime").
Substituting this into Eq. (26),

bset ≈ 2St1/3
(

Mpl

3M∗

)1/3

r. (29)

In the numerical simulations, we used a more general for-
mula including "Bondi regime" and the cut-off parameter
(exp[−(St/2)0.65]) for large St cases (Ormel & Kobayashi 2012).
Note that the dependence on ∆v cancels in the accretion rate both
in 2D and 3D cases and Ṁpl does not directly depend on bset and
St in the 3D case. For a small planet, the accretion is in 3D mode.
The accretion becomes 2D mode when

Mpl > M2D3D ' 3
(

2
π

)3/2

St−1
(

St
α

)−3/2 (
hg

r

)3

M∗

' 1.7
(

M∗
M�

)−5/7 (
St
0.1

)−5/2 (
α

10−2

)3/2 ( r
1au

)6/7
M⊕.

(30)

The filtering factor is given by

fflt '



0.017
(

M∗
M�

)−1 (
α

10−2

)−1/2
(

hg/r
0.02

)−1 (
St
0.1

)1/2 (
Mpl

0.1M⊕

) ( r
1au

)−1/2

[Mpl < M2D3D; 3D]

0.040
(

M∗
M�

)−2/3 (
St
0.1

)−1/3 (
Mpl

0.1M⊕

)2/3 ( r
1au

)−1/2

[Mpl > M2D3D; 2D],
(31)

where we used Eq. (23).
We take into account the decrease in dust surface density and

pebble flux due to the pebble accretion onto the planets. After
the snowline passage, Eq. (17) is rewritten in the grid where the
planets exist, as

∂Σp

∂t
+

1
r
∂

∂r
(rvr,dΣp) +

Ṁpl

2πr∆r
= 0, (32)

where ∆r is the radial grid size. After the icy pebble accretion
onto the planet starts, the pebble mass flux decreases discontin-
uously at the planet orbits, according to the accretion onto the
planets.

2.4. Simulation parameters

The parameters for our simulations are the initial disk character-
istic size rd,0, the diffusion timescale of the disk tdiff , the initial
disk gas accretion rate Ṁg,0, and the photo-evaporation rate Ṁpe.
As we explained in section 2.1, the other disk parameters are
calculated by these parameters. We perform simulations with

1) Ṁg,0 = 3 × 10−8, 10−7M�/y,
2) Ṁpe = 10−9, 10−8M�/y,
3) rd,0 = 30, 100, 300 au,
4) tdiff = 106, 3 × 106 y.
The initial total gas disk mass is given by Eq. (9) as

Mg,0 = 2tdiff (Ṁg,0 − Ṁpe)

= 0.06
(

tdiff

106y

) (
Ṁg,0 − Ṁpe

3 × 10−8M�/y

)
M�, (33)

which ranges from 0.06M� to 0.6M� with the above parameters.
Because we start with relatively large Ṁg,0, the initial disk mass
is relatively large. As we will show in section 4, initially massive
disks tend to produce dry planets, while small mass disks tend to
produce water-rich planets.

The initial dust surface density distribution is simply given
by 0.01 Σg,0. With the gas disk evolution, we simultaneously cal-
culate the pebble growth from the dust disk and its migration.
The dust disk is depleted by the formation and radial drift of
pebbles.

We set Venus, Earth and Mars analogues in circular orbits
with the same masses and the semimajor axises as the current
Venus, Earth and Mars in Solar system. For the results presented
here, we assume M∗ = M� and L∗ = L�, while we retain the
dependence on M∗ and L∗ in the equations. For other-mass stars,
the dependence of Ṁg,0, Ṁpe, rd,0 and tdiff on the stellar mass also
have to be considered.

3. Numerical Results

3.1. Icy grain/pebble evolution

We calculate the growth and radial drift of icy grains and pebbles
following the method by Sato et al. (2016), which is described
in section 2.2. The evolution of icy particles (grains and peb-
bles) found by simulations of Sato et al. (2016) is summarized
as follows:
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1. The growth timescale of a particle with mass mp is well ap-
proximated by the simple formula with ∆vpp ' ∆vt in Ep-
stein regime (also see Takeuchi & Lin 2005; Brauer et al.
2008) as

tgrow =
mp

dmp/dt
'

4
√

3π
Z−1

0 Ω−1, (34)

where Z0 is the initial particle-to-gas ratio in the disk. The
timescale of growth from µm-size grains to pebbles by sev-
eral orders of magnitude in radius is

tgrow,peb ∼ 10 tgrow

' 2 × 105
( Z0

10−2

)−1 ( r
100 au

)3/2
(

M∗
M�

)−1/2

y. (35)

2. The drift timescale becomes shorter as mp (equivalently,
Stokes number St) increases (Eq. 24), while the growth
timescale is independent of mp (Eq. 34). When tdrift becomes
smaller than tgrow, the particle drift effectively starts and Σp
starts being sculpted. From Eqs. (24) and (34) with Z0 re-
placed by the particle-to-gas ratio of drifting pebbles (Z), the
equilibrium Stokes number of drifting pebbles is

St ∼

√
3π

8 η
Z ∼ 0.03

( Z0

10−2

) ( r
100 au

)−1/2
, (36)

where we used a typical value of the solid-to-gas ratio of mi-
grating pebble, Z ∼ 0.1Z0 (Ida et al. 2016), where we adopt
Z0 is the initial particle-to-gas ratio and adopt Z0 = 0.01 for
a nominal value.

3. The sensitive r-dependence of tgrow,peb results in ”an inside-
out formation" of pebbles; formation is earlier in inner region
and the formation front migrates outward (also see Brauer
et al. 2008; Okuzumi et al. 2012; Birnstiel et al. 2012; Lam-
brechts & Johansen 2014). After the pebble formation front
reaches the disk outer edge, Σp rapidly decays uniformly in
the disk, because the supply from further outer regions to the
outermost region is limited.

As we will show below, the time (tpff) at which the pebble
formation front reaches the disk outer edge is a very important
parameter. The timescale for the pebble formation front to reach
the radius of rd,0 is given with Eq. (35) by

tpff ∼ 2 × 105
( Z0

10−2

)−1 ( rd,0

100 au

)3/2
(

M∗
M�

)−1/2

y. (37)

In other words, the pebble formation front radius is given as a
function of time (t) by

rpff ∼ 100
(

t
2 × 105y

)2/3 ( Z0

10−2

)2/3 (
M∗
M�

)1/3

au. (38)

The timescale tpff is determined only by rd,0 in the disk param-
eters. It is independent of the other disk parameters such as tdiff
and Ṁg,0.

Once the formation front reaches rd,0, the supply of solid
materials from further outer regions is limited. Accordingly,
the pebble formation and drift from there results in the decay
of Σp near rd,0. The solid surface density at r < rd,0 also de-
cays, because it is contributed from drifting pebbles formed near
the formation front. Thus, the decay rate of Σp for t > tpff is
regulated by the pebble growth near rd,0, and is approximated

as ∂Σp/∂t ∼ −Σp/tpff ' −(
√

3π/40)(Σ2
p/Σg)Ω. From this re-

lation, Z = Σp/Σg ∝ t−1 at t > tpff , which is approximated
as Z ∝ (1 + t/tpff)−1. However, the numerical results show a
faster decrease due to the effect of finite rd,0 (Sato et al. 2016).
The numerically obtained time evolution of Z at r = rd,0 with
rd,0 = 30, 100 and 300 au is shown in Fig. 2. For rd,0 = 30, 100
and 300 au, tpff ' 3.3× 104, 2.0× 105 and 1× 106 y, respectively
(Eq. 38). We fit the numerical results as

Z ∝ (1 + t/tpff)−γ, (39)

where

γ = 1 + γ2(300 au/rd,0),
γ2 ∼ 0.15. (40)

Because tpff
>
∼ tdiff and the finite rd,0 does not affect at r >

∼ 300 au
(Eq. 38), the rd,0-dependence as a factor of (300 au/rd,0) is rea-
sonable. Although the value of γ2 may include an uncertainty
due to the disk model and the single-size approximation, we will
show in section 5 that the predicted function of the water fraction
depends only weakly on γ2.

Note that we assume that collisions between icy pebbles al-
ways result in sticking and the pebble size is determined by the
drift limit. If the pebble growth is limited by bouncing collisions
or collisional fragmentation, St is determined by the threshold
velocity for bouncing or fragmentation, which is lower than the
value in Eq. (36), and Equation (38) depends on the threshold St.
It is a widely accepted idea that pebbles made of H2O ice grains
have a high sticking threshold velocity (Wada et al. 2009; Gund-
lach & Blum 2015), but this will not be the case if the grains
are mantled by poorly sticky CO2 (Musiolik et al. 2016). Recent
studies have found that this CO2-induced fragmentation can have
important implications for the growth of pebble-accreting proto-
planets (Johansen et al. 2018) and for the observational appear-
ance of protoplanetary disks (Okuzumi and Tazaki 2019, sub-
mitted). How the bouncing and fragmentation barriers affect the
water delivery to rocky planets will be studied in future work.

3.2. Water fraction

With the simulated pebble mass flux Ṁpeb, we calculated the
growth rate of a planet due to icy pebble accretion (Ṁpl). The
filtering factor is defined by fflt = Ṁpl/Ṁpeb. When the snowline
passes each planetary orbit, we switch on the icy pebble accre-
tion onto the planet. We assume that the 1:1 ratio of rocky to icy
fraction of icy pebbles. We set the rocky planets with the Venus,
Earth, and Mars masses when the snowline passes 0.72 au, 1.0
au and 1.52 au, respectively. As we will show, the water fraction
of final planets is insensitive to Mpl,0.

After the snowline passes a planetary orbit, icy pebble accre-
tion starts. When the cumulative accreted mass by icy pebbles is
∆Mpl, the total ice mass in the planet is (1/2)∆Mpl. The water
fraction of the planet at the mass Mpl is given by

fwater =
(1/2)∆Mpl

Mpl
=

1
2

∆Mpl

Mpl,0 + ∆Mpl
, (41)

where Mpl,0 is the planetary mass at the snowline passage, Mpl =
Mpl,0 + ∆Mpl. If ∆Mpl becomes much larger than Mpl,0, the water
fraction saturates to fwater ' 1/2.

We repeat the simulations with different disk parameters,
tdiff , Ṁg,0, rd,0, and Ṁpe, to investigate how the water fraction
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Fig. 2. The time evolution of Z = Σp/Σg obtained by the numerical simulation with Ṁg,0 = 10−7 M�/y, Ṁpe = 10−9 M�/y, and tdiff = 106y. The
magenta, blue, and green solid lines are Z obtained at rd,0 by the numerical results of with rd,0 = 30, 100 and 300 au. The dashed lines are gradients
for individual cases given by Eqs. (39) and (40), where the absolute values of Z are arbitrary.

of the final planets depends on these parameters and which val-
ues of the parameters produce the water fraction consistent with
the terrestrial planets in the Solar system.

Figure 3 shows the time evolution of water fraction for
the models with tdiff = 106y, Ṁg,0 = 10−7M�/y, and Ṁpe =

10−9M�/y. The left, middle and right panels show the results of
rd,0 = 30, 100, and 300 au, respectively. We first explain general
evolution pattern of the water fraction. In all cases, the water
fraction rapidly increases once the snowline passes the plane-
tary orbit and the icy pebble accretion starts. It is saturated to its
asymptotic value, even sufficiently before completion of disk gas
depletion. From Eqs. (6) and (16),

rsnow,vis ' 2.1
(

M∗
M�

)1/3

×

( rd,0

100 au

)−2/9
(

tdiff

106 y

)2/9 (
Ṁg

10−7M�/y

)4/9

au. (42)

At t = 0 with Ṁg,0 = 10−7M�/y, the snowline is located out-
side Mars’ orbit. As shown in Fig. 1, the snowline migrates in-
ward and passes through the planetary orbits one after another as
the disk accretion rate Ṁg decreases with time as Eq. (12). The
snowline passage always occurs in the order of Mars at 1.52 au,
Earth at 1.0 au, and Venus at 0.72 au. Because the initial rsnow,vis
is closer to the planetary orbits for larger rd,0, the snowline pas-
sage is earlier for larger rd,0, as Figure 3 shows. The water frac-
tion is saturated when Σp and Ṁpeb significantly decay. The rapid
decay starts at t ∼ tpff and Eq. (35) shows that tpff is as short as
∼ a few × 105 y for rd,0 = 100 au. Even for rd,0 = 300 au, the
decay starts at tpff ' 106 y before disk depletion. Therefore, the
evolution of the water fraction evolution is mainly reduced by
the consumption of icy dust grain reservoir rather than by the
disk gas depletion.

Figure 3 shows a clear trend that the final water fraction is
lower for smaller rd,0. This trend is explained by a comparison
between the snowline passage time tsnow and tpff , as follows. The
water fraction due to the pebble accretion rapidly increases until
Σp decays by more than an order of magnitude, which corre-
sponds to, say, t > 10 tpff (Eq. 39). If tsnow > 10 tpff , fwater can
be � 1. While tpff is smaller for a smaller rd,0 (Eq. 35), tsnow is
larger (Eq. 42). The latter implies that the disk is warmer for a
smaller rd,0. The viscous heating increases as the blanketing ef-
fect by optical depth (∝ Σg) increases. In Fig. 3, Ṁg,0 and tdiff
are fixed. Smaller rd,0 means smaller α (Eq. 15) and larger Σg
(Eq. 9), resulting in a warmer disk. Thereby, the final water frac-
tion is lower for smaller rd,0.

We examine the condition of tsnow/tpff > 10 or < 10 in more
details. In the case of rd,0 = 30 au, tpff ' 4 × 104 y (Eq. 35)
and tsnow is identified by the timing at which fwater starts rapid
increase, which is ' 1 × 106 y, 2.5 × 106 y and 5 × 106 y for the
Mars, Earth and Venus analogues, respectively (the left panel
of Figure 3). Because tsnow > 10 tpff in this case, fwater ∼ 10−2

even for the outermost Mars analogue. For the Earth and Venus
analogues, fwater is further smaller. In the case of rd,0 = 300 au,
tpff ' 1×106 y (Eq. 35) and tsnow ' 1×105 y, 1×106 y and 2×106

y for Mars, Earth, and Venus analogues, respectively (the right
panel of Figure 3). Because tsnow < 10 tpff , fwater ∼ 1/2 for all of

Mars, Earth and Venus. In the middle panel of Figure 3, rd,0 =
100 au and tpff ' 2 × 105 y (Eq. 35). In this case, tsnow < 10 tpff

and fwater � 1 for the Venus analogue, while tsnow > 10 tpff and
fwater ∼ 1/2 for the Mars analogue.

The condition of tsnow/tpff > 10 or < 10 also explains other
results of the final water fraction of planets, because this condi-
tion represents how much icy materials remain at the snowline
passage. (In section 5, we will revisit this condition.) Figure 4 is
the time evolution of water fraction of tdiff = 106y (the left panel)
and tdiff = 3 × 106y (the right panel), respectively. The other
disk parameters are the same. For both cases, 10 tpff ' 2 × 106

y (Eq. 35). The snowline is already inside Mars’ orbit from the
beginning (t = 0) of the calculations, that is, tsnow = 0, which
results in fwater ' 1/2 for the Mars analogue. The snowline pas-
sage time tsnow is smaller than 10 tpff only for the Venus analogue
in the case of tdiff = 106y (the left panel), and for both the Earth
and Venus analogues in the case of tdiff = 3 × 106y (the right
panel). This explains the results in Fig. 4.

Figure 5 shows the results of Ṁg,0 = 3 × 10−8M�/y (left)
and 10−7M�/y (right) with rd,0 = 100 au, tdiff = 106y, and Ṁpe =

10−9M�/y. Again, 10 tpff ' 2×106 y for both cases. Smaller Ṁg,0

with the fixed tdiff = 106y means earlier passage of the snowline,
resulting in a lower water fraction. Figure 6 shows the results
of Ṁpe = 10−9M�/y (left) and Ṁpe = 3 × 10−9M�/y (middle)
and Ṁpe = 10−8M�/y. With larger Ṁpe, the outer disk region
is truncated at shorter radius. The disk truncation reduces the
reservoir of icy materials, resulting in a lower water fraction, for
the planets (the Earth and Venus analogues) with tsnow >

∼ 10 tpff '

2 × 106 y.
In section 4, we will derive a semi-analytical formula to pre-

dict the water fraction of planets after disk depletion. We will
show that the total mass (Mres) of the icy dust materials pre-
served in the disk determines the final water fraction, because
they eventually drift to the inner regions and pass the planetary
orbits3. Since our gas disk model is analytical, we can analyti-
cally evaluate tsnow. We already know the analytical expression
of tpff given by Eq. (38) is a good approximation. We also semi-
analytically derived how the icy grain surface density evolves
as Eq. (39). Synthesis of these results enables us to derive the
semi-analytical formula for fwater.

Finally we point out that fwater is higher in the order of Mars,
Earth, and Venus analogues according to the snowline passage
timing, except for the fully saturated cases where fwater ∼ 1/2
for all the planets. We will show that the final water fraction is
insensitive to the embryo mass. The timing is the most important
factor for fwater.

In the next section, we show that the derived semi-analytical
expression of fwater reproduces the numerical results. Using the
analytical expression, we will clarify the dependence of the fi-
nal water fraction on the disk parameters and pebble accretion
parameters such as the initial planetary mass and Stokes number
of accreting pebbles in section 5. We will also survey the disk
parameter range that may reproduce fwater comparable to that of
the terrestrial planets in our Solar system.

3 The grains at r > 300 − 500 au would not undergo radial drift suf-
ficiently, because their growth timesacle is longer than tdiff . We here
consider disks with rd,0 ≤ 300 au.
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A&A proofs: manuscript no. waterFig. 3. The time evolution of water fraction for the models with tdiff = 106y, Ṁg,0 = 10−7 M�/y and Ṁpe = 10−9 M�/y. The left, center and right
panel show the results of rd.0 = 30au, 100au, and 300au, respectively. The blue, red, and green lines represent the Earth, Mars and Venus analogues,
respectively.

Fig. 4. The time evolution of water fraction for the models with rd.0 = 100au, Ṁg,0 = 3 × 10−8 M�/y and Ṁpe = 10−9 M�/y. The left and right
panels show the results of tdiff = 106y, and 3 × 106y, respectively.

Fig. 5. The time evolution of water fraction for the models with rd.0 = 100au, tdiff = 106y and Ṁpe = 10−9 M�/y. The left and right panels show
the results of, Ṁg,0 = 3 × 10−8 M�/y and 10−7 M�/y, respectively.

4. Analytical formula for planetary water fraction

The planetary water fraction is calculated by estimating the cu-
mulative mass of accreted icy pebbles ∆Mpl (Eq. 41). We can
simply estimate it as ∆Mpl ' fflt(Mpl) ·Mres, where Mres is the to-
tal icy dust mass preserved in outer disk regions at the snowline
passage, because the pebble flux integrated from the snowline
passage time tsnow to infinity (effectively, to tdiff) must be similar
to Mres.

Equation (41) is approximated to be

fwater '
1
2

fflt(Mpl)
Mpl,0 + fflt(Mpl)Mres

Mres

'


1
2

fflt(Mpl,0)
Mpl,0

Mres [∆Mpl � Mpl,0]

1
2

[∆Mpl � Mpl,0],
(43)

where we used fflt(Mpl) ' fflt(Mpl,0) for ∆Mpl � Mpl,0 in the up-
per line. For the range of the disk parameters we used in numeri-
cal simulations, the accretion is mostly in the 3D regime (Eq. 30)
and fflt ∝ Mpl. In that case, Eq. (43) shows that fwater is indepen-
dent of Mpl both in the cases of ∆Mpl < Mpl,0 and ∆Mpl > Mpl,0,
while it depends on the disk parameters. Even if the transition to
2D accretion occurs at a smaller planet mass (which happens for
smaller values of α), the mass dependence of fwater is still weak:
it is proportional to M−1/3

pl for ∆Mpl < Mpl,0 and independent of
Mpl otherwise. We can combine the two limits in Eq. (43) by a
simple formula as

fwater '
1
2

fflt(Mpl,0)
Mpl,0 + fflt(Mpl,0)Mres

Mres. (44)

In Figure 7, fwater,sim obtained by our simulations is compared
with Eq. (44) with the simulated Mres. This figure shows that
Eq. (44) reproduces the numerical results very well. Both the nu-
merical results and Eq. (44) show fwater ∝ Mres for fwater � 1/2.
The icy dust mass Mres depends sensitively on the disk pa-
rameters, Ṁg,0, Ṁpe, tdiff , and rd,0. On the other hand, fflt in 2D
is independent of these disk parameters, while that in 3D de-
pends only weakly (∝

√
rd,0/tdiff). In the case of ∆Mpl � Mpl,0,

fwater ' ( fflt/Mpl,0)Mres. As we discussed, fflt/Mpl,0 is almost
constant, so that fwater should be almost proportional to Mres for
∆Mpl � Mpl,0.

Because the analytical solution given by Eq. (44) reproduces
the numerical results, we next derive an analytical formula for
the icy dust mass Mres at the snowline passage as follows. From
Eq. (6), the snowline passes the planet orbit at apl when

Ṁg ' Ṁg,snow

= 2 × 10−8
( apl

1 au

)9/4
(

M∗
M�

)−3/4 (
α

10−2

)1/2
M�/y. (45)

Using Eq. (16),

Ṁg,snow = 2 × 10−8
(

M∗
M�

)−3/4

×

( apl

1 au

)9/4
(

tdiff

106y

)−1/2 ( rd,0

100 au

)1/2
M�/y. (46)

From Eq. (12), the snowline passage time is

t̃snow '

(
Ṁg,0

Ṁg,snow + Ṁpe

)2/3

; tsnow '

( Ṁg,0

Ṁg,snow + Ṁpe

)2/3

− 1

 tdiff .

(47)

From Eq. (14), the remaining gas disk mass at the snowline pas-
sage is given by

Mg,snow ' 2 t̃snow tdiff

(
Ṁg,0 t̃ −3/2

snow − Ṁpe

)
. (48)

Because Mres ∼ Z Mg,snow, we obtain

Mres ∼ 2 Z0

(
1 +

tsnow

tpff

)−γ
t̃snow tdiff

(
Ṁg,0 t̃ −3/2

snow − Ṁpe

)
, (49)

where we approximated Z as Z ∼ (1 + t/tpff)−γ Z0 from Eq. (39),
tpff ∼ 2 × 105(r/100 au)3/2(M∗/M�)−1/2 y (Eq. 38), and γ =
1 + 0.15(300 au/rd,0) (Eq. 40). Substituting the filtering factor
fflt given by Eq. (31) with St = 0.1 and Mres estimated above into
Eq. (44), we can analytically estimate the water fraction from the
disk parameters, Ṁg,0, Ṁpe, tdiff and rd,0 as (Eqs. 31 and 41)

fwater '
1
2

(
1 +

Mpl,0

fflt(Mpl,0)Mres

)−1

, (50)

where Mres is given by Eq. (49), fflt = min( fflt,3D, fflt,2D), and

fflt,3D ' 0.017
(

M∗
M�

)−1 (
α

10−2

)−1/2
(

hg/r
0.02

)−1 (
St
0.1

)1/2

×

(
Mpl,0

0.1M⊕

) ( r
1au

)−1/2
, (51)

fflt,2D ' 0.040
(

M∗
M�

)−2/3 (
St
0.1

)−1/3 (
Mpl,0

0.1M⊕

)2/3 ( r
1au

)−1/2
. (52)

Except for the value of γ, which was fitted by the numerical
results, the other derivations are analytical. Note that fwater ∝

Mres ∝ Z0. Around metal-rich stars, fwater would be larger.
In Figure 8, we compare the analytically estimated water

fraction fwater,anly with the numerically simulated fwater,sim. In ad-
dition to the Earth analogues (Mpl,0 = 1M⊕) at 1 au, we also plot
the results for the Mars analogues (Mpl,0 = 0.11M⊕) at 1.52 au
and the Venus analogues (Mpl,0 = 0.82M⊕) at 0.72 au. For the
Earth and Mars analogues, fwater,anly reproduces fwater,sim within
a factor of several, while the water fraction varies by several or-
ders of magnitude, except for some runs where the water fraction
is overestimated by the analytical formula. The agreement both
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Fig. 6. The time evolution of water fraction for the models with rd.0 = 100au, tdiff = 106y and Ṁini = 10−7 M�/y. The left, center and right panels
show the results of, Ṁpe = 10−9 M�/y, 3 × 10−9 M�/y, and 10−8 M�/y, respectively.

Fig. 7. The water fraction fwater,sim and the icy dust mass preserved in the outer disk at the snowline passage Mres obtained by our simulations.
The blue squares are the simulation results for the Earth analogues with different values of Ṁg,0, Ṁpe, tdiff , and rd,0 (section 2.4). The dotted curve
represents the analytical solution given by Eq. (44).

Fig. 8. Comparison of the water fraction obtained by the numerical simulations ( fwater,sim) with the analytical estimate ( fwater,anly). The blue squares,
red circles, and green cross represent the results for the Earth, Mars, and Venus analogues, respectively. If fwater,sim obtained by the numerical
simulation is smaller than 10−5, we put fwater,sim = 10−5, because the numerical results would include a numerical uncertainty for such small values
of fwater,sim.

for the Earth and Mars analogues strongly suggests that the mass
and semimajor axis dependences are also reproduced. In the case
of Venus analogues, fwater,anly is larger by a factor of a few to a
few tens than fwater,sim. When the Earth analogue increases its
mass by capture of pebbles, it captures significant fraction of
the pebble flux and the accretion of the Venus analogues that re-
sides in inner region of the Earth analogues can be significantly
decreased. This effect is included in the numerical simulation,
while it is not taken into account in the analytical formula.

5. Dependence of water fraction on disk parameters

Using the analytical formula, we investigate how the water frac-
tion ( fwater) is determined by the disk parameters. Figure 9 shows
fwater for a planet at apl = 1.0 au as a function of the disk param-
eters, Ṁg,0 and rd,0. The other parameters are Ṁpe = 10−9M�/y
and tdiff = 3 × 106y. The panels (a) show the dependence on
Mpl,0 for St = 0.1. The panels (b) show the dependence on St for
Mpl,0 = 1M⊕. The planets formed with the parameters in the red
region are very dry, fwater <

∼ 10−4. Those in the green region have
modest amount of water, fwater ∼ 0.1, and those in the blue re-
gion are icy planets, fwater ' 1/2. The yellow and orange regions
represent fwater ∼ 10−4 − 10−2, which corresponds to the water
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Fig. 9. The analytical estimate of fwater at 1 au as a function of the initial disk radius (rd,0) and the initial disk accretion rate (Ṁg,0). (a) The
dependence on the planet mass (Mpl,0), and (b) that on the Stokes number (St) of pebbles. The other parameters are Ṁpe = 10−9 M�/y and
tdiff = 3 × 106y. In the panels (a), we used St = 0.1. In the panels (b), Mpl,0 = 1M⊕. The middle panels in (a) and (b) are identical. The color scales
are log10 fwater.

fraction of the current Earth and that estimated for the ancient
Mars.

We find that fwater is the most sensitive to Ṁg,0 and rd,0. The
common features in the contours in Fig. 9 are that i) fwater is
lower for smaller rd,0 and larger Ṁg,0, and ii) fwater ∼ 10−4−10−2

is realized at rd,0 ∼ 30−50 au and Ṁg,0 >
∼ 10−8M�/y. This is con-

sistent with the conclusion by Sato et al. (2016) that such fwater
can be realized for compact disks with sizes < 100 au and late
snowline passage (> 2 − 4 My). We here show that the disk pa-
rameters for fwater ∼ 10−4 −10−2 is not in a very narrow window.

As we showed in section 4, fwater is regulated by Mres and
Mres is sensitive to Ṁg,0 and rd,0, especially through the param-
eter tsnow/tpff (Eq. 49). Because pebble accretion is fast, in order
to realize fwater ∼ 10−4 − 10−2, Mres has to have significantly de-
cayed until t ∼ tsnow. For small rd,0, tpff is small (Eq. 38), while
tsnow is large (Eq. 47) due to small Ṁg,snow (Eq. 46). For large
Ṁg,0, tsnow is small (Eq. 46) while tpff is the same (Eq. 38). As a
result, Σp decays more quickly (Eq. 39) for small rd,0 and large
Ṁg,0.

Figure 9 shows the dependences of fwater on the pebble accre-
tion parameters: the initial planetary mass (Mpl,0) and the Stokes
number (St) of pebbles that accrete onto the planet. In the numer-
ical simulations, the Stokes number of pebbles that accrete onto
the planet is calculated by growth and radial drift of pebbles in an
evolving disk. According to the simulations, the Stokes number
of radially drifting particles is ∼ 0.1 at early times (Eq. 36), but
decreases with time as the dust and gas disks evolve. As Eq. (39)
shows, Σp decays more rapidly than Σg for t > tpff . Accordingly,
Z decreases and the equilibrium Stokes number of migrating

pebbles become smaller (Eq. 36; also see Sato et al. (2016)). As
we have pointed out in section 3.1, if a fragmentation/rebound
barrier limits the icy pebble growth, St also becomes small. By
these reasons, we also showed plots with St = 0.01 and 0.001 in
Fig. 9.

Figure 9 shows that fwater is almost independent of Mpl,0 and
St. The weak dependence on Mpl,0 is explained by the following
arguments. The water fraction fwater is ∼ ( fflt/Mpl,0)Mres in the
case of ∆Mpl � Mpl,0. The dust mass Mres is independent of
Mpl. The factor fflt/Mpl,0 is independent of Mpl,0 in 3D accretion
and weakly depends on Mpl,0 in 2D accretion (∝ M−1/3

pl,0 ),
The weak dependence of fwater on Stokes number shown in

Figure 9 is resulted by the assumption that Mres is independent
of St; it depends on St only weakly (Eq. 31) through fflt. The
parameter γ could be dependent on St, because the sculpture
rate of Σp at r = rpff may depends on St. Figure 10 shows
the dependence on γ2, assuming that the functional form of
γ = 1 + γ2(300au/rd,0) still holds. Because the sculpture rate
may be lower for smaller values of St, we tested the cases of
γ2 = 0.05 and 0.1, in addition to the nominal case of γ2 = 0.15.
The result is insensitive to γ2 for γ2 >

∼ 0.1, while the sculpture
rate is lower and accordingly the fwater is relatively higher for
γ2 ∼ 0.05. The detailed functional form of γ is left for future
work.

Figure 11 shows the dependence on the other disk parame-
ters, tdiff and Ṁpe. For larger tdiff , the evolution of the snowline
is slower and the snowline passage is later (Eq. 47). Before the
passage, the icy dust disk has been more sculpted. As a result,
Mres is smaller (Eq. 49), because tsnow ∝ tdiff and γ ≥ 1. For
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Fig. 10. The analytical estimate of fwater at 1 au as a function of the initial disk radius (rd,0) and the initial disk accretion rate (Ṁg,0), with
γ2 = 0.05, 0.10, and 0.15. The other parameters are St = 0.1, Mpl,0 = 1M⊕, Ṁpe = 10−9 M�/y, and tdiff = 3 × 106y. The color scales are log10 fwater.

Fig. 11. The analytical estimate of fwater at 1 au as a function of rd,0 and Ṁg,0. (a) The dependence on the disk diffusion timescale tdiff , and (b)
that of the photoevaporation rate (Ṁpe). The other parameters are St = 0.1 and Mpl,0 = 1M⊕. In the panels (a), we used Ṁpe = 10−9 M�/y, and
tdiff = 3×106y in the panels (b). The middle panels of (a) and the right panel of (b) are identical. In the right panel of (b), the region with Ṁg,0 < Ṁpe
is empty, because the disks do not exist under that condition. The color scales are log10 fwater.

smaller Ṁpe, the disk is hotter and the snowline passage is later
(tsnow is larger), resulting in smaller Mres. If Mres is smaller, fwater
is smaller. The water fraction corresponding to the current Earth
is 10−4 − 10−2 (the yellow and orange colored regions) are only
slightly shifted to larger rd,0 and lower Ṁg,0 for smaller tdiff and
larger Ṁpe, because Mres is smaller for these parameters (Eq. 49).
Note that the parameter region with Ṁg,0 < Ṁpe is empty in the
right panel of Figure 11b, because the disks do not exist under
that condition.

In Figure 12, the analytically estimated fwater is plotted for
apl = 0.72, 1.00 and 1.52 au (the Venus, Earth, and Mars ana-
logues, respectively). In the outer region, fwater is generally larger
due to early snowline passage (smaller tsnow). In other words,
Ṁg,snow is larger for larger apl. As mentioned in section 4, the
Venus may have further lower fwater, if we take into account the
decrease in the pebble flux due to accretion by the Earth ana-
logue. As shown in Eq. (7), the snowline cannot reach the re-
gion inside 0.53 au in our disk model, the planets there are com-
pletely dry. Although the dependence on the orbital radius ex-
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Fig. 12. The analytical estimate of fwater as a function of rd,0 and Ṁg,0, at 0.72, 1.00, and 1.52 au. The other parameters are St = 0.1, Mpl,0 = 1M⊕,
Ṁpe = 10−9 M�/y, and tdiff = 3 × 106y. The color scales are log10 fwater.

Fig. 13. The condition of tsnow = 10 tpff as a function of rd,0 and Ṁg,0. (a) The dependence on the disk diffusion timescale tdiff , (b) that of
the photoevaporation rate (Ṁpe), and (c) that of planetary orbital radius (apl). The right regions from the curves represent water-rich regions
( fwater ∼ 1/2). In the panels (a), we used Ṁpe = 10−9 M�/y and apl = 1 au, tdiff = 3 × 106y and apl = 1 au in the panels (b), and Ṁpe = 10−9 M�/y
and tdiff = 3 × 106y in the palens (c).
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ists, in the case of rd,0 ∼ 30 − 50 au and Ṁg,0 >
∼ 2 × 10−8M�/y,

fwater ∼ 10−4 − 10−2 both for the Earth and Mars analogues.
In section 3, we pointed out that the simple condition of

tsnow/tpff < 10 or > 10 discriminates between the water-rich case
( fwater ∼ 1/2) and the water-poor case. The pebble formation
timescale tpff is given by Eq. (38) and the snowline passage time
tsnow is given by Eq. (47). Both tpff and tsnow are independent of
Mpl and St, which is consistent with Figs. 9. The condition of
tsnow = 10 tpff is shown on the rd,0-Ṁg,0 plane in Fig. 13. We
show the dependences on tdiff , Ṁpe, and apl. Comparison of this
figure with Figures 11 and 12 show that the simple condition ap-
proximately reproduces the more detailed evaluation except for
rd,0 > 100 au. As shown in Fig. 1, for rd,0 > 100 au, the disk ra-
dius expands with the pebble formation front radius rpff , so that
the sculpture of icy dust reservoir is delayed, compared to the
estimation of tpff at rd,0. The calculation of Mres does not have
this problem.

As we have shown, fwater is the most sensitive to Ṁg,0 and
rd,0 and almost independent of the other parameters of disks
and pebble accretion. It would be a robust result that the wa-
ter fraction inferred for the present Earth and the ancient Mars,
fwater ∼ 10−4 − 10−2, is realized at rd,0 ∼ 30 − 50 au and
Ṁg,0 >

∼ 2 × 10−8M�/y, which may correspond to median disk
of classical T Tauri stars or slightly compact and massive disks.

6. Discussion

Here we comment on the effect of pebble isolation mass, which
we did not include in our simulations. A planet with relatively
large mass (Mpl) can make a dip in the gas disk along the plan-
etary orbit to prevent the pebbles from passing the orbit. The
threshold mass is called ”pebble isolation mass" (Mpeb,iso) (Lam-
brechts et al. 2014; Bitsch et al. 2018; Ataiee et al. 2018). When
the planetary mass reaches the isolation mass, the pebble accre-
tion onto the planet with Mpl > Mpeb,iso and other planets inside
the planetary orbit is truncated and the increases in their water
fraction are stalled.

Bitsch et al. (2018) derived a detailed expression of the peb-
ble isolation mass,

Mpeb,iso ' 25
(

h/r
0.05

)3 0.34
(

3
log10(α)

)4

+ 0.66

 M⊕. (53)

For example, Mpeb,iso ' 4.1M⊕ for tdiff = 3 × 106y, Ṁg,0 =

10−8M�/y and rd,0 = 100 au, h/r ' 0.0246 and α ' 3 × 10−3

at 1 au. If Mpl,0 >
∼ several M⊕, the effect of pebble isolation

mass is not negligible. Figure 14 shows the water fraction for
Mpl,0 = 3, 5, and 10M⊕. We stop the pebble accretion when Mpl
reaches Mpeb,iso. Because α is smaller for smaller rd,0 (Eq. 16)
and h/r is lower for smaller Ṁg,0 and higher α (Eq. 3), Mpeb,iso is
smaller for smaller rd,0 and Ṁg,0. The dry regime (the red-colored
regime) in the left bottom part of the plots represent the cases of
Mpl,0 > Mpeb,iso. Because tsnow is small in the low Ṁg,0 regions,
fwater rapidly increases due to a high pebble flux until Mpl in-
creases to Mpeb,iso. Thereby, the edge in fwater at Mpl,0 ' Mpeb,iso
is sharp. ion is avoided by the effect of pebble isolation even after
the snowline passage.

For the same tdiff , Ṁg,0, and rd,0 as the above, Mpeb,iso '

4.1(r/1 au)6/7M⊕. The filtering rate for Mpeb,iso is fflt '

0.5(r/1 au)1/14 in 2D case (Eq. 31). If ice giants or cores of gas
giants are formed, even before their mass exceeds Mpeb,iso, the
pebble flux is reduced by ∼ 50% by individual ice giants.

If Jupiter’s core is formed in the outer region, it shuts down
the pebble mass flux into the terrestrial planet region. Morbidelli
et al. (2016) proposed that the pebble flux truncation by the for-
mation of Jupiter accounts for the dichotomy of our Solar sys-
tem – the total solid mass contained in Jupiter, Saturn, Uranus
and Neptune is about 50 times larger than the total mass of ter-
restrial planets. Jupiter’s core must be formed at Mres >

∼ 10M⊕.
From Eq. (49) with Md,0 ∼ 10−8M�/y and tdiff ∼ 3 × 106 y,
Mres(t) ∼ 200(tpff/t)γM⊕, which is Mres(t) ∼ 20(t/106 y)−1.5M⊕
for rd,0 ∼ 100 au. Hence, the Jupiter’s core formation time tjup
must be <

∼ tdiff . While too fast type I migration of the core is a
problem in that case (Matsumura et al. 2017), the dichotomy of
our Solar system could be created. Our results show that fwater
rapidly increases jafter t = tsnow and becomes saturated before
t = tdiff . If tsnow > tjup, fwater = 0 for terrestrial planets. Other-
wise, it is likely that fwater is already close to the saturated value,
because the increase of fwater is very rapid. It is difficult for gi-
ant planet formation to directly produce modestly low values of
water mass fraction (∼ 10−4 − 10−2) corresponding to the Earth
and ancient Mars. The modestly low values are attained by disk
parameters with tsnow ∼ 10 tpff as we showed.

We also point out that D/H ratio is expected to be radially
uniform among the Earth, asteroids, and comets, if water is de-
livered by icy pebbles that formed in disk outer regions and drift
all the way to the host star. However, observations show that in
our Solar system, D/H ratios of Oort cloud comets are clearly
higher than the Earth (e.g., Marty 2012). One possibility to rec-
oncile the discrepancy is the shut-down of the pebble flux by
Jupiter formation (Kruijer et al. 2017). Because pebble forma-
tion front migrates outward, the isotope ratios of drifting peb-
bles before and after Jupiter formation, which are respectively
the building materials for terrestrial planets and those for comets,
should be different. More careful comparison should be neces-
sary between planet formation model and cosmo-chemical data.

7. Summary

If water is not delivered to rocky planets in habitable zones, the
planets cannot be actual habitats, because H2O ice condenses in
the disk regions well beyond the habitable zones. In the pebble
accretion model, accretion of icy pebbles after the snowline pas-
sage may be a primary mechanism to deliver water to the rocky
planets.

In this paper, we have investigated the water delivery
to rocky planets by pebble accretion around solar-type stars,
through 1D simulation of the growth of icy dust grains to peb-
bles and the pebble radial drift in an evolving disk. We assume
that the planetary embryos did not migrate significantly and con-
sist of pure rock, which means that accretion of ice starts when
the snowline migrates inward and passes the planetary orbit due
to disk evolution. Our previous paper, Sato et al. (2016), pointed
out that the water fraction of the final planets are determined by
the timings of the snowline passage through the planetary orbit
(t = tsnow) and disk gas depletion, because pebble accretion is
fast and efficient. While Sato et al. (2016) used a simple static
disk model, we here used the evolving disk model due to vis-
cous diffusion based on the self-similar solution with constant
viscous α (Lynden-Bell & Pringle 1974) and simultaneously cal-
culated pebble formation/drift/accretion and snowline migration
with the disk model. Because the snowline migration is cor-
related with global disk diffusion in the evolving disk model,
we found that for water fraction of the final planets ( fwater), the
snowline passage time (tsnow) relative to the time (tpff) at which
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Fig. 14. The analytical estimate of fwater at 1 au as a function of the initial disk radius (rd,0) and the initial disk accretion rate (Ṁg,0), including the
effect of the pebble isolation mass. The other parameters are Ṁpe = 10−9 M�/y, tdiff = 3 × 106y, and St = 0.1. The pebble accretion is halted when
Mpl reaches Mpeb,iso. The dry regime (the red-colored regime) in the left bottom part of the plots represent the cases of Mpl,0 > Mpeb,iso.

pebble formation front reaches the disk outer edge is more im-
portant than that relative to the disk gas depletion timescale. Our
simulation shows that the ice dust mass preserved in the disk
outer region at t = tsnow (Mres) determines the water fraction of
the final planets. The accreted ice mass to the planet is estimated
by ∼ (1/2) ffltMres, where the filtering factor fflt is the fraction
of the pebble mass flux that is accreted onto the planet. Because
Mres rapidly decreases after t ∼ tpff , tsnow/tpff > 10 or < 10 is
crucial for final value of fwater. If tsnow/tpff > 10, Mres should
have significantly decayed when icy pebble accretion starts at
t = tsnow.

Using these numerical results, we derived an analytical for-
mula for fwater by icy pebble accretion. In the formula, fwater is
explicitly given as a function of the ratio tsnow/tpff and the disk
parameters. The parameter tsnow/tpff is also determined by the
disk parameters. As a result, fwater is predicted by the disk pa-
rameters, especially the initial disk mass accretion rate Ṁg,0 and
initial disk size rd,0. It is insensitive to the pebble accretion pa-
rameters such as the planet mass and Stokes number of drifting
pebbles.

We found that the expected water fraction of an Earth ana-
logue near 1 au has fwater ∼ 10−4 − 10−2, which may correspond
to the value of the current Earth, in the disks with initial disk
size of rd,0 ∼ 30-50 au and the initial disk mass accretion rate
Ṁg,0 ∼ (10−8 − 10−7)M�/r. For Ṁg,0 >

∼ 2 × 10−8M�/r, both the
Earth and a Mars analogues have fwater ∼ 10−4 − 10−2, while
fwater is generally larger for Mars than for Earth. Because these
disks may be median or slightly compact/massive disks among
classical T Tauri stars, our results suggest that rocky planets in
habitable zones in exoplanatery systems around solar-type stars
often have the water fraction similar to the Earth, if the pebble
accretion is responsible for the water delivery.
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